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Preface 

This thesis is based on the following chapters, which have been published, presented or are to 

be submitted for publication. 

Peer reviewed journal articles: 

1.  Svinurai W., Hassen A., Tesfamariam E., Ramoelo A.  (2018). Performance of ratio-

based, soil-adjusted and atmospherically corrected multispectral vegetation indices in 

predicting herbaceous aboveground biomass in a Colophospermum mopane tree - shrub 

savanna. (Published in Grass and Forage Science. 73:727–739).  

2. Svinurai W., Ramoelo A., Hassen A., Tesfamariam E., Malherbe J. (2020). Response of 

remotely sensed herbaceous aboveground biomass to rainfall variability and droughts in a 

south-central African savanna (Submitted to Rangeland Ecology and Management 

journal, Ref: REMA-D-20-00067). 

3. Svinurai W., Hassen A., Tesfamariam E., Ramoelo A., Cullen B. (2020). Calibration and 

evaluation of the Sustainable Grazing Systems pasture simulation model for predicting 

grass aboveground biomass in a southern African savanna (Submitted to African Journal 

of Range and Forage Science, Ref: TARF-2020-0103).  

4. Svinurai W., Hassen A., Tesfamariam E., Ramoelo A. (2020). Modelled effects of 

grazing strategies on native grass production, animal intake and growth in Brahman steers 

(Submitted to African Journal of Range and Forage Science, Ref: TARF-2020-0104). 

 

Conference presentations: 

1. Svinurai W., Hassen A., Tesfamariam E., Ramoelo A.  (2018). Performance of ratio-based, 

soil-adjusted and atmospherically corrected multispectral vegetation indices in predicting 

herbaceous aboveground biomass in a Colophospermum mopane tree - shrub savanna. In: 

Proceedings of the 53rd Annual Congress of Grassland Society for Southern Africa. ARC 

Training Centre, Roodeplaat, Pretoria, South Africa, 22 - 27 July 2018. 

2. Svinurai W., Hassen A., Tesfamariam E., Ramoelo A. (2019). Parameterisation and 

evaluation of the Sustainable Grazing Systems pasture simulation model for predicting 

native grass growth in a southern African savanna. In: Proceedings of the 54th Annual 

Congress of Grassland Society for Southern Africa. Upington, Northern Cape, South 

Africa, 30 June - 04 July 2019.  

 

The complexity of interactions between climate variability and grazing pressure is the major 

challenge to effective monitoring of herbage and animal productivity in semi-arid regions. This 

thesis comprises of eight chapters including introduction and general discussion (Figure 1.1). 

The chapters were aimed at increasing our understanding of two main issues concerning the 

monitoring of rangeland productivity in order (i) to determine the ranch-scale impacts of 

rainfall variability and drought on herbaceous aboveground biomass (AGB) using optical 

remote sensing; and (ii) to parameterise, evaluate and apply a systems model, the Sustainable 

Grazing Systems (SGS) whole farm model to complement grazing experiments in assessing 
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the effects of grazing strategies at management unit level. To analyse and prescribe sound 

grazing management guidelines, information about how the rangeland system works is required 

at the appropriate spatial and temporal scale. General introduction chapter provides an 

overview of the knowledge gaps in monitoring herbage and animal production in a data limited 

environment and proposes a systematic monitoring approach of using remotely sensed inputs 

and variables in simulation modelling to close these gaps. Chapter 2 provides a review of 

literature about the ecological factors that determine management of sweetveld and the status 

and prospects of using remote sensing and systems modelling in monitoring herbage and 

animal production. Each of the remaining chapters was meant to address one or two of the 

objectives outlined in Chapter 1. Finally, chapter eight provides an overall discussion and 

synthesis of the findings of this study and their implications to grazing management in semi-

arid rangelands of southern Africa.  

Chapter 3 evaluates factors that determine the accuracy of estimating herbaceous AGB 

under site conditions using cheaply available, medium resolution satellite product. This is 

necessary because accuracy of empirical remote sensing models depends on site conditions of 

soil, vegetation and atmosphere. These models enable biophysical drivers of herbaceous AGB 

production to be identified and development of local forage maps, and management decision 

making in areas sensitive to degradation.  

Chapter 4 aimed to develop and validate a statistical model of herbaceous AGB and 

rainfall and, use this model to estimate the temporal variability AGB production in herbaceous 

communities at landscape level. This was achieved by using herbaceous AGB modelled from 

medium spatial resolution satellite images and daily satellite rainfall estimates (SREs) that were 

corrected for bias. Landscape scale assessments of spatial and temporal variation of herbaceous 

AGB production enable effective allocation of cattle to paddocks on near-real time basis. 

Spatial extend of herbaceous community cover determined from classification of satellite 

images was used to delineate woody community cover in sites selected for SGS model 

evaluation and application. Seasonal estimates of remotely sensed herbaceous AGB were used 

as independent data for evaluating performance of the simulation model.  

Chapter 5 introduces the approach that was used to parameterise and calibrate the SGS 

model for simulating grass production in a semi-arid rangeland of southern Africa. Soil 

physical parameters obtained from soil surveys that were conducted previously at the study site 

and, ancillary landscape attributes derived from a digital elevation model and regional 

databases were used. Plant canopy and growth parameters were obtained from an extensive 
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review of published experiments. A dataset of bias corrected daily SREs and solar radiation 

together with measured temperature were used as inputs. An iterative procedure was used to 

obtain the best fit between simulated outputs and measured herbaceous biomass production. 

The integrated workflow for parameterising and calibrating a process-based pasture-simulation 

model developed in this study can benefit model users in data-constrained environments.  

Chapter 6 aimed at evaluating the adequacy of the SGS model in the predicting long-term 

herbaceous biomass production using two model evaluation techniques. Firstly, parameter 

sensitivity analysis was performed to determine behavioural responses of model to prevailing 

climatic conditions. Simulation outputs were then compared with remotely sensed herbaceous 

AGB estimates derived across land types. Model evaluation is required to build model user 

confidence when a simulation model is applied to different seasons and locations where field 

measurements of parameters used to calibrate the models are unavailable. 

Chapter 7 applies the SGS model to analyse the effects of grazing management practices 

on herbaceous grass production, intake, and growth of beef steers. The analyses were not 

possible before this study but could now be conducted using the evaluated model. Information 

about impacts of management decisions such as varying stocking rate and paddock systems on 

sustainability of herbage and animal production is needed to come up with sound management 

guidelines. 
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Figure 1. 1: Outline of the thesis 
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Abstract 

Herbage and cattle production in semi-arid regions are primarily controlled by climate variation 

particularly rainfall variability and secondarily by disturbances such as drought, grazing and 

fire. These factors interact at different spatial and temporal scales in a complex manner difficult 

to observe or comprehend and, reduce availability and quality of herbage and cattle 

productivity. Variables for quantifying rangeland productivity are thus rarely available and 

unreliable yet options for sustainable management are limited. Grazing experiments have 

provided useful insight about ecological and management factors involved in rangeland 

functioning, but they have limited scope to deal with high environmental variation. This 

highlights the need for a systems approach for monitoring rangeland and cattle productivity at 

the appropriate spatial and temporal scales to enable productivity to be maximised whilst risk 

to climate variation is minimised. This study explored two broad objectives: to determine the 

ranch-scale impacts of rainfall variability and drought on herbaceous aboveground biomass 

(AGB) using optical remote sensing; and to parameterise, evaluate and apply a systems model, 

the Sustainable Grazing Systems (SGS) whole farm model to complement grazing experiments 

in assessing the effects of grazing strategies on beef cattle production. 

To determine rainfall variability impacts, twenty regression models were firstly 

developed between measured herbaceous AGB and, classical and extended multispectral 

vegetation indices (MVIs) derived from a Landsat 8 image. End-of-season herbaceous AGB 

was predicted with high accuracy (r2 range = 0.55 to 0.71; RMSE range = 840 to 1480 kgha-1). 

The most accurate model was used to construct a regression between rainfall and AGB derived 
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from peak-season Landsat images available between 1992 and 2017. Standardised precipitation 

index and standardised anomalies of herbaceous AGB production were then used in a 

convergence of evidence approach to determine the response of AGB to rainfall variability and 

drought intensity. Total wet season rainfall revealed high variability (33 to 41 % CV) and 

subsequent herbaceous AGB production were 18 to 35 % more variable. Spatial heterogeneity 

of AGB production across herbaceous communities were high and deviated from mean AGB 

by 51 to 69 %. Landscape-level temporal variation of AGB production remained stable despite 

the increase of climate variability experienced in the region in the past 50 years. 

Climate inputs and parameter sets for upper-, mid- and foot- slope land types and key 

grass species, Urochloa mosambicensis and Eragrostis curvula were developed by integrating 

spatial data with previous soil surveys and extensive reviews of published experiments. A 

simulation experiment was conducted between 1992 and 2017 for all combinations of land 

types and grass species to analyse the extent of improvement resulting from parameter 

adjustments. The SGS model predicted the growth pattern known for grasses native to dry 

regions of southern Africa. The model represented measured herbaceous biomass moderately 

well (r2 = 0.57), at low average error (RMSE, 820 kg DM ha-1) despite huge discrepancies in 

summary statistics for measured (mean, 3877 kg DM ha-1) and simulated (mean, 3071 kg DM 

ha-1) biomass and residuals. Model predictions were also significantly correlated with remotely 

sensed AGB (r2 = 0.46) at reasonable overall performance error (RMSE, 981 kg DM ha-1). The 

integrated workflow developed for parameterising and calibrating the SGS pasture-simulation 

model can benefit model users in data-constrained environments. Animal growth parameters 

specific to Brahman weaner steers were defined in the SGS model to enable evaluation of 

impacts of recommended (10 haLU-1) and other three stocking rates (7, 15 and 20 haLU-1) and 

multi-paddock grazing systems (2-, 3- and 4- paddocks per herd) on rangeland productivity. 

Overall, there were no observable differences in herbage production and dry matter intake 

irrespective of stocking rate and multi-paddock grazing system. But stocking rate effects on 

animal production were more pronounced compared to multi-paddock grazing systems. To 

maximise cattle productivity in semi-arid rangelands, management should be emphasised on 

manipulation of stocking rates over multi-paddock grazing systems.  

 

Keywords 

Rangeland monitoring, climate risk, sustainability, animal productivity, grazing strategies  
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CHAPTER 1  

General introduction 
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Semi-arid regions occupy 15 % of global land area, 54 % of which are rangelands and provide 

shelter and food to 855 million people and half of the global livestock (Stafford Smith et al., 

2009). By 2050 the current global population (6.8 billion people) is expected to increase by 34 

%, with most of the growth occurring in developing countries (FAO, 2009). Meat production 

should increase to over 200 million tonnes per year to feed the growing population. The 

management of grazing systems has been intensified to meet the emerging demands for food 

(Godde et al., 2017). However, the potential for intensifying management in semi-arid 

rangelands is limited given their dependence on seasonally variable rain that is associated with 

episodic droughts and, low and variable forage supply and quality. Extensive ruminant 

production systems are highly vulnerable to increasing climate variability and, ruminant meat 

production may decrease by 17 % by mid-century (Havlík et al., 2015). Range managers face 

the challenge of sustainably increasing meat production to meet the expected food demand 

whilst maintaining the rangeland’s capability to produce useful forage. Thus, understanding 

the dynamics of rangeland functioning in face of global environmental change would enhance 

our ability to predict the responses of range and animal production to anticipated climatic 

changes, for effective management planning.  

