
A GENERATION PERTURBATIVE HYPER-HEURISTIC FOR COMBINATORIAL

OPTIMIZATION PROBLEMS

by

George Mweshi

Submitted in fulfillment of the requirements for the degree

Master of Science (Computer Science)

in the

Department of Computer Science

Faculty of Engineering, Built Environment and Information Technology

UNIVERSITY OF PRETORIA

July 2020

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

ABSTRACT

A GENERATION PERTURBATIVE HYPER-HEURISTIC FOR COMBINATORIAL

OPTIMIZATION PROBLEMS

by

George Mweshi

Supervisor: Prof. Nelishia Pillay

Department: Computer Science

University: University of Pretoria

Degree: Master of Science (Computer Science)

Keywords: Grammatical Evolution, Hyper-heuristics, Examination Timetabling,

Vehicle Routing, Boolean Satisfiability.

Perturbative heuristics or move operators are problem dependent operators commonly used by search

techniques to solve computationally hard problems such as combinatorial optimization problems. These

operators are generally derived manually by problem domain experts but this process is extremely

challenging and time consuming. Hence, some initiatives aimed at automating the derivation process

using search methodologies such as hyper-heuristics have been proposed in recent years. However, most

of the proposed hyper-heuristic approaches generate new perturbative heuristics by recombining already

existing and human-derived perturbative heuristics or components with various move acceptance criteria

instead of generating the heuristics from scratch. As a result, these approaches cannot be easily applied

to other problem domains where the human-derived heuristics are not available. In addition, the few

hyper-heuristic approaches that have been proposed to generate perturbative heuristics from scratch

are either designed for a single problem domain or applicable only to specific types of problems such

as those that can be represented as graphs. The research presented in this dissertation addresses these

issues by proposing a novel approach that can be used to automatically generate perturbative heuristics

for any combinatorial optimization problem. In the proposed approach, perturbative heuristics are

defined in terms of a set of basic operations (e.g. move and swap) and components of the solution

(e.g. exam, period and room for the examination timetabling problem). Grammatical evolution, a

Department of Computer Science
University of Pretoria

i

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

well-known Evolutionary Algorithm, is used to combine the basic operations and components of the

solution into perturbative heuristics. The generality of the proposed approach is tested by applying it

to benchmark sets from three different problem domains, namely examination timetabling, vehicle

routing and Boolean satisfiability. In addition, the performance of the perturbative heuristics generated

by the proposed approach on the benchmark sets is compared to that of the commonly-used human-

derived perturbative heuristics as well as the perturbative heuristics generated by other hyper-heuristic

approaches in the literature. The experimental results show that the perturbative heuristics evolved

by the proposed approach, specifically the grammatical evolution extended approach, outperformed

the human-derived perturbative heuristics on all benchmark sets from the three problem domains.

When compared to existing hyper-heuristic approaches, the proposed approach obtained solutions that

were superior to those obtained by most hyper-heuristic approaches on the examination timetabling

problem and only slightly inferior to those obtained by the best performing hyper-heuristic approaches

on the vehicle routing and Boolean satisfiability problems. This performance of the proposed approach

can be attributed to the fact that the generated perturbative heuristics were applied as is with no

optimization as is commonly done with most hyper-heuristic approaches. Overall, the experimental

results demonstrated success in developing an approach that can be used to automatically generate

perturbative heuristics from scratch. Future work will consider incorporating optimization techniques

during problem solving as well as performing a fitness landscape analysis in order to further improve

the quality of solutions and have a better understanding of the proposed approach.

Department of Computer Science
University of Pretoria

ii

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

PLAGIARISM DECLARATION

I, George Mweshi (Student Number : 16394713), declare that

1. The research reported in this thesis, except where otherwise indicated, is my original research.

2. This thesis has not been submitted for any degree or examination at any other university.

3. This thesis does not contain other persons’ data, pictures, graphs or other information, unless

specifically acknowledged as being sourced from other persons.

4. This thesis does not contain any other persons’ writing, unless specifically acknowledged as

being sourced from other researchers. Where other written sources have been quoted, then:

(a) their words have been rewritten but the general information attributed to them has been

referenced;

(b) where their exact words have been used, their writing has been placed inside quotation

marks, and referenced.

5. Where I have reproduced a publication of which I am author, co-author or editor, I have indicated

in detail which part of the publication was actually written by myself alone and have fully

referenced such publications.

6. This thesis does not contain text, graphics or tables copied and pasted from the internet, unless

specifically acknowledged, and the source being detailed in the thesis and in the References

sections.

Department of Computer Science
University of Pretoria

iii

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

PUBLICATIONS

Details of the contributions to publications that form part and/or include research presented in this

thesis:

1. G. Mweshi and N. Pillay, “A Grammatical Evolution Approach for the Automated Generation

of Perturbative Heuristics,” in Proceedings of the IEEE Congress on Evolutionary Computation

(CEC 2019), Wellington, New Zealand, pp. 2643–2649, 2019.

2. G. Mweshi and N. Pillay, “An Improved Grammatical Evolution Approach for Generating

Perturbative Heuristics to solve Combinatorial Optimization Problems,” August 2020 Expert

Systems with Applications, DOI: 10.1016/j.eswa.2020.113853.

Department of Computer Science
University of Pretoria

iv

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

DEDICATION

To my beloved wife Doris for the remarkable patience, unwavering love and support during the course

of this research. And to my son Thando, who was born during the study period.

Department of Computer Science
University of Pretoria

v

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

ACKNOWLEDGEMENTS

I am greatly indebted to the following people and institutions for their contributions to this re-

search:

• Prof. Nelishia Pillay, who supervised this research, for her exceptional, insightful and profes-

sional guidance through out the journey. Her approachable demeanor made the consultative

meetings so much fun and less stressful even when my confidence and morale were low —a

great supervisor indeed;

• Mulungushi University for the financial support and for always making sure that the monies

were in on time despite the financial difficulties faced by the university;

• The Centre for High Performance Computing (CHPC) for providing the computational resources

on which to run the simulations for this research;

• Prof. Douglas Kunda, Dean, School of Science and Engineering Technology (SSET), Mulun-

gushi University, for pushing me to do my very best and constantly reminding me of the need to

finish the research in time;

• NICOG research group members for the wonderful discussions and valuable suggestions during

our group meetings.

Department of Computer Science
University of Pretoria

vi

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

LIST OF ABBREVIATIONS

CO Combinatorial Optimization

EAs Evolutionary Algorithms

GP Genetic Programming

GE Grammatical Evolution

RVD Random initialisation with valids and no duplicates

HH Hyper-Heuristics

llhs Low-level heuristics

SR Success rate

AF Average flips

IO Improving or equal only

AM All moves

SA Simulated annealing

Department of Computer Science
University of Pretoria

vii

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1

1.1 PURPOSE OF STUDY . 1

1.2 OBJECTIVES OF STUDY . 1

1.3 CONTRIBUTIONS . 2

1.4 LAYOUT OF DISSERTATION . 3

1.4.1 Chapter 2 - Combinatorial Optimization Problems 3

1.4.2 Chapter 3 - Genetic Programming . 3

1.4.3 Chapter 4 - Grammatical Evolution . 4

1.4.4 Chapter 5 - Hyper-heuristics . 4

1.4.5 Chapter 6 - Methodology . 4

1.4.6 Chapter 7 - Grammatical Evolution Baseline Approach 5

1.4.7 Chapter 8 - Grammatical Evolution Extended Approach 5

1.4.8 Chapter 9 - Results and Discussion . 5

1.4.9 Chapter 10 - Conclusion and Future Works 6

CHAPTER 2 COMBINATORIAL OPTIMIZATION PROBLEMS 7

2.1 INTRODUCTION . 7

2.2 OPTIMIZATION . 8

2.3 COMBINATORIAL OPTIMIZATION . 8

2.4 EXACT APPROACHES . 9

2.5 APPROXIMATION APPROACHES . 10

2.6 HEURISTIC APPROACHES . 10

2.6.1 Meta-Heuristics . 11

2.6.2 Hyper-Heuristics . 12

2.7 SUMMARY . 12

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 3 GENETIC PROGRAMMING . 14

3.1 INTRODUCTION . 14

3.2 GP ALGORITHM . 15

3.2.1 GP Preparatory Steps . 15

3.3 REPRESENTATION . 16

3.4 TERMINAL SET . 17

3.5 FUNCTION SET . 18

3.6 INITIAL POPULATION . 18

3.6.1 The Grow Method . 18

3.6.2 The Full Method . 20

3.6.3 The Ramped half-and half Method . 21

3.7 FITNESS EVALUATION . 22

3.8 SELECTION METHODS . 23

3.8.1 Fitness proportionate selection . 23

3.8.2 Tournament selection . 24

3.9 GENETIC OPERATORS . 25

3.9.1 Reproduction . 25

3.9.2 Crossover . 25

3.9.3 Mutation . 26

3.10 POPULATION REPLACEMENT . 27

3.11 GP CONTROL PARAMETERS . 28

3.12 TERMINATION CRITERIA . 29

3.13 SUMMARY . 29

CHAPTER 4 GRAMMATICAL EVOLUTION . 31

4.1 INTRODUCTION . 31

4.2 GE SYSTEM COMPONENTS . 32

4.2.1 BNF Grammar . 32

4.2.2 GE Search engine . 33

4.2.3 Mapper . 34

4.3 GE ALGORITHM . 36

4.3.1 Initial population . 37

4.3.2 Genotype-Phenotype Mapping . 38

Department of Computer Science
University of Pretoria

ix

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4.3.3 Fitness Evaluation . 38

4.3.4 Selection methods . 38

4.3.5 Genetic operators . 38

4.3.6 Population Replacement . 39

4.3.7 GE Control Parameters . 39

4.3.8 Termination criteria . 39

4.4 SUMMARY . 40

CHAPTER 5 HYPER-HEURISTICS . 41

5.1 INTRODUCTION . 41

5.2 DEFINITION . 42

5.3 COMPONENTS OF A TYPICAL HYPER-HEURISTIC 42

5.3.1 Low-level component . 42

5.3.2 High-level component . 43

5.4 CLASSIFICATION OF HYPER-HEURISTICS . 44

5.5 GENERATION PERTURBATIVE HYPER-HEURISTICS 46

5.5.1 Generation of Local Search Operators . 46

5.5.2 Generation of Meta-heuristics . 47

5.5.3 Generation of Algorithms . 48

5.6 SUMMARY . 48

CHAPTER 6 METHODOLOGY . 50

6.1 INTRODUCTION . 50

6.2 CRITICAL ANALYSIS OF LITERATURE SURVEY 50

6.3 RESEARCH METHODOLOGIES . 52

6.3.1 Proof by Demonstration . 53

6.3.2 Empiricism . 54

6.4 PROBLEM DOMAINS . 55

6.4.1 Examination timetabling problem . 55

6.4.2 Capacitated vehicle routing problem . 57

6.4.3 Boolean satisfiability problem . 59

6.5 INITIAL SOLUTIONS . 60

6.5.1 Examination timetabling problem . 61

6.5.2 Capacitated vehicle routing problem . 61

Department of Computer Science
University of Pretoria

x

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

6.5.3 Boolean satisfiability problem . 61

6.6 HUMAN-DERIVED HEURISTICS . 62

6.6.1 Examination timetabling problem . 62

6.6.2 Capacitated vehicle routing problem . 62

6.6.3 Boolean satisfiability problem . 63

6.7 EXISTING GENERATION PERTURBATIVE HYPER-HEURISTICS 63

6.7.1 Examination timetabling problem . 63

6.7.2 Capacitated vehicle routing problem . 64

6.7.3 Boolean satisfiability problem . 65

6.8 BASELINE AND EXTENDED APPROACHES . 65

6.9 PERFORMANCE MEASURES AND STATISTICAL TESTS 66

6.9.1 Generality . 66

6.9.2 Consistency . 66

6.9.3 Efficiency . 66

6.10 TECHNICAL SPECIFICATIONS . 67

6.11 SUMMARY . 67

CHAPTER 7 GRAMMATICAL EVOLUTION BASELINE APPROACH 69

7.1 INTRODUCTION . 69

7.2 OVERVIEW OF APPROACH . 69

7.3 BASIC BNF GRAMMAR . 70

7.3.1 Heuristic Components . 70

7.3.2 Grammar specification . 72

7.3.3 Perturbative heuristic . 74

7.4 GEBA . 75

7.4.1 Initial population generation . 77

7.4.2 Genotype-phenotype mapping . 77

7.4.3 Fitness evaluation . 78

7.4.4 Selection method . 78

7.4.5 Genetic operators . 78

7.4.6 Population Replacement . 78

7.4.7 GE Parameters . 78

7.4.8 Termination criteria . 79

Department of Computer Science
University of Pretoria

xi

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

7.5 SUMMARY . 79

CHAPTER 8 GRAMMATICAL EVOLUTION EXTENDED APPROACH 80

8.1 INTRODUCTION . 80

8.2 DIFFERENCES BETWEEN GEEA AND GEBA 80

8.3 BNF GRAMMAR . 81

8.3.1 Extended Grammar . 81

8.3.2 Acceptance criteria . 83

8.3.3 Basic operations . 84

8.3.4 Solution Components . 84

8.3.5 Information from Solution Space . 85

8.3.6 Relational and Conditional Operators . 85

8.3.7 Combination operators . 86

8.3.8 Perturbative heuristics . 87

8.4 GEEA . 89

8.4.1 Initial population generation . 89

8.4.2 Genotype-phenotype mapping . 90

8.4.3 Fitness evaluation . 90

8.4.4 Selection method . 90

8.4.5 Genetic operators . 90

8.4.6 Population Replacement . 91

8.4.7 GE Parameters . 91

8.4.8 Termination criteria . 91

8.5 SUMMARY . 91

CHAPTER 9 RESULTS AND DISCUSSION . 92

9.1 INTRODUCTION . 92

9.2 RESULTS OF THE GEBA . 92

9.2.1 Generated perturbative heuristic . 93

9.2.2 GEBA vs Human-derived heuristics . 99

9.2.3 GEBA vs Other Hyper-heuristics . 111

9.3 RESULTS OF THE GEEA . 121

9.3.1 Generated perturbative heuristics . 121

9.3.2 GEEA vs GEBA . 127

Department of Computer Science
University of Pretoria

xii

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

9.3.3 GEEA heuristics vs Human-derived heuristics 133

9.3.4 GEEA heuristics vs Other Hyper-heuristics 145

9.4 SUMMARY . 155

CHAPTER 10 CONCLUSION AND FUTURE WORK 157

10.1 INTRODUCTION . 157

10.2 RESULTS DISCUSSION FOR OBJECTIVES . 157

10.2.1 Results discussion for Objective One . 158

10.2.2 Results discussion for Objective Two . 159

10.2.3 Results discussion for Objective Three . 159

10.2.4 Results discussion for Objective Four . 160

10.3 CONCLUSION . 160

10.4 FUTURE WORK . 161

10.5 SUMMARY . 161

REFERENCES . 162

Department of Computer Science
University of Pretoria

xiii

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 1 Introduction

1.1 PURPOSE OF STUDY

Many real-world problems are inherently difficult to solve computationally due to their usually large

and heavily constrained search spaces. As a result, approximation and heuristic approaches, although

providing no guarantees on the quality of solutions they obtain, are used in practice since exact

techniques often fail to find good solutions in a reasonable amount of time. Perturbative heuristics or

move operators play a crucial role in improving the quality of solutions obtained by search techniques.

These operators are traditionally designed manually by domain experts through trial and error but

some initiatives aimed at automating the design process have since been proposed. Although these

initiatives have produced good results for the problem domains they have been applied to, the area of

automated generation of perturbative heuristics has generally not been well-researched and very few

works have actually been conducted in the field. The study presented in this dissertation adds to this

body of knowledge by proposing a novel approach for automating the design of perturbative heuristics

to solve combinatorial optimization problems. The aim of the research work is to develop a simple and

general approach that can be used to automatically generate good quality perturbative heuristics for any

combinatorial optimization problem domain without relying on pre-existing human-derived heuristics

or requiring significant domain expertise. The research can therefore be considered as forming part of

a larger initiative which aims to automate the design of machine learning and search techniques.

1.2 OBJECTIVES OF STUDY

To achieve the aim of this research work, an in-depth survey of the literature related to the automated

generation of perturbative heuristics using search techniques such as hyper-heuristics will be carried

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 1 INTRODUCTION

out. The focus on hyper-heuristics is motivated by the fact that these search techniques provide a more

general framework for developing cross domain algorithms which is one of the goals of this research

work. And since most hyper-heuristics, especially those concerned with generating heuristics, employ

either genetic programming (GP) or grammatical evolution (GE), the literature survey will also include

a detailed discussion on both GP and GE.

Based on the analysis of the literature, a new GE-based approach for generating perturbative heuristics

to solve combinatorial optimization problems in more than one problem domain is proposed in this

study. GE is selected over GP due to the simplicity with which it can represent heuristic components.

To test and evaluate the feasibility of the proposed approach, it is applied to benchmark sets from

three well-known problem domains, namely examination timetabling, vehicle routing and boolean

satisfiability. In addition, the performance of the perturbative heuristics generated by the proposed

approach on the benchmark sets is compared to that of the commonly used human-derived perturbative

heuristics and existing generation perturbative hyper-heuristics in the literature. The objectives of the

study can therefore be summarized as follows:

1. To develop an approach that automatically generates perturbative heuristics for more than one

problem domain using grammatical evolution;

2. To test the generality of the proposed approach on three different problem domains, namely

examination timetabling, vehicle routing and boolean satisfiability;

3. To compare the performance of the perturbative heuristics generated by the proposed approach

to that of the human-designed perturbative heuristics for the three problem domains;

4. To compare the performance of the perturbative heuristics generated by the proposed approach to

that of the perturbative heuristics generated by existing generation perturbative hyper-heuristics

in the literature.

1.3 CONTRIBUTIONS

The main contribution of the study presented in this dissertation is the new approach for automating

the generation of perturbative heuristics to solve combinatorial optimization problems. As mentioned

earlier, this domain has not been well-researched and therefore this research makes a significant

contribution to the field in this regard. In addition, this research:

Department of Computer Science
University of Pretoria

2

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 1 INTRODUCTION

1. Provides a thorough survey and analysis of the research works that have been conducted in the

domain of automated generation of perturbative heuristics using hyper-heuristics.

2. Is the first study to propose a general approach for generating perturbative heuristics to solve

any type of combinatorial optimization problem based on a thorough investigation of the current

literature.

1.4 LAYOUT OF DISSERTATION

The layout of this dissertation is as follows:

1.4.1 Chapter 2 - Combinatorial Optimization Problems

This chapter provides a brief introduction to optimization problems with the main focus being on

combinatorial optimization problems. A discussion on some of the approaches commonly used to

solve combinatorial optimization problems is also presented.

1.4.2 Chapter 3 - Genetic Programming

This chapter discusses genetic programming, an evolutionary algorithm that is widely used to get

computers to solve problems on their own. Genetic programming has been widely employed in many

heuristic generation approaches. Although many variants of genetic programming exist today, the

chapter nevertheless focuses on the original and easier to understand tree-based variant proposed by

Koza [1]. The chapter also discusses other aspects of genetic programming such as methods used

to generate the initial population of individuals, how to evaluate the goodness (i.e. fitness) of an

individual, methods used to select individuals to participate in reproduction and the genetic operators

that can be applied to the selected individuals. In addition, a discussion on the genetic programming

algorithm including the preparatory steps and control parameters required for a successful genetic

programming run is presented.

Department of Computer Science
University of Pretoria

3

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 1 INTRODUCTION

1.4.3 Chapter 4 - Grammatical Evolution

This chapter provides an overview of another popular evolutionary algorithm employed in many

heuristic generation approaches called grammatical evolution. Grammatical evolution is a grammar-

based variant of genetic programming. The chapter includes a discussion on the main components of

grammatical evolution, namely the grammar, search engine and a mapper. In addition, a discussion

on the overall grammatical evolution algorithm including the methods used to generate the initial

population of individuals, the criteria used to evaluate the goodness (i.e. fitness) of an individual, the

methods used to select individuals to participate in reproduction and the genetic operators that can be

applied to the selected individuals is presented.

1.4.4 Chapter 5 - Hyper-heuristics

This chapter discusses search techniques called hyper-heuristics. Hyper-heuristics are widely accepted

as more general search techniques than meta-heuristics such as evolutionary algorithms since they

usually obtain good results over a wider range of problems unlike meta-heuristics which obtain good

results only for one or a few problems, and poor results for others. The chapter firstly introduces the

definition of hyper-heuristics adopted in this research and thereafter discusses the four main classes

of hyper-heuristics. Special attention is however paid to generation perturbative hyper-heuristics as

this is the class of hyper-heuristics that is more relevant to this research. A survey and analysis of the

research works that have been conducted in the domain of generation perturbative hyper-heuristics is

also presented.

1.4.5 Chapter 6 - Methodology

The chapter describes the methodology adopted in order to achieve the objectives of this study. The

chapter first presents a critical analysis of the related literature which is followed by a discussion on

the research methodology adopted for the study. A brief discussion on the two proposed GE-based

approaches, namely the grammatical evolution baseline approach and the grammatical evolution

extended approach is also presented. In addition, a discussion on the problem domains the proposed

approaches will be applied to, how the initial solutions will be constructed and the performance

measures that will be considered when evaluating the approaches, is presented. The chapter ends with

Department of Computer Science
University of Pretoria

4

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 1 INTRODUCTION

a discussion on the technical specifications of both the software and hardware used to achieve the

objectives of the study.

1.4.6 Chapter 7 - Grammatical Evolution Baseline Approach

This chapter discusses the grammatical evolution baseline approach in more detail. The baseline

approach was developed to test the main idea behind the proposed GE approach. As a baseline

approach, it features a basic BNF grammar which incorporates minimal domain knowledge. A

discussion on all aspects of the approach including the basic BNF grammar is presented.

1.4.7 Chapter 8 - Grammatical Evolution Extended Approach

This chapter discusses the grammatical evolution extended approach which is considered as an im-

provement on the baseline approach. The extended approach was developed in order to improve the

quality of solutions obtained by the baseline approach. In the extended approach, the BNF grammar

has been redesigned to allow for the capturing of more domain specific knowledge from the search

space as well as the generation of a wider range of perturbative heuristics including decision rules. The

new grammar and all aspects of GE are discussed in detail.

1.4.8 Chapter 9 - Results and Discussion

This chapter presents and discusses the results obtained by the two approaches, namely the baseline

and extended approaches on benchmark sets from the examination timetabling, vehicle routing and

boolean satisfiability problem domains. The obatined results are further compared to those obtained by

the commonly used human-derived perturbative heuristics as well as existing generation perturbative

hyper-heuristics. Statistical test results to evaluate the significance of the obtained results are also

presented.

Department of Computer Science
University of Pretoria

5

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 1 INTRODUCTION

1.4.9 Chapter 10 - Conclusion and Future Works

Finally, this chapter provides a summary of the research findings, outcomes of each research objective

and presents some ideas on future works based on the research findings.

Department of Computer Science
University of Pretoria

6

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 2 Combinatorial Optimization Problems

2.1 INTRODUCTION

To optimize generally means to make the best decision so that the available resources are used

effectively [2]. Human beings encounter these decision problems every day. For example, one may ask:

what time should I wake up to make it on time for the lecture? This question may seem simple at first

but after some thought, one soon realises that there are certain interesting intricacies associated with

the question. It is also obvious at this point that the decision on the best time to wake up will depend

on what resources this person has and how much he knows. If the person knows what time the lecture

will start and also knows the quickest route to get there, then the best time to wake up can be estimated

very easily. Optimization problems conceptualize the notion of effectively using the resources and

knowledge one has available. As such, these problems are embroidered in almost all the decisions that

people make.

In applied computer science and more specifically in the area of problem solving, optimization plays

an imperative role in the design of efficient, robust machine learning and search techniques to solve

real-world problems. And since thousands of real-world problems can be formulated as abstract

combinatorial optimization problems, it is therefore important to understand what combinatorial

optimization problems are and why such a formulation makes it easier to solve these otherwise very

complex problems.

This chapter presents a brief overview of optimization problems within the context of problem solving

using search. Section 2.2 introduces optimization problems while section 2.3 discusses another

common type of optimization problems called combinatorial optimization problems. Sections 2.4-2.6

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 2 COMBINATORIAL OPTIMIZATION PROBLEMS

briefly discusses some of the techniques commonly used to solve combinatorial optimization problems.

The chapter summary is provided in section 2.7.

2.2 OPTIMIZATION

Optimization can be broadly defined as the art of selecting the best element from a given set of

alternatives [3]. The goodness of an element in the set is usually specified by an objective function. As

such, an optimization problem can be described as the problem of finding the smallest or largest value

of an objective function subject to a given set of constraints and the relationship between one or more

decision variables. The general mathematical form of an optimization problem as proposed by Boyd et

al. [4] is shown in Equation (2.1).

minimize / maximize
x

F(X)

subject to fi(x)≤ bi, i = 1, . . . ,m.

(2.1)

where X = (x1,xn) is a vector of problem variables, F(X) : Rn→ R is the objective function and

fi(x)≤ bi is the set of constraints

Optimization problems can be divided into two categories depending on the type of values the decision

variables encoded with. If the variables are encoded with real numbers, then the problem is called

continous. If they are encoded with discrete values, then the problem is called discrete. This research

is concerned with discrete optimization problems and within these types of problems, the focus is on

Combinatorial Optimization (CO) problems where mathematical techniques are applied in order to find

optimal solutions from a finite set of possible solutions. Usually, for such problems, the set of possible

solutions is not only defined by a set of restrictions, but is also too large for an exhaustive search. As

a result, it is not guaranteed to find an algorithm that can solve these problems in polynomial time.

Combinatorial optimization is discussed in more detail in the next section.

2.3 COMBINATORIAL OPTIMIZATION

The word "combinatorial" refers to an ordering or arrangement of items. Combinatorial optimization

therefore aims to find the best ordering or arrangement of the items from a finite or countably infinite

set of possible alternatives [5]. The ordering or arrangement maybe in the form of mathematical

Department of Computer Science
University of Pretoria

8

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 2 COMBINATORIAL OPTIMIZATION PROBLEMS

structures such as sets, permutations, integer numbers, graphs, matroids, or polytopes [6]. A formal

definition of a combinatorial optimization problem, as used in this research, is given in Definition 2.1

[6].

Definition 2.1 Given a set of instances I, where each instance x ∈ I is specified by a set S of all

feasible solutions for x (also called search space), constraints for x and an objective function f : S→

R, a combinatorial optmimization problem is the problem of finding a feasible solution s ∈ S such that

f(s) is minimum or maximum. This solution s is called the optimal solution of x.

Apart from their theoretical relevance [5], combinatorial optimization problems have a very important

practical impact due to their applicability to many real–world scenarios [7]. In fact, one of the biggest

challenges in solving real-world problems using search is the modelling of the problems. Reformulating

these usually complex problems as combinatorial optimization problems makes it easier to develop

more efficient and robust search algorithms that are able to exploit the combinatorial structures. For

example, many real-world problems such as routing, scheduling, timetabling, economic systems,

production planning and management can be formulated as combinatorial optimization problems

[8]. Examples of non combinatorial optimization problems include classification and regression

problems.

In principle, since the set of all feasible solutions S is finite or countably infinite, a combinatorial

optimization problem can in essence be exactly solved by any algorithm that basically enumerates

all the elements in S and outputs the element with the best objective function value [7]. However,

such an approach is very inefficient for solving real-world problems due to the fact that the number

of feasible solutions often grows exponentially with the size of the problem instance that needs to be

solved. As a result, a variety of approaches including exact, approximation and heuristic approaches

have been developed to solve combinatorial optimization problems [7]. The approaches are discussed

in Section 2.4, Section 2.5 and Section 2.6 respectively.

2.4 EXACT APPROACHES

As mentioned earlier, among the various approaches that have been developed to solve combinator-

ial optimization problems are exact or classical approaches [7]. Some examples of these classical

approaches include Branch and Bound [9] and Dynamic Programming [10]. The two approaches

Department of Computer Science
University of Pretoria

9

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 2 COMBINATORIAL OPTIMIZATION PROBLEMS

solve a problem by breaking it down into sub-problems and then combining the solutions to the

sub-problems. They are considered as divide-and-conquer approaches and the main difference between

them is in the way they divide a problem into its sub-problems. In the Branch and Bound algorithm,

the original problem is partitioned into independent sub-problems which are then solved and the best

feasible solution found along the search is returned as the optimal solution to the original problem.

In Dynamic Programming, the original problem is divided into sub-problems which are further di-

vided into non-independent sub-sub-problem such that each sub-sub-problem is solved only once.

Dynamic Programming also requires that the original problem has an optimal substructure in addition

to the problem being divided into non-independent sub-problems [7]. More information on the two

approaches can be found in [7].

2.5 APPROXIMATION APPROACHES

Approximation approaches, unlike exact approaches, aim to find a solution that provides some form

of approximation-guarantee on the quality of the solution found [7]. In most cases, the solution is

suboptimal but for many hard computational problems, approximation approaches provide the best

that can be done in terms of providing some guarantee on the quality of the solutions obtained. A

variety of approximation approaches have been developed in the literature [11], [12], [13]. And

some examples of these approaches are greedy algorithms, relaxation based algorithms, local search

algorithms, sequential algorithms and random algorithms [7].

2.6 HEURISTIC APPROACHES

Exact approaches often require exponential computation time in solving large problem instances and

as a consequence are not guaranteed to find an optimal solution in polynomial time since they take

too long to run. For this reason, they are not used in practice and heuristic algorithms are preferred.

A heuristic can be broadly described as a method designed for finding a satisfactory solution to a

problem more quickly when exact approaches are too slow. Although no general framework exists

with regard to the design of a good heuristic approach to guarantee finding good solutions for any

problem, most heuristic approaches are designed with the basic principles of avoiding getting trapped

at a local optima and exploiting promising areas in the solution space where good solutions are

likely to be found[7]. Based on these principles, a variety of heuristic search techniques including

Department of Computer Science
University of Pretoria

10

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 2 COMBINATORIAL OPTIMIZATION PROBLEMS

metaheuristics such as evolutionary algorithms [14], simulated annealing [15], scatter search [16],

GRASP (Greedy Randomized Adaptive Search Procedures) [17], great deluge [18], late acceptance

[19], ant colony optimization [20], variable neighborhood search [21] and iterated local search [22],

have been developed. These techniques have greatly improved our ability to obtain good solutions to

difficult combinatorial optimization problems.

2.6.1 Meta-Heuristics

Meta-heuristics are heuristic search techniques commonly applied to solve computationally hard

problems such as combinatorial optimization problems [7]. Meta-heuristics basically combine basic

heuristic approaches in some higher level framework with the aim of efficiently exploring the set of

potential or candidate solutions for a given combinatorial optimization problem. The main idea is

that by using some knowledge from the solution space, search algorithms can be able to explore (i.e.

visit new areas or regions in the solution space to look for better solutions) and exploit (i.e. search for

better solutions within the neighbourhood of the current solution) the solution space more efficiently.

Meta-heuristics are also able to escape being trapped in the local optima (i.e. the best solution to the

problem within a small neighborhood of possible solutions) by jumping to other regions within the

solution space where better solutions are likely to exist. Meta-heuristics can be broadly categorized into

single-solution (single-point) and population-based (multi-point) meta-heuristics. Population-based

meta-heuristics such as evolutionary algorithms [14], improve and maintain a collection (usually

referred to as a population) of potential solutions while single-point meta-heuristics such as tabu search

[23], maintain and improve a single solution.

One of the most interesting issues that immediately comes to mind when solving combinatorial

optimization problems is deciding which meta-heuristic to use. And since there is no particular way

of comparing all the available meta-heuristics with each other, this issue is quite difficult to address.

A simple approach would be the trial-and-error approach where all the meta-heuristics are tried, but

this not practical for many real-world applications. Another problem is that meta-heuristics, just like

heuristics, are manually designed and often fine tuned for a specific problem domain or instance. As

a result, they usually produce high quality solutions for some problem instances while performing

poorly on other instances including those of the same problem. To address these issues, more general

search methodologies such as hyper-heuristics (HHs) have been proposed.

Department of Computer Science
University of Pretoria

11

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 2 COMBINATORIAL OPTIMIZATION PROBLEMS

2.6.2 Hyper-Heuristics

As mentioned in Section 2.6.1, meta-heuristics although capable of obtaining high quality solutions for

some problem instances do not generalize very well across different problem instances or domains.

