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Abstract

Cocoa mirid, Sahlbergella singularis, is known to be one of the major pests of cocoa in West
Africa. In this paper, we consider a biological control method, based on mating disrupting, using
artificial sex pheromones, and trapping, to limit the impact of mirids in plots. We develop and study
a piece-wise smooth delayed dynamical system. Based on previous results, a theoretical analysis is
provided in order to derive all possible dynamics of the system. We show that two main threshold
parameters exist that will be useful to derive long term successful control strategies. We illustrate
and discuss our results when cacao pods production is either constant along the year or seasonal. To
conclude, we provide future perspectives based on this work.

Keywords: Pest control; Cocoa Pest; Control strategy; sex-pheromones; traps; Delay differential

equations; Piecewise-smooth system; Monotone system; Stability analysis; Numerical simulation

1 Introduction

Mirids are responsible of several damages on cocoa in Africa, especially in Cameroon. Their presence

leads to enormous losses of production and, thus, have an impact on trading and export. Losses due to

mirids are difficult to estimate, but can reach 30−40% of the potential production. Mirids are very harmful

and can lead to the destruction of cocoa trees over the time. Development of pest management strategies

are essential to prevent devastating impact on economy, food security, and biodiversity. Nowadays, in

Cameroon, it is known that chemical control is the best ways to control mirid population. However,

although chemical insecticides are very efficient to control mirids, their recurrent use is widely questioned

due to their immediate adverse effects on the environment such as reduction of mirid natural enemies
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(impact on non targeted species), environmental pollution in ecosystems, resistance induction in the mirid

population, and toxic effects on human health. In addition, these chemical products are very expensive.

That is why the reduction of pesticides in cocoa production is becoming an important issue. In [1],

we builded and studied several models (with and without delays) of mirids population and also several

control strategies, including chemical treatment, mating disruption and trapping. We showed that the

use of three applications of chemical treatment is equivalent to the combination of mating disruption and

trapping. These two methods are less expensive and less toxic than chemical management and respect

specific ecological and toxicological environmentally friendly requirements. In this paper, we will model

more specifically the use of sex-pheromones to trap males and thus disturb matings, in order to eliminate

or decay the population.

In Cameroon, different blends of the two components hexyl (R)-3-((E)-2-butenoyloxy)-butyrate and

hexyl (R)-3-hydroxybutyrate) of the S. singularis female sex pheromone are used for tests. Traps used

are delta or rectangular white-colored traps, made out of recycled polyethylene and cardboard. In a two

years experiments [2], a total of 361 adults of S. singularis (359 males and two females) were caught.

The highest numbers of mirids were found in traps with pheromone blends that combined a monoester

and a diester. Rectangular traps also capture significantly more mirids than delta traps. Finally, in

a recent work [3], the authors studied the impact of pheromone trap density (per ha) for cacao mirids

mass trapping. It is clearly stated that this approach is a Male Annihilation Technique (MAT), with the

objective of reducing the male population in order to lower the mirid population under an economical

threshold.

In [1], the authors developed and studied several mirids population models, including a model with

two delays. In [4], YD and co-authors developed and studied a piecewise smooth (PWS) system to model

mating disrupting and trapping. Here, we propose to combine both approaches to develop and study a

mathematical model to get a better understanding on the dynamics of the mirid population, under mating

disruption and trapping. Then, the main objective of this work is to study the effort required in terms

of traps or sex-pheromone, to reduce the population size below harmful level. We obtain a piecewise

smooth system of delayed differential equations. Using [1] and [4], we derive a system’s analysis in

order to provide a reliable and tractable strategy for a long time control. Since cocoa pods production in

Cameroon is seasonal we also consider a periodic version of the delay PWS system. Finally, we provide

numerical simulations to highlight the theoretical results and our reliable strategy.

The paper is organized as follows: in section 2, a sex-structured mirid model is built, based on [1] and

[4]. In section 3, like in [4], mating disruption and trapping are included in the sex-structured model ;

an analysis is provided that allows to build a useful control strategy, that is also illustrated by numerical

simulations. Finally, in section 4, we consider the periodic case. The paper ends with a conclusion where
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we discuss possible extensions of this work.

2 A sex-structured model of mirid population

We consider a generic delayed model to describe the dynamics of S. singularis. The flow diagram is

represented in Fig. 2, page 4. Based on biological and behavioral assumptions, we consider two main

developments stages: eggs (E) and adults (females F and A, and male M). Indeed, after being laid, the

eggs need, on average, τ1 = 15 days to become nymphs. These nymphs need τ2 = 25 days to complete the

nymph’s development and become adult males or females. After emergence, sexually mature female mate

with males (attracted by sex pheromones released by the females) and then they need approximately

τ3 = 10 days before being able to deposit eggs (in fact this is the time needed for the appearance of

mature eggs in the ovarioles [5]). This is summarized in Fig.1, page 4.

We denote by e−τ2 µL the proportion of nymphs respectively which survive the nymph stage. After

mating, F becomes mated females, A, that need an additional period of maturation, τ3, in order to lay eggs

[5]. However, only a proportion, e−τ3 µA , of A females will deposit eggs. Thus, we have four compartments

for our delayed model: E, the eggs’ compartment, F , the sex-immature females compartment, A, the

mated females compartment, and M , the males compartment.

Females release pheromone in order to attract males for mating. The mating between males and

females is modeled as in [4]: as long as the male density is such that γM ≥ F , then all Females F will be

inseminated and move to the compartment A, at rate νF . In contrary, if, for any reason, the male density

is scarce, i.e. γM < F then the number of females F that will move to the compartment A is related to

the number of Males, M . The other parts of the compartmental model follow the model developed in [1].

The biological parameters are described as follows: r is the sex ratio; b is the mean number of eggs laid

by an adult female mirid per day that have emerged as nymphs, KC is the maximal carrying capacity

related to the mean daily number of pods per area (ha), µE , µM , µF and µA represents respectively

the eggs, male, females daily mortality rate, νE is the transition rate from the egg to the next stage;

1/(νE +µE) is the mean time a mirid stays in the egg stage (measured in days); νF is the transition rate

from the sex-immature female stage to mature female stage;

As already explained in [1], the non linear term r bA
(

1− E
KC

)

is related to a skip-oviposition behavior.

