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Abstract 

 

Control charts that are based on assumption(s) of a specific form for the underlying process 

distribution are referred to as parametric control charts.  There are many applications where there 

is insufficient information to justify such assumption(s) and, consequently, control charting 

techniques with a minimal set of distributional assumption requirements are in high demand. To 

this end, nonparametric or distribution-free control charts have been proposed in recent years and 

the amount of literature on nonparametric statistical process/quality control/monitoring has 

grown exponentially. Chakraborti and some of his colleagues provided three detailed review 

papers on nonparametric control charts in 2001, 2007 and 2011, respectively. These papers have 

been received with considerable attention by the research community.  In this paper we bring 

these reviews forward to 2017, discussing some of the latest developments in the area. Moreover, 

unlike the past reviews, which did not include the multivariate charts, here we review both 

univariate and multivariate charts.  We end with some concluding remarks. 

 

Keywords: CUSUM chart; EWMA chart; Median; Phase I; Phase II; Precedence; Rank; Robust; 

Run-length, Shewhart chart; Sign; Univariate; Multivariate 

 

Introduction 

Modern statistical process control and monitoring methods include nonparametric (or 

distribution-free) control (NSPC) charts which provide a more robust alternative to standard 
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parametric (e.g., normal theory) charts when the form of the underlying process distribution is 

unknown. A key advantage of nonparametric control charts is that one doesn’t need to make very 

specific model (shape) assumptions such as normality and their in-control (IC) run-length 

distribution remains the same for all continuous process distributions (of all shapes) under 

minimal assumptions (such as continuity and symmetry). This property ensures the full 

knowledge and the stability of the IC properties of the chart, which are crucial for chart 

implementation and application in practice.  This is not the case for parametric charts whose IC 

run-length properties are exact only under the assumed distribution and departures from the 

assumed distribution can affect the chart performance, often in a significantly negative way (such 

as too many false alarms). Recognizing the potential, Chakraborti, Van der Laan and Bakir 

(2001) provided a thorough account of univariate nonparametric control charting literature up to 

the end of the year 2000. Chakraborti and Graham (2007) updated that review covering much of 

the literature up until the end of 2007.  Following that, Chakraborti, Human and Graham (2011) 

gave an updated overview of the nonparametric control charting literature from 2007 up until the 

end of the year 2010.  The interested reader can also see the short book by Bakir (2011) for some 

newer proposals. More recently, Qiu (2014) devoted two chapters to NSPC and reviews some of 

the available methods.  However, the field of research in NSPC continues to grow at a rapid pace 

and many new contributions have been added in the last few years. Our list of references will 

show that since 2010, at least 50 papers have been published in the area, which is truly 

remarkable. Thus, it seems to be a good point in time to take account of what has happened in 

the recent past.  Motivated by this, our goal in in this review is to bring the reviews of 

Chakraborti et al. (2001, 2007 and 2011) forward to the main body of the published literature on 

nonparametric control charts to date.  Note that for better coverage and more completeness, we 

also review a few of the articles that were not covered in Chakraborti et al. (2011).  In addition, 

we cover the multivariate nonparametric control charting literature that was not covered in any of 

the earlier reviews.  This should be of interest to researchers as well as practitioners. 

 

A Review of the Literature 

 For a review of the literature we follow the same format of presentation as in Chakraborti 

et al. (2001), so the charts are classified according to the three main categories, namely, 

Shewhart, cumulative sum (CUSUM) and exponentially weighted moving average (EWMA). 
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Within each category, we discuss some of the key contributions in each of the two important 

phases (stages) namely Phase I and Phase II as far as monitoring applications are concerned. 

Note that as mentioned earlier, nonparametric charts are also known as distribution-free charts as 

they can be applied without a specific (shape) parametric model assumption (e.g. normal) about 

the underlying distribution.  

Univariate Nonparametric Process Monitoring  

We begin with the univariate nonparametric charts.  Consider the case of variables data 

where a continuous random variable, the quality characteristic of interest, is monitored with 

respect to its distribution or distributional parameters, such as, the mean, median or spread.  

There are generally two phases in this monitoring process. One, where the value(s) of the 

parameter(s) of interest is (are) specified in the IC case, known as the known parameter case 

(denoted Case K) and two, where values are unknown or unspecified, and thus need to be 

estimated before process monitoring can start. The latter is known as the unknown parameter 

case (denoted Case U).  In Case K, process monitoring can start as soon as data become 

available, but in Case U, since one needs to estimate the unknown parameter(s), a preliminary or 

retrospective or Phase I analysis is performed so that the process can be brought under control 

and from the resulting IC process data, called the reference data, process parameters can be 

estimated, control chart limits can be calculated and then prospective monitoring of incoming, 

new or test data can start. This phase of the monitoring process is called Phase II monitoring. 

Note that there are some control charts, called self-starting charts that do not require such a strict 

demarcation, where process monitoring can begin as soon as some amount of “trial” (training) 

data become available, but we mainly focus on Phase I and Phase II charts in this review.  

Nonparametric charts are useful in both of these phases with perhaps more utility in 

Phase I where no knowledge about the distribution seems to be typically available.  However, 

note that although one might suggest that in Phase II we have more knowledge about the process 

from the Phase I analysis which we leverage from, such as fitting (estimating) a parametric 

distribution and using it as the model, we argue that in Phase II one often does not have the 

assurance of “knowing” a distribution even after a detailed Phase I analysis, since conceivably 

processes can change monitoring. Moreover, if one considers a fitted model in Phase II, the 

uncertainty associated with the estimated model (estimated parameters and the form) from Phase 
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I will need to be accounted for. Thus NSPC is perhaps a safer bet and a reasonable way to 

approach process monitoring in practice.   

The keys to nonparametric control charts are the nonparametric statistical methods such 

as the tests and confidence intervals. Nonparametric methods are typically based on order 

statistics, ranks and various functions of them.  The charting statistic is often selected adapting a 

distribution-free test statistic, meaning that its IC distribution does not depend on the underlying 

distribution.  Once can then construct control charts based on these statistics and their statistical 

properties, using a classical control charting paradigm such as the Shewhart, the CUSUM and the 

EWMA (and their enhancements).  In this sense, control charts can be viewed as graphics which 

are functions of suitable charting statistics, where the charting statistics depend are model 

dependent in the parametric case and are distribution-free in the nonparametric case.  For 

example, in the normal theory case, we typically use the sample means and the standard 

deviations as the charting statistics. In the nonparametric case, we use distribution-free statistics, 

based on, for example, the signs and the ranks, as will be seen next. 

 

Univariate Nonparametric Process Monitoring: Phase I Charts 

 

 The importance of a proper and effective Phase I analysis has been recognized in the 

literature (see Chakraborti, Human and Graham (2009), Capizzi and Masarotto (2013) and Jones-

Farmer, Woodall, Steiner and Champ (2014)). Typically Shewhart-type charts have been 

recommended in Phase I since these charts are simple and can detect larger shifts quickly. A 

Phase I control charting problem bears similarities with what is known as the test of 

homogeneity or the k-sample problem in the statistical hypothesis testing literature. Among the 

available Phase I charts, a nonparametric Phase I Shewhart-type chart called the mean-rank chart 

was proposed by Jones-Farmer, Jordan and Champ (2009). This chart is based on the well-

known Kruskal-Wallis nonparametric test (see Gibbons and Chakraborti (2010)). We start off by 

combining the observations from the 𝑚 Phase I samples in a single pooled sample of size 𝑁 ൌ

𝑚 ൈ 𝑛, ordering the observations from the lowest to the highest. Then ranks (𝑅௜௝ where 𝑖 ൌ

1,2, … , 𝑚 and 𝑗 ൌ 1,2, … , 𝑛) are assigned to each observation of this pooled sample. The average 

rank for the ith sample is given by 𝑅ത௜ ൌ 𝑛ିଵ ∑ 𝑅௜௝
௡
௝ୀଵ .  Noting that the expected value and the 



5 
 

 
 

variance of the ranks, when the process is IC, are given by 
ேାଵ

ଶ
 and 

ሺேି௡ሻሺேାଵሻ

ଵଶ௡
 , respectively (see 

Gibbons and Chakraborti (2010)), the charting statistics are given by 𝑍௜ ൌ

ቀ𝑅ത௜ െ ேାଵ

ଶ
ቁ ටሺேି௡ሻሺேାଵሻ

ଵଶ௡
ൗ , 𝑖 ൌ 1,2,3, … Jones-Farmer et al. (2009) gave two choices for the 

control limits, namely, the simulated and the approximate normal theory based control limits. For 

the latter choice, by the central limit theorem (for large 𝑛), marginally, the standardized mean 

rank 𝑍௜ approximately follows a N(0,1) distribution when the process is IC. However, the 

charting statistics 𝑍ଵ, 𝑍ଶ, … , 𝑍௠ are dependent random variables and this dependence needs to be 

properly accounted for.  It can be shown that asymptotically, the joint distribution of 

𝑍ଵ, 𝑍ଶ, … , 𝑍௠ can be approximated by a (singular) multivariate normal distribution with means 

equal to zero, standard deviations equal to one and a common pairwise correlation 𝜌௜௝ ൌ

ඥ1/ሺ𝑚 െ 1ሻ. As 𝑚 increases this correlation tends to zero, so the lower control limit (LCL) and 

the upper control limit (UCL) may be approximated using the quantiles of the univariate N(0,1) 

distribution. In Phase I, the typical metric of IC performance is the false alarm probability, 𝐹𝐴𝑃,  

which is the probability of at least one false alarm. The control limits are chosen such that the 

attained FAP does not exceed a desired nominal FAP; typically taken to be 0.01, 0.05 or 0.10.  

  Note that the Jones-Farmer et al. (2009) paper was covered in the review of Chakraborti 

et al. (2011) but we provide the background details here since in a later section on multivariate 

control charts, we discuss the paper by Bell, Jones-Farmer and Billor (2014) that proposed a 

Phase I multivariate mean-rank chart which is the multivariate generalization of the univariate 

Phase I mean-rank chart.  Graham, Human and Chakraborti (2010) proposed a nonparametric 

Phase I median chart that was also covered in the review of Chakraborti et al. (2011) and is thus 

not repeated here.  While these charts are useful, one potential limitation is that they are not 

directly usable with individual data and there are constraints on the subgroup size and the 

number of subgroups.  Along these lines, Capizzi and Masarotto (2013) proposed a distribution-

free strategy for detecting shifts in process location and/or scale in Phase 1, called the recursive 

segmentation and permutation (RS/P) procedure.  This methodology is based on a time-ordered 

segmentation of the data, with significance determined using a permutation approach.  The 

authors provide an R package to implement the RS/P procedure in practice.  Based on the 

simulation results, the authors claim that the RS/P methodology leads to an effective Phase I 

distribution-free procedure, both in terms of maintaining a FAP and OOC performance.  There is 
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a need for more work on univariate nonparametric Phase I charts as Phase I is a very important 

part of the overall monitoring regime.  Next we consider Phase II charts. 

 

Univariate Nonparametric Process Monitoring: Phase II Charts 

Shewhart-type control charts 

Shewhart-type control charts for monitoring location in Case K 

Control charts based on the sign and signed-rank statistics 

 As in the case with normally distributed data, different types of distribution-free charts 

have been proposed and studied. To this end, note that the sign (SN) and the signed-rank (SR) 

tests are among the simplest and yet versatile one-sample distribution-free tests (see, for 

example, Gibbons and Chakraborti, 2010).  Adapting these to the SPC setting, Amin , Reynolds 

and Bakir (1995) and Bakir (2004) proposed the Shewhart-type charts based on the SN and the 

SR statistics, called the Shewhart-SN and Shewhart-SR charts, respectively, however, these 

papers and several of their extensions and generalizations were reviewed in the overview paper 

of Chakraborti et al. (2011) and will not be discussed here.  The idea is to use the distribution-

free test statistics, adapting them suitably in the process monitoring framework, for example 

constructing Shewhart, CUSUM and EWMA charts and their generalizations based on these 

statistics.  Note that in Case K we work with what are known as one-sample nonparametric test 

statistics such as the SN and the SR.  In Case U the monitoring regime consists of a Phase I and a 

Phase II, and we work with what are known as two-sample nonparametric tests while 

constructing control charts.  We discuss a number of these charts below.   

