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Abstract

Methylammonium lead tri-iodide perovskite (MARDpIthin film for solar cells,chemical formula
CH3NH3PbI3, is synthesized in situ via sequential thermal vapor deposition of lead (Il)iodidg &bl
methylammonium iodide (MAI) single layers. The structural, morphological, optical, and electrical attributes
are highly dependent on annealing time and MAI thickness. X-ray diffractograms confirmed the tetragonal
crystal structure of MAPRIwith 14/mcm space group, good crystallinity which increases with the thickness of
MAI and transformation of Pkldeficient MAPb} to Pbb-rich MAPbI; upon increasing annealing time. UV-

Vis optical spectra reveal a redshift in the onset of absorption from 750 to 780 nm as the MAI thickness
increases and a slight blueshift as the annealing time increases. Field emission scanning electron microscopy
micrographs show densely packed polycrystalline grains with negligible pinholes and full coverage. The
current density-voltageJ{V) characteristics under illumination reveals that the photogenerated current
decreases with an increase in annealing time. Space charge limited current analysis of datk\¢eurerms

shows that Phideficient MAPb} has higher mobility than Phiich MAPbI; and trap density increases with

annealing time.

Keywords: Methylmmonium lead tri-iodide, sequential physical vapor deposition, thickness assessment,
annealing time, perovskite solar cell.

1 Introduction

The fastest emerging third-generation solar cell technology is based on halide perovskites (HPs). They have

desirable optoelectronic properties and versatile low-cost preparation options. Their outstanding
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characteristics including extensive diffusion ldnft], large carrier mobility [2], self-doping [3jow defect
density [4], low phonon energy [5], ambipolar ctetgansport [6], broad absorption spectra [6], amable
bandgap [7] are the driving forces behind the svigie in performance of perovskite solar cells (BSQust
over a decade of intensive research, the powerersion efficiency (PCE) of PSCs has improved frogh 3
[8] to 24.2 % [9], which exceeds values for commadrmulti-crystalline silicon (22.3 %) and coppadium
gallium selenide (22.9 %) solar cells [10]. In dfoi to the upsurge in PCE, PSCs have flexible gnagmon
methods that are fast and economical. These systteshniques comprise doctor blade [11], spiniogat
[12—-14], physical vapour deposition [15], spray tawg [16] , inkjet printing [17], meniscus printing.8],
pulsed laser deposition [19], atomic layer deposif20], meniscus-assisted solution printing [2&H aip
coating [22]. Most solution-based methods are lzdies not suitable to implement in the fabricatdmulti-
junction tandem solar cells and produce low-qudilips [23]. Physical vapour deposition (PVD), wide
used in industry for thin film deposition is scdlgkenvironmentally friendly and results in highadjty films
[23]. Despite the surge in performance and low-postessing methods, inherent instability, reprdaility,
and scalability are major hindrances towards thamercialization of PSC technology. Factors affegtine
stability of PSCs include moisture [24], high temrgdares [25], UV-radiation [26], crystalline strucg and
stoichiometry [27]. These factors limit the lifeemof the devices to 3000 hours, which is very shor
compared to the lifespan of commercial silicon plottaics (25 years) [28]. The fundamental straegi
being employed to improve the stability of perows&i solar cells include developing resilient halide
perovskite and protecting the vulnerable absorléts coatings [29]. Efforts to improve the staljilibf
perovskites absorber are geared towards improvimggiuality [30] and developing stable stoichionydt31].
Film quality can be improved by reducing grain bdarmes (growing large grains), minimizing microastr
density and producing densely packed grains to mib@ leakage currents. Yang and co-workers [32]
improved stability by passivating and minimizingigr boundaries. Zhao and co-workg8] showed that the
rate of degradation can be decreased by reducsiduad strain. Likewise, Zhang and co-workef80]
showed that high quality films with large densescked grains result in stable and high-perform&®€s.
Methylammonium lead tri-iodide (MAPHlI chemical formula CENHsPbk, is the best efficient and