Indeed, according to expert’s knowledge, mirids (S. singularis) are able to select their breeding sites

according to their level of occupation.
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Eggs Nymphs Adults
τ1 = 15 days τ2 = 25 days

τ3 = 10 days

Figure 1: Life cycle of S. singularis
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Figure 2: Sahlbergella singularis flow diagram with mating.

According to the diagram given in Fig. 2, we derive the following Delay Differential system







































Ė(t) = b e−τ3 µA A(t− τ3)
(

1− E(t)

K

)

− (νE + µE)E(t),

Ḟ (t) = r νE e
−τ2 µL E(t− τ2)− νF min

(

γM(t)

F (t)
, 1

)

F (t)− µF F (t),

Ȧ(t) = νF min

(

γ M(t)

F (t)
, 1

)

F (t)− µAA(t),

Ṁ(t) = (1 − r) νE e−τ2 µL E(t− τ2)− µM M(t).

(1)

The parameters of model (1) are summarized in Table 1, page 5.

3 Control using mating disruption and trapping

In order to maintain a low level a mirid population, we consider a control using sex pheromone traps.

The objective is to disrupt the mating by the use of female pheromones, but also to reduce the number

of males, by trapping, in order to reduce the overall population. However, to model the pheromones, like

in [4], we assume that the release of pheromones is equivalent to the releases of ”Fake Females”, Fp, such

that our approach can be somehow linked to the Sterile Insect Technique (SIT) approach, where sterile

males are released to disrupt the mating between wild males and females in order to reduce the number
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Table 1: Parameters of model (1).

Parameters Biological significance Unit
b Mean daily number of eggs laid by a mature female days−1

r sex ratio -
K Maximal carrying capacity related to the mean

daily number of pods per ha eggs−1

νF daily rate from F to A days−1

µA death rate of adults females days−1

µM death of adults males days−1

µF death of sexual immature females days−1

µE death rate of eggs days−1

1/νE Time necessary for an egg to change its stage days
α The maximal death rate by sex-pheromone trap days−1

γ daily number of females that can be inseminated by a single male -

τ1 =
1

νE
average time needed for eggs to become nymphs days

τ2 average time needed for nymphs to become adults days
τ3 average maturation time needed by mated females to deposit eggs days

of offsprings and so on (see for instance [6, 7, 8] for an overview and results on SIT).

Because of the release of Fake female, Fp, the mating term in the previous system becomes min

(

γ M(t)

F (t) + Fp

, 1

)

,

such that if the number of Fake females is large enough then
γM(t)

F (t) + Fp

< 1. Clearly when the mirid

population is large, a large number of Fake females is necessary to impact the mating. When Fake fe-

males are not released in sufficient numbers, then, the control will have no effect on an established (and

large) mirid population. The parameter α represents the maximum capture rate by trapping, the ratio

Fp

F + Fp

represents the attractiveness of the traps. The new flow diagram is represented in Fig. 3, page

5. According to the flow diagram given in Fig. 3, page 5, and taking into account the life cycle of S.

E F

M

A

νF min
(

γ M
F+Fp

, 1
)

r νE

(1− r)νE

b

(

1− E

KC

)

µE µF

µM + α
Fp

F + Fp

µA

Figure 3: Sahlbergella singularis control model using sex pheromone traps.
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singularis, we obtain a new mating disruption and trapping control model














































Ė(t) = b e−τ3 µA A(t− τ3)
(

1− E(t)

K

)

− (νE + µE)E(t),

Ḟ (t) = r νE e
−τ2 µL E(t− τ2)− νF min

(

γM(t)

F (t) + Fp

, 1

)

F (t)− µF F (t),

Ȧ(t) = νF min

(

γ M(t)

F (t) + Fp

, 1

)

F (t)− µAA(t),

Ṁ(t) = (1− r) νE e−τ2 µL E(t− τ2)−
(

µM + α
Fp

F (t) + Fp

)

M(t).

(2)

Model (2), like model (1), enters the family of piece-wise dynamical systems with delay differential

equations (shortly, PWS-DDE) (See Appendix A).

The switching manifold is defined as follows

∑

:=
{

x ∈ R
4
+, F + Fp = γ M

}

Model (2) can be rewritten in the form:

dx

dt
= f(x, xτ ) :=

{

f1(x, xτ2 , xτ3) if F + Fp ≤ γM
f2(x, xτ2 , xτ3) if F + Fp ≥ γM (3)

where x = (E,F,A,M)t, xτ2 = x(t − τ2), xτ3 = x(t − τ3),

f1(x, xτ ) =

















b e−τ3 µA A(t− τ3)
(

1− E(t)

K

)

− (νE + µE)E(t)

r νE e
−τ2 µL , E(t− τ2)− (νF + µF )F (t)

νF F (t)− µAA(t)

(1− r) νE e−τ2 µL E(t− τ2)−
(

µM + α
Fp

F (t) + Fp

)

M(t)

















(4)

and

f2(x, xτ ) =

























b e−τ3 µA A(t− τ3)
(

1− E(t)

K

)

− (νE + µE)E(t)

r νE e
−τ2 µL E(t− τ2)− νF γ

M(t)

F (t) + Fp

F (t)− µF F (t)

νF γ
F (t)

F (t) + Fp

M(t)− µAA(t)

1− r) νE e−τ2 µL E(t− τ2)−
(

µM + α
Fp

F (t) + Fp

)

M(t)

























(5)

When τ2 = τ3 = 0, system (3) is exactly the same system studied in [4]. We will now consider the

methodologies developed in [4] and [1] to study system (3).

Like in [4], the theoretical analysis of the model is carried out for two cases: male abundance and male

scarcity. These two cases are separated by the hyperplane Σ. The analysis of the two systems can be

carried out independently on the orthant R4
+. The obtained results will be merged into a general theorem

for system (3) (or (2)).

3.1 Case with Male abundance: γ M > F + Fp

In this case, system (3) becomes

dx

dt
= f1(x, xτ ). (6)
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Note that the right hand side of system (6), f1, is continuous and Lipschitzian in x. Thus, according to the

standard theory of delay differential equations [9], for each continuous initial condition ψ ∈ C
(

[−τ, 0],R4
)

,

where τ = max{τ2, τ3}, uniqueness and local existence of the solution are guaranteed. Note also, that,

without delay, we recover the cooperative system studied in [4].

