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Abstract

In this paper, we provide an overview of a class of control charts called the synthetic charts.
Synthetic charts are a combination of a traditional chart (such as a Shewhart, CUSUM, or EWMA
chart) and a conforming run length (CRL)  chart.  These  charts  have  been  considered  in  order  to
maintain the simplicity and improve the performance of small and medium sized shift detection of
the traditional Shewhart charts. We distinguish between different types of synthetic type charts
currently available in the literature and highlight how each is designed and implemented in
practice. More than 100 publications on univariate and multivariate synthetic type charts are
reviewed here. We end with some concluding remarks and a list of some future research ideas.

Keywords: Conforming run-length (CRL), Markov chain, Shewhart chart, Side-sensitive, Steady-state
average run-length, Synthetic chart, Zero-state average run-length.

1.    INTRODUCTION

Statistical process monitoring (SPM) consists of a collection of statistical techniques and tools
which are mainly used for identifying changes in industrial or nonindustrial processes. When only
common causes of variation are present, the process is (statistically) in control (IC). Otherwise,
the process is out of control (OOC), and one searches for assignable causes of variation. The most
popular charts are the Shewhart charts, proposed by Walter A. Shewhart in the 1920s. Despite
their simplicity and versatility, one drawback of Shewhart charts is their insensitivity in detecting
small and moderate sized shifts. Thus, various modifications of the Shewhart charts have been
considered, focusing on how to increase their sensitivity. Among the charts that focus on
improving the traditional Shewhart charts is the synthetic chart. These charts have received and
continue to receive a lot of interest from researchers.

Wu and Spedding1 proposed the first synthetic chart by combining the Shewhart and
conforming run length (CRL) subcharts to increase the sensitivity of the Shewhart chart for
detecting small and moderate, abrupt shifts in the mean of a normally distributed process, or for
brevity, a normal process. The variable CRL is defined as the number of units (samples)
produced/observed between two consecutive nonconforming units (samples), inclusive of the
nonconforming unit (sample) at the end, and a control chart based on the CRL statistic is called the
CRL chart. Bourke2 proposed and studied the CRL chart in the case of monitoring the percentage
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of nonconforming items for a high yield process. This chart triggers an OOC signal for the first
time when the CRL is significantly small, say, CRL H, where H is a positive integer greater than
0. Thus, H is the control limit of the CRL chart. The rationale behind the CRL chart  is  the
following:

Small CRL values are indicative of less conforming items produced between the two successive
nonconforming ones. Consequently, this may be an indication that the process is operating under
some assignable causes of variation.  For a synthetic chart, an OOC signal is not triggered at the
first point that plots on the nonconforming regions; instead,     we wait until a second point plots
on the nonconforming region and if these two points are not “far away from each other,” then the
CRL chart signals (ie, the CRL is significantly small) and, consequently, an OOC signal is
triggered.

Following the work of Wu and Spedding,1 Scariano and Calzada3 presented the generalized
synthetic chart (GSC) methodology by combining any subchart (i.e., instead of the chart, they
considered any Shewhart, CUSUM, or EWMA chart) with the CRL subchart. Another key finding
on synthetic type charts was by Davis and Woodall4 where the authors noticed that the synthetic
chart of Wu and Spedding1 is  just  a of (H+1) runs rules chart with a head start feature. That
is, the similarity with runs rules charts made it easier to formulate and study the theoretical
run length (RL) properties of the synthetic charts.

This paper is structured as follows: In Section 2, we give the different types of synthetic charts as
well as their operation, zero , and steady state RL properties. The available univariate and
multivariate synthetic charts are reviewed in Sections 3 to 5. The concluding remarks and topics of
future research are given in Section 6.

2. DESIGN OF THE SHEWHART SYNTHETIC CHARTS

2.1 Types of synthetic charts

There are two main types of synthetic type control charts, namely, (1) simple synthetic charts and
(2) improved synthetic charts. These are based on the charting regions given in Figure 1 A,B,
respectively. Furthermore, depending on the type of the first subchart, these two categories are
further subdivided into six different types, i.e., for one sided schemes, there is a lower and an
upper; whereas, for the two sided schemes, there are nonside sensitive (NSS), standard
side sensitive (SSS), revised side sensitive (RSS), and modified side sensitive schemes (MSS).
The NSS simple and improved synthetic charts are denoted here as S1 (first proposed by Wu
and Spedding1) and IS1 (first proposed by Wu et al5), respectively. Similarly, the SSS, RSS,
MSS, simple, and improved synthetic charts are denoted here as S2 (by Davis and Woodall4) and
IS2, S3 (by Machado and Costa6) and IS3 (by Machado and Costa7), and S4 (by Shongwe and
Graham8) and IS4 (by Shongwe and Graham9), respectively. Using Figure 1, Table 1 is constructed
to distinctly show the different regions that are used to differentiate between these synthetic type
charts. For example, the charting regions of the lower one sided improved synthetic chart from
Figure 1B are regions 5, 6 and 9, where region 9 is a conforming region, region 5 is a
nonconforming region, and region 6 is an OOC region—the rest of the schemes in Table 1 (in
con- junction with Figure 1) are interpreted in a similar fashion.

