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Abstract5

We present a technique for verifying concurrent software systems via SAT-based6

three-valued bounded model checking. It is based on a direct transfer of the sys-7

tem to be analysed and a temporal logic property into a propositional logic for-8

mula that encodes the corresponding model checking problem. In our approach9

we first employ three-valued abstraction which gives us an abstract system de-10

fined over predicates with the possible truth values true, false and unknown.11

The state space of the abstract system is then logically encoded. The verifica-12

tion result of the encoded three-valued model checking problem can be obtained13

via two satisfiability checks, one for an over-approximation of the encoding and14

one for an under-approximation. True and false results can be immediately15

transferred to the system under consideration.16

In case of an unknown result, the current abstraction is too imprecise for a17

definite outcome. In order to achieve the necessary precision, we have developed18

a novel cause-guided abstraction refinement procedure. An unknown result al-19

ways entails a truth assignment that only satisfies the over-approximation, but20

not the under-approximation. We determine the propositional logic clauses of21

the under-approximation that are not satisfied under the assignment. These22

clauses contain unknown as a constant. Each unknown is associated with a23

cause of uncertainty that refers to missing predicates that are required for a24

definite model checking result. Our procedure adds these predicates to the25

abstraction and constructs the encoding corresponding to the refined model26

checking problem. The procedure is iteratively applied until a definite result27

can be obtained.28

We have integrated our novel refinement approach into a SAT-based three-29

valued bounded model checker. In an experimental evaluation, we show that our30

approach allows to automatically and quickly reach the right level of abstraction31

for solving software verification tasks.32

Key words: Three-valued abstraction, Bounded model checking, Cause-guided
abstraction refinement, Concurrent software systems, Fairness

∗Corresponding author
Email addresses: ntimm@cs.up.ac.za (Nils Timm), sg@cs.up.ac.za (Stefan Gruner)

Preprint submitted to Science of Computer Programming April 30, 2019



1. Introduction1

Three-valued abstraction (3VA) [1] is a well-established technique in software2

verification. It proceeds by generating an abstract state space model of the sys-3

tem to be analysed over predicates with the possible truth values true, false and4

unknown, where the latter value is used to represent the loss of information due5

to abstraction. For concurrent software systems composed of many processes,6

3VA does not only replace concrete variables by predicates. It also abstracts7

away entire processes by summarising them into a single approximative com-8

ponent [2], which allows for a substantial reduction of the state space. The9

evaluation of temporal logic properties on models constructed via three-valued10

abstraction is known as three-valued model checking (3MC) [3]. In three-valued11

model checking there exist three possible outcomes: true and false results can12

be immediately transferred to the modelled system, whereas an unknown result13

does not allow to draw any conclusions about the properties of the system.14

Verification techniques based on three-valued abstraction and model check-15

ing typically assume that an explicit three-valued state space model correspond-16

ing to the system to be analysed is constructed and explored [3]. However,17

explicit-state model checking is known for its high memory demands in com-18

parison to symbolic model checking techniques like BDD-based model checking19

[4] and satisfiability-based bounded model checking (BMC) [5]. The benefits of20

bounded model checking are that its compressed state space representation as21

a propositional logic formula allows to handle larger systems than explicit-state22

techniques, and that its performance profits from the advancements in the SAT23

solver technology. Although there exist a few works on three-valued bounded24

model checking, these approaches are either solely defined for hardware systems25

[6], or they require an explicit state space model as input which is then sym-26

bolically encoded in propositional logic [7]. It is however not efficient to first27

translate a given system into an explicit state space model before encoding it28

symbolically for bounded model checking.29

In [8] we presented a verification technique for concurrent software systems30

that allows to directly transfer an abstracted input system Sys, a temporal31

logic property ψ and a bound b ∈ N into a propositional logic formula [[Sys, ψ]]b32

that encodes the corresponding three-valued bounded model checking problem.33

[[Sys, ψ]]b is defined over a set of Boolean atoms and the constants true, false34

and unknown, where the latter only occurs non-negated in the formula. The35

result of the encoded model checking problem can be obtained via two satis-36

fiability checks. The first check considers an over-approximation [[Sys, ψ]]+b of37

the encoding where all unknowns are assumed to be true. The second check38

considers an under-approximation [[Sys, ψ]]−b where all unknowns are assumed39

to be false. Unsatisfiability of the over-approximation implies that the bounded40

model checking result is false. Satisfiability of the under-approximation implies41

that the result is true. If only the over-approximation is satisfiable, then the42

model checking result is unknown, which indicates that the current abstraction43

is too coarse for a definite outcome. While our technique proposed in [8] allows44

for a compact state space encoding and for the efficient verification of safety and45
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liveness properties under fairness via SAT solving, it does not offer a concept1

for abstraction refinement in case of an unknown result.2

In this article, we extend our previous work by introducing a cause-guided3

abstraction refinement procedure for SAT-based three-valued bounded model4

checking. For this, we enhanced our propositional logic encoding by adding the5

cause of uncertainty to each unknown that occurs in the formula [[Sys, ψ]]b . A6

cause refers to missing information in the current abstraction. We developed7

a technique for determining whether this information is relevant for the verifi-8

cation task to be solved: If there exists a truth assignment α that satisfies the9

over-approximation [[Sys, ψ]]+b but not the under-approximation [[Sys, ψ]]−b , then10

α characterises an unconfirmed witness path for the temporal logic property11

ψ, i.e. a path with some unknown transitions or predicates. Hence, our ap-12

proach operates with implicit paths given by truth assignments. In contrast to13

most counterexample-guided abstraction refinement (CEGAR) techniques [9],14

explicit paths do not need to be generated. We next determine all propositional15

logic clauses of the under-approximation that are not satisfied under the assign-16

ment α. Our encoding has the property that these clauses contain at least one17

unknown, and its associated cause refers to missing predicates that are required18

for a definite model checking result. Our cause-guided refinement procedure19

now adds these predicates to the abstraction and constructs the encoding cor-20

responding to the refined model checking problem. The procedure is iteratively21

applied until a definite result can be obtained.22

We have integrated iterative cause-guided abstraction refinement into our23

SAT-based three-valued bounded model checking tool Tvmc, which is available24

at www.github.com/ssfm-up/TVMC. In an experimental evaluation, we show25

that our novel refinement approach allows to automatically and quickly reach26

the right level of abstraction for solving software verification tasks. We also27

demonstrate in a number of case studies that Tvmc outperforms the similar28

tool 3Spot [2] in most cases. Moreover, we present two enhancements of our29

verification technique based on existing work that we have implemented as well:30

Temporal induction [10] allows us to translate our results of bounded model31

checking of safety properties into unbounded model checking results, and spot-32

light abstraction [11] enables us to verify parameterised systems composed of33

arbitrarily many uniform processes.34

The remainder of this article is organised as follows. In Section 2 we in-35

troduce the concurrent systems that we consider in our software verification36

approach. Section 3 provides the background on three-valued abstraction and37

bounded model checking. Section 4 introduces our propositional logic encod-38

ing of software verification tasks and presents a theorem which states that the39

satisfiability result for an encoded verification task is equivalent to the result of40

the corresponding three-valued bounded model checking problem. In Section 541

we show how our encoding can be augmented with fairness constraints for the42

verification of liveness properties. Section 6 introduces our novel cause-guided43

abstraction refinement technique. In Section 7 we present the implementation44

of our approach, we introduce enhancements that have been implemented as45

well, and we present experimental results. Section 8 discusses related work. We46
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conclude this paper in Section 9 and give an outlook on future work.1

2. Concurrent Software Systems2

We start with a brief introduction to the systems that we consider in our3

work. A concurrent software system Sys consists of a number of possibly non-4

uniform processes P1 to Pn composed in parallel: Sys = ‖ni=1 Pi . It is defined5

over a set of variables Var = Vars ∪
⋃n

i=1 Vari where Vars is a set of shared6

variables and Var1, . . . ,Varn are sets of local variables associated with the pro-7

cesses P1, . . . ,Pn , respectively. The state space over Var corresponds to the set8

SVar of all type-correct valuations of the variables. Given a state s ∈ SVar and9

an expression e over Var , then s(e) denotes the valuation of e in s. An example10

for a concurrent system implementing mutual exclusion is depicted in Figure 1.11

y : semaphore where y = 1;

P1 ::


loop forever do 0: acquire (y, 1);

1: CRITICAL

release (y, 1);


 ‖ P2 ::


loop forever do 0: acquire (y, 1);

1: CRITICAL

release (y, 1);




Figure 1: Concurrent system Sys.

Here we have two processes operating on a shared counting semaphore vari-12

able y . Processes Pi can be formally represented as control flow graphs (CFGs)13

Gi = (Loci , δi , τi) where Loci = {[0]2, . . . , [|Loci |]2} is a set of control loca-14

tions given as binary numbers, δi ⊆ Loci × Loci is a transition relation, and15

τi : Loci × Loci → Op is a function labelling transitions with operations from a16

set Op.17

Definition 1 (Operations).18

Let Var = {v1, . . . , vm} be a set of variables. The set of operations Op on these19

variables consists of all statements of the form assume(e) : v1 :=e1, . . . , vm :=em20

where e, e1, . . . em are expressions over Var.21

Hence, every operation consists of a guard and a list of assignments. For22

convenience, we sometimes just write e instead of assume(e). Moreover, we23

omit the assume part completely if the guard is true. The control flow graphs24

G1 and G2 corresponding to the processes of our example system are depicted in25

Figure 2. G1 and G2 also illustrate the semantics of the operations acquire(y , 1)26

and release(y , 1).27

A concurrent system given by n individual control flow graphs G1, . . . ,Gn28

can be modelled by one composite CFG G = (Loc, δ, τ) where Loc =×n
i=1 Loci .29

G is the product graph of all individual CFGs. We assume that initially all pro-30

cesses of a concurrent system are at location 0. Moreover, we assume that a31

deterministic initialisation of the system variables is given by an assertion φ32

over Var . In our example we have that φ = (y = 1). Now, a computation33
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y : semaphore where y = 1;

0

G1

1

y < 1

y > 0 : y := y − 1 ‖y := y + 1

0

G2

1

y < 1

y > 0 : y := y − 1y := y + 1

Figure 2: Control flow graphs G1 and G2 composed in parallel.

of a concurrent system corresponds to a sequence where in each step one pro-1

cess is non-deterministically selected and the operation at its current location2

is attempted to be executed. In case the execution is not blocked by a guard,3

the variables are updated according to the assignment part and the process4

advances to the consequent control location. For verifying properties of concur-5

rent systems typically only fair computations where all processes infinitely often6

proceed are considered. We will discuss our notion of fairness in more detail in7

Section 5. The overall state space S of a concurrent system corresponds to the8

set of states over Var combined with the possible locations, i.e. S = Loc×SVar .9

Hence, each state in S is a tuple 〈l , s〉 with l = (l1, . . . , ln) ∈ Loc and s ∈ SVar .10

Control flow graphs allow to model concurrent systems formally. For an effi-11

cient verification it is additionally required to reduce the state space complexity.12

For this purpose, we use three-valued predicate abstraction [2]. Such an abstrac-13

tion is an approximation in the sense that all definite verification results (true,14

false) obtained for an abstract system can be transferred to the original sys-15

tem. Only unknown results necessitate abstraction refinement [12]. In abstract16

systems operations do not refer to concrete variables but to predicates Pred =17

{p1, . . . , pm} over Var with the three-valued domain {true, unknown, false}. Un-18

known, typically abbreviated by ⊥, is a valid truth value as we operate with the19

three-valued Kleene logic K3 [13] whose semantics is given by the truth tables20

in Figure 3.21

∧ true ⊥ false
true true ⊥ false
⊥ ⊥ ⊥ false
false false false false

∨ true ⊥ false
true true true true
⊥ true ⊥ ⊥
false true ⊥ false

¬
true false
⊥ ⊥
false true

Figure 3: Truth tables for the three-valued Kleene logic K3.

The information order ’≤K3 ’ of the Kleene logic is defined as ⊥ ≤K3 true,
⊥ ≤K3

false, and true, false incomparable. Operations in abstract systems are
of the following form:

assume(choice(a, b)) : p1 :=choice(a1, b1), . . . , pm :=choice(am , bm)
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where a, b, a1, b1, . . . , am , bm are logical expressions over Pred and choice(a, b)-1

expressions have the following semantics:2

Definition 2 (Choice Expressions).
Let s be a state over a set of three-valued predicates Pred. Moreover, let a and
b be logical expressions over Pred. Then

s (choice (a, b)) =


true if, and only if, s(a) is true,

false if, and only if, s(b) is true,

⊥ else.