extensively investigated HP for solar cells. Howevts preparation by PVD, which may improve italstity
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and scalability, has rarely been exploited. Bon@mi co-workers [15] used RF-magnetron sputtering to
prepare MAPhJ from single source containing methylammonium ied{@1Al)/lead(ll)iodide (Pbj). They
achieved high purity films with full coverage witha large thickness range less than 200 nm toegréen 3
um. Momblona and co-workers [34] synthesized MAFlins by co-evaporation Ppland MAI from two
separate crucibles. They obtained a homogenoushology of smooth thin films resulting in PCEs of %%
The co-evaporation and single source approacheslvimvchecking that rate of deposition. However,
reproducibility is a problem since the depositiates of powdered organic precursors are diffieuitnonitor
because they are unsteady. The fluctuating ratesasra result of the small molecular weights of the
precursors leading to random diffusion of the vapmiecules inside the enclosure [35]. Also, the rait
deposition may differ for various MAI precursors edio the presence of variable concentrations of
methylammonium dihydrogen phosphide (M&D;) and methylammonium hypophosphite (MRD,)
impurities [36]. On the contrary, the sequentialygibal vapor deposition (SPVD) approach is thicknes
regulated. Thickness monitoring using a quartz tatysnonitor is more reproducible than the rate of
deposition. One of the pioneering studies on SPMDIlved the preparation of cesium lead tri-iodi@sRb})
by alternate layer-by-layer deposition of Csl aru,H37]. This approach, though reproducible, is time-
consuming as time is wasted during to alternatevdsen several layers. There are a few reports ogriheth
of MAPbI; by SPVD. Miguel and co-workerf38] prepared MAPhKI using a system that automatically
controls the source temperature and rate of deposiand achieved phase pure films upon annealing a
140°C. The method still involves rate monitoring, whithctuates for MAI and PbI[35], hence difficult to
reproduce. Patel and co-workg¢8®] slowed down the formation of MAPpturing the SPVD of MAI on
Pbl, by lowering the substrate temperature ?6,0vhich prevented inter-diffusion. By in-situ magring the
absorption spectrum during the deposition prodbsy, saw that nascent MARWas formed as the substrate
temperature was gradually increased due to thenmintang of MAI and Pbj. However, ambient air was
needed for the complete crystallization of MAPBhd removal of excess MAI. Also, it is not cleanat
amounts (thicknesses) of MAI and Phhere used in their experiment.

In this study, we prepared 3D MARHthin films by SPVD of single layers of Bldnd MAI and optimized

their structural, optical, morphological and eleat by varying the thickness of MAI and post-aniten



83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

time. FTO/MAPb}/Au devices were fabricated and théiV characteristics under dark measured. The
characteristics were used to calculate the cami@rility and trap density by the space charge énhiturrent
(SCLC) theory. This method is simplified, scalabieproducible and paves the way for the preparation

stable thin MAPU films for solar cells.
2  Experimental details

Fig. 1 illustrates the set up for the preparatiotMé\Pbl; thin films by SPVD of Phland MAI single
layers using a resistive thermal evaporator. Micopsc glass substrates were trimmed into 15 x 20anch
cleaned in acetone, isopropanol and deionized watgrectively using an ultrasonic bath for 10 mioes,
remove oils grease, and particle contaminationgrddfter, they were dried by blowing with nitroggais
remove moisture. Pp(99.9 %) and MAI (0.42 M in 2-propanol) were ob&infrom Sigma Aldrich. The Ppl
was used as received whereas the MAI solution wapaated using a rotary evaporator to obtain adeow
Before deposition, the chamber was cleaned ussgwion of extran diluted with deionized water I(une
ratio 1:4) and high-pressure cleaner, to removedefifiects of residual contaminants. The substratesew
seated on to a holder and installed in the chamBkk. and MAI powder were inserted into separate
cylindrical boron nitride boats, ;Band B. The chamber was evacuated to a vacuum pressi® of 10°
mbar. The sequential deposition of the precursas gontrolled by the switches, S1 and S2. The flli
was first deposited while switch S1 was closed 82apened, next MAI film was deposited while S2 &id
are potentially interchanged, forming a layer of M# Pb}. The thickness of Pplwas fixed at 100 nm
while that of MAI was varied from 300 to 500 nm steps of 100 nm. An inbuilt quartz crystal monitor,
placed at the same level as the substrate inseleithmber, was used to monitor the thickness afftim
during the deposition process. The crystal monitas calibrated for Pplthickness measurement by setting
the density to 6.16 g cfand Z-factor to 1.10. Also, MAI film thickness wamnitored by setting the density
to 1.20 g crit and Z-factor to 2.70. The crystallization of MARhas accomplished by annealing the
compound film at 108 for 10 mins in an air-heated oven. The films growaing Pb) (99.9 %) and MAI
(0.42 M in 2-propanol) are called SPLHinally, the experiment was repeated using F48.9 %) and MAI
(98%) with MAI thickness maintained at 500 nm whélenealing time was varied from 0 to 60 mins. The

samples formed from P499.9 %) and MAI (98%) are called SPL2.
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The XRD spectra of the thin films were measuredalBruker D2-Phaser X-ray diffractometer using Cu
Ko radiation with a wavelength of 0.15405 nm. Thelardmgtween the incident and diffracted ray®, %vas
varied from 10 to 50° in steps of 0.05. The measuspectra were used to determine the structure,
crystallinity, crystallite size, micro-strain, awlislocation density of the films. The morphologipabperties
were revealed by field emission scanning electracraacope (FE-SEM Zeiss Crossbeam 540), with an
accelerating voltage of 2.0 kV. Grain size analysese performed from the FE-SEM images following th
American Standard for Testing Materials (ASTM) gsthe Image J software. The optical absorptiontspec
of the films were measured by CARY 100 BIO UV-Vjgestrometer with the wavelength of incident light i
the 400-800 nm rangd-V measurements under illumination were performedgusitModel 91150V Solar
Simulator with solar output conditions of 100 mW tmt 25C and Air-Mass 1.5 Global (AM 1.5 G)

reference spectrum.