 Tropical rangelands have evolved from broad-scale, long term changes in climate and 

localised, short term disturbance events such as drought, grazing and fire (Hempson et al., 

2007; Mberego et al., 2013). These abiotic and biotic factors have interacted over time to create 

complex landscapes that portray a high degree of spatial and temporal variation in herbaceous 

community production (Scoones, 1995). Advances in rangeland ecology and management 

concepts have led to new monitoring approaches aimed at improving our understanding of the 

drivers of rangeland function at multiple scales (Stuth and Maraschin, 2000). On one hand, a 

new concept in landscape ecology theory depicts that spatial variability of local communities 

influences the temporal stability in aboveground biomass (AGB) production in spatially 

heterogenous landscapes (McGranahan et al., 2016). On the other hand, grazing management 

theories are indecisive about the viability of grazing strategies such as multi-paddock grazing 

systems and stocking rate (SR) (Teague et al., 2013). Both theories rely on experimental 

knowledge acquired at plot-scale at which there is low variability of herbaceous AGB 

production resulting from environmental variation. Recently, research emphasis has shifted to 

the overriding interactive influence of climate variation and SRs on herbage and animal 

production (Heitschmidt et al., 2005; Reeves et al., 2014). This emphasises the need for 

developing systematic monitoring approaches at appropriate spatial and temporal scales to 
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provide ranch managers with reliable and actionable information about range and cattle 

productivity.  

Current improvements in remote sensing and computer modelling provide opportunities 

for establishing proper systems’ framework for monitoring variation of rangeland productivity 

across spatial and temporal scales (Angerer, 2012; Ewert et al., 2011). Given its large area 

coverage and high temporal frequencies of data collection, remote sensing provides continuous 

observations required for assessing the response of herbaceous AGB production to rainfall 

variability and droughts (Chamaillé-Jammes and Fritz, 2009). At the same time, simulation 

models effectively use soil, plant and animal inputs to explicitly represent interactions among 

system components at paddock level and analyse the implications of stock management 

decisions (Fang et al., 2014). Thus, the integrated use of these tools is important in strategic 

management of broad-scale changes in herbage production and, provides better understanding 

of the localised effects of these changes and stock management to inform planning of tactical 

decisions. Despite these benefits, the combined use of remote sensing and simulation modelling 

in assessing range and animal productivity in southern Africa has been limited (Scanlon et al., 

2005), yet opportunities do exist.  

Instead, previous studies used remote sensing solely to assess herbaceous AGB 

production response to climate variation (Brown, 2008). Most of these assessments used low 

spatial resolution satellites (Brown, 2008) at regional (Chamaillé-Jammes and Fritz, 2009; 

Wessels et al., 2006) and continental scales (Winkler et al., 2017). However, low spatial 

resolution satellites do not provide spatially explicit representation of AGB production in 

savanna rangelands owing to high plant diversity among local vegetation communities (Assal 

et al., 2016). More so, the spatial coverage of many grazing lands in southern Africa is too 

small to allow application of low spatial resolution satellite products for effective decision-

making. Medium spatial resolution remote sensing products have the potential to provide 

detailed spatial representation of AGB production at multiple scales and at long timeframes 

sufficient for assessment of heterogeneity in herbaceous communities.  For example, Sentinel 

imagery has demonstrated the intra-seasonal spatial and temporal variability of herbaceous 

AGB in tropical southern Africa (Shoko et al., 2019). Whilst remote sensing is important in 

strategic planning for climate variation, it does not represent the interaction effects of climate 

with grazing strategies on animal performance, justifying the need for integrating systems 

modelling.  
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Systems modelling provides invaluable information about the long-term impacts of 

stock management practices on herbage and animal production under prevailing climate 

conditions. In the past two decades, empirical and mechanistic modelling gained huge attention 

globally in predicting herbage and animal production (Snow et al., 2014). However, in semi-

arid rangelands of southern Africa, simulation modelling has been limitedly applied to 

empirical models for plant growth (Oomen et al., 2016; Wiegand et al., 1998) and a few 

deterministic and stochastic models for herbage and animal production (Illius et al., 1998; 

Kazembe, 2010; Richardson et al., 2000). Empirical models give spurious results if they are 

applied to regions that lack the experimental data used to develop them. Dynamic models, 

commonly known as process-based biophysical models, are more realistic than empirical 

models as they are capable of simulating soil, plant and animal processes at a high level of 

detail and contain default parameters adjustable across regions (Johnson, 2011). But other than 

the inherent errors of model structure, their application has been limited due to errors associated 

with system input variables and data measured for deriving parameters (Andrade et al., 2016). 

In developing countries, climate data is rarely available at ranch level due to sparse distribution 

of national meteorological stations. Also, system parameters and state variables are unknown 

as they cannot be fully included in experiments.  

The increasing availability of environmental variables from remote sensing and 

geographic information systems (GIS) at high temporal- and spatial- resolution provide means 

for retrieving climate inputs (Ovando et al., 2018) and explanatory variables for WFMs. These 

ancillary data are useful in model calibration yet they have been rarely explored in southern 

Africa. If proper systems for rangeland monitoring using remote sensing and systems models 

are established at the appropriate spatial and temporal scales, our understanding of the effects 

of climate variation on herbage and cattle production can be improved. Such systems enable 

comparison of the potential of different grazing strategies for sustaining high rangeland 

productivity. When used to forecast future events, simulation modelling enables early 

deviations in forage production to be detected thereby minimising risk associated with climate 

variability. In this study, the landscape scale impacts of rainfall variability and drought 

disturbances on the spatial and temporal variation of herbaceous AGB were assessed using 

remote sensing. Then, a systems model was parametrised, evaluated, and applied to analyse 

the localised effects of grazing strategies on herbage and animal production at management 

unit level.  
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1.1 Objectives of the study 

To assess whole-ranch herbaceous aboveground biomass production, intake and animal growth 

in a C. mopane tree/shrub savanna, in order to compare the potential of grazing management 

strategies for maximising long-term rangeland and cattle productivity. 

The specific objectives of this study were to: 

• identify factors that determine the measurement accuracy of herbaceous aboveground 

biomass estimation (Chapter 3). 

• assess the response of herbaceous aboveground biomass to rainfall variability and 

drought using satellite-based estimates of herbaceous vegetation and rainfall (Chapter 

4). 

• parameterise and calibrate the SGS pasture model for estimation of herbaceous biomass 

production using data derived from independent experiments (Chapter 5). 

• test the performance of the SGS pasture model in simulating long term herbaceous 

biomass production across land types (Chapter 6). 

• apply a newly parameterised SGS whole model to analyse effects of grazing 

management practices on herbaceous biomass production, intake and weight gain in 

Brahman steers (Chapter 7). 
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CHAPTER 2 

Literature review 
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2.1 Introduction 

Rangelands are important to the ecology and economy of sub Saharan Africa as they occupy 

62 % of the land area, provide shelter and food to 38 % of Africa’s population and support 56 

% of livestock in the region (Liniger and Mekdaschi Studer, 2019). These savannas present 

unique management problems due to high climate variation and subsequent inconsistent 

availability of herbage to cattle, in space and over time (Stuth and Maraschin, 2000). The 

variations occur at large scale, on a long-term basis which make it difficult to observe or 

understand them. As a result, appropriate and accurate variables for monitoring rangeland 

production are rarely available to enable a timely decision making (Karl et al., 2017). Grazing 

experiments have provided important but abstractive information about the environmental 

variation of these systems (Briske et al. 2008). There is need to embrace a collection of 

information and tools in a systems approach to enhance our understanding of complexity in 

these systems and, to provide ranch managers with reliable and actionable information.  

 This chapter aims to provide a critical analysis of opportunities in using remoting 

sensing and systems modelling, either singly or combined in systematic rangeland monitoring. 

Firstly, an appraisal of the status and challenges of the beef industry in Zimbabwe is given. 

Then, an overview of the ecological considerations for managing semi-arid rangelands to 

maximise productivity and the factors that influence herbage and animal productivity is 

provided. In the third component of the review, the current status of in situ observations in 

rangeland monitoring is discussed and the need for integrating remote sensing and systems 

modelling in a systematic framework for rangeland monitoring is highlighted. The fourth and 

fifth section separately outlines the characteristics, procedures, current status and areas for 

improvement for remote sensing and systems modelling whilst the last section identifies 

opportunities for integrating remote sensing and systems modelling in monitoring herbage and 

animal production. 

 

2.2 Status of the beef industry in Zimbabwe  

Since the past three decades, the herd of beef and dual-purpose cattle in Zimbabwe has 

remained at approximately 5 million heads despite the huge shift in ownership from large white 

commercial to black commercial and small-scale farmers following the fast-track resettlement 

programme that occurred in the early 2000s (Mavedzenge et al., 2006). About 75 % of this 

herd is raised under extensive management in the low rainfall southern region of the country 

that comprise of Midlands, Masvingo and Matebeleland provinces which have comparative 
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advantages for commercial beef production. The commercial herd dropped from 1.5 million in 

1999 to fewer than 10 % of the national herd by 2006 (Scoones et al., 2010). In 2000, cattle 

density at province level varied from 7.3 to 33.9 heads km-2 in Matebeleland north and 

Mashonaland east, respectively (Figure 2.1). By 2013, the highest cattle densities of up to 18 

heads/km2 were recorded in Mashonaland East and Central and Masvingo provinces. The 

increase in cattle density in northern provinces was due to the shift of beef production to the 

highveld as the lowveld region was zoned in the foot and mouth zone. Though Mashonaland 

East province has retained the highest cattle density compared to other provinces in the past 20 

years, its cattle density has declined by half. Between 2000 and 2013, the highest increase in 

cattle density of 26 % occurred in Masvingo province, implying a reduction in grazing land 

due to land use changes.  

The beef industry contributes up to 10 % of agricultural gross domestic product and has 

thrived between economic viability and equity. Offtake has decreased from 25 % to 6 % due 

to shift in players from large scale commercial to new A2 entrants (small-scale commercial) 

after 2000 (Mavedzenge et al., 2006). Like other sectors of the economy, Zimbabwe’s beef 

sector faces severe challenges of high inflation and lack of foreign currency. Capacity 

utilisation of beef processing has continued to declined due to shortage of forage and water 

during winter due to increased drought occurrence and uncertainty and volatility in prices 

(LMAC, 2019). Prospects of returning to high value beef exports are very challenging due to 

the outbreak of foot and mouth disease which occurred in 2003 and is endemic in cattle 

populations across the country. Therefore, the deteriorating conditions of operations in the local 

beef industry prompts the need for re-examining the sector’s potential to enable its 

rehabilitation. 
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Figure 2. 1: Zimbabwe’s cattle population density in 2000 and 2013 

 

2.3 Ecological considerations for management of semi-arid rangelands 

Rangeland systems and associated problems of sustainable management are typically complex. 

Rangeland systems are composed of many subsystems and components operating together for 

the sole purpose of converting specific inputs e.g. climate and soil moisture and nutrients into 

outputs such as meat and milk (Rickert et al., 2000). Each component has its own unique 

characteristics and contributes to the structure and function of the whole rangeland system. 