The application of three-valued predicate abstraction ensures that for any3

state s and for any expression choice(a, b) in an abstract control flow graph the4

following holds: s(a) = true ⇒ s(b) = false and s(b) = true ⇒ s(a) = false.5

In particular, this implies that s(a) and s(b) are never both true. Moreover,6

the following equivalences hold:7

choice(true, false) ≡ true

choice(false, true) ≡ false

choice(false, false) ≡ ⊥
choice(a,¬a) ≡ a

choice(¬a, a) ≡ ¬a

choice(a, b) ≡ (a ∨ ¬b) ∧ (a ∨ b ∨ ⊥)

choice(b, a) ≡ ¬choice(a, b)

A three-valued expression choice(a, b) over Pred approximates a Boolean8

expression e over Var , written choice(a, b) � e, if, and only if, a logically implies9

e and b logically implies ¬e. The three-valued approximation relation can be10

straightforwardly extended to operations as described in [2]. An abstract system11

Sys ′ approximates a concrete system Sys, written Sys ′ � Sys, if the systems12

have isomorphic CFGs and the operations in the abstract system approximate13

the corresponding ones in the concrete system. An example for an abstract14

system that approximates the concrete system in Figure 2 is depicted in Figure15

4. For illustration: the abstract operation (y > 0) := choice((y > 0), false) sets16

the predicate (y > 0) to true if (y > 0) was true before, and it never sets the17

predicate to false. This is a sound three-valued approximation of the concrete18

operation y := y + 1 over the predicate (y > 0).19

The state space of an abstract system is defined as S = Loc × SPred where
SPred is the set of all possible valuations of the three-valued predicates in Pred .
The state space corresponding to the abstraction of our example is thus S =

{〈(0, 0), (y > 0) = true〉, 〈(0, 0), (y > 0) = ⊥〉, 〈(0, 0), (y > 0) = false〉
〈(1, 0), (y > 0) = true〉, 〈(1, 0), (y > 0) = ⊥〉, 〈(1, 0), (y > 0) = false〉
〈(0, 1), (y > 0) = true〉, 〈(0, 1), (y > 0) = ⊥〉, 〈(0, 1), (y > 0) = false〉
〈(1, 1), (y > 0) = true〉, 〈(1, 1), (y > 0) = ⊥〉, 〈(1, 1), (y > 0) = false〉}.
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(y > 0) : predicate where (y > 0) = true;

0

G′i

1

¬(y > 0)

(y > 0) : (y > 0) := choice(false,¬(y > 0))‖2i=1 (y > 0) := choice((y > 0), false)

Figure 4: Abstract system represented by control flow graphs G′1 and G′2 corresponding to
the concrete control flow graphs G1 and G1. Transitions are labelled with abstract operations
over Pred = {(y > 0)}.

So far we have seen how concurrent systems can be formally represented1

and abstracted. Next we will take a look on how model checking of abstracted2

systems is defined.3

3. Three-Valued Bounded Model Checking4

CFGs allow us to model the control flow of a concurrent system. The veri-5

fication of a system additionally requires to explore a corresponding state space6

model. Since we use three-valued abstraction, we need a model that incorpo-7

rates the truth values true, false and unknown. Three-valued Kripke structures8

are models with a three-valued domain for transitions and labellings of states:9

Definition 3 (Three-Valued Kripke Structure).10

A three-valued Kripke structure over a set of atomic predicates AP is a tuple11

M = (S , 〈l0, s0〉,R,L) where12

• S is a finite set of states,13

• 〈l0, s0〉 ∈ S is the initial state,14

• R : S × S → {true,⊥, false} is a transition function with ∀〈l , s〉 ∈ S :15

∃〈l ′, s ′〉 ∈ S : R(〈l , s〉, 〈l ′, s ′〉) ∈ {true,⊥},16

• L : S×AP → {true,⊥, false} is a labelling function that associates a truth17

value with each atomic predicate in each state.18

A simple example for a three-valued Kripke structure M over AP = {p} is19

depicted in Figure 5.20

A path π of a Kripke structure M is a sequence of states 〈l0, s0〉〈l1, s1〉 . . .21

with R(〈lk , sk 〉, 〈lk+1, sk+1〉) ∈ {true,⊥}. π(k) denotes the k -th state of π,22

whereas πk denotes the k -th suffix π(k)π(k + 1)π(k + 2) . . . of π. By ΠM we23

denote the set of all paths of M starting in the initial state. Paths are considered24

for the evaluation of temporal logic properties of Kripke structures.25

A concurrent system Sys = ‖ni=1 Pi abstracted over a set of predicates Pred26

can be represented as a three-valued Kripke structure according to the following27

definition:28
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〈l0, s0〉M ::

〈l2, s2〉

〈l1, s1〉

p = ⊥

p = true

p = false

true

true

⊥

true

true

Figure 5: Three-valued Kripke structure.

Definition 4 (Concurrent System as Three-Valued Kripke Structure).1

Let Sys = ‖ni=1 Pi over Var be a concurrent system given by a composite con-2

trol flow graph G = (Loc, δ, τ) and an initial state predicate φ. Moreover, let3

Pred be a set of predicates over Var . The corresponding three-valued Kripke4

structure is a tuple M = (S , 〈l0, s0〉,R,L) over a set of atomic predicates5

AP = Pred ∪ {(loci = j ) | i ∈ [1..n], j ∈ Loci}, where (loci = j ) denotes6

that the process Pi is currently at control location j , with7

• S := Loc × SPred ,8

• 〈l0, s0〉 := 〈(0, . . . , 0), s〉 where s ∈ S with s(φ) = true,9

• R(〈l , s〉, 〈l ′, s ′〉) :=
∨n

i=1 Ri(〈l , s〉, 〈l ′, s ′〉) :=10 ∨n
i=1(δi(li , l

′
i )∧
∧

i′ 6=i(li′ = l ′i′)∧s(choice(a, b))∧
∧m

j=1 s ′(pj ) = s(choice(aj , bj )))11

12
assuming that li is the single location of Pi in the composite location l and13

τi(li , l
′
i ) = assume(choice(a, b)) : p1 :=choice(a1, b1), . . . , pm :=choice(am , bm),14

• L(〈l , s〉, p) := s(p) for each p ∈ Pred ,15

• L(〈l , s〉, (loci = j )) :=

 true if li = j

false else
16

assuming that li is the single location of Pi in the composite location l .17

In [2] it has been shown that there is a one-to-one correspondence between18

computations of a concurrent system Sys and paths of a three-valued Kripke19

structure M modelling the state space of Sys. Moreover, we get Lemma 1 from20

[2] that establishes a relation between different abstract models of a system.21

Lemma 122

Let Sys = ‖ni=1 Pi over Var be a concurrent system. Let APa and APr be23

sets of atomic predicates over Var with APa ⊂ APr . Moreover, let Ma =24

8



(Sa , 〈l0
a , s

0
a〉,Ra ,La) be the three-valued Kripke structure modelling the state1

space of Sys abstracted over APa , and let Mr = (Sr , 〈l0
r , s

0
r 〉,Rr ,Lr ) be the2

three-valued Kripke structure modelling the state space of Sys abstracted over3

APr . Then the following holds:4

1. For every path πa ∈ ΠMa
there exists a path πr ∈ ΠMr

with ∀ k ∈ N :5

Ra(πa(k), πa(k + 1)) = true ⇒ Rr (πr (k), πr (k + 1)) = true and ∀ p ∈6

APa : La(πa(k), p) ≤K3
Lr(πr (k), p)7

2. For every path πr ∈ ΠMr
there exists a path πa ∈ ΠMa

with ∀ k ∈ N :8

Rr (πr (k), πr (k + 1)) 6= false ⇒ Ra(πa(k), πa(k + 1)) 6= false and ∀ p ∈9

APa : La(πa(k), p) ≤K3
Lr(πr (k), p)10

Hence, for each path πa in the more abstract model Ma there is a path πr11

in the finer model Mr such that πr is a refinement of πa in terms of the logic12

K3. Moreover, for each path πr in the finer model Mr there is a path πa in the13

more abstract model Ma such that πa is an abstraction of πr . An example of14

two paths with such an abstraction-refinement relation is depicted in Figure 6.15

As we can see, every labelling with a definite value in πa has the same definite16

value in πr , whereas labellings with unknown values in πa may have different17

values in πr . Furthermore, every definite transition in πa is also definite in πr ,18

whereas unknown transitions in πa may be either still unknown or definite πr .19

πa ::

p = true p = ⊥p = ⊥ p = ⊥
⊥ true

⊥

true

πr ::

p = true p = falsep = true p = ⊥
true true

⊥

true

Figure 6: Paths with an abstraction-refinement relation.

According to Lemma 1, definite path information is preserved if we consider20

a refinement of an abstract model. Subsequently, we will see that this extends21

to temporal logic properties evaluated on abstract and refined models.22

The number of states of a Kripke structure modelling a given system is23

exponential in the number of its locations and variables. State explosion is24

the major challenge in software model checking. One approach to cope with25

the state explosion problem is to use a symbolic and therefore more compact26

representation of the Kripke structure. In SAT-based bounded model checking27

[5] all possible path prefixes up to a bound b ∈ N are encoded in a propositional28

logic formula. The formula is then conjuncted with an encoding of the temporal29

logic property to be checked. In case the overall formula is satisfiable, the30

9



satisfying truth assignment characterises a witness path of length b for the1

property in the state space of the encoded system. Hence, bounded model2

checking can be performed via satisfiability solving. We now briefly recapitulate3

the syntax and bounded semantics of the linear temporal logic (LTL):4

Definition 5 (Syntax of LTL).
Let AP be a set of atomic predicates and p ∈ AP. The syntax of LTL formulae
ψ is given by

ψ ::= p | ¬p | ψ ∨ ψ | ψ ∧ ψ | Gψ | Fψ | Xψ.

The temporal operator G is read as globally, F is read as finally (or eventu-5

ally), and X is read as next. For the sake of simplicity, we omit the temporal6

operator U (until). Due to the extended domain of truth values in three-valued7

Kripke structures, the bounded evaluation of LTL formulae is based on the8

Kleene logic K3 (compare Section 2). Based on K3, LTL formulae can be evalu-9

ated on b-bounded path prefixes of three-valued Kripke structures. Such finite10

prefixes π(0) . . . π(b) can still represent infinite paths if the prefix has a loop,11

i.e. the last state π(b) has a successor state that is also part of the prefix.12

Definition 6 (b-Loop).13

Let π be a path of a three-valued Kripke structure M and let r , b ∈ N with r ≤ b.14

Then π has a (b, r)-loop if R(π(b), π(r)) ∈ {true,⊥} and π is of the form v ·wω
15

where v = π(0) . . . π(r − 1) and w = π(r) . . . π(b). π has a b-loop if there exists16

an r ∈ N with r ≤ b such that π has a (b, r)-loop.17

An example for a path with a loop is depicted in Figure 7. Let b = 3 be18

then bound. As we can see, the path π has a (3, 1)-loop and therefore a 3-loop.19

π(0)π :: π(1) π(2) π(3)

Figure 7: Path with a b loop.

For the bounded evaluation of LTL formulae on paths of Kripke structures20

we have to distinguish between paths with and without a b-loop.21

Definition 7 (Three-Valued Bounded Evaluation of LTL).22

Let M = (S , 〈l0, s0〉,R,L) over AP be a three-valued Kripke structure. More-23

over, let b ∈ N and let π be a path of M with a b-loop. Then the b-bounded24

evaluation of an LTL formula ψ on π, written
[
π |=k

b ψ
]

where k ≤ b denotes25

the current position along the path, is inductively defined as follows:26

10



[π |=k
b p] ≡ L(π(k), p)

[π |=k
b ¬p] ≡ ¬L(π(k), p)

[π |=k
b ψ ∨ ψ′] ≡ [π |=k

b ψ] ∨ [π |=k
b ψ
′]

[π |=k
b ψ ∧ ψ′] ≡ [π |=k

b ψ] ∧ [π |=k
b ψ
′]

[π |=k
b Gψ] ≡

∧
k ′≥k (R(π(k ′), π(k ′ + 1)) ∧ [π |=k ′

b ψ])

[π |=k
b Fψ] ≡

∨
k ′≥k ([π |=k ′

b ψ] ∧
∧k ′−1

k ′′=k R(π(k ′′), π(k ′′ + 1)))

[π |=k
b Xψ] ≡ R(π(k), π(k + 1)) ∧ [π |=k+1

b ψ]

If π is a path without a b-loop then the b-bounded evaluation of ψ is defined
as:

[π |=k
b Gψ] ≡ false

[π |=k
b Fψ] ≡

∨b
k ′=k ([π |=k ′

b ψ] ∧
∧k ′−1

k ′′=k R(π(k ′′), π(k ′′ + 1)))

[π |=k
b Xψ] ≡ if k < b then R(π(k), π(k + 1)) ∧ [π |=k+1

b ψ] else false

The other cases are identical to the case where π has a b-loop. The universal1

bounded evaluation of ψ on an entire Kripke structure M is [M |=U ,b ψ] ≡2 ∧
π∈ΠM

[π |=0
b ψ]. The existential bounded evaluation of ψ on a Kripke structure3

is [M |=E ,b ψ] ≡
∨
π∈ΠM

[π |=0
b ψ].4

Checking temporal logic properties for three-valued Kripke structures is what
is known as three-valued model checking [3]. Universal model checking can
always be transformed into existential model checking based on the equation

[M |=U ,b ψ] = ¬ [M |=E ,b ¬ψ] .