 

Shewhart-type control charts with runs-type signaling rules in Case U 

 While the Shewhart-type chart is simple to use and is powerful in detecting larger, abrupt 

shifts in the process parameter, it lacks sensitivity in detecting smaller shifts. Thus there have 

been proposals to improve the effectiveness of the Shewhart-type charts for detecting smaller by 

adding runs-type signaling rules.  The original set of such rules goes back to Western Electric 

(1956) and in the more recent literature there are both standard and improved runs-rules 

schemes. The former are typically of the form w-of-(w+v) with w > 1 and v ൒ 0 and the latter is a 

combination of the classical 1-of-1 runs-rule and the w-of-(w+v) runs-rules. The improved 

scheme has the advantage of improving the performance of the charts in detecting larger shifts 
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while maintaining its performance in detecting small to moderate shifts. Malela-Majika, 

Chakraborti and Graham (2016) have implemented both schemes into the Shewhart chart based 

on the Mann-Whitney statistic proposed by Chakraborti and Van de Wiel (2008). The authors 

compared their chart to the Shewhart-type precedence chart with and without signaling rules, see 

Chakraborti, Van der Laan and Van de Wiel (2004) and Chakraborti, Eryilmaz and Human 

(2009) respectively, and with its parametric counterpart, i.e. the parametric Shewhart-𝑋 chart 

with and without signaling rules and found that their proposed chart outperformed its 

competitors in detecting shifts under distributions of various shapes. Given that the runs-rules 

can enhance the performance of Shewhart charts in detecting small shifts, while maintaining the 

basic simplicity, we envision more work in this area, particularly with regard to the computation 

and the effect of the size of the reference sample on chart performance. Generally speaking, 

more data are required for nonparametric control charts, since no specific model assumptions are 

made for them. 

 

Shewhart-type control charts for monitoring spread in Case U 

While a lot of work has been done on monitoring the location, only a few papers are 

available on monitoring the spread or the dispersion or the variability of a process.  Interested 

reader can consult Gibbons and Chakraborti (2010) for a discussion on these three concepts 

which are not always well understood. Das (2008) proposed two charts for monitoring 

variability, when the location parameter is under control, based on two nonparametric test for 

equality of variances by Mood (1954) and Siegel and Tukey (1960). Since the Mood test, say M, 

and the Tukey test, say R, are well-known, the detail will not be given here. Das (2008) used the 

standardized M and R statistics as the charting statistics for each chart, respectively, with control 

limits LCL/UCL = േ 3 and CL = 0 for each chart. Das (2008) concluded that, for all shifts under 

consideration, Mood’s test performed best.  Again, more work is necessary in this area. 

There are several other nonparametric scale tests in the literature which can be adapted to control 

charting. One key question here is the assumption about the equality of locations. Typically, 

while monitoring the mean in Case U and in the normal theory setting the variances are assumed 

to be equal and IC, but in the distribution-free case, one requires the opposite. The full impact of 

this paradigm shift (see Jones-Farmer and Champ, 2010) needs to be investigated and better 
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understood. The effect of the reference sample size on the estimation of the common median and 

its impact on the performance of the chart would be particularly interesting. 

While a number of control charts for monitoring the location and some for monitoring the scale 

have been considered, there are situations where one monitors both the location and the scale 

parameters simultaneously. In fact, this is what is typically recommended while monitoring the 

mean of a normally distributed process, since the standard deviation appears in the control limits 

and therefore needs to be controlled (monitored) first. This has been called the joint monitoring 

problem. The reader is referred to McCracken and Chakraborti (2013) for a detailed review of 

the recent advances in joint monitoring. Joint process monitoring schemes in the normal 

distribution setting use two separate charts, one for the mean, and one for the standard deviation 

(or the variance) or a single chart using a function of these statistics. For example, a Shewhart 𝑋 

chart is often used, along with a Shewhart R (or an S) chart, as a scheme. Diko, Chakraborti, and 

Graham (2016) showed that there are issues with this monitoring scheme with regard to the false 

alarm rate and interpretation, and thus some researchers have recommended using a single chart 

for monitoring both location and scale simultaneously. Although the majority of the overview of 

McCracken and Chakraborti (2013) is on parametric (normal theory) charts, two nonparametric 

papers were cited, namely, Zou and Tsung (2010) and Mukherjee and Chakraborti (2012). We 

review the Mukherjee and Chakraborti’s (2012) paper next. 

 
Shewhart-type control charts for joint monitoring of location and spread in Case U 

Control chart based on the Lepage statistic  

In Case U, as noted earlier, process monitoring consists of both a Phase I and a Phase II 

and the key idea again is to consider two-sample distribution-free test statistics and adapt them 

for use in process monitoring. In order to monitor both the location and the scale simultaneously, 

Mukherjee and Chakraborti (2012) proposed a Shewhart-type chart based on the Lepage (1971) 

statistic (denoted Shewhart-LP). The corresponding Lepage (1971) test is a distribution-free test 

for testing the equality of the location and the scales of two continuous distributions based on 

two independent random samples.  Consider two continuous distributions (the 𝑈 and the 𝑉 

distributions) with continuous cdf’s 𝐹ሺ𝑥ሻ and 𝐺ሺ𝑦ሻ ൌ 𝐹ሺ𝛿𝑦 ൅ 𝜃), respectively, with 𝛿 ൐ 0 

representing the unknown scale parameter, െ∞ ൏ 𝜃 ൏ ∞ the unknown location parameter and 𝐹 

an unknown and continuous cdf. A random sample of size 𝑚. 𝑈ଵ, 𝑈ଶ, … , 𝑈௠, is drawn from 𝐹 
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and a second independent random sample of size 𝑛, 𝑉ଵ, 𝑉ଶ, … , 𝑉௡, is drawn from the cdf 𝐺. 

Combine the 𝑚 𝑈-observations and the 𝑛 𝑉-observations, and arrange 𝑁 ൌ 𝑚 ൅ 𝑛 observations 

from small to large, leading to 𝑁 order statistics in the combined sample.  Define 𝑍௞ ൌ 1 or 0, 

according as the 𝑘௧௛ order statistic is a 𝑉 or a 𝑈, respectively, for 𝑘 ൌ 1,2, … , 𝑁.  The Lepage 

statistic is a combination of the Wilcoxon rank-sum (WRS) test for location and the Ansari-

Bradley (AB) test for scale. The WRS test statistic, say 𝑇ଵ, is defined as  

 𝑇ଵ ൌ ∑ 𝑘𝑍௞
ே
௞ୀଵ  (1)  

and the AB test statistic, say 𝑇ଶ, is defined as 

 𝑇ଶ ൌ ∑ 𝑘 െ ଵ

ଶ
ሺ𝑁 ൅ 1ሻே

௞ୀଵ 𝑍௞. (2)  

For more details on the WRS and the AB tests the interested reader is referred to Gibbons and 

Chakraborti (2010). Here we simply give the IC expected value and standard deviation for each 

statistic which are necessary for setting up the control chart. When the process is IC, 𝐹 ൌ 𝐺, 

which means that 𝜃 ൌ 0 and 𝛿 ൌ 1. In this case   

 𝐸ሺ𝑇ଵ|ICሻ ൌ 𝜇ଵ ൌ ଵ

ଶ
𝑛ሺ𝑁 ൅ 1ሻ (3)  

and 

 𝑆𝑇𝐷𝐸𝑉ሺ𝑇ଵ|ICሻ ൌ 𝜎ଵ ൌ ට ଵ

ଵଶ
𝑚𝑛ሺ𝑁 ൅ 1ሻ (4)  

respectively.  Similarly for the AB statistic  

 𝐸ሺ𝑇ଶ|ICሻ ൌ 𝜇ଶ ൌ ቐ

௡ே

ସ
if 𝑁 is even

௡൫ேమିଵ൯

ସே
if 𝑁 is odd

 (5)  

and 

 𝑆𝑇𝐷𝐸𝑉ሺ𝑇ଶ|ICሻ ൌ 𝜎ଶ ൌ

⎩
⎨

⎧ ට ଵ

ସ଼
𝑚𝑛 ேమିସ

ேିଵ
if 𝑁 is even

ට ଵ

ସ଼
𝑚𝑛 ሺேାଵሻሺேమାଷሻ

ேమ if 𝑁 is odd
 (6)  

respectively.  Again, one is referred to Gibbons and Chakraborti (2010) for details.  For 𝑗௧௛ test 

sample, the WRS and AB statistics 𝑇ଵ௝ and 𝑇ଶ௝ and the corresponding standardized statistics,  𝑆ଵ௝ 

and 𝑆ଶ௝, where 𝑆ଵ௝ ൌ
்భೕିఓభ

ఙభ
 and 𝑆ଶ௝ ൌ

்మೕିఓమ

ఙమ
, respectively. The charting statistic for the 

Shewhart-LP chart for monitoring the 𝑗௧௛ Phase II (test) sample, is then given by 

 𝐿𝑃௝ ൌ 𝑆ଵ௝
ଶ ൅ 𝑆ଶ௝

ଶ . (7)  
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where an out-of-control (OOC) signal is given when 𝐿𝑃௝ ൒ 𝑎.  

Note that since the 𝐿𝑃௝ statistic can only be positive, there is only an UCL for this chart.  

If the chart signals, the question is whether the process location or the process spread has gone 

OOC. This is called post signal diagnostics. Mukherjee and Chakraborti (2012) proposed a 

follow-up procedure for this purpose where two more design parameters are needed, say 𝑎ଵ and 

𝑎ଶ, respectively.  If the chart signals at the 𝑗௧௛ sample and only 𝑆ଵ௝
ଶ  exceeds 𝑎ଵ, a shift in location 

is indicated; whereas if only 𝑆ଶ௝
ଶ  exceeds 𝑎ଶ, a shift in scale is indicated. Finally, if both 𝑆ଵ௝

ଶ  and 

𝑆ଶ௝
ଶ  exceed 𝑎ଵ and 𝑎ଶ, respectively, a shift in both location and scale is indicated.  Performance 

of the Shewhart-LP chart has been studied and the reader is referred to their paper for more 

details. Clearly, there is a need to develop more nonparametric charts for monitoring process 

location and process scale simultaneously. A systematic and thorough examination of the post 

signal diagnostic scheme, for joint monitoring schemes, would also be worthwhile. There is also 

the need for easier access to computational aides and better understanding the effect of the size 

of the reference sample on chart performance. The Shewhart-type charts are simple and effective 

for detecting larger shifts. Next we consider CUSUM-type univariate nonparametric charts, 

those, like their parametric counterparts, that are effective in detecting smaller shifts. 

 

CUSUM-type control charts 

 CUSUM charts are useful and sometimes more naturally fitting in the process control 

environment in view of the sequential nature of data collection.  We review some nonparametric 

CUSUM-type charts next. 

 

CUSUM-type control charts for monitoring location in Case K 

Control charts based on the sign and signed-rank statistics 

 Using the SN and SR statistics, Amin et al. (1995) and Bakir and Reynolds (1979) 

proposed CUSUM-type charts based on the SN and the SR statistics, respectively. These charts 

are denoted CUSUM-SN and CUSUM-SR, respectively, however, these papers were covered in 

the overview paper of Chakraborti et al. (2011) and will not be discussed here. 
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CUSUM-type control charts for monitoring location in Case U 

As noted earlier, in Case U, the key idea is to consider two-sample distribution-free test 

statistics and adapt them for use in process monitoring.  Chakraborti et al. (2004) considered a 

class of nonparametric Phase II Shewhart-type charts based on the so-called precedence 

statistics, called the precedence charts, however, this important paper was covered in the 

overview paper of Chakraborti et al. (2011).  Thus it is logical to consider CUSUM-type charts 

based on precedence statistics and this is considered in Mukherjee, Graham and Chakraborti 

(2013).  It turns out that it is more convenient to work with the so-called exceedance statistics, 

which are closely related to the precedence statistics.  Let 𝑈௝,௥ denote the number of 𝑌 

observations in the 𝑗௧௛ Phase II sample that exceeds  𝑋ሺ௥ሻ, the 𝑟௧௛ ordered observation in the 

reference sample. The statistic 𝑈௝,௥ is called an exceedance statistic and the probability 𝑝௥ ൌ

 𝑃൫𝑌 ൐ 𝑋ሺ௥ሻ| 𝑋ሺ௥ሻ൯ is called an exceedance probability.  

 

Control chart based on the exceedance statistic 

Mukherjee et al. (2013) proposed a CUSUM chart based on the exceedance statistic 

(denoted CUSUM-EX). An upper one-sided CUSUM control chart based on the EX statistic is 

defined as  

𝐶௝
ା ൌ maxൣ0, 𝐶௝ିଵ ൅ ൫𝑈௝,௥ െ 𝜇௎൯ െ 𝑘൧  for  𝑗 = 1,2,3... (8)

with the starting value 𝐶଴
ା ൌ 0, 𝜇௎ ൌ 𝐸൫𝑈௝,௥ห𝑋ሺ௥ሻ൯ ൌ 𝑛𝑝௥ and which signals at the first 𝑗 for 

which 𝐶௝
ା ൒ 𝐻. The values of the design parameters, 𝑘 and 𝐻, are found such that a nominal IC 

average run-length (ICARL) value is obtained. Typically, 𝑘 is specified first and then, following 

this, 𝐻 is found using a search algorithm in order to obtain some nominal ICARL. The steps for 

choosing the two design parameters, 𝑘 and 𝐻, follow the same for other CUSUM-type charts and 

will not be discussed each time.   