As explained in [1], some cooperative systems with delay can enjoy some nice properties such that

their long term behavior is similar to the cooperative system without delay. Let Y = (x(t−τ3), x(t−τ2)),

x = (E,F,A,M)T . System (6) verifies the, so-called, quasimonotone (QM) condition [10], if

(a)
∂f1,i
∂xj

≥ 0 for i 6= j

(b)
∂f1,i

∂Y k
j

≥ 0 for all i, j, k.

Condition (a) is verified since the non delayed model is a cooperative system. Let us verify condition (b):

∂f1,1
∂Y 1

3

= b e−τ3 µA

(

1− E(t)

K

)

≥ 0,
∂f1,j
∂Y 1

j

= 0 ∀ j = 1, 2, 4.

∂f1,2
∂Y 1

2

= r νE e
−τ2 νL e−τ3 µF ≥ 0,

∂f2,j
∂Y 1

j

= 0 ∀ j = 2, 3, 4,

∂f3,j
∂Y 1

j

= 0 ∀ j = 1, 2, 3, 4,

∂f1,4
∂Y 1

1

= (1− r) νE e−τ2 νL ≥ 0,
∂f4,j
∂Y 1

j

= 0 ∀ j = 2, 3, 4.

Then the (QM) condition is verified. This implies that if the initial condition is non negative (with at

most one zero component) then the solution of system (6) is still non negative i.e x(t) ≥ 0. Moreover,

the (QM) condition guarantees the stability of each equilibrium of the non delayed system is preserved

for the delayed system. In other words, it suffices to study the following non delayed system

dx

dt
= f1(x), (7)

to deduce the behavior of the time delayed system (6). As already emphasized, system (7) has already

been studied in [4], using [10, 11].

Setting

R =
r b νE νF e

−τ2 µL e−τ3 µA

µA (νE + µE) (νF + µF )
(8)

the so-called basic offspring number, and applying Theorem 9 [4] we deduce

Theorem 3.1 (i) System (7) defines a positive dynamical system on R
4
+.

(ii) System (7) always has a trivial equilibrium, 0 = (0, 0, 0, 0), which is globally asymptotically stable

when R ≤ 1.
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(iii) When R > 1, system has an additional positive equilibrium X∗ = (E∗, F ∗, A∗,M∗) where

E∗ =

(

1− 1

R

)

K, F ∗ =
r νE e

−τ2µL

(νF + µF )

(

1− 1

R

)

K,

A∗ =
r νEe

−τ2µL νF
µA (νF + µF )

(

1− 1

R

)

K, M∗ =
M0

µM +
αFp

F ∗ + Fp

with

M0 = (1− r) νEe−τ2µL

(

1− 1

R

)

K.

Moreover, X∗, is also globally asymptotically stable when R > 1 on

R
4
+ \ {0} = R

4

+ \ {x ∈ R
4

+ : E = F = A = M = 0}.

Remark 3.1 When α = 0, we recover the positive equilibrium when no control occurs. It is important

to notice that the effect on the control only impact the value of the Male equilibrium.

The positive equilibrium X∗ is called a regular (virtual) equilibrium of model (7) if and only if F ∗+Fp <

(>)γ M∗ which is equivalent to Fp < F ∗
p , where

F ∗
p =

1

µM + α

(

γM0 − µMF
∗
)

=
νEe

−µLτ2

(α+ µM )

[

γ(1− r) − r µM

(νF + µF )

]

E∗. (9)

Therefore, we deduce that

• If Fp < F ∗
p , the positive equilibrium X∗ is a regular equilibrium of (7).

• If Fp > F ∗
p , the positive equilibrium X∗ is a virtual equilibrium of (7).

The threshold F ∗
p determines the minimum level of control, i.e. the number of Fake females and thus,

indirectly, the number of pheromones traps, below which the control has essentially no effect on an

established mirid population. More precisely, as stated in the previous remark, the effect of pheromone

traps is only limited to the males compartment (male trapping), all other compartments remain at their

natural equilibrium. Thus females will continue to deposit as many eggs (inside pods) as before the

control.

Thus, thanks to the (QM) condition, and, using Theorem 3.1, we deduce the following results in the

DDE ”male abundance” case:

Theorem 3.2 (i) System (6) defines a positive dynamical system on R
4
+.

(ii) System (6) always has one equilibrium, 0, that is globally asymptotically stable when R ≤ 1.

(iii) When R > 1, system (6) has an additional (unique) positive equilibrium, X∗, that is globally

asymptotically stable on R
4
+ \ {0}.

8



The positive equilibrium is a regular equilibrium if Fp < F ∗
p and it is a virtual equilibrium if Fp > F ∗

p .

Remark 3.2 As already highlighted for the non-delayed system, the threshold F ∗
p determines the maxi-

mum level of control below which the control has essentially no effect on an established pest population

for the delayed model.

3.2 Case with male scarcity: γ M < F + Fp

In this case, system (3) becomes

dx

dt
= f2(x, xτ ), (10)

The right hand side of system (10) is Lipschitz continuous. Thus, according to the standard theory of

Delay Differential Equations [9], system (10) admits a unique local solution for each continuous initial

condition ψ ∈ C([−τ2, 0],R2
+). In addition, the following domain

Ω := {x ∈ R
4
+ : E ≤ K, F <

r νE e
−τ2µL e−τ3µF K

µF

, A ≤ (1 − r) γ νF νE e−τ2µL K

µA µM

,

M ≤ (1 − r) νE e−τ2µL K

µM

} (11)

is positively invariant for system (10). Global existence on [0,+∞) of the solution follows by dissipativity

of (10). Then, we derive

Proposition 3.1 There exits a threshold F ∗∗
p > 0 of Fp such that

• If Fp > F ∗∗
p the only equilibrium of system (10) on R

4
+ is 0.

• If 0 < Fp < F ∗∗
p , system (10) has three equilibria on R

4
+, 0 and two positive equilibria.

In addition, 0 is an absolutely stable equilibrium.

Proof : The proof follows the proof of Theorem 4 [4], page 446. However, for reader’s convenience we

provide it in appendix B, page 23, with additional explanations.

✷

Similarly, we show

Theorem 3.3 (Bifurcation Study of F ∗
p and F ∗∗

p ) Let Fp > 0. The following holds for system (2):

• 0 is an absolutely stable equilibrium.

• If 0 < Fp < F ∗
p , there are two positive equilibria X(1) and X∗, where X∗ is asymptotically stable.

• If F ∗
p < Fp < F ∗∗

p , there are two positive equilibria X(1) and X(2).