Backward and forward interactions occur between different components in a chaotic manner 

leading to complex dynamics in these systems and, change in one component affect other 

components (Jones and Luyten, 1998). Soil water, plant growth and animal responses to 

variable climate, topography and herbivory depend on the complexity generated by these 

interactions (Scholes et al., 2003).  
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Depending on the problem, rangelands can be viewed as different levels of hierarchy 

of organisation which range from the cell to individual organism (plant or animal), the field or 

management unit and the farm or ranch ecosystem, the landscape and region up to the 

continental and global levels (Ewert et al., 2011). Responses at the rangeland ecosystem and 

higher levels are determined by socio-economic and other factors whilst responses at the field 

and lower levels are mainly determined by biophysical relationships (Ewert et al., 2011). The 

individual organism and the ecosystem levels have the major impacts on overall performance 

of semi-arid rangeland systems (Richardson et al., 2010) and are the focus of this study. The 

plant/animal interphase is one of the key subsystems in grazed rangelands which impact soils, 

nutrient cycling, plant community structure and composition (Gordon, 2000) (see Figure 2.2). 

 

Figure 2. 2: Plant and animal interrelationships in grazing systems (Gordon, 2000) 

 

Management of southern African rangelands is difficult as decisions must be adapted to large 

spatial and temporal variation of climate and persistent droughts which occur during ENZO 

events. Prediction of herbage production is problematic as production can fluctuate up to five-

fold (Barnes, 1979) and making timely informed decisions is also challenging due to 

unavailability or unreliability of climate and herbaceous vegetation condition information. The 

confounding effects of ecological factors and grazing are thus important as they reduce 
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availability and quality of forage and cattle productivity and, options for managing the range 

sustainably. The best way to maximise productivity in such systems is to adopt long-term 

carrying capacities during below average-rain seasons whilst increasing SRs to match available 

forage during above average seasons (Derner and Augustine, 2016; Oin et al., 2014; Shrum et 

al., 2018). The latter can be enabled by better monitoring, data forecasts and analytical capacity. 

Light SRs applied in the lowveld regions enable controlled selective grazing and a high plane 

of nutrition to be maintained by favouring palatable and productive perennial grasses 

(Clatworthy, 1998). More understanding about factors affecting herbage and animal production 

is required to enable sound decisions to be made by range managers. 

 

2.3.1 Factors affecting herbage and animal production in semi-arid rangelands 

Different factors affect herbage and animal production at individual organism and ranch 

ecosystem levels (Richardson et al., 2010). Herbage growth at individual plant level is a 

function of climate variables, i.e. rainfall, energy (radiation and temperature), atmospheric CO2 

and, plant-available soil water and nutrients (Jones et al., 2017a). Soil water and nutrient 

availability, particularly N and P are the primary determinants of seasonal herbage production 

and quality in Mopane savannas (Hempson et al., 2007). Soil water controls growth duration 

while soil nutrients and temperature influence growth rate. High irradiance, temperatures and 

low humidity in semi-arid regions create high daily evaporative demand. This causes soil 

moisture to deplete below the wilting point of grasses and discontinued growth for several 

weeks during growing season (Scholes and Walker, 1993) which lead to reduced availability 

of herbage to cattle. 

At ecosystem level, the influence of the climate factors on total herbaceous AGB 

production is modified by species composition, competition with other vegetation components 

for soil water and nutrients and, impacts of fire and grazing (Richardson et al., 2010). Dry 

conditions and high grazing pressure lead to discontinued herbage growth, reduced leaf area 

and vigour of grasses to regrow after defoliation. During a seven-month dry season, energy and 

protein supply of herbage fall below the critical threshold level for efficient digestion, 

eventually leading to reduced animal growth and production. These variations often occur at 

huge spatial scales difficult to observe, measure or comprehend. Given the complexity of 

interactions of biophysical and management factors affecting forage and animal production, 

there is need for systematic collection and analysis of rangeland variables to enable early 

detection of forage shortages and decision making. 
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2.4 Monitoring herbage and animal production for sustainable rangeland management  

To understand herbaceous vegetation dynamics and the influence of grazing, proper monitoring 

systems should be established at the appropriate scale and time frames (Stuth and Maraschin, 

2000). Management strategies should also be designed based on the understanding of growth 

patterns of herbaceous vegetation relative to weather events and, drivers of intake and growth 

of animals. Rangeland productivity variables include below and aboveground biomass, herbage 

quality (CP content and digestibility), animal intake and live weight gain. These should be 

observed within and between seasons for tactical and strategic planning of grazing management 

(Stuth and Maraschin, 2000). The main challenge is the unavailability of accurate appropriate 

variables for monitoring rangeland production on a timely basis for effective decision making 

(Karl et al., 2017). Field experiments, remote sensing and systems modelling have provided 

productivity variables but at different timescales and levels of accuracy. 

Grazing experiments provide the basis for many grazing management theories (Briske 

et al., 2008; Teague et al., 2013, 2008). They improve our understanding about the short-term 

effects of management strategies. Also, field trials have been useful in strategic planning for 

drought and high rainfall variability in developing regions (O´Connor et al., 2001). Despite 

these benefits, reductionist studies have been criticised for their incapability to produce 

consistent results for effects of grazing systems and SRs on herbage and animal production 

across locations. Field data do not enable spatially or temporally explicit analysis of droughts 

due to inconsistent availability and scarcity of observation stations (Wardlow et al., 2017). 

Many field data are available at long lags between when the data are collected and when 

management decisions are made because of the huge resources required (Antle et al., 2017). 

To provide valuable information to ranch managers, in situ observations must be designed with 

potential for application in a systems framework to study and make predictions about complex 

processes in rangelands (Teague et al., 2008). 

Goals for sustainable management can be achieved by monitoring and assessing 

components of the rangeland system using a suite of techniques at different spatial and 

temporal scales (Antle et al., 2017; Teague et al., 2013). Current improvements in remote 

sensing and computer modelling provide opportunities for establishing proper frameworks for 

systematic monitoring of rangeland productivity across spatial and temporal scales (Ewert et 

al., 2011; Tedeschi et al., 2017). Given the huge spatial coverage and cheap availability of some 

satellite products for research purposes, remote sensing has provided information valuable in 

the strategic planning for rainfall variability and droughts (Angerer, 2012). On the other hand, 
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systems modelling  allows comparison of grazing management practises at whole-farm scale 

and how these practises and biophysical processes interact and evolve over time (Ma et al., 

2019). When properly used, these tools enable the development of near-real time monitoring 

systems in developing regions where resources are scarce. This bottom-up approach requires 

researchers to work and communicate closely with ranch managers to understand their goals 

and plans for adaptive management (Tedeschi et al., 2017). The background characteristics, 

procedures, current challenges and opportunities for improving remote sensing and systems 

modelling in rangeland monitoring are discussed below. Prospects for combining these tools 

to analyse the impacts of both large- and small-scale changes on rangeland and cattle 

productivity are also discussed. 

 

2.5 Rangeland monitoring using remote sensing 

Remote sensing is defined by ESRI (2019) as ‘collecting and interpreting information about 

the environment and the earth’s surface from a distance, primarily by sensing radiation that is 

naturally emitted or reflected by the earth's surface or from the atmosphere, or by sensing 

signals transmitted from a device and reflected back to it’. The definition encompasses different 

sources of energy and mechanisms through which radiation or signals are measured. Passive 

remote sensing measures electromagnetic radiation from the sun reflected or transmitted across 

the electromagnetic spectrum (EMS), while in active remote sensing, a sensor measures a pulse 

of synthetic (non-solar) energy that is sent from a device and returned to it (Panda et al., 2016). 

In both cases, the sensors can be mounted on aircraft or satellite. Thus, the major type of energy 

used in remote sensing is light or radiant flux in the form of electromagnetic energy, which 

includes visible light, infrared, radio waves, heat, ultraviolet- and x-rays. 

 The image produced by each sensor portray different characteristics related to the 

sensor’s spatial, spectral, radiometric and temporal resolution. Spectral information forms the 

basis for mapping and modelling the biophysical properties of vegetation. For remote sensing 

to effectively estimate herbaceous AGB, LAI or cover, spectral information should 

differentiate vegetation from soil features (Todd et al., 1998), and the vegetation and soils 

should have different reflectance patterns. The typical spectral reflectance curve of green 

vegetation shows that leaf pigments strongly absorb the visible portion of the EMS (Figure 

2.3). Green vegetation absorbs EMR heavily in the red portion at about 0.68 µm but strongly 

reflects the EMR in the near infra-red portion infrared between 0.76 and 0.90 µm. Water and 

protein content and other variables affect the reflectance from the near-IR to the middle-IR 
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portion of the EMS (Liang, 2004). Most of the characteristic features of green vegetation are 

lost during senescence of leaves due to loss of pigments, cell structure and moisture content. 

Further detail about grass species features that influence remote sensing measurements are 

discussed by Shoko et al. (2016). 

 

 

Figure 2. 3: Typical spectral response characteristics of green vegetation (Liang, 2004). 

 

In addition to the classification of sensors using energy source and data collection mode 

described above, earth observing satellite systems are further classified into optical, radar, and 

microwave based on their operational principles within the EMS (Panda et al., 2016). Optical 

remote sensing is the widely used system which operate in the visible (0.4-0.7 µm) and infrared 

(0.7-1000 µm) portions of the EMS. Microwave sensors measure EMR in the microwave (0.3 

mm -1 m) region of the EMS and have been widely applied to provide reliable estimates of soil 

moisture (Wang and Qu, 2009). Because radar and microwave satellite information are rarely 

used for remote sensing of herbaceous vegetation, optical remote sensors are the focus of this 

study and are discussed further. 
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2.5.1 Characteristics of optical remote sensing satellites 

Optical remote sensing systems are classified into panchromatic, multispectral, and 

hyperspectral imaging systems depending on the number of spectral bands used in processing 

the image (Panda et al., 2016) (Table 2.1). The panchromatic (i.e., grayscale) imaging system 

uses a sensor with a single detector that is sensitive to radiation within a broad wavelength e.g. 

the broad bandwidth (0.45-0.9 µm) in IKONOS PAN images (Panda et al., 2016). Multispectral 

sensors such as Landsat and QuickBird have few broad spectral bands like B, G, R and NIR 

which combines tens to hundreds of nanometres into one band but leaving gaps between 

different bands. Contrary, hyperspectral sensors such as Moderate Resolution Imaging 

Spectrometer (MODIS) and Hyperion comprise of hundreds of spectral bands of narrow width 

(e.g. 0.1 µm) that allows a continuous spectrum to be generated for each pixel. Thus, 

hyperspectral remote sensing holds more potential in accurately mapping different vegetation 

features compared to multispectral remote sensing.  