Quartz crystal monitor
Holder
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Bell jar —»
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Fig. 1. Set up for the preparation of MARLlthin films by SPVD of Phland MAI single layers, adapted from
Fru and co-workers [40].

3  Results and discussion

3.1 Structural properties

3.1.1  Structural properties of MAPDbI 5 for various MAI thickness

Fig. 2 (a) displays the diffractograms of the swsiked SPL1hin films for peculiar thicknesses of MAL.
The patterns show fine peaks saying good crysiigllmnd the crystal structure was then indexedhe t
tetragonal crystal system of MARbWwith 14/mcm space group [14,41-43]. Notably, Fratamd co-workers
[44] demonstrated from first principle calculatiotizat tetragonal MAPRIis centrosymmetric at room
temperature with 14/mcm space group. The interddithe extra (001) diffraction peak is indexed lie Pb}
residue according to JCPDS card number 07-0235itidddlly, it is seen to decrease with increasehia
thickness of MAI. This shows that the phase-pusityAPbI; increases as MAI thickness is increased. Fig.
S1 (supporting information) has spectra for 50 iy3:B50 nm MAI and 300 PkILO0 nm MAI. Particularly,
the characteristic (110) and (220) peaks showirgftiimation MAPb] were absent. However, when the
thickness of Phlis kept at 100 nm and that of MAI increased frof® 3o 500 nm, the peaks for MARDI
appeared. The intensities of (110) and (220) diffom planes increase with MAI thickness as shawhig. 2
(a), indicating an increase in crystallinity of MBIR. This is because increasing the thickness of MAym
increase the amount of carbon, hydrogen and icalioims that are needed at Wyckoff positions in tlystal
lattice, bringing about high structure factor. Tiherease in peak intensity may also arise fronsa i the
number of refection planes, which increases thetipligity factor and hence the intensity. This ischuse
each added layer of atoms contributes to the wasuibtensity of the diffraction peaks because aferent
scattering. It is worth noting that the thickneasia of Pb} to MAI that gave SPL1 is different from that
obtained by Miguel and co-workers [38] using anoawdted SPVD method. The difference may come from

the deposition parameters and conditions used.
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The crystallite size and micro-strain were caledafrom the Williamson-Hall (W-H) plot. The W-H glo
is applied when the simultaneous contributionsrgétallite size and micro-strain to X-ray line bdeaing is

required [45]. The W-H relation is given by Equatib,

ﬁcos@z%+ 4 singd

where D is the crystallite is the full width at half maximum/ is the wavelengthd is the Bragg's

diffraction angle¢ is the micro-strainK is the Scherrer constant which is determined byctlystallite shape
and is considered as 0.94 for spherical crystalit&h cubic symmetry. Fig. S2a shows the W-H st
various MAI thicknesses. The micro-strains are ioletd from the slopes while the crystallite sizes ar
calculated from the intercepts. The slopes arethagand decrease in magnitude as the thickneb4Adfis
increased, which indicates that the strains arepcessive and decrease with MAI thickness as shoviig.
2 (c). Zhao and co-workel83] showed that decrease in the micro-strain ecddmle extraction at the
perovskites/hole transport layer interface by #aihg the valence band. Furthermore, they pointegdiat
carrier mobility increases when micro-strains amaeved. Jones and co-workers [46] showed that micro
strain promotes defect concentration in MAPfilms and enhances non-radiative recombinatioreréfore,
the decrease in micro-strain is expected to redigfect density and non-radiative recombination. The
calculated average crystallite sizes increase thttthickness of MAI as shown in Fig. 2 (b), and iincrease
may be due to a decrease in micro-strain whiclpeeted to cause a decrease in band gap.

The lattice constants are computed using Bragghs (Bquation 2) and the relationship between the

interplanar spacingl, and the Miller indices of a tetragonal crystalisture is given by Equation 3,

nA =2dsinéd
2
wheren = 1.
1 W+ P
- Q= 4
> & ¢ 3
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wherea andc are the lattice constants afitkl) are the miller indices. A least-square fitting ggdure is used

to extract the lattice constants of the MAPTdr various MAI thicknesses and presented in Tabl@he
results show that the unit cells increase contislyoon thec-axis but contracts and then elongates as the
thickness of MAI is increased from 300 to 500 nrar the Pbj-rich MAPb; thin film having 100 nm Pbl
and 300 nm MAI, the lattice constants are 8.881 andt = 12.479. Increasing the thickness of MAI from
300 to 400 nm causes the tetragonal structure ntramt on thea-axis and elongates on tleeaxis. As the
thickness of MAI is increased beyond 400 nm, thi cell elongates along both axes. The change ih un
volume as thickness is increased correlates widmgés in the micro-train which includes the pedkBli,
shown in Fig. S3. The decrease in unit cell volasehe thickness of MAI is increased from 400 t6 &t
can be due to change of the micro-strain shownign &3 from tensile to compressive. The increase in
volume as thickness is increased from 400 to 500may be due to reduces in the size of the compeessi

micro-strain.