Given the regions shown in Figure 1 and Table 1 for each of the distinct schemes, their unified
operation is as given in Table 2. So far in the literature, the GSC methodology of the EWMA and
CUSUM subcharts has only been studied for the S1 type only.



(A) Simple synthetic charts

(B) Improved synthetic charts

FIGURE 1 Control and warning limits for the synthetic type control charts

2.2 Transition probability matrices and some run length properties

The transition probability matrix (TPM) is of the form

( )×( ) = 1
(1)

were Q is the M × M matrix of transient probabilities (called the essential TPM), 0 = (0, 0, … , 0)
is the M × 1 null vector, and the M × 1 vector r satisfies r  =  1 Q1 (ie, row probabilities must
sum  up  to  1)  with 1 =  (1,  1,  …   ,  1) . By following a similar procedure of decomposing the
elements of the TPMs (see Davis and Woodall4), the TPM of the upper or lower one sided simple
and improved synthetic schemes as well as the S1 and IS1 schemes for any value of H is given by

2 3 4 1 OOC
a b 0 0 0 0 c

2 0 0 a 0 0 0 b+c
3 0 0 0 a 0 0 b+c

2
0 0 0 0 a 0 b+c

1
0 0 0 0 0 a b+c

a 0 0 0 0 0 b+c
OOC 0 0 0 0 0 0 1
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TABLE 1 Regions for synthetic type charts shown in Figure 1

All Regions Conforming
Regions

Nonconforming
Regions

OOC
Regions

Simple
synthetic

charts

One sided Lower D, G G D None
Upper A, F F A

Two sided

S1a X, E E X
S2 A, D, E E A, D
S3 A, D, E E A, D
S4 A, B, C, D B, C A, D

Improved
synthetic

charts

One sided Lower 5, 6, 9 9 5 6
Upper 1, 2, 8 8 2 1

Two sided

IS1b Y, 1, 6, 7 7 Y 1, 6
IS2 1, 2, 5, 6, 7 7 2, 5 1, 6
IS3 1, 2, 5, 6, 7 7 2, 5 1, 6
IS4 1, 2, 3, 4, 5, 6 3, 4 2, 5 1, 6

aX = A D.
bY = 2 5.

TABLE 2 Operation of the simple and improved synthetic type charts
Step Simple Synthetic Charts Improved Synthetic Charts
1 Specify the desired value of H.
2 Compute the applicable limits:

UCL1/CL1/LCL1
Compute the applicable limits:
UCL2/UWL/CL2/LWL/LCL2

3 Wait until the next inspection time, take a random sample of size n, and calculate the
corresponding plotting statistic, Yi.

4 If Yi UCL2 and Yi LCL2, go to step 7.
5 If the ith sample is conforming, hence return to step 3; otherwise, go to step 6.
6 Calculate CRL, ie, the number of conforming samples in between the current and next

nonconforming sample - inclusive of the nonconforming sample at the end. If CRL H, go
to step 7; otherwise return to step 3.

7 Issue an OOC signal and then take necessary corrective action to find and remove the
assignable causes. Then return to step 3.

with each of the probability elements as given in Table 3, = H + 1 and assuming that denotes
the probability for a sample point to plot in region x, x  {A, B, … , G, X, Y, 1, 2, … , 9}, i.e., =
P(Yi x).

Due to space restrictions, the readers are referred to Shongwe and Graham10 for the TPMs of the
S2, S3, and S4, whereas the TPMs of the IS2, IS3, and IS4 are given in Shongwe and Graham.11

Also, M (in Equation (1)) is some specified positive integer that depends on the control limit H of
the CRL subchart. For example, for the one sided simple and improved synthetic charts as well as
the S1 and IS1 charts, M = H + 1, while for the S2 and IS2 charts, M = (H + 1)2 for the S3 and IS3
charts, M = 3H + 1, and for the S4 and IS4 charts, M = 4H.