 Next we review a nonparametric Phase II CUSUM-type chart useful for joint monitoring 

adapting the Lepage (1971) statistic.  Note that we are not aware of nonparametric Phase II 

charts for monitoring spread.  This is a useful area of research. 
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CUSUM-type control chart for joint monitoring of location and scale Case U 

Chowdhury, Mukherjee and Chakraborti (2015) considered the distribution-free 

CUSUM-type  chart based on the LP statistic which is expected to be more sensitive than the 

Shewhart-LP charts for small, sustained (upward or downward) shifts in the location. 

Distribution-free CUSUM charts based on the LP statistic are called CUSUM-LP charts from 

this point forward.  

An upper one-sided CUSUM chart based on the LP statistic is defined as  

𝐶௝
ା ൌ max ሾ0, 𝐶௝ିଵ

ା ൅ ൫𝐿𝑃௝ െ 2൯ െ 𝑘ሿ  for  𝑗 = 1,2,3... (9)

with the reference value 𝑘 ൒ 0, the starting value 𝐶଴
ା ൌ 0 and which signals at the first 𝑗 for 

which 𝐶௝
ା ൒ 𝐻. It should be noted that we subtract 2 in the CUSUM since 𝐸ሺ𝐿𝑃|ICሻ ൌ 2. The 

interested reader is referred to Chowdhury et al. (2015) for more information on why the IC 

expected value of the Lepage statistic equals 2. The values of the design parameters, 𝑘 and 𝐻, are 

found such that a nominal ICARL value is obtained. Typically, 𝑘 is specified first and then, 

following this, 𝐻 is found using a search algorithm in order to obtain some nominal ICARL. 

Chowdhury et al. (2015) considered values of k = 0, 3 and 6, respectively.  For thepost signal 

diagnostics, Chowdhury et al. (2015) proposed a follow-up that makes use of the p-values of the 

corresponding WSR and the AB statistics, denoted 𝑝ଵ and 𝑝ଶ, respectively.  These p-values are 

calculated on the basis of the two samples; one with 𝑚 Phase I observations and the other with 

the 𝑛 observations from the 𝑗௧௛ test sample (if a signal was given at sample number 𝑗). If 𝑝ଵ is 

very low but not 𝑝ଶ, this indicates a shift in location only. Alternatively if 𝑝ଵ is very high but not 

𝑝ଶ, this indicates a shift in scale only. Finally, if both 𝑝ଵ and 𝑝ଶ are very low, this indicates a 

shift in location and scale.  

The question about which Phase I sample order statistic to use in forming either the 

precedence (or the exceedance) statistics is an interesting one.  Following the work of Mukherjee 

et al. (2013) which was based on the median, Graham, Mukherjee and Chakraborti (2017) 

investigated this choice in the design of the CUSUM-EX control chart and gave some 

recommendations from a practical point of view. 

 

EWMA-type control charts 

 Like the CUSUM charts, the EWMA charts also take advantage of the sequentially 

accumulating nature of the data arising in a usual SPC environment and are known to be efficient 



13 
 

 
 

in detecting smaller shifts, however they are easier to implement.   Following the Shewhart and 

CUSUM-type charts described earlier, some nonparametric EWMA-type charts have been 

considered.  They are described next. 

 

EWMA-type control charts for monitoring location in Case K 

Control charts based on the sign and signed-rank statistics 

As we have noted earlier, in Case K, one can simply use the SN and the SR statistics in 

the monitoring framework.  Following the Shewhart and CUSUM-type charts, Graham, 

Chakraborti and Human (2011a) considered an EWMA chart based on the SN statistic (denoted 

EWMA-SN).  For this chart let 𝑋௜ denote the ith individual measurement from an unknown 

continuous distribution with cdf F with median 𝜃, that is to be monitored. Define the SN statistic 

 𝑆𝑁௜ ൌ ∑ 𝑠𝑖𝑔𝑛൫𝑋௜௝ െ 𝜃଴൯௡
௝ୀଵ    for   𝑖 ൌ  1,2,3, … (10)  

where 𝑠𝑖𝑔𝑛ሺ𝐴ሻ ൌ െ1, 0, 1 if 𝐴 < 0, = 0, > 0 and 𝜃଴ is the known or the specified or the target 

value of the median, 𝜃, that is monitored. The charting statistic of the EWMA-SN chart is 

defined as  

 𝑍௜ ൌ 𝜆𝑆𝑁௜ ൅ ሺ1 െ 𝜆ሻ𝑍௜ିଵ             𝑍଴ ൌ 0 (11)  

where 0 ൏ 𝜆 ൑ 1 is the smoothing constant to be specified later. The exact control limits and the 

centerline (CL) of the EWMA-SN chart are given by 

 𝑈𝐶𝐿/𝐿𝐶𝐿 ൌ േ𝐿ට ఒ௡

ଶିఒ
ሺ1 െ ሺ1 െ 𝜆ሻଶ௜ሻ  and  CL = 0 (12)  

where L > 0 is the distance of the control limits from the centerline.  

The steady-state control limits (typically used when the EWMA chart has been running for 

several time periods) are based on the asymptotic standard deviation of the control statistic 

(Lucas and Saccucci, 1990) and are given by 

 𝑈𝐶𝐿/𝐿𝐶𝐿 ൌ േ𝐿ට ఒ௡

ଶିఒ
  and  CL = 0. (13)  

 If any of the charting statistics Zi plots on or outside either of the two control limits, the 

process is declared OOC and a search for assignable causes is started. Otherwise, the process is 

considered IC and charting continues.  The two design parameters, 𝜆 and 𝐿, are selected so that a 

nominal ICARL value is attained. Typically, 𝜆 is chosen first with small values of 𝜆 being 

recommended for small shifts (𝜆 = 0.05), larger values of 𝜆 being recommended for moderate 
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shifts (𝜆 = 0.10) and a large value of 𝜆 being recommended for large shifts (𝜆 = 0.20). Once 𝜆 is 

selected, then 𝐿 is found using a search algorithm so that a nominal ICARL value is attained. The 

steps for choosing the two design parameters, 𝜆 and 𝐿, follow the same for other EWMA-type 

charts and will not be discussed each time  Graham, Chakraborti and Human (2011b) proposed 

an nonparametric EWMA-type chart, based on the SR statistics, denoted EWMA-SR chart. The 

SR charts require symmetry of the underlying distribution but have performance comparable 

with normal theory EWMA charts based on the mean.  The reader is referred to the paper for 

more details.    

Next we discuss some EWMA-type charts in Case U. 

 

EWMA-type control charts for monitoring location in Case U 

Control chart based on the exceedance statistic 

 As in the case with the CUSUM-EX chart, the charting statistic of the EWMA-EX chart 

is obtained by sequentially accumulating the exceedance statistics 𝑈ଵ,௥, 𝑈ଶ,௥, 𝑈ଷ,௥, … and is 

defined as  

 𝑍௝ ൌ 𝜆 𝑈௝,௥ ൅ ሺ1 െ 𝜆ሻ𝑍௝ିଵ,       𝑍଴ ൌ 𝐸൫𝑈௝ି௞,௥|𝑋ሺ௥ሻ൯ ൌ 𝑛𝑝௥ (14)  

where 0 ൏ 𝜆 ൑ 1 is the smoothing constant to be specified later. Graham, Mukherjee and 

Chakraborti (2012) showed that the unconditional IC mean and standard deviation of 𝑍௝ are 

given by  

𝐸൫𝑍௝|𝐼𝐶൯ ൌ 𝑛ሺ1 െ 𝑎ሻ൫1 െ ሺ1 െ 𝜆ሻ௝൯ 

and                                                                                                                                              (15)  

𝑆𝑇𝐷𝐸𝑉൫𝑍௝|𝐼𝐶൯ ൌ ටቀ௡௔ሺଵି௔ሻ

௠ାଶ
ቁ ቄ𝑛ሺ1 െ ሺ1 െ 𝜆ሻ௝ሻଶ ൅ ఒሺ௠ାଵሻ

ଶିఒ
ሺ1 െ ሺ1 െ 𝜆ሻଶ௝ሻቅ, 

respectively, where 𝑎 ൌ 𝑟/ሺ𝑚 ൅ 1ሻ. The exact control limits and the CL of the two-sided 

EWMA-EX chart are given by 

 𝑈𝐶𝐿/𝐿𝐶𝐿 ൌ 𝐸൫𝑍௝|𝐼𝐶൯ േ 𝐿 ൈ 𝑆𝑇𝐷𝐸𝑉൫𝑍௝|𝐼𝐶൯   and  𝐶𝐿 ൌ 𝐸൫𝑍௝|𝐼𝐶൯ (16)  

where L > 0 is the distance of the control limits from the centerline. The steady-state control 

limits and CL are given by 

 𝑈𝐶𝐿/𝐿𝐶𝐿 ൌ 𝑛ሺ1 െ 𝑎ሻ േ 𝐿ටቀ௡௔ሺଵି௔ሻ

௠ାଶ
ቁ ቄ𝑛 ൅ ఒሺ௠ାଵሻ

ଶିఒ
ቅ  and  𝐶𝐿 ൌ 𝑛ሺ1 െ 𝑎ሻ.  (17)  
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If any Zi plots on or outside either of the two control limits, the process is declared to be OOC 

and a search for assignable causes is started. Otherwise, the process is considered IC and 

charting continues.   

 Following the work of Graham et al. (2012) which was based on the median of the Phase 

I (reference) sample, Graham et al. (2017) investigated the choice of the Phase I (reference) 

sample order statistic used in the design of the EWMA-EX chart and gave some 

recommendations for selecting this order statistic from a practical point of view.   

Next we review an EWMA-type chart for joint monitoring in the unknown parameter 

case based on the Lepage (1971) statistic. 

 

EWMA-type control chart for joint monitoring of location and scale in Case U 

Control chart based on the Lepage statistic 

Chowdhury et al. (2015) stated that it’s challenging to design the EWMA chart based on 

the Lepage statistic (denoted EWMA-LP chart), since “construction of exponentially-weighted 

moving average chart based on the Lepage statistic will be challenging as there is no simple 

explicit form of conditional variance of Lepage statistic that can be obtained”. In order to 

circumvent this problem, we use a constant value a for the UCL. The value of 𝑎 is obtained by 

making use of simulation in order to find a desirable ARL value. The EWMA-LP accumulates 

the statistics 𝐿𝑃ଵ, 𝐿𝑃ଶ, 𝐿𝑃ଷ, … with the EWMA charting statistic defined as 

 𝑍௝ ൌ 𝜆 𝐿𝑃௝ ൅ ሺ1 െ 𝜆ሻ𝑍௝ିଵ for    𝑗 ൌ 1,2,3, …                                                 (18) 

where the weighting constant 0 1   with starting value 𝑍଴ ൌ 2. 

The process is considered to be IC while all the charting statistics 𝑍௝, 𝑗 ൌ 1,2,3, … fall 

below the UCL, however as soon as a charting statistic falls on or above the UCL the process is 

declared OOC and typically a search for assignable causes would be started. This work is 

currently under review. 

Another contribution to the nonparametric EWMA literature is by Zou and Tsung (2010) 

who integrated the powerful goodness-of-fit test with the EWMA scheme, however, details are 

omitted. As noted earlier, in a global sense, more work on the precedence and exceedance charts 

is needed, particularly to understand their performance in Phase II and how much Phase I data 

are needed to guarantee nominal IC and decent OOC performance. This is true for most of the 
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Phase II (Case U) nonparametric charts currently available in the literature. We review a few 

other univariate nonparametric charts in the next section. 