While hyperspectral remote sensing applications to estimate herbage production and 

quality have been made in southern African rangelands (Ramoelo et al., 2012), it is still 

uncommon to researchers.  Hyperspectral remote sensing is technically challenging due to high 

computational demands and, its application is limited to small geographical coverage due to 

high image acquisition costs (Lu et al., 2019). In addition, the need for advanced planning prior 

to data acquisition makes their application a challenge in resource-constrained areas. Therefore, 

multispectral remote sensing remains as the widely used tool for operational monitoring and 

assessment of rangeland productivity because of their greater availability. The choice of 

multispectral remote sensing product to use depends on the monitoring objectives. There is a 

clear trade-off between spatial and temporal resolution (Jensen, 2014) with low spatial 

resolution (1 km) satellites products such as NOAA having high temporal revisit frequency 

(daily) often used for vegetation assessments at regional level.
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Table 2. 1: Characteristics of optical remote sensing satellites 

 

 

 

Sensor 

type 

Satellite sensor Spectral band information Spatial resolution (m) Revisit 

period (days) 

P
an

ch
ro

m
at

ic
 Landsat 7 Enhanced TM (ETM+) 0.52 - 0.9 μm 15 16 

SPOT 4 HRV 0.51 - 0.73 μm 10 pointable 

Space Imaging IKONOS 0.45 - 0.9 μm 1  

Digital Globe QuickBird 0.45 - 0.9 μm 0.61  

M
u
lt

is
p
ec

tr
al

 

  

NOAA-9 AVHRR LAC R, NIR, 3TIR 1100 14.5/day 

NOAA- K, L, M R, NIR, 2SWIR, 2TIR 1100 14.5/day 

Landsat Multispectral Scanner (MSS) G, R, 2NIR 79 16-18 

Landsat 4 and 5 Thematic Mappers (TM) B, G, R NIR,2SWIR, TIR 30 and 120 16 

Landsat 7 Enhanced TM plus (ETM+)  B, G, R NIR,2SWIR, TIR 30 and 60 16 

Space Imaging IKONOS G, R NIR, SWIR 4 pointable 

SPOT 4 HRV G, R, NIR 20 pointable 

Digital Globe QuickBird G, R NIR, SWIR 2.4 pointable 

H
y
p
er

sp
ec

tr
al

 

ASTER - Advanced Spaceborne Thermal Emission 

and Reflection Radiometer 

0.52 - 0.86 μm (3 bands) 15 5 

1.6 - 2.43 μm (6 bands) 30 16 

8.12 - 11.6 μm (5 bands) 90 16 

MODIS - Moderate Resolution Imaging Spectrometer 0.405 - 14.385 μm (36 bands) 250, 500, 1000 1 - 2 

MERIS/Envisat VIS - NIR (18 selectable bands) 230 x 300 3 

Hyperion/EO-1 VIS - TIR (36 bands) 250-1000 16 
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2.5.2 Remote sensing process 

The remote sensing process are systematic procedures for collecting and analysing data used 

in both scientific and technological applications for generating new knowledge (Jensen, 2014). 

The procedures comprise of four phases namely; the statement of the problem, data collection, 

conversion of data to information and information representation (Figure 2.4). Firstly, the 

hypothesis to be tested is defined using an inductive or deductive logic and an appropriate 

processing model. Then, a list of variables or observations to be used during the investigation 

are identified. Information about the identified variables is collected using in situ observations 

and/or remote sensing (Jensen, 2014). Field and laboratory data of vegetation are often 

collected in combination with global positioning system and used for calibrating the remote 

sensing data and to conduct an independent accuracy assessment of results. Measurable 

biophysical variables of vegetation include pigments (e.g., chlorophyll a and b), canopy 

structure and height, biomass, LAI and absorbed photosynthetically active radiation (Panda et 

al., 2016).  Ancillary data such as soil maps, geology maps, digital elevation models and 

political boundary files are also valuable in remote sensing and are collected using GIS tools. 

Remote sensing data are collected using passive and active systems as described above. 

  To convert remote sensing data into information, images are processed in several steps 

and the results can be used to test hypotheses. Given the error introduced by the sensor system 

and the atmospheric scattering of light, images are usually pre-processed through radiometric 

and geometric correction to remove these deleterious effects (Panda et al., 2016). Depending 

on the problem, the image can be enhanced to extract spectral data, classify land cover, and 

detect land cover changes among other applications. Extracted spectral data are linearly or non-

linearly transformed to information that is highly correlated with actual vegetation features 

through various vegetation indices (VIs) and principal component analysis. Vegetation indices 

exploit the difference between strong absorption of light by leaf pigments in the red band from 

the high reflectance of leaf mesophyll in NIR band to discriminate vegetation components and 

soil and water (Kumar et al., 2016). The VIs commonly used to predict herbaceous AGB are 

provided in Table 3.1. Finally, the information processed from images can be represented as 

enhanced image, image map, statistic, or graph to communicate the findings effectively. 
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Figure 2. 4: The remote sensing process for extracting information from remotely sensed data (based on Jensen (2014)) 
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2.5.3 Use of optical remote sensing in monitoring herbage production 

Developments in remote sensing since early 1980s have provided continuous observations 

required for analysing climate- and vegetation-based indicators for monitoring climate 

variation, particularly drought impacts on rangelands (West et al., 2019). Remote sensing 

provides spatially and temporally consistent and timely information for monitoring drought 

due to its large area coverage and high temporal frequencies of data collection. Satellite-based 

VIs have been used as proxies for vegetative biomass to assess the impacts of climate variation 

at regional  (Wang et al., 2018) and continental levels (Winkler et al., 2017). Vegetation 

anomalies are assessed using optical, thermal and microwave remote sensing but the use of the 

latter for operational range management is limited to developed countries due to high costs. 

Instead, drought impacts have been widely assessed using rainfall anomaly indices in 

conjunction with optical remote sensing VIs such as Normalised Difference Vegetation Index 

(NDVI) and Vegetation Condition Index (Brown, 2008; Ji and Peters, 2003; Richard and 

Poccard, 1998). Most of assessments were regional studies and used course resolution satellite 

such as NOAA AVHRR, including southern Africa (Chamaillé-Jammes and Fritz, 2009; 

Martiny et al., 2006; Wessels et al., 2006). However, the spatial extent of many grazing lands 

in southern Africa is too small to allow application of low spatial resolution satellite products 

for sound decision making. In addition, course resolution satellites do not provide spatially 

explicit herbaceous biomass data in savanna rangelands, due to high spatial variability of 

vegetation components at local level (Assal et al., 2016). In southern African savannas, woody 

cover is usually above 20 % and there is limited herbaceous AGB production such that the 

woody layer affect VI signal in mixed pixels (Richard et al., 2008). These shortcomings 

highlight the need to incorporate medium spatial resolution satellite products in vegetation 

assessments to gain a full understanding of drought impacts at local level. 

 

2.5.4 Future needs for improving optical remote sensing in rangeland monitoring 

When retrieving biophysical variables of herbaceous vegetation from statistical relationships 

or operational algorithms, there are uncertainties associated with input and modelling data. 

These errors are commonly assessed by comparing remotely sensed biophysical variables with 

field-measured data. Atmospheric contaminants such as water vapour present the biggest 

challenge to the utility of multispectral MVIs in herbaceous AGB estimation (Ali et al, 2016). 

Such contamination could be more pronounced in tropical regions where peak biomass 

production is often reached during the wet season that is usually associated with overcast 
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conditions. The saturation effect of the commonly used ratio-based MVIs such as simple ratio 

(SR) and NDVI in high density vegetation is another typical constrain to their use (Mutanga 

and Skidmore, 2004). Soil background effects are also very important to herbaceous AGB 

estimation in sparsely covered and heterogeneous vegetation communities in arid and semi-

arid rangelands (Jackson and Huete, 1991). Field spectral measurements and hyper spectral 

based approaches that overcome some of these problems are expensive and computationally 

intensive and thus have been slowly adopted in southern Africa. Broad band MVIs based on 

medium resolution products thus remain important for monitoring herbaceous AGB at grazing 

management unit level in savanna rangelands. The need to evaluate their performance under 

prevailing landscape features using improved and affordable satellite products remains a 

priority.  

 For modelling data, strong relationships between observed and remotely sensed 

biophysical variables the variables are derived from a sensor pixel size that is lower than the 

extent of the site where the variables are observed (Schellberg et al., 2008). Medium spatial 

resolution satellite products provide accurate information about condition vegetation 

components at a timescale long enough for assessing climate variability impacts (Gómez et al., 

2016). Due to availability of its satellites since early 1970s, Landsat imagery has explicitly 

demonstrated the long-term spatial and temporal variability of rainfall in semi-arid regions 

(Birtwistle et al., 2016). Although the medium resolution products are very useful for drought 

monitoring, they have been rarely applied to southern African rangelands (Shoko et al., 2019). 

Only a few studies assessed drought impacts using the convergence of evidence approach 

(Graw et al., 2017), yet droughts are the major determinant of rangeland sustainability. As a 

result, the long-term impacts of drought on herbaceous AGB production are still poorly 

understood. There is need therefore to explore medium spatial resolution satellites in assessing 

climate variability impacts in southern African rangelands. 

Development of accurate herbaceous AGB models using remotely sensed variables 

from low spatial resolution products is usually challenging. This can be dealt with by using co-

images from two different satellites products on the same target area to reduce the limitations 

of individual satellite sensors (Schellberg and Verbruggen, 2014). For example, Baumann et 

al. (2017) combined high revisit time MODIS satellites with multi-year, low revisit time 

Landsat imagery to represent the dynamic patterns of vegetation growth. Despite the 

importance of remote sensing models in strategic planning for climate variation, they have 

weak predictive power when applied to other regions (Foody, 2003). Another challenge is that, 



 

21 

 

remote sensing does not represent the interaction effects of climate with SRs on animal intake 

and weight changes. These limitations highlight the need for systems modelling which provide 

invaluable information that enhances our understanding of the long-term secondary impacts of 

grazing management practices on herbage and animal production. This warrants the need to 

discuss the potential roles, procedure and current and future status of systems modelling to 

assist in routine assessment of rangeland and animal productivity. 

 

2.6 Rangeland monitoring using systems modelling  

Systems analysis a body of theory and techniques studying, describing and making predictions 

about complex systems which is often characterised by use of advanced statistical and 

mathematical approaches and by use of computers (Grant et al., 1997). Systems analysis is thus 

viewed as both a philosophical approach and a collection of techniques or tools developed in a 

holistic context to explicitly address problems involving complex systems (Jones and Luyten, 

1998). The systems approach integrates information obtained from qualitative and quantitative 

(statistical and mathematical) methods in a way that facilitates formal description of the 

structure and dynamics of complex systems (Grant et al., 1997). A systems model is ‘a 

mathematical representation of the system, including all interrelationships among components 

and effects of the environment on these components’ (Wallach et al., 2014). Such a model 

promotes good research design- and sound resource management decision making (Grant et 

al., 1997). There are several types of models that have been developed for agroecological 

systems and these are discussed below. 

 

2.6.1 Classification and importance of rangeland systems modelling. 

The scheme widely used to classify simulation models for agroecological systems recognises 

models as being deterministic or stochastic; dynamic or static; mechanistic or empirical   

(France and Kebreab, 2008; Thornley and Johnson, 2000). A deterministic model does not 

contain random variables and implies that all prediction of an equation or set of equations under 

specific conditions are the same. Stochastic models contain one or more random variables and 

predictions have a probability distribution (Thornley and Johnson, 2000). These models 

inherently seek to represent the variance that is not fully understood but can be technically 

difficult to test (Grant et al., 1997). A static model describes a relation or a set of relationships 

that do not change with time, whilst dynamic model describes the time-varying relationship 

based on differential equations and do not use time as an independent variable. Empirical 
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models use existing data to describe the relationship of observations between one or two 

variables using mathematical or statistical equations, without any scientific content, and 

unconstrained by any scientific principles (Thornley, 2001).  Mechanistic models have a highly 

detailed structure that enable them to represent biophysical process and interactions of 

components in the soil-plant-animal continuum (France and Kebreab, 2008). Mechanistic 

models are thus often used as research tools to provide insight and understanding about the 

biophysical environment and are the focus of this study. A full discussion about the importance 

of building and applying models for simulating herbage and animal production is provided by 

Thornley and Johnson (2000), and in summary, models: 

• Provide a quantitative description and mechanistic understanding of a biological 

system. 

• Reduce the amount of ad hoc experiments as models can be designed to answer focused 

questions and explore alternative management practices. 

• By bringing together knowledge about system components, models provide means for 

an integrated view of the whole-system behaviour. 

• The predictive power of a valid model can be used to forecast future events and answer 

‘how-, why- and what- if’ questions. 