Once the essential TPM Q has been determined, the theoretical properties of the RL distribution
can be determined (see Fu and Lou12). That is, the probability density function (pdf) fRL( ) = P(RL
= ), the cumulative distribution function (cdf) ( ) = ( ), the average run length
( = ( )), and the standard deviation of the run length ( = ( )) can be calculated
via an appropriate Markov chain (MC) technique by using the following formulae:



( ) = , = 1,2, …, (2)

( ) = 1 , = 1,2, …, (3)

= ( ) = ( ) , (4)

= ( ) = 2 ( ) + , (5)

where q is the zero state initial probability vector. The 100 (0< <1) percentile of the run length
distribution can be determined as the value such that F RL( 1) and F RL( ) > . Clearly,
for =0.5, we obtain the median of the RL distribution, i.e., MRL= 0.5; for a simulation study
illustrating the percentile and median RL, see Chong et al13, whereas that illustrating the use of
SDRL, see Khoo et al.14 Other popular performance measures in the literature of synthetic charts
are (see Calzada and Scariano,15 Fang et al,16 Machado and Costa7)  the average number of
observations to signal (ANOS) and the average time to signal (ATS) as well as the extra quadratic
loss ( = ( ) ( ) ) and the expected ARL ( = ( ) ( ) ))
where ARL( ) is the average run length as a function of the shift in the parameter under
surveillance, and min and max are, respectively, the lower and upper bounds of . Moreover, the
shifts within the interval [ min, max] occur according to a probability distribution with pdf equal to
h( ).

TABLE 3 The probability elements for the TPM of the one sided and two sided NSS simple and
improved synthetic type charts

Type a b c
Simple

synthetic
chart

One sided Lower G D 0
Upper F A 0

Two sided S1 E X 0
Improved
synthetic

chart

One sided Lower 9 5 6

Upper 8 2 1

Two sided IS1 7 Y 1+ 6

2.3 Zero state and steady state modes

Davis and Woodall4 showed that the RL distribution of the synthetic chart can be very different
under the zero state and steady state modes. In the zero state mode, it is assumed that the shift in
the process parameter(s) has occurred exactly at the time the monitoring starts so that there is a
nonconforming sample at time zero. Thus, the occurrence of another nonconforming sample
within the next H samples will give an OOC signal. According to Davis and Woodall,4 this
engenders a head start feature, and this is why the S1 chart appears to be more powerful than
several popular competing charts. On the other hand, in the steady state mode, one assumes that
the process starts and stays IC for a “long” time period, so as the effect of the head start feature
disappears; a process shift occurs at some “random time.” Without the head start feature, as Davis
and Woodall4 also showed, the RL performance of the synthetic chart declines. This fact has also
been cited as a reason against the use of synthetic charts.

To obtain the steady state performance of the synthetic chart, the vector q has to be replaced by the
vector s (in Equations (2) to (5)) that consists of the percentage of time, over many samples under
the IC state that the Markov chain will be in each transient state. In order to obtain s, two
approaches are considered (see Knoth17). These are as follows: (1) The vector s consists of the
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percentage of time that the Markov chain will be in each transient state, given that no false alarm
was raised before the actual process shift. This is known as the conditional setup and gives the
conditional steady  state performance of the chart. (2) It is assumed that instead of conditioning
on false alarm, the actual process shift may happen after a sequence of false alarms; after each
false alarm, the chart is restarted. This is known as the cyclical setup and gives the cyclical
steady state performance. For a comparison of these different types of steady state methods,
readers are referred to Davis and Woodall,4 Knoth,17 and Machado and Costa.6,7

2.3 Zero state and steady state run length closed form expressions

Scariano and Calzada3 and Calzada and Scariano15 showed that the zero state ARL and SDRL of the
S1 chart are equal to

=
( ) ( )

, (6)

= ( )

( ) ( )
+

1
( ( )) ( )

( )
, (7)

respectively, where X( ) denotes the probability X (see Table 3) as a function of the shift
parameter . The ARLZS and SDRLZS are also functions of . In order to keep the notation simple,
we use ARLZS and SDRLZS instead of ARLZS( ) and SDRLZS( ), respectively. The steady state ARL
and SDRL are denoted as ARLSS and SDRLSS, respectively. The advantage of using Equations (6)
and (7) is that the zero state ARL and SDRL can be calculated directly without matrix inversion.
On the other hand, with the Markov chain approach, the entire RL distribution is available, which
may be more attractive and comprehensive to study chart performance. For an analytical
expression of the (cyclical) steady state ARL of the S1 chart, Wu et al5 developed the formula

=
( )

0.5 + ( ) , (8)
where

=
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
.

(0) is the calculated at the IC state. Also, the steady state ARL of the S1 chart under the
conditional setup is given by (see Knoth17)

=
( )

+ ( )
( )

+
( )

+ (1 ( )) ( )

( )

,               (9)

where 0 is the largest eigenvalue of the essential TPM Q when the process is IC and
0 = 1 (1 X(0))/ 0.