 
Other Univariate Nonparametric Charts 

GWMA-type control charts in Case K 

 A generalization of the EWMA charting scheme to monitor the mean, under normality, 

was considered by Sheu and Lin (2003).  This is referred to as the generally weighted moving 

average (GWMA) charting scheme.  They showed that the GWMA chart performs better in 

detecting small shifts in the process mean.  In the nonparametric setting, Lu (2015) considered a 

GWMA chart for the process median based on the SN statistic, called the GWMA-SN chart.  Let 

𝑋 be some quality characteristic of a process with target value 𝑇. Define the deviation 𝑌 ൌ 𝑋 െ

𝑇, then 𝑝 ൌ 𝑃ሺ𝑌 ൐ 0ሻ is the process proportion with 𝑝 ൌ 0.5 indicating the process is IC and 

𝑝 ് 0.5 indicating the process is OOC. For a sample of size 𝑛 at time 𝑡 define 𝑌௜௧ ൌ 𝑋௜௧ െ 𝑇 and 

𝐼௜௧ ൌ 1,0 if 𝑌௜௧ > 0, otherwise, for 𝑖 ൌ 1,2, … , 𝑛. Thus, the SN statistic used by Lu (2015), 𝑁௧ ൌ

∑ 𝐼௜௧
௡
௜ୀଵ .  It follows that 𝑁௧ follows a BIN(𝑛,0.5) distribution when the process is IC. The charting 

statistic for the GWMA-SN chart is defined as 

𝐺௧ ൌ ∑ ሺ𝑞ሺ௝ିଵሻഀ
െ 𝑞௝ഀ

ሻ௧
௝ୀଵ 𝑁௧ି௝ାଵ ൅ 𝑞௧ഀ

𝑇  for  𝑡 = 1,2,3... (19)

 where 0 ൑ 𝑞 ൏ 1 and 0 ൏ 𝛼 ൑ 1 are two chart parameters.  Note that the ൫𝑞ሺ௝ିଵሻഀ
െ 𝑞௝ഀ

൯ are 

the weights from the most recent to the oldest observation.  It is seen that t the GWMA-SN chart 

reduces to the EWMA-SN chart for 𝛼 ൌ 1 and 𝑞 ൌ 1 െ 𝜆, where 0 ൏ 𝜆 ൑ 1,  is the smoothing 

parameter of EWMA chart. Also, as is the case for the EWMA chart, the GWMA reduces to a 

Shewhart-type chart for 𝑞 ൌ 0 and 𝛼 ൌ 1. Moreover, it can be shown that the IC expected value 

and the variance of the charting statistic are 
௡

ଶ
 and 𝑄௧

௡

ସ
  , respectively, where 𝑄௧ ൌ ∑ ൫𝑃ሺ𝑀 ൌ௧

௝ୀଵ

𝑗ሻ൯
ଶ
. Accordingly, the exact Shewhart-type control limits for the GWMA-SN control chart are 

given by 

𝐿𝐶𝐿/𝑈𝐶𝐿 ൌ 𝐸ሺ𝐺௧|𝐼𝐶ሻ േ 𝐿 ൈ 𝑆𝑇𝐷𝐸𝑉ሺ𝐺௧|𝐼𝐶ሻ ൌ ௡

ଶ
േ 𝐿ට

௡

ସ
𝑄௧   with   𝐶𝐿 ൌ 𝐸ሺ𝐺௧|𝐼𝐶ሻ ൌ ௡

ଶ
 (20)

For 𝑡 → ∞, the asymptotic variance of the charting statistic 𝐺௧ is given by lim
௧→ஶ

𝑉𝐴𝑅ሺ𝐺௧ሻ ൌ 𝑄𝜎ଶ, 

where 𝑄 ൌ lim
௧→ஶ

𝑄௧.  Hence the steady-state control limits and the CL are given by 
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 𝑈𝐶𝐿/𝐿𝐶𝐿 ൌ ௡

ଶ
േ 𝐿ට

௡

ସ
𝑄  and  CL = 

௡

ଶ
. (21)  

Lu (2015) found that the GWMA-SN chart is more efficient than the EWMA-SN chart in 

detecting smaller shifts where larger values of 𝑞 and 𝛼 are recommended. For larger shifts, the 

GWMA-SN chart is not optimal, but can compete with the EWMA-SN chart.  Clearly, a 

GWMA-SR chart can be considered based on the SR statistic and assuming symmetry, and in 

fact, this has been done by Chakraborty, Chakraborti, Human and Balakrishnan (2016).  Their 

GWMA-SR chart performs better, as expected, for symmetric distributions and smaller shifts.   

 As we noted earlier, attempts have been made to enhance the smaller shift detection 

ability of the Shewhart charts, under normality, for example, by including supplementary runs-

rules.  Another attempt in this direction includes a new class charts, called the synthetic charts 

(Wu and Spedding (2000)).  A lot of work has been done on these charts, we briefly review the 

nonparametric analogs. 

 

Synthetic control charts in Case K 

   The synthetic control chart integrates a Shewhart chart and what is called a conforming 

run-length (CRL) chart. Unlike the Shewhart chart, a synthetic chart does not signal when a 

single charting statistic plots on or beyond the control limits. Instead, when that happens, the 

practitioner determines how many samples have been taken since the last time a charting statistic 

plotted on or beyond the control limits until the current time point, which is called the CRL. If 

the CRL value is sufficiently small, an OOC signal is generated.  

 To the best of our knowledge, only three nonparametric synthetic control charts have 

been proposed in the literature so far. Khilare and Shirke (2010) and Pawar and Shirke (2010) 

proposed nonparametric synthetic control charts based on the SN and the SR statistic, 

respectively, for monitoring location. Khilare and Shirke (2012) proposed a nonparametric 

synthetic chart to monitor the process variation using the SN statistic. First we give some 

definitions needed for our discussions.  When referring to the zero-state mode, it is assumed that 

there is a nonconforming sample at time zero, whereas when referring to the steady-state mode, 

one assumes that the process starts and stays IC for a long time before a process shift occurs at 

some ‘random time’. 
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 The synthetic SN chart integrates the operation of the nonparametric Shewhart SN chart 

and the CRL chart. Khilare and Shirke (2010) compared the (zero-state) ARL performance of the 

synthetic SN chart against the ordinary Shewhart SN and 𝑋ത charts and observed that the 

synthetic SN chart performs best overall and that the improvement in the ARL is more significant 

for small to moderate shifts. Note that the authors acknowledged that this good performance 

might be due to the fact that they assumed a zero-state mode and that under a steady-state this 

might not have been the case. Following their 2010 paper, in 2012 the same authors proposed a 

nonparametric synthetic chart to monitor the process variation using the SN-based test assuming 

both the zero- and steady-state modes.  

The ARL performance of the synthetic SN chart is compared with the Shewhart 𝑆ଶ and 

Shewhart SN charts and it is observed that the synthetic SN chart performs best overall. 

However, superiority of the synthetic SN chart is limited to the zero-state mode, since, when in 

the steady-state mode, the ARL performance of the synthetic chart is poor compared to the zero-

state ARL. This occurs because the effect of the head start feature has disappeared. Next, we 

discuss the synthetic SR chart proposed by Pawar and Shirke (2010). This chart integrates the 

operation of the nonparametric Shewhart SR chart and the CRL chart. As perhaps expected, 

Pawar and Shirke (2010) compared the (zero-state) ARL performance of the synthetic SR chart 

against the Shewhart SR chart (i.e. the 1-of-1 chart), the 2-of-2 runs-type signaling rules SR chart 

and the Shewhart 𝑋ത chart. The authors observed that the synthetic SR chart outperforms all the 

other charts for all upwards shifts in the process medians. Note that although the synthetic charts 

have attracted a lot of interest in the literature, and more work can be done, some researchers 

have advised against their use. See for example, Knoth (2016) for a discussion. Again, to 

reiterate, more work on these charts is needed, particularly to understand their performance in 

Phase II and how much Phase I data are needed to guarantee nominal IC and decent OOC 

performance. 

 
Adaptive control charts 

 Another class of control charts studied in the literature is called adaptive charts, which 

allows the user to vary the charting conditions depending on the recent outcomes observed in the 

data from the process.  For example, if a control chart shows that the process is IC and stable for 

a long time, it might seem reasonable to extend the sampling interval.  On the other hand, if the 
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chart indicates that the process might be heading towards being out of control, one might want to 

collect data more frequently, thus shortening the sampling time interval. Psarakis (2015) 

provided an overview of the adaptive control charting literature. In that paper the definition of an 

adaptive control chart is given as “A control chart is considered adaptive or dynamic if at least 

one of the parameters h, n, or k are allowed to change in real time depending on the actual values 

from the previous sample statistics”, where h denotes the sampling interval, n is the sample size 

and k denotes the constant which determines the width of the control limit. One type of adaptive 

chart has been proposed for the variable sampling interval (VSI) setting. Reynolds, Amin, 

Arnold and Nachlas (1988) were the first to suggest an 𝑋ത-chart with a VSI scheme. Advantages 

of using VSI charts, or adaptive charts in general, include minimizing the time for shift detection, 

as well as the number of samples that are needed to detect a shift.   In some instances this can 

greatly reduce the cost.   

Liu, Zi, Zhang and Wang (2013) considered an adaptive nonparametric EWMA chart, 

called the ANE chart, for monitoring the location of a process.  The chart is based on the 

sequential ranks (see their paper for details).  Liu, Chen, Zhang and Zi (2015) considered a 

generalization of the ANE chart under the VSI setting.  They found that adding the VSI 

modification improves the performance of the chart. Coelho, Graham and Chakraborti (2017) 

proposed a VSI SR chart and showed that it performs similar or better than the VSI SN chart that 

was proposed by Amin and Widmaier (1999). 

 

Change-point model based methods in Case U 

As eluded in the above discussion, another popular formulation of the monitoring 

problem in the literature is the change-point formulation.  Hawkins, Qiu and Kang (2003) studied 

the change-point model under the assumption of normality. Hawkins and Deng (2010) developed 

a nonparametric analog, based on the Mann-Whitney statistic, however, this paper was covered 

in the overview paper of Chakraborti et al. (2011) and will not be discussed here. Liu, Zhang and 

Zi (2015) proposed a dual nonparametric CUSUM (DNC) chart based on a sequential rank for 

monitoring the location of a process. Let 𝑥௜ denote the 𝑖௧௛ independent observation from an 

unknown continuous distribution, 𝐹. Let 𝜏 denote the unknown change-point and let 𝜇଴ and 𝜇ଵ 

(് 𝜇଴) denote the IC and OOC location parameters, respectively. Let 𝑅௡ denote the 𝑛௧௛ 

sequential rank, 𝑅௡ ൌ ∑ 𝐼൛𝑥௡ ൒ 𝑥௝ൟ௡
௝ୀଵ  of an observation among n observations. As described 
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earlier, the standardized statistic is 𝑅௡
∗ ൌ ൫𝑅௡ െ 𝐸ሺ𝑅௡|𝐼𝐶ሻ൯ 𝑆𝐷ሺ𝑅௡|𝐼𝐶ሻ⁄  where 𝐸ሺ𝑅௡|𝐼𝐶ሻ ൌ

ሺ𝑛 ൅ 1ሻ 2⁄  and 𝑆𝐷ሺ𝑅௡|𝐼𝐶ሻ ൌ ඥሺ𝑛 ൅ 1ሻሺ𝑛 െ 1ሻ 12⁄ , respectively. Then a CUSUM charting 

statistic can be based on the 𝑅௡
∗  given by  𝑆௡

ା ൌ 𝑚𝑎𝑥ሼ0, 𝑆௡ିଵ
ା ൅ 𝑅௡

∗ െ 𝑘ሽ and 𝑆௡
ି ൌ

𝑚𝑖𝑛ሼ0, 𝑆௡ିଵ
ି ൅ 𝑅௡

∗ ൅ 𝑘ሽ, with the starting values 𝑆௡
ି ൌ 𝑆௡

ା ൌ 0. Let 𝑆௡ ൌ 𝑚𝑎𝑥ሼ|𝑆௡
ି|, 𝑆௡

ାሽ and 

which signals at the first 𝑗 for which 𝑆௡ ൒ 𝐻. The authors compare their chart to the well-known 

nonparametric change-point chart by Hawkins and Deng (2010) and found that it has almost the 

same performance for a wide range of shifts.  The latter paper was covered in the review by 

Chakraborti et al. (2011) and will not be repeated here. 

 

Monitoring distributions 

In many industries today there is an overwhelmingly large amount of data collected 

almost continuously.  Such data sets provide a rich environment with a large number of variables 

that could be monitored to the advantage of the manufacturer.  Such process streams are referred 

to as being ‘high dimensional’ and SPC methods, for working with multiple data streams, are 

useful. Ross, Tasoulis and Adams (2011) provided a framework for detecting changes in data 

streams when the distributional form is unknown. This is basically a nonparametric change-point 

model for detecting change in the distribution and their methods make use of rank-based 

nonparametric tests in a streaming/monitoring context. Ross et al. (2011) started by extending 

the change-point model framework so that changes in the scale parameter can be found. 

Following this, they considered the simultaneous monitoring of location and scale parameters. 

They continue by introducing the idea of stream discretization which saves time by computing 

the ranks in a computationally effective way.  Ross and Adams (2012) considered two Phase II 

nonparametric control charts for detecting arbitrary distribution changes.  These charts are based 

on some well-known nonparametric goodness of fit statistics, such as the Cramer-von-Mises 

(CvM) and the Kolmogorov-Smirnov (KS) statistic (see Gibbons and Chakraborti (2010)). 