Furthermore, the need to redevelop the algorithms for every new problem instance is both time

consuming and challenging as it requires a deep understanding of the algorithm itself and the structure

of the problem instances. Hyper-heuristics attempt to address these issues in two main ways: by

exploring whether a suitable combination of existing heuristics can offset the weaknesses of any one

of them so that each heuristic is applied only when it performs well and by attempting to discover

new heuristics mostly through the use of some meta-heuristic. Consequently, hyper-heuristics are

distinguished between those which select heuristics to apply during problem solving (i.e. selection

hyper-heuristics) and those which generate new heuristics for solving problems (i.e. generation hyper-

heuristics). The heuristics themselves can either be constructive (i.e. heuristics that build a solution

from scratch and iteratively add elements to it to obtain feasible solution) or perturbative (i.e. heuristics

that iteratively modify an existing solution to improve its quality). Hyper-heuristics usually employ a

variety of techniques during the heuristic selection and heuristic generation processes [24].

In general, hyper-heuristics explore the space of heuristics instead of the solution space. The exploration

is done automatically using some meta-heuristic with no intervention by a domain expert. Hyper-

heuristics have been successfully applied to solve various combinatorial optimization problems such

as the 1-D bin packing, examination timetabling, boolean satisfiability and vehicle routing problems to

mention but a few.

2.7 SUMMARY

This chapter introduced combinatorial optimization problems and briefly discussed some of the methods

commonly used to solve these computationally hard problems. Combinatorial optimization problems

are optimization problems that aim to find the best or optimal element from a finite or countably

infinite set of alternatives. Many real-world problems can be represented as abstract combinatorial

optimization problems. These problems are often too hard and complex to solve in a reasonable

amount of time using exact methods and as a result heuristic techniques are used. Heuristic techniques

are usually designed manually by problem domain experts through trial and error. As a result, they

Department of Computer Science
University of Pretoria

12

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 2 COMBINATORIAL OPTIMIZATION PROBLEMS

perform very poorly in some cases. To address this issue, researchers proposed new search strategies

called meta-heuristics. These strategies improve upon the basic heuristic techniques by allowing for

the exploration as well as exploitation the solution search space. Meta-heuristics are however designed

and fine tuned for a specific problem which limits their generality. Hyper-heuristics on the other

hand search the heuristic space instead of the solution space and are therefore more general search

methodologies. Due to their generality, hyper-heuristics have since emerged as the preferred general

search methodology for solving combinatorial optimization problems.

This research is concerned with automating the generation of pertubative heuristics to solve combin-

atorial optimization problems. As such, the approach proposed in this research can be considered

as some form of a generation perturbative hyper-heuristic. And since most generation perturbative

hyper-heuristics in the literature employ evolutionary algorithms such as genetic programming (GP)

[1] and grammatical evolution (GE) [25], this thesis will also present a chapter on each of the two

evolutionary algorithms. The next chapter discusses GP in more detail.

Department of Computer Science
University of Pretoria

13

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 3 Genetic Programming

3.1 INTRODUCTION

The process of manually writing computer programs or algorithms to solve real-world problems is

extremely challenging and time consuming. For many years, computer scientists had been looking

for ways to automate this process. Fortunately, the recent developments in the fields of artificial

intelligence and machine learning have made it possible to develop techniques which allow computers

to solve problems on their own without necessarily telling them how to. One such technique is Genetic

programming (GP).

GP, first introduced by Cramer [26] and made popular by Koza in his publication entitled “Genetic

Programming: On the Programming of Computers by Natural Selection” [1], is a very powerful

evolutionary algorithm capable of automatically evolving computer programs to solve various problems.

It uses ideas from Darwin’s theory of evolution —"survival of the fittest", to iteratively transform a

population of random computer programs into a new generation of computer programs, often better

ones, by applying analogues to naturally occurring biological processes such as sexual recombination

(crossover), mutation and reproduction [27].

Although GP is a random and stochastic search technique which provides no guarantees that a solution

will always be found, it has been successfully used in many real-world application domains as a

computing technique to get computers to automatically solve problems without the need to explicitly

tell them how to. This chapter presents an overview of GP. In particular, it describes the basic

terminology and tools used to describe how potential solutions are represented, how initial populations

are generated and how the concepts of fitness, selection, reproduction, crossover and mutation are used

to generate new programs. The generational GP algorithm is also introduced and this is followed by

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 3 GENETIC PROGRAMMING

a discussion on the preparatory steps and control parameters required for a successful GP run. The

chapter ends with a summary of some of the main discussion points.

3.2 GP ALGORITHM

The generational GP algorithm is similar to other evolutionary algorithms. Firstly, a initial population

of individuals is randomly created. The quality (fitness) of each individual in the population is then

determined by assigning to the individual, using some well-defined function (see Section 3.7), a

fitness value which represents the degree to which the individual is able to solve the problem at hand.

Once all the individuals in the population have been assigned a fitness value, one or two individuals,

usually those with best fitness values, are the selected as parents to generate new offspring through the

application of genetic operators such as crossover, reproduction and mutation [28]. The pseudocode

for a GP algorithm is given in Algorithm 1

Algorithm 1 Pseudocode for a GP algorithm
1: Randomly generate a population of computer programs as solutions from the identified primitives

2: Determine the fitness of each computer program in the population by executing it on some test or

fitness cases.

3: while termination criterion not met do

4: Select one or two programs with the highest fitness using a selection method

5: Create new programs for the next generation by applying genetic operators to selected programs

6: Execute each new program to determine its fitness

7: Replace all the programs in the old population with the new programs

8: end while

9: return program with the highest fitness as the best solution

3.2.1 GP Preparatory Steps

In general, to solve a problem using GP, a user has to make several initial decisions which are commonly

referred to as preparatory steps. These steps include:

1. Identifying and specifying a set of terminals for creating computer programs,

Department of Computer Science
University of Pretoria

15

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 3 GENETIC PROGRAMMING

2. Identifying and specifying a set of functions for creating computer programs,

3. Identifying and specifying a fitness measure i.e. identifying a way of determining the quality of

the evolved computer program,

4. Specifying the parameters to use for controlling the GP run, and

5. Specifying the criterion for terminating the GP run

The next sections discuss some of the terminologies and tools used in GP. A more detailed discussion

on each of the preparatory steps is also presented.

3.3 REPRESENTATION

The various subclasses of evolutionary algorithms can be distinguished by how they represent the

individuals (or solutions) [14]. In GP, the individuals are computer programs and these were initially

represented as syntax trees when the technique was first introduced by Koza [1]. The current variants of

GP use a much broader set of more complex representations including graphs, grammars, probability

distributions and linear structures. This chapter however focuses on the initial tree-based representation

as it is easier to understand.

In the tree-based GP, the syntax trees are composed of nodes and links (arcs), where the nodes specify

which instructions to execute while the links specify the number of arguments (i.e. arity) for the

instructions. The nodes without children (leaf nodes) are called terminals and the nodes with children

are called functions or non terminals. The set of all the functions available to the GP system is called

the function set while the set of all the available terminals is called the terminal set. The function

and terminal sets collectively form what is usually referred to as primitive set of the GP system [1],

[29].

An example of a typical GP individual is depicted in Figure 3.1. In the example, a node is represented

by an ellipse and a link is represented by a straight line. The functions include the max, + and - nodes.

The max node is also the root node of the tree. Terminals include the x, y and z nodes. All the functions

in the example have an arity of two since they take two arguments. The terminals have an arity of

zero.

Department of Computer Science
University of Pretoria

16

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 3 GENETIC PROGRAMMING

Figure 3.1. A simple GP Individual

Another commonly used representation of GP individuals is the Lisp S-expression. In this repres-

entation, the prefix notation where functions come before their arguments is often preferred. For

example, the tree in Figure 3.1 can be equivalently represented as (max (+ x x) (- y z)) using the

S-expression.

3.4 TERMINAL SET

The terminal set can be described as a set of all the inputs that will be needed by the as-yet-undiscovered

computer program to solve, or approximately solve, the problem. In practice, the terminal set contains

variables which represent the inputs to the computer program, functions with an arity of zero which are

executed by the program and numerical constants which may be needed by the program. The terminal

set is problem dependent. For example, in a symbolic regression problem, the terminal set may consist

of all the attributes or variables in the input dataset and some numerical constants. In some problems,

ephemeral random constants may be desirable. These are random constants selected from some range

during the generation of the initial population. The purpose of this is to allow for constants to be

chosen from a range rather then including all the constants which will increase the search space.

Department of Computer Science
University of Pretoria

17

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 3 GENETIC PROGRAMMING

3.5 FUNCTION SET

The function set specifies all the functions that will be applied to the elements of the terminal set. These

functions may range from simple arithmetic functions {+, -, *, / }, trigonometric functions {cos, sin,

exp, log}, logical functions{ AND, OR, NOT}, decision structures such as if-then-else and iterative

structures such as loops, to more complex domain-specific functions. The decision on which functions

to use also depends on the problem one is trying to solve. For example, logical functions are usually

used for logical problems. In non-linear problems, non-linear functions may be preferred.

3.6 INITIAL POPULATION

GP, just like other population-based algorithms requires an initial population of candidate solutions

to be generated as the first step in solving a problem. For the tree-based GP, this step entails the

construction of syntactically valid trees. Usually, the trees are randomly constructed from the terminal

and function sets chosen for the problem. As the tree construction process is random, it is possible

to generate very large trees which may lead to problems such as overfitting and code bloat [30] —a

tendency of GP trees to grow in an uncontrolled manner. In an attempt to avoid these problems, there is

usually a limit on the maximum depth of the trees during the generation of the initial population.

The three methods commonly used to generate the initial population of candidate solutions in GP are

the grow, full and ramped half-and half methods [1].

3.6.1 The Grow Method

This method creates individuals one at a time. The individuals may be trees of any depth but not

more than the maximum tree depth limit. Algorithm 2 shows the grow method as a recursive function

which takes as an argument the depth of the node to be generated and returns the generated node. The

function is first called with depth 0. It then checks whether this depth is less than the maximum tree

depth. If it is, then a node is selected randomly from the function and terminal sets. Next the grow

method is called to generate the children of the node depending on whether the selected node is a

function or terminal. If the depth is equal to the maximum tree depth, the node is selected from the

Department of Computer Science
University of Pretoria

18

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 3 GENETIC PROGRAMMING

terminal set. Figure 3.2 shows an example of a tree with a maximum tree depth of 2 constructed using

the grow method .

Algorithm 2 node growMethod(depth)

if depth < maximum depth then

node← getRandom (Terminal or Function)

for i = 1 to number of children of node do

childi = growMethod(depth+1)

end for

else

node← getRandom(Terminal)

end if

Return node

The root node is created first at t = 1, followed by the first child x which is a terminal at t = 2. The

second child + which is a function is created at t = 3 but because of the depth limit set by the maximum

tree depth, the children of node + are forced to become terminals.

Figure 3.2. Construction of a syntax tree with a maximum depth of 2 using the grow method (t = time)

Department of Computer Science
University of Pretoria

19

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 3 GENETIC PROGRAMMING

The grow method provides no guarantee that the individuals will be of a certain depth (although they

will not be deeper than the maximum depth). However, it produces individuals of various shapes and

sizes which increases individual diversity in the population to some extent.

3.6.2 The Full Method

The full method is similar to the grow method but differs in that the non-terminal nodes are always

selected from the function set as long as the depth of the tree is not more than the maximum tree depth

allowed. If the depth is equal to the maximum tree depth, then the node is selected from the terminal

set. The full method guarantees that nodes from the terminal set will always be at a certain depth. The

algorithm for the full method is given in Algorithm 3. An example of a tree with a maximum tree

depth of 2 constructed using the full method is shown in Figure 3.3.

Algorithm 3 node fullMethod(depth)

if depth < maximum depth then

node← getRandom (Function)

for i = 1 to number of children of node do

childi = f ullMethod(depth+1)

end for

else

node← getRandom(Terminal)

end if

Return node

The root node− is created first at t = 1, followed by the first child cos which has one child at t = 2. The

child for the node cos is then created at t = 3. This is followed by the node + which has two children.

The children for nodes cos and + are then forced to become terminals because of the maximum tree

depth limit.

Department of Computer Science
University of Pretoria

20

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 3 GENETIC PROGRAMMING

Figure 3.3. Construction of a full tree with a maximum depth of 2 using the full method (t = time)

The full method ensures that the constructed trees are full and of the same size although the number of

nodes may not be the same. Due to this, there is less individual diversity in the population.

3.6.3 The Ramped half-and half Method

This method was introduced in order to increase the variation in the structure of the trees generated

since both the grow and full methods do not provide enough variation on their own. The ramped

haf-and-half combines both the grow and the full methods. In the method, the population is often

divided into D-1 groups, where D is the maximum tree depth. Each group then uses different maximum

tree depths (i.e. 2,....,D), to construct an equal number of trees at each depth with half of the trees

constructed using the grow method and the other half using the full method. This leads to increased

individual diversity in the population as the constructed trees have a variety of sizes and shapes.

Department of Computer Science
University of Pretoria

21

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 3 GENETIC PROGRAMMING

3.7 FITNESS EVALUATION

The terminal and function sets can be considered as indirectly defining the search space that the GP

algorithm will eventually explore since they specify the building blocks of all the computer programs

that can be constructed by combining the primitives in all possible ways. Fitness evaluation provides a

mechanism for specifying, to the GP algorithm, the regions of the search space which may contain

programs capable of solving the problem. In GP, the fitness of an individual refers to the degree to

which the individual solves the problem being addressed [31]. It is represented by a fitness value. The

fitness value is often calculated by means of some well-defined procedure that involves applying the

evolved individual to a set of test or fitness cases.

The fitness value of an individual may be expressed as a raw fitness, a standardized fitness, an adjusted

fitness and a normalized fitness. The raw fitness is the simplest and most natural way of calculating

how well a program solves a particular problem. For example, in the artificial ant problem, the raw

fitness would be the number of pieces of food that are actually picked up after the program is executed.

In this case, the better program would be the one with a larger fitness value. The standardized fitness

is an adjustment of the raw fitness such that lower fitness values are better. The adjusted fitness is a

reformulation of the standardized fitness such that the fitness values are reduced to a range of values

between 0 and 1. The normalized fitness is the ratio of the adjusted fitness of an individual to the sum

of the adjusted fitness of all the individuals in the population.

The decision on the procedure to use in order to measure the fitness of an individual is considered

the most difficult and also the most important one in GP. For many problems, fitness is measured in

terms of the error produced by the evolved program with respect to some supplied target outputs. In

general, the most appropriate procedure to use depends on the type of problem one is trying to solve.

For example, in examination timetabling problems [17], fitness is usually measured in terms of the

cost of soft constraints violated by the timetable. In vehicle routing problems [32], fitness is measured

in terms of the total cost of all the routes taken by the vehicles. In any case, the most important factor

to keep in mind when making a decision about the fitness measure to use is to understand that a good

fitness measure will help the GP algorithm to explore the solution search space more efficiently and

effectively. A bad fitness measure can easily make the GP algorithm to get trapped in a local optimum

solution and lose the power to discover good solutions.

Department of Computer Science
University of Pretoria

22

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 3 GENETIC PROGRAMMING

3.8 SELECTION METHODS

During evolution, three things can happen to an individual in the population: the genetic material

of the individual can be copied(as it is) to the next generation; or the individual can be selected for

regeneration and genetic operators can be applied to the individual; or the individual can be left out

completely from the next generation. In the case of the individual been selected for regeneration, a

variety of methods, commonly referred to as Selection methods are used to do this. The selection of

individuals for regeneration is a very important step in GP since it affects the pace and success of

the evolutionary process [31]. The whole evolutionary process would otherwise result in a random

search.

There are many selection methods but the most widely used in GP are fitness proportionate and

tournament selection methods. Both of these methods have a bias towards individuals with better

fitness i.e. individuals with good fitness have a higher probability of being selected than those with bad

fitness.

3.8.1 Fitness proportionate selection

This method selects an individual based on the proportion of the individuals fitness to that of the entire

population. In this way, fitter individuals have a higher chance of being selected more frequently than

the weaker ones. The probability of selecting an individual is calculated using the steps shown in

Algorithm 4

Department of Computer Science
University of Pretoria

23

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 3 GENETIC PROGRAMMING

Algorithm 4 Pseudocode for fitness proportionate selection
1: Reformulate the individuals raw fitness in terms of standardized fitness

2: Reformulate the standardized fitness in terms of adjusted fitness using Equation (3.1).

ad jFitness(i) =
1

1+ stdFitness(i)
(3.1)

where adjFitness(i) and stdFitness(i) are the adjusted fitness and the standardized fitness for

indivdual i respectively.

3: Calculate the normalized fitness using Equation (3.3).

normFitness(i) =
ad jFitness(i)

∑
N
k=1 ad jFitness(k)

(3.2)

where normFitness(i) represents the normalized fitness of indivdual i. N represents the number of

individuals in the population.

4: Probability of selection (ps) is:

ps(i) =
normFitness(i)

∑
N
k=1 normFitness(k)

(3.3)

3.8.2 Tournament selection

Tournament selection, shown in Algorithm 5, is the most widely used selection method in many GP

systems due to its simplicity and efficiency. It involves creating several tournaments where n randomly

selected individuals from the population compete against each other. The winner of each tournament,

usually the fittest individual in the tournament, is then selected for regeneration. The number of

individuals competing in each tournament is referred to as the tournament size. The tournament size

has a major influence on the selection pressure (i.e. the likelihood of an individual to participate in a

tournament). If the tournament size is large, the weaker individuals will have a smaller chance of getting

selected since they will have to compete with fitter individuals. On the other hand, if the tournament

size is small, then the weaker individuals may have a higher chance of getting selected which in turn

helps to preserve the diversity in the population. It is therefore vital that a good tournament size is

chosen since a large tournament size may lead to a high selection pressure. And a high selection

pressure may lead the GP algorithm to prematurely converge to a local optimum.

Algorithm 5 Tournament Selection
1: Randomly select n individuals from the population and conduct a tournament amongst them

2: Select the individual with the best fitness from the n individuals as winner of the tournament (and

ultimately as a parent)

Department of Computer Science
University of Pretoria

24

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 3 GENETIC PROGRAMMING

Tournament selection has several advantages over fitness proportionate selection. These include better

time complexity, no fitness scaling and low susceptibility to takeover by fitter individuals.

3.9 GENETIC OPERATORS

Genetic operators aim to create new individuals from existing ones [29]. This is usually done by

duplicating, combining or altering the genetic material of parent individuals. The underlying idea

behind genetic operators is that within the population some individuals may be able to solve some

parts of the problem and combining these useful parts may improve the overall performance of the

algorithm. Genetic operators therefore transform a population into a new population (hopefully of

better individuals) in an attempt to find a solution. In GP, genetic operators can be distinguished

between those that explore different areas of the program space (i.e. global search operators) and those

that exploit neighbouring areas of the program space (i.e. local search operators). Although a variety

of genetic operators exist, the most commonly used ones are the reproduction, crossover and mutation

operators.

3.9.1 Reproduction

The reproduction operator simply copies the selected individual (as it is) into the new population. It

is similar to having one individual surviving into the next generation. The main advantage of this

operator is that it allows the good genes of the individual to be carried over to the next generation

unaltered. This can have a significant effect on the overall time taken by the GP system to converge.

For example, Koza [1] allowed no more than 10% of the population to reproduce and this led to a 10%

reduction in the required time to assign a fitness to the individuals in the population since there was no

need to test the fitness of the reproduced individual as it was already known.

3.9.2 Crossover

The crossover operator introduces some variation in a population by producing new offspring consisting

of genetic material from two different parents. Selection methods are usually used to decide which

parents to select. In tree-based GP, subtree crossover is commonly used. In this form of crossover, a

Department of Computer Science
University of Pretoria

25

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 3 GENETIC PROGRAMMING

random node from each parent tree is selected as a crossover point. To create offspring, the subtree

which is rooted at the selected crossover point in the first parent is replaced with the subtree which is

rooted at the crossover point in the second parent and vice versa. The process is depicted in Figure 3.4.

During crossover, copies of the parents are used instead of the original individuals. In this way, the

genetic material of the parents can be freely used if they are selected more than once.

Figure 3.4. An example of subtree crossover with two generated offspring

Although crossover points are randomly selected, they are not usually selected with a uniform probab-

ility from the terminals and functions that make up the parent trees. For many GP trees, the average

branching factor is at least two and this means that the majority of the nodes will be terminals. There-

fore, using a uniform probability will lead to the exchange of very small amounts of genetic material

since there is likely to be a higher chance of performing simple crossover operations such as swapping

two terminals or small subtrees. To address this issue, Koza [1] proposed that functions should have a

higher chance of being selected than terminals. In fact, it was proposed in his initial work on GP that

functions should be chosen at least 90% of the time with terminals chosen the remaining 10%.

3.9.3 Mutation

The mutation operator is another genetic operator that introduces some variation in a population by

producing new offspring. Unlike the crossover operator, the mutation operator only requires one parent.

Department of Computer Science
University of Pretoria

26

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 3 GENETIC PROGRAMMING

In tree-based GP, the mutation operator generates new offspring by substituting a subtree rooted at a

randomly selected mutation point with another randomly generated subtree. This process is commonly

referred to as subtree mutation and it is depicted in Figure 3.5.

Figure 3.5. An example of subtree mutation

Another commonly used form of mutation is point mutation where a node is randomly selected and

the primitive stored in the node is simply replaced with another primitive of the same arity randomly

selected from the primitive set. If a primitive with the same arity does not exist in the primitive set then

nothing happens to the selected node although other nodes may still be mutated. Point mutation unlike

subtree mutation therefore allows for multiple nodes to be mutated in a single application [29].

The choice of which genetic operator to use is determined by some operator rate which is the probability

of applying the genetic operator. Typically, the crossover operator is applied with the highest probability.

The probability of applying the mutation and reproduction operator is often much smaller (usually

around the 1% region). The operator rates are discussed in more detail in Section 3.11.

3.10 POPULATION REPLACEMENT

A population replacement strategy defines which parents and children survive into the next generation.

There are two commonly used population replacement strategies in GP, namely, steady-state and

generational. In the steady state strategy, a specified number of individuals in the current population is

replaced by an equivalent number of offspring. The generational strategy on the other hand replaces

Department of Computer Science
University of Pretoria

27

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 3 GENETIC PROGRAMMING

the current population with a new one generated after the application of crossover, reproduction and

mutation operators. The generational strategy is much easier to implement than the steady state

approach mainly due to the fact that it has less computational overheads. For example, the steady state

approach may introduce computational overheads when determining and selecting the optimal number

of individuals to replace.

3.11 GP CONTROL PARAMETERS

A GP algorithm run requires the user to specify a number of parameters for controlling the run. These

parameters are often referred to as control parameters and some of the most important ones are:

• Size of population: The population size has a major impact on the success of a GP run. A

significantly large population size increases the chances of evolving a solution as it enables

greater exploration of the search space at every generation. Koza [1] proposes that the population

size should be at least 500 or more. In general the size of the population may differ depending

on how complex the problem is. Complex problems generally need larger population sizes.

• Number of generations: The number of generations also has an effect on the GP algorithm’s

ability to evolve a solution. Choosing a good value is important so that the algorithm converges

within specified the number of generations. Too small a value will result in the algorithm

stopping before it converges and will not reach an optimum. Too large a value will result in

unnecessary runtime as once the algorithm converges no matter how many more generations

it is run for there will be no change/improvement. The greater the number of generations, the

higher the chances that a solution will be evolved. A good value typically ranges from 10 to 50

generations since the most productive search happens in the earlier generations and a solution is

unlikely to be found in later generations if it is not found then [29].

• Initial population generation method : This parameter allows the GP user to set the initial

population generation method. As mentioned in Section 3.6, the three methods commonly used

to generate an initial population of individuals are the full, grow and ramped-half and half.

• Selection method : This parameter allows the GP user to specify the method for selecting

individuals to be used to generate new offspring. The two most popular methods in GP are

the fitness proportionate and tournament selection methods. However, most GP algorithms

Department of Computer Science
University of Pretoria

28

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 3 GENETIC PROGRAMMING

use tournament selection rather than fitness proportionate selection due to its simplicity and

efficiency. The tournament size mostly ranges from 2 to 10 individuals.

• Genetic operator rates : This parameter allows the GP researcher to specify the application rates

for the genetic operators. A decision however has to be made with regard to whether the GP

algorithm should have higher rates for exploring the search space (i.e. higher mutation rate) or

for exploiting promising areas of the search space (i.e. higher crossover rate). Although the

decision on the application rates to use is problem dependent, most GP algorithms have a higher

application rate for the crossover operator. In their work, Poli et al.[29] also propose that 80%

- 90% of the individuals in the population undergo crossover with the remaining individuals

undergoing either mutation or reproduction.

• Other parameters include the maximum depth for tree-based GP. This parameter helps to limit

the size of the trees generated by the GP system. This is particularly helpful in reducing the

amount of computational resources required to run a GP system.

3.12 TERMINATION CRITERIA

The final preparatory step is the specification of a termination criterion for the GP run. The most

commonly used termination criteria is the maximum number of generations specified for the GP run or

some problem-specific success rate (e.g. a 99% classification accuracy in the case of a classification

problem). It is also possible to specify a method for designating the result of a GP run after termination.

For most problems, the best individual found so far is usually designated as the result of the GP run

but one can also return additional data or individuals if necessary.

3.13 SUMMARY

This chapter presented an overview of GP, a very powerful evolutionary algorithm that is capable of

automatically evolving computer programs to solve various types of problems. The basic terminology

and tools used in GP were introduced. In particular, a discussion on the initial tree-based representation

in which GP individuals (computer programs) are represented as syntax trees composed of terminal and

function nodes was presented. Terminal nodes represent the inputs required by the computer programs

while the function nodes represent the functions (e.g. +, -, *) to be applied to the terminal nodes. The

set of all terminal and function nodes in a GP system is referred to as the terminal and function sets

Department of Computer Science
University of Pretoria

29

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 3 GENETIC PROGRAMMING

respectively. Both the function and terminal sets are problem dependent and once these have been

identified, the next step involves the generation of an initial population of syntactically valid computer

programs (individuals). The three commonly used methods for generating the initial population,

namely full, grow and ramped-half and half were discussed. In addition, a discussion on the concept

of fitness of a GP individual i.e. the degree to which the individual solves the problem being addressed,

was also presented. Furthermore, a discussion on the evolutionary process starting with an overview of

the two methods commonly used in GP to select individuals(parents) to participate in the production

of offspring for future generations and proceeding to discuss the genetic operators used to evolve a

population in an attempt to improve its fitness. The basic GP algorithm was also introduced and this

was followed by a discussion on the preparatory steps necessary for the GP algorithm run.

Despite some criticisms of GP [33], its flexibility has made it a very popular technique for solving

hard computational search problems. In fact, GP has proven to be effective for the generation of

hyper-heuristic approaches to solve various combinatorial optimization problems [34], [35]. However,

in recent years, another technique called grammatical evolution (GE), itself a variant of GP, has

become more popular especially in the domain of automated design of heuristics to solve combinatorial

optimization problems. The next chapter discusses grammatical evolution.

Department of Computer Science
University of Pretoria

30

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 4 Grammatical Evolution

4.1 INTRODUCTION

Since its introduction, GP has enjoyed widespread use and popularity as a technique for automatically

generating computer programs to solve hard computational problems. However, the initial version

of GP used Lisp as the target language and this became a challenge for many other researchers who

preferred to use other programming languages. In addition, the tree-based representation lacked a clear

genotype to phenotype distinction which is present in living organisms. Furthermore, as a random

searching technique, GP was found to be susceptible to redundant code, i.e. introns and bloat. As a

way of tackling these issues, O’Neil and Ryan [25] proposed grammatical evolution (GE), an algorithm

similar to GP, but one that allows for the evolution of complete computer programs in an arbitrary

programming language and also facilitates the genotype to phenotype mapping of individuals. Unlike

GP, the evolutionary process in GE is performed on variable-length binary strings rather than the actual

computer programs. A mapping process using a BNF grammar governs the conversion of the binary

string (genotype) into a syntactically correct computer program (phenotype). By enforcing a structure,

the size of the search space is also reduced.

This chapter presents an overview of GE. Firstly, it introduces and discusses the three main components

of a GE system, namely the grammar, search engine and a mapper. Thereafter, a discussion on the GE

algorithm and some of its applications is presented. The chapter ends with a summary of some of the

main discussion points.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 4 GRAMMATICAL EVOLUTION

4.2 GE SYSTEM COMPONENTS

A typical GE system is depicted in Figure 4.1 and is generally composed of three parts, namely the

grammar, search engine and mapper.

Figure 4.1. Components of a GE system

The next sections discusses the three parts in more detail.

4.2.1 BNF Grammar

As mentioned earlier, GE uses a grammar to convert the variable length binary string (or genotype) into

a computer program (or phenotype). In fact, almost all evolutionary algorithms that produce computer

programs implicitly or explicitly use grammars. Grammars describe how the variables (terminals)

and operators (functions) can be legally combined to generate executable programs. In this way,

grammars incorporate problem domain knowledge. GE uses a grammar represented in Backus Naur

Form (BNF). Formally, a BNF grammar is a four-tuple 〈 T, N, T, P 〉 where T represents the terminal

set, N is the function set or set of non-terminals, S is the start symbol and a member of N, P is the set

of production rules that map the elements of N to T. In some cases, more than one production rule can

be used within a particular N. For such cases, the production rules are separated by the ’|’ symbol. For

example, the syntax of arithmetic expressions consisting of numerals composed of simple addition,

subtraction, multiplication and division operators can be defined using the following BNF grammar: T

= {+,−,∗,/,0,1,2,3,4,5}, N = {expr,num,op,digit}, S = {expr} and P can be represented as shown

Department of Computer Science
University of Pretoria

32

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 4 GRAMMATICAL EVOLUTION

in Figure 4.2. In the example, the non-terminals 〈expr〉 and 〈num〉 have two production rules each

while 〈op〉 and 〈digit〉 have four and six production rules respectively. Production rules are indexed

from 0.

Figure 4.2. BNF grammar for arithmetic expressions

The design of a suitable grammar is often the first step taken when solving a problem using GE. This

step is also considered the most important as it defines the search space for the solution to the problem.

The definition of the grammar varies from one problem to the other.

4.2.2 GE Search engine

GE mostly uses a genetic algorithm (GA) [36], an evolutionary algorithm, as the search engine. Using

a GA, a potential solution to the problem at hand (i.e. a chromosome or genotype) is represented by a

1-D variable length string array where the gene in each chromosome is an 8-bit binary number called a

codon. An example of a genotype with 6 codons is depicted in Figure 4.3.

Figure 4.3. An example of a genotype with 6 codons

The mapper (discussed in the next section) uses the codon values to determine which production rule

to select when converting one or more non-terminals into one or more terminals. As is the case with

Department of Computer Science
University of Pretoria

33

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 4 GRAMMATICAL EVOLUTION

all evolutionary algorithms, GA first generates an initial random population of chromosomes. The

fitness (goodness) of each chromosome in the population is determined by executing its corresponding

program (phenotype). One or two best performing programs may then be selected as parents to evolve

new offspring (solutions) by applying the genetic operators (i.e. mutation, crossover and reproduction)

to the selected parents. At each generation, the mapper evaluates the evolved solutions by converting

them into their corresponding programs and then replacing the worst solutions in the population with

the evolved solutions that have better fitness. This process usually continues until some termination

criteria is met.

4.2.3 Mapper

The mapper is responsible for converting the genotype (chromosome) into a valid phenotype (computer

program). It takes as input the BNF grammar and the genotype [25]. The genotype to phenotype

conversion is performed using following mapping rule:

Mapping rule = (decimal value of codon) % (number of production rules for the non-terminal)

The mapping process starts by first converting the genotype’s binary codon values to their corresponding

decimal or integer values (see Figure 4.4) and then applying the mapping rule to convert all the non-

terminals in the grammar into terminals starting with the start symbol. An example of the mapping

process involving the genotype in Figure 4.3 and the BNF grammar in Figure 4.2 is depicted in

Table 4.1.

Figure 4.4. Conversion of binary codons to decimal values

Department of Computer Science
University of Pretoria

34

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 4 GRAMMATICAL EVOLUTION

Input Number of choices Mapping rule Result

〈expr〉 2 51 % 2 = 1 〈expr〉 〈op〉 〈expr〉

〈expr〉 〈op〉 〈expr〉 2 100 % 2 = 0 〈num〉 〈op〉 〈expr〉

〈num〉 〈op〉 〈expr〉 2 60 % 2 = 0 〈digit〉 〈op〉 〈expr〉

〈digit〉 〈op〉 〈expr〉 6 203 % 6 = 5 5 〈op〉 〈expr〉

5 〈op〉 〈expr〉 4 120 % 4 = 0 5 + 〈expr〉

5 + 〈expr〉 2 40 % 2 = 0 5 + 〈num〉

5 + 〈num〉 2 51 % 2 = 1 5 + 〈digit〉 〈num〉

5 + 〈digit〉 〈num〉 6 100 % 6 = 4 5 + 4 〈num〉

5 + 4 〈num〉 2 60 % 2 = 0 5 + 4 〈digit〉

5 + 4 〈digit〉 6 203 % 6 = 5 5 + 45

5 + 45

Table 4.1. Example of the genotype to phenotype mapping process

In the example above, the mapper first selects the start symbol 〈expr〉 and then reads the first decimal

codon value (51) of the genotype. According to the grammar, there are two production rules for 〈expr〉

and using the mapping rule i.e. 51 % 2 = 1, the second production rule (〈expr〉 〈op〉 〈expr〉) is selected.