Table 1 Variation of lattice constants and unit eelume of the SPL1 thin film with thickness of NA

Thickness of Lattice Lattice Lattice Unit cell volume, V
MAI (nm) constant,a, (A) constant,b (&)  constant,c (&) (A3
300 8.881 8.881 12.479 984.246
400 8.860 8.860 12.508 981.873
500 8.902 8.902 12.542 993.898

The dislocation density, representing imperfections in the crystal, wasutated using the Williamson

and Smallman formula given by Equation 4 [47],



197

198

199

200

201

203

206

208

209

210

211

212

213

214

215

p= n
Y

D 4
where D is the crystallite size and = 1 for minimump. The dislocation density is seen to decrease

continuously with increase in MAI thickness, whée tpeaks corresponding to Plare excluded in the

calculation, as shown in Fig. 2 (d). Including e}, peaks reduces thefrom 3.825 x 18' cm? to 2.947 x

m
-
o
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thickness is increased, there is a first increageand a later decrease. Rbch films have lower dislocation
densities than Ppideficient (MAPbk-pure) films as shown in Figure S3. Dislocationsenheen shown to
reduce the performance of perovskites solar celésjue and co-workers [48] calculated ghef solution-

processed caesium lead tri-iodide (CgPbblar cells and observed that cells with lowebtd the best PCE.
Furthermore, the presence of defects generally teadecrease in performance for HPs solar cedl9]. [

Therefore, the film having 500 nm thick MAI, witbwestp, may result in high performing solar cells.
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Fig. 2. (a) Diffractograms of the SPlthin films for peculiar thicknesses of MAI; (b) Mizstrain of the
SPL1 thin film against MAI thickness; (c) Cryst#dlisize of the SPL1 thin film against MAI thickngé&d)
Dislocation density of SPL1 thin film against MAlitkness.

3.1.2  Structural properties of MAPDbI 5 thin films for various annealing times

Fig. 3 shows the structural analysis of SPL2 thimd for various annealing times. The
diffractograms show sharp peaks indicating goodtatinity and a strong dependence on annealing &
shown in Fig. 3 (a). In comparison, the crystalctures are tetragonal with 14/mcm space, likeréselts for
SPL1 thin films, vide infra. The spectrum of thedeposited film reveals a pure tetragonal MARiHase,
showing that crystallization of the SPL2 thin fibtarts during the deposition. This could be posdileicause
the temperature of the substrate°(@bwas within the range of annealing temperature$faPbl;, thus MAI
could diffuse into the voids in the Rloictahedra framework and recrystallize to form MAP®Bhe annealing
temperature for the crystallization of MARI within a 90—-10% range [50]. It is known that inter-diffusion
of MAI and Pb} during vapor deposition is determined by the gabsttemperature. Patel and co-workers
[39] showed that inter-diffusion and reaction dgrimapor deposition can be prevented by lowering the

temperature of the substrate fCefore the deposition of MAI on the BbIThey added that Pband MAI

10
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are transformed to MAPhlUnder vacuum at room temperature, but the reaiorcomplete as MAI residue
stays in the film. The MAI residue is completelyngerted to MAPKJ when the film is exposed to humid air
at 2°C, because moisture exposure makes the MAI moreleokliso, they saw that longer annealing times
improved the crystallinity and absorbance contirslypuDuring the first 20 mins of annealing our fdrmo
noticeable change in the phase purity is seen erdiffractograms. However, after 40 mins, a vengmse
Pbl, peak is seen, showing that annealing for a lomg auses a transformation MARtd Pb}, consistent
with previous results [51]. As annealing continfresn 40 to 60 mins, the intensity of the Ppeak decreases
as the time, showing a possible retransformatioRhif to MAPbl. The formation of Phlduring annealing
has also been seen by other authors. Chen and ensft1] showed that increasing the annealing time
beyond that needed to just complete the formatfoiM@Pbl; leads to the release of Rbivhich passivates
the grain boundaries, thus improving electrical pgrties and performance. Park and co-workK&2)
demonstrated that the formation of PtEsidues occurs during the annealing step ofehetion rather than at
the initial stages.

Fig. 3 (b) shows how the average crystallite siz&®L2 thin films vary with annealing time. The
crystallite size decreases slightly during thetfizg® mins, then increase greatly after 40 mins feefo
decreasing to a value close to that seen afteri@8.dm comparison, the change in crystallite $atlows the
same trend as the changing intensity of the Bbak. Thus, the fluctuations of the average clitstaize
with increase in annealing time may be due to #gwensible phase transformations occurring in thepsa
Interestingly, we realized that the crystalliteesig highest after 40 mins, when the Ridak is most intense.
Therefore, we think that the presence of,Rbbkidue in MAPH thin films increases the average crystallite
size.