 

2.6.2 Systems modelling process  

The generally accepted procedure of developing and applying models for agroecosystems 

involves four major theoretical phases, namely: conceptual model formulation; quantitative-

model specification; model evaluation and model use (Grant et al., 1997). In practice, the four 

phases are highly interconnected and model development process may be repeated through 

phases several times. This iterative process has been conceptualised by Sargent (2010) to 

include the important steps of verifying and validating the system model (Figure 2.5). Systems 

modelling starts with development of a conceptual or qualitative model of the system of 

interest. This is achieved by articulating the problem and developing a dynamic hypothesis, 

also known as conceptual model, through an analysis and modelling phase. Agricultural 

systems models are developed for the purpose of scientific understanding and decision/policy 

support (Jones et al., 2017b). Explanatory or research models are developed for the purpose of 

increasing the scientific understanding of rangeland systems whilst policy models are designed 

to provide information for supporting decision making and policies. Since research models 
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form the basis for decision support systems (Rickert et al., 2000), the former are chosen as the 

focus of this study.  

The problem entity, that is, the proposed or actual system, situation, policy or 

phenomena of the system to be modelled (Sargent, 2010), is defined by determining 

boundaries, variables, time horizons, and data sources. This phase places emphasis on 

stakeholder engagement through interviews or surveys and collection of reference mode data 

to help modellers identify the current theories of the problem entity (Turner et al., 2016). These 

consultations enable modellers to decide the real-system components and relationships to 

include in the problem entity (Feola et al., 2012). Relationships amongst state variables, 

parameters and environmental (exogenous, forcing or driving) variables and processes of the 

conceptual model are then represented through causal loop diagrams and stock-and-flow maps 

such as Figure 2.2  

 

 

Figure 2. 5: The systems modelling process (Sargent, 2010). 

 

Secondly, the relationships between components of the conceptual model are translated into a 

series of mathematical equations and their parameter values that collectively form the 

quantitative model in the computer programming and implementation phase. Then, model 

undergoes a series of tests to investigate if assumed parameter values are realistic and to check 

if model responses correspond to anticipated feedbacks to check model consistency (Turner et 
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al., 2016). A mechanistic model is always incomplete, and therefore usually does some things 

well and other things badly or not at all (Thornley, 2001). Appropriate, accurate and enough 

data are required for building and testing the conceptual model and for applying the model 

(Sargent, 2010), but this data is not available resource-constrained environments. Conceptual 

model validation involves determining whether theories and assumptions underlying the 

conceptual model are correct or not. Computerised model verification is a test of the internal 

logic of a model (Jorgensen and Fath, 2011). Operational validation assures that the model’s 

output behaviour has sufficient accuracy of the model’s intended purpose over the area of the 

model’s intended applicability (Sargent, 2010). Once satisfactorily evaluated, the model can 

be applied to answer questions about the problem entity by conducting simulation experiments 

in the experimentation phase. 

 

2.6.3 Status of systems modelling of herbage and animal production  

Development of simulation models started as a parallel process for pasture and animal 

production systems. Influential developments in pasture growth modelling began in the early 

1980s when the Hurley pasture model (Johnson and Thornley, 1983) and SAVANNA model 

(Coughenour et al., 1984) were developed. Since then, several models have been developed to 

represent plant growth behaviour and competition among herbaceous plants using approaches 

based on individual species, plant functional type and plant community (Antle et al., 2017; 

Wallach et al., 2014). Snow et al. (2014) provided a critical review of the capabilities of 

different models in representing the biological diversity of plant species and competition 

among plant functional types and mortality, pasture-animal interactions, nutrient transfers and 

economic returns. 

Models for grazing ruminant systems have been developed for three hierarchical levels 

of organisation namely, individual animal, herd and whole-farm system. Developed since the 

1940s, animal performance models are broadly based on nutrient partition and metabolic 

processes (Tedeschi et al., 2005). They are used to predict meat and milk production, assess 

the impacts of alternative feeding practices on yields and of changes in animal breeds or types. 

Further detail about recent developments in animal performance modelling has been  given by 

McNamara et al. (2016) and Tedeschi (2019). Herd dynamics models represent the 

development of a herd by predicting numbers and body weights of cohorts of different ages 

and sex, as influenced by herd management and meat marketing (Jones et al., 2017a). The rates 

of reproduction, mortality, selling and replacement are specified for each cohort and, offspring 
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from female cohorts may be sold or become part of the next cohort. Herd models have been 

used to estimate herbaceous biomass removed from pasture systems, optimal SRs and sales 

policies and herd size (Illius et al., 1998) and,  to analyse the effects of reproductive 

technologies (Jones et al., 2017a). 

Integrated livestock systems models, commonly known as whole farm models (WFMs) 

link simulation models of pasture with models for individual animal performance and/or herd 

dynamics. They integrate different levels of biological organisation (soil, plant and animal) to 

understand the behaviour of grazing systems and compare stock management practices that 

maximise productivity (per area or per animal) and minimise deterioration of the natural 

resource to increase grazing efficiency and profitability (Tedeschi, 2019). They are a recent 

development with shorter history compared to pasture and animal systems models  because 

their development is complicated as modelling the animal on pasture involves modelling the 

pasture as well (Donnelly et al., 1997; Herrero et al., 1999).  

Some critical reviews of WFMs for grazing lands have been conducted (Bryant and 

Snow, 2008; Ma et al., 2019; Snow et al., 2014). WFMs have been used extensively to increase 

our understanding of the impacts of grazing management practices on soil water and nutrient 

availability, forage production, animal production, plant-animal and animal-animal 

interactions, animal health and environment. This review is focused on identifying knowledge 

gaps in each model’s ability to represent forage and animal production and their response to 

climate variability and management strategies. The key features of six models commonly used 

for predicting these ecosystem services namely, Pasture Simulation Model: PaSIM (Graux et 

al., 2011; Riedo et al., 1998; Vuichard et al., 2007), Great Plains Framework for Agricultural 

Resource Management: GPFARM (Andales et al., 2006; Qi et al., 2012), Integrated Farming 

Systems Model:  IFSM (Rotz et al., 2005), GrazPlan (Donnelly et al., 1997), Sustainable 

Grazing Systems: SGS model (Johnson et al., 2008) and Richardson Savannah model, 

VELDSTOCK (Kazembe, 2010; Richardson et al., 2000, 1991) are provided in Table 2.2. A 

common feature of all these models is their ability to include the animal component. These 

models are designed for either research purposes e.g. the SGS and VELDSTOCK or as decision 

support systems (DSSs) (GPFARM, PaSim, IFSM and GRAZPLAN) for rangeland 

management. Both types of models have many built-in management options that enable them 

to simulate detailed management actions. 

Relative to other models described in Table 2.2, the SGS model portrays the highest 

level of detail in its representation of nutrient pools and flows in the soil-plant-animal 
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continuum. The model mechanistically simulates competition among plant species and 

functional types (White et al., 2008) and independent above- and below- ground competition 

forage mixtures (Snow et al., 2014). The models GRAZPLAN, SGS and VELDSTOCK 

simulate growth in sheep and goats. Except for PaSim, the other models can simulate mixtures 

of individual species and functional types. IFSM is a semi mechanistic model that is most 

applicable for time series analysis because it does not represent within year variation well. 

Also, the model does not simulate independent below-ground competition. However, IFSM 

can integrate the assessment of economics with environment (greenhouse gas emissions and 

phosphorus pollution) to determine the sustainability impacts of grazing management 

practices.  
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Table 2. 2: Key characteristics of selected whole-farm simulation models 

Model name 

(Origin) 

Soil moisture dynamics Soil nutrient cycling Plant growth forms 

(SPP/PFT) 

Animal growth 

PaSIM  

(Europe) 

Detailed sub model for soil 

moisture dynamics 

simulate C and N flows in pasture 

across grazing schemes and 

variable water stress conditions 

Species population-

based growth 

simulations 

Dairy and beef cattle 

GPFARM 

(North America) 

Detailed sub model for soil 

moisture dynamics 

Highly detailed C flow dynamics 

P cycling excluded 

Warm-season grasses, 

cool-season grasses, 

legumes, shrubs, and 

forbs 

Beef cattle  

IFSM  

(North America) 

Empirical sub model for soil 

moisture dynamics 

Simple C-balance calculation,  

N and P cycling included 

Ecotypes (grass and 

forage legumes) 

Dairy and beef cattle 

GRAZPLAN 

(Australia) 

Simple sub model for soil 

moisture dynamics 

Pasture model capable of 

simulating Simulate N and P 

dynamics but must be coupled to 

APSIM* 

Individual species  Sheep, beef and dairy cattle. 

sub-model for energy and 

protein nutrition drawn from 

Australian feeding standards 

The SGS model 

(Australia) 

Extreme specific technical 

description of soil physics and 

hydrological dynamics 

Highly detailed C flow dynamics 

P cycling excluded 

Ecotypes (grass and 

forage legumes) 

Dynamic model for dairy, beef 

and sheep. Adjustable default 

parameters for species and 

breed. 

Richardson 

Savannah model, 

VELDSTOCK 

(Southern Africa) 

Simulate soil water dynamics in 

response to rainfall and its 

influence on plant growth at 

various spatial-temporal scales.  

N & P, C sequestration 

low level of detail for pools and 

flows of soil organic carbon 

 

Woody plants and 

grasses. 

 

Beef cattle and goats 

model. 

*APSIM, Agricultural Production Systems Simulator.
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It is difficult to compare performance models across locations due to differences in interactions 

of the biophysical environment and approaches and underlying model assumptions (Ma et al., 

2019). The major discrepancy in development and application of whole-farm modelling exists 

between developed and developing regions. Simulation modelling has been limitedly applied 

in southern Africa, particularly in Zimbabwe. Examples of simulation models applied include 

the empirical and semi-mechanistic models, VELDSTOCK (Richardson et al., 2000), the 

model of Illius et al. (1998) and Livestock simulator (LIVSIM) (Masikati et al., 2015). These 

models simulate deterministic and stochastic elements of plant and animal responses to 

environment using multiple regression equations that have been developed from grazing trials. 

Empirical simulation models, however, give spurious results if they are applied outside the 

regions where the experimental data for equations were derived. The models are thus limited 

in their capacity to analyse productivity and sustainability impacts of grazing management 

practices in rangeland systems. To develop near-real time systems for monitoring grazing 

management practices that are close to real-world conditions, the integrated approach needs to 

embrace use of deterministic dynamic simulation models. 

Use of complex, dynamic, mechanistic WFMs models known as process-based models in 

agricultural systems simulation has gained much attention since the past two decades (Thornley 

and Johnson, 2000). These models mechanistically simulate soil, plant, and animal processes 

in multispecies herbaceous swards. The WFMs are developed to represent stocks and flows of 

material or energy using differential equations that link at least two levels of the system from 

cell to organ level (France and Kebreab, 2008). Balance among complexity, realism and 

versatility obtained during model development allows WFMs to be readily applied to regions 

where there is limited information about specific pasture species and animal breeds (Johnson, 

2011). The models are often used as research models because of their stronger theoretical base 

compared to empirical models. Mechanistic models are the focus of this study since the study 

aims to provide in-depth understanding of the complex interactions affecting herbage and 

animal production in a savanna rangeland. The overall needs for model development and 

improvement for mechanistic models is discussed further below. 