But since this production rule still has non-terminals, the mapping rule is applied again starting with the

leftmost non-terminal in the production rule but using the next codon value. This process is repeated

until all the non-terminals in the grammar are converted to terminals. In the example (see Table 4.1),

the complete expression containing only terminals is 5 + 45. In cases where all codon values are

exhausted but the expression is still not complete (i.e. it still contains non-terminals), the codon values

are wrapped around, i.e. the mapper continues the convertion process but starts reading the codon

values again from left to right for a predefined number of iterations. If a complete expression cannot

be generated even after the wrapping process, then the genotype is assigned the lowest fitness value.

On the hand, if all the non-terminals in the grammar are replaced with terminals but not all codons

are used, the mapper simply ignores the unused codon values (usually referred to as introns). The

derivation tree for the mapping procss in Table 4.1 is shown in Figure 4.5.

Department of Computer Science
University of Pretoria

35

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 4 GRAMMATICAL EVOLUTION

Figure 4.5. Derivation tree for the 5 + 45 expression

4.3 GE ALGORITHM

The GE Algorithm, just like all evolutionary algorithms, requires that an initial population of potential

solutions be generated first. In GE, this step involves the generation of variable length binary strings

(genotypes or chromosomes) which are then mapped to their respective programs using a BNF grammar.

Each program is then executed and assigned a fitness value. Once the fitness of each program in the

population has been established, the evolution process may begin. The pseudocode for a GE algorithm

is shown in Algorithm 6.

Department of Computer Science
University of Pretoria

36

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 4 GRAMMATICAL EVOLUTION

Algorithm 6 Pseudocode for a GE algorithm
1: Generate an initial population of variable length binary strings

2: Map all the binary strings to their corresponding programs using a BNF grammar

3: Determine the fitness of each program in the population by executing it on some test or fitness

cases

4: while termination criterion not met do

5: Select programs with the best fitness for regeneration using the tournament selection method

6: Create new programs for the next generation by applying genetic operators to selected programs

7: Execute each new program to determine its fitness

8: Replace all the programs in the old population with the new programs

9: end while

10: return program with the best fitness in the population as the best solution

4.3.1 Initial population

As can been seen from Algorithm 6, the first step in a GE algorithm involves the initialisation of

a population of variable length binary strings (genotypes or chromosomes). The size of the initial

population and the variable length limits are specified by the user. The genotype’s codon values are

used to select the appropriate production rules from the grammar to build a derivation tree (phenotype).

The original GE algorithm used a random population initialization method but it was later discovered

that this method presented a number of problems. Firstly, the derivation trees, although using the same

genome lengths at the beginning of the evolution process, were not identical or did not have similar

sizes after evolution. Secondly, it was observed that more than 50% of the genotypes failed to map to

valid phenotypes in most cases. To overcome these problems, the Random initialisation with valids and

no duplicates (RVD) method was proposed [37]. In this initialisation method, a randomly generated

variable length genotype string is re-sampled if it does not map to a sequence of terminals only or if

it maps to an already mapped to valid expression. This brute-force approach, although simple was

found to be very effective according to the research on GE initialization methods conducted by Nicolau

[37].

Department of Computer Science
University of Pretoria

37

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 4 GRAMMATICAL EVOLUTION

4.3.2 Genotype-Phenotype Mapping

This step involves the mapping of the genotypes to their corresponding phenotypes (computer pro-

grams). The mapping process has been discussed in Section 4.2.3.

4.3.3 Fitness Evaluation

The process of determining the fitness of the computer programs is similar to the one discussed for

GP in Section 3.7. Basically, each computer program in the population is executed on a set of test or

fitness cases and assigned a fitness value based on its performance.

4.3.4 Selection methods

As with GP, the two methods commonly used to select parents to generate offspring in GE are fitness

proportionate and tournament selection. The methods are applied as discussed in Section 3.8.

4.3.5 Genetic operators

In GE, the most commonly applied genetic operators are crossover and mutation. One-point crossover

is also the most widely used form of the crossover operator. In this type of crossover, a crossover

point is randomly selected from the genotype of each of the two parents selected for reproduction. The

codons on the right of the crossover point are then swapped between the two parents resulting in two

children, with each child carrying some genetic material from both parents. Figure 4.6 illustrates the

one point crossover operation.

Department of Computer Science
University of Pretoria

38

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 4 GRAMMATICAL EVOLUTION

Figure 4.6. One-point Crossover

Bit flip mutation, where a random bit in a codon is flipped (i.e. 0 is replaced by 1 and vice versa), is

the most commonly used type of mutation operator.

4.3.6 Population Replacement

The population replacement strategies used in GP (see Section 3.10) can also be used in GE. These

strategies include the steady state and generational population replacement strategies.

4.3.7 GE Control Parameters

GE also requires some control parameters to be specified. The important ones are: size of the initial

population, selection method, maximum number of generations, genetic operator rates, population

replacement strategy, size of the chromosome and number of wraps (if allowed).

4.3.8 Termination criteria

The termination criteria used in GE are also similar to the ones discussed for GP in Section 3.12.

Typically, a GE run is terminated after a specified number of generations or when the desired solution

is obtained.

Department of Computer Science
University of Pretoria

39

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 4 GRAMMATICAL EVOLUTION

4.4 SUMMARY

This chapter presented an overview of GE, a grammar based variant of GP that is capable of evolving

computer programs in any programming language. Unlike GP, GE provides a clear method of distin-

guishing between a genotype (chromosome) and a phenotype (computer program). The evolutionary

process is also performed on a variable length binary string rather than the actual computer programs.

The general GE system comprises three procedures, namely the grammar, search engine and mapper.

The grammar describes how the variables (terminals) and operators (functions) can be legally combined

to generate executable programs. The search engine is concerned with evolving the best programs for

solving the problem at hand while the mapper is responsible for converting the genotype (chromosome)

into a valid phenotype (computer program). GE has been widely used as a technique for automatic

programming due to the simplicity with which it can represent computer programs as well as its ability

to avoid problems inert to GP such as code bloat. Code bloat refers to the production of unnecessarily

long, slow and wasteful programs.

GE, just like GP is a meta-heuristic. And as mentioned in Section 2.6.2, meta-heuristics although

capable of obtaining high quality solutions for some problem instances do not generalize very well

across different problem instances or domains. Furthermore, the need to redevelop the algorithms for

every new problem instance is both time consuming and challenging. Due to the above-mentioned

challenges, researchers have proposed the use of hyper-heuristics as more general search techniques

for solving computationally hard problems such as combinatorial optimization problems. The next

chapter discusses hyper-heuristics in more detail.

Department of Computer Science
University of Pretoria

40

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5 Hyper-heuristics

5.1 INTRODUCTION

As was mentioned in Chapter 1, combinatorial optimization problems are associated with large and

heavily constrained search spaces. Solving these problems usually requires the design of suitable

heuristics since exact techniques often fail to find good solutions in a reasonable amount of time. A

variety of heuristics as well as meta-heuristics have since been proposed in the literature but these

techniques do not generalize very well across multiple problem domains and therefore cannot be

used as general search techniques. Hyper-heuristics were introduced as a way of producing more

generalised solutions through the use of easier, cheaper and general algorithms than the problem

specific meta-heuristics [38]. To do this, hyper-heuristics were designed to explore the heuristic

space instead of the solution space during problem solving [39]. This was achieved by letting the

hyper-heuristics select the most appropriate heuristics to use from those available or by letting the

hyper-heuristics generate new heuristics from the components making up the heuristics.

Due to their generality and ability to find good solutions, hyper-heuristics have been successfully

applied to solve combinatorial optimization problems in various domains such as scheduling, routing,

resource management and production planning [40]. This chapter presents a general overview of

hyper-heuristics. It first introduces the definition of hyper-heuristics adopted in this research and

thereafter provides a discussion on the two abstract components of a typical hyper-heuristic, namely

the low and high level components. A discussion on the different classes of hyper-heuristics is also

presented but the chapter focuses more on hyper-heuristics which generate perturbative heuristics as

this is the class of hyper-heuristics that is relevant to this research.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5 HYPER-HEURISTICS

5.2 DEFINITION

There are many definitions of the term hyper-heuristic in the literature [41],[42]. Cowling et al. [41],

define hyper-heuristics as "heuristics to choose heuristics". In this context, a hyper-heuristic is con-

sidered as a high-level approach that can select, apply and generate the most appropriate heuristics from

a number of low-level problem specific heuristics at each decision point in the problem solving process

[43]. Burke et al. [42] defines hyper-heuristic as "an automated methodology for selecting or generat-

ing heuristics to solve hard computational search problems". From this definition, hyper-heuristics are

categorised in terms of the processes of heuristic selection and heuristic generation. Heuristic selection

is concerned with developing approaches for selecting or choosing existing low-level heuristics while

heuristic generation is concerned with developing approaches for generating new heuristics from

primitive components of existing low-level heuristics. This research adopts the definition proposed

by Burke et al. [42] as it captures the idea of developing methodologies for automating the design of

heuristics which is the main aim of the work presented in this dissertation.

The next section looks at a typical hyper-heuristic and discusses its main components.

5.3 COMPONENTS OF A TYPICAL HYPER-HEURISTIC

As mentioned earlier, the main aim of hyper-heuristics is to design general methodologies that can

be used to solve different types of hard computational search problems such as real-world problems.

In order to do this, a hyper-heuristic separates a low-level component containing problem domain

specific information such as problem-specific heuristics from a high-level component containing

some meta-heuristic to search through the space of available low-level heuristics [24]. The high-level

component is therefore problem independent. The next section discusses the low-level component in

more detail.

5.3.1 Low-level component

The low level component is problem specific and in addition to some problem specific heuristics, may

also contain additional information such as the problem objective function and problem representation

type [24]. The problem-specific heuristics found in the low-level component are typically referred to as

Department of Computer Science
University of Pretoria

42

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5 HYPER-HEURISTICS

low-level heuristics (llhs) [24]. These heuristics are categorised as either constructive or perturbative

[44].

Constructive heuristics build a solution from scratch and iteratively add elements to it to obtain a

feasible solution [43]. As such, constructive heuristics are mainly used to construct initial solutions

to problems. For example, constructive heuristics are used in examination timetabling problems to

construct initial feasible timetables (which are the solutions) based on a measure of how difficult it is

to schedule each examination. The largest degree, largest enrolment degree, saturation degree, largest

weighted degree and largest colour degree heuristics are some of the most commonly used constructive

heuristics for solving examination timetabling problems [45]. In general, constructive heuristics are

used in order to produce initial solutions that serve as better starting points for many optimization

techniques than the initial solutions constructed randomly.

Although constructive heuristics may produce better solutions than those constructed randomly, the

quality of these solutions is not always the best and in most cases can be improved further by making

some perturbations to the initial solutions. This is generally what perturbative heuristics do. In

a nutshell, perturbative heuristics iteratively modify an existing solution in an attempt to improve

its quality. The modifications may be simple operations such as moving, swapping, adding and

deleting some elements of the solution [46]. By iteratively making changes to an existing solution,

pertubative heuristics have the same effect as the move operators commonly used when exploring

the neighbourhood of a search point in local search. Hence, they are also known as local search

operators.

During problem solving, the low-level heuristics often compete with each other and most hyper-

heuristics employ techniques such as reinforcement learning, local search, case based reasoning and

genetic programming etc., to determine the most suitable low-level heuristic to apply at each decision

point when constructing or improving a solution [44].

5.3.2 High-level component

The high-level component usually comprises a search algorithm that searches the space of available

low-level heuristics [43]. It is problem independent and often contains minimal information such as

Department of Computer Science
University of Pretoria

43

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5 HYPER-HEURISTICS

the number of available low-level heuristics and other non problem domain statistical information

[40]. The high-level component can therefore be easily applied to different problem domains. In

addition, different meta-heuristics may be employed as search algorithms depending on whether the

hyper-heuristic aims to select or generate new heuristics [43]. GP and GE are the techniques commonly

employed by hyper-heuristics which aim to generate new heuristics [34],[40].

5.4 CLASSIFICATION OF HYPER-HEURISTICS

Based on the definition of hyper-heuristics adopted in Section 5.2 and the categories of low-level

heuristics established in Section 5.3.1, hyper-heuristics are typically classified as selection constructive,

selection perturbative, generation constructive and generation perturbative [24], [44].

Selection constructive hyper-heuristics, as the name suggests, intelligently select the most suitable

low-level constructive heuristic to apply at each decision point during the construction of an initial

solution [24]. As these are selection hyper-heuristics, they rely on pre-existing low-level constructive

heuristics and usually employ techniques such as case-based reasoning, adaptive methods, population-

based methods, local search methods and hybrid methods to perform the selection [24]. Selection

constructive hyper-heuristics have been applied to various combinatorial optimization problems such

as examination timetabling, course timetabling, 1-D bin packing and job shop scheduling problems

[44].

Selection perturbative hyper-heuristics on the other hand intelligently select the most suitable low-level

perturbative heuristic to apply at each decision point during the solution improvement process [24]. As

these are also selection hyper-heuristics, they rely on pre-existing low-level perturbative heuristics and

can perform either a single-point or multi-point search on the heuristic space [24]. A single-point search

hyper-heuristic consists of two components, a heuristic selection component and a move acceptance

component [44]. The heuristic selection component selects the low-level perturbative heuristics to

apply while the move acceptance component decides whether to accept or reject the moves made by

the selected low-level perturbative heuristics. Different techniques may be employed by the hyper-

heuristic for both heuristic selection and move acceptance [44]. Multi-point search hyper-heuristics

use population-based algorithms such as evolutionary algorithms to explore the heuristic space and

Department of Computer Science
University of Pretoria

44

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5 HYPER-HEURISTICS

therefore do not require separate components for heuristic selection and move acceptance since the

processes are done naturally.

Generation constructive hyper-heuristics generate new low-level constructive heuristics for a given

problem domain [24]. The new heuristics are mainly generated from either existing low-level heuristics

or primitive components of the existing low-level heuristics or problem domain characteristics mostly

using GP (see Chapter 3). The generated heuristics may be disposable or reusable [43]. Disposable

heuristics are used to solve a problem instance while reusable heuristics may be used to solve more

than one problem instance. Reusable heuristics are generated from a training set consisting of one or

more problem instances and a test set consisting of unseen problem instances.

Generation perturbative hyper-heuristics generate new low-level perturbative heuristics for a given

problem domain [24]. The new low-level perturbative heuristics are also generated from existing

low-level heuristics or primitive components of the existing low-level heuristics mostly using GP. In

addition, various move acceptance criteria may be used in combination with the existing low-level

heuristics to generate new heuristics [40].

Burke et al. [42] further distinguishes between a learning and a non-learning hyper-heuristic. In

the context of selection hyper-heuristics, a learning hyper-heuristic uses some feedback information

on the performance of each selected low-level heuristic from the search process. A non-learning

hyper-heuristic does not keep track of the previous heuristic performance. It simply selects a low-level

heuristic either uniformly at random or in a prefixed order from some existing pool. The learning can

be online or offline. In online learning, the hyper-heuristic learns while solving a problem instance and

as such it uses some task-dependent properties to determine the most suitable heuristic to apply. In

offline learning, the hyper-heuristic gathers knowledge from a set of training instances and the trained

hyper-heuristic is then expected to solve other unseen problem instances. The notion of online and

offline learning can also be extended to generation hyper-heuristics. In this context online and offline

learning hyper-heuristics are analogous to disposable and reusable hyper-heuristics respectively.

Other categories of hyper-heuristics include hybrid methodologies that either combine constructive

with perturbative heuristics or heuristic selection with heuristic generation [24].

As this research is concerned with generating perturbative heuristics to solve combinatorial optimization

Department of Computer Science
University of Pretoria

45

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5 HYPER-HEURISTICS

problems, the rest of the discussion in this chapter will be limited to generation perturbative hyper-

heuristics.

5.5 GENERATION PERTURBATIVE HYPER-HEURISTICS

Perturbative heuristics, as mentioned in Section 5.3.1, play a crucial role in improving the quality

of solutions obtained by constructive heuristics. For most problems, these heuristics are designed

manually by domain experts who mostly rely on experience and intuition. This manual design process

is however very challenging and time consuming as it requires a deep understanding of the problem

domain. Hence, some initiatives have been proposed by researchers with the ultimate aim of automating

the heuristic design process and thereby helping to reduce the burden on human experts. Furthermore,

automating the design process is likely to lead to the discovery of new heuristics that human experts

would otherwise not be able to think of.

Hyper-heuristics have been used to generate perturbative heuristics to solve various problems [34], [35],

[47], [40]. These hyper-heuristics commonly referred to as generation perturbative hyper-heuristics

employ either GP or GE to evolve the new perturbative heuristics. This is usually done by combining

pre-existing low-level perturbative heuristics or primitive components of the low-level perturbative

heuristics with conditional branching operators and iterative constructs [44]. The various types of

low-level perturbative heuristics that have been generated by these hyper-heuristics include local search

operators, meta-heuristics and algorithms [44].

5.5.1 Generation of Local Search Operators

Local search operators are operators which attempt to improve the quality of a candidate solution

by iteratively looking for better solutions, within its direct neighbourhood, to replace it [48]. The

neighbourhood of a candidate solution refers to the set of solutions that can be generated by making

small changes (or perturbations) to the candidate solution such as moving, swapping, adding and

deleting some elements of the solution. Local search operators have largely been evolved using GP or

its variations.

Department of Computer Science
University of Pretoria

46

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5 HYPER-HEURISTICS

Among the earlier works to generate local search operators was the study conducted by Fukunaga [35].

In the study, GP was used to generate local search operators for solving the Boolean satisfiability (SAT)

problem using components of existing and well-known human-designed perturbative heuristics such as

Novelty, WALKSAT and GSAT. The generated operators outperformed the state-of-the-art algorithms

at the time. In a similar study, Bader-el-den and Poli [49], used a grammar-based strongly typed GP to

generate local search operators for solving 3-SAT problems. The grammar was used to specify how

the components of existing human-designed SAT perturbative heuristics (i.e. GSAT, HSAT, GWSAT,

and WalkSAT) should be combined. The generated operators obtained solutions that were on par with

the best SAT solvers.

Apart from GP, GE has also been used to generate local search operators. For example, Burke et

al. [50] used GE to generate local search operators for solving the 1-D bin packing problem. The

generated operators were mainly ruin (where some pieces were removed from the solution) and

recreate (the earlier removed pieces were repacked with a faster constructive heuristic) operators

which produced good results for some problem instances. Sabar et al. [40] also used GE to generate

local search operators for solving the examination timetabling and vehicle routing problems. In the

study, various human-designed perturbative heuristics (referred to as neighborhood structures in the

study) were combined with different move acceptance criteria such as improving only moves(IM),

all moves (AM), simulated annealing (SA), exponential monte carlo (EMC), great deluge (GD) and

naive acceptance (NA). An adaptive memory mechanism was used to maintain a diverse population

of solutions which was regularly updated during the heuristic generation process. The generated

operators obtained solutions that were either on par or better than those obtained by the state-of-the-art

techniques for most of the problem instances in the two problem domains. Another study by Stone et

al. [38] used GE to generate local search operators for the multi-dimensional knapsack and travelling

salesman problems. The approach in the study was however only applicable to problems that could be

represented as a graph. Nevertheless, the evolved operators obtained good solutions for some problem

instances in the two problem domains.

5.5.2 Generation of Meta-heuristics

Apart from generating local search operators, hyper-heuristics have also been used to evolve meta-

heuristics. For example, Keller and Poli [47] used linear GP to generate meta-heuristics for solving

Department of Computer Science
University of Pretoria

47

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5 HYPER-HEURISTICS

the travelling salesman problem. In the study, the meta-heuristics were evolved from meta-heuristic

components and pre-existing human-derived low-level perturbative heuristics for the problem domain.

A grammar was used to specify the syntax of valid meta-heuristics and it incorporated conditional

branching constructs (e.g. IF2-CHANGE) as well as iterative constructs (e.g. REPEAT-UNTIL-

IMPROVEMENT). The evolved meta-heuristics performed better than the hill-climbing algorithm for

one of the problem instances.

5.5.3 Generation of Algorithms

The other type of perturbative heuristics that have been evolved by hyper-heuristics are algorithms.

In particular, algorithms have been evolved to solve the travelling salesman and automatic clustering

problems [51]. The research in this domain have mainly employed GP to evolve algorithms from

problem domain specific terminals and standard algorithm constructs such as conditional branching

constructs, iterative constructs (while loops), if-then-else statements and logical operators.

In general, generation perturbative hyper-heuristics have been very successful in generating perturbative

heuristics to solve various computationally hard problems such as combinatorial optimization problems.

Despite this success, the domain has not been as well-research and very few works have actually

been conducted in the area. In fact, the literature shows that the majority of the research effort in

hyper-heuristics has been focussed on the selection and generation of constructive heuristics rather than

perturbative heuristics. A detailed critical analysis of the literature is presented in Chapter 6.

5.6 SUMMARY

The chapter presented an overview of hyper-heuristics, a more general methodology for solving

combinatorial optimization problems. Hyper-heuristics were defined as " automated methodologies

for selecting or generating heuristics to solve hard computational search problems". In a typical

hyper-heuristic, the low-level component comprising domain specific low-level heuristics (and other

domain specific information) is separated from a high-level component comprising a search algorithm

which performs a search on the space of low-level heuristics. The low-level heuristics may be

constructive (i.e. heuristics that build a solution from scratch and iteratively add elements to it to

obtain feasible solution) or perturbative (i.e. heuristics that iteratively modify an existing solution

Department of Computer Science
University of Pretoria

48

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 5 HYPER-HEURISTICS

to improve its quality). Hyper-heuristics can be generally classified into four main classes, namely

selection constructive, selection perturbative, generation constructive and generation perturbative

hyper-heuristics depending on whether they select or generate either constructive or perturbative

heuristics. In most cases, generation perturbative hyper-heuristics employ either GP or GE to generate

new low-level perturbative heuristics to solve combinatorial optimization problems. The various

types of low-level perturbative heuristics that have been generated include local search operators,

meta-heuristics and algorithms.

The next chapter presents a critical analysis of the literature discussed so far and also introduces the

methodology used to met the objectives outlined in Chapter 1.

Department of Computer Science
University of Pretoria

49

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 6 Methodology

6.1 INTRODUCTION

This chapter discusses the research methodology used to meet the objectives outlined in Chapter 1

of this dissertation. Section 6.2 presents a critical analysis of the related work in the literature and

provides reasons for undertaking this research. Section 6.3 discusses the research methodologies that

were adopted for the study while section 6.4 discusses the problem domains the proposed approach

was evaluated on. The performance measures used to evaluate the approach are discussed in section

6.5 and the technical specifications of both the software and hardware used in the study are presented

in section 6.6. The chapter summary is provided in section 6.7.

6.2 CRITICAL ANALYSIS OF LITERATURE SURVEY

From the literature survey on hyper-heuristics presented in Chapter 5, it can be observed that generation

hyper-heuristics mostly employ GP or GE to generate heuristics. Although these hyper-heuristics

have been successfully used to generate good quality heuristics for solving various combinatorial

optimization problems (e.g. 1-D bin packing, Boolean satisfiability (SAT), vehicle routing, examination

timetabling and travelling salesman problems), the following general observations can be made about

generation hyper-heuristics.

• The vast majority of the research effort in the domain of generation hyper-heuristics has been

directed towards the development of approaches that generate constructive heuristics rather

than those that generate perturbative ones. There has been few works in the area of generation

perturbative hyper-heuristics.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 6 METHODOLOGY

• Most of the proposed generation perturbative hyper-heuristics rely on human-derived low-level

heuristics (or primitive heuristic components) to generate new perturbative heuristics. This

restricts their applicability to problem domains where the human-derived heuristics (or primitive

heuristic components) may not be available.

• The few generation perturbative hyper-heuristics that have been proposed to generate perturb-

ative heuristics from scratch either impose special restrictions on problem representation (e.g.

problems must be represented as graphs) or are tailored to a single problem domain (e.g. 1-D bin

packing problem). This raises the question as to what extent these hyper-heuristics generalise to

other problem domains.

Motivated by the observations above, this research proposes a new approach for automating the

generation of perturbative heuristics. The proposed approach will take several heuristic components

(i.e. basic operations and components of the solution) as input and will automatically generate

perturbative heuristics by selecting the most suitable combination of the heuristic components using

GE. GE is chosen over GP due to the simplicity with which it can represent heuristic components as

well as its ability to tackle the problem of code bloat usually encountered in traditional GP. The main

differences between the proposed approach and other generation perturbative hyper-heuristics in the

literature are:

1. The proposed approach will generate new problem specific perturbative heuristics from scratch.

It will not rely on any existing human-derived low-level heuristics (or heuristic components) to

do so.

2. The proposed approach will not impose any special restrictions on how the problem should be

represented. The approach will instead focus on identifying and using the components of the

solution. It will not matter how the problem is represented.

3. The proposed approach will not be tailored to a single domain. It will be possible to apply

the same approach to several problem domains. The system user will only need to specify the

solution components for the new problem.

4. The proposed approach will be easy to extend and customise so that a wider range of perturbative

heuristics can be generated. For example, it will be possible to specifically tailor the approach

to a single domain in order to generate more problem domain specific heuristics. To do so, the

system user will simply add the necessary basic operations and solution components.

Department of Computer Science
University of Pretoria

51

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 6 METHODOLOGY

The next section discusses the research methodologies adopted in this study.

6.3 RESEARCH METHODOLOGIES

A wide range of methodologies for conducting research in computer science have been proposed in

the literature [52], [53]. The most commonly used methodologies are mathematical proofs, proof by

demonstration, empiricism and hermeneutics. The mathematical proof methodology applies formal

mathematical reasoning techniques to evaluate a hypothesis. In this methodology, a theory that some

good property will hold in a given system is first established and attempts are made to either verify or

refute the theory using mathematical arguments. The proof by demonstration methodology requires that

an algorithm be initially developed. The developed algorithm is then iteratively tested and refined until

the desired result is obtained or the obtained result cannot be improved any further. At each iteration, if

the desired result is not obtained the reasons for failure are identified and corrected so that the algorithm

can gradually move towards the desired result. The proof by demonstration methodology may also be

applied to stochastic algorithms. The empiricism methodology is mainly used to evaluate a hypothesis

and can be summarised by four stages namely, hypothesis generation, method identification, result

compilation and conclusion. The hermeneutics methodology was adopted from the field of sociology to

deal with concerns about whether there was a relationship between the mathematical models developed

in computer science and the reality they intend to represent. In practice, this methodology involves

deploying and observing the operation or use of the artefact in its intended working environment.

The main aim of this research is to design an approach that can be used to automatically generate

good quality perturbative heuristics for solving combinatorial optimization problems. In order to

achieve this aim, a GE approach will be developed and implemented. The viability of the proposed

approach will be determined by testing the generated perturbative heuristics on benchmarks sets from

three well-known problems domains. In particular, the performance of the generated perturbative

heuristics will be compared to that of the human-designed perturbative heuristics commonly used

for the benchmark sets as well as that of the perturbative heuristics generated by existing generation

perturbative hyper-heuristics in the literature. Thus, the proof by demonstration and empiricism

research methodologies are considered to be appropriate in this research. The next section describes

how the proof by demonstration research methodology is used to achieve some of the objectives

outlined in Chapter 1.

Department of Computer Science
University of Pretoria

52

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 6 METHODOLOGY

6.3.1 Proof by Demonstration

The proof by demonstration research methodology will be used to meet the following objectives:

• To develop an approach that automatically generates perturbative heuristics for more than one

problem domain using grammatical evolution.

• Test the generality of the proposed approach on three different problem domains.

As per proof of demonstration methodology requirement, a GE approach will be developed and

implemented. The developed approach will then be tested on some benchmark sets from three problem

domains (discussed in Section 6.4). The decision on whether refinements to the developed approach

should be made or not will be depend on how it performs with respect to the performance measures

described in Section 6.9.

As this is a GE approach, it will require some initial decisions to be made among which the identification

of heuristic components and the design of a suitable grammar are the most challenging. The design of

the initial system will be based on an analysis of the currently existing literature (see Section 6.2) and

the GE control parameters will be adopted from the related studies that produced good results. Once

a suitable grammar has been designed and the GE parameters determined, the GE approach will be

iteratively tested and refined until the desired results are obtained or the system cannot be improved

any further. The steps that will be performed using the proof by demonstration methodology can be

summarised as follows:

1. Design and implement a GE-based approach for the automated generation of perturbative

heuristics.

2. Test the performance and generality of the proposed approach by applying the generated per-

turbative heuristics on initial solutions constructed for each instance in the benchmark sets. A

minimum of 30 runs will be performed for each instance during the training phase due to the

stochastic nature of GE. The best heuristic identified after the training phase will be used during

the testing phase.

3. If the generated heuristic fails to improve the initial solutions, then changes will be made to

following aspects of the GE approach:

Department of Computer Science
University of Pretoria

53

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 6 METHODOLOGY

• Grammar elements which specify the heuristic components and their valid combinations.

Changes may also include designing a new grammar.

• GE parameters such as application rates for genetic operators, selection methods and

number of generations.

4. The refined approach will be re-tested and further refined if any failures occur until the perform-

ance of the generated heuristics improves.

Apart from the proof by demonstration research methodology, this study will also make use of the

empiricism research methodology. The empiricism methodology will be used to achieve the remaining

objectives of this study. The next section describes how the empiricism research methodology will be

used to achieve these objectives.

6.3.2 Empiricism

The empiricism research methodology will be used to meet the following objectives:

• Compare the performance of the perturbative heuristics generated by the proposed approach to

that of the human-designed move operators.

• Compare the performance of the perturbative heuristics generated by the proposed approach to

that of the perturbative heuristics generated by existing generation perturbative hyper-heuristics.

The empiricism research methodology is characterised by four main stages and these are:

1. Hypothesis generation: This stage identifies the ideas that will be tested by the research. The

following hypotheses will be tested in this research.

• Hypothesis H1: The perturbative heuristics generated in this study obtain better solutions

than the human-derived ones.

• Hypothesis H2: The perturbative heuristics generated in this study obtain better solu-

tions than the perturbative heuristics generated by existing generation perturbative hyper-

heuristics in the literature.

Department of Computer Science
University of Pretoria

54

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 6 METHODOLOGY

2. Method identification: This stage identifies the techniques that will be used to establish the

hypothesis. In this research several experiments will be carried out for each of the generated

perturbative heuristics. Each experiment will involve applying the best heuristic evolved during

the training phase to test instances from each benchmark set. The solutions obtained by the

heuristics will be captured.

3. Result compilation: This stage is concerned with the presentation and compilation of the results

gathered in the previous stage. In this research, the Friedman test [54] will be used to test the

statistical significance of the obtained results (see Section 6.9).

4. Conclusion: This stage states whether the hypothesis is accepted or rejected.

The proposed approach will be tested on benchmark sets from three problem domains. These bench-

mark sets have been extensively used by hyper-heuristic researchers in the field and will be used for

comparison purposes. The next section discusses the problem domains.

6.4 PROBLEM DOMAINS

The proposed GE approach will be tested on three different problem domains, namely examination

timetabling, vehicle routing and boolean satisfiability. These problem domains are discussed in more

detail in the following sections.

6.4.1 Examination timetabling problem

The examination timetabling problem is a well-known combinatorial optimization problem that

involves assigning examinations to a limited number of timetable periods and rooms such that all the

hard constraints of the problem are satisfied and the number of soft constraints violated is as minimal as

possible. In this study, the ITC 2007 examination timetabling benchmark set 1 is used. The benchmark

set was selected due to its complexity as it incorporates an increased number of real world constraints.

The benchmark set has also been widely used to test the performance of most generation perturbative

hyper-heuristics in the literature.

The hard constraints for the benchmark set are:
1The benchmark set is available from http://www.cs.qub.ac.uk/itc2007/index.htm

Department of Computer Science
University of Pretoria

55

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 6 METHODOLOGY

• A student must not sit for more than one examination at a time.

• The capacity of the room must not be exceeded.

• The duration of the examination must not exceed the duration of the period.

• All period-related constraints must be satisfied e.g. assigning two examinations in the same

period.

• All the room related constraints should be satisfied e.g. assigning only one examination in a

particular room.

The following are the soft constraints:

• The number of students taking two consecutive examinations in a row should be as minimal as

possible.

• The number of students taking two examinations on the same day should be as minimal as

possible.

• The examinations must be well spread out for the students.

• The number of examinations with mixed durations within a period must be minimised.

• The larger examinations should appear at the beginning of the timetable.

• The usage of certain periods must be kept to a minimum.