9



• If Fp > F ∗∗
p , there is no positive equilibrium

Proof : The proof follows the proof of Theorem 15 [4], page 449. However, for reader’s convenience

we provide it in appendix C, page 24.

✷

The stability properties of X(1) and X(2) are not easy to obtain theoretically. However, numerical

simulations show that X(1) is unstable while X(2) is stable. Also, when Fp > F ∗∗
p , 0 is Globally Asymp-

totically Stable. As Fp increases and passes through F ∗
p the regular equilibrium X∗ collides with the

virtual equilibrium X(2), such that X∗ becomes virtual and X(2) becomes regular. The bifurcation dia-

gram in Fig. 4, page 10, summarizes the previous properties, where the equilibrium values of F +A are

given as function of the bifurcation parameter Fp. The blue (red) solid line represents (globally) stable

equilibria, while the blue dotted line represents unstable equilibria.

0
b

F ∗
p

b

F ∗∗
p

b

b

F p

F
+
A

X ∗ LAS

X (2)

X (1)

LAS GAS

Figure 4: Bifurcation diagram of the values of F +A at equilibrium with respect to the values of Fp for
system (2)

About the long term behavior of system (2) when Fp > 0

The previous Theorem shows us that the dynamics of the system may vary according to the level of

control. In particular, as long as 0 < Fp < F ∗
p , the control has essentially no effect on an established
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population. Even if F ∗
p < Fp < F ∗∗

p , the effect are negligeable (on an established population). Here, we

intend to derive results that may help us to define appropriate control strategies.

Due to the term −νF
γ M(t)

F (t) + Fp

F (t) in (5), the right hand side of (10) is not quasi-monotone. By

removing this nonlinear term, we obtain an upper DDE system, that admits a unique positive solution x

that is an upper solution of system (10). Since f2(x, y) is nondecreasing in y, according to Theorem 3.6

in [12], page 29, we deduce that x ≤ x̄.

Thus, following [4], we consider the following upper system, as an auxiliary system of system (10):

dx

dt
= g2(x, xτ ), (12)

with x = (E,F,A,M)T and

g2(x, xτ ) =





















b e−τ3 µAA(t− τ3)
(

1− E(t)

K

)

− (νE + µE)E(t)

r νE e
−τ2 µL E(t− τ2)− µF F (t)

νF
γM(t)

F (t) + Fp

F (t)− µAA(t)

1− r) νE e−τ2 µL E(t− τ2)−
(

µA + α
Fp

F (t) + Fp

)

M(t)





















(13)

System (12) is a cooperative time delayed system: the (QM) condition is verified. Hence, the stability of

each equilibrium for the non delayed system is preserved for the delayed system. It suffices to study the

non delayed system to deduce the long term behavior of the time delayed system:

dx

dt
= g2(x, x0). (14)

Let us first set

RM =
(1− r) b νE γνF e−τ2 µL e−τ3 µA

µA (νE + µE)µM

(15)

While R, the basic offspring number, represents the number of offsprings produced by one single female

during its mean lifespan, RM represents the number of offsprings produced by one male during its mean

lifespan.

We show the following

Theorem 3.4 (1) The non delayed system (14) defines a positive dynamical system on R
4
+.

(2) There exists a threshold value F̄ ∗∗
p such that

(i) if Fp > F̄ ∗∗
p , 0 is GAS on R

4
+.

(ii) if Fp = F̄ ∗∗
p , and RM > 1, then system (14) has two equilibria: 0 and one positive equilibria

X̄1. The basin of attraction of trivial equilibrium contains the set {x ∈ R
4
+ : 0 ≤ x < X̄1}.

The basin of attraction of X̄1 contains the set {x ∈ R
4
+ : x ≥ X̄1, E ≤ K}.
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(iii) if 0 < Fp < F̄ ∗∗
p , and RM > 1, then system (14) has three equilibria: 0 and two positive

equilibria X̄1 and X̄2 such that X̄1 < X̄2. The basin of attraction of trivial equilibrium contains

the set {x ∈ R
4
+ : 0 ≤ x < X̄1}. The basin of attraction of X̄2 contains the set {x ∈ R

4
+ : x ≥

X̄2, E ≤ K}.

Proof : See Appendix D, page 25.

✷

Using the previous results, and assuming R > 1 and RM > 1, we can deduce the following results for the

delayed system (12)

Theorem 3.5 There exists a threshold value F
∗∗

p such that

(i) if Fp > F
∗∗

p , 0 is the only equilibrium for the system (12)

(ii) if 0 < Fp < F
∗∗

p , R > 1, and R >
µMr

(1 − r) (νF + µF ) γ
, we have Ē1, Ē2 ∈ [0,K].the system has

three equilibria: trivial equilibrium 0 and two positive equilibria X̄1 and X̄2 such that X̄1 < X̄2.

Since model (12) is a delayed cooperative model, we can deduce from [4] the following result about the

stability of equilibria:

Theorem 3.6 Let Fp > 0. Then, the following holds for the model (12):

• If 0 < Fp ≤ F
∗∗

p , then the basin of attraction of the trivial equilibrium contains {x ∈ R
4
+ : x ≤

X̄1,Fp
}.

• If Fp ≥ F
∗∗

p , then trivial equilibrium is GAS on R
4
+.

Finally we can deduce the following GAS result for the PWS-DDE system (3) (or system (2))

Theorem 3.7 Let Fp > 0 then the following hold for the model (2):

• If 0 < Fp ≤ F
∗∗

p , then the basin of attraction of 0 contains {x ∈ R
4
+ : x ≤ X̄1,Fp

}.

• If Fp ≥ F
∗∗

p , then 0 is GAS on R
4
+.

In fact, the last theorem is very useful to derive a long term control strategy. Indeed, if the control

stops, the system will automatically recover. In the other hand, using only long time massive releases of

pheromones is not an option. However, we know that once the control starts, the system become bistable,

such that locally, at least in {x ∈ R
4
+ : x ≤ X̄1,Fp

}, 0 is stable, for a given small amount of pheromones,

Fp.

12



3.3 Control strategy related to the level of infestation of Mirids

The previous theoretical results lead to two strategies

• When the mirid population is small or at an invading stage (not established in the field, but starting

to settle), thanks to the size of the plot, a limited number of traps (releasing a small amount of

pheromones) can be sufficient to control it. In other words, knowing the population size, it could

be possible to estimate Fp, with 0 < Fp < F
∗∗

p , such that the mirid population stays in [0,X1,Fp
[,

i.e. inside the basin of attraction of 0.