 

2.6.4 Areas for improving system models’ predictive capacity for rangeland production  

All grazing land models are expected to simulate seasonal dynamics of forage production and 

quality and subsequent animal weight changes in response to erratic and unevenly distributed 

rainfall. However, the structure of many models does not adequately simulate the high spatial 
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and temporal variation of seasonal rainfall and the biophysical environment and subsequent 

seasonal dynamics in forage production. In prairie vegetation, variability of forage production 

simulated by the GPFARM model was less than observed (Andales et al., 2006). At paddock-

scale, variation in forage production is increased by the high diversity in herbaceous species 

that evolve from grazing and competition for soil water and nutrients (Venter et al., 2003). This 

random variation leads to huge errors when predicting herbage production. Cullen et al. (2008) 

and Doran-Browne et al. (2014) observed average performance of SGS model in predicting the 

growth of C4 perennial and annual grasses native to (sub)tropical regions of Australia. The 

APEX model underestimated growth of individual herbaceous species (Zilverberg et al., 2017). 

Oreskes et al. (1994) noted that it is impossible to obtain high agreements between measured 

and simulated variables in complex natural systems. 

Depending on duration and severity, extreme climate events such as high temperature 

and drought reduce the pool of rangeland resources and may limit available management 

options.  Herbaceous vegetation response to extreme events is not well represented in many 

farm system models (Kipling et al., 2019). In prairie, GPFARM model could not simulate the 

rapid recovery of vegetation following severe drought (Andales et al., 2006) whilst forage 

growth modelled by APEX model did not respond well to late season rainfall (Zilverberg et 

al., 2017). The SGS model could not adequately represent the changes in nutrient cycling, 

pasture species composition, reduced plant vigour as well as simulating the option for destock 

during severe droughts and subsequent recovery (Doran-Browne et al., 2014). As a result, the 

WFMs provide context-specific benefits in the planning of strategic adaptive management 

options. 

Forage quality is the nutrient, mainly N or energy content which culminates from plant 

N uptake and assimilation. Plant N uptake is affected by soil clay content, soil C mineralization 

and competition species (Ma et al., 2019) and transfers of dung and urine by the animal in the 

paddocks (Eckard et al., 2014). However, most models have limited capacity for predicting 

dynamics and uptake of soil N and P and subsequent forage quality. Also, many grazing lands 

models do not explicitly simulate the supply of soil N from soil organic matter (Robertson et 

al., 2015). Despite there being many inadequacies in the models’ capacity to simulate forage 

quality, N and P are limiting in many semi-arid rangelands of southern Africa. Therefore, future 

efforts should be focused on improving WFMs’ capacity to simulate the dynamics of the major 

limiting nutrients. 



 

30 

 

Whilst it is important to integrate the livestock component into WFMs, there are several 

limitations in animal performance models’ ability to represent the dynamics of animal 

metabolism. There is need to improve the capacity of animal performance models to predict 

voluntary feed intake and ruminal fermentation processes at high levels of detail (Bryant and 

Snow, 2008).  The  SGS model faced difficulties in representing the live weight changes that 

occur when cattle diet was changed from native forage to supplements in the dry- season 

(Doran-Browne et al., 2014). This could be due to lack of model responses to microorganisms 

or palatability. In addition, nutrition and metabolism models do not accurately predict body 

composition, particularly for fat and protein due to lack of detailed and accurate experimental 

data (McNamara et al., 2016). Fat and protein deposition are influential variables for predicting 

nutrients requirements for growth in animals and, they vary from genotype to another 

(Tedeschi, 2019). Simulation models for animal growth have been limitedly applied to a few 

genotypes in North American and Australian rangelands yet there is a wide diversity of 

livestock breeds in other semi-arid regions.  

Overall, there is need to reduce uncertainty of model input parameters, such as climate 

and soil properties by improving experiments and self-training of systems model using big data 

(Getz et al., 2018). Parameters and state variables are also unknown as they cannot be fully 

included in experiments due to their high variability in space. The increasing availability of 

environmental variables from remote sensing and GIS at high temporal- and spatial- resolution 

provide means for retrieving climate inputs (Ovando et al., 2018) and explanatory variables for 

WFMs (Schellberg et al., 2008). Therefore, it is evident that the future for extending WFMs to 

data-constrained environment depends on availability of ancillary data from remote sensing 

and warrants further attention. 

 

2.7 Integrating remote sensing and systems modelling in rangeland monitoring  

The integrated use of remote sensing and systems modelling for estimation of plant production 

started in the mid-1980s and predominantly applied to crop models (Wiegand et al., 1986). 

Combined use of these tools is aimed at maximising spatial explicit in remotely sensed 

landscape attributes and explicit time-dependency of outputs from systems models in order to 

understand the complex interactions in the soil-plant-animal system. Given the large area-

coverage of satellites, remotely sensed state variables of the soil-plant system provide inputs 

for calibrating biophysical models and independent data for validating model outputs where 

field observations are not available (Delrcolle et al., 1992). Systems simulation models 



 

31 

 

effectively use these inputs to explicitly simulate a group of interacting components of the 

system and analyse the implications of management decisions, on a daily time-step (Tedeschi 

et al., 2017). The approach thus overcome the non-stationarity shortcomings of remotely sensed 

herbaceous AGB when analysing the response of rangelands to inter-annual climate variability 

by using simulation models. At the same time, remote sensing can easily characterise random 

or systemic patterns of spatial and temporal variability in vegetation production that are not 

analysed by point-based simulation models at paddock scale.  

Despite these benefits, the combined use of these tools in assessing spatial and temporal 

variability of grass quantity and quality is generally limited due to lack of historical data for 

validation. The main challenge to application of the integrated approach is limited in situ 

observation networks for validating remote sensing and systems models (Schellberg and 

Verbruggen, 2014).  Globally, the integrated approach has been applied to predict AGB in 

grazing lands using intensive field measurements and high spatial resolution satellite products. 

For example, proximal sensing techniques have been integrated with pasture simulation models 

in America (Nouvellon et al., 2001) and Europe (Curnel, 2015). In East Africa, SPOT images 

were used at microscale (Jarlan et al., 2008) whilst flux tower measurements have been used 

to evaluate a simulation model in southern Africa (Scanlon et al., 2005). Others have used 

remotely sensed variable in decision support systems which involved intensive field 

observations (Kaitho et al., 2007). However, the high costs incurred from these utilities render 

their use for routine farm-level monitoring of herbaceous biomass in developing countries 

ineffective. In southern Africa, simulation models have been separately applied using data from 

long-term grazing trials (Oomen et al., 2016; Wiegand et al., 1998). Only a few cases are known 

in which remotely sensed data has been used to validate a simulation model (Boone et al., 

2004).  

The increasing availability of high temporal- and spatial- resolution geographical data 

of environmental variables provide a means for closing data gaps when adapting system models 

to resource-constrained environments (Angerer, 2012). Remote sensing and GIS are 

inseparable tools important for mapping climate input variables for WFMs (Ovando et al., 

2018). They also enable stratification of rangeland systems into soil, vegetation and 

management units for retrieving explanatory variables (Schellberg et al., 2008). These ancillary 

data are useful in model calibration yet they have been rarely explored in southern Africa. The 

integrated data sources thus offer complementarities to field experiments and there is need for 

exploring them to understand their suitability and transferability under specific site conditions.  
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Summary 

This chapter has provided an appraisal of tools available for monitoring herbage and animal 

production in rangelands at landscape and management unit levels and, opportunities for 

integrating them. Whilst remote sensing has provided herbaceous vegetation production 

information in southern African rangelands, many applications are based on low spatial 

resolution products and at regional scale. Such products do not provide spatially explicit 

herbaceous biomass data in savanna rangelands, due to high spatial variability of vegetation 

components at local level. There is need to embrace medium spatial resolution products in 

order to reduce uncertainty associated with herbaceous AGB estimation in savannas. Efforts to 

determine the accuracies of various VIs derived from a Landsat 8 image in predicting 

herbaceous AGB are made in Chapter 3. A time series of Landsat images is further used in 

conjunction with satellite-based rainfall estimates in Chapter 4 to assess the response of 

herbaceous AGB to climate variability. The potential of six WFSM models to analyse the 

responses of herbage and animal production to different grazing strategies were also reviewed. 

The SGS model portrays the highest level of detail in its representation of nutrient pools and 

flows in the soil-plant-animal continuum. The model also has a farm management scheme that 

allows different grazing management to be simulated in native grazing lands. The SGS model 

was thus considered suitable tool for achieving the aims of this study and further detail to its 

calibration, evaluation and application to a southern African savanna is given in Chapters 5, 6 

and 7, respectively. Further improvements in WFSM should aim to improve their capacity to 

predict the spatial and temporal variations in herbage and animal production in native grazing 

lands. 
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CHAPTER 3 

Performance of ratio-based, soil-adjusted, and atmospherically corrected multispectral 

vegetation indices in predicting herbaceous aboveground biomass in a Colophospermum 

mopane tree - shrub savanna 
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Abstract 

Accurate and near-real time estimation of herbaceous aboveground biomass (AGB) at farm 

level is crucial for monitoring pasture production and proactive management of stock in semi-

arid rangelands. Despite its importance, remote sensing has been rarely used by range 

ecologists and managers in Zimbabwe. This study aimed to assess the performance of classical 

multispectral vegetation indices (MVIs) when either singly regressed with measured 

herbaceous AGB or combined with other visible spectral bands in predicting herbaceous AGB 

in a Colophospermum mopane savanna. Field herbaceous AGB and corresponding Landsat 8 

Operational Land Imager (OLI) visible spectral data were collected during the 2016-17 rainy 

season. Relationships between measured AGB and classical MVIs and extended models of 

MVIs combined with other visible bands were analysed using bootstrapped simple and 

stepwise multiple linear regression functions. When MVIs were singly regressed with 

measured AGB, ratio-based indices yielded the highest r2 value of 0.64 followed by soil 

adjusted indices (r2 = 0.61) whilst atmospheric corrected MVIs showed the lowest r2 of 0.58 (p 

= 0.00). A significant improvement in herbaceous AGB estimation was obtained by using a 

combination of MVIs and other visible bands. Soil adjusted MVIs showed the greatest increase 

(44-46 %) in r2 whilst atmospheric corrected and ratio based MVIs poorly improved (<5 %). 

The findings demonstrate that combining MVIs with Landsat 8 optical bands, especially green 

band provides the best models for estimating AGB in C. mopane savanna rangelands. These 

findings emphasise the importance of testing band-MVI combinations when developing 

models for estimating herbaceous AGB. 

 

Key words: biomass, regression, multispectral vegetation indices, savanna,  
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3.1 Introduction 

The southern African Colophospermum mopane woodland or tree-shrub savanna rangelands 

cover up to 90 % of total land cover predominantly in the south-central region (Mapaure, 1994). 

Up to 18 % of this cover is spread in Zimbabwe where C. mopane woodland savanna occupy 

a quarter of rangelands that provide food and shelter to wildlife, livestock and people. These 

eutrophic rangelands support beef cattle production that contributes up to 8 % of agricultural 

Gross Domestic Product (GDP) (GoZ, 2013). Range managers are usually faced with the 

challenge of monitoring herbaceous aboveground biomass (AGB) produced in the patchy 

vegetation community structure that evolve from long-term, highly variable rainfall (Araujo et 

al., 2015). On ground, point-based measurements of AGB are accurate but they are usually 

destructive, labour-intensive, expensive, and time-consuming. Selection of representative 

sampling areas is difficult since some closed C. mopane stands are inaccessible and such 

measurements are limited to local scale. The manager’s capacity to tactically adjust SRs to 

match available herbaceous AGB at whole ranch level is thus constrained. In developing 

economies where, long-term range experiments and research funding are limited, there is need 

to embrace alternative inexpensive approaches for near-real time monitoring of AGB that 

allows opportunistic management of the stock by managers at whole farm level. 