• The usage of certain rooms must be kept to a minimum.

A timetable is feasible if all the examinations are assigned to a period and room such that all hard

constraints are satisfied. The aim is to obtain a timetable with zero hard constraint violations and a

minimum number of soft constraint violations. Each soft constraint violation has a numerical weighted

cost [55]. The objective value for a feasible timetable is therefore the sum of the weighted cost of the

hard and soft constraints violated by the timetabling. A timetable which violates any hard constraint is

heavily penalised by assigning it largest possible cost. The specification of the ITC 2007 benchmark

set is presented in Table 6.1.

Department of Computer Science
University of Pretoria

56

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 6 METHODOLOGY

Instances Periods Exams Rooms Students Conflict

Density

1 54 607 7 7891 0.05

2 40 870 49 12743 0.01

3 36 934 48 16439 0.03

4 21 273 1 5045 0.15

5 42 1018 3 9253 0.009

6 16 242 8 7909 0.06

7 80 1096 15 14676 0.02

8 80 598 8 7718 0.05

9 25 169 3 655 0.08

10 32 214 48 1577 0.05

11 26 934 40 16439 0.03

12 12 78 50 1653 0.18

Conflict Density = number of potential conflicts / (number of exams). It is a measurement of the

number of conflicts examinations i.e. how tightly the problem is constrained in terms of student

enrolments [56].

Table 6.1. Specification of the ITC 2007 benchmark set showing the attributes of each instance.

6.4.2 Capacitated vehicle routing problem

The capacitated vehicle routing problem is another well-known combinatorial optimization problem

that involves finding a set of routes with the minimum cost for serving a set of customers without

violating any hard constraints. This study uses the Golden and Christofides benchmark sets 2. The

benchmark sets were selected for comparison purposes with currently existing generation perturbative

hyper-heuristics in the literature.

Both benchmark sets have the following hard constraints:

• A vehicle must start and end at the depot after making all the deliveries.

2The benchmark sets are available from http://www.vrp-rep.org/datasets.html

Department of Computer Science
University of Pretoria

57

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 6 METHODOLOGY

• The total demand for each route must not exceed the vehicle capacity.

• Each customer must be visited only once and by exactly one vehicle in the route.

• The duration of each route must not exceed a global upper bound.

As mentioned earlier, the aim is to find a set of routes with the minimal cost. The objective value of a

solution is equivalent to the sum of the cost of all the routes with the cost of each route calculated as

the sum of the distance between customers on the route. The specifications of the Christofides and

Golden benchmark sets are presented in Table 6.2 and Table 6.3 respectively.

Instances Number of Vehicles Vehicle Capacity Customers Max. length Service time

1 5 160 51 ∞ 0

2 10 140 76 ∞ 0

3 8 200 101 ∞ 0

4 12 200 151 ∞ 0

5 17 200 200 ∞ 0

6 6 160 51 200 10

7 11 140 76 160 10

8 9 200 101 230 10

9 14 200 151 200 10

10 18 200 200 200 10

11 7 200 121 ∞ 0

12 10 200 101 ∞ 0

13 11 200 121 720 50

14 11 200 101 1040 90

∞ means there is no restriction on the maximum length that a vehicle may travel.

Table 6.2. Specification of the Christofides Benchmark set showing the attributes of each instance.

Department of Computer Science
University of Pretoria

58

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 6 METHODOLOGY

Instances Number of Vehicles Vehicle Capacity Customers Max. length Service time

1 10 550 240 650 0

2 10 700 320 900 0

3 10 900 400 1200 0

4 12 1000 480 1600 0

5 5 900 200 1800 0

6 8 900 280 1500 0

7 9 900 360 1300 0

8 11 900 440 1200 0

9 14 1000 255 ∞ 0

10 16 1000 323 ∞ 0

11 18 1000 399 ∞ 0

12 19 1000 482 ∞ 0

13 27 1000 252 ∞ 0

14 30 1000 320 ∞ 0

15 34 1000 396 ∞ 0

16 38 1000 480 ∞ 0

17 22 200 240 ∞ 0

18 22 200 300 ∞ 0

19 33 200 360 ∞ 0

20 41 200 420 ∞ 0

∞ means there is no restriction on the maximum length that a vehicle may travel.

Table 6.3. Specification of the Golden Benchmark set showing the attributes of each instance.

6.4.3 Boolean satisfiability problem

The boolean satisfiability problem is yet another combinatorial optimization problem that involves

determining whether an assignment of values to variables for a given boolean expression exists such

that the expression evaluates to true [57]. The expression is represented as a conjuction of clauses.

Each clause is a disjunction of variables. The expression is satisfiable if an assignment of values

for the variables exists, otherwise it is not. This study uses uniform random 3-SAT benchmark sets

Department of Computer Science
University of Pretoria

59

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 6 METHODOLOGY

(i.e. each clause in the data instances consists of exactly three variables) from the well-known SatLib

library 3 [58] as well as Suite A and B from the Gotlieb Library [59]. The benchmark sets were also

selected for comparison purposes with currently existing generation perturbative hyper-heuristics in

the literature.

The aim is to find the solution in a minimum number of flips. A flip basically involves changing the

value of the boolean variable, i.e. converting the 1 to 0 and vice versa. For these problems, there is

usually a limit on the number of flips required to find a solution. A success rate (SR) representing

the percentage of successful runs where a solution is found within the specified number of flips is

commonly used as the objective value. As in the work conducted by Fukunaga [35], the learning

(training) phase uses the 50 and 100 variable 3-SAT Benchmark instances while the testing phases uses

the Gottlieb benchmark test suites A and B [59]. An overview of the benchmark instances is provided

in Table 6.4 and Table 6.5.

Instances Number of Variables Number of Clauses Number of Instances

uf50 50 218 1000

uf100 100 430 1000

Table 6.4. Details of the Uniform Random 3-SAT Benchmark sets used for training

Instances Total Instances Instances for each n Size of problem n

Suite A 12 3 30, 40, 50, 100

Suite B 150 50 50, 75, 100

Table 6.5. Details of the Gotlieb Benchmark sets used for testing

6.5 INITIAL SOLUTIONS

The GE approach proposed in this study generates perturbative heuristics. These heuristics are typically

applied to an existing initial solution in order to improve its quality. The initial solutions are generally

constructed randomly or with the help of some constructive heuristics. Although this research does

not focus on optimizing the construction of initial solutions, a brief discussion on how these solutions

were constructed for the three problem domains is presented here nevertheless.

3The benchmarks are available from http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html

Department of Computer Science
University of Pretoria

60

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 6 METHODOLOGY

6.5.1 Examination timetabling problem

The initial solutions for this domain were constructed using a combination of three constructive

heuristics, namely largest degree, saturation degree and largest enrolment [45]. The three constructive

heuristics were applied hierarchically as follows:

1. The saturation degree heuristic was applied first;

2. In case of ties in saturation degree the largest degree heuristic was applied next.

3. If there were any further ties with the largest degree heuristic, then the largest enrolment degree

heuristic was applied.

This process was repeated a number of times until a feasible solution was found. Suffice it to say

that the process of constructing the initial solution was time consuming as there was no guarantee

that a feasible solution would be found at every attempt to construct one. In order to reduce the

amount of time spent on constructing the feasible initial solutions for each problem instance every

time the proposed GE algorithm was run, all the initial solutions were constructed only once i.e. the

first feasible solution to be found for the problem instance was used as the initial solution in all the

experiments involving that particular problem instance. In the study, a feasible solution was created for

each instance.

6.5.2 Capacitated vehicle routing problem

The initial solutions for both the Golden and Christofides benchmark sets were constructed using the

Clark Wright savings algorithm [60]. This algorithm has been widely used in the literature and it is

adopted in this research as well.

6.5.3 Boolean satisfiability problem

The initial solutions for all the problem instances were randomly created, each variable in the boolean

expression was assigned a random value.

Department of Computer Science
University of Pretoria

61

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 6 METHODOLOGY

6.6 HUMAN-DERIVED HEURISTICS

To evaluate the performance of the perturbative heuristics generated by the proposed approach, the

generated heuristics will be compared to some commonly used human-derived perturbative heuristics

in the literature. The human-derived perturbative heuristics that will be considered for each problem

domain are described in the following sections.

6.6.1 Examination timetabling problem

For this problem domain, the human-derived perturbative heuristics that will be considered are presen-

ted in Table 6.6. These heuristics are widely used in many local search algorithms for solving

examination timetabling problems [61].

Heuristic Description

phe1 Moves a randomly selected exam to a new feasible timeslot

phe2 Swaps the timeslots of two randomly selected exams if feasible

phe3 Swaps the exams in two randomly selected timeslots

phe4 Randomly exchanges the timeslots of three randomly selected exams

phe5 Moves the exam causing the highest soft constraint violation to a new feasible timeslot

phe6 Moves two randomly selected exams to new feasible timeslots

phe7 Applies the Kempe chain operator to a randomly selected exam and timeslot

phe8 Moves a randomly selected exam to a new randomly selected room if feasible

phe9 Swaps the rooms of two randomly selected exams if feasible

Table 6.6. Human-derived perturbative heuristics for the examination timetabling problem

6.6.2 Capacitated vehicle routing problem

The human-derived perturbative heuristics that will be considered for this domain are presented in

Table 6.7.

Department of Computer Science
University of Pretoria

62

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 6 METHODOLOGY

Heuristic Description

phv1 Moves a randomly selected customer to a new feasible route

phv2 Swaps the routes of two randomly selected customers

phv3 Reverses a part of a tour between two selected customers on a randomly selected route

phv4 Randomly exchanges the routes of three randomly selected customers

phv5 Applies the 2-opt operator on a randomly selected route

phv6 Applies the 2-opt operator on all routes

phv7 Swaps the first portions of two randomly selected distinct routes

phv8 Swaps the adjacent customers of two customers selected from two distinct routes

phv9 Swaps the first and last portions of two randomly selected distinct routes

phv10 Move a randomly selected customer to another position in the same route

Table 6.7. Human-derived perturbative heuristics for the capacitated vehicle routing problem

6.6.3 Boolean satisfiability problem

The human-derived perturbative heuristics considered for this domain are presented in Table 6.8.

6.7 EXISTING GENERATION PERTURBATIVE HYPER-HEURISTICS

Apart from comparing the performance of the perturbative heuristics generated by the proposed GE

approach with human-derived perturbative heuristics, the proposed approach will also be compared to

other generation perturbative hyper-heuristics in the literature. The hyper-heuristics considered in this

research are described in the following sections.

6.7.1 Examination timetabling problem

Research into the usage of generation perturbative hyper-heuristics to solve examination timetabling

problems is in its inception [62]. There has not been much work in the area apart from the work

conducted by Sabar et al. [40] where a grammatical evolution hyper-heuristic referred to as GE-HH is

used to generate disposable local search operators from three heuristic components, namely acceptance

criteria, neighbourhood structures and neighbourhood combinations. This research will therefore also

Department of Computer Science
University of Pretoria

63

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 6 METHODOLOGY

Heuristic Description

GWSAT(p) Flips a random variable with the highest net gain in a randomly selected unsat-

isfied clause with some probability p. The net gain of a variable is the number

of clauses that remain unsatisfied in the boolean expression when the variable is

flipped. If two or more variables have the same net gain, the ties are randomly

broken.

Walksat(p) Selects a random unsatisfied clause and randomly flips any variable with a net

gain of 0 in the clause. Otherwise it uses some probability p to select a random

variable to flip from the clause.

Novelty+(p,pw) Selects a random unsatisfied clause and with a probability pw selects a random

variable to flip. Otherwise, it flips the variable with the maximal net gain unless

the variable has a minimal age. The age of the variable is the number of other

variable flips that have occurred since the variable was last flipped. If the variable

has minimal age in the unsatisfied clause, then the variable is selected for flipping

with probability (1-p).

Table 6.8. Human-derived perturbative heuristics for the SAT problem

consider some selection perturbative hyper-heuristics that have produced good results for the ITC 2007

benchmark set in order to have better understanding of how well the proposed GE approach performs.

The hyper-heuristics considered are described in Table 6.9.

Hyper-heuristic Description

ETP-HH1 A generation perturbative hyper-heuristic proposed by Sabar et al. [40].

ETP-HH2 A selection perturbative hyper-heuristic proposed by Swan et al. [63].

ETP-HH3 A selection perturbative hyper-heuristic proposed by Burke et al. [64].

ETP-HH4 A selection perturbative hyper-heuristic proposed by Anwar et al. [65].

Table 6.9. Selected hyper-heuristics for the examination timetabling problem

6.7.2 Capacitated vehicle routing problem

The hyper-heuristics that will be considered for this domain are presented in Table 6.10.

Department of Computer Science
University of Pretoria

64

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 6 METHODOLOGY

Hyper-heuristic Description

CVRP-HH1 A hyper-heuristic proposed by Sabar et al. [40].

CVRP-HH2 A hyper-heuristic proposed by Garrido et al. [66].

CVRP-HH3 A hyper-heuristic proposed by Meignan et al. [67].

Table 6.10. Selected hyper-heuristics for the vehicle routing problem

6.7.3 Boolean satisfiability problem

The generation perturbative hyper-heuristics that will be considered for this domain are presented in

Table 6.11 below.

Hyper-heuristic Description

SAT-HH1 A hyper-heuristic proposed by Bader and Poli [49].

SAT-HH2 A hyper-heuristic proposed by Fukunanga [35].

Table 6.11. Selected hyper-heuristics for the boolean satisfiability problem

6.8 BASELINE AND EXTENDED APPROACHES

Two GE approaches were developed and implemented during the course of this research. The first

approach called the Grammatical evolution baseline approach (GEBA) was the initial approach

proposed, based on the survey of existing literature, to demonstrate the main idea of generating new

perturbative heuristics from heuristic components comprising basic operations and components of

the solution. A basic grammar that used minimal domain knowledge was designed and applied to

benchmark sets from three problem domains (see Section 6.4). After further research and in an attempt

to improve the quality of results obtained by the GEBA, it was determined that including more domain

information particularly from the solution space, generating other types of heuristics such as decision

rules, was more likely to improve the efficiency and quality of the solutions obtained by the approach.

As a result, the grammar for the GEBA was redesigned to include more domain specific information,

new heuristic combination operators, new syntax of basic operations to cover a wider space of heuristics

and decision rules. The new approach is called the Grammatical evolution extended approach (GEEA).

And the two approaches are discussed in more detail in Chapter 7 and Chapter 8.

Department of Computer Science
University of Pretoria

65

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 6 METHODOLOGY

6.9 PERFORMANCE MEASURES AND STATISTICAL TESTS

The viability of the proposed GE approach will be determined by considering three criteria, namely

generality, consistency and efficiency.

6.9.1 Generality

This criterion will measure how well the proposed approach performs across the three problem domains

and not only on the different instances of the one problem. This will entail comparing the quality of

the results obtained by the perturbative heuristics evolved using the approach to those obtained by

other techniques.

6.9.2 Consistency

This criterion will be considered during the training phase and will be used to measure the how the

approach performs in terms of producing stable results when it is run several times for each problem

instance. Since the approach is based on GE which is a stochastic search algorithm, it means that

the solutions that will be obtained on each GE run will in most cases be different even if the initial

solution is the same. In this study, the consistency of the approach will be measured in terms of

average and standard deviation of the objective values (see Section 6.4) of the solutions obtained over

30 runs.

6.9.3 Efficiency

This criterion will be used to measure how close or far the results obtained by the proposed approach

for each instance are to the initial results. Efficiency is measured in terms of percentage deviation (see

Equation (6.1)) of the best solution found by the approach from the initial solution for the particular

problem instance.

∆(%) =
bestGE −best∗

best∗
% (6.1)

Where bestGE is the best solution obtained by the proposed GE approach and best* is the initial solution

for the problem instance.

Department of Computer Science
University of Pretoria

66

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 6 METHODOLOGY

Please note that the performance of the approach is measured by the quality of the solution (specified

by an objective value) obtained by applying the heuristics generated by the approach to the given

problem instance. Furthermore, in order to compare the performance of two approaches over a given

set of instances, and draw confident conclusions, statistical tests will be conducted to judge which

approach outperforms the other. Non parametric tests will be used instead of parametric ones due

to the fact that parametric tests are usually based on strong assumptions that may not hold for the

results obtained by heuristic algorithms [68]. Following Hutter et al. [69], the two-sided Wilcoxon

signed-rank test will be employed to detect the potential differences between two approaches while

the Friedman test with pairwise finner post hoc analysis will be employed to compare three or more

approaches. In the tests, the null hypothesis states that the approaches in comparison have similar

performance, and the 95% confidence level (i.e., p-values below 0.05 are statistically significant) will

be considered unless otherwise stated.

6.10 TECHNICAL SPECIFICATIONS

The GE approaches were implemented in the Java programming language (version 1.8) using the GE

package available in the ECJ toolkit [70]. The intellij IDEA 2018.2 IDE was used on a computer with

an intel core i7 CPU, 2.3 GHz with 8gb RAM and running windows 10 64bit. The simulations were

performed on the CHPC (Centre for High Performance Computing) multicore cluster. R was used to

perform statistical tests on the results obtained.

6.11 SUMMARY

This chapter presented an overview of the methodology to be used in developing an algorithm for the

automatic generation of perturbative heuristics to solve combinatorial optimization problems. The

chapter also included an analysis of the related works and provided justification for this timely research.

In addition, the benchmark sets, methods for constructing the initial solutions, the human-derived

perturbative heuristics as well as the existing hyper-heuristics considered, the performance measures

and the technical specifications of both the software and hardware used in the design, testing and

evaluation of the approach were presented.

Department of Computer Science
University of Pretoria

67

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 6 METHODOLOGY

The next chapter presents the baseline GE appraoch proposed for generating perturbative heurist-

ics.

Department of Computer Science
University of Pretoria

68

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 7 Grammatical Evolution Baseline

Approach

7.1 INTRODUCTION

In this chapter, the grammatical evolution baseline approach is discussed. The baseline approach

was the initial approach developed in the research to test the feasibility of the proposed methodology.

Section 7.2 presents an overview of the GE approach including a discussion on the BNF grammar

developed and the heuristic components. This is followed by a step by step discussion on all the aspects

of the approach such as methods used in the generation of the initial population, genotype-phenotype

mapping, fitness evaluation, selection method, genetic operators, population replacement strategy and

the control parameters in section 7.3. The chapter summary follows in section 7.4.

7.2 OVERVIEW OF APPROACH

The main aim of this study is to design an approach for automating the generation of good quality

perturbative heuristics to solve combinatorial optimization problems. A review of existing techniques

in the literature shows that GP or GE are mostly employed to generate new heuristics from either

existing heuristics or existing primitive components of the heuristics. This study adopts the second

approach where new perturbative heuristics are generated from heuristic components rather than

existing perturbative heuristics. GE is also selected over GP to do so. Specifically, the proposed

approach takes as input several basic heuristic components and uses GE to automatically find the most

appropriate combinations of these basic components to generate new heuristics. This approach not

only leads to the generation of different types of heuristics but also to the discovery of new heuristics

without the need for human experts.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 7 GRAMMATICAL EVOLUTION BASELINE APPROACH

The first step taken when solving a problem using GE is to design a suitable grammar. This step is

very important because the grammar defines the search space for the solution to the problem. The next

section discusses the basic grammar proposed for this approach in more detail.

7.3 BASIC BNF GRAMMAR

A good grammar is generally problem domain dependent but the goal of this study is to design a

grammar that can be used across multiple problem domains. To do so, heuristic components are used

as the basic elements of the grammar. The heuristic components were identified from a survey of

existing literature and further motivated by the need to design a simple but flexible grammar that could

be easily applied to different problem domains. The next section provides a detailed discussion on the

identified heuristic components.

7.3.1 Heuristic Components

The heuristic components that were identified as appropriate and used as the basic elements of the BNF

grammar are: solution components, basic operations, combination operators and move acceptance

criteria.

7.3.1.1 Solution components

The solution components refer to the parts or entities making up the solution to the problem one is trying

to solve. In the proposed approach, these are the only heuristic components that are problem dependent.

For example, in examination timetabling problem the solution is a timetable. The timetable is made

up of entities such as the examination, period and room. In the capacitated vehicle routing problem,

solution components are the route and customer. The motivation for using solution components in the

proposed approach is twofold: solution components are easier to identify and to make the approach

less dependent on how the problem is represented (i.e. whether it is represented as a graph, permutation

or set etc.). The ultimate goal here is to design the grammar in such a way that it can be easily

applied to any problem domain by making only minor changes to the components of the solution. The

solution components identified for the three problem domains investigated in this study are presented

in Table 7.1.

Department of Computer Science
University of Pretoria

70

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 7 GRAMMATICAL EVOLUTION BASELINE APPROACH

Problem domain Solution components

Examination timetabling problem (ETP) Exam, Period and Room.

Capacitated vehicle routing problem (CVRP) Route and Customer

Boolean satisfiability problem (SAT) Clause and variable

Table 7.1. Identified Solution components for the three problem domains

The next section discusses the basic operations used in the proposed approach. To facilitate a general

solution, the basic operations are problem domain independent.

7.3.1.2 Basic operations

The basic operations represent some of the commonly used operations to modify an existing solution in

the literature. These are usually very simple operations such as moving an element from one position

to another or swapping one element with another. Depending on the nature of the problem one is

trying to solve, some of the operations may be specific to the particular problem. However, in an

attempt to design a cross domain grammar, only the move, swap, add (assign), delete (unassign) and

shuffle operations are used in this study. These operations were identified as the most appropriate basic

operations for generating heuristics across different problem domains. This set of basic operations

can of course be extended to include more operations if necessary. Please also note the flip operation

commonly used in the SAT problem can be implemented by the swap operator. A discussion on how

these operations are used in this approach is presented in Section 7.3.2.

7.3.1.3 Combination operators

Combination operators are used to combine two or more generated heuristics into a single structure

in order to combine the strengths of different heuristics. The literature shows that a combination of

different heuristics can be very efficient in solving combinatorial optimization problems [71]. For

example, Lu et al.[71] assessed the performance of combination operators (referred to as neighbourhood

operators in their work) in solving university course timetabling problems within local search algorithms

such as iterated local search, tabu search and steepest decent algorithm. The main aim of their work

was to answer why some combination operators produce better results than others as well as to find out

Department of Computer Science
University of Pretoria

71

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 7 GRAMMATICAL EVOLUTION BASELINE APPROACH

the characteristics that constituted a good combination operator. Their conclusion was that combination

operators can significantly improve the performance of a local search algorithm. The other studies

that have looked at the benefits of combination operators include the work conducted by Johnson

[72], Gaspero et al. [73] and Goeffon et al. [74]. For this basic approach, the heuristics are applied

sequentially i.e. the heuristics are applied one after the other until the sequence ends.

7.3.1.4 Move acceptance criteria

This study generates perturbative heuristics. These heuristics are also called move operators since they

have the same effect as the operators used in a local search. Peturbative heuristics are applied to an

initial solution and a move acceptance criterion is used to decide whether the solution obtained after

making a particular move (or perturbation) should be accepted or rejected. The decision is often made

on the basis of whether the move led to an improvement in the objective value of the previous solution

or not. A move is generally accepted if it leads to an improvement. In some cases, a non-improving

move may also be accepted for the sole purpose of diversifying the search process to other regions of

the search space. This is particularly important as it may prevent the search process from being stuck

in a ’valley’ or an area of local optima. A variety of move acceptance criteria have been proposed in

the literature such as the improving or equal only, all moves, simulated annealing, exponential monte

carlo, record-to-record travel, great deluge, naive acceptance and adaptive acceptance [40]. For this

basic approach, only improving or equal only and all moves were used.

The four heuristic components discussed above formed the basic elements of the BNF grammar

proposed in this study. The next step after determining the grammar elements involves the specification

of the starting symbol (S), non-terminals (N), terminals (T) and the production rules (P) that will

represent the heuristic components [40]. The next section presents the basic BNF grammar and also

provides a description of the grammar elements.

7.3.2 Grammar specification

As discussed in Chapter 4 (Section 4.2.1), the BNF grammar is a four tuple consisting of the start

symbol (S), terminals (T), non-terminals (N) and the production rules (P). For the proposed BNF

grammar, a description of these grammar components is presented in Table 7.2.

Department of Computer Science
University of Pretoria

72

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 7 GRAMMATICAL EVOLUTION BASELINE APPROACH

Name Symbol Description

start symbol <start> The start symbol

Non-terminals <heuristic> Perturbative heuristic

<action> The move operator

<swap> The swap operation

<move> The move operation

<shuffle> The shuffle operation

<add> The add/reassign operation

<delete> The delete/unassign operation

<comp> Solution components

<n> integer constants

Terminals comp1 first solution component

comp2 second solution component

. .

compn n solution component

Table 7.2. Specification of BNF Grammar elements

The production rules specifying how the heuristic components are combined into perturbative heuristics

are shown in Figure 7.1.

Figure 7.1. BNF grammar production rules

Department of Computer Science
University of Pretoria

73

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 7 GRAMMATICAL EVOLUTION BASELINE APPROACH

7.3.3 Perturbative heuristic

The grammar in Figure 7.1 above defines a perturbative heuristic in terms of two or more basic

operations applied to components of the solution. It is a simple but flexible grammar that can easily

be applied to any problem domain by simply specifying the solution components (represented by

<comp>) for the particular domain. From the grammar, a perturbative heuristic can be composed of

one or more of the following actions:

• Swap: Swaps n components specified in the first <comp> in the second <comp>. The first

<comp> in the production rule must be contained in the second < comp >. For example, in the

examination timetabling problem n examinations can be swapped in a particular period or room.

The components are randomly selected.

• Shuffle: Shuffles n components in the solution, <comp > specifies the type of the component,

e.g. a route. The components are randomly selected and shuffled one position to the right. For

example, moving the position of n cities in a tour for the travelling salesman problem.

• Move: Moves n components specified in the first <comp> to a new position in the second

<comp>. The first <comp> in the production rule must be contained in the second <comp>. The

first <comp> also specifies the type of the component to move, e.g. an examination. Both the

components and the new positions are randomly selected. For example moving n examinations

to new periods in the examination timetabling problem.

• Add: Adds n components that were removed from the solution by a preceding delete action.

The components are randomly selected from the deleted components and positions to place the

components in the solution are also randomly selected.

• Delete: Deletes n randomly selected components from the solution. The deleted components

are added to the list of components to be reallocated using the add action.

The range of n is 1 to 10. This range of values for n was determined based on the review of existing

literature on the examination timetabling and vehicle routing problems. In most of the studies reviewed,

it was discovered that the largest number of components (i.e. rooms, period and examinations for

the examination timetabling problem or customers and routes for the vehicle routing problem) to be

swapped or moved was three (3) [40]. It was therefore decided that the range be increased to ten(10)

in an attempt to investigate whether better perturbative heuristics could be generated. An example of

Department of Computer Science
University of Pretoria

74

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 7 GRAMMATICAL EVOLUTION BASELINE APPROACH

a perturbative heuristic (in form of a parse tree) generated for solving the examination timetabling

problem using the mapping process described in Section 4.2.3 and the solution components defined in

Section 7.3.1.1 is illustrated in Figure 7.2

Figure 7.2. Example of a generated perturbative heuristic

The perturbative heuristic in Figure 7.2 is composed of two basic operations, swap and move, which

are applied sequentially to the initial solution. The swap operation will swap three occurrences of a

component of type comp4 in a component of type comp1 in a solution. This is followed by the move

operation which moves two components of type comp2 to a new position in a component of type

comp5 in the solution.

Having presented the BNF grammar that will be used to convert the genotypes (binary strings) to their

corresponding phenotypes (perturbative heuristics), the next section discusses the GEBA. The search

engine and mapper are implemented as in the original algorithm [25] and as discussed in Section 4.2.2

and Section 4.2.3 respectively.

7.4 GEBA

The proposed GE approach follows the basic strategy discussed in Chapter 4, and is represented in

Figure 7.3 and Algorithm 7 below.

Department of Computer Science
University of Pretoria

75

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 7 GRAMMATICAL EVOLUTION BASELINE APPROACH

Figure 7.3. The Proposed GEBA

The approach starts with the design of the BNF grammar (see Section 7.3). It then initializes the para-

meters for the genetic algorithm used in the search engine and thereafter randomly generates an initial

population of variable length binary chromosomes (genotypes). Using the RVD (see Section 4.3.1)

initialization method, each chromosome in the population is then mapped to its corresponding program

by the mapper. The quality of each program is determined by applying it to an initial solution construc-

ted for the problem. The GEBA subsequently executes for a predefined number of generations with

new offspring generated by applying selection, mutation and crossover operators at every generation.

The generational population replacement strategy is used to replace the old population with a new one

consisting of new offspring.

Department of Computer Science
University of Pretoria

76

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 7 GRAMMATICAL EVOLUTION BASELINE APPROACH

Algorithm 7 Pseudocode for the proposed GEBA
1: Generate an initial population of variable length binary strings

2: Map all the binary strings to their corresponding parse trees representing the perturbative heuristic

(phenotype) using a BNF grammar

3: Apply each perturbative heuristic in the population to a provided initial solution to determine its

fitness

4: while termination criterion not met do

5: Select the fitter perturbative heuristics for regeneration using the tournament selection method

6: Create new perturbative heuristics for the next generation by applying genetic operators to the

earlier selected heuristics

7: Apply each new perturbative heuristic to a provided initial solution to determine its fitness

8: Replace all the perturbative heuristics in the old population with the new perturbative heuristics

9: end while

10: return perturbative heuristic with the best fitness as the best solution

The other aspects of the proposed GE approach are summarised in the following sections.

7.4.1 Initial population generation

The initial population of variable length binary strings (genotypes) is randomly generated. In order

to make sure that all randomly generated genotypes map to their corresponding phenotypes and that

there are no duplicates in the initial population, the RVD (see Section 4.3.1) initialization method is

used.

7.4.2 Genotype-phenotype mapping

All the randomly generated binary strings are first converted to their denary values. The denary values

are then mapped to their respective phenotypes (perturbative heuristics in this case), represented as

parse trees, using the production rules of the grammar defined in Section 7.3. The mapping process is

discussed in Section 4.2.3.

Department of Computer Science
University of Pretoria

77

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 7 GRAMMATICAL EVOLUTION BASELINE APPROACH

7.4.3 Fitness evaluation

Each individual in the population represents a perturbative heuristic. The fitness of the individual is

evaluated by applying it to an initial solution. The objective value of the new solution obtained is

used as the fitness for the individual. Initial solutions are typically constructed randomly or by using a

constructive heuristic (see Section 6.5).

7.4.4 Selection method

The tournament selection method is used to select parents for regeneration. It is selected over the

fitness proportionate method because it is simpler to implement, has a better run time, does not require

any fitness scaling and it has a low susceptibility to takeover by fitter individuals.

7.4.5 Genetic operators

Three genetic operators, namely crossover, reproduction and mutation are used to generate new

offspring. In particular, single point crossover and bit mutation are used and applied as discussed in

Section 4.3.5. Following the proposal by Poli et al. [29], in the GEBA, 90% of individuals undergo

crossover with the remaining 10% undergoing either reproduction or mutation. This is done on every

generation.

7.4.6 Population Replacement

The generational population replacement strategy is used. This strategy basically replaces the old

population with a new one generated after applying crossover and mutation operators.

7.4.7 GE Parameters

The values for the control parameters used to run the proposed GE approach were empirically determ-

ined by performing trial runs and carefully adapting the default parameters provided in the ECJ toolkit.

The adapted values are listed in Table 7.3.

Department of Computer Science
University of Pretoria

78

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 7 GRAMMATICAL EVOLUTION BASELINE APPROACH

Control parameter Value

population size 1024

Initial length of chromosome 60

Maximum number of wraps 5

Crossover rate 0.9

Mutation rate 0.01

Reproduction rate 0.09

Tournament size 7

Number of Generations 50

Table 7.3. Control parameter values

7.4.8 Termination criteria

The GE algorithm runs from one generation to the next and terminates after the specified number of

generations (i.e. 50 generations in this case) is reached. The individual (perturbative heuristic) with

the best fitness after the 50 generations is returned as the best solution.

7.5 SUMMARY

This chapter discussed the GEBA that was initially proposed to generate perturbative heuristics to

solve combinatorial optimization problems. The approach took as input four heuristic components,

namely solution components, basic operations, combination operators and move acceptance criteria,

and automatically combined them into a perturbative heuristic. The grammar that was used to specify

how the heuristic components were combined was presented. A discussion on the GEBA was also

presented.

The next chapter discusses the GEEA which is an extension of the GEBA. The GEEA can be considered

as an improvement over GEBA.

Department of Computer Science
University of Pretoria

79

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 8 Grammatical Evolution Extended

Approach

8.1 INTRODUCTION

This chapter presents the grammatical evolution extended approach (GEEA) which extends the grammar

used in the GEBA and is therefore considered as an improved approach. Section 8.2 presents a

discussion on the main differences between the two approaches. The extended grammar is discussed

in more detail in section 8.3. This is followed by a detailed discussion on the GEEA in section 8.4.