From now on we only consider the existential case, since it is the basis5

of satisfiability-based bounded model checking. Bounded model checking [5]6

is typically performed incrementally, i.e. b is iteratively increased until the7

property can be either proven or a completeness threshold [14] is reached. In8

the three-valued scenario there exist three possible outcomes: true, false and ⊥.9

For our example Kripke structure M we have that [M |=E ,0 Fp] evaluates to ⊥10

and [M |=E ,1 Fp] evaluates to true, which is witnessed by the 1-bounded path11

prefix 〈l0, s0〉〈l2, s2〉.12

By combining Lemma 1 with the definitions of LTL we get Corollary 1:13

Corollary 114

Let Sys = ‖ni=1 Pi over Var be a concurrent system. Let APa and APr be sets15

of atomic predicates over Var with APa ⊂ APr . Let Ma = (Sa , 〈l0
a , s

0
a〉,Ra ,La)16

be the three-valued Kripke structure modelling the state space of Sys abstracted17

over APa , and let Mr = (Sr , 〈l0
r , s

0
r 〉,Rr ,Lr ) be the three-valued Kripke structure18

modelling the state space of Sys abstracted over APr . Moreover, let ψ be an LTL19

formula and b ∈ N be a bound. Then the following holds:20

1. [Ma |=E ,b ψ] = true ⇒ [Mr |=E ,b ψ] = true21

2. [Ma |=E ,b ψ] = false ⇒ [Mr |=E ,b ψ] = false22
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Hence, all definite model checking results obtained under three-valued ab-1

straction can be immediately transferred to any refined model, and thus, also2

the concrete system Sys modelled by the three-valued Kripke structure, whereas3

an unknown result tells us that the current level of abstraction is too coarse.4

For the latter case we will present an automatic refinement procedure in Section5

6 that refines the abstraction by adding predicates to AP .6

In the next section we define a propositional logic encoding of three-valued7

bounded model checking tasks for abstracted concurrent systems. Our encod-8

ing allows to immediately transfer verification tasks into a propositional logic9

formulae that can be then processed via a SAT solver. Thus, the expensive10

construction of an explicit Kripke structure is not required in our approach.11

The state space of the system under consideration as well as the property to12

be checked will be implicitly contained in the propositional logic encoding, and13

the model checking result will be equivalent to the result of the corresponding14

satisfiability tests.15

4. Propositional Logic Encoding16

In our previous work [15] we showed that the three-valued bounded model
checking problem [M |=E ,b ψ], where M is given as an explicit Kripke structure,
can be reduced to two classical SAT problems. Here we show that for a given sys-
tem Sys abstracted over Pred , a temporal logic property ψ, and a bound b ∈ N,
it is not even necessary to consider the corresponding model checking problem.
We can immediately construct a propositional logic encoding [[Sys, ψ]]b and per-
form two SAT checks. One check considers an over-approximating completion
of the encoding, marked with ‘+’, where all ⊥’s are assumed to be true:

[[Sys, ψ]]+b := [[Sys, ψ]]b [⊥ 7→ true]

and the second check considers an under-approximating completion, marked with
a ‘−’, where all ⊥’s are assumed to be false:

[[Sys, ψ]]−b := [[Sys, ψ]]b [⊥ 7→ false].

Here [⊥ 7→ z ] with z ∈ {true, false} denotes the assumption that ⊥ mapped z .17

We will show that the following holds:18

[M |=E ,b ψ] =


true if SAT([[Sys, ψ]]−b ) = true

false if SAT([[Sys, ψ]]+b ) = false

⊥ else

Hence, it is not required to construct and explore an explicit Kripke structure19

M modelling the state space of Sys. All we need to do is to construct [[Sys, ψ]]b20

and check the satisfiability of its under- and over-approximation in order to21

obtain the result of the corresponding three-valued model checking problem.22
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The formula [[Sys, ψ]]b is defined over a set of Boolean atoms and over true,1

false and ⊥. We now give a step-by-step description on how [[Sys, ψ]]b can be2

constructed for a concurrent system Sys = ‖ni=1 Pi abstracted over a set of3

predicates Pred and given by a number of control flow graphs Gi = (Loci , δi , τi)4

with 1 ≤ i ≤ n, a temporal logic property ψ ∈ LTL, and a bound b ∈ N. The5

construction of [[Sys, ψ]]b is divided into the translation of the abstract system6

into a formula [[Sys]]b and the translation of the property ψ into a formula [[ψ]]b .7

We start with the encoding of the system, which first requires to encode its
states as propositional logic formulae. Since a state of a concurrent system is a
tuple 〈l , s〉 where l is a composite control flow location and s is a valuation of
all predicates in Pred , we encode l and s separately. First, we introduce a set of
Boolean atoms for the encoding of locations. A composite location (l1, . . . , ln) ∈
Loc is a list of single locations li ∈ Loci where Loci = {0, . . . , |Loci |} and i is
the identifier of the associated process Pi . Each li is a binary number from the
domain {[0]2, . . . , [|Loci |]2}. We assume that all these numbers have di digits
where di is the number required to binary represent the maximum value |Loci |.
We introduce the following set of Boolean atoms:

LocAtoms := {li [j ] | i ∈ [1..n], j ∈ [1..di ]}

Hence, for each process Pi of the system we introduce di Boolean atoms,8

each referring to a distinct digit along the binary representation of its locations.9

The atoms now allow us to define the following encoding of locations:10

Definition 8 (Encoding of Locations).
Let the location li ∈ {0, . . . , |Loci |} be given as a binary number. Moreover, let
li(j ) be a function evaluating to true if the j -th digit of li is 1, and to false
otherwise. Then li can be encoded in propositional logic as follows:

enc(li) :=
∧di

j=1((li [j ] ∧ li(j )) ∨ (¬li [j ] ∧ ¬li(j )))

Let l = (l1, . . . , ln) be a composite location. Then enc(l) :=
∧n

i=1 enc(li).11

Note that since the function li(j ) evaluates to true or false an encoding12

enc(li) can be always simplified to a conjunction of literals over LocAtoms. For13

instance, the initial location (0, 0) of our example system from Section 2 will be14

encoded to ¬l1[1]∧¬l2[1] and the location (0, 1) will be encoded to ¬l1[1]∧ l2[1].15

Next, we encode the predicate part of states. Let s ∈ SPred where Pred =
{p1, . . . , pm}. We introduce the following set of Boolean atoms:

PredAtoms := {p[j ] | p ∈ Pred , j ∈ {u, t}}

Hence, for each three-valued predicate p we introduce two Boolean atoms.16

The atom p[u] will let us indicate whether p evaluates to unknown, and p[t ] will17

let us indicate whether it evaluates to true or false:18

Definition 9 (Encoding of States over Predicates).
Let p ∈ Pred and let val ∈ {true,⊥, false}. Then (p = val) can be logically
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encoded follows:

enc(p = val) :=


¬p[u] ∧ p[t ] if val = true

¬p[u] ∧ ¬p[t ] if val = false

p[u] if val = ⊥

Let s be a state over Pred. Then enc(s) :=
∧

p∈Pred enc(p = s(p)).1

For an overall state 〈l , s〉 ∈ S we consequently get

enc(〈l , s〉) := enc(l) ∧ enc(s).

Since enc(〈l , s〉) yields a conjunction of literals, there exists exactly one
satisfying truth assignment α : LocAtoms ∪ PredAtoms → {true, false} for a
state encoding. We denote the assignment characterising an encoded state 〈l , s〉
by α〈l,s〉. For instance, the initial state 〈(0, 0), (y > 0) = true〉 of our abstracted
example system will be encoded to

Init = ¬l1[1] ∧ ¬l2[1] ∧ ¬p[u] ∧ p[t ]

where p = (y > 0), i.e. we abbreviate (y > 0) by p. The assignment character-
ising Init is

α〈(0,0),(y>0)=true〉 : l1[1] 7→ false, l2[1] 7→ false, p[u] 7→ false, p[t ] 7→ true.

.2

The encoding function enc can be extended to logical expressions in negation3

normal form (NNF), which we require for our later transition encoding:4

Definition 10 (Encoding of Logical Expressions).
Let p ∈ Pred and e, e ′ logical expressions in NNF over Pred ∪ {true,⊥, false}.
Let val ∈ {true,⊥, false}. Then the encoding of a logical expression is induc-
tively defined as follows:

enc(val) := val
enc(¬val) := ¬val
enc(p) := (p[u] ∧ ⊥) ∨ (¬p[u] ∧ p[t ])
enc(¬p) := (p[u] ∧ ⊥) ∨ (¬p[u] ∧ ¬p[t ])
enc(e ∧ e ′) := enc(e) ∧ enc(e ′)
enc(e ∨ e ′) := enc(e) ∨ enc(e ′)
enc(choice(e, e ′)) := enc((e ∨NNF (¬e ′)) ∧ (e ∨ e ′ ∨ ⊥))

Next, we take a look at how the transition relation of an abstracted system
can be encoded. We will construct a propositional logic formula

[[Sys]]b = Init0 ∧ Trans0,1 ∧ . . . ∧ Transb−1,b

that exactly characterises path prefixes of length b ∈ N in the state space of the
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system Sys abstracted over Pred . Since we consider states as parts of such pre-
fixes, we have to extend the encoding of states by index values k ∈ {0, . . . , b}
where k denotes the position along a path prefix. For this we introduce the
notion of indexed encodings. Let F be a propositional logic formula over
Atoms = LocAtoms ∪ PredAtoms and true, false and ⊥. Then Fk stands for
F [a/ak | a ∈ Atoms]. Our overall encoding will be thus defined over the set
Atoms[0,b] = {ak |a ∈ Atoms, 0 ≤ k ≤ b}. An assignment α〈l,s〉 to the atoms in
a subset Atoms[k ,k ] ⊆ Atoms[0,b] thus characterises a state 〈l , s〉 at position k of
a path prefix, whereas an assignment α〈l0,s0〉...〈lb ,sb〉 to the atoms in Atoms[0,b]

characterises an entire path prefix 〈l0, s0〉 . . . 〈lb , sb〉. Since all execution paths
start in the initial state of the system, we extend its encoding by the index 0,
i.e. we get

Init0 = ¬l1[1]0 ∧ ¬l2[1]0 ∧ ¬p[u]0 ∧ p[t ]0.

The encoding of all possible state space transitions from position k to k + 11

is defined as follows:2

Definition 11 (Encoding of Transitions).
Let Sys = ‖ni=1 Pi over Pred be an abstracted concurrent system given by the
single control flow graphs Gi = (Loci , δi , τi) with 1 ≤ i ≤ n. Then all possible
transitions for position k to k +1 can be encoded in propositional logic as follows:

Transk ,k+1 :=∨n
i=1

∨
(li ,l′i )∈δi

(enc(li)k ∧ enc(l ′i )k+1 ∧
∧

i′ 6=i(idle(i ′)k ,k+1) ∧ enc(τi(li , l
′
i ))k ,k+1)

where

idle(i ′)k ,k+1 :=
∧di′

j=1 (li′ [j ]k ↔ li′ [j ]k+1)

and

enc(τi(li , l
′
i ))k ,k+1 := enc(choice(a, b))k

∧
∧m

j=1( (enc(aj )k ∧ enc(pj = true)k+1)

∨(enc(bj )k ∧ enc(pj = false)k+1)
∨(enc(¬aj ∧ ¬bj )k [⊥ 7→ true] ∧ enc(pj = ⊥)k+1))

assuming that τi(li , l
′
i ) = assume(choice(a, b)) : p1 :=choice(a1, b1), . . . , pm :=3

choice(am , bm).4

Thus, we iterate over the system’s processes Pi and over the processes’ con-5

trol flow transitions δi(li , l
′
i ). Now we construct the k -indexed encoding of a6

source location li and conjunct it with the (k + 1)-indexed encoding of a desti-7

nation location l ′i . This gets conjuncted with the sub formula
∧

i′ 6=i idle(i ′)k ,k+18

which encodes that all processes different to the currently considered process Pi9

are idle, i.e. do not change their control flow location, while Pi proceeds. The10

last part of the transition encoding concerns the operation associated with the11
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control flow transition δi(li , l
′
i ): The sub formula enc(τi(li , l

′
i ))k ,k+1 evaluates to1

true for assignments α〈l,s〉〈l′,s′〉 to the atoms in Atoms[k ,k+1] that characterise2

pairs of states s and s ′ over Pred where the guard of the operation τi(li , l
′
i ) is3

true in s and the execution of the operation in s definitely results in the state4

s ′. The operation encoding evaluates to ⊥ for states s and s ′ where the guard5

of the operation is ⊥ in s or where it is unknown whether the execution of6

the operation in s results in the state s ′. In all other cases enc(τi(li , l
′
i ))k ,k+17

evaluates to false. Our transition encoding requires that an operation τi(li , l
′
i )8

assigns to all predicates in Pred : Thus, if a predicate p is not modified by the9

operation we assume that p := p is part of the assignment list.10

The encoding of the control flow transition δ1(0, 1) of our abstract example
system with

τ1(0, 1) = (assume(p) : p := choice(false,¬p)),

where p abbreviates (y > 0), yields the following:

enc(0)k = ¬l1[1]k
∧ ∧
enc(1)k+1 = l1[1]k+1

∧ ∧
idle(2)k ,k+1 = (l2[1]k ↔ l2[1]k+1)
∧ ∧
enc(τ1(0, 1))k ,k+1 = ((p[u]k ∧ ⊥) ∨ (¬p[u]k ∧ p[t ]k ))∧

((false ∧ (¬p[u]k+1 ∧ p[t ]k+1))
∨(((p[u]k ∧ ⊥) ∨ (¬p[u]k ∧ ¬p[t ]k )) ∧ (¬p[u]k+1 ∧ ¬p[t ]k+1))
∨(((p[u]k ∧ true) ∨ (¬p[u]k ∧ p[t ]k )) ∧ (p[u]k+1)))

The encoding of the operation only evaluates to true for assignments to the
atoms in Atoms[k ,k+1] that characterise a predicate state s at position k with
s(p) = true and a state s ′ at position k +1 with s ′(p) = ⊥. An overall satisfying
assignment for this encoding is