In the past 40 years, remote sensing has gained much attention as an alternative, low 

cost technology for near-real time monitoring of biomass stocks at regional level in African 

savannas (Fuller and Prince, 1996; Wessels et al, 2004). Majority of the available studies on 

AGB are based on multispectral vegetation indices (MVIs) which provide information about 

visible electromagnetic spectrum absorbed or reflected by vegetation and its relationship with 

vegetation cover, density, and biomass. Globally, MVIs have remained as the largest and most 

researched indices for herbaceous AGB estimation due to their simplicity (Price et al, 2002). 

However, most remotely sensed AGB literature in south central of southern Africa is based on 

low spatial resolution satellite products that usually do not satisfactorily meet management 

objectives of herbaceous AGB at vegetation community or paddock level. Hyper spectral VIs 

(HVIs) have been considerably used to estimate AGB using high spatial resolution products 

with emphasis on grass nutrient composition and total woody biomass (Zengeya et al, 2013; 

Gara et al, 2016). These HVIs have been however used with little progress due to cost and 

limited availability of high resolution satellite products and have remained appropriate at a 

localised scale (Dube et al, 2016). Multispectral VIs derived from free, medium resolution 

satellite products such as Landsat are thus likely to address the farm management needs. The 
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MVIs’ utility to accurately predict herbaceous AGB in a specific landscape is affected by 

environmental factors such as vegetation type and density and atmospheric conditions. 

Atmospheric contaminants such as water vapour present the biggest challenge to the 

utility of MVIs in herbaceous AGB estimation (Ali et al, 2016). Such contamination could be 

more pronounced in C. mopane savannas where peak biomass production is often reached 

during the wet season that is usually associated with overcast conditions. The saturation effect 

of the commonly used ratio-based MVIs such as simple ratio (SR) and normalised difference 

vegetation index (NDVI) in high density vegetation is another typical constrain to their use 

(Mutanga and Skidmore, 2004). Soil background effects are also very important to AGB 

estimation in sparsely covered and heterogeneous vegetation communities in arid and semi-

arid rangelands (Jackson and Huete, 1991). Field spectral measurements and hyper spectral 

based approaches that overcome some of these problems are expensive and computationally 

intensive and thus have been slowly adopted by many range experts and managers in southern 

Africa. Broad band MVIs based on medium resolution products thus remain important for 

monitoring AGB at paddock level in savanna rangelands and the need to evaluate their 

performance under prevailing landscape features using improved and affordable satellite 

products remains a priority. 

Evaluation of performance of MVI- based regression models for estimating herbaceous 

AGB have been done in other regions e.g. Ren and Feng (2014) in Inner Mongolia and Price 

et al. (2002) in North America, but are limited to certain biomes in southern Africa (Dube et 

al, 2016). Where medium resolution products have been used, the reflectance information is 

based on Landsat 5 thematic mapper (TM) and 7 enhance TM plus (ETM+) sensors (Moleele 

et al, 2001; Samimi and Kraus, 2004) which are not calibrated for top of the atmosphere 

reflectance. Such difference in sensor response function between Landsat-7 ETM+ and 

Landsat-8 Operational Land Imager (OLI) are sufficient to warrant differences in accuracy of 

herbaceous AGB estimation by multispectral bands from these satellites (Flood, 2014; USGS, 

2016). In addition, MVIs’ tendency of changing their properties at specific landscapes due to 

variability in soil and atmospheric conditions across rangelands warrants the need to evaluate 

these models under prevailing conditions in C. mopane savannas, southern Zimbabwe. 

Landsat 8 OLI near-infra red band (5) width has been refinement to exclude water 

vapour absorbing features in its spectral domain. This together with the improved radiometric 

calibration of the sensor presents an opportunity to develop plausible optical reflectance models 

based on improved remotely sensed variables such as woody biomass (Dube and Mutanga, 
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2015) and grass leaf area index (LAI) (Masemola et al, 2016). In addition, accuracy of classical 

MVIs based on red and near-infra red waveband reflectance for AGB estimation becomes 

insensitive when LAI increase and grass canopies become dense. Combining two or more 

wavebands with classical MVIs have improved the prediction of vegetation biochemicals 

(Fourty and Baret, 1997). However, information about accuracy of extended regression models 

containing other optical bands in estimating herbaceous AGB is limited for southern African 

savannas. 

When the remotely sensed herbaceous AGB data are available, they add value to on-

farm herbaceous AGB measurements by enabling a quick, near real time assessment of forage 

availability by ranch managers to avoid under- or over-utilisation by cattle. The mapped 

products are important in providing ancillary variables that are important in selecting sites to 

ease labour-intensive on-farm measurements of herbaceous AGB in future and 

operationalisation of point, process-based pasture models. The utility of MVI-based regression 

functions is site specific due to variable soil and vegetation characteristics hence the need to 

evaluate their performance in the study area. This study therefore seeks to examine the use of 

MVIs and assess accuracy of extended regression models containing classical MVIs and two 

or more optical bands for herbaceous AGB production estimation in C. mopane savanna 

rangelands in southern Zimbabwe. This was achieved by developing empirical AGB estimation 

models based on various visible spectral bands and indices using Landsat 8OLI. 

 

3.1.1 Objectives 

The objectives of the study were to: 

• evaluate the performance of ratio- based, soil adjusted and atmospherically corrected 

MVIs for estimation of herbaceous AGB production in C. mopane savanna 

• assess accuracy of extended regression models containing classical MVIs and two or 

more optical bands for estimation of herbaceous AGB production in C. mopane savanna 
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3.2 Materials and methods 

3.2.1 Ecological characteristics of the study site 

Nuanentsi Beef Cattle Ranch is located on a low plane (480 m.a.s.l) semi-arid region between 

Runde and Mwenezi river in the south lowveld of Zimbabwe (Figure 3.1). The plane landform 

is generally undulating, covering 110 921 hectares (1109.21 km2) of land. Annual rainfall that 

is received in summer between November and March is usually low with a mean of 480 mm 

and highly unpredictable (variability coefficient is 31.7 %) (Fuller and Prince, 1996). Annual 

temperature range between 5 and 33°C and maximum daily temperature in summer are 

frequently above 40°C. Natural vegetation is predominantly a tree/bush savanna of the 

Colophospermum-Grewia-Acacia-Combretum-community format whilst other mono-

dominant C. mopane stands are found in lightly disturbed areas. This vegetation portrays 

heterogeneous closed- and open-Mopane-Grewia canopies at vegetation community-level due 

to variation in features of soils associated with them. Herbaceous layer is dominated by a dense 

layer of moderately tall, palatable perennial C4 grasses such as Urochloa mosambicensis and 

Panicum maximum and sparsely dense, short sub stratum of forbs in heavily utilised areas. The 

soils are chromic luvisols formed from mafic gneiss (metamorphic) rocks (van Engelen et al, 

2004). These soils have a dark brown colour and loamy sand texture. Extensive cattle ranching 

with heavy beef breeds stocked at the rate of 1 livestock unit (450 kg mature cow) per 12 

hectares in paddocks ranging from 300 to 1200 hectares has been the main land use since 1940s. 

 

3.2.2 Data collection 

3.2.2.1 Field measurement of herbaceous aboveground biomass 

A vegetation survey was conducted between 5 and 11 February 2017 through visits to the 

Nuanetsi cattle ranch section. Prior to field data collection, the extent of each vegetation 

community cover class was mapped using the FAO land cover classification system (LCCS) 

(Di Gregorio et al, 2016) to represent sampling frame as shown in Figure 3.1.  Areas covered 

by at least 0.1 hectares of grassland within vegetation cover classes were selected based on a 

two- stage sampling design of Morisette et al. (2006) for producing geo-referenced databases 

for integrating remote sensed- and ground- based vegetation information. Firstly, a stratified 

random sampling procedure was objectively used to generate elementary (primary) sampling 

plots for ground measurements across the vegetation cover classes using the random point 

generator tool in ArcView 3.2 (ESRI, Redlands, CA, USA). Herbaceous AGB within each 

elementary sampling unit was then measured in 4 randomly selected, second- stage sampling 
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units (0.25 m2 quadrats). On-ground point measurements of total herbaceous AGB were done 

in forty 30 m x 30 m (900 m2) elementary sampling plots that were 500 to 1000 m apart 

depending on homogeneity and accessibility of the area. The plot size corresponds to the pixel 

resolution (30 m) for Landsat 8 OLI images that were used as observed vegetation reflectance 

data. The central position of the four corners of the plots was recorded using a Garmin Etex 20 

Global Positioning System (GPS) to geo-reference spectral reflectance information. The 

elementary sampling units were replicated at least 3 times in each vegetation cover type and 

were used to represent site variability of the dominant vegetation cover classes.  Herbaceous 

AGB in the sub plots were clipped to 5 cm stubble aboveground using shears to represent 

minimum residual dry matter yield recommended for moderate forage utilisation (41- 50 %) 

by cattle grazing in extensive rangelands. The biomass was weighted to the nearest 0.01g and 

then pooled and bagged for drying in a hot air oven. Herbaceous AGB dry matter measured in 

each quadrat was converted to kg m-2 and averaged at elementary sampling plot level.
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Figure 3. 1: Location of Nuanetsi ranch in Zimbabwe (insert) and of sampled plots and FAO land cover classes for the ranch 
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3.2.2.2 Image acquisition and derivation of multispectral vegetation indices 

A Landsat 8 OLI image (30 m spatial resolution) that had been pre-processed and 

atmospherically corrected i.e. surface reflectance by the United States Geological Survey 

(USGS)’s data management unit was downloaded on 30 November 2016 from Earth explorer 

(path 169, row 075). This is the only cloud-free image for the scene that was available before 

vegetation sampling was done which was used to study the utilities of MVIs. The image 

acquisition date represents the green-up period in which grass contribute 90 % of total 

landscape LAI in southern African savannas (Archibald and Scholes 2007) and it was assumed 

that the herbaceous layer retained similar spectral reflectance characteristics up to the time of 

ground measurements. The Landsat image has four bands in the visual domain of the spectra 

i.e., blue at 0.452-0.512 µm (band 2), green at 0.533-0.590 µm (band 3), red at 0.636-0.673 µm 

(band 4) and near infra-red at 0.851-0.879 µm (band 5). Layer staking of bands on the image 

was done using Environment for Visualizing Images (ENVI) software, version 5.2. 

Coordinates of the centre point of elementary sampling plots were geo-referenced on the 

imagery using an extraction tool nested in a computer-enabled Garmin® GPS map of ArcGIS® 

to accurately register the points on the satellite image.  

Spectral band values corresponding to elementary sampling plots were extracted from 

the Landsat 8 OLI image and ten MVIs were computed using the conventional formulas shown 

in Table 3.1. The MVIs that were derived from spectral bands included: three ratio-based 

indices; Simple Ratio (SR), Normalised Difference Vegetation Index (NDVI), Transformed 

Vegetation Index (TVI); four soil adjusted indices; Perpendicular Vegetation Index (PVI), Soil 

Adjusted Vegetation Index (SAVI), Modified Soil Adjusted Vegetation Index (MSAVI), 

Transformed Soil Adjusted Vegetation Index (TSAVI) and, three atmospheric corrected 

indices; Atmospherically Resistant Vegetation Index (ARVI), Soil and Atmospherically 

Resistant Vegetation Index (SARVI) and Enhanced Vegetation Index (EVI).
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Table 3. 1: Formula of vegetation indices evaluated for herbaceous aboveground biomass estimation utilities in the study 

NIR, R, B = near infra-red, red and blue band value, respectively; a = slope of soil line perpendicular to NIR and Red, b = intercept of the soil 

line on the x-axis; X = adjustment factor for reducing soil reflectance effects ; γ = atmospheric correction term; L* = coefficient (0.2) for 

reducing background soil effects (Ramoelo et al., 2012); L = soil adjustment factor (1.0); C1 = atmospheric correction term (6.0); C2 = 

atmospheric correction term (7.5); †References were cited in Bannari et al. (1995). 