More general expressions for the zero state ARL and SDRL of the S1 chart were provided by
Scariano and Calzada3 in the case of the GSC. These formulae are



=
( )

( ), (10)

=
( )

( ) +
( ( ))

( ){ ( ) 2 ( )}
/

, (11)

where RL is the run length random variable of the first subchart. The approach of Scariano and
Calzada3 has led researchers to combine one of the most popular  schemes (Shewhart, CUSUM,  or
EWMA) with the CRL chart. For the case of the Shewhart chart as the first subchart, we have

( ) =
( )

, ( ) = ( )
( )

, ( ) = (1 ( )) ( )

and from direct substitution into Equations (10) and (11), we obtain Equations (6) and (7).

Note that the expressions in Equations (6) to (11) can easily be shown (in a similar fashion as done
in Section 2.2 for the given unified TPM) that they correspond to the lower and upper one sided
simple and improved synthetic charts as well as the S1 and IS1 schemes only. For the ARLSS of the
S3 and IS3 charts, the reader is referred to Machado and Costa,6,7 respectively.

2.5   Statistical design of synthetic charts

Wu and Spedding1 gave an algorithm to implement the optimal design (i.e., a search for the
parameters (k, H) such that a specific IC RL value is attained) for the S1 chart. Usually, k > 0 is a
charting constant that is related to the distance of the UCL1/LCL1 from CL1, in terms of standard
deviation. Similar approaches for the design of the S2, S3, and S4 charts are also available (see,
for example, Machado and Costa6). Next, Wu et al5 similarly gave an implementation algorithm
(ie, a search for the parameters (k1, k2, H) such that a specific IC RL value is attained) for the IS1
chart, with k1 > k2 > 0, the charting constants that are related to the distance of the
UCL2/UWL/LWL/LCL2 from CL2, in terms of standard deviation. Similar approaches for the
design of the IS2, IS3, and IS4 charts are also available (see, for example, Machado and Costa7).
A different algorithm was proposed in Aparisi and de Luna,18 so that the synthetic chart may
only detect the shifts that are considered as important by the practitioners. However, if the
practitioner has no historical data to estimate the important shifts, say * on the process
parameter(s), the Taguchi loss function approach (Aparisi and García Díaz19) can be used to
determine the important regions.

3   LITERATURE REVIEW

A brief review of univariate S1 charts used for monitoring the mean and those used for monitoring
the variance was given in Khoo.20 Specifically, Khoo20 discussed the S1 chart for monitoring the
mean for skewed distributions (Khoo et al,21 Castagliola and Khoo22), its robustness to
non normality (Calzada and Scariano23), and the S1 chart combined with double sampling (DS)
(Khoo et al24). Thus, papers already reviewed by Khoo20 will not be discussed in detail here but
will only be mentioned briefly. In the literature, there are several synthetic charts, which are
suitable for monitoring various processes, under different settings. These charts are summarized in
Table 4, and its structure is used for reviewing these charts in Sections 3 to 5.
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3.1   Synthetic charts for monitoring the mean of a normal process

Khoo et al25 studied the statistical design of the S1 chart based on the MRL under the zero  and
steady state modes. Note that in all the above articles, it is assumed that the underlying process
parameters are known (this is known as case K); however, when the process parameters are
unknown, they must be estimated in phase I before the start of monitoring in phase II (this is
known as case U). Zhang et al26 were the first who studied the effect of parameter estimation on
syn- thetic charts for the normal mean in case U where they investigated the effect of parameter
estimation on the S1 chart. Their analysis revealed that the unconditional RL properties in case U
can be significantly different from those in case K (especially when the number of phase I samples
is small), making it inappropriate to use the optimal charting constants k and H that corresponds to
case K in case U. Recently, Hu et al27 studied the S1 chart in case U by modifying the k value
using the bootstrap method in order to have a conditional guaranteed IC performance.

Extending on the S1 DS work by Khoo et al,24 You et al28 studied the corresponding case U. Note
that the latter two articles used the ARL as the design criterion. You29,30 noted that designing
control charts using the ARL requires prac- titioners to specify the target shift size in advance, and
consequently, if this is unknown (or the shift size is random), then the EARL is more appropriate.
Consequently, You,29,30 respectively, designed the S1 DS chart in case K and case U using the
EARL. Finally, Costa and Machado31 and Malela Majika and Rapoo,32 respectively, studied the S3
and S4 DS charts in case K.