Suppose there is a change-point 𝜏 in a set of observations ሼ𝑋ଵ, … , 𝑋௧ሽ then 𝐻଴: 𝑋௜~𝐹଴, 𝑖 ൌ 1, … , 𝑡 

and 𝐻௔: 𝑋ଵ, … , 𝑋ఛ~𝐹଴, 𝑋ఛାଵ, … , 𝑋௧~𝐹ଵ  where  𝐹଴ and 𝐹ଵ are two continuous cdf’s. Immediately 

following any observation 𝑋௞ at time 𝑘, a change point can be tested from by partitioning the 

observations into two samples 𝑆ଵ ൌ ሼ𝑋ଵ, … , 𝑋௞ሽ and 𝑆ଶ ൌ ሼ𝑋௞ାଵ, … , 𝑋௧ሽ with sample sizes 𝑛ଵ ൌ

𝑘 and 𝑛ଶ ൌ 𝑡 െ 𝑘, respectively. Then an appropriate two-sample hypothesis test can be 

performed. Both the CvM and the KS tests rely on the comparisons of the empirical distribution 
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functions of the two samples defined as 𝐹෠ௌభ
ሺ𝑥ሻ ൌ ଵ

௞
∑ 𝐼ሺ𝑋௜ ൑ 𝑥ሻ௞

௜ୀଵ  and 𝐹෠ௌమ
ሺ𝑥ሻ ൌ

ଵ

௧ି௞
∑ 𝐼ሺ𝑋௜ ൑ 𝑥ሻ௧

௜ୀ௞ାଵ , respectively. The KS test is defined as 𝐷௞,௧ ൌ sup௫ห𝐹෠ௌభ
ሺ𝑥ሻ െ 𝐹෠ௌమ

ሺ𝑥ሻห and 

the CvM test is defined as 𝑊௞,௧ ൌ ׬ ห𝐹෠ௌభ
ሺ𝑥ሻ െ 𝐹෠ௌమ

ሺ𝑥ሻห
ଶ

𝑑𝐹෠௧ሺ𝑥ሻ
ஶ

ିஶ  where 𝐹෠௧ሺ𝑥ሻ is the empirical cdf 

of the pooled sample. For the KS and the CvM test, the null hypothesis that no change occurs is 

rejected at time point 𝑘, if 𝐷௞,௧ ൐ ℎ௞,௧
ሺ௄ௌሻ or if 𝑊௞,௧ ൐ ℎ௞,௧

ሺ஼௩ெሻ, respectively, where ℎ௞,௧
ሺ∙ሻ  represents 

some threshold. Now, for the CvM change-point model Ross and Adams (2012) used the 

charting statistic 𝑊௧ ൌ 𝑚𝑎𝑥௞ ൬
ௐೖ,೟ିఓೖ,೟

ఙೖ,೟
൰ , 1 ൏ 𝑘 ൏ 𝑡 where 𝜇௞,௧ and 𝜎௞,௧ denotes the mean and 

the standard deviation of 𝑊௞,௧. A signal is given when 𝑊௧ exceeds ℎ௧
ሺ஼௩ெሻ. For the KS change-

point model, the authors proposed monitoring 𝑝௞,௧, the p-value associated with 𝐷௞,௧𝑞௧ ൌ

𝑚𝑎𝑥௞൫𝑞௞,௧൯. Letting 𝑞௞,௧ ൌ 1 െ 𝑝௞,௧, a signal is given when 𝑞௧ ൌ 𝑚𝑎𝑥௞൫𝑞௞,௧൯ exceeds some 

threshold. Based on the performance results, they conclude that the CvM chart outperforms the 

KS chart.  Monitoring the underlying distribution is an interesting problem which should include 

a post signal diagnostic analysis, in order to indicate the type of change that may have taken 

place.  More work needs to be done in this area. Given these different classes of charts, using 

different charting statistics, one obvious question in practice is which chart should be used and 

when. A discussion of this important question and the recommendations follow the guidelines in 

the parametric case, namely, if smaller shifts are of interest a CUSUM or an EWMA-type chart 

should be used, whereas for larger shifts a Shewhart-type chart is recommended. The choice 

between a parametric and a nonparametric chart depends on what is known about the process and 

what assumptions can be made and justified. 

 

Multivariate Nonparametric Process Monitoring 

 In recent years the interest in multivariate process monitoring has increased significantly 

because in today’s data rich environment more quality features and variables are available and 

monitored that are possibly interdependent. Consequently, the interest in multivariate 

nonparametric control charts has gone up tremendously because it is far more difficult, if not 

impossible, to justify a parametric multivariate distribution assumption (such as the multivariate 

normal) for the underlying distribution.  Suppose that 𝑝 quality characteristics are of interest and 

let 𝑿ଵ, 𝑿ଶ, … be random vectors, each of dimension 𝑝 ൈ 1, which denotes the observations over 
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time.   It is assumed that these vectors are independent with mean vectors 𝝁ଵ, 𝝁ଶ, … respectively 

and a common variance-covariance matrix 𝑿. Taking a cue from hypothesis testing, Hotelling’s 

ଶ chart is probably the most popular multivariate control chart for the mean, however, it 

requires the assumption of multivariate normality to maintain its nominal performance.  Here we 

consider some nonparametric multivariate charts.   

 Note that although Chakraborti et al. (2001, 2007 and 2011) presented extensive 

overviews on the nonparametric control charting literature, they did not consider multivariate 

charts. That was primarily because the literature wasn’t quite mature at that point in time.   Some 

of the earlier papers in this literature include Hayter and Tusi (1994) who proposed a Shewhart-

type multivariate nonparametric control charting scheme for the mean vector based on the 𝑀 

statistic; the maximum deviation of the observations from their sample means.  Kapatou and 

Reynolds (1994, 1998) proposed EWMA-type multivariate nonparametric control charting 

schemes for the SN and SR statistics, respectively. Though, it should be noted that they are not 

exactly nonparametric since some elements of the covariance matrix were estimated. Liu (1995) 

proposed a Shewhart-type multivariate nonparametric control charting scheme based on a 

concept of data depth. Qiu and Hawkins (2003) proposed a CUSUM-type multivariate 

nonparametric control charting scheme based on the so-called antiranks of the measurements. 

Hamurkarouglu, Mert and Sayken (2004) proposed a nonparametric control charting scheme 

based on the Mahalanobis depth. Qiu (2008) proposed a CUSUM-type multivariate 

nonparametric control charting scheme based on log-linear modeling. Zou and Tsung (2011) 

proposed an EWMA-type multivariate nonparametric control charting scheme combined with the 

multivariate SN test; they integrated the spatial-SN test of Randles (2000) with an EWMA 

control charting scheme. Motivated by the use of the spatial-SN test by Zou and Tsung (2011), 

Zi, Zou, Zhou and Wang (2013) proposed an EWMA-type multivariate nonparametric control 

charting scheme for monitoring location parameters. They adapted the directional spatial-SN test 

to on-line sequential monitoring by incorporating the EWMA scheme. Boone and Chakraborti 

(2012) considered two simple Shewhart-type multivariate nonparametric control charting 

schemes based on the SN and the SR statistics, respectively.  

 In this article, not all these papers will be covered or discussed in detail due to lack of 

space.  The reader is referred to Chapter 9 of Qiu (2014) where a good discussion about 

multivariate nonparametric control charts can be found. As noted earlier in the section of 
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univariate control charts, the Phase I analysis is a very important part of the process monitoring 

regime and control charts are used in this phase regularly.  In the multivariate setting, since more 

variables are involved, a Phase I analysis is just as, if not more, important.  We discuss some 

recent papers, but more work needs to be done in this area. 

 

Multivariate Nonparametric Process Monitoring: Phase I chart 

 Bell et al. (2014) proposed a Phase I multivariate mean-rank (MMR) chart which is the 

multivariate analog of Jones-Farmer et al. (2009)’s Phase I univariate mean-rank chart. The chart 

is distribution-free over the class of continuous multivariate elliptical distributions, such as the 

multivariate normal and the multivariate t distribution.  It should be noted that most multivariate 

charts only have an UCL and the process is declared OOC when the charting statistic, which is 

usually a quadratic form, plots above the UCL and, typically, a search for assignable causes is 

started for the post signal diagnostics. In Phase I the UCL is chosen such that a desired  FAP is 

attained. The authors conclude that the MMR chart outperforms the Hotelling 𝑇ଶ chart when the 

underlying process distribution is non-normal. 

 Li, Dai and Wang (2014) proposed a Phase I multivariate nonparametric change-point 

control charting scheme based on the concept of data depth (CPDP), for individual data, which 

can be used to monitor the mean and/or the variance, i.e. it monitors the mean vector, the 

covariance matrix or both. Suppose we have 𝑛 independent observations from a 𝑝 dimensional 

multivariate distribution, 𝑥௜~𝐹ሺ௣ሻሺ𝑢௜,௜ሻ, 𝑖 ൌ 1, … 𝑛. When the process is IC 𝑢௜ ൌ 𝜇 and ௜ ൌ , 

𝑖, where the common 𝜇 and  are unknown. Assume that a step shift has occurred in the mean 

and/or the variance after 𝜏 observations, then the remaining 𝑛 െ 𝜏 observations have mean and 

variance 𝜇∗ሺ് 𝜇ሻ and ∗ ሺ് ሻ, respectively. The authors proposed using a generalized Mann-

Whitney statistic  𝑄ሺ𝑛ଵሻ ൌ ∑ 𝑅௡భ
ሺ𝑗ሻ௡

௝ୀ௡భାଵ  where  

𝑅௡భ
ሺ𝑗ሻ ൌ # ቄ𝑥௜|𝐷ி೙భ

ሺ𝑥௜ሻ ൏ 𝐷ி೙భ
൫𝑥௝൯, 𝑖 ൌ 1, … , 𝑛ଵቅ

൅ 0.5# ቄ𝑥௜|𝐷ி೙భ
ሺ𝑥௜ሻ ൌ 𝐷ி೙భ

൫𝑥௝൯, 𝑖 ൌ 1, … , 𝑛ଵቅ 

where 𝐷ி೙భ
ሺ𝑥௜ሻ denotes the data depth of 𝑥௜ according to the empirical distribution of 𝑥ଵ, … , 𝑥௡భ

. 

Although the probability of ties is zero theoretically for continuous variables, ties do occur in 

practice and the authors argued that, the problem of ties can be addressed by allocating a 

probability of a 0.5 for observations that have the same data depth. The standardized likelihood 
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ratio statistic is defined as 𝑆𝑄ሺ𝑛ଵሻ ൌ ൫𝐸ሺ𝑄ሺ𝑛ଵሻ|ICሻ െ 𝑄ሺ𝑛ଵሻ൯ 𝑆𝐷ሺ𝑄ሺ𝑛ଵሻ|ICሻ⁄  where  

𝐸ሺ𝑄ሺ𝑛ଵሻ|ICሻ ൌ 𝑛ଵሺ𝑛 െ 𝑛ଵሻ 2⁄  and 𝑆𝐷ሺ𝑄ሺ𝑛ଵሻ|ICሻ ൌ ඥ𝑛ଵሺ𝑛 െ 𝑛ଵሻሺ𝑛 ൅ 1ሻ 12⁄ , respectively. 

Note that the numerator is 𝐸ሺ𝑄ሺ𝑛ଵሻ|ICሻ െ 𝑄ሺ𝑛ଵሻ and not the typical 𝑄ሺ𝑛ଵሻ െ 𝐸ሺ𝑄ሺ𝑛ଵሻ|ICሻ, 

since the former is positive with high probability.  The charting statistics, 𝑆𝑄ሺ𝑖ሻ, are plotted 

against 𝑖 ሺ1 ൑ 𝑖 ൏ 𝑛) and a signal is given when 𝑚𝑎𝑥ଵஸ௜ழ௡𝑆𝑄ሺ𝑖ሻ plots above some UCL. The 

UCL is chosen such that a desired nominal FAP is attained. The authors compared their chart to 

the LRT chart (Sullivan and Woodall (2000)) and found that it has similar performance under the 

normal distribution and performs better when the underlying process distribution is non-normal.   

Cheng and Shiau (2015) proposed a Phase I chart based on the spatial SN statistic for 

monitoring the location parameter vector of a multivariate process. They compared their chart to 

four competing charts, the well-known Hotelling 𝑇ଶ chart, the 𝑇ௌ஽
ଶ  chart proposed by Sullivan 

and Woodall (1996) and the 𝑇ெ௏ா
ଶ  and 𝑇ெ஼஽

ଶ  charts proposed by Jensen, Birch and Woodall 

(2007), and found that their chart is the only chart that is robust to the normality assumption and 

that it is more powerful for the majority of OOC conditions with the exception being that their 

chart performs worse than the Hotelling 𝑇ଶ chart for large shifts in the location vector. 

One issue with both Bell et al. (2014)’s and Cheng and Shiau (2015)’s charts are that they 

require subgrouped data. To overcome this, Capizzi and Masarotto (2017) proposed a 

distribution-free multivariate Phase I chart that works both for subgrouped data and individual 

measurements, as the latter is fairly typical in today’s data rich environments. Their chart is 

based on multivariate signed-ranks that integrate spatial signs and ranks of the Mahalanobis 

depths which is also an advantage over Bell et al. (2014)’s chart who limited their focus to 

Mahalanobis depths and Cheng and Shiau (2015)’s chart who limited their focus to spatial signs. 

Capizzi and Masarotto (2017) conclude that their proposed chart, which uses a permutation 

approach to calculate charting constant and thus avoids a distributional assumption, shows wider 

applicability and has satisfactory performance for many OOC conditions. They also provide an R 

package for their proposed chart.  