The chapter summary is presented in section 8.5.

8.2 DIFFERENCES BETWEEN GEEA AND GEBA

Although the GEEA and GEBA (discussed in Chapter 7) share a similar overall strategy in that both

take as input four heuristic components, namely solution components, basic operations, combination

operators and move acceptance criteria, and use GE to automatically combine them into perturbative

heuristics, the two approaches have some significant differences with respect to the actual heuristic

components used in their grammars. And since the grammar has a significant impact on the type and

quality of solutions obtained by the GE algorithm, it is therefore imperative that a good grammar is

designed. For this reason, the BNF grammar in the GEEA was redesigned with some challenges to the

structure of the heuristic components. The main differences between the heuristic components used in

the grammars designed for the two approaches (i.e. the GEEA and GEBA) are:

1. Solution components selection methods : In the GEBA, solution components were selected

at random. The selection methods have been extended in the GEEA to include five methods,

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 8 GRAMMATICAL EVOLUTION EXTENDED APPROACH

namely lowest cost, highest cost, smallest size, largest size and random selection methods.

2. Conditional Constructs : The grammar in the GEBA was used to evolve only functions. In the

GEEA, the grammar has been extended to include if_then_else conditional operators in order to

evolve decision rules in addition to the functions.

3. Information from solution space: The grammar in the GEEA has also been extended so that

more information from the solution space can be used. This information includes the number

of times the evolved heuristic has been applied, the fitness of the previous solution, the fitness

of the current solution after applying the heuristic and the changes in the fitness of the solution

each time the heuristic is applied. The GEBA only considered the fitness of the current solution

after applying the evolved heuristic.

4. Extended Syntax of Basic operations: The syntax for the basic operations has been made more

flexible so that a wider space of heuristics can be covered (see Section 8.3.3).

8.3 BNF GRAMMAR

As in the GEBA discussed in Chapter 7, the goal here is to design a grammar that can be used to

generate perturbative heuristics for any problem domain. As a result, the GEEA also uses the same

four heuristic components used in the GEBA. However, the basic grammar in the GEBA has been

substantially extended and redesigned. The next section describes the extended grammar.

8.3.1 Extended Grammar

The start symbol (S), terminals (T), non-terminals (N) and the production rules (P) for the new grammar

are specified in Table 8.1.

Department of Computer Science
University of Pretoria

81

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 8 GRAMMATICAL EVOLUTION EXTENDED APPROACH

Name Symbol Description

start symbol <start> The start symbol

Non-terminals <accept> Move acceptance criteria

<heuristic> Perturbative heuristic

<cop> Combination operators

<cond> Conditional operators

<rop> Relational operators

<h_value> Heuristic value (stores information

returned from the solution space)

<comp> Solution component e.g. exam

<prob> Solution component probability of

selection

<compSel> Solution component selection

method e.g. route with lowest cost

<n> Integer constants

Terminals IO Improving or equal only move ac-

ceptance criterion

AM All moves acceptance criterion

c1 First solution component

c2 Second solution component

. .

cn nth solution component

∪ Union combination operator

→ Random gradient combination op-

erator

≤ Less or equal to

< Less than

> Greater than

≥ Greater or equal to

Table 8.1. Specification of BNF Grammar elements

Department of Computer Science
University of Pretoria

82

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 8 GRAMMATICAL EVOLUTION EXTENDED APPROACH

The production rules specifying how the above heuristic components are combined into perturbative

heuristics are shown in Figure 8.1.

Figure 8.1. New grammar production rules

As in the initial grammar presented in Figure 7.1, perturbative heuristic are defined in terms of one

or more basic operations applied to components of the solution. These basic operations and solution

components are combined in the same manner as described in Section 7.3.2. In addition, perturbative

heuristics are also evolved in form of decision rules which can be quite powerful in generating very

good heuristics. The grammar elements are discussed in more detail in the following sections.

8.3.2 Acceptance criteria

The acceptance criteria (< accept >) decides whether to accept or reject a solution obtained after

applying the generated perturbative heuristic. In the grammar, only two acceptance criteria i.e.

Improving or equal only (IO) and All Moves (AM) are used. A variety of move acceptance criteria

exist (see Section 7.3.1.4) but only the two are selected here as these are the most commonly used

in the literature and have been shown to produce good results. The IO criterion basically accepts

the obtained solution if it is superior to the previous one. A solution is considered superior in the

examination timetabling and vehicle routing problem domains if it has a lower objective value. In

Department of Computer Science
University of Pretoria

83

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 8 GRAMMATICAL EVOLUTION EXTENDED APPROACH

the boolean satisfiability problem domain, solutions with higher objective values are superior. In a

situation where two solutions have the same objective value, then the solution that was discovered

in fewer iterations is considered superior. The AM criterion on the other hand accepts all obtained

solutions with no regard to their quality. It is included here so that the approach can be able to explore

other areas of the search space and thereby avoid being trapped in a local optima.

8.3.3 Basic operations

The same five basic operations used in the GEBA are used in the GEEA. These are the swap, move,

shuffle, add and delete operators. The syntax of the swap and move operators has been made more

flexible in order to cover a wider range of heuristics. For example, the requirement that one component

must be contained in another in order to perform a move or swap operation has been removed. Using

the new syntax, a swap operation can be applied to two similar components. For example, a room can

be swapped with another room. This will of course be equivalent to swapping the exams in the two

rooms.

8.3.4 Solution Components

As described earlier, solution components(< comp >) refer to the parts making up a solution to the

problem being addressed. These components are problem domain specific. In the new grammar, the

solution component to use when generating a heuristic can be selected using five methods i.e. the

lowestCost, highestCost, smallestSize, largestSize and random selection. The lowestCost method

selects the solution component with the lowest cost while the highestCost method selects the solution

component with the highest cost. For the SAT problem, cost refers to the variable gain score while

size refers to the age of the variable. A cost value is considered low or high if it is less than or

greater than the median cost value of the particular solution component. If more than one component

has the same cost value, then the component is selected randomly from those with the same cost

value. The smallestSize and largestSize methods select solution components with the smallest and

largest size respectively. A component is considered small if its size is smaller than the median size

for that solution component. Similarly, a large component is one with a size that is bigger than the

median size for the solution component. If more than one component has the same size, then the

component is selected randomly from those with the same size. For example, the size of the solution

Department of Computer Science
University of Pretoria

84

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 8 GRAMMATICAL EVOLUTION EXTENDED APPROACH

component exam in the examination timetabling problem refers to the number of students taking the

exam. The median size of the exam solution component will be the median value of the sorted list

of exams. The random method selects solution components randomly. Probabilistic branching has

also been included in the grammar to deal with cases where a decision may need to be made when

choosing a component between two different selection methods(e.g. highestCost and smallestSize). The

parameter <prob> represents the probability of selecting the first argument. For example, the rule if (25,

lowestCost(exam), smallestSize(exam) implies that the probability of choosing the lowestCost(exam)

over the smallestsize(exam) is 25%. Notice that each selection method has a argument represented by

<comp>. <comp> specifies the actual type of the solution component to select (e.g. whether the

solution component is an exam, room or period in the case of the examination timetabling problem).

The type of solution component is randomly selected. As an example, lowestCost(exam) specifies that

the exam with the lowest cost should be selected.

8.3.5 Information from Solution Space

When a heuristic is applied to a solution, some information from the solution search space is recorded.

In the grammar, this information consists of numerical values for the fitness of the previous solution,

fitness of the current solution, current iteration, total iterations so far and the differences between

the fitness of the solutions between the iterations. This information forms part of the conditions for

evolving heuristics and it also assists in breaking ties between two or more evolved heuristics that have

the same fitness. In the GEEA, ties between the evolved heuristics are first broken using their fitness

values. If the heuristics have the same fitness value, then the number of iterations it took to evolve

the heuristics is considered. If the tie is still not broken, then the best heuristic is selected randomly

amongst them.

8.3.6 Relational and Conditional Operators

A number of operators are used. These include relational operators (< rop >) such as the less than,

greater than, less or equal to, greater or equal to. These binary operators are only used in the condition

of the if-then-else. The if-then-else conditional operator is useful for producing heuristics in the form

of decision rules. The operator has three arguments, the first argument is always a boolean, while the

second and third arguments share the same object type (e.g. a heuristic, solution component or integer

Department of Computer Science
University of Pretoria

85

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 8 GRAMMATICAL EVOLUTION EXTENDED APPROACH

value). The boolean argument determines the output of this operator. If the value is true, then output is

the second parameter, otherwise the function returns the third parameter.

8.3.7 Combination operators

These are represented by (< cop >) in the grammar and are used to combine two or more generated

heuristics into a single structure. The main reason for doing so is to combine the strengths of different

heuristics. In the grammar, the union (∪), Random Gradient (→) and Token-Ring Search(no symbol)

operators are used. Whenever two heuristics are combined with no symbol (e.g. Figure 8.2), it means

that the token ring operator is used and the heuristics are applied sequentially. A discussion on these

operators can be found in Table 8.2.

Department of Computer Science
University of Pretoria

86

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 8 GRAMMATICAL EVOLUTION EXTENDED APPROACH

Combination operator Description

Union ((∪)) This operator combines two or more different heuristics. For

example, given two perturbative heuristics P1 and P2, the union

operator consecutively applies P1 followed by P2 and then calls

the acceptance criterion to accept or reject the solution. This

operator therefore combines the strengths of different heuristics

which may be very useful in solving problems [40], [71].

Random Gradient (→) This operator repeatedly applies one heuristic until there is no

further improvement in the objective value of the solution. This is

then followed by the application of the other heuristics in a similar

manner (i.e. until there is no improvement in the objective value

of the solution). For example, given two perturbative heuristics

P1 and P2, the random gradient operator continuously applies P1

until there is no improvement. It then applies P2 starting from

last obtained optimum solution by P1 [46], [42].

Token-Ring Search(no symbol) This operator consecutively applies the heuristics one after the

other until the sequence ends. For example, given two perturbat-

ive heuristics P1 and P2, the token-Ring consecutively applies P1

and P2 until the sequence ends. When the search is restarted, it

starts from the first heuristic in the sequence using the optimum

obtained by the last heuristic in the previous sequence [71],[73].

Table 8.2. Description of combination operators

8.3.8 Perturbative heuristics

The grammar in Figure 8.1 can be used to generate different types of perturbative heuristics. In

addition, two or more heuristics can be combined to form a composite heuristic. Some examples

of perturbative heuristics in form of parse trees that can be generated for solving the examination

timetabling, capacitated vehicle routing and the boolean satisfiability problems using the mapping

process described in Section 4.2.3 and the solution components defined in Section 7.3.1.1 are shown in

Figure 8.2, Figure 8.3 and Figure 8.4 respectively.

Department of Computer Science
University of Pretoria

87

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 8 GRAMMATICAL EVOLUTION EXTENDED APPROACH

Figure 8.2. An example of a composite heuristic combining swap and move operators

The composite perturbative heuristic in Figure 8.2 combines two heuristics into one. The first heuristic

swaps two lowest cost exams while the second heuristic moves three smallest sized exams to other

locations in the solution. The two heuristics are applied consecutively.

Figure 8.3. An example of a generated decision rule

The decision rule shown in Figure 8.3 first checks if the current fitness of the solution is greater than the

previous fitness. If it is true, then the heuristic in the second branch is selected otherwise the heuristic

in the third branch is selected.

Department of Computer Science
University of Pretoria

88

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 8 GRAMMATICAL EVOLUTION EXTENDED APPROACH

Figure 8.4. An example of a generated SAT heuristic

The heuristic in Figure 8.4 swaps (flips) the lowest cost variable in the clause if the probability of

choosing the lowest cost variable is 25% otherwise it swaps (flips) a random variable in a random clause.

Note that lowest cost variable in this case refers to the variable with the minimum gain score.

8.4 GEEA

The GEEA follows a similar strategy to the one described in Section 7.4. The algorithm steps are

summarised in the following sections.

8.4.1 Initial population generation

Similar to the initial approach, the initial population of variable length binary strings (genotypes)

is randomly generated. The RVD (see Section 4.3.1) initialization method is also used to ensure

the genotypes map to their corresponding phenotypes and that there are no duplicates in the initial

population.

Department of Computer Science
University of Pretoria

89

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 8 GRAMMATICAL EVOLUTION EXTENDED APPROACH

8.4.2 Genotype-phenotype mapping

The binary strings are similarly first converted to their denary values and thereafter mapped to their

respective computer programs, represented in the form of parse trees, using the production rules of

the grammar defined in Figure 8.1. The mapping process discussed in Section 4.2.3 is also used

here.

8.4.3 Fitness evaluation

One of the goals of the new approach is to generate reusable heuristics. In order to do this, all the

generated heuristics are first trained on a training set and the best performing heuristic is then selected

to be tested on a testing set. The process of determining the fitness of a generated heuristic is however

the same in that the heuristic is applied to an initial solution provided for each problem instance in

the training and testing sets. To make it simpler to understand and capture the fitness of the generated

heuristic on both the training and testing sets, the solution objective value has been reformulated to

a number between 0 and 1 such that the best possible fitness value of the heuristic is equal to the

number of instances the heuristic is applied to. For example, if the heuristic is applied to 4 problem

instances, then the fitness value of the heuristic is the sum of the four outcomes from each application

on the problem instances. Therefore, the best possible fitness value in such a case is 4 while 0 is the

worst.

8.4.4 Selection method

The tournament selection method is also used in this approach (see Section 7.4.4).

8.4.5 Genetic operators

The genetic operators discussed in Section 7.4.5 are applied in this approach as well.

Department of Computer Science
University of Pretoria

90

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 8 GRAMMATICAL EVOLUTION EXTENDED APPROACH

8.4.6 Population Replacement

The generational population replacement strategy is used to replace individuals in the population.

8.4.7 GE Parameters

The parameter values which produced good results for the GEBA were also adopted in this approach.

The values are listed in Table 7.3.

8.4.8 Termination criteria

The termination criteria was set to the maximum number of generations i.e. 50 generations in this

case.

8.5 SUMMARY

This chapter discussed the GEEA for generating perturbative heuristics to solve combinatorial op-

timization problems. The new approach took as input four heuristic components, namely solution

components, basic operations, combination operators and move acceptance criteria, and automatically

combined them into a perturbative heuristic. However, the grammar was redesigned and includes

new methods for selecting solution components, conditional constructs, utilizes some information

from the solution space and extends the syntax of the basic actions in order to cover a wider range of

heuristics.

The next chapter presents and discusses the results obtained after applying the two approaches to the

problem instances from the three problems domains discussed in Section 6.4 .

Department of Computer Science
University of Pretoria

91

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 Results and Discussion

9.1 INTRODUCTION

This chapter presents the results obtained after applying the GEBA and GEEA to the benchmark sets

from the three problem domains described in Section 6.4. The results presented here include also

those obtained by the human-derived perturbative heuristics (discussed in Section 6.6) as well as the

perturbative heuristics generated by existing generation perturbative hyper-heuristics (described in

Section 6.7). Section 9.2 presents and discusses the results obtained by the GEBA while section 9.3

presents and discusses the results obtained by the GEEA. The chapter summary is presented in section

9.4.

9.2 RESULTS OF THE GEBA

This section presents the results obtained by applying the GEBA to benchmark sets from the three

problem domains discussed in Section 6.4. In particular, it reports on the objective values of the

solutions obtained after iteratively applying the best perturbative heuristic evolved by the GEBA to the

initial solutions (see Section 6.5) constructed for the benchmark sets. In order to assess the performance

of the approach (using the performance measures described in Section 6.9), the solutions obtained by

the evolved perturbative heuristic are further compared with:

1. The solutions obtained by the human-derived perturbative heuristics (discussed in Section 6.6);

2. The solutions obtained by the perturbative heuristics generated by other generation perturbative

hyper-heuristics in the literature (described in Section 6.7);

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

The statistical significance of the results is evaluated using the non parametric Friedman test with a

post hoc pairwise Finner test with the GEBA used as the control method. The level of significance α

of 0.05 is used for the test.

Please note that both the training and test results are presented in one table to make it easier to compare

the results over all the benchmark instances with other approaches. As mentioned earlier, 50 % of the

instances were used for training and the remaining 50% used for testing. The instances that were used

for training are highlighted in light gray.

9.2.1 Generated perturbative heuristic

This section presents the results obtained by the best perturbative heuristics evolved by the GEBA. The

results presented in Table 9.1, Table 9.2, Table 9.3 and Table 9.4 show the objective values (discussed

in Section 6.4) of the initial solution, solution obtained by the evolved heuristic and percentage

of improvement (∆(%)) of the results. The percentage of improvement (∆(%)) is calculated using

Equation (9.1).

∆(%) =
Initial−bestGE

Initial
% (9.1)

Where bestGE is the objective value of the solution obtained by the evolved heuristic and Initial is the

objective value of the initial solution.

9.2.1.1 Examination timetabling problem

The ITC 2007 benchmark instances were used for this domain. As the benchmark set contains only 12

instances, some of the instances were used for training and others were used for testing. The training

and testing results obtained by the best perturbative heuristic (shown in prefix notation Figure 9.1)

evolved by the GEBA are presented in Table 9.1.

Figure 9.1. Best perturbative heuristic evolved by the GEBA for the ETP

Department of Computer Science
University of Pretoria

93

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

The generated pertubative heuristic shown in Figure 9.1 has combined the swap, move and shuffle

operations to create a composite perturbative heuristic. In the figure, the operation (move 2 exam room)

moves 2 randomly selected exams to new rooms which can accommodate them. The operation (shuffle

2 period) shuffles 2 randomly selected periods which according to the approach used in this research,

whereby a timetable is considered as a table composed of periods as rows and rooms as columns, is

equivalent to randomly moving exams in the two periods to any rooms that can accommodate them

during that period. The operation (swap 2 exam room) randomly swaps the rooms of two exams. The

other operations can be interpreted in a similar manner.

Instance Initial GEBA ∆(%)

1 12980 9120 30

2 1420 1008 29

3 14400 9920 31

4 24042 17840 26

5 5830 4250 27

6 36574 28630 22

7 10630 6810 36

8 15395 10230 34

9 1920 1502 22

10 31080 29001 7

11 46824 44320 5

12 8065 7410 8

The table shows the objective values of the initial solution (Initial) and the solution obtained by the

perturbative heuristic evolved by the GEBA. The highlighted rows show the results for the instances

that were used for training.

Table 9.1. Performance of the best perturbative heuristic evolved by the GEBA on the ITC 2007

benchmark instances

Department of Computer Science
University of Pretoria

94

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

9.2.1.2 Capacitated vehicle routing problem

The Christofides and Golden benchmark sets were used for this domain. As these benchmark sets

contain 14 and 20 instances respectively, some of the instances were used for training and others for

testing. The training and testing results obtained by the best perturbative heuristic (shown in prefix

notation Figure 9.2) evolved by the GEBA are presented in Table 9.2 and Table 9.3.

Figure 9.2. Best perturbative heuristic evolved by the GEBA for the CVRP

The generated pertubative heuristic shown in Figure 9.2 has combined the swap, delete, add, move

and shuffle operations to create a composite perturbative heuristic. In the figure, the operation (delete

2 customer) randomly deletes 2 customers from a randomly selected route. The operation (add 2

customer) reassigns the previously deleted customers to a new randomly selected route where the

customer can be serviced. The operation (shuffle 3 route) randomly selects 3 routes and randomly

shuffles the order in which customers are serviced on the routes. The operation (swap 3.0 customer

route) randomly selects 3 customers on a randomly select route and randomly swaps the order in which

they are serviced on the route. The other operations can also be interpreted in a similar manner.

Department of Computer Science
University of Pretoria

95

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

Instance Initial GEBA ∆(%)

1 885.30 575.20 35

2 1277.20 880.10 31

3 1290.35 870.65 33

4 1680.20 1220 27

5 1770.04 1502.10 15

6 780.20 585.30 25

7 1250.30 1060.4 13

8 1265.02 1100.2 13

9 1500.30 1260.30 16

10 1810.02 1580.6 13

11 1370.50 1098.2 20

12 1100.90 877.01 20

13 1830.40 1600.10 13

14 1100.60 877.03 20

The table shows the objective values of the initial solution (Initial) and the solution obtained by the

perturbative heuristic evolved by the GEBA. The highlighted rows show the results for the instances

that were used for training..

Table 9.2. Performance of the best perturbative heuristic evolved by the GEBA on the Christofides

instances

Department of Computer Science
University of Pretoria

96

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

Instance Initial GEBA ∆(%)

1 7980.20 6200.80 22

2 11920.42 9110.40 24

3 14090.50 12010.3 15

4 18042.70 13540.20 25

5 9830.95 7700.10 22

6 10574.34 9080.65 14

7 12730.01 10980.6 14

8 15995 13740.1 14

9 860.25 685.30 20

10 920.64 810.40 12

11 1280.12 970.10 24

12 1520.95 1220.3 20

13 1100.62 877.20 20

14 1520.04 1160.10 24

15 1900.85 1490.7 22

16 1950.62 1724.2 12

17 950.36 760.8 20

18 1210.10 1120.60 7

19 1890.42 1550.63 18

20 2100.30 1980.4 6

The table shows the objective values of the initial solution (Initial) and the solution obtained by the

perturbative heuristic evolved by the GEBA. The highlighted rows show the results for the instances

that were used for training.

Table 9.3. Performance of the best perturbative heuristic evolved by the GEBA on on the Golden

instances

Department of Computer Science
University of Pretoria

97

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

9.2.1.3 Boolean satisfiability problem

For this problem domain, the 50 and 100 variable uniform random 3-SAT instances were used for

training while the Gottlieb testing suites, namely Suite A and Suite B were used for testing. The

training and testing results obtained by the best perturbative heuristic evolved by the GEBA (shown in

Figure 9.3) are presented in Table 9.4 and Table 9.5 respectively.

Figure 9.3. Best perturbative heuristic evolved by the GEBA for the SAT

The generated pertubative heuristic shown in Figure 9.3 simply swaps(flips) a random variable in a

randomly selected clause.

Benchmark set Initial GEBA ∆(%) # variable flips

uf50 98.20 100 2 599

uf100 97.50 99.20 2 3092

The values for the Initial and GEBA represent the success rate (%).

Table 9.4. Performance of the best perturbative heuristic evolved by the GEBA on on 3-SAT training

instances

Benchmark set Initial GEBA ∆(%) # variable flips

Suite A

40 98.60 100 1.40 1240

50 89.50 93.60 4.10 6230

100 69.30 75.00 5.70 38120

Suite B

50 90.20 94.50 4.30 12630

75 72.60 81.30 8.70 29120

100 54.30 60.70 6.40 30440

The values for the Initial and GEBA represent the success rate (%).

Table 9.5. Performance of the best perturbative heuristic evolved by the GEBA on the Gottlieb testing

instances

Department of Computer Science
University of Pretoria

98

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

9.2.1.4 Discussion of results

From the results presented in Table 9.1, Table 9.2, Table 9.3, Table 9.4 and Table 9.5, it can be seen that

the heuristics generated by the GEBA were able to improve the objective values of the initial solutions

for all the benchmark sets. This demonstrates that the approach is capable of generating heuristics that

improve the quality of the initially obtained solutions which is what perturbative heuristics do. The

next section compares the results presented here and obtained by the best perturbative heuristic evolved

by the GEBA with those obtained by the commonly used human-derived perturbative heuristics.

9.2.2 GEBA vs Human-derived heuristics

In these experiments, the solutions obtained by the best perturbative heuristic evolved by the GEBA

were compared with the solutions obtained by the human-derived perturbative heuristics (described

in Section 6.6). All the human-derived heuristics were specifically implemented, tested and applied

to the same initial solutions that the perturbative heuristic evolved by the GEBA was applied to (see

Section 9.2.1). The performance of each heuristic was determined by repeatedly applying the heuristic

to the initial solution until the objective value of the solution could not be improved any further. The

termination criterion for each run was empirically set to 10 consecutive iterations of non-improvement

after 30 non-improving heuristic application steps [75].

The results obtained by each heuristic after the termination of the run were captured and are presented

in Section 9.2.2.1, Section 9.2.2.2 and Section 9.2.2.3. The Friedman test with the level of significance

α of 0.05 was used to evaluate the statistical significance of the results obtained by each approach.

Whenever the results were found to be significantly different, a posthoc pairwise test using the Finner

method with the GEBA as the control method was carried out to determine which of the approaches

performed differently. To confirm the observed results, a contrast estimation test reflecting the value

of the differences in the objective values of solutions obtained by the different approaches was also

performed.

The next section presents and compares the results obtained by the perturbative heuristic evolved

by the GEBA with those obtained by the human-derived perturbative heuristics on the examination

timetabling problem.

Department of Computer Science
University of Pretoria

99

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

9.2.2.1 Examination timetabling problem

In this section, the results obtained by the perturbative heuristic evolved by the GEBA are compared

with those obtained by the human-derived perturbative heuristics. The ITC 2007 benchmark set was

used for this domain and the human-derived perturbative heuristics considered are represented in

Table 9.6. A comparison of the results obtained by each heuristic is given in Table 9.7 with the

statistical test results presented in Table 9.8, Table 9.9 and Table 9.10.

Heuristic Description

phe1 Moves a randomly selected exam to a new feasible timeslot

phe2 Swaps the timeslots of two randomly selected exams if feasible

phe3 Swaps the exams in two randomly selected timeslots

phe4 Randomly exchanges the timeslots of three randomly selected exams

phe5 Moves the exam causing the highest soft constraint violation to a new feasible timeslot

phe6 Moves two randomly selected exams to new feasible timeslots

phe7 Applies the Kempe chain operator to a randomly selected exam and timeslot

phe8 Moves a randomly selected exam to a new randomly selected room if feasible

phe9 Swaps the rooms of two randomly selected exams if feasible

Table 9.6. Human-derived perturbative heuristics for the examination timetabling problem

Department of Computer Science
University of Pretoria

100

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

Instance GEBA phe1 phe2 phe3 phe4 phe5 phe6 phe7 phe8 phe9

1 9120 10930 11325 12224 11100 11195 12785 11998 12633 12530

2 1008 1195 1130 1210 1140 1205 1310 1210 1132 1250

3 9920 13009 12920 13040 12752 12138 13396 12670 12834 12397

4 17840 22740 21368 22875 21653 21521 21430 20174 21874 20631

5 4250 4874 4710 4900 4784 4590 4889 5074 5034 4995

6 28630 31652 30456 31478 32014 30745 31654 31096 33264 32541

7 6810 10345 10032 10423 11004 10325 10457 10659 10475 10087

8 10230 13036 12524 12952 12420 12352 13470 12785 12987 12210

9 1502 1668 1600 1710 1640 1603 1620 1630 1640 1608

10 29001 29036 29100 29120 29090 29050 29110 29050 29130 29180

11 44320 46095 46100 46020 46090 46070 46060 46025 46032 46001

12 7410 7750 7630 7960 7720 7730 7850 7640 7700 7830

The results show the objective values of the solutions obtained by each heuristic. The best values are

shown in bold.

Table 9.7. Comparison of the performance of the best perturbative heuristic generated by the GEBA

and the human-derived heuristics on ITC 2007 instances

To evaluate the statistical significance of the results presented in Table 9.7, the non-parametric Friedman

test with the post hoc Finner test was carried out. Table 9.8 shows the results of the Friedman’s rank

sum test performed in order to test the first (null) hypothesis which states that all the heuristics perform

equally. The level of significance α of 0.05 was used for the test.

Friedman’s rank sum test

Friedman’s chi-squared 47.554

df 9

p-value 3.094e-07

Table 9.8. Friedman test results for the GEBA and human-derived perturbative heuristics on ITC 2007

instances

From the results obtained in Table 9.8, it can be observed that the p-value (3.094e-07) is less than

the level of significance α of 0.05. This means that there is at least one perturbative heuristic that

Department of Computer Science
University of Pretoria

101

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

performs differently from the rest. As a result, the null hypothesis was rejected and a posthoc pairwise

comparison test using the Finner method with the perturbative heuristic evolved by the GEBA as the

control method was performed. The results for the posthoc test showing the differences in performance

between the approaches are shown in Table 9.9.

phe1 phe2 phe3 phe4 phe5 phe6 phe7 phe8 phe9

GEBA 3.59e-5 1.17e-2 7.83e-7 1.44e-4 1.17e-2 6.22e-7 4.53e-4 1.53e-6 1.82e-4

Table 9.9. P-values for the posthoc pairwise comparison Finner test with the GEBA as the control

method

The results presented in Table 9.9 show that there is a significant difference in the performance of the

perturbative heuristic evolved by the GEBA and all the human-derived perturbative heuristics since

all the obtained p-values are less than the level of significance α of 0.05. To confirm that the GEBA

evolved perturbative heuristic performs better than the human-derived heuristics as can be observed

from Table 9.7, a contrast estimation test based on medians was performed. In this test the performance

of the perturbative heuristics is reflected by the value of the differences in the objective values of

their solutions. A negative value for the heuristic in a given row indicates that the heuristic performs

better than the heuristic in a given column. The results for the contrast estimation test are presented in

Table 9.10.

phe1 phe2 phe3 phe4 phe5 phe6 phe7 phe8 phe9

GEBA -2000.3 -1896.8 -2106.7 -1979.3 -1896.0 -2117.5 -1985.2 -2091.3 -1987.6

Table 9.10. Results for the contrast estimation test on ITC 2007 instances

From the results in Table 9.10, it can be concluded that the perturbative heuristic evolved by the GEBA

performs better than the human-derived heuristics on the ITC 2007 benchmark based on the negative

values obtained with respect to the differences in the objective values of the solutions.

The next section presents the results for the capacitated vehicle routing problem.

Department of Computer Science
University of Pretoria

102

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

9.2.2.2 Capacitated vehicle routing problem

This section presents the results obtained by applying the perturbative heuristic evolved by the GEBA

and the human-derived perturbative heuristics to the Christofides and Golden instances. The human-

derived perturbative heuristics considered for this problem domain are described in Table 9.11. A

comparison of the results obtained by each heuristic is presented in Table 9.12 and Table 9.16. The

statistical test results are given in Table 9.13, Table 9.14 and Table 9.15.

Heuristic Description

phv1 Moves a randomly selected customer to a new feasible route

phv2 Swaps the routes of two randomly selected customers

phv3 Reverses a part of a tour between two selected customers on a randomly selected route

phv4 Randomly exchanges the routes of three randomly selected customers

phv5 Applies the 2-opt operator on a randomly selected route

phv6 Applies the 2-opt operator on all routes

phv7 Swaps the first portions of two randomly selected distinct routes

phv8 Swaps the adjacent customers of two customers selected from two distinct routes

phv9 Swaps the first and last portions of two randomly selected distinct routes

phv10 Move a randomly selected customer to another position in the same route

Table 9.11. Human-derived perturbative heuristics for the capacitated vehicle routing problem

Department of Computer Science
University of Pretoria

103

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

InstanceGEBA phv1 phv2 phv3 phv4 phv5 phv6 phv7 phv8 phv9 phv10

1 575 796 745 790 691 601 599 676 642 651 746

2 880 1128 1096 1115 1057 921 896 987 968 972 1001

3 871 1180 1099 1184 1113 976 924 991 998 1005 1220

4 1220 1523 1345 1515 1426 1301 1296 1347 1387 1452 1326

5 1502 1773 1658 1694 1535 1575 1510 1500 1610 1631 1645

6 585 796 645 663 681 621 595 648 625 632 655

7 1060 1128 1111 1090 1100 1136 1090 1109 1116 1110 1125

8 1100 1180 1099 1125 1127 1191 1096 1105 1135 1121 1107

9 1260 1523 1389 1366 1396 1360 1300 1396 1375 1350 1395

10 1581 1773 1648 1694 1675 1624 1610 1645 1620 1647 1631

11 1098 1305 1210 1198 1146 1120 1100 1214 1186 1191 1263

12 877 950 910 911 900 900 901 936 915 926 925

13 1600 1626 1640 1681 1646 1630 1607 1646 1641 1634 1632

14 877 950 921 900 902 896 891 900 896 910 916

The results show the objective values of the solutions obtained by each heuristic. The best values are

shown in bold.

Table 9.12. Comparison of the performance of the best perturbative heuristic generated by the GEBA

and the human-derived heuristics on Christofides instances

As in Section 9.2.2.1, the non-parametric Friedman test with the post hoc Finner test was used to

evaluate the statistical significance of the results presented in Table 9.12. The results for Friedman’s

rank sum test as performed in order to test the first (null) hypothesis are presented in Table 9.13.