• When the population is large, at equilibrium for instance, then, to reduce sharply the population,

we need to increase the number of traps in order to release enough pheromones/Fake females,

using the GAS property of 0 when Fp > F
∗∗

p . This is what we called the ”maximal treatment”.

Thus, according to the GAS of 0, there exists t∗ > 0, such that for t > t∗, the mirid population

becomes small enough that a small amount of pheromones is sufficient to maintain the population

under a given threshold, here X(1), the lowest equilibrium for a given (small preferably) amount

of pheromones Fp << F
∗∗

p . This is what we called the ”minimal treatment”. Altogether, when

the population is large, the best way to control it is to first start the control with the ”maximal

treatment”, followed by the ”minimal treatment”.

To summarize the ”maximal-minimal treatment” strategy: for a given large amount of pheromones,

Fp > F
∗∗

p , it suffices to estimates the time, t∗, necessary to enter [0, X(1[, where X(1 is estimated

for a given small amount of pheromones, F
(1)
p << F

∗∗

p . Since X(1) cannot be estimated analytically,

we can only estimate the minimum time, t∗, numerically. This is what is illustrated in the next

subsection.

3.4 Applications - Numerical simulations

In this section, we will prove numerically the theoretical results obtained. The values used for the

next simulations are given in Table 2, page 13 (taken from [1]), leading to the case R = 4.5547 > 1 and

RM = 7.4211.

b r K 1/νL 1/νF µL µA µM µF µE

3.28 0.58 5000 25 10 0.01 0.08 0.08 0.08 0.001

α γ 1/νE = τ1 τ2 τ3
0.1 1 15 25 10

Table 2: Values used for simulations of model (2) with R > 1 [1] and RM > 1

According to the theoretical part and the parameters values, for a maximal control, we need to release

more than F
∗∗

p ≈ 1162 fake females (per ha), in other words for any value of Fp larger than F
∗∗

p , the

13



system will converge to 0 for t sufficiently large. However, as explained above, we are not interested

in a permanent maximal treatment, but we only want to reach (rapidly) a level of population where

the damages can be acceptable and where the population can be controlled with a small amount of

pheromones. That is why we choose F
(1)
p to estimate X(1) and thus target the box [0,X(1) − ǫ], for a

given 0 < ǫ << 1.

In the sequel, we initiate the simulations at the wild equilibrium. We choose Fp = 100 such that

we estimate numerically X(1) = (95.1836, 35.8291, 4.4550, 13.5112) (the red dot in Fig. 6, page 15).

Hence, in the next simulations, for a given Fp > F
∗∗

p , we estimate the minimum time necessary to enter

[0, X(1) − ǫ]. In Figs. 5 and 6, page 14, we present an example of the control strategy described above:
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Figure 5: Mating disruption and Trapping Control with, first Fp = 2000 (solid lines), then Fp = 100 once
the system has reach [0,X(1)[ (dotted lines).

first, we consider a large amount of pheromones traps, such that Fp = 2000, to use the GAS property of

0, in order to reach the box [0,X(1)[, where X(1) is estimated based on the targeted level of control, i.e.

F
(1)
p = 100. Numerically, we estimate that 440 days of maximum treatment are necessary to enter the

basin [0,X(1)[. Then, for all t > 440 days, we remove some pheromones traps in order to reach the value

F
(1)
p = 100: the system continues to converge to 0, thanks to the LAS property of 0 in [0,X(1)[, when

F
(1)
p = 100.

Note, that the previous results correspond to the case when male trapping occurs, α = 0.1. If we

assume that there is no trapping, i.e. α = 0, then the MT1 ≈ 3576, and also the minimal time necessary

to enter the basin [0, X(1)[ increases to 536 days but we have to use the double amount of pheromones

(fake females) MT = 4000. That is why the combination of mating disruption and trapping is of utmost
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importance, not only to minimize the duration of the treatment but also to minimize the release of

pheromones.

Fig. 6(a), page 15, shows different phase of the control: a first phase, where only the male population

is reducing, then the eggs population, before the whole system (E + F + A +M) starts to decay. This

shows that in constant environmental conditions (constant parameters) the duration of the control is

crucial. In Fig. 6(b), page 15, the green box represents the basin [0,X(1)]: the red trajectory represents

the trajectory when the control is defined by Fp = 100. Of course, in that case, since 0 is LAS in [0,X(1)],

the system continues to decay (slowly) to 0. Of course, the time necessary to enter the basin [0,X(1)]
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Figure 6: Maximal Control with, first, Fp = 2000 (blue solid line), then, once the system has reach
[0,X(1)[, the minimal control starts with Fp = 100 . The system continues to converge to 0 (red solid
line), but slowly.

depends on the initial maximum control, the larger, the shorter the time needed. However, as showed in

Fig. 7, page 16, it seems that choosing Fp between 2000 and 4000 provides the more interesting results.

However, the cost of pheromones need to be taken into account in order to derive the best strategies.

The previous strategy is based on two given values for Fp. Other strategies based on the use of several

values for Fp could be chosen in order to reduce progressively the amount of pheromones and to use the

LAS of 0 in the box [0,X
(1)
Fp

], for a given Fp. However, from a practical point of view, reducing Fp, while

convenient on the paper, seems to be more difficult from a practical point of view.

4 About mating disruption strategy when the pods carrying

capacity is periodic

Like in [1], we have to consider that the mirid population dynamics is mainly related to the pres-

ence/absence of pods, but not only. Indeed, the cacao production in Cameroon is seasonal, which is

not the case, for instance, in Central America. Thus, in Cameroon, the pods carrying capacity, K, is not

constant but has to be approximated by a yearly periodic function. Last but not least, we know that,
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Figure 7: Time needed to enter the basin [0,X
(1)
Fp

] for a given Fp > F ∗∗
p .

in the absence of pods, mirids can maintain in the area using secondary host plants, like Cola nitida,

or Ceiba pentandra [1]. Thus finally, we consider the following pods carrying capacity K(t) + C, where

C > 0 is a given constant, equal to 100 [1], and K(t) is defined as in [1] (see Table 3, page 27).

In that case, the control strategy is rather different than in the constant coefficients case. Here,

knowing the inter-period (from March to June), when no cocoa pods are available, is rather crucial: it

seems obvious to start the control at the beginning of this period , i.e. in March, in order to use the

LAS property of model (3), when K(t) ≡ 0, to avoid the establishment of the mirid population within

the cocoa plantation when K(t) rises again (in July).