When errors in estimating the process standard deviation exist, either due to inadequate/unreliable
IC data or due to changes in the process standard deviation (i.e., the chart suffers from a wide
variation in the desired IC ARL values), Calzada and Scariano15 proposed two S1 type charts
based on the Student's t distribution: one with the t and the other with the EWMA t subchart in
order to monitor the process mean under the zero state mode, as these do not require estimation of
the standard deviation from reference samples. The S1 t chart in case U was studied by Teoh et
al,33 under both zero  and steady state modes. They also provided the appropriate (k, H) values for
its optimal design according to the zero  and steady state ARL as well as the EARL.

There are some adaptive synthetic charts that exist in the literature. Lim34 investigated the zero
and steady state S1 scheme where the CRL is calculated using larger sample sizes and shorter
sampling intervals. Song and Park35 and Lee et al36 studied the steady state and zero state of the
variable sampling interval (VSI) IS1 charts, respectively. Lee and Lim37 and  Yu  et  al38

investigated the variable sample size and interval (VSSI) using the S1 and IS1 charts, respectively.
Costa and Machado39 studied the steady state IS1 and IS3 charts with a variable sample size
(VSS). Other works on synthetic charts for monitoring the mean of a normal process consist of the
study of the effect of measurement errors on the performance of the S1 chart by Hu et al40 and the
study of the auxiliary based information on the S1 type Shewhart chart by Haq and Khoo41 and
EWMA as well as CUSUM charts by Haq,42 respectively. The only work on univariate synthetic
charts for monitoring non IID data is from Hu and Sun43 who studied the performance of the S1
chart for an autoregressive process of order 1.



TABLE 4 Classification of synthetic charts according to their use

Synthetic Chart Quality Characteristic/Process
Parameter/Design Type

Section

For variables (parametric
setup)

Mean 3.1
Variance 3.2
Mean and variance (joint monitoring) 3.3
Mean time between events 3.4
Economic and economic statistical designs 3.5

For attributes Fraction/number of nonconforming 4
Average/actual number of nonconformities

Multivariate processes Mean vector 5
Covariance matrix
Vector of the number of nonconforming items

Finally, using ranked sampling methods such as the ranked set sampling (RSS), median RSS, and
order RSS (see, for example, Mutlak and Al Sabah44), Haq et al45,46 studied the usual S1 as well as
the S1 EWMA and S1 CUSUM charts for process mean and found out that they outperform their
counterparts based on simple random sampling (SRS).

3.2   Synthetic charts for monitoring the variation

Chen and Huang47 and Huang and Chen48 studied S1 charts based on the sample range R and the
sample standard deviation S, respectively. They only studied the zero state performance of these
S1 charts. They also integrated the VSI feature on both subcharts. Rajmanya and Ghute49,50

proposed the S1 D chart based on Downton's estimator

=
( )

( + 1) ( ),

where ( ) denotes the jth order statistic in the sample X1, X2,  … , Xn, for j = 1,  2,  … , n. The
numerical comparisons of Rajmanya and Ghute49,50 revealed  that  the  S1 D chart produced
significant improvement, in terms of ARLZS, as com- pared with the R, S, and D charts, as well as
to the S1 charts of Chen and Huang47 and Huang and Chen48 for normally distributed data. The
effect of non normality on the Downton's estimator was also examined. Recently, Guo et al51 stud-
ied a S1 chart based on the S2 statistic, in both case K and case U. Finally, a S1 DS S chart was
recently studied by Lee and Khoo.52 No reported works for S2 to S4 and IS1 to IS4 charts in the
case of monitoring the variability of a normal process were found in the literature. The usual S1 as
well as the S1 EWMA chart for process variation under RSS and MRSS policies were studied by
Haq et al45,53 and found out that they outperform their counterparts based on SRS.

Before closing this section, it is worth noting that in cases where the process mean and standard
deviation may not be constant in the IC state but the latter is proportional to the former, it is more
reasonable to monitor the coefficient of variation (CV), ie, = / of the process. Calzada and
Scariano54 proposed an upper one sided S1 chart to monitor increases in under the zero state
mode in case K. The charting statistic of the Shewhart type CV subchart is = , = 1,2, ….
More recently, Tran et al55 studied the latter S1 scheme in the presence of measurement errors.