α〈(0,0),(y>0)=true〉〈(1,0),(y>0)=⊥〉 : l1[1]k 7→ false,

l2[1]k 7→ false,

l1[1]k+1 7→ true,

l2[1]k+1 7→ false,

p[u]k 7→ false,

p[t ]k 7→ true,

p[u]k+1 7→ true

characterising the definite transition between the states 〈(0, 0), (y > 0) = true〉
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and 〈(1, 0), (y > 0) = ⊥〉. The assignments

α〈(0,l2),(y>0)=true〉〈(1,l2),(y>0)=false〉,
α〈(0,l2),(y>0)=⊥〉〈(1,l2),(y>0)=false〉,
α〈(0,l2),(y>0)=⊥〉〈(1,l2),(y>0)=⊥〉

with l2 ∈ {0, 1} yield unknown for the encoding and hereby correctly char-1

acterise ⊥-transitions in the abstract state space. All other assignments yield2

false indicating that corresponding pairs of states do not characterise valid tran-3

sitions.4

The encoding definitions now allow us to construct the propositional logic
formula

[[Sys]]b = Init0 ∧ Trans0,1 ∧ . . . ∧ Transb−1,b

that characterises all possible path prefixes of length b ∈ N in the state space5

of the encoded system. Each assignment α : Atoms[0,b] → {true, false} that6

satisfies the formula characterises a definite path prefix, whereas an assignment7

that makes the formula evaluate to unknown characterises a prefix with some8

⊥-transitions.9

The second part of the encoding concerns the LTL property to be checked.10

The three-valued bounded LTL encoding has been defined in [15] before. Here11

we adjust it to our encodings of predicates and locations. Again, we distinguish12

the cases where the property is evaluated on a path prefix with and without a13

loop. The LTL encoding for the evaluation on prefixes with a loop is defined as:14

Definition 12 (LTL Encoding with Loop).
Let p and (loci = li) ∈ AP, ψ and ψ′ LTL formulae, and b, k , r ∈ N with
k , r ≤ b where k is the current position, b the bound and r the destination
position of the b-loop. Then the LTL encoding with a loop, r [[ψ]]kb , is defined as
follows:

r [[(loci = li)]]
k
b ≡ enc(li)k

r [[¬(loci = li)]]
k
b ≡ ¬enc(li)k

r [[p]]kb ≡ enc(p)k

r [[¬p]]kb ≡ enc(¬p)k

r [[ψ ∨ ψ′]]kb ≡ r [[ψ]]kb ∨ r [[ψ′]]kb

r [[ψ ∧ ψ′]]kb ≡ r [[ψ]]kb ∧ r [[ψ′]]kb

r [[Gψ]]kb ≡
∧b

k ′=min(k ,r) r [[ψ]]k
′

b

r [[Fψ]]kb ≡
∨b

k ′=min(k ,r) r [[ψ]]k
′

b

r [[Xψ]]kb ≡ r [[ψ]]
succ(k)
b

where succ(k) = k + 1 if k < b and succ(k) = r else.15

For a path prefix without a loop the LTL encoding is defined as:16
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Definition 13 (LTL Encoding without Loop).1

Let ψ be an LTL formula and b, k ∈ N with k ≤ b where k is the current position2

and b the bound. Then the LTL encoding without a loop, [[ψ]]kb , is defined as3

follows:4

[[Gψ]]kb ≡ false

[[Fψ]]kb ≡
∨b

k ′=k [[ψ]]k
′

b

[[Xψ]]kb ≡ if k < b then r [[ψ]]k+1
b else false

The LTL encoding without a loop of the other cases is identical to the LTL5

encoding with a loop.6

An example encoding is [[Fp]]02 = enc(p)0∨enc(p)1∨enc(p)2 which expresses
that a predicate p holds eventually, i.e. at some position 0, 1 or 2 along a 2-
prefix. Remember that a prefix 〈l0, s0〉 . . . 〈lb , sb〉 has a b-loop if there exists a
transition from 〈lb , sb〉 to a previous state 〈lr , sr 〉 along the prefix with 0 ≤ r ≤
b. Hence, we can define a loop constraint based on our transition encoding: A
prefix characterised by an assignment α〈l0,s0〉...〈lb ,sb〉 has definitely resp. maybe
a b-loop if the loop constraint∨b

r=0 Transb,r

evaluates to true resp. unknown under α〈l0,s0〉...〈lb ,sb〉 where Transb,r is defined
according to Definition 11 but with k substituted by b and k + 1 by r . This
now allows us to define the overall encoding of whether a concurrent system Sys
satisfies an LTL formula ψ:

[[Sys, ψ]]b := [[Sys]]b ∧ [[ψ]]b

with

[[ψ]]b := [[ψ]]0b ∨
∨b

r=0(Transb,r ∧ r [[ψ]]0b).

We have proven the following theorem that establishes the relation between7

the satisfiability result for [[Sys, ψ]]b and the result of the corresponding model8

checking problem:9

Theorem 1
Let M be a three-valued Kripke structure representing the state space of an
abstracted concurrent system Sys, let ψ be an LTL formula and b ∈ N Then:

[M |=E ,b ψ] ≡


true if SAT([[Sys, ψ]]−b ) = true

false if SAT([[Sys, ψ]]+b ) = false

⊥ else

Proof sketch.10

We have proven Theorem 1 by showing the following: (I) For each b-bounded11
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path π in M there exits an assignment απ : Atoms[0,b] → {true, false} that ex-1

actly characterises π in [[Sys]]b , i.e. the transition values along π and απ([[Sys]]b)2

are identical and the labellings along π and απ([[Sys]]b) are identical as well. (II)3

The evaluation of an LTL property ψ on π yields the same result as απ([[ψ]]b).4

The full proof can be found in [16]. 25

Hence, via two satisfiability tests, one where ⊥ is substituted by true and one6

where it is substituted by false, we can determine the result of the corresponding7

model checking problem. Our encoding can be straightforwardly built based on8

the concurrent system, which saves us the expensive construction of an explicit9

state space model. In the next section we show that our encoding can be10

also easily augmented by fairness constraints, which allows us to check liveness11

properties of concurrent systems under realistic conditions.12

5. Extension to Fairness13

Our approach allows to check LTL properties of concurrent software sys-
tems via SAT solving. While the verification of safety properties like mutual
exclusion does not require any fairness assumptions about the behaviour of the
processes of the system, fairness is essential for verifying liveness properties un-
der realistic conditions. The most common notions of fairness in verification are
unconditional, weak and strong fairness: An unconditional fairness constraint
claims that in an infinite computation, certain operations have to be infinitely
often executed. A weak fairness constraint claims that in an infinite compu-
tation, each operation that is continuously enabled has to be infinitely often
executed. A strong fairness constraint claims that in an infinite computation,
each operation that is infinitely often enabled has to be infinitely often executed.
All these types of constraints can be straightforwardly expressed in LTL. We
now define these constraints for characterising fair, i.e. realistic, behaviour of
our concurrent systems Sys = ‖ni=1 Pi over Pred . Our unconditional fairness
constraint is defined as:

ufair ≡
∧n

i=1

∨
(li ,l′i )∈δi

GF(executed(li , l
′
i ))

Hence, for each process some operation has to be executed infinitely often,
i.e. each process proceeds infinitely often. Note that we model termination via
a location with a self-loop. Thus, terminated processes can still proceed. The
expression executed(li , l

′
i ) can be easily defined in LTL. For this we extend the

set Pred by a progress predicate for each process: Pred := Pred ∪{progressi | i ∈
[1..n]}. Moreover, we extend each operation as follows: τi(li , l

′
i ) sets progressi

to true and all progressi′ with i ′ 6= i to false. Now executed(li , l
′
i ) is defined as

executed(li , l
′
i ) ≡ (loci = li) ∧X((loci = l ′i ) ∧ progressi).

where X is the LTL operator ‘next’. An example for a system where operations14

are extended with progress statements is given by the parallel composition of15
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control flow graphs depicted in Figure 8. As we can see, each time when a1

process executes an operation, it sets its own progress predicate to true and the2

progress predicate of the other process to false.3

(y > 0) : predicate where (y > 0) = true;
progress1 : predicate where progress1 = false;
progress2 : predicate where progress2 = false;

0

G1

1

‖

¬(y > 0) : progress1 := true, progress2 := false

(y > 0) : (y > 0) := choice(false,¬(y > 0))

progress1 := true, progress2 := false

(y > 0) := choice((y > 0), false)

progress1 := true, progress2 := false

0

G2

1

¬(y > 0) : progress1 := false, progress2 := true

(y > 0) : (y > 0) := choice(false,¬(y > 0))

progress1 := false, progress2 := true

(y > 0) := choice((y > 0), false)

progress1 := false, progress2 := true

Figure 8: Parallel composition of abstract control flow graphs where operations are extended
with progress statements.

An operation associated with a control flow transition (li , l
′
i ) is executed if

(loci = li) holds in the current state and (loci = l ′i ) ∧ progressi holds in the
next state. For the control flow graph G1 in Figure 8 we have for instance
executed(0, 1) ≡ (loc1 = 0) ∧ X((loc1 = 1) ∧ progress1). Next, we define our
weak fairness constraint:

wfair ≡
∧n

i=1

∧
(li ,l′i )∈δi

(FG(enabled(li , l
′
i )) → GF(executed(li , l

′
i )))

Hence, for each process, each continuously enabled operation has to be in-
finitely often executed. Instead of incorporating each operation in this type of
constraint it is also possible to restrict the operations to crucial ones, which
results in a shorter constraint and thus also restrains the complexity of model
checking under fairness. For our running example it is for instance appropriate
to just incorporate operations in wfair that correspond to the successful acqui-
sition of the semaphore. Note that wfair can be easily transferred into negation
normal form via the common propositional logic transformation rules such that
it is conform with the definition of LTL. The expression enabled(li , l

′
i ) can be

defined as an LTL formula over locations and Pred as follows:

enabled(li , l
′
i ) ≡ (loci = li) ∧ choice(a, b)
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assuming that τi(li , l
′
i ) = assume(choice(a, b)) : p1 := choice(a1, b1), . . . , pm :=

choice(am , bm). Thus, an operation associated with a control flow transition
(li , l

′
i ) is enabled if (loci = li) holds and the guard of the operation holds as

well. An example of an enabled expression in terms of the control flow graph
G1 in Figure 8 is enabled(0, 1) ≡ (loc1 = 0) ∧ (y > 0). Finally, we define our
strong fairness constraint:

sfair ≡
∧n

i=1

∧
(li ,l′i )∈δi

(GF(enabled(li , l
′
i )) → GF(executed(li , l

′
i )))

Hence, for each process, each operation that is enabled infinitely often has
to be executed infinitely often. In model checking under fairness we can either
check properties under specific constraints or we can combine all to a general
one

fair ≡ ufair ∧ wfair ∧ sfair .

Existential bounded model checking under fairness is now defined as:

[M |=fair
E ,b ψ] ≡ [M |=E ,b (fair ∧ ψ)]

Thus, we check whether there exists a b-bounded path that is fair and sat-
isfies the property ψ. Such a model checking problem can be straightforwardly
encoded in propositional logic based on our definitions in the previous section.
We get

[[Sys, fair ∧ ψ]]b := [[Sys]]b ∧ [[fair ∧ ψ]]b ,

which can be fed into a SAT solver in order to obtain the result of model checking1

ψ under fairness. Next, we introduce a systematic and fully-automatic approach2

to the refinement of three-valued abstractions in case the corresponding three-3

valued model checking problem yields unknown.4

6. Cause-Guided Abstraction Refinement5

In this section we present our approach to the refinement of three-valued ab-6

stractions in case the corresponding model checking problem yields an unknown7

result. Our abstractions represent uncertainty in the form of the constant ⊥.8

SAT-based three-valued model checking is performed via two satisfiability tests,9

one where all occurrences of ⊥ are mapped to true in the propositional logic10

encoding [[Sys, ψ]]b and one where its occurrences are mapped to false. Here we11

introduce an enhanced encoding that comprises the causes of uncertainty : Each12

⊥ in the encoding gets superscripted with a cause, which can be missing infor-13

mation about a transition or a predicate. During the satisfiability tests all ⊥’s14

are still treated the same, meaning that either all of them are mapped to true or15

all to false (compare Theorem 1). Once we have obtained an overall unknown16

model checking result, i.e. SAT([[Sys, ψ]]+b ) = true for an assignment α and17
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SAT([[Sys, ψ]]−b ) = false, we proceed as follows: We now have that the assign-1

ment α characterises an unconfirmed witness path for ψ containing unknowns.2

Thus, this path is not present if all ⊥’s get mapped to false. We determine the3

unsatisfied clauses of α([[Sys, ψ]]−b ). All these clauses contain uncertainty in the4

sense of ⊥’s and we will see that we can straightforwardly derive the correspond-5

ing causes. We then apply our novel cause-guided abstraction refinement which6

rules out the causes of uncertainty by adding new predicates to the abstraction.7