 Next we consider some Phase II nonparametric control charts for multivariate data. 
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Multivariate Nonparametric Process Monitoring: Phase II charts 

Shewhart-type control charts for Case K 

Das (2009) proposed a multivariate nonparametric control charting scheme based on the 

bivariate SN test (the reader is referred to Puri and Sen (1976) for more details on the bivariate 

SN test). Let 𝑋௝ ൌ ൫𝑋ଵ௝, 𝑋ଶ௝൯′, 𝑗 ൌ 1,2, … , 𝑛 be 𝑛 independent stochastic vectors with cdf’s 

𝐹ଵሺ𝑥ሻ,…, 𝐹௡ሺ𝑥ሻ. We want to test whether 𝐹ଵ,…, 𝐹௡ have 𝑛 specified pairs of marginal medians. 

Das (2009) chose the origins so that the assumption can be made that the pair of hypothetical 

medians for each 𝑋௝, 𝑗 ൌ 1,2, … , 𝑛, is 0 ൌ ሺ0 0ሻ′. The null hypothesis is given by 

𝐻଴: 𝐹௝ሺ0, ∞ሻ ൌ 𝐹௝ሺെ∞, 0ሻ ൌ 0.5,     𝑗 ൌ 1,2, … , 𝑛. 

For each 𝑋௝ define the events ൫𝑋ଵ௝ ൑ 0, 𝑋ଶ௝ ൑ 0൯ and ൫𝑋ଵ௝ ൒ 0, 𝑋ଶ௝ ൒ 0൯ as concordance events 

of the first and second kind, respectively, and define the events ൫𝑋ଵ௝ ൑ 0, 𝑋ଶ௝ ൒ 0൯ and ൫𝑋ଵ௝ ൒

0, 𝑋ଶ௝ ൑ 0൯ as discordance events of the first and second kind, respectively. Let 0 ൏ 𝛾௝ ൏ 1 

denote the probability of concordance of ൫𝑋ଵ௝, 𝑋ଶ௝൯. Finally, denote the conditional probability 

of concordance (discordance) of the first kind given concordance (discordance) by 𝜃௝ ൫𝜏௝൯ so that 

the null hypothesis can be expressed as 

𝐻଴: 𝜃௝ ൌ 𝜏௝ ൌ 0.5,     𝑗 ൌ 1,2, … , 𝑛. 

The charting statistic is given by 𝑇 ൌ ሺ4 𝐶⁄ ሻሺ𝐶ଵ െ 𝐶 2⁄ ሻଶ ൅ ሺ4 ሺ𝑛 െ 𝐶ሻ⁄ ሻሺ𝐷ଵ െ ሺ𝑛 െ 𝐶ሻ 2⁄ ሻଶ 

where 𝐶௜ ሺ𝐷௜ሻ denotes the number of concordances (discordances) of the 𝑖௧௛ kind, 𝑖 ൌ 1,2, and 

𝐶 ൌ 𝐶ଵ ൅ 𝐶ଶ and 𝐷 ൌ 𝐷ଵ ൅ 𝐷ଶ with 𝐶 ൅ 𝐷 ൌ 𝑛. The process is declared OOC (𝐻଴ is rejected) 

when 𝑇 ൐ 𝑈𝐶𝐿 with 𝑈𝐶𝐿 ൌ ଶ,ఈ
ଶ  and typically a search for assignable causes would be started. 

Das (2009) concludes that the chart outperforms the Hotelling 𝑇ଶ chart when the underlying 

process distribution is non-normal. 

Similarly, Ghute and Shirke (2012) proposed a multivariate nonparametric control 

charting scheme based on the bivariate SR test of Bennett (1964).  Let 𝑋௜ ൌ ሺ𝑋ଵ௜, 𝑋ଶ௜ሻ, 𝑖 ൌ

1,2, … , 𝑛 be a subgroup sample from some symmetric continuous bivariate distribution with 𝝁 

and  being the location vector and covariance matrix, respectively. The chart is for the 

parameter known case, so without any loss of generality assume 𝝁𝟎 ൌ ሺ0 0ሻ′ and 𝟎 ൌ

൬
1 𝜌
𝜌 1൰, with െ1 ൏ 𝜌 ൏ 1 and 𝝁𝟎 and 𝟎 are the known IC values of the process mean and 

correlation matrix, which means that the correlation coefficient 𝜌 must also be assumed known. 
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The interest is in monitoring the location, so we are interested in detecting shifts in 𝝁𝟎.  At each 

inspection point in time, a SR statistic is calculated for each variate in 𝑋௜ ൌ ሺ𝑋ଵ௜, 𝑋ଶ௜ሻ making 

use of 𝑛 measurements in a sample. Recall that for the 𝑗௧௛ variable, the SR statistic is  

 𝑇௝ ൌ ∑ 𝐶൫𝑋௝௜൯𝑅൫𝑋௝௜൯௡
௜ୀଵ    for    𝑗 ൌ 1,2  (22) 

where 𝐶ሺ𝐴ሻ ൌ 1, 0 if 𝐴 > 0, < 0,  𝑅൫𝑋௝௜൯ is the rank of ห𝑋௝௜ห among ห𝑋௝ଵห, ห𝑋௝ଶห, … . , ห𝑋௝௡ห and 𝑇ଵ 

and 𝑇ଶ are the two SR statistics corresponding to two variables in a sample of size 𝑛. Let 

𝐸൫𝑇௝|𝝁 ൌ 𝝁𝟎, 𝐈𝐂൯ ൌ 𝑣௝ for 𝑗 ൌ 1,2. Then the two SR statistics (𝑇ଵ and 𝑇ଶ) are combined into a 

quadratic form, which is the charting statistic 

 𝑊 ൌ ሺ𝑻 െ 𝒗ሻᇱ𝜷෡ି𝟏ሺ𝑻 െ 𝒗ሻ   (23) 

where 𝑻 ൌ ሺ𝑇ଵ, 𝑇ଶሻ′ is a 2 ൈ 1 column vector of coordinate-wise univariate SR statistics, 𝒗 ൌ

ሺ𝑣ଵ, 𝑣ଶሻ′ is a 2 ൈ 1 column vector and 𝜷෡ ൌ ൬
𝛽ଵଵ 𝛽ଵଶ
𝛽ଶଵ 𝛽ଶଶ

൰ is the variance-covariance matrix of 𝑻.    

As in the univariate case, for an IC process, the means are 𝑣ଵ ൌ 𝑣ଶ ൌ ௡ሺ௡ାଵሻ

ସ
, the 

variances are 𝛽ଵଵ ൌ 𝛽ଶଶ ൌ ௡ሺ௡ାଵሻሺଶ௡ାଵሻ

ଶସ
 and the covariances are 𝛽ଵଶ ൌ 𝛽ଶଵ ൌ

∑ ௦௚௡ሺ௑భ೔ሻ௦௚௡ሺ௑మ೔ሻோሺ௑భ೔ሻோሺ௑మ೔ሻ೙
೔సభ

ସ
 (see Dietz (1982)). The process is declared OOC when 𝑊 ൐ 𝑈𝐶𝐿 

with 𝑈𝐶𝐿 ൌ ଶ,ఈ
ଶ  where ଶ,ఈ

ଶ  is the upper 100𝛼 percentage point of the Chi-square distribution 

with 2 degrees of freedom and 𝛼 is the Type I error probability. 

 Clearly, both CUSUM and EWMA type charts based on the bivariate SN and SR test 

statistics can be considered. Li (2015) noted that most nonparametric multivariate charts need a 

pre-specified tuning parameter (𝑘 in the case of a CUSUM chart and  in the case of the EWMA 

chart), which requires a knowledge about the OOC distribution for implementation but, typically, 

the OOC distribution is unknown.  This is in fact also true for their univariate counterparts, both 

parametric and nonparametric.  Li (2015) proposed a nonparametric multivariate chart, that does 

not depend on a tuning parameter, using a hypothesis testing approach, based on Randles 

(2000)’s multivariate SN test. Dovoedo and Chakraborti (2017) noted that Randle’s test is 

distribution-free over the class of elliptically symmetric distributions and asymptotically 

distribution-free over the (larger) class of directionally symmetric class of distributions. The 

reader is referred to Randles (2000) for details about these classes of distributions. The 

directionally symmetric family contains distributions such as the multivariate normal and the 
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multivariate 𝑡 distributions, and certain skewed distributions.  First we give a brief overview of 

Randles (2000)’s multivariate SN test. Assume that ሼ𝑿ଵ, 𝑿ଶ, … , 𝑿௡ሽ is a random sample from a 

𝑝-dimensional continuous population with location . In order to test 𝐻଴:  ൌ ଴ against 𝐻௔:  ്

଴ let 𝑿௜
∗ ൌ 𝐴መ௫൫𝑿௜ െ ଴൯, 𝑖 ൌ 1,2, … , 𝑛 where 𝐴መ௫ is an upper triangular matrix of dimension 

𝑝 ൈ 𝑝 with positive diagonal elements and a 1 in the upper-left element and satisfies  

1
𝑛

෍ ൭
𝐴መ௫൫𝑿௜ െ ଴൯൫𝑿௜ െ ଴൯′𝐴መ௫

ᇱ

ฮ𝐴መ௫൫𝑿௜ െ ଴൯ฮ
ଶ ൱

௡

௜ୀଵ

ൌ
1
𝑝

𝐼௣ 

where ‖∙‖ and 𝐼௣ denote the Euclidean norm and the identity matrix of dimension 𝑝 ൈ 𝑝, 

respectively. Note that 𝐴መ௫൫𝑿௜ െ ଴൯ ฮ𝐴መ௫൫𝑿௜ െ ଴൯ฮൗ  gives the direction vector  of 𝑿௜
∗. Under 𝐻଴ 

the above transformation centers 𝑿௜
∗ at 0 and makes the direction vectors, 𝑉௜’s, approximately 

uniformly distributed on the 𝑝-dimensional unit sphere. Under 𝐻଴ the average 𝑉 ൌ ∑ 𝑉௜ 𝑛⁄௡
௜ୀଵ  

should be close to zero and under 𝐻௔ the 𝑉௜’s should cluster along the direction of 𝐴መ௫൫𝑿௜ െ ଴൯ 

(and  𝑽 will point approximately towards that direction as well). The test statistic (Randles 

(2000)) is given by 𝑄 ൌ 𝑛𝑝𝑽′𝑽 and 𝐻଴ is rejected for large values of 𝑄. Li (2015) uses a similar 

reasoning to test whether ሼ𝑋ఛ, … , 𝑋௧ሽ has a similar location as ሼ𝑌ଵ, … , 𝑌௠ሽ. Let 𝑌௜
∗ ൌ 𝐴መ௬ሺ𝑌௜ െ ෠௬ሻ, 

𝑖 ൌ 1, … , 𝑚, and let 𝑿௜
∗ ൌ 𝐴መ௬ሺ𝑿௜ െ ෠௬ሻ, 𝑖 ൌ 𝜏, … , 𝑡 where ቀ෠௬, 𝐴መ௬ቁ is the solution to 

1
𝑚

෍ ቌ
𝐴መ௬ሺ𝒀௜ െ ෠௬ሻ

ቛ𝐴መ௬ሺ𝒀௜ െ ෠௬ሻቛ
ଶቍ

௠

௜ୀଵ

ൌ 0 

1
𝑚

෍ ቌ
𝐴መ௬ ቀ𝒀௜ െ ෠௬ቁ ቀ𝒀𝒊 െ ෠௬ቁ ′𝐴መ௬

ᇱ

ቛ𝐴መ௬ ቀ𝒀௜ െ ෠௬ቁቛ
ଶ ቍ

௠

௜ୀଵ

ൌ
1
𝑝

𝐼௣ 

where 𝐴መ௬ is an upper triangular matrix of dimension 𝑝 ൈ 𝑝 with positive diagonal elements and a 

1 in the upper-left element. Similar to Randles (2000), the above transformation makes the 

direction vectors of 𝒀௜
∗ centred at 0 and approximately uniformly distributed on the 𝑝-

dimensional unit sphere. If ሼ𝑿𝝉, … , 𝑿𝒕ሽ and ሼ𝒀𝟏, … , 𝒀𝒎ሽ have the same distribution then the 

above transformation will also center the direction vectors of ሼ𝑿𝝉
∗, … , 𝑿𝒕

∗ሽ at 0 and make them 

approximately uniformly distributed on the 𝑝-dimensional unit sphere. If ሼ𝑿𝝉, … , 𝑿𝒕ሽ has a 

different location, say ௫, the direction vectors of ሼ𝑿𝝉
∗, … , 𝑿𝒕

∗ሽ will cluster along the direction of 
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𝐴መ௬ሺ௫ െ ෠௬ሻ. Define 𝑉௜ ൌ 𝑋௜
∗ ‖𝑋௜

∗‖⁄  then the test statistic is given by 𝑝ሺ𝑡 െ 𝜏 ൅ 1ሻ𝑉ఛ,௧
ᇱ

𝑉ఛ,௧ where 

𝑉ఛ,௧ ൌ ∑ 𝑉௜ ሺ𝑡 െ 𝜏 ൅ 1ሻ⁄௧
௜ୀఛ . The charting statistic is given by 

 𝑆௧ ൌ max
ଵஸఛஸ௧

𝑝ሺ𝑡 െ 𝜏 ൅ 1ሻ𝑽ఛ,௧
ᇱ

𝑽ఛ,௧  

and the process is declared OOC when 𝑆௧ ൐ 𝑈𝐶𝐿 and typically post signal diagnostics, i.e., a 

search for assignable causes would be started. Again, the UCL is found for a specified nominal 

ICARL. Li (2015) concludes that the chart outperforms its nonparametric competitors. Tables are 

provided for easy implementation.  Note again that the charting statistic is based on a suitable 

multivariate two-sample distribution-free test statistic and there is room for further research 

along this line. 