Fig. 3 (c) shows how the micro-strain of SPL2 tfiims vary with annealing time. The as deposited
films show a large negative (compressive) micraistthat decreased (relaxes) slightly as time éseiased
from 0 to 20 mins. Beyond 40 mins, the micro-stralmanges again from tensile to compressive. The
dependence also shows a strong correlation witlthleging intensity of the Pbpeaks. The tensile nature
of the micro-strain may have caused the large aliitst size in the presence of a large proportibrrbl,

from the transformation of MAP)I

11
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Fig. 3 (d) shows that the dislocation density iases slightly during the first 20 mins of post-

annealing, then decreases drastically between 804@mmins before increasing again. The fluctuations

dislocation is also due to the continuous transédiom between Pbland MAPb} phases as the annealing

time is increased. In particular, the smallestatiation density is seen after 40 mins of annealhgn the

(100) peak corresponding to Rld most intense. This points out that the disliocatiensity is lower for the

Pbb-rich MAPDI; films than for the Phldeficient films. The presence of unreacted, RbMAPDbI; thin film

has previously been shown to have both positive reeghtive effects on the performance of solar cells

Jacobsson and co-workgB3] showed that Phldeficient MAPDbthin films have high crystalline quality and

result in solar cells with high @ however, their PCE is low due to MAI at grain hdaries which offer

barriers to charge transport. Conversely, the saklts having Phtrich films showed the highest

performance. Kwon and co-worke®4], on the other hand, demonstrated that pure MARbkithout Pb}

residue) has high photon absorption and long adifétimes which leads to more photogeneratedenirand

high PCE.
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Structural analysis of SPL2 thin film having 400 rthick MAI for various annealing times; (a) XRD
diffractograms of SPL2 thin film against annealitiges; (b) Average crystallite size of SPL2 thitm§
against annealing time; (c) Micro-strain of SPLihtfilm against annealing time; (d) Dislocation diyp of
SPL2 thin films against annealing time.

Table 2 shows the lattice constants, unit celura@ds and grain sizes, depending on the annealing
time, with non-linear relationships. The non-linedange in unit cell volumé/f with annealing time can be
related to the effects of thermal expansion [5%] #ire phase transformations from MARt Pb}, depicted
by Fig. 3 (a), consistent with previous reportsden and co-workers [51]. As can be seen in Figarand
Table 2, the as deposited film is deficient of Rbith lattice constanta andc equals 8.905 and 12.526 A
respectively. The lattice constants increase &femins of annealing, leading to an increase irf Yhe unit
cell, which may be due to thermal expansion dugngealing. However, increasing the annealing tiramf
20 to 40 mins leads to a decrease in V and theesuddpearance of the very intense,Piglak. This may be
because the effect of phase transformation from MAR Pb} dominates that of thermal expansion and

leads to a decrease in the decrease in V. Incggésintime to 60 mins reduces the intensity ofRb& peak

and there is a slight increase in V possibly duthéomal expansion.

Table 2 Variation of lattice constants, unit celume and grain size of SPL2 thin film for varicarsnealing
times.

Annealing Lattice Lattice Lattice Unit cell Average grain size
time (mins) constant,a (A) constant,b constant,c volume, V (A% (nm)

(A) A)
0 8.905 8.905 12.526 993.230 501.56+ 36.47
20 8.924 8.924 12.553 999.693 413.07£57.12
40 8.897 8.897 12.556 993.890 264.31+32.78
60 8.907 8.907 12.549 995.571 206.46+20.85
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3.2 Morphological properties

3.2.1 Surface morphology analysis of MAPb} for various MAI thicknesses

Fig. 4 presents the surface morphology of the synthesgBdl thin films for various MAI
thicknesses. The films shown in Fig. 4 (a, b) wirened by deposition of 300 and 400 nm of MAI,
respectively. Densely packed and randomly oriemexins were seen. The dense morphology is good for
solar cells since photo-current leakage is presiynbb minimized [56]. Furthermore, the grains have
variable sizes and orientations. The variable osiggons show that films are polycrystalline in matuln
addition, there was full coverage of substrate witigligible pinhole defects which may presumabbue
leakage current, increase open-circuit voltagefaln@ctor [57]. Likewise, the grain size increasfom 150
to 180 nm corresponding to increased thickness fB&® to 400 nm of MAIL The grain size was not
calculated for the sample with 500 nm MAI thicknébas because the grains were not visible as afeskin
Fig. 4 (c). This could be a result of excess MAksumed covering the grains. The results showecdtllea
average grain size is proportional to MAI thickndss all the samples. The increase in grain sizk wi
inevitably result in the fewer grain boundarieslieg to reduced electron scattering and trap defs#]. Liu
and co-workers[59] showed that reduction in trap density by passng with polyhedral oligomeric
silsesquioxane; which contains an amino group, avgd device efficiency, open-circuit voltage and

stability. We, therefore, deduce that the decr@ageain boundaries will lead to an increase ingtability.