3.3   Synthetic charts for the joint monitoring of mean and variance

It may be necessary to monitor both the mean (shifting from 0 to 1 = 0 ± 0, where  0) and
the standard deviation (shifting from 0 to 1 = 0, where 0 <  1). The usual case is to monitor
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0

i

a process in order to detect a shift in the process mean, and an increase (i.e., > 1) in the variance,
or both. For < 1, a decrease in the process standard deviation has occurred. In the literature,
there are four S1 charts for monitoring the mean and variance simultaneously using one
charting statistic instead of two separate charting  statistics. Costa and Rahim56 proposed and
studied  a  S1 chart based on the noncentral chi square (NCS) statistic, i.e.,

= ( + ) , = 1,2, …,

where i = d if Xij > 0; otherwise, i = d, where d > 0 is a positive constant. Chen and
Huang57 proposed a S1 chart based on the M = max {| U |, V} statistic, where

= ( )/ , ( 1) /

and (.), (.) are the cdf of the standard normal distribution and the chi square distribution with
n  1 degrees of freedom, respectively. Costa et al58 studied a S1 chart based on the NCS statistic
with two stage testing, and more recently, Lee and Khoo59 studied the mean square error (MSE)
S1 chart based on the statistic

= +
( )

1

where  is the target value of the process. Finally, Machado and Costa7 studied the steady state
performance of the IS3 chart that utilizes   the joint X&R chart as the first subchart. Except for the
latter, all other charts are of the S1 type, and their performances were evaluated under the
zero state mode. The numerical analysis revealed that each synthetic chart discussed here
outperforms its nonsynthetic counterpart.

3.4   Synthetic charts for monitoring the mean time between events

In some high quality processes, it is often recommended that one monitors the time between
events (failures) and not the number of events (e.g., nonconforming items), since they rarely occur.
Scariano and Calzada60 were the first to pro- pose a lower one sided simple synthetic chart for
monitoring the mean time between events (failures) (TBE) assuming an exponential distribution.
Fang et al16 proposed a lower one sided chart which consists of the tr chart as the first subchart (for
monitoring the mean TBE in the case of a homogenous Poisson process). They evaluated its
performance in terms of the ANOS, since in TBE charts, a single point does not consist of a single
observation but requires r consecutive, usually exponentially distributed observations. Fang et al16

showed that, in terms of the zero state ANOS, the lower one sided chart based on the Erlang
distribution with r = 4 outperforms the exponential EWMA chart for all     the considered shifts in
the mean TBE. Furthermore, in terms of the steady state ANOS, the lower one sided chart with r =
5 chart as the first subchart is more efficient than the exponential EWMA chart in detecting small
to moderate shifts. The S1 exponential charts in case U have been studied by Cheng et al61 and
Sun et al,62 respectively; the former provides a phase II ARL unbiased design while the latter
gives an exact method for guaranteed IC performance.

3.5  Economic and economic statistical designs for synthetic charts

Yeong et al63 proposed the first economic model for the S1 chart in which they formulated an
algorithm to find the optimal values of the chart's design parameters, which minimize the net sum
of all costs involved, so that the chart can be operated at an economically optimal level by using
the approximation of the cost function in Chung.64 Recently, Yeong et al65 further showed the



economic efficiency of the S1 chart as compared with that of the ordinary chart. A sensitivity
analysis was done by Yeong et al63 and Yeong and Khoo.66 Both papers stressed that sometimes it
is not feasible to operate the chart at the economically optimal point. However, they provided
conditions where the saving is larger when the S1 chart is adopted instead of the ordinary
chart. The economic and economic statistical designs of   the S1 chart in case K and case U were
studied by Yeong et al67 and Yeong et  al,68 respectively. The economic and economic statistical
design of the S1 DS chart of Khoo et al24 was studied by Lee and Khoo.69 A corresponding eco-
nomic design of a slightly modified S1 DS chart was done by Aghaulor and Ezekwem.70 In the
case of monitoring process variation, the economic design of the upper one sided chart of Guo et
al51 in the presence of measurement errors was studied by Hu et al.71 Lee and Khoo72 provided the
economic statistical design of the S1 Max chart of Chen and Huang.57 Finally, Wan et al73 studied
the integrated economic design of the adaptive IS1 chart of Yu et al38 and the maintenance
management system.

4 SYNTHETIC CHARTS FOR ATTRIBUTE DATA

Wu et al74 presented the design, operation, and ATS performance for the S1 chart with a np
subchart and showed that it has an improved zero state performance than the traditional np chart.
Bourke75 showed that, in zero state, the apparent superior performance reported in Wu et al74 is
due to a limited choice of circumstances for making comparisons. More- over, in the steady state
mode, the advantage of the S1 chart over the np chart is at most 3%, which is not significant
enough to adopt the more complicated S1 chart. Following Wu et al,5 Haridy et al76 proposed a
IS1 chart with the np chart as the first subchart. The authors showed that, overall, the IS1 chart is
more effective than the np chart and the S1 np chart. The effect of parameter estimation on S1
attributes charts was studied by Castagliola et al77 by evalu- ating the RL properties of the S1 p,
np, c, and u charts  using  the  MC  approach  in  case  K  as  well  as  in  case  U.  Recently,  Lee  and
Khoo78 studied the statistical design of the S1 np chart based on the MRL. Chong et al79 proposed
and studied the S1 DS chart with the np chart as the first subchart, which can be viewed as the
attribute analogue of the S1 DS chart of Khoo et al.24 Finally, Adnaik and Gadre80 designed the
zero state and steady state Markov chain procedure for S1 np chart in the case of autocorrelated
binary observations according to a first order Markov dependence.