Dovoedo and Chakraborti (2017) conducted a study on the performance of multivariate 

nonparametric Phase II control charts in terms of robustness, under estimated parameters.  Such 

studies are important due to the inherent complexity of multivariate tests, particularly 

multivariate nonparametric tests.  The authors stated that “While a number of recent studies have 

examined the IC robustness question related to the size of the reference sample for both 

univariate and multivariate normal theory (parametric) charts, in this paper we study the effect of 

parameter estimation on the performance of the multivariate nonparametric SN EWMA 

(MSEWMA) chart” (of Zou and Tsung (2011)).  The MSEWMA chart is appealing for several 

reasons:  (i) It is nonparametric, thus much more IC robust than the MEWMA chart; (ii) It is 

affine-invariant and has a strictly distribution-free property over a large class of population 

distributions or models (distributions with elliptical directions).  That is, the IC run length 

distribution can attain or is always close to the nominal  one, when the same control limits 

designed for the multivariate normal distributions are used; (iii) when the process distribution is 

one from the elliptical direction class, the IC average run length can be computed quickly via a 

one-dimensional Markov chain model; (iv)  it is fast to implement with a similar computational 

effort to the MEWMA chart because only a multivariate median and the associated 

transformation matrix need to be specified (estimated) from the historical data before 

monitoring; and (v) it is also very efficient in detecting process shifts, especially small or 

moderate shifts when the process distribution is heavy tailed or skewed.  The ICARL robustness 

and the OOC shift detection performance are both examined.  Based on the results, it is seen that 

the required amount of the Phase I data can be very (perhaps impractically) high if one wants to 
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use the control limits given by Zou and Tsung1 for the known parameter case and maintain a 

nominal ICARL, which can limit the implementation of these useful charts in practice.  To 

remedy this situation, using simulations, the authors obtain the “corrected for estimation” control 

limits that achieve a desired nominal ICARL value when parameters are estimated for a given set 

of Phase I data.  This should be very interesting and useful to practitioners. The OOC 

performance of the MSEWMA chart with the correct control limits is also studied.  The use of 

the corrected control limits with specific amounts of available reference sample is recommended. 

Otherwise, the performance the MSEWMA chart may be seriously affected under parameter 

estimation.       

 

EWMA-type control charts in Case K 

Li, Zou, Wang and Huwang (2013) proposed a nonparametric EWMA-type multivariate 

control charting scheme for monitoring shape parameters. Their methodology adapts a spatial-

SN covariance matrix to online sequential monitoring by incorporating the EWMA procedure. 

The authors go into great detail about tests for shape parameters based on a spatial-SN 

covariance matrix. For brevity we omit the details here and simply give the charting statistic of 

their chart. The EWMA-type charting statistic is given by  

 𝝎𝒊 ൌ ሺ1 െ ሻ𝝎𝒊ି𝟏 ൅ 𝒗𝒊𝒗𝒊
ᇱ           𝝎𝒊 ൌ 𝐸ሺ𝒗𝒊𝒗𝒊

ᇱሻ  (24)  

where 0 ൏ 𝜆 ൑ 1 is the smoothing constant and 𝒗𝒊 is the unit vector, i.e. the standardized 𝐱𝒊 

observations. Thus, 𝒗𝒊 ൌ 𝑈൫𝐀଴ሺ𝐱𝒊 െ 𝜽଴ሻ൯ where  𝜽଴ is the specified multivariate center vector 

(affine-equivariant median) and 𝐀଴ is the associated transformation matrix. An OOC signal is 

given when 

 𝑄௜ ൌ ටଶି


∙ tr ቀ൫𝑝 ∙ 𝝎𝒊 െ 𝐈௣൯
ଶ

ቁ ൐ 𝐿 .  (25)  

The two design parameters, 𝜆 and 𝐿, are selected so that a nominal ICARL value is attained and 

this procedure is discussed in the EWMA-SN section in more detail. The authors conclude that 

their proposed chart is very efficient, especially for small to moderate shifts.  Further work 

should consider extending this chart to the parameter unknown case, which is a common 

practical situation. 
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Other Multivariate Nonparametric Charts 

Charts based on multiple testing  

Another interesting idea is to use the multiple testing (comparisons) approach.  Park and Jun 

(2015) proposed a multivariate nonparametric EWMA chart for monitoring the location based on 

a series of the most recent 𝑇ଶ statistics. The typical multivariate EWMA chart is given by 𝒁𝒊 ൌ

𝑳𝑿𝒊 ൅ ሺ𝑰 െ 𝑳ሻ𝒁𝒊ି𝟏 where recall that 𝑿𝒊 is the data vector with 𝒁𝟎 ൌ 𝟎 (a zero vector of order 𝑝) 

and 𝑳 ൌ 𝑑𝑖𝑎𝑔൫𝑙ଵ, … , 𝑙௣൯ representing a diagonal matrix of 𝑝 smoothing constants. Define 𝑇௜
ଶ ൌ

𝒁௜
ᇱ𝒁𝒊

ିଵ𝒁𝒊 where 𝒁𝒊
 denotes the variance-covariance matrix of 𝒁𝒊. If there is no a-prior 

information about the smoothing constants, then one idea is to set them all equal to 𝑙 so that the 

variance-covariance matrix simplifies to 𝒁𝒊
ൌ ቄቀ𝑙൫1 െ ሺ1 െ 𝑙ሻଶ௜൯ቁ 2 െ 𝑙⁄ ቅ, which, as 𝑖 

increases, reduces to 𝒁𝒊
ൌ ሼ𝑙 2 െ 𝑙⁄ ሽ. The authors proposed multiple testing of 𝑟 hypotheses at 

time 𝑖, namely: 

𝐻଴,௜
ሺ௜ሻ: 𝝁௜ ൌ 𝝁଴  vs  𝐻ଵ,௜

ሺ௜ሻ: 𝝁௜ ് 𝝁଴ 

𝐻଴,௜ିଵ
ሺ௜ሻ : 𝝁௜ିଵ ൌ 𝝁଴  vs  𝐻ଵ,௜ିଵ

ሺ௜ሻ : 𝝁௜ିଵ ് 𝝁଴ 

⋮  

𝐻଴,௜ି௥ାଵ
ሺ௜ሻ : 𝝁௜ି௥ାଵ ൌ 𝝁଴  vs  𝐻ଵ,௜ି௥ାଵ

ሺ௜ሻ : 𝝁௜ି௥ାଵ ് 𝝁଴ 

The process is declared OOC if any of the hypotheses are rejected. The BH-procedure (see 

Benjamini and Hochberg (1995)) is used to control the FDR of the abovementioned multiple 

testing as close to target level 𝑞 as possible. Then steps for the BH-EWMA scheme, at time 𝑖, 

using an 𝑟-span and a target level (𝑞) are as follows. First one needs to calculate the statistics 

𝑇௜
ଶ, … , 𝑇௜ି௥ାଵ

ଶ  corresponding to 𝐻଴,௜
ሺ௜ሻ, … , 𝐻଴,௜ି௥ାଵ

ሺ௜ሻ  and the corresponding 𝑝-values (𝑝௞). The 

authors state “A nonparametric density estimation based on the Parzen windows is adopted to 

approximate the distribution of the T-square statistics, from which the p-values are calculated.”  

The readers are referred to the paper for more details.  Sort the 𝑝-values in ascending order and 

let 𝐻ሺ௞ሻ be the null hypothesis corresponding to 𝑝ሺ௞ሻ; which is the 𝑘௧௛ ordered 𝑝-value. At the 

outset take 𝑘෠ ൌ 0 and then find 𝑘෠, the maximum value of 𝑘 such that  𝑝ሺ௞ሻ ൑ 𝑞௞ 𝑟⁄ . For 𝑘෠ non-

zero the hypotheses are rejected and the process is declared to be OOC. The authors perform 
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performance comparison via simulation in terms of the OOC and IC average run length 

according to various non-centrality parameters. They conclude by stating that the proposed BH-

EWMA chart outperforms the existing MEWMA chart.  Again, one needs to perform post signal 

diagnostic and this would need further research.   Note also that in the above formulation, 𝝁଴ is 

assumed known or given as in Case K.  Clearly, a question to be addressed is Case U, that is 

when 𝝁଴ is to be estimated. The application of p-values (monitoring based on p-values) may be 

an interesting area within the SPC literature. 

 
Change-point model based methods 

Holland and Hawkins (2014) proposed a Phase II nonparametric multivariate control 

chart for monitoring location. Their chart is based on an approximately distribution-free 

multivariate generalization of the Wilcoxon-Mann-Whitney test. They extended the work of 

Hawkins and Deng (2010), who developed a nonparametric univariate change-point analog 

based on the Mann-Whitney statistic, to the multivariate setting. The authors caution that 

although the underlying test statistic is approximately distribution-free, their procedure may not 

be suitable for some multivariate distributions with unusual dependence structures between 

vector components.  

 A change-point model for the univariate case was given earlier.  Now, for the multivariate 

setting, given a sample of 𝑝 ൈ 1 random vectors we have 

𝐱𝒊~ ൜
𝐹ሺ𝝁ሻ for 𝑖 ൌ 1,2, … , 𝜏

𝐹ሺ𝝁 ൅ 𝜹ሻ for 𝑖 ൌ 𝜏 ൅ 1, 𝜏 ൅ 2 …
 

where 𝜹 represents an arbitrary sustained shift in location. For 𝑝 ൌ 1 let 𝑟ሺ௜ሻ denote the rank of 

𝑥௜ amongst the observations ሼ𝑥ଵ, … , 𝑥௡ሽ and set 𝑅ሺ𝑥௜ሻ ൌ 2𝑟ሺ௜ሻ െ 𝑛 െ 1 in order to center the 

ranks. Then 𝑅ሺ𝑥௜ሻ ൌ ∑ 𝑠𝑖𝑔𝑛൫𝑥௜ െ 𝑥௝൯௡
௝ୀଵ  and the well-known Wilcoxon-Mann-Whitney test 

statistic, for the difference in location between two samples ሼ𝑥ଵ, … , 𝑥௞ሽ and ሼ𝑥௞ାଵ, … , 𝑥௡ሽ, is 

given by 𝑢௞ ൌ ∑ 𝑅ሺ𝑥௜ሻ௞
௜ୀଵ . Next, in order to outline a multivariate generalization of this test 

statistic, the 𝑠𝑖𝑔𝑛 function is exchanged by a kernel function, 𝐡ሺ𝐱, 𝐲ሻ ൌ െ𝐡ሺ𝐲, 𝐱ሻ, so that 

𝐡ሺ𝐱, 𝐱ሻ ൌ 0 and 𝐡ሺ𝐱, 𝐲ሻ represents a measure of difference between 𝐱 and 𝐲. Choi and Marden 

(1997) suggested making use of a directional rank test by means of the kernel function 𝐡ሺ𝐱, 𝐲ሻ ൌ
𝐱ି𝐲

‖𝐱ି𝐲‖
. Then define 𝐑௡ሺ𝐱𝒊ሻ ൌ ∑ 𝐡൫𝐱𝒊, 𝐱𝒋൯௡

௝ୀଵ  so that 𝐑௡ሺ𝐱𝒊ሻ denotes the directional rank of 𝐱𝒊 for 
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𝑖 ൌ 1,2, … , 𝑛. Next, the authors introduced notation for defining within group rank vectors as 

follows. For each possible change point, 𝑘 ∈ ሼ1,2, … , 𝑛 െ 1ሽ, let 𝐑௡,௞
∗ ሺ𝐱𝒊ሻ ൌ ∑ 𝐡൫𝐱𝒊, 𝐱𝒋൯௡

௝ୀ௞ାଵ  

and 𝐫௡
ሺ௞ሻ ൌ ଵ

௞
∑ 𝐑௡ሺ𝐱𝒊ሻ

௞
௜ୀଵ . The authors then continue with a detailed discussion on the pooled 

and unpooled sample covariance matrices; here we simply mention that directional rank statistic 

for testing for differences in location vector between ሼ𝑥ଵ, … , 𝑥௞ሽ and ሼ𝑥௞ାଵ, … , 𝑥௡ሽ is given by 

𝑟௞,௡ ൌ 𝐫௡
ሺ௞ሻᇱ

෡௞,௡
ିଵ

 𝐫௡
ሺ௞ሻ

 with ෡௞,௡
ିଵ

ൌ ሺሺ𝑛 െ 𝑘ሻ 𝑛𝑘⁄ ሻ෡௡
 

 and where ෡௡
 

 denotes the unpooled 

covariance matrix. The scheme proposed by Holland and Hawkins (2014) entails maximizing 

𝑟௞,௡ across possible change-point values, 𝑟୫ୟ୶,௖,௡ ൌ max
௖ழ௞ழ௡ି௖

 ൫𝑟௞,௡൯. Note that 𝑐 denotes the 

number of observations at the beginning and at the end of sequence that is not considered; see 

Holland and Hawkins (2014) for a detailed motivation of why the so-called quarantine constant, 

𝑐, was instigated. The process is declared OOC when 𝑟୫ୟ୶,௖,௡ ൐ ℎఈ,௣,௖,௡ and typically a search for 

assignable causes would be started. The authors concluded that their proposed scheme 

outperformed its parametric counterpart for small to moderate magnitudes of shift. 