Fig. 4. The FE-SEM images of SPL1 thin film for variougckmess of MAI; (a) Having 100 nhm BPkénd 300
nm MAI thickness ratio; (b) Having 100 nm Rlaind 400 nm MAI thickness ratio; (c) Having 100 Piol,
and 500 nm MAI thickness ratio.
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3.2.2 Surface morphology analysis of MAPD} for increasing annealing time

Fig. 5 is the SEM micrographs of SPL2 annealediriraa100C for different times. All the films
show densely packed randomly oriented pin-hole-freens. Note that the difference in the averagengr
sizes of SPL2 (Fig. 5) and SPL1 (Fig. 4) may bestiasn the difference in purity of the MAI used hret
deposition. The MAI powder precursor used for theppration of the SPL1 is obtained by the evapamabif
2-propanol from 0.42 M solution of MAI while thabrf SPL2 is of 98 % purity and used as received. The
average grain size decreases with an increasengeling time as shown in Table 2. In particulae, iverage
grain size for the as deposited is two times lathan that of film annealed after 40 mins. Accogdio the
XRD spectra, the as deposited film is Péficient while the film annealed for 40 mins ishrin Pb}. The
decrease in average grain size maybe because tfatigformation from MAPRIto Pbp. This agrees with
Meerholz and co-workers [6@yho showed that the effect of excess,Rblprecursor solution includes the
accumulation of excess crystalline Pat grain boundaries and the surface, and the tieduo average grain
size.

t 3 y
As deposited \

=5

60 mins
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Fig. 5. FE-SEM micrographs of SPL2 thin filnfisr various annealing times; (a) Micrograph of apasited
sample; (b) Micrograph of SPL2 thin film annealed 20 mins; (c) Micrograph of SPL2 thin film anneal
for 40 mins; (d) Micrograph of SPL2 thin film anhed for 60 mins.

3.3  Optical properties
3.3.1 UV-Vis absorption of MAPDbI ; for various MAI thickness

Fig. 6 (a) depicts the UV-Vis absorption spectréS®L1 thin films for peculiar MAI thicknesses. Each
spectrum shows a wide absorption band between 580480 nm wavelengths, which agrees with the
literature [61]. The absorption onset experiencasdshift as MAI thickness increases, which resuits
decrease in direct and indirect bandgaps from th6660 eV and 1.65 to 1.59 eV respectively, asvshim
Fig. 6 (d). The decrease in bandgap may be duketintrease in crystallite size and tensile stfa#j. M.
Oztas[62] observed that the energy bandgap of indiumsphwle (InP) thin film is inversely related to the
grain size and strain. Similarly, Innocenzo andvarkers [63] studied the relationship between molpdy
and luminescence properties of HPs and showedbtitatal bandgap decreased as crystallite size asek
leading to longer carrier lifetimes. Furthermamarrowing the bandgap is desirable to improve tG& [Bf
the single-junction perovskite solar cells accogdto Shockley-Queisser theory [64]. Sha and co-exsrk
[65] reported that the maximum PCE of 31 % is atdiat the Shockley-Queiser optimum bandgap of 1.40
eV for single-junction PSCs. Therefore, better pering solar cells may be achieved when the bandgap
approaches 1.40 eV. Likewise, bandgap reductiorucesi the chances of creating deep level traps
(recombination centers) in MAPHlvhich may decrease carrier lifetimes [66].

The bandgap was computed using the Mott and Daniaten. Mott and Davis developed Tauc's idea of
determining the bandgap of semiconductors. Theweamtothat the optical absorption strength was
proportional to the difference between photon epargl bandgap according to Equation 5 [67]

1
(atw)" = Atv-E) :
whereEy is bandgap and\ is a proportionality constant, is the absorption coefficienk is the Planck’s

constanty is the frequencyn is a numerical constant and its value determiratara of the transitiom
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equals1/2 , 2, 3/2, and 3 for direct allowed transitionsdiract allowed transitions, direct forbidden

transitions and indirect forbidden transitions exgjvely. Fig. 6 (b, ¢) show the direct and indirbandgaps

from respective Tauc-plots, close to the absorpdige. In both cases, perfect fits are seen, itidgcthat the

MAPDbI; naturally exhibits both direct and indirect banglgharacter, known as Rashba effect [68]. Etienne

and co-workers [69] proved that the Rashba effacHPs originates from splitting and shifting of the

conduction band minimum in thespace due to spin-orbit coupling. Rashba spintarbupling has also

been shown to enhance charge carrier lifetime ia HB].

d
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Fig. 6. () UV-Vis absorption spectra of SPL1 thin filnw foeculiar MAI thicknesses; (b) Direct bandgap
Tauc-plot of SPL1 thin film$or peculiar thicknesses; (c) Indirect bandgap Fglot of SPL1 thin filmdor
peculiar thicknesses; (d) Bandgap of SPL1 thindilgainst MAI thickness.
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3.3.2 UV-Vis absorption of MAPDbI ; for varying annealing time