We will show that our fully-automatic iterative refinement approach enables us8

to quickly reach the right level of abstraction in order to obtain a definite model9

checking result.10

The basis of our refinement technique is an enhanced encoding comprising11

causes of uncertainty:12

Definition 14 (Causes of Uncertainty).
Let [[Sys, ψ]]b be the propositional logic encoding of a three-valued bounded model
checking problem corresponding to a concurrent system Sys = ‖ni=1 Pi ab-
stracted over Pred where each process is given by a single control flow graph
Gi = (Loci , δi , τi) with 1 ≤ i ≤ n. Uncertainty is represented in the encoding by
the constant ⊥. Each ⊥ in the encoding can be associated with a cause which
we define as follows:

cause ∈ {pk , (li , l
′
i )k}

with p ∈ Pred, 0 ≤ k ≤ b and li , l
′
i ∈ Loci .13

We will use pk in order to denote that the predicate p potentially evaluates14

to unknown at position k of the encoding, and with (li , l
′
i )k we will denote that15

missing predicates over the guard of the operation τi(li , l
′
i ) potentially cause an16

unknown transition from position k to k + 1 in the encoding. Note that we17

refer to potential uncertainty in an encoding [[Sys, ψ]]b , since [[Sys, ψ]]b always18

characterises many possible execution paths. For a specific path characterised19

by an assignment α to the atoms of [[Sys, ψ]]b will see that we can refer to actual20

uncertainty. Next we show how causes of uncertainty can be integrated into the21

encoding in the sense of adding them as superscripts to the ⊥’s. For this we22

introduce an enhanced encoding of abstract operations:23

Definition 15 (Enhanced Encoding of Operations).
Let Sys = ‖ni=1 Pi over Pred be an abstracted concurrent system given by
the single control flow graphs Gi = (Loci , δi , τi) with 1 ≤ i ≤ n. Then the
encoding of abstract operations τi(li , l

′
i ) = assume(choice(a, b)) : p1 :=

choice(a1, b1), . . . , pm :=choice(am , bm) comprising the causes of uncertainty is
defined as follows:

enc(τi(li , l
′
i ))k ,k+1 := enc(choice(a, b))k

∧
∧m

j=1( (enc(aj )k ∧ enc(pj = true)k+1)

∨(enc(bj )k ∧ enc(pj = false)k+1)
∨(enc(¬aj ∧ ¬bj )k [⊥ 7→ true] ∧ enc(pj = ⊥)k+1))
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with

enc(choice(a, b))k := enc((a ∨NNF (¬b)) ∧ (a ∨ b ∨ ⊥(li ,l
′
i )k(li ,l
′
i )k(li ,l
′
i )k ))k

and the following inductive definition of the encoding of logical expressions e, e ′

over predicates p ∈ Pred.

enc(p)k := (p[u]k ∧ ⊥pkpkpk ) ∨ (¬p[u]k ∧ p[t ]k )
enc(¬p)k := (p[u]k ∧ ⊥pkpkpk ) ∨ (¬p[u]k ∧ ¬p[t ]k )
enc(e ∧ e ′)k := enc(e)k ∧ enc(e ′)k

enc(e ∨ e ′)k := enc(e)k ∨ enc(e ′)k

This definition enhances our previous encoding Definitions 9 and 10 in terms
of superscripting each ⊥ with a corresponding cause. We will ignore the causes
and treat all ⊥’s the same during the satisfiability checks. Hence, the enhanced
encoding is equivalent to the standard encoding. However, in case of an un-
known model checking result, the causes will become crucial and will allow us
to immediately derive expedient refinement steps. For illustration, we encode
the following abstract operation:

τ(li , l
′
i ) = assume(choice(false, false)) : p := choice(p,¬p)

Remember that choice(false, false) ≡ ⊥. For the enhanced encoding we get:

enc(τ(li , l
′
i ))k ,k+1 =

⊥(li ,l
′
i )k(li ,l
′
i )k(li ,l
′
i )k ∧ ((((p[u]k ∧ ⊥pkpkpk ) ∨ (¬p[u]k ∧ p[t ]k )) ∧ ¬p[u]k+1 ∧ p[t ]k+1)

∨(((p[u]k ∧ ⊥pkpkpk ) ∨ (¬p[u]k ∧ ¬p[t ]k )) ∧ ¬p[u]k+1 ∧ ¬p[t ]k+1))

Thus, uncertainty may be caused by the unknown guard of the abstract1

operation τ(li , l
′
i ) or by the predicate p evaluating to ⊥ at position k . Actual2

uncertainty along a path characterised by an assignment α is only present if3

the ⊥’s occur in clauses unsatisfied under α[⊥ 7→ false]. Then we can utilise4

the causes attached to the ⊥’s in order to rule out the uncertainty. We will5

now introduce our iterative abstraction-based model checking procedure with6

cause-guided refinement:7

Procedure 1 (Iterative Abstraction-Based Model Checking).8

Let G = (Loc, δ, τ) be the concrete control flow graph representing a concurrent9

system Sys defined over a set of variables Var . Moreover, let ψ be an LTL10

formula to be checked for Sys. The corresponding bounded model checking11

problem can be solved via three-valued abstraction refinement and satisfiability12

solving as follows:13

1. Initialise the set of predicates Pred with the atomic propositions over Var14

referenced in ψ. Initialise the bound b with 1.15

2. Construct the abstract control flow graph Ga = (Loca , δa , τa) representing16

Sys abstracted over the current set Pred via a three-valued abstractor [2].17
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3. Encode the three-valued bounded model checking problem [M (Ga) |=E ,b1

ψ] for the current bound b in propositional logic, which yields the formula2

[[Sys(Ga), ψ]]b .3

4. Apply SAT-based three-valued bounded model checking (according to4

Theorem 1):5

(a) If the result is [M (Ga) |=E ,b ψ] = true, then there exists a b-bounded6

witness path for ψ in the state space of Sys. The path is characterised7

by an assignment α satisfying [[Sys(Ga), ψ]]−b . Return α.8

(b) If the result is [M (Ga) |=E ,b ψ] = false, then there does not exist a9

b-bounded witness path for ψ in the state space of Sys. Terminate10

if b has reached the completeness threshold [14] of the verification11

task. Otherwise increment b and go to 3.12

(c) If the result is [M (Ga) |=E ,b ψ] = ⊥, then it is unknown whether13

there exists a b-bounded witness path for ψ in the state space of14

Sys. An unconfirmed witness path for ψ with unknowns is charac-15

terised by an assignment α satisfying [[Sys(Ga), ψ]]+b but not satisfy-16

ing [[Sys(Ga), ψ]]−b . Apply the procedure Cause-Guided Abstraction17

Refinement, which updates Pred , and go to 2.18

Procedure 2 (Cause-Guided Abstraction Refinement).19

Let G = (Loc, δ, τ) be the concrete composite control flow graph representing a20

concurrent system Sys = ‖ni=1 Pi defined over a set of variables Var and let Gi =21

(Loci , δi , τi) with 1 ≤ i ≤ n the corresponding single CFGs. Let ψ be an LTL22

formula to be checked for Sys. Moreover, let Ga = (Loca , δa , τa) be the abstract23

composite control flow graph representing Sys abstracted over a set of predicates24

Pred and let [M (Ga) |=E ,b ψ] be the corresponding three-valued bounded model25

checking problem with [M (Ga) |=E ,b ψ] = ⊥. Then for the propositional logic26

encoding [[Sys(Ga), ψ]]b the following holds: SAT([[Sys(Ga), ψ]]+b ) = true and27

the solver additionally returns a corresponding satisfying assignment α charac-28

terising an unconfirmed witness path. SAT([[Sys(Ga), ψ]]−b ) = false. Now the29

abstraction can be automatically refined by updating Pred as follows:30

1. Determine the set U of clauses of [[Sys, ψ]]b that are unsatisfied under the31

assignment α[⊥ 7→ false]. (Each u ∈ U must contain at least one ⊥ since32

we have that SAT([[Sys(Ga), ψ]]+b ) = true.)33

2. Determine a set Causes such that for each u ∈ U there exists a cause ∈34

Cause with ⊥cause is contained in u.35

3. For each cause ∈ Causes:36

(a) If cause = (li , l
′
i )k with li , l

′
i ∈ Loci , 1 ≤ i ≤ n and 0 ≤ k ≤ b,37

then the value of the k -th transition along the unconfirmed witness38

path characterised by α is unknown. The transition from k to k + 139

is associated with an operation τi(li , l
′
i ) = assume(e) : v1 :=40

e1, ..., vm := em of the concrete control flow graph Gi . τi(li , l
′
i ) can41

be straightforwardly derived from Gi . Add the atomic propositions42

occurring in the assume condition e as new predicates to Pred .43
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(b) If cause = pk with p ∈ Pred and 0 ≤ k ≤ b, then the value of p is1

unknown at position k of the unconfirmed witness path characterised2

by α, i.e. α(p[u]k ) = true. Let k ′ < k be the last predecessor of k3

with α(p[u]k ′) = false, i.e. the last position where the value of p is4

known. The transition from position k ′ to k ′ + 1 is associated with5

an operation τi(li , l
′
i ) = assume(e) : v1 :=e1, ..., vm :=em of a con-6

crete control flow graph Gi . Missing information about this concrete7

operation in terms of predicates is the cause of uncertainty in the8

current abstraction. τi(li , l
′
i ) can be straightforwardly derived based9

on Gi and α(LocAtoms[k ′,k ′+1]), which indicates the corresponding10

control flow locations. Let wpτi (li ,l′i )(p) = p[v1 ← e1, . . . , vm ← em ]11

be the weakest precondition1 of p with respect to the assignment part12

of the operation τi(li , l
′
i ). Add the atomic propositions occurring in13

wpτi (li ,l′i )(p) as new predicates to Pred .14

Our procedure refines the three-valued abstraction by adding further predi-15

cates to the set Pred . According to Corollary 1, such a refinement is sound in16

the sense that it preserves the validity of definite temporal logic properties.17

We now exemplify our iterative abstraction refinement approach based on18

the simple system Sys and the corresponding concrete control flow graph Gc19

depicted in Figure 9.20

y : integer where y = 1;

Sys :: 0: while(y > 0)[
y := y − 1;

]
1: END



y : integer where y = 1;

0

Gc

1

y > 0 : y := y − 1

¬(y > 0)

Figure 9: Concurrent system Sys and corresponding concrete control flow graph Gc .

Here we have a single process operating on the integer variable y and we21

want to check whether there exists an execution that finally reaches control flow22

location 1. Thus, the temporal logic property of interest is F(loc = 1). In the23

first iteration, we start with bound b = 1 and Pred = ∅. The corresponding24

abstract control flow graph Ga1 , computable with a three-valued abstractor, is25

depicted in Figure 10.26

In order to solve the corresponding three-valued bounded model checking
problem [M (Ga1

) |=E ,1 F(loc = 1)] we construct the propositional logic encod-

1Computable via an SMT solver with built-in linear integer arithmetic theory. In our
approach we use Z3 [17].
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no predicates

0

Ga1

1

⊥

⊥

Figure 10: Abstract control flow graph Ga1 .

ing that now comprises the causes of uncertainty:

[[Sys(Ga1),F(loc = 1)]]1 =

(¬l0)︸ ︷︷ ︸
Init0

∧ ((¬l0 ∧ ¬l1 ∧ ⊥(0,0)0) ∨ (¬l0 ∧ l1 ∧ ⊥(0,1)0) ∨ (l0 ∧ l1))︸ ︷︷ ︸
Trans0,1

∧ (l0 ∨ l1)︸ ︷︷ ︸
[[F(loc=1)]]01

Since our system consists of a single process and only one digit is necessary
to encode the control flow, we can omit the process- and digit-indices of the
atoms. Solely the position index is required for the encoding. Now we run the
associated satisfiability tests. We get

SAT([[Sys(Ga1),F(loc = 1)]]+1 ) = true

and the corresponding satisfying truth assignment α : l0 7→ false, l1 7→ true.
Moreover, we get

SAT([[Sys(Ga1
),F(loc = 1)]]−1 ) = false

Hence, [M (Ga1) |=E ,1 F(loc = 1)] yields unknown and α characterises an
unconfirmed witness path

〈0〉 ⊥→ 〈0〉

in the abstract state space where
⊥→ denotes an unknown transition between

the states. Next we apply the procedure Cause-Guided Abstraction Refinement.
Remember that SAT solvers always operate on formulae transferred into con-
junctive normal form (CNF). The current encoding is equivalent to the following
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formula in CNF2

(¬l0) ∧ (l0 ∨ ¬l1 ∨ ⊥(0,1)0(0,1)0(0,1)0) ∧ (l1 ∨ ⊥(0,0)0(0,0)0(0,0)0)

∧(l0 ∨ ⊥(0,0)0(0,0)0(0,0)0 ∨ ⊥(0,1)0(0,1)0(0,1)0) ∧ (l1 ∨ ⊥(0,0)0(0,0)0(0,0)0 ∨ ⊥(0,1)0(0,1)0(0,1)0) ∧ (l0 ∨ l1)

Under the assignment α[⊥ 7→ false] (the assignment α extended by the
assignment that maps all ⊥’s to false) we get the following set of unsatisfied
clauses for our encoding:

U = {(l0 ∨ ¬l1 ∨ ⊥(0,1)0(0,1)0(0,1)0), (l0 ∨ ⊥(0,0)0(0,0)0(0,0)0 ∨ ⊥(0,1)0(0,1)0(0,1)0)}

A corresponding set of causes of uncertainty that covers U is

Causes = {(0, 1)0}

since ⊥(0,1)0(0,1)0(0,1)0 occurs in all clauses of U . (0, 1)0 indicates that at the current1

level of abstraction uncertainty is caused by the missing guard of the operation2

τ(0, 1). We have that τ(0, 1) = ¬(y > 0) in the concrete system. Hence, we add3

(y > 0) to the set of predicates: Pred := Pred ∪{(y > 0)} and proceed with the4

next iteration.5

In the second iteration, we have b = 1 and Pred = {(y > 0)}. The corre-6

sponding abstract control flow graph Ga2
is depicted in Figure 11.