Friedman’s rank sum test

Friedman’s chi-squared 84.38

df 10

p-value 6.917e-14

Table 9.13. Friedman test results for the GEBA and human-derived perturbative heuristics on Chris-

tofides instances

Department of Computer Science
University of Pretoria

104

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

From the results in Table 9.13, it can be seen that the p-value of 6.917e-14 is significantly less than the

level of significance α of 0.05 adopted for the test which indicates that there is a significant difference

in the performance of the heuristics. As explained earlier, the Friedman test does not show which

heuristics perform differently and therefore a posthoc pairwise test using the Finner method with the

heuristic evolved by the GEBA as the control was performed. The results of the posthoc test are shown

in Table 9.14.

phv1 phv2 phv3 phv4 phv5 phv6 phv7 phv8 phv9 phv10

5.40e-11 1.33e-6 1.38e-7 2.55e-6 1.46e-2 2.92e-1 1.12e-5 2.37e-4 2.42e-5 1.38e-7

Table 9.14. P-values for the posthoc pairwise comparison Finner test with the GEBA as the control

method

The results in Table 9.14 show that there is a significant difference in the performance of the perturbative

heuristic evolved by the GEBA and most of the human-derived heuristics apart from phv6 (p-value =

0.29). In order to determine which of the two perturbative heuristics performs better than the other, a

contrast estimation test based on medians was used. The results for the contrast estimation test are

presented in Table 9.15.

phv1 phv2 phv3 phv4 phv5 phv6 phv7 phv8 phv9 phv10

GEBA -192.5 -96.2 -116.4 -92.8 -55.4 -36.7 -85.1 -72.6 -80.4 -101.8

Table 9.15. Results for the contrast estimation test on Christofides instances

From the results obtained in Table 9.15, it can be concluded that the perturbative heuristic evolved by

the GEBA performs better than the human-derived phv6 heuristic since the value of the difference in

the objective value of the solutions obtained by the GEBA generated heuristic and phv6 is -36.7 which

is negative. In addition, the other results from Table 9.15 show negative values for the difference in

the objective value of the solutions obtained by the heuristics. It can therefore be concluded that the

perturbative heuristic evolved by the GEBA performs better than the human-derived heuristic on the

Christofides instances.

Apart from the Christofides benchmark set, the performance of the perturbative heuristics was also

evaluated on the Golden benchmark set. The objective values of the solutions obtained by each heuristic

are presented in Table 9.16.

Department of Computer Science
University of Pretoria

105

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

InstanceGEBA phv1 phv2 phv3 phv4 phv5 phv6 phv7 phv8 phv9 phv10

1 6841 8745 7796 7106 7806 7101 7040 7450 7651 8146 8215

2 11751 14708 15696 12570 12956 12456 12226 12645 12965 13010 13000

3 15220 23351 22876 17683 18101 16988 16451 17980 18452 18895 18975

4 18011 34100 26954 24561 25301 23961 22076 23985 23874 25654 26786

5 9651 11900 12005 13451 15011 11520 10991 12321 12450 12624 12524

6 11645 15087 14635 15069 14529 13991 13766 14156 14231 15001 15075

7 17566 21443 21875 21687 19894 20795 19735 20946 20654 21110 21452

8 15200 23879 22915 23960 23357 22126 21985 23784 22965 23785 23651

9 610 989 915 912 874 840 830 921 981 996 962

10 795 1314 1246 1280 1251 1055 991 1053 1150 1257 1351

11 951 1596 1266 1206 1272 1161 1095 1165 1106 1245 1426

12 1591 2016 2050 2067 2001 2051 1950 2065 2058 2043 2055

13 871 1244 1190 1152 1166 1075 1063 1068 1206 1102 1101

14 1400 2904 2003 2626 2145 2695 2562 2201 2910 2001 2966

15 1451 8575 5987 5765 4966 4165 3125 5123 5280 5246 5678

16 2195 2411 2686 2600 2521 2341 2286 2415 2635 2765 2832

17 750 811 835 865 801 875 866 847 895 842 889

18 1085 1636 1256 1190 1206 1156 1126 1164 1125 1155 1197

19 1501 1765 1675 1624 1651 1682 1600 1665 1666 1642 1725

20 1969 2385 2563 2451 2163 2210 2169 2398 2195 2005 2397

phv1 - phv10 are the human derived heuristics (see Table 9.11). The best values are shown in bold.

Table 9.16. Comparison of the performance of the best perturbative heuristic generated by the GEBA

and the human-derived heuristics on Golden instances

The non-parametric Friedman test with the post hoc Finner test was also used to evaluate the statistical

significance of the results presented in Table 9.16. The results for Friedman’s rank sum test performed

Department of Computer Science
University of Pretoria

106

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

in order to test the first (null) hypothesis are presented in Table 9.17.

Friedman’s rank sum test

Friedman’s chi-squared 110.62

df 10

p-value 2.2e-16

Table 9.17. Friedman test results for the GEBA and human-derived perturbative heuristics on Chris-

tofides instances

From the results in Table 9.17, it can be seen that the p-value of 2.2e-16 is significantly less than the

level of significance α of 0.05 which indicates that there is a significant difference in the performance

of the heuristics. A posthoc pairwise test using the Finner method with the GEBA evolved heuristic as

the control method was therefore performed to show which heuristics perform differently. The results

of the posthoc test are shown in Table 9.18.

phv1 phv2 phv3 phv4 phv5 phv6 phv7 phv8 phv9 phv10

4.9e-13 4.1e-10 4.7e-9 5.4e-6 6.7e-4 1.2e-1 9.3e-6 2.6e-7 4.9e-8 4.9e-13

Table 9.18. P-values for the posthoc pairwise comparison Finner test with the GEBA as the control

method

From Table 9.18, it can be seen that there is a significant difference in the performance of the

perturbative heuristic evolved by the GEBA and most of the human-derived heuristics apart from phv6

(p-value = 0.12). In order to determine which of the two perturbative heuristics performs better than

the other, a contrast estimation test based on medians was performed. In this test, a negative value for

the heuristic in a given row indicates that the heuristic performs better than the heuristic in a given

column. The results for the contrast estimation test are presented in Table 9.19.

phv1 phv2 phv3 phv4 phv5 phv6 phv7 phv8 phv9 phv10

GEBA -873.0 -700.0 -639.9 -583.3 -420.9 -322.2 -530.6 -596.7 -655.5 -792.9

Table 9.19. Results for the contrast estimation test on Golden instances

From the results in Table 9.19, the value of the difference in the objective value of the solutions obtained

by the GEBA generated heuristic and phv6 is -322.2. Since this value is negative, it can be concluded

Department of Computer Science
University of Pretoria

107

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

that the perturbative heuristic evolved by the GEBA performs better than the human-derived phv6

heuristic. In addition, the other results from Table 9.19 also show negative values for the difference in

the objective value of the solutions obtained by the heuristics. It can therefore be concluded that the

perturbative heuristic evolved by the GEBA performs better than the human-derived heuristic on the

Golden instances.

The next section presents the results obtained by the perturbative heuristic evolved by the GEBA

and the human-derived perturbative heuristics on benchmark sets for the the boolean satisfiability

problem.

9.2.2.3 Boolean satisfiability problem

This section presents the results obtained by applying the perturbative heuristic evolved by the GEBA

and the human-derived perturbative heuristics to Gottlieb SAT benchmark sets for the boolean satis-

fiability problem. The human-derived perturbative heuristics considered for the Boolean satisfiability

problem are described in Table 9.20. A comparison of the results obtained by the heuristics is presented

in Table 9.21. The statistical test results are given in Table 9.22.

Department of Computer Science
University of Pretoria

108

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

Heuristic Description

GWSAT(p) Flips a random variable with the highest net gain in a randomly selected unsat-

isfied clause with some probability p. The net gain of a variable is number of

clauses that remain unsatisfied in the boolean expression when the variable is

flipped. If two or more variables have the same net gain, the ties are randomly

broken.

Walksat(p) Selects a random unsatisfied clause and randomly flips any variable with a net

gain of 0 in the clause. Otherwise it uses some probability p to select a random

variable to flip from the clause.

Novelty+(p,pw) Selects a random unsatisfied clause and with a probability pw selects a random

variable to flip. Otherwise, it flips the variable with the maximal net gain unless

the variable has a minimal age. The age of the variable is the number of other

variable flips that have occurred since the variable was last flipped. If the variable

has minimal age in the unsatisfied clause, then the variable is selected for flipping

with probability (1-p).

Table 9.20. Human-derived perturbative heuristics for the SAT problem

Department of Computer Science
University of Pretoria

109

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

Benchmark set GEBA GWSAT(0.5) WalkSAT(0.5) Novelty+(0.7, 0.01)

SR(%) AF SR(%) AF SR(%) AF SR(%) AF

Suite A

40 100 1240 100 6062 100 2604 100 1767

50 93.60 6230 90.33 31295 99.67 22219 100 3061

100 75.00 38120 71.00 10104 81.00 24855 90.0 33148

Suite B

50 94.50 12630 89.56 20841 94.4 18609 96.64 13783

75 81.30 29120 71.74 28584 82.48 32939 89.3 25833

100 60.70 30440 56.6 17704 59.16 21824 65.8 24655

SR is the success rate and AF is the average number of flips to solution. The values for the success

rate and number of flips as well as the parameter values for GWSAT, WalkSAT and Novelty+ were

obtained from [35]. The best results are shown in bold.

Table 9.21. Comparison of the performance of the best perturbative heuristic generated by the GEBA

and the human-derived heuristics on Gottlieb SAT instances

The non-parametric Friedman test with the post hoc Finner test was also used to evaluate the statistical

significance of the results presented in Table 9.21. The results for Friedman’s rank sum test performed

in order to test the first (null) hypothesis which states that all the heuristics perform equally are

presented in Table 9.22.

Friedman’s rank sum test

Friedman’s chi-squared 13.56

df 3

p-value 0.00357

Table 9.22. Friedman test results for the GEBA and human-derived perturbative heuristics on Gottlieb

SAT instances

From Table 9.22, it can be seen that the p-value of 0.00357 is less than the level of significance α of

0.05 adopted for the test. This indicates that there is at least one heuristic that performs differently.

The null hypothesis was therefore rejected and the pairwise posthoc finner test with the GEBA as the

control method was performed in order to show which heuristics perform differently. The results of

the finner test are presented in Table 9.23.

Department of Computer Science
University of Pretoria

110

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

GWSAT(0.5) WalkSAT(0.5) Novelty+(0.7, 0.01)

GEBA 0.2050463 0.8230633 0.2050463

Table 9.23. P-values for the posthoc pairwise comparison Finner test with the GEBA as the control

method

The pairwise finner test results in Table 9.23 shows that there is no significant difference between the

GEBA and the human-derived heuristics. It is therefore not possible to determine how the performance

of the perturbative heuristic evolved by the GEBA compares to that of the human-derived perturbative

heuristics using the Finner test. A contrast estimation test based on medians was therefore carried out.

The results of the contrast estimation test are presented in Table 9.24.

GWSAT(0.5) WalkSAT(0.5) Novelty+(0.7, 0.01)

GEBA -4.57125 1.38250 5.47875

Table 9.24. Results for the contrast estimation test on Gottlieb SAT instances

From Table 9.24, it can be seen that the GEBA perform better than GWSAT but is outperformed by

both WalkSAT and Novelty+. As mentioned earlier, this poor performance can be attributed to the fact

the GEBA is a basic approach which incorporates only minimal domain knowledge when searching

for perturbative heuristics. As a result, the perturbative heuristic evolved is not expected to compete

with the best performing heuristics.

The next section compares the GEBA to other existing hyper-heuristics.

9.2.3 GEBA vs Other Hyper-heuristics

This section compares the results obtained by the GEBA to existing hyper-heuristics in the literature.

Suffice to mention here that there have been very few works in the literature that have applied generation

perturbative hyper-heuristics to the problem domains investigated in this research. As a result, the

GEBA is also compared to some of the best performing selection perturbative hyper-heuristics. A

description of the hyper-heuristics considered for each problem domain is presented in the respective

sections. The next section presents the results obtained by the hyper-heuristics on the ITC 2007

benchmark set for the examination timetabling problem.

Department of Computer Science
University of Pretoria

111

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

9.2.3.1 Examination timetabling problem

As mentioned in Section 6.7, most hyper-heuristics that have been applied to the examination time-

tabling problem have been constructive hyper-heuristics. The GE-HH by Sabar et al.[40] is the only

generation hyper-heuristic that has been applied to the ITC2007 benchmark. For this reason, the GEBA

is also compared to some of the best performing selection perturbative hyper-heuristics in the literature.

The hyper-heuristics considered for the ITC2007 benchmark set are described in Table 9.25. The

results obtained by the approaches are presented in Table 9.26 with the statistical test results given in

Table 9.27, Table 9.28 and Table 9.29.

Hyper-heuristic Description

ETP-HH1 A generation perturbative hyper-heuristic proposed by Sabar et al. [40].

ETP-HH2 A selection perturbative hyper-heuristic proposed by Swan et al. [63].

ETP-HH3 A selection perturbative hyper-heuristic proposed by Burke et al. [64].

ETP-HH4 A selection perturbative hyper-heuristic proposed by Anwar et al. [65].

Table 9.25. Selected hyper-heuristics for the examination timetabling problem

Department of Computer Science
University of Pretoria

112

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

Instance GEBA ETP-HH1 ETP-HH2 ETP-HH3 ETP-HH4

1 9120 4362 5875 6235 11823

2 1008 380 893 2974 976

3 9920 8991 13352 15832 26770

4 17840 15094 24174 35106 —

5 4250 2912 4734 4873 6772

6 28630 25735 27510 31756 30980

7 6810 4025 5731 11562 11762

8 10230 7452 9507 20994 16286

9 1502 1111 — — —

10 29001 14825 — — —

11 44320 28891 — — —

12 7410 6181 — — —

The comparison is between the objective values for the best solutions obtained for each approach. The

best values are shown in bold. "—" indicates that the values were not provided or a feasible solution

was not obtained.

Table 9.26. Comparison of the performance of the GEBA and other HHs on ITC 2007 instances

The Friedman test was used to evaluate the statistical significance of the results presented in Table 9.26.

The level of significance α of 0.05 was adopted for the test and the results of this test are presented in

Table 9.27.

Friedman’s rank sum test

Friedman’s chi-squared 22.97

df 4

p-value 0.0001283

Table 9.27. Friedman test results for the GEBA and other hyper-heuristics on ITC 2007 instances

From the results obtained in Table 9.27, the p-value (0.0001283) is less than the level of significance α

of 0.05. This denotes that there is at least one approach that performs differently from the rest. As

a result, the null hypothesis was rejected and a posthoc pairwise comparison test using the Finner

method with the GEBA as the control method was performed. The results for the posthoc Finner test

Department of Computer Science
University of Pretoria

113

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

showing the differences in performance between the GEBA and other hyper-heuristics are shown in

Table 9.28.

ETP-HH1 ETP-HH2 ETP-HH3 ETP-HH4

GEBA 0.04449193 0.2279483 0.897279 0.3804785

Table 9.28. P-values for the posthoc pairwise Finner test with the GEBA as the control method

The results presented in Table 9.28 show that there is a significant difference in the performance

of the GEBA and ETP-HH1 (p-value = 0.04449193). There is however no significant difference in

the performance of the GEBA and the remaining hyper-heuristics as can be seen from the p-values

which are greater than the level of significance α of 0.05. Although the finner test shows which

approaches perform differently, it is not possible to determine from the results whether the GEBA

performs better than the other hyper-heuristics or not. To show the best approach among the five, the

constrast estimation method based on medians was used. In this test the performance of the heuristics

is reflected by the value of the differences in the objective values of their solutions and a negative value

for the heuristic in a given row indicates that the heuristic performs better than the heuristic in a given

column. The results for the contrast estimation test are presented in Table 9.29.

ETP-HH1 ETP-HH2 ETP-HH3 ETP-HH4

GEBA 2558.375 306.375 -3622.750 -5120.320

Table 9.29. P-values for the posthoc pairwise Finner test with the GEBA as the control method

From Table 9.29, it can be concluded that the GEBA performs better than ETP-HH3 and ETP-HH4.

The other hyper-heuristics, namely ETP-HH1 and ETP-HH2 perform better. This performance by the

GEBA can be attributed to the fact the perturbative heuristic evolved by the GEBA is applied as it is

with no optimization as is the case for ETP-HH1 and ETP-HH2. In addition, the GEBA is a baseline

approach that uses minimum domain information to search for the best heuristics. As a result, it is not

expected to find the best performing perturbative heuristic.

The next section presents the results for the capacitated vehicle routing problem.

Department of Computer Science
University of Pretoria

114

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

9.2.3.2 Capacitated vehicle routing problem

This section compares the results obtained by the GEBA and other perturbative hyper-heuristics on the

Christofides and Golden instances for the capacitated vehicle routing problem. The hyper- heuristics

considered for the benchmark sets are described in Table 9.30. The results obtained by each approach

are presented in Table 9.31 and Table 9.33. The Friedman test was used to evaluate the statistical

significance of the results. The level of significance α of 0.05 was adopted for the test and the results

of the statistical test are presented in Table 9.32 and Table 9.34.

Hyper-heuristic Description

CVRP-HH1 A generation perturbative hyper-heuristic proposed by Sabar et al. [40].

CVRP-HH2 A selection perturbative hyper-heuristic proposed by Garrido et al. [66].

CVRP-HH3 A selection perturbative hyper-heuristic proposed by Meignan et al. [67].

CVRP-HH4 A selection perturbative hyper-heuristic proposed by Pisinger et al. [76].

Table 9.30. Selected hyper-heuristics for the vehicle routing problem

Department of Computer Science
University of Pretoria

115

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

Instance GEBA CVRP-HH1 CVRP-HH2 CVRP-HH3

1 0.00 0.00 0.00 0.00

2 0.51 0.00 0.05 0.62

3 2.25 0.00 0.21 0.42

4 1.54 0.11 0.52 2.05

5 2.08 1.33 2.05 5.07

6 0 0.00 0.00 —

7 0.39 0.00 0.09 —

8 0.28 0.00 0.00 —

9 0.81 0.20 0.70 —

10 0.60 0.53 1.24 —

11 0.07 0.00 0.88 0.00

12 1.43 0.00 0.00 —

13 1.03 1.90 1.00 0.00

14 0.31 0.00 0.00 —

The values represent the percentage deviation from the best known results in the literature. The best

values are shown in bold. "—" indicates that the values were not provided or a feasible solution was

not obtained.

Table 9.31. Comparison of the performance of the GEBA and other HHs on Christofides instances

Friedman’s rank sum test

Friedman’s chi-squared 5.44

df 3

p-value 0.1422

Table 9.32. Friedman test results for the GEBA and other hyper-heuristics on Christofides instances

From Table 9.32, it can be seen that the p-value of 0.1422 is greater than the level of significance α of

0.05 adopted for the test which indicates that there is not enough evidence to conclude that there is a

significant difference in the performance of the heuristics. As a result, the null hypothesis which states

that the perturbative heuristics perform equally cannot be rejected.

Department of Computer Science
University of Pretoria

116

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

Instance GEBA CVRP-HH1 CVRP-HH4

1 7900.20 5626.81 5650,91

2 12110.40 8446.19 8469,32

3 16010.30 11081.60 11047,01

4 18540.20 13658.84 13635,31

5 9830.10 6460.98 6466,68

6 12080.65 8462.10 8416,13

7 17980.60 10202.24 10181,75

8 15740.10 11690.82 11713,62

9 685.30 583.39 585,14

10 910.40 740.91 748,89

11 970.10 919.80 922,7

12 1820.30 1111.43 1119,06

13 877.20 857.19 864,68

14 1460.10 1083.59 1095,4

15 1490.70 1350.17 1359,94

16 2604.20 1631.91 1639,11

17 760.80 707.76 708,9

18 1120.60 1003.43 1002,42

19 1550.63 1368.12 1374,24

20 2080.40 1820.09 1830,8

The comparison is between the best values obtained for each approach. The best values are shown in

bold.

Table 9.33. Comparison of the performance of the GEBA and other HHs on Golden Instances

Friedman’s rank sum test

Friedman’s chi-squared 32.5

df 2

p-value 8.764e-08

Table 9.34. Friedman test results for the GEBA and other hyper-heuristics on Golden instances

Department of Computer Science
University of Pretoria

117

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

From Table 9.34, it can be seen that the p-value of 8.764e-08 is significantly less than the level of

significance α of 0.05 adopted for the test which indicates that there is a significant difference in the

performance of the approaches. A posthoc pairwise test using the Finner method with the GEBA as the

control method was therefore performed to show which approaches perform differently. The results of

the test are shown in Table 9.35.

CVRP-HH1 CVRP-HH4

GEBA 3.13e-08 7.72e-05

Table 9.35. P-values for the posthoc pairwise comparison Finner test with the GEBA as the control

method

From Table 9.35, it can be seen that there is a significant difference, based on the p-values, in the

performance of the GEBA and the other hyper-heuristics, namely CVRP-HH1 and CVRP-HH4. To

determine the best approach among the three approaches, a contrast estimation method based on

medians was also used. The results for the contrast estimation test are presented in Table 9.36.

CVRP-HH1 CVRP-HH4

GEBA 541.67 533.99

Table 9.36. Results for the constrast estimation test on Golden instances

From Table 9.36, the value of the difference in the objective value of the solutions obtained by the

GEBA generated heuristic and other hyper-heuristics are all positive. This indicates that the two hyper-

heuristic approaches, namely CVRP-HH1 and CVRP-HH4 perform better than the GEBA. The poor

performance by the GEBA can be attributed to the fact that the GEBA is a baseline approach which uses

minimum domain information when searching for perturbative heuristics. For this reason, the approach

is not expected to find heuristics capable of outperforming state of the art hyper-heuristic approaches.

In addition, the heuristics evolved by the GEBA are applied as they are with no optimization and this

has an effect on the quality of results obtained by the heuristic.

The next section presents and compares the results obtained by the GEBA and other hyper-heuristic

approaches on the boolean satisfiability problem.

Department of Computer Science
University of Pretoria

118

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

9.2.3.3 Boolean satisfiability problem

This section compares the results obtained by the GEBA and other generation perturbative hyper-

heuristics on the uniform random 3-SAT instances for the boolean satisfiability problem. The gen-

eration perturbative hyper-heuristics considered for this domain are presented in Table 9.37. The

results obtained by each approach are presented in Table 9.38 with the statistical test results given in

Table 9.39.

Hyper-heuristic Description

SAT-HH1 A generation perturbative hyper-heuristic proposed by

Bader and Poli [49].

SAT-HH2 A generation perturbative hyper-heuristic proposed by

Fukunanga [35].

Table 9.37. Selected generation perturbative hyper-heuristics for the boolean satisfiability problem

Benchmark set GEBA SAT-HH1 SAT-HH2

SR(%) AF SR(%) AF SR(%) AF

Suite A

40 100 1240 — — 100 538

50 93.60 6230 100 12872 100 3416

100 75.00 38120 92.00 54257 100 20754

Suite B

50 94.50 12630 100.00 18936 99.38 6590

75 81.30 29120 95.00 26571 98.48 19791

100 60.70 30440 74.00 41284 78.8 39909

The comparison is between the best values for the success rate for each approach.

The best values are shown in bold. "—" indicates that the values were not

provided.

Table 9.38. Comparison of the performance of the GEBA and other generation perturbative hyper-

heuristics on Gottlieb SAT instances

Department of Computer Science
University of Pretoria

119

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

Friedman’s rank sum test

Friedman’s chi-squared 8.3158

df 2

p-value 0.01564

Table 9.39. Friedman test results for the GEBA and human-derived perturbative heuristics on Gottlieb

SAT instances

From Table 9.39, the p-value of 0.01564 which is less than the level of significance α of 0.05 indicates

that there is at least one approach that performs differently. The null hypothesis was therefore

rejected and the pairwise posthoc finner test with the GEBA as the control method was performed

in order to show which heuristics perform differently. The results of the finner test are presented in

Table 9.40.

SAT-HH1 SAT-HH2

GEBA 0.03983262 0.007189517

Table 9.40. P-values for the posthoc pairwise comparison Finner test with the GEBA as the control

method

The pairwise finner test results in Table 9.40 shows that there is a significant difference in performance

between the GEBA and the two other hyper-heuristics, namely SAT-HH1 and SAT-HH2. It is however

not possible to determine which approach is the best among the three using this test. For this reason, a

contrast estimation test based on medians was carried out. The results of the contrast estimation test

are presented in Table 9.41.

SAT-HH1 SAT-HH2

GEBA 13.433333 17.046667

Table 9.41. Results for the constrast estimation test on Gottlieb instances

From Table 9.41, it can be seen that the GEBA is outperformmed by both the SAT-HH1 and SAT-HH2

hyper-heuristics. This poor performance can also be attributed to the fact the GEBA is a basic approach

which incorporates only minimal domain knowledge when searching for perturbative heuristics. As a

result, the perturbative heuristic evolved is not expected to compete with the best performing hyper-

heuristics.

Department of Computer Science
University of Pretoria

120

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

The next section presents the results for the grammatical evolution extended approach (GEEA) which

is considered as an improvement to the GEBA.

9.3 RESULTS OF THE GEEA

This section presents the results of applying the GEEA to benchmark sets from the three problem

domains discussed in Section 6.4. GEEA is an improvement on GEBA.

9.3.1 Generated perturbative heuristics

The results presented in Table 9.42, Table 9.43, Table 9.44 and Table 9.45 show the objective values

(discussed in Section 6.4) of the initial solution, solution obtained by the best GEEA generated heuristic

and percentage of improvement (∆(%)) of the results (calculated using Equation (9.2)).

∆(%) =
Initial−bestGE

Initial
% (9.2)

Where bestGE is the objective value of the solution obtained by the best heuristic generated by the

GEEA and Initial is the objective value of the initial solution.

9.3.1.1 Examination timetabling problem

The best perturbative heuristic evolved by the GEEA for the examination timetabling problem is shown

in Figure 9.4.

Figure 9.4. Best perturbative heuristic evolved by the GEEA for the ETP

The generated pertubative heuristic shown in Figure 9.4 has combined the swap, move and shuffle

operations to create a composite perturbative heuristic. The interpretation of the operations is similar

Department of Computer Science
University of Pretoria

121

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

to the one discussed for the GEBA in Section 9.2.1. For example, in the figure, the operation (move 5.0

highestCost(exam)) moves 5 exams contributing the highest cost to the objective value of the solution

to new periods or rooms which can accommodate them. The operation (shuffle 1.0 random(period))

shuffles 1 randomly selected period which according to the approach used in this research, whereby a

timetable is considered as a table composed of periods as rows and rooms as columns, is equivalent to

randomly moving the exams in the period to any room that can accommodate them during that period.

The other operations can be interpreted in a similar manner.

Instance Initial GEEA ∆(%)

1 7870 4901 37.73

2 620 476 23.22

3 12780 9064 29.08

4 20042 16432 18.01

5 5400 3432 36.44

6 30620 26577 13.20

7 8800 5434 38.25

8 10530 7820 25.74

9 1780 1140 35.95

10 24350 20958 13.93

11 42130 39420 6.43

12 7840 6354 18.95

Table 9.42. Performance of the best GEEA generated heuristic on ITC 2007 instances. The highlighted

rows show the results for the instances that were used for training.

9.3.1.2 Capacitated vehicle routing problem

The best perturbative heuristic evolved by the GEEA for the capacitated vehicle routing problem is

shown in Figure 9.5.

Department of Computer Science
University of Pretoria

122

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

Figure 9.5. Best perturbative heuristic evolved by the GEEA for the CVRP

In a similar manner as the composite heuristic discussed in Figure 9.4, the generated pertubative

heuristic shown in Figure 9.5 has combined the swap, move, delete, add and shuffle operations to create

yet another composite perturbative heuristic. The interpretation of the operations is also similar. For

example, in the figure, the operation move 3.0 highestCost(customer) moves 3 customers contributing

the highest cost to objective value of the solution to new routes or new locations within the same

route where they are currently assigned. The operation (swap 2.0 random(customer)) selects 2 random

customers and swaps their locations. The operation (delete 2.0 highestCost(customer)) deletes 2

customers causing the highest increase in the overall cost of the solution. The other operations can be

interpreted in a similar manner.

Department of Computer Science
University of Pretoria

123

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

Instance Initial GEEA ∆(%)

1 785.30 524.61 33.20

2 1277.20 839.52 34.26

3 1290.35 844.72 34.53

4 1680.20 1044.28 37.84

5 1770.04 1318.25 25.52

6 780.20 555.43 28.80

7 1250.30 913.22 26.96

8 1265.02 868.35 31.35

9 1500.30 1172.74 21.83

10 1810.02 1404.30 22.42

11 1370.50 1042.87 23.91

12 1100.90 831.29 24.49

13 1830.40 1556.94 14.94

14 1100.60 869.04 21.03

Table 9.43. Performance of the best GEEA generated heuristic on Christofides instances. The high-

lighted rows show the results for the instances that were used for training.

Department of Computer Science
University of Pretoria

124

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

Instance Initial GEEA ∆(%)

1 7980.20 5761.06 27.81

2 11920.42 8601.05 27.84

3 14090.50 11307.28 19.75

4 18042.70 14007.31 22.37

5 9830.95 6707.84 31.77

6 10574.34 8700.49 17.72

7 12730.01 10253.17 19.46

8 15995 11754.68 26.51

9 860.25 584.30 32.08

10 920.64 740.34 19.58

11 1280.12 921.22 28.04

12 1520.95 1114.13 26.75

13 1100.62 858.50 22.00

14 1520.04 1000.19 34.20

15 1900.85 1352.17 28.87

16 1950.62 1641.18 15.83

17 950.36 708.80 25.60

18 1210.10 1001.66 17.23

19 1890.42 1369.19 27.89

20 2100.30 1822.65 13.21

Table 9.44. Performance of the best GEEA generated heuristic on Golden instances. The highlighted

rows show the results for the instances that were used for training.

9.3.1.3 Boolean satisfiability problem

The best perturbative heuristic evolved by the GEEA for the examination timetabling problem is shown

in Figure 9.6.

Department of Computer Science
University of Pretoria

125

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

Figure 9.6. Best perturbative heuristic evolved by the GEEA for the SAT

The generated pertubative heuristic shown in Figure 9.6 generates a decision rule. The interpretation

of the rule is that whenever the objective value of the previous solution is greater than the objective

value of the current solution, swap (flip) the variable with the highest cost (i.e. net gain) otherwise

swap(flip) the variable with the lowest cost.

Benchmark set Initial GEEA ∆(%) # variable flips

uf50 97.40 100 2.60 460

uf100 97.10 100 2.90 2700

The values for the Initial and GEEA represent the success rate (%).

Table 9.45. Performance of the best GEEA generated heuristic on 3-SAT training instances

Benchmark set Initial GEEA ∆(%) # variable flips

Suite A

40 98.20 100 1.80 1080

50 88.60 98.20 9.60 4320

100 79.40 89.00 9.50 32040

Suite B

50 92.20 97.30 5.10 10520

75 75.80 89.40 13.60 26530

100 57.50 73.50 16.00 28102

The values for the Initial and GEEA represent the success rate (%).

Table 9.46. Performance of the best GEEA generated heuristic on Gottlieb testing instances

9.3.1.4 Discussion of results

From the results presented in Table 9.42, Table 9.43, Table 9.44, Table 9.45 and Table 9.46, it can

be seen that the heuristics generated by the GEEA, just like those generated by GEBA, were able to

improve the objective values of the initial solutions for all the benchmark sets. This demonstrates that

Department of Computer Science
University of Pretoria

126

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

the GEEA is equally capable of generating heuristics that improve the quality of the initially obtained

solutions. And this is what perturbative heuristics do. The next section compares the results presented

here with those obtained by the GEBA.

9.3.2 GEEA vs GEBA

This section presents a comparison of the results obtained by the best perturbative heuristics generated

by the GEEA and GEBA. For comparison purposes, the two approaches were applied to the same initial

solutions. The results obtained by each approach including the statistical test results are presented in

Section 9.3.2.1, Section 9.3.2.2 and Section 9.3.2.3.

9.3.2.1 Examination timetabling problem

In this section, the results obtained by GEEA are compared with those obtained by GEBA on the

examination timetabling problem. As in the first approach, the ITC 2007 benchmark set is used.

Table 9.47 shows a comparison of the results.

Department of Computer Science
University of Pretoria

127

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

Instance Initial GEBA GEEA ∆(%)

1 7870 6250 4901 21.58

2 620 574 476 17.07

3 12780 10650 9064 14.89

4 20042 18020 16432 8.81

5 5400 4800 3432 28.50

6 30620 28440 26577 6.55

7 8800 6910 5434 21.36

8 10530 8200 7820 4.63

9 1780 1420 1140 19.72

10 24350 21990 20958 4.69

11 42130 41770 39420 5.63

12 7840 7100 6354 10.51

∆(%) is the percentage of improvement in the objective values of the solutions obtained by GEEA

over those obtained by GEBA. The best objective values are shown in bold.