We thus consider the following non-autonomous periodic DDE-PWS system

dx

dt
= f(x, xτ , t) :=

{

f1(x, xτ2 , xτ3 , t) if F + Fp ≤ γM
f2(x, xτ2 , xτ3 , t) if F + Fp ≥ γM (16)

where x = (E,F,A,M)t,

f1,per(x, xτ , t) =

















b e−τ3 µA A(t− τ3)
(

1− E(t)

C +K(t)

)

− (νE + µE)E(t)

r νE e
−τ2 µL , E(t− τ2)− (νF + µF )F (t)

νF F (t)− µAA(t)

(1− r) νE e−τ2 µL E(t− τ2)−
(

µM + α
Fp

F (t) + Fp

)

M(t)

















(17)
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and

f2,per(x, xτ , t) =

























b e−τ3 µA A(t− τ3)
(

1− E(t)

C +K(t)

)

− (νE + µE)E(t)

r νE e
−τ2 µL E(t− τ2)− νF γ

M(t)

F (t) + Fp

F (t)− µF F (t)

νF γ
F (t)

F (t) + Fp

M(t)− µAA(t)

1− r) νE e−τ2 µL E(t− τ2)−
(

µM + α
Fp

F (t) + Fp

)

M(t)

























(18)

The methodology to study the periodic PWS-DDE (16) follows the methodology of the previous sections,

thanks to the fact that 0 < C ≤ K(t) ≤ Kmax + C. Indeed, for i = 1, 2, it is straightforward to check

that

fi,C(x, xτ ) ≤ fi,per(x, xτ , t) ≤ fi,C+Kmax(x, xτ ), for all t > 0. (19)

1. In the male abundance case, f1,C and f1,C+Kmax are delayed system that verify the (QM) condition.

Thus, using (19), and applying Theorem 5.1.1 [10], we deduce that

x1,C(t) ≤ x1,per(t) ≤ x1,C+Kmax(t), for all t > 0.

where x1,per is the solution of the periodic male abundance equation, x1,C and x1,C+Kmax are

respectively solutions of the autonomous male abundance system (6), with K ≡ C and K ≡

C +Kmax respectively. Thus, using Theorem 3.2, page 8, we can deduce

Theorem 4.1 • Assume R0 < 1, then x1,per converges to 0.

• Assume R0 > 1, then the male abundance system is permanent, i.e. x1,per > 0 for all t > 0.

where R0 is defined in (8).

Remark 4.1 Following [1], when R0 > 1, it is possible to show that the male abundance system

converges to a unique periodic solution, x∗per(t), defined as follows:

E∗
per(t) =

(

1− 1

R

)

(C +K(t)) , F ∗
per(t) =

r νE e
−τ2 µL

µF + νF
E∗

per(t),

A∗
per(t) =

νF
µA

F ∗
per(t), M∗

per(t) =
(1 − r) νE e−τ2 µL

µM + α
Fp

F ∗
per(t) + Fp

E∗
per(t).

2. The male scarcity case is rather more difficult to study. However, we can use the second inequality

in (19): f2,per(t, x, y) is nondecreasing in y; thus, according to Theorem 3.6 in [12], page 29, we

deduce that x2,per ≤ x2,C+Kmax , such that the methodology developed in section 3.2, page 9, can

be applied to the system

dx

dt
= f2,C+Kmax(x, xτ ).
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Hence, we deduce that there exists F
∗∗

p,C+Kmax
> 0 such that 0 is GAS when Fp > F

∗∗

p,C+Kmax
> 0,

i.e. x2,C+Kmax converges to 0 and so is x2,per as t goes to +∞.

However, for a practical application, this result is not interesting since the amount of pheromones

to release can be very large.

Another possibility is to focus on the case where K ≡ 0 from March to June, such that we know

that periodic system reduces to the autonomous system with carrying capacity C, in other word:

fi,per(x, xτ ) = fi,C(x, xτ ). In that case, we are able to estimate F
∗∗

p,C . When C = 100, then

F
∗∗

p,C ≈ 23.23

4.1 Periodic case - Simulations

As explained above we focus on the period from March to June, i.e, we adapt the starting time of

our control: either a the end of Period or at the beginning.
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Figure 8: Time evolution of the periodic system, without control

Then, we consider two starting times: t = 390 (beginning of July), see Fig. 9, page 19; and

t = 300 (beginning of March), see Fig. 10, page 19. When choosing Fp = 20 as the targeted

amount of pheromones, we are looking at the time t∗ necessary to enter [0, X(1)[, with X(1) =

(27.11, 10.20, 1.70, 4.04).

As illustrated in Fig. 9, page 19, starting lately within the no-production period, at t = 390,

will have an effect during the production period, with a population fourth times less than without
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control, and it is only after 470 days of Fp = 100 treatment that the trajectory enter the box

[0, X(1)[ and then continues to decay to zero with Fp = 20.

In contrary, starting the treatment early, at t = 300, within the no-production period, the population

decreases rapidly, and in 217 days, the trajectory enter the box [0, X(1)[ and then continues to decay

to zero with Fp = 20. In addition, the population has become so small, that even when the pods

are back, the mirid population stay within [0, X(1)[, event with a small amount of pheromones,

Fp = 20.
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Figure 10: Maximal Control, with Fp = 100, then, once the system has reach [0,X(1)[, the minimal
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In fact, the periodic case, for mating disruption and trapping control, is the most favorable case, as

we can use the no-production period, and thus when the mirid population is at its lowest, to be very

efficient, especially if the treatment starts early (beginning of March, for instance).
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5 Conclusion

We have considered a mating disruption and trapping model to study the opportunity of using sex-

pheromones to control a mirid population. We obtain a PWS-DDE model, a kind of model that is not so

common in Mathematical Biology. Thanks to the previous works by some of the authors and a suitable

use of the Monotone System theory, we were able to provide theoretical results that helped us to provide

interesting strategies that could be used in the field for long term control.