(y > 0) : predicate where (y > 0) = true;

0

Ga2

1

(y > 0) : (y > 0) := choice(false,¬(y > 0))

¬(y > 0)

Figure 11: Abstract control flow graph Ga2 .

7

In order to solve [M (Ga2
) |=E ,1 F(loc = 1)] we construct the following

encoding ((y > 0) abbreviated by p):

[[Sys(Ga2
),F(loc = 1)]]1 =

(¬l0 ∧ ¬p[u]0 ∧ p[t ]0) ∧ ((¬l0 ∧ ¬l1 ∧ enc(τ(0, 0))0,1)

∨(¬l0 ∧ l1 ∧ enc(τ(0, 1))0,1) ∨ (l0 ∧ l1 ∧ enc(τ(1, 1))0,1)) ∧ (l0 ∨ l1)

2For the sake of simplicity we use a standard CNF transformation in this illustrating exam-
ple. Note that in our implementation we use the more compact Tseitin CNF transformation
which introduces additional auxiliary atoms. Hence, we would get a slightly different CNF
formula and unsatisfied clauses. Nevertheless, these clauses would hint at exactly the same
causes of uncertainty.
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with

enc(τ(0, 0))0,1 =

((p[u]0 ∧ ⊥p0p0p0) ∨ (¬p[u]0 ∧ p[t ]0))

∧(((p[u]0 ∧ ⊥p0p0p0) ∨ (¬p[u]0 ∧ ¬p[t ]0)) ∧ (¬p[u]1 ∧ ¬p[t ]1))

∨((p[u]0 ∨ (¬p[u]0 ∧ p[t ]0)) ∧ (p[u]1)))

and τ(0, 1))0,1 and τ(1, 1))0,1 encoded analogously. As we can see, uncertainty
is now potentially caused by predicate p evaluating to ⊥ at position 0. Now we
run the associated satisfiability tests. We get

SAT([[Sys(Ga2
),F(loc = 1)]]+1 ) = false

and

SAT([[Sys(Ga2
),F(loc = 1)]]−1 ) = false

Hence, [M (Ga2
) |=E ,1 F(loc = 1)] yields false, which indicates that there1

does not exist a 1-bounded witness path for F(loc = 1). Consequently, we2

increment the bound: b := b + 1 and proceed with the next iteration.3

In the third iteration, we have b = 2 and still Pred = {(y > 0)}. Hence,
we continue with the abstract the control flow graph Ga2

. In order to solve
[M (Ga2

) |=E ,2 F(loc = 1)] we construct the following encoding:

[[Sys(Ga2),F(loc = 1)]]2 =

(¬l0 ∧ ¬p[u]0 ∧ p[t ]0) ∧
∧1

k=0((¬lk ∧ ¬lk+1 ∧ enc(τ(0, 0))k ,k+1)

∨(¬lk ∧ lk+1 ∧ enc(τ(0, 1))k ,k+1) ∨ (lk ∧ lk+1 ∧ enc(τ(1, 1))k ,k+1))

∧(l0 ∨ l1 ∨ l2)

Now we run the associated satisfiability tests. We get

SAT([[Sys(Ga2
),F(loc = 1)]]+2 ) = true

and the corresponding satisfying truth assignment α :

l0 7→ false, l1 7→ false, l2 7→ true,

p[u]0 7→ false, p[t ]0 7→ true,

p[u]1 7→ true, p[t ]1 7→ true,

p[u]2 7→ true, p[t ]2 7→ true.

Moreover, we get

SAT([[Sys(Ga2
),F(loc = 1)]]−2 ) = false

Hence, [M (Ga2) |=E ,2 F(loc = 1)] yields unknown and α characterises an
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unconfirmed witness path

〈0, p = true〉 → 〈0, p = ⊥〉 ⊥→ 〈1, p = ⊥〉

in the abstract state space. Next we apply the procedure Cause-Guided Abstrac-
tion Refinement. After deriving the set U of clauses of [[Sys(Ga2

),F(loc = 1)]]2
that are unsatisfied under the assignment α[⊥ 7→ false], we determine a corre-
sponding set of causes covering U . We get:

Causes = {p1}

p1 indicates that at the current level of abstraction uncertainty is caused
by the predicate p evaluating to unknown at position 1 of the witness path
characterised by α. Now we determine the last predecessor position where
the value of p is known, that is the greatest k < 1 with α(p[u]k ) = false.
This holds for k = 0. Hence, the transition from position 0 to 1 along the
witness path characterised by α makes p unknown. We have that α(l0) = false
and α(l1) = false, which indicates that the transition from position 0 to 1 is
associated with the operation τ(0, 0). From the concrete control flow graph
we get that the assignment part of τ(0, 0) is y := y − 1. Thus, the weakest
precondition of p = (y > 0) with respect to τ(0, 0) is

wpτ(0,0)(y > 0) = (y > 0)[y ← y − 1] = (y − 1 > 0) = (y > 1).

Hence, we add (y > 1) to the set of predicates and proceed with the next1

iteration.2

In the forth iteration, we have b = 2 and Pred = {(y > 0), (y > 1)}. The3

corresponding abstract control flow graph Ga3 is depicted in Figure 12.4

(y > 0) : predicate where (y > 0) = true;
(y > 1) : predicate where (y > 1) = false;

0

Ga3

1

(y > 0) := choice((y > 1),¬(y > 1)),
(y > 1) := choice(false,¬(y > 1))

(y > 0) :

¬(y > 0)

Figure 12: Abstract control flow graph Ga3 .

In order to solve [M (Ga3
) |=E ,2 F(loc = 1)] we construct the encoding

[[Sys(Ga3
),F(loc = 1)]]2 and run the associated satisfiability tests. We get

SAT([[Sys(Ga3
),F(loc = 1)]]+2 ) = true
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and

SAT([[Sys(Ga3
),F(loc = 1)]]−2 ) = true

and the corresponding satisfying truth assignment α :

l0 7→ false, l1 7→ false, l2 7→ true,

p[u]0 7→ false, p[t ]0 7→ true,

p[u]1 7→ false, p[t ]1 7→ false,

p[u]2 7→ false, p[t ]2 7→ false,

q [u]0 7→ false, q [t ]0 7→ false,

q [u]1 7→ true, q [t ]1 7→ false,

q [u]2 7→ true, q [t ]2 7→ false

where p abbreviates (y > 0) and q abbreviates (y > 1). We can immediately
conclude that [M (Ga3) |=E ,2 F(loc = 1)] yields true, which indicates that α
characterises a definite 2-bounded witness path

〈0, p = true, q = false〉 → 〈0, p = false, q = ⊥〉 → 〈1, p = false, q = ⊥〉

for F(loc = 1). This outcome completes our verification task. Within four1

iterations of cause-guided abstraction refinement resp. bound incrementation2

we have automatically proven that the property of interest holds for the system.3

Thus, given a software verification task to be solved, our cause-guided refine-4

ment approach enables us to automatically reach the right level of abstraction5

in order to obtain a definite result in verification. Next, we present the imple-6

mentation of our encoding-based model checking technique and we report on7

experimental results.8

7. Implementation, Enhancements and Experiments9

In this section we introduce the implementation of our theoretical concepts10

and we present enhancements based on existing work on temporal induction11

[10] as well as on symmetry-based parameterised verification [11]. Moreover, we12

discuss several experimental results.13

7.1. The Tvmc Tool14

We have implemented a SAT-based bounded model checker called Tvmc15

for three-valued abstractions of concurrent software systems.3 Tvmc employs a16

three-valued abstractor [2] that builds abstract control flow graphs for a given17

concurrent system Sys and a set of predicates Pred . It supports almost all18

control structures of the C language as well as int, bool and semaphore as data19

3available at www.github.com/ssfm-up/TVMC
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types. Based on the CFGs and an input LTL formula ψ, our tool automatically1

constructs an encoding [[Sys, ψ]]b of the corresponding verification task. Tvmc2

iteratively refines the abstraction in case of an unknown result and increments3

the bound in case of a false result. It terminates once a true result is obtained4

or a false result is obtained for a predefined threshold of the bound: In each5

iteration the two instances of the encoding are processed by a solver thread6

of the SAT solver Sat4j [18]. A true result for [[Sys, ψ]]−b can be immediately7

transferred to the corresponding model checking problem [M |=E ,b ψ]. The same8

holds for a false result for [[Sys, ψ]]+b if b represents a completeness threshold of9

the verification task [14]. In case of an unknown result we apply cause-guided10

abstraction refinement as defined in the previous section. For true and unknown11

results, we additionally output a definite resp. unconfirmed witness path for the12

property ψ in the form of an assignment satisfying [[Sys, ψ]]b . The tool chain of13

Tvmc is depicted in Figure 13.14

Abstractor Encoder

LTL
formula

SAT Solver

concurrent
system

abstract
CFGs

PL
encoding

true
result

witness
path

bound
incrementation

false
result

cause-guided
refinement

unknown
result

Figure 13: Tvmc tool chain.

We now illustrate how our tool systematically solves verification tasks via15

three-valued abstraction and cause-guided refinement. An example system16

Sys = ‖ni=1 Pi implementing a solution to the dining philosophers problem17

is depicted in Figure 14. Here we have n ∈ N philosopher processes and the18

same number of binary semaphore variables modelling the forks. Processes Pi19

with i < n continuously attempt to first acquire the semaphore yi and second20

the semaphore yi+1, whereas process Pn attempts to acquire first y1 and then21

yn . Hence, all philosophers will always pick up the lower-numbered fork first22

and the higher-numbered fork second. Once a process has successfully acquired23

both semaphores it consecutively releases them and attempts to acquire them24

again.25
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y1, . . . , yn : binary semaphore where y1 = true; . . . ; yn = true;

‖n−1
i=1 Pi ::



loop forever do
00: acquire (yi );
01: acquire (yi+1);
10: CRITICAL

release (yi );
11: release (yi+1);



 ‖ Pn ::



loop forever do
00: acquire (y1);
01: acquire (yn );
10: CRITICAL

release (y1);
11: release (yn );




Figure 14: Dining philosophers system Sys.

Tvmc generally searches for violations of desirable properties. For an instan-
tiation of the dining philosophers system with n = 2 the violation of deadlock-
freedom can be expressed in LTL as

ψ = F((loc1 = 01) ∧ (loc2 = 01)).

Hence, we want to check whether a state is reachable where each philosopher
has picked up one fork and is waiting for the other fork. Starting with Pred = ∅
and b = 1 our tool automatically constructs the corresponding abstract control
flow graphs and the encoding [[Sys, ψ]]b . Next, it iteratively increments the
bound and refines the initial abstraction. For our example the bound will be
increased until an unconfirmed witness path for the property of interest will be
detected at b = 2:

〈00, 00〉 ⊥→ 〈01, 00〉 ⊥→ 〈01, 01〉

Then cause-guided refinement will add the predicates y1 and y2 in a single1

step , which yields the level of abstraction characterised by the abstract control2

flow graphs depicted in Figure 15. Finally the bound will be further increased3

until a completeness threshold is reached, which is the case for b = 64 for this4

verification task. A technique for computing over-approximations of complete-5

ness thresholds is introduced in [14]. Completeness thresholds for checking LTL6

properties that are restricted to the temporal operators F and G are linear in7

the size of the abstraction, i.e. in the number of abstract states.8

y1, y2 : predicate where y1 = true; y2 = true;

00

G1

11 01

10

¬y1

¬y2

y2 := true y1 : y1 := false

y1 := true y2 : y2 := false

00

G2

11‖ 01

10

¬y1

¬y2

y2 := true y1 : y1 := false

y1 := true y2 : y2 := false

Figure 15: Abstraction of the dining philosophers system with n = 2.
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Via SAT solving we obtain a false result in the final iteration, which allows1

us to conclude that the instantiation of the dining philosophers system with 22

processes is safe in terms of deadlock-freedom.3

A distinct feature of our approach is the verification of liveness properties
of concurrent systems under fairness assumptions. The formula

ψ′ =
∨n

i=1 F(G¬(loci = 10))

characterises the violation of a liveness property regarding our dining philoso-
phers system. It states that eventually some philosopher process will nevermore
reach its critical location. For the instantiation of the system with n = 2 pro-
cesses and starting with Pred = {progress1, progress2} (fairness predicates only)
and b = 1 our tool constructs the encoding [[Sys,wfair ∧ ψ′]]b . Within four
iterations over b and a refinement step adding the predicates y1 and y2 we can
already detect a satisfying assignment for the encoding that characterises a weak
fair path with a loop where P2 never reaches its critical location:

〈00, 00, y1 = true, y2 = true, progress1 = false, progress2 = false〉
↓

〈01, 00, y1 = false, y2 = true, progress1 = true, progress2 = false〉
↓

〈01, 00, y1 = false, y2 = true, progress1 = false, progress2 = true〉
↓

〈11, 00, y1 = false, y2 = false, progress1 = true, progress2 = false〉
↓

〈00, 00, y1 = true, y2 = true, progress1 = true, progress2 = false〉

Thus, we have proven that liveness of Sys is violated under weak fairness.4

With our tool we could also prove that liveness of Sys holds under strong fair-5

ness, which required to set the bound to the completeness threshold of the6

verification task. Moreover, we could successfully verify generalisations of the7

dining philosophers system with more philosophers and semaphores, which we8

will discuss in the experimental results section.9

The previous examples illustrate the basic functionality of the Tvmc tool.10

Next, we introduce an extension that allows for an improved verification of11

safety properties, without setting the bound to the completeness threshold.12

7.2. Complete Safety Verification via Temporal Induction13

Bounded model checking is inherently incomplete since the bound restricts
the length of the explored paths. Hence, it is predominantly used for for detect-
ing property violations rather than for proving their absence. As we previously
outlined, a simple way of making bounded model checking complete is to de-
termine a completeness threshold of a verification task and to set the bound to
this threshold. However, determining small or minimal completeness thresholds
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is costly and for many verification tasks even the minimal threshold might be to
large for efficient verification. An alternative way of establishing completeness is
the combination of bounded model checking with temporal induction [10]. Tem-
poral induction allows to reduce an unbounded model checking problem to two
bounded model checking problems: the base case and the inductive step. The
approach is defined for checking safety violations of the form F(unsafe) where
unsafe is a predicate expression. In the base case it is checked whether there
exists a b-bounded path, starting in the initial state, that witnesses the safety
violation. In the inductive step it is checked whether there exists a loop-free
(b+1)-bounded path, starting in an arbitrary state, where unsafe only holds in
the (b+1)st state. If there exists a bound b for which neither in the base case
nor in the step such witnesses can be detected, then it can be concluded that
safety is globally not violated. Both the base case and the inductive step can be
straightforwardly expressed as three-valued bounded model checking problems
of our framework. The base case does not require any change of our encoding:

[[Sys,F(unsafe)]]base
b := [[Sys,F(unsafe)]]b .