Table 9.47. Comparison of the performance of the best GEBA and GEEA generated perturbative

heuristic on ITC 2007 instances

To evaluate the statistical significance of the results obtained in Table 9.47, the Wilcoxon signed rank

test was carried out. The level of significance α of 0.05 was used for the test. Table 9.48 shows the

results of the statistical test.

Wilcoxon signed rank test

V 78

p-value 0.002218

Table 9.48. Wilcoxon test results comparing the performance of the GEBA and GEEA on ITC 2007

instances

From the results in Table 9.48, the p-value of 0.002218 is less than level of significance α of 0.05

adopted for the test. This means that the null hypothesis which states that the performance of the

GEBA and GEEA is the same can be rejected and the alternative hypothesis accepted. And based on

Department of Computer Science
University of Pretoria

128

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

the results in Table 9.47, it can therefore be concluded that GEEA outperforms GEBA on the ITC 2007

benchmark set.

The next section compares the performance of the GEBA and GEEA on some benchmark instances

from the capacitated vehicle routing problem domain.

9.3.2.2 Capacitated vehicle routing problem

Instance Initial GEBA GEEA ∆(%)

1 785.30 575.20 524.61 8.80

2 1277.20 880.10 839.52 4.61

3 1290.35 870.65 844.72 2.98

4 1680.20 1220 1044.28 14.40

5 1770.04 1502.10 1318.25 12.24

6 780.20 585.0 555.43 5.10

7 1250.30 1060.40 913.22 13.88

8 1265.02 1100.20 868.35 21.07

9 1500.30 1260 1172.74 6.93

10 1810.02 1580.60 1404.30 11.15

11 1370.50 1098.20 1042.87 5.04

12 1100.90 877.1 831.29 5.21

13 1830.40 1600.10 1556.94 2.70

14 1100.60 877.03 869.04 0.91

∆(%) is the percentage of improvement in the objective values of the solutions obtained by GEEA

over those obtained by GEBA. The best objective values are shown in bold.

Table 9.49. Comparison of the performance of the best GEBA and GEEA generated perturbative

heuristic on Christofides instances

The Wilcoxon signed rank test was used to evaluate the statistical significance of the results obtained

in Table 9.49. The level of significance α of 0.05 was adopted for the test. Table 9.50 shows the results

Department of Computer Science
University of Pretoria

129

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

of the statistical test.

Wilcoxon signed rank test

V 105

p-value 0.0009815

Table 9.50. Wilcoxon test results comparing the performance of the GEBA and GEEA on Christofides

instances

From the results in Table 9.50, the p-value of 0.0009815 is less than level of significance α of 0.05

adopted for the test. This means that the null hypothesis which states that the performance of the GEBA

and GEEA is the same can be rejected and the alternative hypothesis accepted. And based on the

results in Table 9.49, it can therefore be concluded that GEEA outperforms GEBA on the Christofides

instances.

Apart from the Christofides instances, both GEBA and GEEA were applied to the Golden instances.

The results showing the performance of the two approaches on the Golden instances are presented in

Table 9.51.

Department of Computer Science
University of Pretoria

130

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

Instance Initial GEBA GEEA ∆(%)

1 7980.20 6200.80 5761.06 7.09

2 11920.42 9110.40 8601.05 5.59

3 14090.50 12010.3 11307.28 5.85

4 18042.70 16540.20 14007.31 15.31

5 9830.95 7700.10 6707.84 12.89

6 10574.34 9080.65 8700.49 4.18

7 12730.01 10980.60 10253.17 6.62

8 15995 13740.10 11754.68 14.45

9 860.25 685.30 584.30 14.74

10 920.64 810.40 740.34 8.65

11 1280.12 970.10 921.22 5.04

12 1520.95 1220.30 1114.13 8.70

13 1100.62 877.20 858.50 2.13

14 1520.04 1160.10 1000.19 13.78

15 1900.85 1490.70 1352.17 9.29

16 1950.62 1724.20 1641.18 4.78

17 950.36 760.0 708.80 7.03

18 1210.10 1120.60 1001.66 10.61

19 1890.42 1550.63 1369.19 12.09

20 2100.30 1980.40 1822.65 7.97

∆(%) is the percentage of improvement in the objective values of the solutions obtained by GEEA

over those obtained by GEBA. The best objective values are shown in bold.

Table 9.51. Comparison of the performance of the best GEBA and GEEA generated perturbative

heuristic on Golden instances

The statistical significance of the results obtained in Table 9.51 was evaluated using the Wilcoxon

signed rank test with the level of significance α of 0.05. Table 9.52 shows the results of the statistical

Department of Computer Science
University of Pretoria

131

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

test.

Wilcoxon signed rank test

V 210

p-value 8.857e-05

Table 9.52. Wilcoxon test results comparing the performance of the GEBA and GEEA on Golden

instances

From the results in Table 9.52, the p-value of 8.857e-05 is less than level of significance α of 0.05

adopted for the test.This means that the null hypothesis which states that the performance of the GEBA

and GEEA is the same can be rejected and the alternative hypothesis accepted. And based on the

results in Table 9.51, it can therefore be concluded that GEEA outperforms GEBA on the Golden

instances.

The next section compares the performance of the GEBA and GEEA on some benchmark instances

from the boolean satisfiability problem domain.

9.3.2.3 Boolean satisfiability problem

Benchmark set GEBA GEEA

Success Rate (%) # Variable Flips Success Rate (%) # Variable Flips

Suite A

40 100 1240 100 1080

50 93.60 6230 98.20 4320

100 75.00 38120 89.00 32040

Suite B

50 94.50 12630 97.30 10520

75 81.30 29120 89.40 26530

100 60.70 30440 73.50 28102

The success rate (SR) is the percentage of runs where a solution is found within n variable flips. The

best success rates are shown in bold.

Table 9.53. Comparison of the performance of the best GEBA and GEEA generated perturbative

heuristic on Gottlieb SAT instances

Department of Computer Science
University of Pretoria

132

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

The statistical significance of the results obtained in Table 9.53 was evaluated using the Wilcoxon

signed rank test with the level of significance α of 0.05. Table 9.54 shows the results of the statistical

test.

Wilcoxon signed rank test

V 0

p-value 0.04311

Table 9.54. Wilcoxon test results comparing the performance of the GEBA and GEEA on Gottlieb

SAT instances

From the results in Table 9.54, the p-value of 0.04311 is less than level of significance α of 0.05

adopted for the test.This means that the null hypothesis which states that the performance of the GEBA

and GEEA is the same can be rejected and the alternative hypothesis accepted. And based on the

results in Table 9.53, it can therefore be concluded that GEEA outperforms GEBA on the Gottlieb

instances.

The next section compares the performance of the perturbative heuristics evolved by the GEEA with

the human-derived perturbative heuristics.

9.3.3 GEEA heuristics vs Human-derived heuristics

In this section, the results obtained by the best perturbative heuristic evolved by the GEEA are

presented and compared with the commonly used human-derived perturbative heuristics for the three

problem domains. As mentioned in Section 9.2.2, all the human-derived heuristics were specifically

implemented, tested and applied to the same initial solutions that the perturbative heuristic evolved

by the GEEA was applied to (see Section 9.2.1). The performance of each heuristic was determined

by repeatedly applying the heuristic to the initial solution until the objective value of the solution

could not be improved any further. The termination criterion for each run was empirically set to 30

non-improving heuristic application steps. The results obtained by each heuristic after the termination

of the run were captured and are presented in Section 9.3.3.1, Section 9.3.3.2 and Section 9.3.3.3. The

Friedman test with the level of significance α of 0.05 was used to evaluate the statistical significance

Department of Computer Science
University of Pretoria

133

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

of the results obtained by each approach. Whenever the results were found to be significantly different,

a posthoc pairwise test using the Finner method with the GEEA as the control method was carried out

to determine which of the approaches performed differently.

The next section presents and discusses the results obtained by the perturbative heuristic evolved by the

GEEA and the human-derived perturbative heuristics on the examination timetabling problem.

9.3.3.1 Examination timetabling problem

The human-derived perturbative heuristics considered for this domain are the same as those described in

Section 6.6. The heuristics are also represented in Table 9.55. A comparison of the results obtained by

each heuristic is given in Table 9.56 with the statistical test results presented in Table 9.57, Table 9.58

and Table 9.59.

Heuristic Description

phe1 Moves a randomly selected exam to a new feasible timeslot

phe2 Swaps the timeslots of two randomly selected exams if feasible

phe3 Swaps the exams in two randomly selected timeslots

phe4 Randomly exchanges the timeslots of three randomly selected exams

phe5 Moves the exam causing the highest soft constraint violation to a new feasible timeslot

phe6 Moves two randomly selected exams to new feasible timeslots

phe7 Applies the Kempe chain operator to a randomly selected exam and timeslot

phe8 Moves a randomly selected exam to a new randomly selected room if feasible

phe9 Swaps the rooms of two randomly selected exams if feasible

Table 9.55. Human-derived perturbative heuristics for the examination timetabling problem

Department of Computer Science
University of Pretoria

134

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

Instance GEEA phe1 phe2 phe3 phe4 phe5 phe6 phe7 phe8 phe9

1 4901 6230 6300 6224 6100 5980 6080 6120 6200 6120

2 476 525 530 510 520 502 510 510 532 530

3 9064 10009 10920 10040 10752 10138 10140 10620 10830 10300

4 16432 17742 17368 17340 17200 17120 17500 17140 17220 17420

5 3432 4272 4117 4100 4084 4090 4480 4170 4034 4200

6 26577 28320 28154 28120 28080 28210 28430 28540 28610 28300

7 5434 6100 6030 6420 6002 6300 6410 6400 6420 6080

8 7820 8410 8500 8620 8410 8360 8430 8540 8430 8360

9 1140 1480 1500 1430 1392 1400 1420 1430 1420 1440

10 20958 22010 21980 21890 22070 21740 22110 22050 22130 22080

11 39420 41020 40980 40920 40990 40870 41030 40920 41010 40900

12 6354 6840 6730 6960 6720 6730 6650 6820 6790 6750

The results show the objective values of the solutions obtained by each heuristic. The best values are

shown in bold.

Table 9.56. Performance comparison of the best perturbative heuristic generated by the GEEA and the

human-derived heuristics on ITC 2007 instances

To evaluate the statistical significance of the results presented in Table 9.7, the non-parametric Friedman

test with the post hoc Finner test was carried out. Table 9.8 shows the results of the Friedman’s rank

sum test performed in order to test the first (null) hypothesis which states that all the heuristics perform

equally. The level of significance α of 0.05 was used for the test.

Friedman’s rank sum test

Friedman’s chi-squared 48.676

df 9

p-value 1.909e-07

Table 9.57. Friedman test results for the GEEA and human-derived perturbative heuristics on ITC

2007 instances

Department of Computer Science
University of Pretoria

135

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

From the results obtained in Table 9.57, the p-value (1.909e-07) is less than the level of significance α

of 0.05. This denotes that there is at least one perturbative heuristic that performs differently from the

rest. As a result, the null hypothesis was rejected and a posthoc pairwise comparison test using the

Finner method with the GEEA evolved perturbative heuristic as the control method was performed.

The results for the posthoc Finner test showing the differences in performance between the GEEA

evolved heuristic and the human-derived heuristics are shown in Table 9.58.

phe1 phe2 phe3 phe4 phe5 phe6 phe7 phe8 phe9

GEEA 1.62e-5 4.93e-5 2.91e-4 2.56e-2 1.55e-1 7.05e-5 1.23e-4 1.13e-5 2.53e-4

Table 9.58. P-values for the posthoc pairwise comparison Finner test with the GEEA as the control

method

The results presented in Table 9.58 show that there is a significant difference in the performance of the

perturbative heuristic evolved by the GEEA and most of the human-derived perturbative heuristics

except for phe5 (p-value = 1.55e-1). To show whether the perturbative heuristics evolved by the GEEA

performs better than all the human-derived heuristics as can be seen from the results in Table 9.56,

the constrast estimation method based on medians was used. As mentioned earlier, in this test the

performance of the heuristics is reflected by the value of the differences in the objective values of

their solutions. A negative value for the heuristic in a given row indicates that the heuristic performs

better than the heuristic in a given column. The results for the contrast estimation test are presented in

Table 9.59.

phe1 phe2 phe3 phe4 phe5 phe6 phe7 phe8 phe9

GEEA -895.50 -870.70 -866.35 -816.95 -776.90 -905.00 -868.05 -886.45 -857.10

Table 9.59. Results for the contrast estimation test on ITC 2007 instances

From Table 9.59, it can be concluded that the perturbative heuristic evolved by the GEBA performs

better than the human-derived heuristics on the ITC 2007 benchmark based on the negative values

obtained with respect to the differences in the objective values of their solutions.

The next section presents the results for the capacitated vehicle routing problem.

Department of Computer Science
University of Pretoria

136

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

9.3.3.2 Capacitated vehicle routing problem

This section presents the results obtained by applying the perturbative heuristic evolved by the GEEA

and the human-derived perturbative heuristics to the Christofides and Golden instances. The human-

derived perturbative heuristics considered for this problem domain are described in Table 9.60. A

comparison of the results obtained by each heuristic is presented in Table 9.61 and Table 9.65. The

statistical test results are given in Table 9.62, Table 9.63 and Table 9.64.

Heuristic Description

phv1 Moves a randomly selected customer to a new feasible route

phv2 Swaps the routes of two randomly selected customers

phv3 Reverses a part of a tour between two selected customers on a randomly selected route

phv4 Randomly exchanges the routes of three randomly selected customers

phv5 Applies the 2-opt operator on a randomly selected route

phv6 Applies the 2-opt operator on all routes

phv7 Swaps the first portions of two randomly selected distinct routes

phv8 Swaps the adjacent customers of two customers selected from two distinct routes

phv9 Swaps the first and last portions of two randomly selected distinct routes

phv10 Move a randomly selected customer to another position in the same route

Table 9.60. Human-derived perturbative heuristics for the capacitated vehicle routing problem

Department of Computer Science
University of Pretoria

137

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

InstanceGEEA phv1 phv2 phv3 phv4 phv5 phv6 phv7 phv8 phv9 phv10

1 525 590 582 585 590 580 585 610 602 600 580

2 840 908 914 912 910 912 898 910 918 902 901

3 845 908 910 914 913 916 910 904 920 905 920

4 1044 1280 1270 1290 1272 1280 1294 1280 1272 1290 1280

5 1318 1530 1532 1544 1540 1520 1540 1530 1540 1544 1522

6 555 640 645 663 631 621 610 648 625 632 655

7 913 1128 1111 1090 1100 1136 1090 1109 1116 1110 1125

8 868 1180 1168 1125 1157 1171 1170 1160 1165 1151 1157

9 1173 1323 1389 1366 1356 1360 1340 1370 1375 1350 1365

10 1404 1702 1658 1694 1675 1654 1670 1655 1660 1667 1651

11 1043 1202 1210 1198 1166 1150 1180 1214 1186 1191 1160

12 831 950 910 911 900 900 901 936 915 926 925

13 1557 1626 1640 1681 1646 1630 1627 1646 1641 1634 1632

14 869 910 921 900 902 896 891 900 896 910 916

The results show the objective values of the solutions obtained by each heuristic. The best values are

shown in bold.

Table 9.61. Comparison of the performance of the best perturbative heuristic generated by the GEEA

and the human-derived heuristics on Christofides instances

As in Section 9.2.2.1, the non-parametric Friedman test with the post hoc Finner test was used to

evaluate the statistical significance of the results presented in Table 9.61. The results for Friedman’s

rank sum test performed in order to test the first (null) hypothesis are presented in Table 9.62. The

level of significance α of 0.05 was used for the test.

Friedman’s rank sum test

Friedman’s chi-squared 44.603

df 10

p-value 2.564e-06

Table 9.62. Friedman test results for the GEEA and human-derived perturbative heuristics on Chris-

tofides instances

Department of Computer Science
University of Pretoria

138

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

From Table 9.62, it can be seen that the p-value of 2.564e-06 is significantly less than the level of

significance α of 0.05 adopted for the test which indicates that there is a significant difference in the

performance of the heuristics. As explained earlier, the Friedman test does not show which heuristics

perform differently and therefore a posthoc pairwise test using the Finner method with the GEEA

evolved heuristic as the control method was performed to show which heuristics perform differently.

The results of the posthoc test are shown in Table 9.63.

phv1 phv2 phv3 phv4 phv5 phv6 phv7 phv8 phv9 phv10

2.03e-5 2.03e-5 8.73e-6 5.80e-4 4.26e-3 7.05e-3 2.03e-5 1.26e-5 7.07e-5 5.22e-4

Table 9.63. P-values for the posthoc pairwise comparison Finner test with the GEEA as the control

method

From Table 9.63, it can be seen that there is a significant difference between the performance of the

perturbative heuristic evolved by the GEEA and all the human-derived heuristics as all the p-values

are less than the level of significance α of 0.05. In order to confirm that the perturbative heuristic

evolved by the GEEA performs better than all the human-derived heuristics (see Table 9.61), a contrast

estimation test based on medians was performed. The results for the contrast estimation test are

presented in Table 9.64.

phv1 phv2 phv3 phv4 phv5 phv6 phv7 phv8 phv9 phv10

GEEA -123.9 -122.6 -123.7 -114.2 -111.1 -109.9 -123.58 -120.28 -118.8 -115.5

Table 9.64. Results for the contrast estimation test on Christofides instances

From Table 9.64, the value of the difference in the objective value of the solutions obtained by the

GEEA generated heuristic and all the human-derived heuristics are negative. This indicates that the

perturbative heuristic evolved by the GEEA performs better than the human-derived heuristics on the

Christofides instances. This therefore confirms that the statistical significance of the results observed

from Table 9.61).

Apart from the Christofides benchmark set, the performance of the perturbative heuristics was also

evaluated on the Golden benchmark set. The objective values of the solutions obtained by each heuristic

are presented in Table 9.65.

Department of Computer Science
University of Pretoria

139

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

InstanceGEEA phv1 phv2 phv3 phv4 phv5 phv6 phv7 phv8 phv9 phv10

1 5761 6745 6796 6900 6800 6100 6840 6750 6651 6740 6800

2 8601 10500 10600 10570 10750 10450 10420 10640 10860 10710 10800

3 11307 13300 13170 13230 13100 13120 13090 13120 13400 13280 13190

4 14007 16100 16970 16960 17200 16980 17070 16985 16874 17050 17080

5 6708 8400 8390 8450 8320 8520 8290 8321 8450 8420 8460

6 8700 9580 9635 9700 9520 9600 9710 9650 9430 9500 9460

7 10253 11440 11875 11687 11390 11240 11630 11540 11650 11510 11452

8 11755 14870 14900 14960 14350 14520 14980 14784 14965 14785 14650

9 584 780 795 790 784 720 730 732 770 780 762

10 740 840 846 860 850 855 871 853 850 857 851

11 921 1090 1066 1060 1070 1050 1095 1065 1080 1060 1070

12 1114 1260 1250 1267 1301 1251 1250 1265 1258 1243 1255

13 859 894 890 892 886 895 893 880 884 882 881

14 1000 1204 1203 1226 1205 1210 1202 1220 1210 1211 1206

15 1352 1520 1542 1522 1530 1520 1510 1512 1508 1520 1510

16 1642 1810 1806 1820 1808 1800 1820 1810 1808 1806 1802

17 708 810 830 825 801 815 814 818 815 810 812

18 1002 1140 1150 1145 1150 1156 1146 1164 1138 1135 1130

19 1363 1660 1670 1650 1651 1672 1650 1665 1666 1642 1640

20 1823 2020 2010 2022 2016 2020 2010 2012 2015 2020 2022

The results show the objective values of the solutions obtained by each heuristic. The best objective

values are shown in bold.

Table 9.65. Comparison of the performance of the best perturbative heuristic generated by the GEEA

and the human-derived heuristics on Golden instances

The non-parametric Friedman test with the post hoc Finner test was also used to evaluate the statistical

significance of the results presented in Table 9.65. The results for Friedman’s rank sum test performed

Department of Computer Science
University of Pretoria

140

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

in order to test the first (null) hypothesis are presented in Table 9.66.

Friedman’s rank sum test

Friedman’s chi-squared 59.723

df 10

p-value 4.089e-09

Table 9.66. Friedman test results for the GEEA and human-derived perturbative heuristics on Chris-

tofides instances

From Table 9.66, it can be seen that the p-value of 4.089e-09 is significantly less than the level of

significance α of 0.05 adopted for the test which indicates that there is a significant difference in the

performance of the heuristics. A posthoc pairwise test using the Finner method with the GEEA evolved

heuristic as the control method was therefore performed to show which heuristics perform differently.

The results of the posthoc test are shown in Table 9.67.

phv1 phv2 phv3 phv4 phv5 phv6 phv7 phv8 phv9 phv10

4.95e-6 6.7e-7 7.96e-11 3.51e-6 1.44e-5 2.54e-6 1.71e-6 1.9e-6 2.6e-5 2.3e-05

Table 9.67. P-values for the posthoc pairwise comparison Finner test with the GEEA as the control

method

From Table 9.67, it can be seen that there is a significant difference between the performance of the

perturbative heuristic evolved by the GEBA and all the human-derived heuristics since all the p-values

are less than the level of significance α of 0.05. In order to confirm that the the perturbative heuristics

generated by GEEA outperforms all the human-derived perturbative heuristics (see Table 9.65), a

contrast estimation test based on medians was performed. The results for the contrast estimation test

are presented in Table 9.68.

phv1 phv2 phv3 phv4 phv5 phv6 phv7 phv8 phv9 phv10

GEBA -201.6 -206.5 -213.3 -202.3 -200.8 -202.8 -204.5 -203 -200.7 -200.6

Table 9.68. Results for the contrast estimation test on Golden instances

From Table 9.68, the value of the difference in the objective value of the solutions obtained by the

GEEA generated heuristic and all the human-derived heuristics are negative. This indicates that the

Department of Computer Science
University of Pretoria

141

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

perturbative heuristic evolved by the GEEA performs better than the human-derived heuristics on

the Golden instances. This confirms that the statistical significance of the results observed from

Table 9.65) which shows that GEEA obtains the best results and therefore performs better than all the

human-derived perturbative heuristics on the Golden instances.

The next section presents the results obtained by the perturbative heuristic evolved by the GEEA

and the human-derived perturbative heuristics on benchmark sets for the the boolean satisfiability

problem.

9.3.3.3 Boolean satisfiability problem

This section presents the results obtained by applying the perturbative heuristic evolved by the GEEA

and the human-derived perturbative heuristics to Gottlieb SAT benchmark sets for the boolean satis-

fiability problem. The human-derived perturbative heuristics considered for the Boolean satisfiability

problem are described in Table 9.69. A comparison of the results obtained by the heuristics is presented

in Table 9.70 and the statistical test results are given in Table 9.71.

Department of Computer Science
University of Pretoria

142

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

Heuristic Description

GWSAT(p) Flips a random variable with the highest net gain in a randomly selected unsat-

isfied clause with some probability p. The net gain of a variable is number of

clauses that remain unsatisfied in the boolean expression when the variable is

flipped. If two or more variables have the same net gain, the ties are randomly

broken.

Walksat(p) Selects a random unsatisfied clause and randomly flips any variable with a net

gain of 0 in the clause. Otherwise it uses some probability p to select a random

variable to flip from the clause.

Novelty+(p,pw) Selects a random unsatisfied clause and with a probability pw selects a random

variable to flip. Otherwise, it flips the variable with the maximal net gain unless

the variable has a minimal age. The age of the variable is the number of other

variable flips that have occurred since the variable was last flipped. If the variable

has minimal age in the unsatisfied clause, then the variable is selected for flipping

with probability (1-p).

Table 9.69. Human-derived perturbative heuristics for the SAT problem

Department of Computer Science
University of Pretoria

143

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

Benchmark set GEEA GWSAT(0.5) WalkSAT(0.5) Novelty+(0.7, 0.01)

SR(%) AF SR(%) AF SR(%) AF SR(%) AF

Suite A

40 100 1080 100 6062 100 2604 100 1767

50 98.20 4320 90.33 31295 99.67 22219 100 3061

100 89.00 32040 71.00 10104 81.00 24855 90.0 33148

Suite B

50 97.30 10520 89.56 20841 94.4 18609 96.64 13783

75 89.40 26530 71.74 28584 82.48 32939 89.3 25833

100 73.50 28102 56.6 17704 59.16 21824 65.8 24655

SR is the success rate and AF is the average number of flips to solution. The values for the success

rate and number of flips as well as the parameter values for GWSAT, WalkSAT and Novelty+ were

obtained from [35]. The best results are shown in bold.

Table 9.70. Comparison of the performance of the best perturbative heuristic generated by the GEEA

and the human-derived heuristics on Gottlieb SAT instances

The non-parametric Friedman test with the post hoc Finner test was also used to evaluate the statistical

significance of the results presented in Table 9.70. The results for Friedman’s rank sum test performed

in order to test the first (null) hypothesis which states that all the heuristics perform equally are

presented in Table 9.71. The level of significance α of 0.05 was used for the test.

Friedman’s rank sum test

Friedman’s chi-squared 11.88

df 3

p-value 0.007806

Table 9.71. Friedman test results for the GEEA and human-derived perturbative heuristics on Gottlieb

SAT instances

From Table 9.71, it can be seen that the p-value of 0.007806 is less than the level of significance α of

0.05 adopted for the test. This indicates that there is at least one heuristic that performs differently.

The null hypothesis was therefore rejected and the pairwise posthoc finner test with the GEEA as the

control method was performed in order to show which heuristics perform differently. The results of

the finner test are presented in Table 9.72.

Department of Computer Science
University of Pretoria

144

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

GWSAT(0.5) WalkSAT(0.5) Novelty+(0.7, 0.01)

GEEA 0.04295262 0.3271284 1.00000000

Table 9.72. P-values for the posthoc pairwise comparison Finner test with the GEEA as the control

method

The pairwise finner test results in Table 9.72 shows that there is no significant difference between the

GEEA and the human-derived heuristics except for GWSAT(p-value =0.04295262). It is therefore not

possible to determine how the performance of the perturbative heuristic evolved by the GEEA compares

to that of the human-derived perturbative heuristics using the Finner test. A contrast estimation test

based on medians was therefore carried out. The results of the contrast estimation test are presented in

Table 9.73.

GWSAT(0.5) WalkSAT(0.5) Novelty+(0.7, 0.01)

GEBA -11.56375 -4.90125 -0.88000

Table 9.73. Results for the contrast estimation test on Gottlieb SAT instances

From Table 9.73, it can be seen that the GEEA outperforms all the human-derived heuristics since all

the p-values are negative.

The next section compares the GEEA to other existing hyper-heuristics.

9.3.4 GEEA heuristics vs Other Hyper-heuristics

This section compares the results obtained by GEEA to existing hyper-heuristic approaches in the

literature. The results obtained by each approach are presented in the following sections.

9.3.4.1 Examination timetabling problem

The hyper-heuristics considered for this problem domain are the same as those considered for the

GEBA and these are represented in Table 9.74. A comparison of the results obtained by each approach

is presented in Table 9.75 while the statistical test results are given in Table 9.76, Table 9.77 and

Table 9.78.

Department of Computer Science
University of Pretoria

145

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

Hyper-heuristic Description

ETP-HH1 A generation perturbative hyper-heuristic proposed by Sabar et al. [40].

ETP-HH2 A selection perturbative hyper-heuristic proposed by Swan et al. [63].

ETP-HH3 A selection perturbative hyper-heuristic proposed by Burke et al. [64].

ETP-HH4 A selection perturbative hyper-heuristic proposed by Anwar et al. [65].

Table 9.74. Selected hyper-heuristics for the examination timetabling problem

Instance GEEA ETP-HH1 ETP-HH2 ETP-HH3 ETP-HH4

1 4901 4362 5875 6235 11823

2 476 380 893 2974 976

3 9064 8991 13352 15832 26770

4 16432 15094 24174 35106 —

5 3432 2912 4734 4873 6772

6 26577 25735 27510 31756 30980

7 5434 4025 5731 11562 11762

8 7820 7452 9507 20994 16286

9 1140 1111 — — —

10 17958 14825 — — —

11 32420 28891 — — —

12 6354 6181 — — —

The comparison is between the objective values for the best solutions obtained for each approach. The

best values are shown in bold. "—" indicates that the values were not provided or a feasible solution

was not obtained.

Table 9.75. Performance comparison of the GEEA and other HHs on ITC 2007 instances

Department of Computer Science
University of Pretoria

146

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

The Friedman test was used to evaluate the statistical significance of the results presented in Table 9.75.

The results of this test are presented in Table 9.76.

Friedman’s rank sum test

Friedman’s chi-squared 26.629

df 4

p-value 2.363e-05

Table 9.76. Friedman test results for the GEEA and other hyper-heuristics on ITC 2007 instances

From the results obtained in Table 9.76, the p-value (2.363e-05) is less than the level of significance α

of 0.05. This denotes that there is at least one approach that performs differently from the rest. As

a result, the null hypothesis was rejected and a posthoc pairwise comparison test using the Finner

method with the GEEA as the control method was performed. The results for the posthoc Finner test

showing the differences in performance between the GEEA and other hyper-heuristics are shown in

Table 9.77.

ETP-HH1 ETP-HH2 ETP-HH3 ETP-HH4

GEEA 0.2806138750 0.28061387 0.0088495160 0.0282863663

Table 9.77. P-values for the posthoc pairwise Finner test with the GEEA as the control method

The results presented in Table 9.77 show that there is a significant difference in the performance of

the GEEA and ETP-HH3 (p-value = 0.0088495160) as well as ETP-HH4 (p-value = 0.0282863663).

There is however no significant difference in the performance of the GEEA and the remaining hyper-

heuristics, namely ETP-HH1 (p-value = 0.2806138750) and ETP-HH2 (p-value = 0.28061387). To

show whether GEEA performs betters than ETP-HH3 and ETP-HH4, a constrast estimation test based

on medians was performed. As already mentioned, in this test the performance of the heuristics is

reflected by the value of the differences in the objective values of their solutions and a negative value

for the heuristic in a given row indicates that the heuristic performs better than the heuristic in a given

column. The results for the contrast estimation test are presented in Table 9.78.

ETP-HH1 ETP-HH2 ETP-HH3 ETP-HH4

GEEA 624.250 -1458.875 -5427.375 -3650.430

Table 9.78. Results for the contrast estimation test

Department of Computer Science
University of Pretoria

147

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

From the results in Table 9.78, it can be concluded that the GEEA performs better than ETP-HH2,

ETP-HH3 and ETP-HH4, based on the negative value of the difference in the objective value of their

solutions, but is outperformed by ETP-HH1. This performance by the GEEA can be attributed to the

fact the perturbative heuristic evolved by the GEEA is applied as it is with no optimization as is the

case for perturbative heuristics evolved by ETP-HH1. In addition, ETP-HH1 uses a wider variety of

move acceptance criteria which helps in the search for better performing heuristics.

The next section presents the results for the capacitated vehicle routing problem.

9.3.4.2 Capacitated vehicle routing problem

This test also uses the same hyper- heuristics considered for the GEBA which are represented in

Table 9.79. A comparison of the results obtained by each approach is given in Table 9.61 and

Table 9.65 respectively. The statistical test results are given in Table 9.81 and Table 9.86.

Hyper-heuristic Description

CVRP-HH1 A generation perturbative hyper-heuristic proposed by Sabar et al. [40].

CVRP-HH2 A selection perturbative hyper-heuristic proposed by Garrido et al. [66].

CVRP-HH3 A selection perturbative hyper-heuristic proposed by Meignan et al. [67].

CVRP-HH4 A selection perturbative hyper-heuristic proposed by Pisinger et al. [76].

Table 9.79. Selected hyper-heuristics for the vehicle routing problem

Department of Computer Science
University of Pretoria

148

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

Instance GEEA CVRP-HH1 CVRP-HH2 CVRP-HH3

1 0.00 0.00 0.00 0.00

2 0.51 0.00 0.05 0.62

3 2.25 0.00 0.21 0.42

4 1.54 0.11 0.52 2.05

5 2.08 1.33 2.05 5.07

6 0 0.00 0.00 —

7 0.39 0.00 0.09 —

8 0.28 0.00 0.00 —

9 0.81 0.20 0.70 —

10 0.60 0.53 1.24 —

11 0.07 0.00 0.88 0.00

12 1.43 0.00 0.00 —

13 1.03 1.90 1.00 0.00

14 0.31 0.00 0.00 —

The values represent the percentage deviation from the best known results in the literature. The best

values are shown in bold. "—" indicates that the values were not provided or a feasible solution was

not obtained.

Table 9.80. Performance comparison of the GEEA and other HHs on Christofides instances

Friedman’s rank sum test

Friedman’s chi-squared 5.4407

df 3

p-value 0.1422

Table 9.81. Friedman test results for the GEEA and other hyper-heuristics on Christofides instances

From the results in Table 9.81, it can be seen that when CVRP-HH3 (which has missing values) is

included in the test, the p-value of 0.1422 is greater than the level of significance α of 0.05 adopted

for the test which indicates that there is not enough evidence to conclude that there is a significant

difference in the performance of the heuristics. In this case, the null hypothesis which states that the

Department of Computer Science
University of Pretoria

149

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

approaches perform equally cannot be rejected. However, when the CVRP-HH3 is omitted, the test

shows that there is a significant difference in the performance of the approaches as can be seen in

Table 9.82.