5   MULTIVA RIATE SYNTHETIC CHARTS

When more than one correlated characteristics are to be monitored, multivariate charts must be
used. The term multi- variate synthetic chart refers to a scheme that consists of a multivariate chart
as the first subchart and the CRL chart as the second subchart. Under the assumption of normality,
Ghute and Shirke81 as well as Aparisi and de Luna82 integrated the Hotelling's T2 chart and the
CRL chart to form the synthetic T2 or S1 T2 chart. The authors evaluated its performance under the
zero state mode and showed that the S1 T2 chart increases the sensitivity of the Hotelling's T2

chart in detecting shifts in the mean vector. Khoo et al83 presented a multivariate S1 chart for
monitoring the process mean vector of skewed populations, using the weighted standard deviation
method. Khoo et al84 studied the statistical design of the S1 T2 chart based on the MRL criterion.
The authors showed numerically that, under the zero state mode, the S1 T2 chart outperforms the
multivariate EWMA chart, for moderate and large shifts. However, under the steady state mode,
the multivariate EWMA is more superior, and their performance is only comparable for very large
shifts. Khoo et al85 proposed the S1 DS T2 chart and noted that it outperforms the multivariate
EWMA chart for moderate and large shifts, but the latter is superior for small shifts. Moreover,
the  S1  DS T2 chart generally outperforms the basic T2, S1 T2, and DS T2 charts.  Yeong  et  al86

studied the economically optimal design of the S1 T2 chart. There are no other synthetic  type T2

charts based on the S2 to S4 and IS1 to IS4 designs that have been reported in the literature so
far.
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Simões et al87 studied the performance of the S1 T2 chart in the case of a bivariate autocorrelated
process. Moreover, the authors considered the S3 scheme with the joint X (one for each variable)
subchart. Their numerical comparisons showed that the autocorrelation has a negative effect on the
side sensitive schemes and they are inferior to the usual S1 T2 chart, especially for variables with a
high correlation coefficient. Costa and Machado88 considered a correlated bivariate process using a
two stage sampling procedure with a S1 T2 chart. More recently, Dargopatil and Ghute89 proposed
a multivariate analogue of Hu and Sun43 using skipping and mixed sampling strategies to reduce
the negative effect of autocorrelation. It seems that these are the only works on synthetic charts for
monitoring a multivariate process with non IID observations.

Recently, Celano and Castagliola90 proposed a S1 chart, the Syn RZ chart, where the first subchart
is a Shewhart type one based on the ratio Z = X1/X2 of a bivariate normal process with process mean
vector = ,  with correlation coefficient between X1 and X2. This chart is suitable for
detecting shifts in the ratio  as well as on . Other multivariate synthetic charts reported in
the literature include the S1 chart based on the VMAX statistic by Machado et al,91 which can be
used for monitoring the covariance matrix of a bivariate normal process. The proposed charting
statistic utilizes the sample variances of two correlated random variables, i.e.

VMAX = max { , },

where = , =  and ( , ), = 1,2, … , , = 1,2, … , , is a sample of size
from a bivariate normal process with covariance matrix . Furthermore, Ghute and Shirke92 proposed
and studied the S1 |S| chart for process dispersion by integrating the generalized sample variance |S|
chart and the CRL chart. A VSI version of this scheme was studied  by Lee and Khoo.93 Recently,
Lee and Khoo94 proposed a zero  and steady state IS1 |S| chart, and Lee and Khoo95 designed the
S1 |S| chart based on the MRL criterion. Ghute and Shirke96 proposed the S1 T2 and |S| subchart (to
jointly monitor the multivariate mean and variability) and the CRL chart in zero state and showed
that it has a superior OOC performance than its nonsynthetic counterparts.

The S1 E chart (Liu et al97) combines the chart based on conditional entropy of
Guerrero Cusumano98 with the CRL chart. Using the concept of the GSC of Scariano and
Calzada,3 Lee99 developed a S1 multivariate EWMA chart by con- sidering the multivariate
EWMA chart as a subchart while a S1 multivariate CUSUM chart was studied by Lee et al.100

Extensive numerical comparisons showed that under the steady state mode, these S1 multivariate
charts outperform their nonsynthetic counterparts in detecting shifts in the process mean vector.
Finally, for multiattribute processes, Haridy et al101 proposed and studied a multiattribute
synthetic np chart. Two different types of synthetic charts, a S1 and an IS1, were established by
combining the multiattribute np chart with the CRL chart, and their performance was evaluated
under the steady state mode.