 

Control charts using bootstrap 

 Determining the control limits of multivariate nonparametric charts is time consuming 

and complicated.  Phaladiganon, Kim, Chen, Baek and Park (2011) used a bootstrap approach, as 

opposed to kernel density estimation (KDE) in order to find the control limits for the multivariate 

𝑇ଶ charts when the assumption of normality doesn’t hold. The basis of bootstrapping is 

discussed in the univariate section of this paper. Here we simply give an outline of the 

bootstrapping technique in this case. Let 𝑇ଵ
ଶሺ௜ሻ, 𝑇ଶ

ଶሺ௜ሻ, … , 𝑇௡
ଶሺ௜ሻ be a set of 𝑛 𝑇ଶ values from the 𝑖௧௛ 

bootstrap sample, 𝑖 ൌ 1, … , 𝐵 (with 𝐵 typically being a large number), which are drawn 

randomly from the initial 𝑇ଶ statistics (with replacement). For each bootstrap sample the 

100ሺଵିఈሻ௧௛ percentile value is calculated with 𝛼 being a value specified by the practitioner 

beforehand. The control limit is determined by taking an average of the 𝐵 percentile values, say 

𝑇ଶ
ଵ଴଴ሺଵିఈሻ. The process is declared to be OOC if a charting statistic plots beyond 𝑇ଶ

ଵ଴଴ሺଵିఈሻ. 

The authors found that the bootstrap technique outperforms the traditional 𝑇ଶ chart in all cases 

and performed similarly to the KDE-based 𝑇ଶ chart. 
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Miscellaneous Applications 

As the realm of monitoring applications have grown and have become more pervasive in  

many spheres of life, data collection has become easier and quicker and computational resources 

have grown faster, several researchers have developed distribution-free control charts for 

monitoring big data and for monitoring higher dimensional process data.   We briefly mention a 

few of these here.  

Zhang, Tsung and Zou (2015) considered a method where making use of both past IC and 

OOC data, where the charting statistic and the control limits were computed using of support 

vector machines (SVMs) methodology. One issue with this approach is that the real-time 

(current) Phase II data is not included in the calculation of their control limits and the classifier is 

only trained once, based on a single data set, at the beginning of the monitoring process. Note 

that earlier, Deng, Runger and Tuv (2012) introduced a supervised learning approach which is 

based on constantly updating the classifier with real-time data. They referred to this approach as 

the RTC since it is based on real-time contrasts between the IC reference data and the real-time 

(current) data. RTC assigns one class label to the IC reference data and another class label to 

some available real-time data which converts the monitoring problem into a dynamic 

classification problem. The advantage in doing this is that, in the previous literature, a classifier 

is trained once based on a single data set at the beginning of monitoring process but in the RTC 

approach a classifier is retrained with each new observation and the statistic (such as the 

classification error rate) that is monitored is generated using the generalized likelihood-ratio 

principle. Although the RTC approach is useful and can be applied to a variety of monitoring 

problems, the typical problems with making use of a discrete charting statistic arises, i.e. that it 

might be less efficient in fault detection. He, Jiang and Deng (2016) and Wei, Huang, Jiang and 

Zhao (2016) proposed distance-based control charts based on support vector machines (SVMs) 

and kernel linear discriminant analysis (KLDA), respectively, in order to make the charting 

statistics continuous. Although these proposed charts outperformed the traditional RTC chart, 

they do not have the advantage of being able to be applied to various data types such as 

categorical data and missing data. In order to overcome this problem, Jang, Park and Baek 

(2017) proposed improved RTC charts making use of random forests with weighted voting. 

These improved charts outperformed the traditional RTC chart and was shown to be more 

effective than the RTC charts based on SVMS and KLDA. 
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D´avila, Runger and Tuv (2014) also make use of a supervised learning approach and  showed a 

practical application in public health surveillance which doesn’t involve a low dimensional data 

(which is usually the case application in public health surveillance) where 25 decision trees were 

used to monitor counts of a disease. Chen, Zi and Zou (2016) also showed a practical application 

of a semi-conductor manufacturing process which involved 591 variables and cautioned against 

the assumption that all 591 variables are normally distributed. 

Kang and Kim (2013) proposed a control chart that makes use of a k-means clustering 

analysis which systematically divides the data into clusters by minimizing within-group variation 

and by maximizing between-group variation. The charting statistic for this chart, 𝜏ሺ𝑥ሻ ൌ

𝑚𝑖𝑛௞ሺ𝑥 െ 𝜇௞ሻᇱ ∑ ሺ𝑥 െ 𝜇௞ሻିଵ
௞  where 𝑥 is the new observation that has not been classified into a 

cluster yet and 𝜇௞ and ∑  ௞ are the mean vector and the covariance matrix of the 𝑘௧௛ cluster, 

respectively. The number of clusters, 𝑘, should be pre-selected by the practitioner, although 

Kang and Kim (2013) showed that making use of different values for 𝑘 does not significantly 

change the result. A bootstrap method was used in order to find the control limit.  

When the joint distribution of multiple quality characteristics is unknown, Liang, Xiang 

and Pu (2016) have extended on the idea of incorporating the least absolute shrinkage and 

selection operator (LASSO) into the EWMA monitoring scheme (referred to as the LEWMA 

chart), which was proposed by Zou and Qui (2009), by developing a robust counterpart of it that 

has an affine-invariance property and is nonparametric under the elliptical distribution family in 

that the control limit can be obtained by making use of a standard multivariate normal 

distribution. Since a sign statistic is used, the chart is referred to as the SLEWMA chart. This 

chart, used for Phase II monitoring, is compared to the LEWMA chart and the multivariate 

direction sign EWMA chart (denoted MDSE), which was proposed by Z et al. (2013), and not 

only is the computation of the control limits for the SLEWMA much simpler than the other 

charts, but there are many cases where the proposed SLEWMA chart outperforms its 

competitors. Future research could include the modification of Liang et al. (2016)’s chart so that 

it can be used for Phase I data.  

 In general, multivariate control charting, particularly multivariate nonparametric control 

charting, remains an area open for more contributions.  There is need for more theoretical 

insights and practical recommendations.  For example, more studies are needed for many 

proposed charts, along the lines of Dovoedo and Chakraborti (2017), to understand the effects of 
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parameter estimation, amount of required data for nominal performance and perhaps considering 

how to adapt or modify the charts for a given amount of data.  Post signal diagnostics is also an 

important area of further research. There is also the need for case studies and detailed 

explanations of what seems like a complicated methodology. To all of these ends, above all, 

software development is urgently needed. 

 

Summary and Recommendations 

 NSPC charts provide a robust alternative for statistical process monitoring in practice 

when the form of the underlying distribution is unknown. The goal of this paper is to bring the 

review of nonparametric control charting techniques, of Chakraborti et al. (2001, 2007 and 

2011), forward to 2017, covering some of the major advances and contributions. In doing so, we 

found that, while a lot of progress has been made in the field of NSPC, it appears that NSPC has 

not been fully embraced in SPC. To this end, Woodall and Montgomery (2014) stated “Despite 

their advantages in reducing the distributional assumptions required to design control charts with 

specified in-control performance, it does not seem that nonparametric methods are gaining a 

foothold with practitioners. This could partially be due to a lack of available statistical software 

for implementing the methods, a lack of familiarity, and a lack of textbook coverage.  

Nevertheless, this research area remains active.”  To address these concerns, Chakraborti, Qiu 

and Mukherjee (2015), in the introduction to a special issue on Nonparametric Statistical Process 

Control Charts, that appeared in a recent issue of Quality and Engineering Reliability 

Engineering International, wrote, “Motivated by such observations, our aim has been to bring 

NSPC charts to the mainstream SPC arena, since we strongly feel that it has much to offer to 

both the SPC practitioner and the researcher. To reiterate, as stated in the “Call for Papers” for 

this special issue, “Traditional control charts require the assumption that the process distribution 

follows a parametric form (e.g. normal). In practice, however, this assumption may not hold, in 

other words, the process may not follow the pre-specified parametric distribution. In the 

literature, it has been well demonstrated that results from the traditional control charts using the 

pre-specified distribution in their design may not be reliable because their actual false alarm rates 

could be substantially larger or smaller than the nominal false alarm rate. A direct consequence 

of this could be that much labor and many resources are wasted, or that many defective products 

are manufactured without notice. Therefore, in cases when no parametric form of the process 
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distribution is available or when no parametric form is validated properly beforehand, control 

charts without requiring the specification of a parametric form for the process response 

distribution, or simply nonparametric (distribution-free) statistical process control (NSPC) 

charts, should be considered.”  

 

We feel that nonparametric statistics in general and nonparametric control charts in particular 

have much to offer to the quality practitioner. Thus the updated overview of the available 

literature will be of interest and value to a broad spectrum of readers. These charts can be 

beneficial when parametric model assumptions cannot be objectively justified. They have stable 

IC properties, are robust against outliers and their efficiency can be quite high. Further work in 

NSPC research and practice are encouraged and will be welcome. As we have noted in various 

places in the paper, there are a lot of open problems. Two major concerns are the effects of 

parameter estimation and examination of the reference sample size requirements. There has been 

very few work in this direction. It is generally agreed that nonparametric charts require more data 

but a systematic study will be valuable. From the practical side, nonparametric charts do not 

have a heavy computation burden and require a lot of extra computation compared to their 

parametric counterparts, but there is not much software available at the moment to apply all the 

control charts that are available. This would be an important area for future contributions. 

 

Available software 
 

Some software are now available in the area of nonparametric SPC. A vast majority of them is 

written in R. Most of these are focused on researchers and their own work, without much 

standardization, including notation and terminology. This limits their availability and 

accessibility to some degree. As a consequence, it is not easy for the interested users to apply 

nonparametric charts in routine SPC. In any case, we list some of these R packages below which 

can be downloaded from the CRAN archives. More work is necessary in this arena to make the 

full power of NSPC available to the users. 
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Name Brief description 
 

dfphase1 Phase I Control Charts (with Emphasis on Distribution-Free Methods) 
 
Statistical methods for retrospectively detecting changes in location and/or 
dispersion of univariate and multivariate variables. Data values are assumed to 
be independent, can be individual (one observation at each instant of time) or 
subgrouped (more than one observation at each instant of time). Control limits 
are computed, often using a permutation approach, so that a prescribed false 
alarm probability is guaranteed without making any parametric assumptions on 
the stable (in-control) distribution. 
 

changepoint.np Methods for Nonparametric Changepoint Detection 
 
another alternative for Phase I analysis - only univariate, only individual 
observations 
 
 

cpm change-point methods - parametric and nonparametric - both Phase I and Phase 
II 

NPMVCP nonparametric multivariate change point detection in Phase II 
Spcadjust implements a bootstrap based method to adjust monitoring schemes to take 

estimation error into account. Although the spcadjust is not for nonparametric 
charts specifically, they say that the package covers the most common setups of 
Shewhart, CUSUM and EWMA charts and that it is easy to add further charts

SPCModelNonpar
CenterScale 

updates (𝑋௧ െ 𝜇 െ ∆/2ሻ/𝜎 , no distributional assumptions 

SPCModelNonpar user defined updates, no distributional assumptions
qcr Allows to generate Shewhart-type charts and to obtain 

numerical results of interest for a process quality control 
(involving continuous, attribute or count data). 
This package provides basic functionality for univariable and multivariable 
quality control analysis, including: xbar, xbar-one, S, R, ewna, cusum, 
mewna, mcusum and T2 charts. Additionally have nonparametric 
control charts multivariate

mnspc  
Statistical process control for multivariate data that is not necessarily Gaussian 
distributed. A function is provided to categorize components of multivariate 
response vectors. Tools for setting up a CUSUM procedure for the transformed 
data are included. The CUSUM scheme can also be applied to the case when 
some (or all) of the multivariate response components are binary-categorical. 
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