For the step we have to remove the initial state constraint Init0 and add a
constraint loopFree that ensures that all states along the considered path prefixes
are pairwise different. Moreover, we have to adjust the property encoding such
that it is checked whether unsafe only holds in the (b+1)st state:

[[Sys,F(unsafe)]]step
b+1 :=

∧b
k=0 Transk ,k+1 ∧ loopFree ∧ ¬[[F(unsafe)]]0b ∧ [[unsafe]]b+1

b+1

with loopFree =
∧

0≤i<j≤b+1 (
∨

p∈AP ¬(enc(p)i ↔ enc(p)j )).1

We have integrated the temporal induction approach into Tvmc. Similar to2

standard three-valued bounded model checking, we have to consider the cases3

where ⊥ is mapped to true and where ⊥ is mapped to false, but now for both4

the base case and the inductive step. A true result for the base case implies that5

we have detected a safety violation. A false result for both the base case and the6

step implies that safety is globally not violated. If we obtain an unknown result7

for either the base case or the step, then we apply cause-guided abstraction8

refinement. If we get false for the base case and true for the inductive step,9

then we have to increment the bound. We checked deadlock-freedom for the10

dining philosophers example in Figure 14 with the induction approach. As the11

predicate expression unsafe we used (loc1 = 01) ∧ (loc2 = 01). In comparison12

with the completeness threshold approach, that required the final bound b = 64,13

temporal induction enabled us to already prove mutual exclusion with bound14

b = 3. In our experimental evaluation we will present a case study on the15

induction-based approach.16

7.3. Parameterised Verification via Spotlight Abstraction17

So far, we have seen that our tool can be used for detecting property vi-18

olations and also for proving their absence. However, in all of our previous19
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examples we verified systems with a fixed number of processes. The three-1

valued abstractor that we use also allows to construct finite abstractions of2

parameterised systems with an unbounded number of uniform processes [11]. A3

simple example of a parameterised system with uniform processes can be de-4

rived from our dining philosophers. Let Sys =‖ni=1 Pi be a concurrent system5

over Var = {y1, y2} where each Pi is a philosopher that picks up y1 first and y26

second. As long as we do not instantiate the number of processes n, this system7

is parameterised. But in contrast to our previous philosopher example, where8

all processes requested different pairs of forks in different orders, the processes9

of our modified example are fully uniform in terms of fork requests.10

For constructing a finite abstraction of such a parametrerised uniform sys-
tem, three-valued predicate abstraction is combined with spotlight abstraction
[2]. The basic concept of spotlight abstraction is to partition a parallel compo-
sition of processes into a spotlight and a shade. The control flow of spotlight
processes is then explicitly considered under abstraction, whereas the processes
in the shade get summarised into a single abstract process P⊥ that approxi-
mates their behaviour with regard to three-valued logic. Hence, predicates over
variables that are modified by processes in the shade may be set to unknown
by P⊥. For our parameterised uniform philosopher system Sys =‖ni=1 Pi , spot-
light abstraction can be applied to the process partition Spotlight = {P1,P2}
and Shade = {P3, . . . ,Pn}, i.e. we consider P1 and P2 explicitly and sum-
marise the parameterised number of processes P3 to Pn into P⊥. The property
ψ = F((loc1 = 01) ∧ (loc2 = 01)) can also be disproven for the abstraction
P1 ‖ P2 ‖ P⊥ with our tool, which allows us to conclude that the processes P1

and P2 will never be in a deadlock situation for any instantiation of the uniform
philosopher system with n ≥ 2 processes. The LTL formula ψ characterises a
local property since it refers to particular processes of a parameterised system.
However, as shown in [11], symmetry arguments enable us to transfer this result
to arbitrary pairs of processes in the system. We can conclude that

ψglobal = ∃ 1 ≤ i , j ≤ n, i 6= j : F((loci = 01) ∧ (locj = 01))

does not hold for any instantiation of the uniform philosophers system, i.e. no11

pair of processes will ever reach a deadlock. The approach also works for pa-12

rameterised systems with different (but finite numbers of) classes of uniform13

processes, e.g. a class of reader processes and a class of writer processes. More14

details about spotlight abstraction and its combination with symmetry argu-15

ments can be found in [11]. In our experimental evaluation we will present a16

case study on parameterised verification with our tool.17

7.4. Experimental Evaluation18

We have experimentally evaluated the performance of our tool in a num-19

ber of case studies. In our experiments, we compared Tvmc with the similar20

three-valued model checking tool 3Spot [2], which is also designed for the ver-21

ification of concurrent systems. 3Spot uses the same abstractor as Tvmc that22
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yields abstract control flow graphs. After abstraction, the tool follows a differ-1

ent approach to solve verification tasks: The state space corresponding to the2

abstract control flow graphs is represented as a three-valued decision diagram3

(TDD), which is a generalisation of a Boolean decision diagram (BDD). The4

model checking algorithm of 3Spot is therefore closely related to BDD-based5

CTL model checking [19]. Hence, we compare a decision diagram-based model6

checking approach with our SAT-based approach. Similar to Tvmc, 3Spot7

generates unconfirmed witness paths in case of an unknown result and refines8

the abstraction based on these paths. The witness paths of 3Spot are explicitly9

generated and explored, whereas our witness paths are implicitly represented10

by truth assignments. Since 3Spot is a CTL model checker, we focussed in our11

case studies on temporal logic properties from the common fragment of LTL12

and CTL. We conducted our experiments on a 1.6 GHz Intel Core i7 system13

with 8 GB memory. We measured the final bound, the number of refinement14

steps, the final number of predicates as well as the overall time for encoding15

and SAT-based model checking in all iterations, and we compared it with the16

performance results of 3Spot.17

In the case study Philosophers, we verified generalisations of the dining18

philosopher system with n ≤ 2 processes. Each additional philosopher process19

involved an exponential growth of the state space complexity. We checked for the20

existence of a computation where eventually some philosopher will nevermore21

reach its critical location, which characterises the violation of a liveness property.22

Verification was performed under the assumption of weak fairness, as this is the23

only type of fairness constraint that is supported by 3Spot. Since liveness of24

the philosopher system is not guaranteed under weak fairness, we could always25

detect a property violation. The performance results of the Philosophers case26

study are shown in Table 1. We can see that for very small instances the time27

performance of 3Spot was better, whereas for larger n our Tvmc was signifi-28

cantly faster than 3Spot. Hence, our SAT-based approach scaled considerably29

better here. Another observation is that both tools required the same number of30

predicates for completing the verification tasks. However, while 3Spot needed31

several refinement iterations in order to reach the right level of abstraction, our32

cause-guided refinement detected and added all necessary predicates within a33

single step. More specifically, our tool generated an unconfirmed witness path34

in the first iteration from which all necessary predicates could be immediately35

derived in order to refine the path to a real witness.36

In case study Dijkstra, we verified an implementation of Dijkstra’s mutual37

exclusion algorithm [20]. Again, we considered instances with an increasing38

number of processes. Dijkstra’s algorithm for two processes is depicted in Figure39

16. We checked whether there is no violation of mutual exclusion, i.e. whether40

there will be never more than one process at the critical location at the same41

time. In order to prove that this safety property holds, we used Tvmc with42

the temporal induction approach discussed in Section 7.2. Since 3Spot is an43

unbounded model checker, there was no need to use temporal induction with44

this tool. The performance results of the Dijkstra case study are also show in45

Table 1. Similar as in the previous case study we can observe that Tvmc scales46
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Tvmc 3Spot

case study processes bound refinements predicates time refinements predicates time

Philosophers

2 3 1 4 1.13s 2 4 0.41s
3 5 1 6 2.12s 3 6 0.92s
4 7 1 8 4.69s 4 8 47.7s
5 9 1 10 12.4s 5 10 696s
6 11 1 12 38.1s 6 12 152m
7 13 1 14 379s 7 14 > 5h
8 15 1 16 75.0m 8 16 > 5h

Dijkstra

2 12 3 6 3.32s 2 2 0.18s
3 16 4 9 22.2s 5 5 3.05s
4 21 5 12 52m > 6 > 6 OOM
5 25 6 15 158m > 6 > 6 OOM

Parameterised

2 classes 4 1 2 0.85s 2 2 0.16s
3 classes 6 1 3 1.17s 3 3 0.30s
4 classes 8 1 4 1.82s 4 4 0.98s
5 classes 10 1 5 8.63s 5 5 55.8s
6 classes 12 1 6 89.2s 6 6 799s

Table 1: Experimental Results of the case studies Philosophers, Dijkstra and Parame-
terised.

better for larger systems than 3Spot. Our new tool could even successfully1

prove safety when 3Spot failed due to an out-of-memory exception (OOM).2

A second observation is that in the cases where both tools succeeded (two and3

three processes), Tvmc required more predicates than 3Spot. This is due to the4

fact that proving the inductive step of the temporal induction approach requires5

some extra predicates because of the arbitrary initial state. Nevertheless, Tvmc6

still showed a good performance with these extra predicates. If we compare7

the Philosophers case study where a property violation could be detected8

with the Dijkstra case study where correctness could be proven, then we9

can see that in the latter Tvmc requires multiple iterations of cause-guided10

refinement in order to achieve a definite result. This is due to the fact that in11

the second case study each refinement iteration rules out a different unconfirmed12

witness path until no more witnesses exist, whereas in the first case study the13

first detected unconfirmed witness could be immediately refined to a real one.14

Another observation that we can make by comparing the two case studies is15

that showing the absence of errors generally requires more computational effort16

than detecting errors, which is not surprising.17
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turn : integer where turn = 1;
flag1,flag2 : integer where flag1 = 0; flag1 = 0;

P1 ::



loop forever do

0000: flag1 := 1;
0001: while(turn 6= 1) 0010: if(turn = 2)[

0011: if(flag2 = 0)[
0100: turn := 1;

] ]


0101: flag1 := 2;
0110: if(flag2 = 2)[

0111: goto 0000;
]

1000: CRITICAL

1001: flag1 := 0;





‖ P2 ::



loop forever do

0000: flag2 := 1;
0001: while(turn 6= 2) 0010: if(turn = 1)[

0011: if(flag1 = 0)[
0100: turn := 2;

] ]


0101: flag2 := 2;
0110: if(flag1 = 2)[

0111: goto 0000;
]

1000: CRITICAL

1001: flag2 := 0;




Figure 16: Implementation of Dijkstra’s Mutual Exclusion Algorithm with n = 2.

In case study Parameterised, we evaluated parameterised verification via1

spotlight abstraction. For this, we looked at parameterised variants of the dining2

philosopher system with an increasing number of classes of uniform processes.3

In the simplest case, we considered a system with two classes of philosophers:4

an unbounded number n ∈ N of philosophers that pick up fork y1 first and5

fork y2 second, and an unbounded number m ∈ N of philosophers that pick up6

y2 first and y1 second. The corresponding parameterised system is depicted in7

Figure 17. Moreover, we considered generalised cases e.g. a system with three8

classes and the three different pick up orders y1 then y2, y2 then y3, and y3 then9

y1. In these parameterised systems a deadlock in the sense of circular waiting10

for forks is possible. We used Tvmc with the spotlight abstraction approach11

discussed in Section 7.3 in order to check this property. Since 3Spot also12

supports spotlight abstraction, we could compare the performance of the two13

tools. The experimental results of the Parameterised case study are shown14

in Table 1. As we can see, our approach is also capable of checking properties of15

parameterised systems. Again, Tvmc scales better than 3Spot and our cause-16

guided refinement technique finds all necessary predicates for detecting a real17

witness path within a single refinement step.18

y1, y2 : binary semaphore where y1 = true; y2 = true;

‖ni=1 Pi ::



loop forever do
00: acquire (y1);
01: acquire (y2);
10: CRITICAL

release (y1);
11: release (y2);



 ‖ ‖
m
j=1 Pj ::



loop forever do
00: acquire (y2);
01: acquire (y1);
10: CRITICAL

release (y2);
11: release (y1);




Figure 17: Parameterised dining philosophers system with two classes of uniform processes.