Friedman’s rank sum test

Friedman’s chi-squared 13.644

df 2

p-value 0.001089

Table 9.82. Friedman test results for the GEEA and other hyper-heuristics (without CVRP-HH3) on

Christofides instances

For the Christofides instances, only the results obtained by the GEEA, CVRP-HH1 and CVRP-HH2

will therefore be evaluated for statistical significance. And since the Friedman testreveals that there is

a significant difference in the performance of the three approaches, the posthoc pairwise finner test

with the GEEA as the control method was performed. The results of the posthoc test are presented in

Table 9.83.

CVRP-HH1 CVRP-HH2

GEEA 0.002824454 0.1069002

Table 9.83. P-values for the posthoc pairwise comparison Finner test with the GEEA as the control

method

From the results in Table 9.83, it can be seen that there is a significant difference, based on the p-values,

in the performance of the GEEA and CVRP-HH1 but no significant difference in performance of

the GEEA and CVRP-HH2. To determine the best approach among the three approaches, a contrast

estimation method based on medians was also used. The results for the contrast estimation test are

presented in Table 9.84.

CVRP-HH1 CVRP-HH2

GEBA 0.32166667 0.22333333

Table 9.84. Results for the contrast estimation test on Christofides instances

From the results in Table 9.84, the value of the difference in the objective value of the solutions

obtained by the GEEA generated heuristic and other hyper-heuristics are all positive. This indicates

Department of Computer Science
University of Pretoria

150

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

that the two hyper-heuristic approaches, namely CVRP-HH1 and CVRP-HH4 performed better than

the GEEA on the Christofides instances. The poor performance by the GEEA can be attributed to

the fact that the heuristic evolved by the GEEA was applied with no optimization as is usually done

with most perturbative heuristics. In addition, the GEEA, although considered an improvement on the

GEBA, did not include a wider variety of move acceptance criteria as is used in CVRP-HH1.

Instance GEEA CVRP-HH1 CVRP-HH4

1 5761.06 5626.81 5650,91

2 8601.05 8446.19 8469,32

3 11307.28 11081.60 11047,01

4 14007.31 13658.84 13635,31

5 6707.84 6460.98 6466,68

6 8700.49 8462.10 8416,13

7 10253.17 10202.24 10181,75

8 11754.68 11690.82 11713,62

9 584.30 583.39 585,14

10 740.34 740.91 748,89

11 921.22 919.80 922,7

12 1114.13 1111.43 1119,06

13 858.50 857.19 864,68

14 1000.19 1083.59 1095,4

15 1352.17 1350.17 1359,94

16 1641.18 1631.91 1639,11

17 708.80 707.76 708,9

18 1001.66 1003.43 1002,42

19 1369.19 1368.12 1374,24

20 1822.65 1820.09 1830,8

The comparison is between the best values obtained for each approach. The best values are shown in

bold.

Table 9.85. Performance comparison of the GEEA and other HHs on Golden Instances

Department of Computer Science
University of Pretoria

151

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

Friedman’s rank sum test

Friedman’s chi-squared 10.8

df 2

p-value 0.004517

Table 9.86. Friedman test results for the GEEA and other hyper-heuristics on Golden instances

From the results in Table 9.86, it can be seen that the p-value of 0.004517 is significantly less than the

level of significance α of 0.05 adopted for the test which indicates that there is a significant difference

in the performance of the approaches. A posthoc pairwise test using the Finner method with the

GEEA as the control method was therefore performed to show CVRP-HH1 and CVRP-HH4 performed

against the GEEA. The results of the test are given in Table 9.87.

CVRP-HH1 CVRP-HH4

GEEA 0.01322088 1.00000000

Table 9.87. P-values for the posthoc pairwise comparison Finner test with the GEEA as the control

method

The results in Table 9.87 show that there is a significant difference, based on the p-values, in the

performance of the GEEA and CVRP-HH1, but no significant difference between the GEEA and

CVRP-HH4. A contrast estimation method based on medians was therefore used to show which of the

approaches performed better than the other. The results for the contrast estimation test are presented in

Table 9.88.

CVRP-HH1 CVRP-HH4

GEEA 3.83 -1.63

Table 9.88. Results for the contrast estimation test on Golden instances

From the results in Table 9.88, it can be concluded that the GEEA performs better than CVRP-HH4,

but as is the case in the other domains, is outperformed by CVRP-HH1. This performance by the

GEEA can also be attributed to the fact that the heuristic evolved by the GEEA was applied with no

optimization as is usually done with most perturbative heuristics.

Department of Computer Science
University of Pretoria

152

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

The next section presents and compares the results obtained by the GEEA and other hyper-heuristic

approaches on the boolean satisfiability problem.

9.3.4.3 Boolean satisfiability problem

As in Section 9.2.3.3, the generation perturbative hyper-heuristics considered in this test are presented

in Table 9.89. A comparison of the results obtained by each approach is presented in Table 9.90 with

the statistical test results given in Table 9.91.

Hyper-heuristic Description

SAT-HH1 A generation perturbative hyper-heuristic proposed by

Bader and Poli [49].

SAT-HH2 A generation perturbative hyper-heuristic proposed by

Fukunanga [35].

Table 9.89. Selected hyper-heuristics for the boolean satisfiability problem

Benchmark set GEEA SAT-HH1 SAT-HH2

SR(%) AF SR(%) AF SR(%) AF

Suite A

40 100 1080 — — 100 538

50 98.20 4320 100 12872 100 3416

100 89.00 32040 92.00 54257 100 20754

Suite B

50 97.30 10520 100.00 18936 99.38 6590

75 89.40 26530 95.00 26571 98.48 19791

100 73.50 28102 74.00 41284 78.8 39909

The comparison is between the best values for the success rate for each approach.

The best values are shown in bold. "—" indicates that the values were not

provided.

Table 9.90. Comparison of the performance of the GEEA and other generation perturbative hyper-

heuristics on Gottlieb SAT instances

Department of Computer Science
University of Pretoria

153

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

Friedman’s rank sum test

Friedman’s chi-squared 8.3158

df 2

p-value 0.01564

Table 9.91. Friedman test results for the GEEA and human-derived perturbative heuristics on Gottlieb

SAT instances

From Table 9.91, the p-value of 0.01564 which is less than the level of significance α of 0.05 indicates

that there is at least one approach that performs differently. The null hypothesis was therefore rejected

and the pairwise posthoc finner test with the GEEA as the control method was performed in order to

show which approaches perform differently. The results of the posthoc finner test are presented in

Table 9.92.

SAT-HH1 SAT-HH2

GEEA 0.05914993 0.02141386

Table 9.92. P-values for the posthoc pairwise comparison Finner test with the GEEA as the control

method

The pairwise finner test results in Table 9.92 shows that there is a significant difference in performance

between the GEEA and the two other hyper-heuristics, namely SAT-HH1 and SAT-HH2. It is however

not possible to determine which approach is the best among the three using this test. For this reason, a

contrast estimation test based on medians was carried out. The results of the contrast estimation test

are presented in Table 9.93.

SAT-HH1 SAT-HH2

GEBA 13.433333 17.046667

Table 9.93. Results for the constrast estimation test on Gottlieb instances

From Table 9.93, it can be seen that the GEEA is outperformed by both the SAT-HH1 and SAT-HH2

hyper-heuristics. It has to be mentioned however that the results for the SAT-HH1 and SAT-HH2

hyper-heuristics presented here are those obtained by the best perturbative heuristic evolved by the

approaches. In their respective studies, both the SAT-HH1 and SAT-HH2 evolved more than one

Department of Computer Science
University of Pretoria

154

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

perturbative heuristic and each of the evolved heuristic when applied to the Gottlieb testing instances

obtained different results. In this study, the GEEA generates only one perturbative heuristic and

therefore the results presented in this section aim to show how close the GEEA results are to the state

of the art results obtained by SAT-HH1 and SAT-HH2.

The next section presents the summary to the chapter.

9.4 SUMMARY

This chapter presented the results obtained by the proposed GE approaches for generating perturbative

heuristics to solve combinatorial optimization problems. The results obtained by the two approaches,

namely GEBA and GEEA on benchmarks sets from the examination timetabling, vehicle routing and

boolean satisfiability problem domains were presented. These results were further compared with

those obtained by commonly used human-derived perturbative heuristics and other existing generation

perturbative hyper-heuristic approaches in the literature. From the results obtained and presentedin the

chapter, it can be concluded that the GEEA is a better approach than the GEBA since the perturbative

heuristics generated by the former produced better solutions than those generated by latter. The

difference in performance between the two approaches was found to be statistically significant at a

confidence level of 0.05. When compared to existing human-derived perturbative heuristics, both

GEEA and GEBA were found to generate perturbative heuristics that performed better than the human-

derived perturbative heuristics for the examination timetabling and vehicle routing benchmark sets.

For the boolean satisfiability problem, the two state-of-the-art human-derived perturbative heuristics,

namely Walksat and Novelty+, completely outperformed the GEBA but were equally outperformed

by the GEEA. When compared to other hyper-heuristics, GEEA was found to perform better than

most of the hyper-heuristic approaches especially on the examination timetabling problem. For the

capacitated vehicle routing and Boolean satisfiability problems, the GEEA was outperformed by other

hyper-heuristic approaches save for the CVRP-HH4. This performance by the GEEA can be attributed

to the fact that the perturbative heuristic evolved by the GEEA was applied with no optimization as is

usually done with most perturbative heuristics. The other reason is that hyper-heuristics, specifically

the SAT-HH1 and SAT-HH2 applied to the Boolean satisfiability problem instances, generated more

than one type of perturbative heuristics which were then applied to the same instances in order to

determine which one performed better. The different types of heuristics had varying performance

Department of Computer Science
University of Pretoria

155

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 9 RESULTS AND DISCUSSION

and even though most of them were actually outperformed by the GEEA on some instances, the best

performing heuristic among those generated by the two hyper-heuristics obtained results that were

superior to those obtained by the GEEA. In general, the GEEA performed exceptionally well given the

circumstances and this good performance is a clear demonstration of the viability of the approach. The

next chapter presents the conclusion and potential future extensions to this research work.

Department of Computer Science
University of Pretoria

156

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 10 Conclusion and Future work

10.1 INTRODUCTION

This chapter presents a summary of the research findings. In particular, it provides a conclusion to each

research objective described in Chapter 1 based on the experimental results obtained and presented in

Chapter 9. Section 10.2 presents and provides concluding remarks on each research objective while

section 10.3 presents the overall conclusion of the research. Some insight into potential future work is

provided in section 10.4 and the chapter summary follows in section 10.5.

10.2 RESULTS DISCUSSION FOR OBJECTIVES

The main aim of the research conducted in this dissertation was to investigate automating the process

of designing perturbative heuristics for solving combinatorial optimization problems. An analysis of

existing literature (see Section 6.2) revealed that this was not a well-researched domain with very

few research works conducted. Based on this analysis, it was determined that in order to achieve the

aforementioned aim, the following objectives had to be met:

• Develop a GE approach to automatically generate perturbative heuristics for more than one

problem domain;

• Test the generality of the proposed approach on three different problem domains, namely

examination timetabling, vehicle routing and boolean satisfiability;

• Compare the performance of the perturbative heuristics generated by the proposed approach to

that of the human-designed move operators for the three problem domains;

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 10 CONCLUSION AND FUTURE WORK

• Compare the performance of the perturbative heuristics generated by the proposed approach to

that of the perturbative heuristics generated by other generation perturbative hyper-heuristics in

the literature.

Please note that although two new approaches, namely baseline and extended were developed and

implemented in this research, the two approaches were aimed at achieving the same goal, i.e. to

develop a general approach for generating perturbative heuristics to solve problems from multiple

problem domains. The baseline approach was developed to merely test the basic idea of using GE to

generate new perturbative heuristics from heuristic components comprising a set of basic operations

and components of the solution. It was the initial approach. The extended approach uses the same basic

idea as the baseline approach but the grammar has been significantly changed to include new elements

and can therefore be considered as an improvement of the baseline approach. Since the process of

determining the viability of the two approaches is the same and with both approaches aiming to achieve

the same goal, this chapter will focus only on the extended GE approach as this was shown to be the

better approach based on the results presented in Chapter 9.

In this research, the new GE approach is used to generate perturbative heuristics for solving problems

in three different problem domains, namely examination timetabling, vehicle routing and boolean

satisfiability. The results presented in Chapter 9 show that the approach is able to generate perturbative

heuristics that performed well on the benchmark sets from the three problem domains. This is a notable

success not only in terms of designing an approach that can be easily applied to more than one discrete

combinatorial optimization domain but also in terms of generating heuristics that produce good quality

solutions. The next sections provide concluding remarks on how each of the research objectives were

met.

10.2.1 Results discussion for Objective One

The first objective was to develop a GE approach to generate perturbative heuristics for combinatorial

optimization problems. To meet this objective, a new GE approach was developed and implemented.

The approach was based on the basic idea of generating heuristics from two heuristic components,

namely basic operations and solution components. The assumption was that by separating the basic

operations from the components of the solution, it was possible to automatically generate different

Department of Computer Science
University of Pretoria

158

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 10 CONCLUSION AND FUTURE WORK

types of heuristics by using an evolutionary algorithm such as GE to determine the best combinations

of the heuristic components. A grammar specifying how the heuristic components should be selected

and combined was defined with GE being used to search for the best combination of the components.

This combination represented a perturbative heuristic. For all the problems investigated, the approach

successfully generated valid heuristics.

10.2.2 Results discussion for Objective Two

The second objective was to test the generality of the proposed approach by applying it to problems

from three different problem domains. The goal here was to investigate whether the same approach

can be successfully used to generate heuristics for more than one problem domain. The GE approach

was applied to the problems from three different problem domains, namely the examination, vehicle

routing and boolean satisfiability problems. Only minor modifications to the specification of solution

components were required to make the approach applicable to each problem domain. This made it

very easy to apply the same approach to different types of problems without requiring significant

modifications. The approach generated valid heuristics for all the problem instances in the three

domains.

10.2.3 Results discussion for Objective Three

The third objective was to compare the performance of the perturbative heuristics generated by the

proposed GE approach to the performance of the human-derived perturbative heuristics commonly

used in the literature. To meet this objective, some commonly used human-derived heuristics for the

three problem domains were selected (see Section 6.6) and applied to the same test sets as the best

heuristic generated by the GE approach. The non parametric Friedman test was used to determine the

statistical significance of the results. For all the problem instances in the examination timetabling and

vehicle routing problems investigated, the GE approach generated heuristics that outperformed the

human-derived heuristics. This success can be attributed to a number of factors among which is the

ability by GE to discover new perturbative heuristics which human beings may not have been able to

think of, and the ability of the approach to automatically combine two or more generated perturbative

heuristics into one which has the potential to significantly improve the quality of results.

Department of Computer Science
University of Pretoria

159

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 10 CONCLUSION AND FUTURE WORK

10.2.4 Results discussion for Objective Four

The fourth objective was to compare the performance of the proposed GE approach with other

generation perturbative hyper-heuristics in the literature. As mentioned earlier, the field of generation

perturbative hyper-heuristics has generally not been that well researched and very few generation

perturbative hyper-heuristic approaches have been applied to the problem instances investigated in

this research. The existing few hyper-heuristic approaches were compared with the GE approach

proposed in this study. Here, the Friedman test was also used to rank the approaches. The results show

that the GE approach proposed in this study performed better than most existing hyper-heuristics on

most problem instances from the examination timetabling with the exception of the GEHH proposed

by Sabar et al [40]. When compared to the hyper-heuristics for the vehicle routing and boolean

satisfiability problems, the GE approach performed better than the approach proposed by by Pisinger

et al. [76] on the vehicle routing problem as well as the one proposed by Bader and Poli [49] on the

boolean satisfiability problem. It was just slightly worse than the other approaches on the vehicle

routing problem and the approach proposed by Fukunaga [35] on the boolean satisfiability problem.

This performance by the GE approach can be attributed to a number of factors including the fact that

the generated heuristics were applied as they are with no optimization techniques employed. GEHH

for example makes use of a wider range of move acceptance criteria and also employs online learning

through the use of an adaptive memory which significantly improves the quality of solutions discovered

by the approach.

10.3 CONCLUSION

Based on the outcomes of the research objectives and the fact that there is still need for more research

in the domain of automated generation of perturbative heuristics, the work presented in this dissertation

makes a significant contribution to the field in that it proposes a novel approach that can be used

to automatically generate perturbative heuristics for any combinatorial optimization problem. The

proposed GE approach produced very promising results for the three problem domains investigated

and this success is a clear indication that it is possible to automatically generate good quality heuristics

without a human expert. In addition, the approach is very flexible and can be easily customised

to generate more problem specific perturbative heuristics if necessary. The approach can therefore

Department of Computer Science
University of Pretoria

160

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

CHAPTER 10 CONCLUSION AND FUTURE WORK

be considered as a stepping stone towards the design of better and more efficient algorithms for

automatically generating perturbative heuristics to solve combinatorial optimization problems.

10.4 FUTURE WORK

Future extensions to the work presented in this dissertation will include the following:

• Incorporating optimization techniques to investigate whether the results obtained in this work

can be improved further. This will involve applying a selection perturbative hyper-heuristic to

the perturbative heuristics generated;

• Extending the grammar to investigate whether better heuristics can be discovered by considering

the fitness landscape analysis.

10.5 SUMMARY

The chapter presented a summary of the research findings including a discussion of how each of the

objectives was met. Some insights into potential future work were also presented.

Department of Computer Science
University of Pretoria

161

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

REFERENCES

[1] J. R. Koza and J. R. Koza, Genetic programming: on the programming of computers by means of

natural selection. MIT press, 1992, vol. 1.

[2] E. K. Chong and S. H. Zak, An introduction to optimization. John Wiley & Sons, 2013, vol. 76.

[3] M. Baghel, S. Agrawal, and S. Silakari, “Survey of metaheuristic algorithms for combinatorial

optimization,” International Journal of Computer Applications, vol. 58, no. 19, 2012.

[4] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press, 2004.

[5] C. H. Papadimitriou and K. Steiglitz, Combinatorial optimization. Prentice Hall Englewood

Cliffs, 1982, vol. 24.

[6] C. Blum and A. Roli, “Metaheuristics in combinatorial optimization: Overview and conceptual

comparison,” ACM computing surveys (CSUR), vol. 35, no. 3, pp. 268–308, 2003.

[7] P. Festa, “A brief introduction to exact, approximation, and heuristic algorithms for solving hard

combinatorial optimization problems,” in 2014 16th International Conference on Transparent

Optical Networks (ICTON). IEEE, 2014, pp. 1–20.

[8] H. H. Hoos and T. Stützle, Stochastic local search: Foundations and applications. Elsevier,

2004.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

REFERENCES

[9] E. L. Lawler and D. E. Wood, “Branch-and-bound methods: A survey,” Operations research,

vol. 14, no. 4, pp. 699–719, 1966.

[10] R. E. Bellman et al., “Dynamic programming, ser,” in Rand Corporation research study. Prin-

ceton University Press, 1957.

[11] D. S. Hochba, “Approximation algorithms for np-hard problems,” ACM Sigact News, vol. 28,

no. 2, pp. 40–52, 1997.

[12] C. P. Gomes and R. Williams, “Approximation algorithms,” in Search Methodologies. Springer,

2005, pp. 557–585.

[13] D. P. Williamson and D. B. Shmoys, The design of approximation algorithms. Cambridge

university press, 2011.

[14] D. Dasgupta and Z. Michalewicz, Evolutionary algorithms in engineering applications. Springer

Science & Business Media, 2013.

[15] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” science,

vol. 220, no. 4598, pp. 671–680, 1983.

[16] F. Glover, M. Laguna, and R. Martí, “Fundamentals of scatter search and path relinking,” Control

and cybernetics, vol. 29, no. 3, pp. 653–684, 2000.

[17] T. A. Feo and M. G. Resende, “Greedy randomized adaptive search procedures,” Journal of

global optimization, vol. 6, no. 2, pp. 109–133, 1995.

[18] E. Özcan, M. Misir, G. Ochoa, and E. K. Burke, “A reinforcement learning: great-deluge hyper-

heuristic for examination timetabling,” in Modeling, Analysis, and Applications in Metaheuristic

Computing: Advancements and Trends. IGI Global, 2012, pp. 34–55.

[19] E. K. Burke and Y. Bykov, “The late acceptance hill-climbing heuristic,” University of Stirling,

Tech. Rep, 2012.

Department of Computer Science
University of Pretoria

163

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

REFERENCES

[20] M. Dorigo and T. Stützle, “Ant colony optimization: overview and recent advances,” in Handbook

of metaheuristics. Springer, 2019, pp. 311–351.

[21] P. Hansen, N. Mladenović, J. Brimberg, and J. A. M. Pérez, “Variable neighborhood search,” in

Handbook of metaheuristics. Springer, 2019, pp. 57–97.

[22] H. R. Lourenço, O. C. Martin, and T. Stützle, “Iterated local search: Framework and applications,”

in Handbook of metaheuristics. Springer, 2019, pp. 129–168.

[23] M. Gendreau and J.-Y. Potvin, “Tabu search,” in Handbook of Metaheuristics. Springer, 2019,

pp. 37–55.

[24] E. K. Burke, M. R. Hyde, G. Kendall, G. Ochoa, E. Özcan, and J. R. Woodward, “A classification

of hyper-heuristic approaches: Revisited,” in Handbook of Metaheuristics. Springer, 2019, pp.

453–477.

[25] M. O’Neill and C. Ryan, “Grammatical evolution,” IEEE Transactions on Evolutionary Compu-

tation, vol. 5, no. 4, pp. 349–358, 2001.

[26] N. L. Cramer, “A representation for the adaptive generation of simple sequential programs,” in

proceedings of an International Conference on Genetic Algorithms and the Applications, 1985,

pp. 183–187.

[27] J. R. Koza and R. Poli, “Genetic programming,” in Search Methodologies. Springer, 2005, pp.

127–164.

[28] W. B. Langdon, R. Poli, N. F. McPhee, and J. R. Koza, “Genetic programming: An introduction

and tutorial, with a survey of techniques and applications,” in Computational intelligence: A

compendium. Springer, 2008, pp. 927–1028.

[29] R. Poli, W. B. Langdon, N. F. McPhee, and J. R. Koza, A field guide to genetic programming.

Lulu. com, 2008.

Department of Computer Science
University of Pretoria

164

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

REFERENCES

[30] R. Poli, “A simple but theoretically-motivated method to control bloat in genetic programming,”

in European Conference on Genetic Programming. Springer, 2003, pp. 204–217.

[31] L. Vanneschi and R. Poli, “Genetic programming—introduction, applications, theory and open

issues,” Handbook of natural computing, pp. 709–739, 2012.

[32] P. Toth and D. Vigo, Vehicle routing: problems, methods, and applications. SIAM, 2014.

[33] J. R. Woodward and R. Bai, “Why evolution is not a good paradigm for program induction: a

critique of genetic programming,” in Proceedings of the first ACM/SIGEVO Summit on Genetic

and Evolutionary Computation, 2009, pp. 593–600.

[34] S. Nguyen, M. Zhang, and M. Johnston, “A genetic programming based hyper-heuristic approach

for combinatorial optimisation,” in Proceedings of the 13th annual conference on Genetic and

evolutionary computation. ACM, 2011, pp. 1299–1306.

[35] A. S. Fukunaga, “Automated discovery of local search heuristics for satisfiability testing,” Evolu-

tionary computation, vol. 16, no. 1, pp. 31–61, 2008.

[36] S. Mirjalili, “Genetic algorithm,” in Evolutionary Algorithms and Neural Networks. Springer,

2019, pp. 43–55.

[37] M. Nicolau, “Understanding grammatical evolution: initialisation,” Genetic Programming and

Evolvable Machines, vol. 18, no. 4, pp. 467–507, 2017.

[38] C. Stone, E. Hart, and B. Paechter, “On the synthesis of perturbative heuristics for multiple

combinatorial optimisation domains,” in International Conference on Parallel Problem Solving

from Nature. Springer, 2018, pp. 170–182.

[39] E. Burke, G. Kendall, J. Newall, E. Hart, P. Ross, and S. Schulenburg, “Hyper-heuristics: An

emerging direction in modern search technology,” in Handbook of metaheuristics. Springer,

2003, pp. 457–474.

Department of Computer Science
University of Pretoria

165

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

REFERENCES

[40] N. R. Sabar, M. Ayob, G. Kendall, and R. Qu, “Grammatical evolution hyper-heuristic for

combinatorial optimization problems,” IEEE Transactions on Evolutionary Computation, vol. 17,

no. 6, pp. 840–861, 2013.

[41] P. Cowling, G. Kendall, and E. Soubeiga, “A hyperheuristic approach to scheduling a sales

summit,” in International Conference on the Practice and Theory of Automated Timetabling.

Springer, 2000, pp. 176–190.

[42] E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, and J. R. Woodward, “A classification

of hyper-heuristic approaches,” in Handbook of metaheuristics. Springer, 2010, pp. 449–468.

[43] E. K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, and R. Qu, “Hyper-

heuristics: A survey of the state of the art,” Journal of the Operational Research Society, vol. 64,

no. 12, pp. 1695–1724, 2013.

[44] N. Pillay and R. Qu, Hyper-Heuristics: Theory and Applications. Springer, 2018.

[45] R. Qu, E. K. Burke, B. McCollum, L. T. Merlot, and S. Y. Lee, “A survey of search methodologies

and automated system development for examination timetabling,” Journal of scheduling, vol. 12,

no. 1, pp. 55–89, 2009.

[46] K. Chakhlevitch and P. Cowling, “Hyperheuristics: recent developments,” in Adaptive and

multilevel metaheuristics. Springer, 2008, pp. 3–29.

[47] R. E. Keller and R. Poli, “Self-adaptive hyperheuristic and greedy search,” in 2008 IEEE Congress

on Evolutionary Computation (IEEE World Congress on Computational Intelligence). IEEE,

2008, pp. 3801–3808.

[48] E. Aarts, E. H. Aarts, and J. K. Lenstra, Local search in combinatorial optimization. Princeton

University Press, 2003.

[49] M. Bader-El-Den and R. Poli, “Generating sat local-search heuristics using a gp hyper-heuristic

framework,” in International Conference on Artificial Evolution (Evolution Artificielle). Springer,

Department of Computer Science
University of Pretoria

166

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

REFERENCES

2007, pp. 37–49.

[50] E. K. Burke, M. R. Hyde, and G. Kendall, “Grammatical evolution of local search heuristics,”

IEEE Transactions on Evolutionary Computation, vol. 16, no. 3, pp. 406–417, 2012.

[51] C. Contreras-Bolton and V. Parada, “Automatic design of algorithms for optimization problems,”

in 2015 Latin America Congress on Computational Intelligence (LA-CCI). IEEE, 2015, pp.

1–5.

[52] B. J. Oates, Researching information systems and computing. Sage, 2005.

[53] C. Johnson, “What is research in computing science,” Com-

puter Science Dept., Glasgow University. Electronic resource:

http://www.dcs.gla.ac.uk/%7Ejohnson/teaching/research_skills/research.html, 2006.

[54] C. López-Vázquez and E. Hochsztain, “Extended and updated tables for the friedman rank test,”

Communications in Statistics-Theory and Methods, vol. 48, no. 2, pp. 268–281, 2019.

[55] B. McCollum, A. Schaerf, B. Paechter, P. McMullan, R. Lewis, A. J. Parkes, L. D. Gaspero,

R. Qu, and E. K. Burke, “Setting the research agenda in automated timetabling: The second

international timetabling competition,” INFORMS Journal on Computing, vol. 22, no. 1, pp.

120–130, 2010.

[56] B. McCollum, P. McMullan, A. J. Parkes, E. K. Burke, and S. Abdullah, “An extended great de-

luge approach to the examination timetabling problem,” Proceedings of the 4th multidisciplinary

international scheduling: Theory and applications 2009 (MISTA 2009), pp. 424–434, 2009.

[57] S. A. Cook, “The complexity of theorem-proving procedures,” in Proceedings of the third annual

ACM symposium on Theory of computing. ACM, 1971, pp. 151–158.

[58] H. H. Hoos and T. Stützle, “Satlib: An online resource for research on sat,” Sat, vol. 2000, pp.

283–292, 2000.

Department of Computer Science
University of Pretoria

167

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

REFERENCES

[59] J. Gottlieb, E. Marchiori, and C. Rossi, “Evolutionary algorithms for the satisfiability problem,”

Evolutionary computation, vol. 10, no. 1, pp. 35–50, 2002.

[60] G. Clarke and J. W. Wright, “Scheduling of vehicles from a central depot to a number of delivery

points,” Operations research, vol. 12, no. 4, pp. 568–581, 1964.

[61] E. K. Burke, A. J. Eckersley, B. McCollum, S. Petrovic, and R. Qu, “Hybrid variable neighbour-

hood approaches to university exam timetabling,” European Journal of Operational Research,

vol. 206, no. 1, pp. 46–53, 2010.

[62] N. Pillay, “A review of hyper-heuristics for educational timetabling,” Annals of Operations

Research, vol. 239, no. 1, pp. 3–38, 2016.

[63] J. Swan, E. Ozcan, and G. Kendall, “Co-evolving add and delete heuristics,” in Proceedings of the

Ninth International Conference on the Practice and Theory of Automated Timetabling (PATAT

2012), 2012, pp. 395–399.

[64] E. K. Burke, R. Qu, and A. Soghier, “Adaptive selection of heuristics for improving constructed

exam timetables,” in Proc. PATAT, 2010, pp. 136–151.

[65] K. Anwar, A. T. Khader, M. A. Al-Betar, and M. A. Awadallah, “Harmony search-based

hyper-heuristic for examination timetabling,” in 2013 IEEE 9th International Colloquium on

Signal Processing and its Applications. IEEE, 2013, pp. 176–181.

[66] P. Garrido and C. Castro, “Stable solving of cvrps using hyperheuristics,” in Proceedings of the

11th Annual conference on Genetic and evolutionary computation. ACM, 2009, pp. 255–262.

[67] D. Meignan, A. Koukam, and J.-C. Créput, “Coalition-based metaheuristic: a self-adaptive

metaheuristic using reinforcement learning and mimetism,” Journal of Heuristics, vol. 16, no. 6,

pp. 859–879, 2010.

[68] S. García, D. Molina, M. Lozano, and F. Herrera, “A study on the use of non-parametric tests for

analyzing the evolutionary algorithms’ behaviour: a case study on the cec’2005 special session

Department of Computer Science
University of Pretoria

168

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

REFERENCES

on real parameter optimization,” Journal of Heuristics, vol. 15, no. 6, p. 617, 2009.

[69] F. Hutter, H. H. Hoos, K. Leyton-Brown, and T. Stützle, “Paramils: an automatic algorithm

configuration framework,” Journal of Artificial Intelligence Research, vol. 36, pp. 267–306,

2009.

[70] S. Luke, L. Panait, G. Balan, S. Paus, Z. Skolicki, J. Bassett, R. Hubley, and A. Chircop,

“Ecj: A java-based evolutionary computation research system,” Downloadable versions and

documentation can be found at the following url: http://cs. gmu. edu/eclab/projects/ecj, vol. 880,

2006.

[71] Z. Lü, J.-K. Hao, and F. Glover, “Neighborhood analysis: a case study on curriculum-based

course timetabling,” Journal of Heuristics, vol. 17, no. 2, pp. 97–118, 2011.

[72] D. S. Johnson, “A theoretician’s guide to the experimental analysis of algorithms,” Data structures,

near neighbor searches, and methodology: fifth and sixth DIMACS implementation challenges,

vol. 59, pp. 215–250, 2002.

[73] L. Di Gaspero and A. Schaerf, “Neighborhood portfolio approach for local search applied to

timetabling problems,” Journal of Mathematical Modelling and Algorithms, vol. 5, no. 1, pp.

65–89, 2006.

[74] A. Goeffon, J.-M. Richer, and J.-K. Hao, “Progressive tree neighborhood applied to the maximum

parsimony problem,” IEEE/ACM Transactions on Computational Biology and Bioinformatics,

vol. 5, no. 1, pp. 136–145, 2008.

[75] J. H. Drake, N. Kililis, and E. Özcan, “Generation of vns components with grammatical evolution

for vehicle routing,” in European Conference on Genetic Programming. Springer, 2013, pp.

25–36.

[76] D. Pisinger and S. Ropke, “A general heuristic for vehicle routing problems,” Computers &

operations research, vol. 34, no. 8, pp. 2403–2435, 2007.

Department of Computer Science
University of Pretoria

169

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