Fig. 7 (a, b) show the UV-Vis absorption spectra airect bandgap Tauc-plot of the sequential
physical vapour deposited thin SPL2 films respetyivfor peculiar annealing times. The spectraheffilms
show an absorption edge close to 780 nm, whichinafthe formation of MAPRI However, the direct
bandgap from Tauc-plot reveals a uniform increaitle @nnealing time as shown in Fig. 7 (c). The éase in
bandgap can be linked to the decrease in grainasizlown in Fig. 7 (d), consistent with the litera [71].
The increase in bandgap with annealing time may laésdue to the presence of Phlith absorption onset at
515 nm (large bandgap), [72,73], from the transtdiom of MAPb} as the annealing time was increased.
Increase in annealing time affects the absorbaifterehtly in various regions of the visible spextr. The
absorbance of the as deposited thin film, whiatheficient in Pbj, is highest in the 500-800 nm range, while
the absorbance of the film annealed after 40 ndrlswest in the same range. This indicates thaPthig
deficient MAPbI; then-films absorb more in the 500-800 nm rangsilfleé range) than then Bhich thin-
films, and this is consistent with previous repdrys54,73]. Kwon and co-workepgoved that MAPRJ with
excess Phlhas a lower absorbance than that of pure MAP]. Similarly, Abdelmageed and co-workers
showed that the intensity of visible light absasptidecreased as more Phtas produced from the
degradation of MAPbDI3 [73]. Fig. 7 (b) shows thiaé tsquare of the product of absorption coefficemd
energy decreases as annealing time increase. miples that the absorption coefficient decreaseh wi
increase in annealing time and could be due tgpteeence of more Pbin the thin SPL2 film, from the

transformation of MAPRlas the annealing time is increased.
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413  Tauc-plot of SPL2 for different annealing times) Bandgap of thin SPL2 films vs. annealing time) (d

414  Bandgap of thin SPL2 films vs. average grain size.

415 3.4 Electrical properties

416 Fig. 8 shows the semi-logarithmic current densitage (J-V) characteristics under dark and light
417  conditions for various FTO/SPL2/Au devices, wheRt 3 the thin films are annealed at different timBse
418  dark semi-loglJ-V plots are to verify the nature of the contacts s possibility of using the space charge
419  limited current (SCLC) theory to calculate the marmobility and trap density. All the curves ayemnetric

420 showing small barrier to charge carrier injectisoni the electrodes (ohmic contacts) and validathmy
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possible application of SCLC theory, in accordandth the literatures [13,74]. The quality of thenois

contacts were determined by calculating the specifintact resistivity [75],,0(:, which is the reciprocal of
the gradient of the)-V curve asV turns to zero. The values Q@C are inversely related to the doping

concentrations [76] and are displayed in Table I3 $mall values 090C reveal good ohmic contact [75],

implying that SPL2 may be p-type materials, sinegyge semiconductors make ohmic contacts with high
work function metals like gold. Th&V measurements under illumination conditions wendopeed, with

the devices exposed to solar simulated light of01@0 m? intensity. Thel-V measurements show that the
current density for any given voltage under illuation conditions is higher in all the devices thhe dark
current density. This means that the SVP depositaébl; HPs can generate charge carriers when exposed
to sunlight, however, the amount of photogenerateatge carriers decreases with increase in polduced
during thermal annealing time. The as deposited23itin generated the highest number of carriersmine
forward bias. This is consistent with the UV-Visesfrum of the sample which has the highest absogbam

the 500-800 nm visible range. The differences betwe current densities under light and dark dard

are small. This narrow difference could be becdhseelectric field at the p-n junction is weak stioht the

charge separation is ineffective.
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Fig. 8. Semi-logJ-V characteristics of FTO/SPL2/Au devices under darl illumination, where the SPL2
thin films are annealed at different times; Jay curves of FTO/SPL2/Au devices having as deposited2S
thin film; (b) J-V curves of FTO/SPL2/Au devices having SRhi? film annealed for 20 mins; (d}V curves
of FTO/SPL2/Au devices having SPL2 thin film anmehffor 40 mins; (dJ-V curves of FTO/SPL2/Au
devices having SPLi&in film annealed for 60 mins.

The non-linear dark forwardV characteristics suggest a power law dependend®woi/ given by

the Equation 6,

Jav "

wherem is an exponent corresponding to the slope of thelkd-logJ-V plot and reveals the bulk charge
transport mechanism. Ohmic conduction is said toidate wherm~1, trap-free space charge limited current
(SCLC) conduction dominates whem= 2 and trap limited SCLC conduction in the preseattraps exist
whenm > 2 [40]. During ohmic conduction, the current isven by mobile charge carriers in the material.
Thus, the carrier density needs to be known toutate the mobility. Conversely, for SCLC conductitime
current is dominated by injected carriers from ¢batacts and it is solely dependent upon the myhifithe

charge carriers that can be determined from a simdplble-logl-V plot.
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Fig. 9 is the double-lod-V characteristic of the FTO/SPL2/Au for differentnaaling times. The
device containing as deposited SPL2 reveals ohraitsport and trap limited SCLC conduction as shown
Fig. 9 (a). The devices containing annealed SPh2aleohmic transport and trap free SCLC conduction
regions shown in Fig. 9 (b-d). As the biasing vgdtds increased, charges are injected into the tiutke
MAPDbI; leading to traps being filled continuously untiettrap-filled limit §/+r) is reached, when all the
traps are filled. Th&+g is seen to increase with increase in annealing émshown in Fig. Qg is linked
to the trap densiti¥; according to Equation 7,

d2
2c €, 7

Viee = 0N

whered is the film thicknessq is the electronic charge$,is the permittivity of free space addis the
dielectric constant of the MAPKk equal to 32 according to previous reports by hakl | Saidaminov and
co-workers [77]. Since thér_ is directly proportional td\,, it implies theN; also increases with increase in
annealing time. The calculated values fprincrease as the annealing time increases andgdrga 3.25-
4.55 x 16° cm® as shown in Table 3. This can be because longesading times cause more trap charge
carriers to gain enough energy to be released fomalized states. The relationship between theeoarr
density and carrier mobility beyond the trap-filladit is given by Equation 8,