All in all, our experiments showed that SAT-based three-valued bounded19

model checking is a feasible approach to the verification of concurrent systems.20

We were able to detect violations of safety and liveness properties and to prove21

the absence of such violations. Cause-guided refinement allows to rule out un-22
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certainty in the abstraction within a small number of iterations, especially when1

property violations can be detected. Moreover, we could enhance the perfor-2

mance of proving the absence of safety violations via temporal induction. Natu-3

rally, our approach cannot resolve the state explosion problem in general. Each4

additional process involves an exponentially greater complexity of the under-5

lying verification task. However, we demonstrated that for larger systems our6

Tvmc tool scales significantly better than the comparable 3Spot tool. Fur-7

thermore, we were able to integrate spotlight abstraction into our approach,8

which facilitates the verification of parameterised systems composed of uniform9

processes.10

8. Related Work11

Our SAT-based software verification technique is related to a number of12

existing approaches in the field of bounded model checking for software. The13

bounded model checker CBMC [21] supports the verification of sequential C14

programs. It is based on a Boolean abstraction of the input program and it15

allows for checking buffer overflows, pointer safety and assertions, but not full16

LTL properties. A similar tool is F-Soft [22]. This bounded model checker17

for sequential programs is restricted to the verification of reachability proper-18

ties. While CBMC and F-Soft support a wider range of program constructs like19

pointers and recursion, our approach focusses on the challenges associated with20

concurrency and the verification of liveness properties under fairness. The tool21

TCBMC [23] is an extension of CBMC for verifying safety properties of concur-22

rent programs. TCBMC introduces the concept of bounding context switches23

between processes, which is a special abstraction technique for reducing concur-24

rency. Our approach supports the process summarisation abstraction of 3Spot25

[2], which allows us to reduce the complexity induced by concurrency in a dif-26

ferent way. The verification of concurrent C programs is also addressed in [24].27

The authors introduce a tool that translates C programs into a TLA+ [25]28

specification which is then model checked via an explicit-state approach.29

In contrast to the above mentioned tools, we employ three-valued abstraction,30

which preserves true and false results in verification. Three-valued bounded31

model checking is addressed in [6] and [7]. However, only in the context of32

hardware verification [6] resp. assuming that an explicit three-valued Kripke33

structure is given [7]. To the best of our knowledge, our approach is the first34

that supports software verification under fairness via an immediate propositional35

logic encoding and SAT-based BMC.36

Abstraction refinement for SAT-based model checking is addressed in [26,37

27, 28]. The hardware verification approach presented in [26] employs Boolean38

abstraction by means of variable hiding. Counterexamples detected in the ab-39

stract model are simulated on the concrete model via SAT solving. Unsatisfia-40

bility results correspond to spurious counterexamples. In this case abstraction41

refinement is applied by deriving new variables from the unsatisfiable core. Very42

similar approaches are used in [27] and [28]. The authors of [27] additionally43
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show that their technique yields an over-approximative abstraction that pre-1

serves safety and always has a completeness threshold for not only refuting but2

also proving properties. The authors of [28] generate refinement interpolants3

from simulated spurious counterexamples in SAT-based model checking. In our4

three-valued approach we do not have to simulate abstract counterexamples.5

In case of an unknown result, our path characterising assignment allows us to6

derive new predicates from the set of unsatisfied clauses that is typically sig-7

nificantly smaller than the unsatisfiable core. Unconfirmed witness paths in a8

three-valued abstract model are also used for refinement in [2]. However, the9

proposed approach requires to explicitly generate and analyse paths, whereas10

our refinement happens based on unsatisfied clauses that implicitly represent11

uncertainty in the abstraction.12

The notion of causality in the context of temporal logic model checking has13

also been used in [29]. The authors present a technique for detecting property14

violations in concurrent systems via counterfactual reasoning [30]. While clas-15

sical model checking techniques generate witness paths resp. counterexamples,16

the approach of [29] derives causal factors that lead to a property violation.17

These causal factors are orders of occurrences of events in the analysed system18

and, according to the authors, provide a more concise explanation of why the19

desired property does not hold. The technique of [29] explores the concrete state20

space of the system, whereas our approach is based on three-valued predicate21

abstraction and iterative refinement: The lack of predicates over certain system22

variables may cause an unknown result in verification along with an unconfirmed23

witness. Hence, in our scenario a cause of uncertainty tells us which predicates24

are missing at the current level of abstraction in order to either confirm or to25

rule out the unconfirmed witness.26

Our work is also related to other analysis techniques for concurrent sys-27

tems. The authors of [31, 32] propose a construction-based method for ensuring28

deadlock- and livelock-freedom of process compositions. Hence, the systems to29

be analysed as well as the desired properties are similar to the ones in our ap-30

proach. While [31] focusses on communication via message passing, we consider31

asynchronous systems with shared variables. [31] is based on the correctness-32

by-construction paradigm, whereas our technique aims at the verification of33

implementations of software systems. Thus, the two approaches complement34

each other in the sense that [31] can ensure a correct design, whereas our ap-35

proach can ensure the correct implementation of a design. In [32] local analysis36

is used for establishing correctness of the entire system. This is slightly related37

to the spotlight abstraction that we use in our approach. Spotlight abstraction38

also facilitates the verification of local properties. For uniform systems such39

local verification results can be transferred to the global system.40

9. Conclusion and Outlook41

We introduced a verification technique for concurrent software systems based42

on three-valued abstraction, cause-guided refinement and SAT-based bounded43

model checking. We defined a direct propositional logic encoding of software44

40



verification tasks and we proved that our encoding is sound in the sense that SAT1

results can be straightforwardly transferred to the corresponding model checking2

problem. Hence, the expensive construction and exploration of an explicit state3

space model is not necessary. Our tool enables the verification of safety and4

liveness properties under fairness. With cause-guided refinement we introduced5

an automatic technique for systematically reaching the right level of abstraction6

in order to obtain a definite outcome in verification. Refinement steps are7

straightforwardly derived from clauses of the encoding that are unsatisfied under8

assignments characterising potential witness/error paths. Due to the efficiency9

of modern SAT solvers we achieve promising performance results with our overall10

approach.11

As future work we plan to optimise our technique by integrating incremental12

SAT solving [33] into the tool and by developing a concept for reusing parts of13

the encoding between the consecutive refinement iterations. Finally, we want to14

develop SAT solving heuristics tailored to the structure of our encodings [34] in15

order to further accelerate our approach.16

Acknowledgements17

We thank Dewald de Jager and Matthias Harvey for help with implementing18

our approach.19

References20

[1] S. Shoham, O. Grumberg, 3-valued abstraction: More precision at less cost,21

Information and Computation 206 (11) (2008) 1313–1333.22

[2] J. Schrieb, H. Wehrheim, D. Wonisch, Three-valued spotlight abstractions,23

in: A. Cavalcanti, D. Dams (Eds.), FM, Vol. 5850 of LNCS, Springer, 2009,24

pp. 106–122.25

[3] G. Bruns, P. Godefroid, Model checking partial state spaces with 3-valued26

temporal logics, in: CAV 1999, LNCS, Springer Berlin Heidelberg, 1999,27

pp. 274–287.28

[4] A. Cimatti, E. Clarke, F. Giunchiglia, M. Roveri, NuSMV: a new symbolic29

model checker, Int. Jour. on Softw. Tools for Techn. Transfer 2 (4) (2000)30

410–425.31

[5] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, Y. Zhu, Bounded model32

checking., Handbook of Satisfiability 185 (2009) 457–481.33

[6] O. Grumberg, 3-Valued Abstraction for (Bounded) Model Checking,34

Springer Berlin Heidelberg, Berlin, Heidelberg, 2009, pp. 21–21. doi:35

10.1007/978-3-642-04761-9_2.36

41

http://dx.doi.org/10.1007/978-3-642-04761-9_2
http://dx.doi.org/10.1007/978-3-642-04761-9_2
http://dx.doi.org/10.1007/978-3-642-04761-9_2


[7] H. Wehrheim, Bounded model checking for partial Kripke structures, in:1

J. Fitzgerald, A. Haxthausen (Eds.), ICTAC, Vol. 5160 of LNCS, Springer,2

2008, pp. 380–394. doi:10.1007/978-3-540-85762-4_26.3

[8] N. Timm, S. Gruner, M. Harvey, A Bounded Model Checker for4

Three-Valued Abstractions of Concurrent Software Systems, Springer5

International Publishing, Cham, 2016, pp. 199–216. doi:10.1007/6

978-3-319-49815-7_12.7

URL http://dx.doi.org/10.1007/978-3-319-49815-7_128

[9] E. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith, Counterexample-guided9

abstraction refinement, in: CAV, Vol. 1855 of LNCS, Springer, 2000, pp.10

154–169. doi:10.1007/10722167_15.11

[10] N. En, N. Srensson, Temporal induction by incremental sat solving,12

Electronic Notes in Theoretical Computer Science 89 (4) (2003) 543 – 560,13

bMC’2003, First International Workshop on Bounded Model Checking.14

doi:https://doi.org/10.1016/S1571-0661(05)82542-3.15

URL http://www.sciencedirect.com/science/article/pii/16

S157106610582542317

[11] N. Timm, H. Wehrheim, On symmetries and spotlights - verifying param-18

eterised systems, in: J. Dong, H. Zhu (Eds.), ICFEM, Vol. 6447 of LNCS,19

Springer, 2010, pp. 534–548.20

[12] N. Timm, H. Wehrheim, M. Czech, Heuristic-guided abstraction re-21

finement for concurrent systems, in: T. Aoki, K. Taguchi (Eds.),22

ICFEM, Vol. 7635 of LNCS, Springer, 2012, pp. 348–363. doi:10.1007/23

978-3-642-34281-3_25.24

[13] M. Fitting, Kleene’s 3-valued logics and their children, Fund. Inf. 20 (1-3)25

(1994) 113–131.26

[14] D. Kroening, J. Ouaknine, O. Strichman, T. Wahl, J. Worrell, Linear com-27

pleteness thresholds for bounded model checking, in: CAV, Springer, 2011,28

pp. 557–572.29

[15] N. Timm, Bounded model checking für partielle Systeme, Masters thesis,30

University of Paderborn.31

[16] N. Timm, S. Gruner, Three-valued bounded model checking with cause-32

guided abstraction refinement – proofs, Tech. rep., Department of Com-33

puter Science, University of Pretoria (August 2018).34

URL http://hdl.handle.net/2263/6613635

[17] L. Moura, N. Bjrner, Z3: An efficient SMT solver, in: C. R. Ramakrishnan,36

J. Rehof (Eds.), Tools and Algorithms for the Construction and Analysis of37

Systems, Vol. 4963 of Lecture Notes in Computer Science, Springer-Verlag38

Berlin Heidelberg, 2008, pp. 337–340. doi:10.1007/978-3-540-78800-3_39

42

http://dx.doi.org/10.1007/978-3-540-85762-4_26
http://dx.doi.org/10.1007/978-3-319-49815-7_12
http://dx.doi.org/10.1007/978-3-319-49815-7_12
http://dx.doi.org/10.1007/978-3-319-49815-7_12
http://dx.doi.org/10.1007/978-3-319-49815-7_12
http://dx.doi.org/10.1007/978-3-319-49815-7_12
http://dx.doi.org/10.1007/978-3-319-49815-7_12
http://dx.doi.org/10.1007/978-3-319-49815-7_12
http://dx.doi.org/10.1007/10722167_15
http://www.sciencedirect.com/science/article/pii/S1571066105825423
http://dx.doi.org/https://doi.org/10.1016/S1571-0661(05)82542-3
http://www.sciencedirect.com/science/article/pii/S1571066105825423
http://www.sciencedirect.com/science/article/pii/S1571066105825423
http://www.sciencedirect.com/science/article/pii/S1571066105825423
http://dx.doi.org/10.1007/978-3-642-34281-3_25
http://dx.doi.org/10.1007/978-3-642-34281-3_25
http://dx.doi.org/10.1007/978-3-642-34281-3_25
http://hdl.handle.net/2263/66136
http://hdl.handle.net/2263/66136
http://hdl.handle.net/2263/66136
http://hdl.handle.net/2263/66136
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24


24.1

URL http://dx.doi.org/10.1007/978-3-540-78800-3_242

[18] D. Le Berre, A. Parrain, The Sat4j library, release 2.2, Journal on Satisfi-3

ability, Boolean Modeling and Computation 7 (2010) 59–64.4

[19] J. Burch, E. Clarke, K. McMillan, D. Dill, L. Hwang, Symbolic model5

checking: 1020 states and beyond, Information and Computation 98 (2)6

(1992) 142 – 170. doi:https://doi.org/10.1016/0890-5401(92)7

90017-A.8

URL http://www.sciencedirect.com/science/article/pii/9

089054019290017A10

[20] E. W. Dijkstra, Solution of a problem in concurrent programming control,11

Commun. ACM 8 (9) (1965) 569–. doi:10.1145/365559.365617.12

URL http://doi.acm.org/10.1145/365559.36561713

[21] D. Kroening, M. Tautschnig, CBMC–C bounded model checker, in:14

TACAS, Springer, 2014, pp. 389–391.15
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