Of course, this work provides only partial insight of this complex system. Using a temporal approach,

we implicitely assume that mirids and pheromones are homogeneously distributed, which is not the case

in the field. A next step would be to take into account the spatial component, like in [13]. Last, but

not least, it is well known that mirids aggregate on some particular trees, such that aggregation and

dispersion processes should be taken into account, and also the impact of these behaviors in terms of

the distribution and the density of the pheromone traps. This may require another modeling approach,

thanks to the fact that very few knowledge are available about pheromone spreading, mirid’s sensitivity

to pheromone, etc.
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A Appendix A: Piecewise smooth (PWS) dynamical systems

We just provides some definitions related to PWS dynamical systems, given in [14]. For a general

presentation, the interested readers are referred to [15] or [4].

Definition A.1 A piecewise-smooth flow is given by a finite set od ODEs ẋi(t) = Fi(x, µ), x ∈ Si;

where ∪iSi = D is a domain, each Si has a non-empty interior.

The intersection
∑

ij := Si ∩ Sj is either an R
n−1-dimensional manifold included in the boundaries ∂Sj

and ∂Si, or is the empty set. Each vector field Fi is smooth in both state x and parameter µ, and defines

a smooth flow φi(x, t) within any open set U ⊇ Si.

A non-empty border between two regions
∑

ij will be called a discontinuity set, discontinuity boundary,

or a switching manifold.

Definition A.2 [14] Let ẋ(t) = f(x(t), x(t − τ)) be a delay dynamical system. A simple example of a

PWS-DDE composed of two smooth vector fields is

ẋ(t) =

{

f1(x(t), x(t − τ)) if f(x(t), x(t − τ)) ≤ 0
f2(x(t), x(t − τ)) if f(x(t), x(t − τ)) ≥ 0.

(20)

where x(t) ∈ R
n, and f1, f2, f are sufficiently smooth functions. Transitions between the different vector

fields occur on the switching surface defined by f = 0.

Definition A.3 [14] We define a PWS-DDE to be a collection of smooth vector fields

ẋ(t) = fm(xt) (21)

indexed by a mode variable m ∈M where xt ∈ C([τ, 0],Rn) is the solution segment x(t+ s) for τ ≤ s ≤ 0

and M is a finite set. (Equation 21 encompasses distributed delays as well as discrete delays; however,

we deal here with discrete delays only.) Associated with this is a collection of events e ∈ E where E is a

finite set and e consists of a pair πe = (min,mout), a smooth event function he(x
t) : C([τ, 0],Rn)←→ R

and a smooth jump function ge(xi : C([τ, 0],Rn) −→ C([τ, 0],Rn).

The event function he = 0 implicitly defines a switching manifold marking the transition point between the

(potentially) different vector fields (fmin
, fmout

) and the jump function ge determines the instantaneous

change of state that occurs upon impact with the switching manifold. The minimal state needed to

uniquely identify a particular trajectory of the system starting at time t0 is thus xt
0

along with the mode

m at time t0.

Definition A.4 Following [15], the degree of smoothness at a point x0 in a switching set
∑

ij of a

piecewise-smooth ODE is the highest order r such the Taylor series expansions of φi(x0, t) and φj(x0, t)

with respect to t, evaluated at t = 0,agree up to terms of O(tr−1). That is, the first non-zero partial

derivative with respect to t of the difference [φi(x0, t)φj(x0, t)]|t=0 is of order r.
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B Appendix: Proof of Proposition 3.1

Setting the left-hand side of system (10) to zero, and after some straightforward calculations, we get the

following equation in E to solve:

ψ(E) := E ξ(E)φ(E) = η(Fp, E). (22)

where

ξ(E) = γ (1− r) e−τ2 µLνE νF e
−τ3 µA b

(

1− E

K

)

− µA (α+ µM ) (νE + µE), (23)

η(Fp, E) = µA µF µM (νE + µE) be
−τ3 µA

(

1− E

K

)

Fp. (24)

and

φ(E) = b e−τ3 µA r νE e
−τ2 µL

(

1− E

K

)

− µA (νE + µE).

Therefore, assuming that Eeq is a positive root of (22), the other components of the non trivial equilibria

of (10) are:

Feq =
φ(Eeq)

µF be−µAτ3

(

1− Eeq

K

)Eeq, (25)

Aeq =
(νE + µE)

e−τ3 µAb

(

1− Eeq

K

) Eeq , (26)

Meq =
(1 − r) νE e−τ2 µL

µM + α
Fp

Feq + Fp

Eeq . (27)

Further, to ensure Feq > 0, we need to have φ(Eeq) > 0, that is Eeq must satisfy the condition:

Eeq < K

(

1− µA (νE + µE)

r b νE e−τ2 µL e−τ3 µF

)

(28)

In fact, according to the definition of ψ(E), it is straightforward to check that ψ admits two real positive

roots in [0,K],

E1 =

(

1− µA (νE + µE)

b e−τ3 µA r νE e−τ2 µL

)

K, and E2 =

(

1− µA (α+ µM ) (νE + µE)

γ (1− r) e−τ2 µLνE νF e−τ3 µAb

)

K,

provided that
µA (νE + µE)

b e−τ3 µA r νE e−τ2 µL
< 1 and

µA (α+ µM ) (νE + µE)

γ (1− r) e−τ2 µLνE νF e−τ3 µAb
< 1.

Thus, only the points of intersection between the straight line η(Fp, E) and the cubic ψ(E) that belong

to [0,min{E1, E2}] are of interest for us: see Fig. 11, page 24. We denote by F ∗∗
p the value of Fp such

that the straight line η(Fp, E) is tangent to the indicated section of the graph ψ(E). Then, it is clear

that for Fp > F ∗∗
p there is no intersection between η(Fp, E) and Ψ (no positive equilibrium) while for

0 < Fp < F ∗∗
p , there are two points of intersection (2 positive equilibria).

Finally, straightforward computations show that 0 is an absolutely stable equilibrium of system (10).
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0

min {E 1 , E 2} max {E 1 , E 2} K

b

E
bb

b

b

b

Fp<F ∗∗
p

Fp=F ∗∗
p

Fp>F ∗∗
p

ψ(E )

Figure 11: Intersection between ψ(E) (in blue) and η(Fp, E) (in red) for three values of Fp.