2

J =§€0£,9,up§

whereJ is the current densityy is the voltage at the onset of space charge linmiggibn and) is the trap
factor, which is the ratio of free carriers to than of free and trapped carriefSs calculated by dividing the

current at the onset of the space charge regiahédyurrent at the end [13,40,74] and results ssprted in

Table 3. It increases with increase in annealimgtand is consistent with the effect of annealingeton trap

density. On the other han%initially decreased after annealing for twenty miasd then increased steadily

with annealing time. This first decrease,% may be because of the increaseNjrfor the same MAPRI
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phase. As heating continues beyond 20 mins, tlseaetiansformation from MAPbto Pb} that may cause
the mobility to increase slightly, even though trep density increases. It can be deduced thatddficient

MAPDI; has a higher mobility than Bhlich MAPbLs.

Table 3 Variation of trap density, charge carriaghitity, trap factor and specific contact resisivof SPL2
thin films with annealing time.

Annealing Trap density (cnt)  Mobility (cm? V*s?)  Trap factor Specific resistivity Q
time (mins) cnt)
0 3.25 x 16° 1.29 0.235 0.067
20 422 x 18 0.43 0.420 0.073
40 4.51 x 16 0.49 0.495 0.071
60 455 x 18 0.56 0.496 0.054
‘2100- -------- slope =1.25, 0 mins ‘2100 --------- Slope = 1.21, 20 mins
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Fig. 9. Double-logJ-V characteristics of FTO/SPL2/Au devices for which 8PL2 is annealed for different
times; (a) Double-logl-V curves of FTO/SPL2/Au devices having as depos8Bt2; (b) Double-logl-V
curve of FTO/SPL2/Au devices having SPKhnealed for 20 mins; (c) Double log J-V curves of
FTO/SPL2AuU devices having SPL2 annealed for 40 midy Double logJ-V curves of FTO/SPL2/Au
devices having SPL2 annealed for 60 mins.

4  Conclusions

We have demonstrated the preparation of thin MARhs by SPVD of Pbdand MAI single layers.
The structural, optical, morphological, and eleatiproperties were optimized by controlling the Midm
thickness and post-deposition annealing time. Ad XRD diffractograms showed the tetragonal MAPbI
phase having the I14/mcm space group. The crystglivas observed to increase with increase in Mh f
thickness while prolonging the post-deposition ating time resulted in the transformation of MARb
Pbb. Importantly, the unannealed films showed the pdAPDbl; phase, indicating crystallization started in
situ during the deposition of MAI on Bbdt a substrate temperature oP@5The micro-strain and crystallite
size increased, and dislocation density decreasdinecrease in MAI thickness while the changeghafse
properties with annealing time showed no regulétepa. FE-SEM results showed compact grains ofatdei
sizes and orientations and with average grain thiaeincreases with the thickness MAI but decreasithl
increased in post-annealing time. The reason ferdiicrease in average grain size with increasirgg- po
annealing time, however, needs further investigatizirect and indirect Tauc-plots of the UV-Vis alygtion
spectra showed a small Rashba effect, with optindinect and indirect bandgaps of 1.60 and 1.59 eV,
respectively. Also, the bandgap increased, andrptigp intensity decreased with increase in anngdiime.
We observed that films containing Rlproduced during post-annealing showed lower altisorpntensity.
The trap density was observed to decrease witleaser in annealing time and the maximum chargeecarri

mobility of 1.29 cm V' s* was obtained for the unannealed film. Th¥ characteristics under illumination
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also revealed that the unannealed film had thedsigphotogenerated current. Based on our findings,
recommend the optimal thickness of 100 nm,Rbid 500 nm MAI and no post-annealing for low trap

density, high charge carrier mobility, and puretMAPbI; films by SVPD.

Supporting Information

Three supporting figures: XRD spectra showing filwith a ratio of Phj to MAI greater than one and films
with a ratio of Pbd to MAI less than one, W-H plots of MAPJfor various thicknesses of MAI and various
annealing times. average crystallite size, micraist the dislocation density of MAPbfor various MAI

thickness with the effect extra Blpeaks included.
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Highlights

» Simplified growth of MAPbDI3; by sequential physical vapor
deposition of Pbl,and MAI single layers.

» Prolong annealing of MAPDI; causes reversible phase

transformation between MAPDbI; and Pbl..

» Optimization of the stoichiometry of MAPbI; by precise
thickness regulation.

» Trap density and carrier mobility of MAPDI 3 thin films by
space charge limited current theory.
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