6 CONCLUDING REMARKS AND FUTURE RESEARCH

In this paper, the available literature on different types of synthetic charts is reviewed. Both
univariate and multivariate synthetic charts have been covered. Synthetic charts can be useful for
the quality practitioner in a variety of applications. The signaling rule of the synthetic type chart is
useful for practitioners who may want to wait for a second point plotting on the nonconforming
region, before declaring a process OOC. The reported results in the literature reveal that the
Shewhart synthetic charts that signal when two points plot beyond the control limits but on
opposite sides of the center line (i.e., not the side sensitive rule) are not as efficient as those that are
side sensitive. On the contrary, one of the reasons why no synthetic EWMA and CUSUM charts



based on the S2 to S4 and IS2 to IS4 designs exists is because Khoo et al102 found that the
side sensitive EWMA runs rules schemes do not offer any improvement over their
nonside sensitive counterparts.

Finally, in addition to the suggestions for future research given in Khoo,20 we provide a summary
of some topics that have not yet been addressed or have only been partially addressed.

1. The zero state performance metrics for the synthetic chart can be misleading, due to its inherent
head start feature. We suggest that researchers should evaluate the performance of synthetic
charts under the steady state mode, especially in the case of numerical comparisons between
competitive schemes. In fact, recent works (especially from 2010 onwards) evaluated the
performance of synthetic charts under both modes.

2. Although there are some nonparametric synthetic schemes available in the literature (see, for
example, Chakraborti and Graham103), more work needs to be done.

3. Most of the research on synthetic charts is focused on the basic S1 design, which has been
extensively studied for almost every different process, either in case K or case U. However, not
much attention has been paid to the S2     to S4 and IS1 to IS4 designs (neither in case K nor in
case U, except for the normal mean in case K). It has been proven numerically that for normal
processes, the SS schemes outperform the NSS ones. However, this needs to be investigated for
non normal processes, as well.

4. Recent works focus much more on the extensions of the traditional S1 to S4 and IS1 to IS4
charts, with appropriate generalizations of the CRL subchart. Instead of the CRL chart, the group
conforming run length (GCRL) is used (Gadre and Rattihalli104), and a new class of synthetic
charts can be defined, often termed as group runs control chart.  For recent work on these charts,
see Saha et al105 and the references therein.  These schemes are superior to the reviewed synthetic
charts, but this comes with an increased complexity, especially in their statistical design, since at
least three or four design parameters must be determined. Even the IS1 to IS4 charts have three
design parameters. Traditionally, the most sensitive schemes in the detection of small and
moderate shifts are the CUSUM and the EWMA charts. Both require the determination of two
design parameters in each. Therefore, in numerical comparisons, the CUSUM and EWMA charts
must be included and the improvement attained by the proposed synthetic type schemes must
justify their complexity.

5. Even though recently there was an advisement against the use of synthetic type charts (see
Knoth17), we believe more research is needed to improve understanding. This is because Knoth17

only considered the S1 chart in his comparison. From the present overview, there are at least
seven more synthetic type charts (simple and improved), and more synthetic charts can be defined
under the GSC methodology. Thus, an extended comparison is needed on the zero  and the
steady state performance of all these different synthetic charts with the traditional CUSUM and
EWMA charts (see also bulleted item 4 above).

6. If the size of a specific shift a user wants to detect is unknown, then a synthetic chart designed
on some specific magnitude shift would perform poorly when the actual magnitude differs
significantly from the assumed one. Consequently, in the literature, there has been overall
performance metrics that are recommended, i.e., EQL, EARL, etc. (see Machado and Costa6,7 and
You29,30). While these articles consider overall performance metrics, most articles considered in
this paper only use specific shift performance metrics. Thus, there is still room to assess the
performance of the existing and future synthetic monitoring schemes using overall performance
metrics. Finally, from    a practical standpoint, the control charting procedures must be made more
accessible to the practitioner, and to this end, the ease of implementation is vital. Computer
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programs, add ons to popular software packages such as R, or any other commercial or
noncommercial software would greatly help in this effort.

In conclusion, even though the synthetic charts have drawn some criticisms in the literature, they
continue to attract   the attention of researchers and experts in SPM. Thus, modifications,
enhancements, and adjustments of synthetic charts have become available in the literature in a
steady stream over the last few years. We expect that our overview will shed more light on what
has happened until now and would facilitate further research in this area.
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