C Appendix: Proof of Theorem 3.3

Assume 0 < Fp < F ∗∗
p . Then, let E

(1)
eq and E

(2)
eq , E

(1)
eq < E

(2)
eq be the roots of (22). We denote the

respective equilibria by X(1) and X(2). To show that any equilibrium of (10) is a regular equilibrium

of (2), we need to show that it belongs to the male scarcity region. Using the previous relationships, it

suffices to study the sign of Feq + Fp − γMeq. In fact, we can show that

Feq + Fp − γMeq =
1

µM + α
Fp

Feq + Fp

(

µM (Feq + Fp) + αFp − γ(1− r)νEe−τ2µLEq

)

Thus, studying the sign of Feq + Fp − γMeq is equivalent to study the sign of

(

µMFeq − γ(1− r)νEe−τ2µLEq

)

+ (α+ µM )Fp.
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In fact we have

(

µMFeq − γ(1− r)νEe−τ2µLEq

)

+ (α+ µM )Fp = (29)

=









µM

φ(Eeq)

µF be−µAτ3

(

1− Eeq

K

) − γ(1− r)νEe−τ2µL









Eq + (α+ µM )Fp (30)

= r νE e
−τ2 µL









rµM

µF

− µMµA (νE + µE)

µF be−µAτ3

(

1− Eeq

K

) − γ(1− r)









Eq + (α+ µM )Fp (31)

using the inequality E
(1)
eq < E

(2)
eq < E∗, we have:

≥ r νE e
−τ2 µL









rµM

µF

− µMµA (νE + µE)

µF be−µAτ3

(

1− E∗

K

) − γ(1− r)









Eq + (α+ µM )Fp

= r νE e
−τ2 µL

(

rµM

µF

− µMµA (νE + µE)R
µF be−µAτ3

− γ(1− r)
)

Eq + (α+ µM )Fp

and after some simplifications

= r νE e
−τ2 µL

(

rµM

µF + νF
− γ(1− r)

)

Eq + (α+ µM )Fp.

Using (9), page 8, we deduce

(

µMFeq − γ(1− r)νEe−τ2µLEq

)

+ (α+ µM )Fp =
(α+ µM )

E∗

(

FpE
∗ − EqF

∗
p

)

.

Since E
(1)
eq < E

(2)
eq < E∗, then FpE

∗ − EqF
∗
p >

(

Fp − F ∗
p

)

Eq. Using the fact that F ∗
p < Fp, then

FpE
∗ − EqF

∗
p > 0, such that Feq + Fp − γMeq > 0. Therefore, in this case, X(1) and X(2) are both in

the male scarcity region. Hence, they are also equilibria of (2).

If Fp < F ∗
p and Eeq > E∗, considering the fact that for 0 < Fp < F ∗

p , we have E
(1)
eq < E∗ < E

(2)
eq and

using the same method as previously, we obtain Fp + F
(2)
eq − γM (2)

eq < 0.

Therefore, X(2) is not in the male scarcity region. Hence, it is not an equilibrium of (2). Taking into

consideration the previous results regarding X(1) and X(2), the theorem is proved.

D Appendix: Proof of Theorem 3.4

The first assertion is obvious. Setting the first, second, and fourth terms in (13) equal to zero, we derive

F̄ =
r νE e

−τ2µL

µF

Ē, Ā =
(νE + µE)

b e−τ3 µA

(

1− Ē

K

) Ē, M̄ =
((1− r) νE e−τ2 µL) (F̄ + Fp)

µM F̄ + (µM + α)Fp

Ē

Solving the third equation equal to zero and substituting the expressions for F̄ , Ā and M̄ above, we

obtain an equation for Ē in the form

Eφ(E) = η(Fp, E), (32)
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with

η(Fp, E) = µMrνEe
−τ2µLE + µF (α+ µM )FP

φ(E) = (µF + νF )(1− r)νEe−τ2µLγR
(

1− E

K

)

(33)

In other words, if (32) admits roots, they are intersection between a parabola and a straight line: see

Fig. 12, page 26. In fact, solving (32) is equivalent to solve the following quadratic equation

0 K

Fp <F
∗∗

p

Fp =F
∗∗

p

Fp >F
∗∗

p

b

b

b

Figure 12: Intersections between the graphs of Eφ(E) (in blue) and η(Fp, E) (in red) for different values
of Fp. The black dots represent the intersection points on the interval [0,K].

R(1 − r)νEe−τ2µL (νF + µF ) γ

K
E2 + νEe

−τ2µL (µMr −R(1 − r) (νF + µF ) γ)E+

+µF (α+ µM )Fp = 0.

Then, we estimate the discriminant

∆ =
(

νEe
−τ2µL (µMr −R(1− r) (νF + µF ) γ)

)2 − 4
R(1− r)νEe−τ2µL (νF + µF ) γ

K
µF (α+ µM )Fp

or equivalently

∆ =
(

νEe
−τ2µLµMr (1−RM )

)2 − 4
R(1− r)νEe−τ2µL (νF + µF ) γ

K
µF (α+ µM )Fp

Clearly, if Fp > F
∗∗

p , with

F
∗∗

p =
(νEe

−τ2µLµMr (1−RM ))
2

4R(1− r) (νF + µF ) γµF (α+ µM )
K,

then ∆ < 0, and no positive real roots exist. Otherwise, when F < F
∗∗

p , two real roots exist. If in

addition, we assume that

RM > 1,
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then, we obtain the following positive real roots Ē1 < Ē2:

Ē1 =
1

2

(

νEe
−τ2µLR(1− r) (νF + µF ) γ − µMr −

√
∆

R(1 − r)νEe−τ2µL (νF + µF ) γ

)

K

Ē2 =
1

2

(

νEe
−τ2µLR(1− r) (νF + µF ) γ − µMr +

√
∆

R(1 − r)νEe−τ2µL (νF + µF ) γ

)

K.

Using (32) and (33), it is straightforward to show that Ē1 < Ē2 < K. Assume Fp > F
∗∗

p , then setting

ȳq =



















K
r νE e

−τ2µL

µF

q

γνF (1− r) νE e−τ2 µL

µM

(1− r) νE e−τ2 µL

µM



















,

where q is any real number, such that q ≥ K. We check that g2(ȳq, ȳq) ≤ 0. Thus, by Theorem 7 [4], 0

is GAS on ΩK =
⋃

q≥K [0, ȳq], which implies that 0 is GAS on R
4
+ since ΩK is an absorbing set.

E Biological Data

Following [1], we consider the data issued from [16] for the time evolution of the pods carrying capacity

along the year:

Months Jun Jul Aug Sept Oct Nov Dec Jan Feb Mar Apr May Jun

KC(t) 0
32000

31

160000

31

416000

30

544000

31

304000

31

416000

31

120000

31

8000

28
0 0 0 0

Table 3: Daily mean number of cocoa pods
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