Vegetation indices Formula Reference 
R

at
io

-b
as

ed
 Simple Ratio (SR) SR = 

𝑁𝐼𝑅

𝑅𝑒𝑑
 Jordan (1969) 

Normalised Difference Vegetation Index 

(NDVI) 
NDVI = 

𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 Tucker (1979) 

Transformed Vegetation Index (TVI) TVI = √(𝑁𝐷𝑉𝐼 + 0.5) Tucker (1979) 

S
o
il

 a
d
ju

st
ed

 

Perpendicular Vegetation Index (PVI) PVI =
(𝑁𝐼𝑅−𝑎𝑅𝑒𝑑−𝑏)

√(𝑎²+1)
 Richardson & 

Wiegand (1977) 

Soil Adjusted Vegetation Index (SAVI) SAVI = 
(𝑁𝐼𝑅−𝑅𝑒𝑑)(1+𝐿∗)

𝑁𝐼𝑅+ 𝑅𝑒𝑑 +𝐿∗  Huete (1988) 

Modified Soil Adjusted Vegetation Index 

(MSAVI) 

MSAVI = NIR + 0.5√((𝑁𝐼𝑅 + 0.5)2 − 2(𝑁𝐼𝑅 − 𝑅𝑒𝑑)) Qi et al.(1994) 

Transformed Soil Adjusted Vegetation Index 

(TSAVI) 
TSAVI = 

𝑎(𝑁𝐼𝑅−𝑎𝑅𝑒𝑑−𝑏)

𝑎𝑁𝐼𝑅 + 𝑅𝑒𝑑 + 𝑎𝑏 + 𝑋(1+𝑎²)
 Baret & Guyot (1991) 

A
tm

o
sp

h
er

ic
 

co
rr

ec
te

d
 

Atmospherically Resistant Vegetation Index 

(ARVI) 

ARVI = 
𝑁𝐼𝑅−𝑅𝐵

𝑁𝐼𝑅+𝑅𝐵
 

Where: RB = Red- γ(Blue-Red) 

†Kaufman and Tanré 

(1992) 

Soil and Atmospherically Resistant 

Vegetation Index (SARVI) 
SARVI = 

(𝑁𝐼𝑅−𝑅𝐵)(1+ 𝐿)

𝑁𝐼𝑅+𝑅𝐵+ 𝐿
 †Kaufman and Tanré 

(1992) 

Enhanced Vegetation Index (EVI) EVI = 
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+ 𝐶₁𝑅𝑒𝑑− 𝐶₂𝐵𝑙𝑢𝑒+𝐿
 Huete et al. (2002) 
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3.2.3 Statistical analyses 

3.2.3.1 Evaluation of vegetation indices for aboveground herbaceous biomass estimation 

Simple and stepwise multiple linear regression (SMLR) analyses were used to determine the 

appropriate models for predicting herbaceous AGB measured in forty elementary sampling 

plots using ten MVIs and four Landsat8 OLI bands (2- blue, 3- green, 4- red and 5- near infra-

red) in the visible domain of the spectrum. Firstly, each of the ten MVIs was regressed with 

herbaceous AGB measured in kg m-2. Measured herbaceous AGB values from sampling plots 

that poorly represented waveband values of the corresponding pixels were discarded as outliers 

and thirty-one values were retained for model fitting. An r2 was used to determine the amount 

of variation explained by the regression models. The appropriateness of each resultant 

regression function was assessed using an adjusted r2 value which considers sample size and 

number of independent variables included in a model to compare different equations derived. 

The root mean square error (RMSE) of the estimate of each regression equation was used to 

determine the dispersion of values around the regression line. Forward SMLR was then used 

to determine the other visible bands that appropriately combined with classical MVIs in 

multiple regression function, herein referred to as extended MVI models. In this approach, each 

MVI was firstly combined with all 4 visible spectral bands (blue, green, red and near infrared) 

into a SMLR model. In each successive step, spectral band(s) that did not significantly interact 

with the MVI to predict measured herbaceous AGB was removed. The procedure was repeated 

with relevant spectral bands until a satisfactory multilinear regression function was obtained or 

forward stepping was no longer possible. 

 

3.2.3.2 Validation of optical reflectance models 

Two common non-parametric re-sampling methods were used to estimate the accuracy (biases, 

variances) of transformed VI models (cross validation). The main advantage of these methods 

is that they can provide plausible results when limited sample sizes are available. Bootstrapping 

approach was used in combination with stepwise multi-linear regression to calibrate and 

validate optical reflectance models. The leave-one-out method, also known as the jack knife 

method, was used to validate the models using R-Studio programming language, version 3.4.1. 

In this method, one sample is withheld, and the regression model is build using the data from 

the remaining samples. The process of removing one sample from the dataset was repeated 

until all samples had been withheld and model accuracy was examined by the root mean square 

error. The RMSE was calculated as follows: 
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RMSE=√
∑ (𝒚₁−𝒚′₁)²𝒏

𝒊=𝟏

𝑛
 

where y1 is the actual biomass of the field samples, y'1 is the estimated grass production and n 

is the sample size.  

 

3.3 Results 

Prior to data analysis, descriptive statistics of the measured herbaceous AGB were estimated. 

Average herbaceous AGB was 0.324 kgm-2 and ranged from 0.134 to 0.753 kgm-2 (Table 3.2).  

The elementary sampling plots provided adequate herbaceous AGB data for the development 

of relationships with MVIs and visible spectral bands. The performance of all MVIs and visible 

spectral bands for predicting herbaceous AGB is presented in Table 3.3. All linear regression 

models significantly estimated herbaceous AGB (p < 0.05) except for MSAVI. Ratio-based 

MVIs and SAVI outperformed other MVIs in simple linear estimation of herbaceous AGB 

(Figure 3.2 (a) - (c) and 2.3 (a)), explaining a maximum biomass variance of 0. 64 at the highest 

accuracy (RMSE range between 0.089 and 0.094 kgm-2). Atmospheric-corrected MVIs ranked 

second in accurately predicting herbaceous AGB with a coefficient of determination value 

between 0.55 and 0.58 (Figure 3.4 (a) – (c)). Although significant relationships between most 

of the soil adjusted MVIs and herbaceous AGB were observed (p < 0.05), the relationships 

were generally weak (Figure 3.3 (a) – (c)) with an r2 value ranging between 0.004 and 0.21 and 

very sensitive compared to ratio-based MVIs (RMSE varied from 0.132 to 0.148 kgm-2). 

 

Table 3. 2: Descriptive statistics of herbaceous aboveground biomass measured 

 N mean minimum maximum Std. dev †CV (%) 

Herbaceous 

AGB (kgm-2) 

31 0.324 0.134 0.753 0.147 45 

AGB, aboveground biomass; †CV, coefficient of variation.
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Table 3. 3: Performance of classical and extended MVI models for herbaceous AGB estimation (n=31) 
VIs Remote sensing variables Regression model r2 Adj 

r2 

RMSE 

(kgm-2) 

P-

value 

Ratio-based SR AGB = 0.5201*SR – 0.6032 0.64 0.63 0.089 0.000 

NDVI AGB = 2.0497*NDVI – 0.2435 0.61 0.60 0.093 0.000 

TVI AGB= 3.6163*TVI – 2.8615 0.60 0.59 0.094 0.000 

SR and bands; B, G, R, NIR AGB = 1.267985*SR + 0.00120*R -0.00045*G –0.00061*NIR–1.70743 0.71 0.67 0.084 0.035 

NDVI and bands; B, G, R, NIR AGB = 1.740763*NDVI –0.000258*G + 0.073713 0.64 0.61 0.091 0.000 

TVI and bands; B, G, R, NIR AGB = 3.05811*TVI–0.00026*G – 2.13496 0.63 0.61 0.092 0.000 

Soil-adjusted SAVI AGB = 1.7082*SAVI – 0.2435 0.61 0.60 0.093 0.000 

TSAVI AGB = 2.7649*TSAVI + 0.3251 0.21 0.18 0.132 0.009 

PVI AGB = 0.0004*PVI + 0.3236 0.20 0.17 0.133 0.012 

MSAVI AGB =3.3675E-5*MSAVI + 0.2019  0.004 -- 0.148 0.725 

TSAVI and bands; B, G, R, NIR AGB = 3.624089*TSAVI + 0.001181*B– 0.000294*R – 0.001124*G + 1.135 0.67 0.62 0.091 0.000 

SAVI and bands; B, G, R, NIR AGB = 1.450720*SAVI–0.000258*G + 0.073719 0.64 0.61 0.091 0.000 

PVI and bands; B, G, R, NIR AGB = 0.000423*PVI –0.000650*B –0.000278*R + 1.036335 0.64 0.60 0.093 0.000 

Bands; B, G, R, NIR AGB = 0.000393*NIR – 0.000676*R + 0.304374 0.61 0.58 0.095 0.000 

Atmospheric

- corrected 

ARVI AGB = 1.843*ARVI + 0.0485 0.58 0.56 0.097 0.000 

SARVI AGB = 1.5359*SARVI + 0.0485 0.58 0.56 0.097 0.000 

EVI AGB = 1.4183*EVI - 0.1192 0.55 0.54 0.995 0.000 

ARVI and bands; B, G, R, NIR AGB = 1.524115*ARVI–0.000311*G + 0.375345 0.63 0.60 0.093 0.000 

SARVI and bands; B, G, R, NIR AGB = 1.270163*SARVI –0.000311*G +0.375346 0.63 0.60 0.093 0.000 

MVIs, multispectral vegetation indices; AGB, herbaceous aboveground biomass (kgm-2); Adj, adjusted; B, G, R and NIR, bands blue, green, red, near infrared; SR, Simple 

Ratio; NDVI, Normalised Difference Vegetation Index; TVI, Transformed Vegetation Index; PVI, Perpendicular Vegetation Index; SAVI, Soil Adjusted Vegetation Index; 

MSAVI, Modified Soil Adjusted Vegetation Index; TSAVI, Transformed Soil Adjusted Vegetation Index; ARVI, Atmospherically Resistant Vegetation Index; SARVI, Soil 

and Atmospherically Resistant Vegetation Index; EVI, Enhanced Vegetation Index. 
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Figure 3. 2: Performance of ratio-based vegetation indices; (a) SR, (b) NDVI (c) TVI in predicting aboveground biomass (AGB) production. 
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Figure 3. 3: Performance of soil-adjusted vegetation indices; (a) SAVI, (b) TSAVI and (c) PVI.
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After forward SMLR, combining classical MVIs with other visible spectral bands improved 

herbaceous AGB estimation accuracy with an r2 ranging from 0.55 to 0.71 for the extended 

EVI and SR models, respectively (Table 3.3). The general decrease in the RMSE of the 

extended regression models also portray improved accuracy for herbaceous AGB. Soil adjusted 

MVIs, TSAVI and PVI, and SR accounted for 46, 44 and 7 % more of the variability in 

measured herbaceous AGB respectively. Despite a relatively smaller increase in accuracy of 

the extended SR model, the MVI remained the most appropriate variable that combines with 

bands 3, 4 and 5 when estimating herbaceous AGB in the study area (p = 0.03) (Figure 3.5 (a) 

– (c)). The extended regression model of TSAVI and other visible spectral bands was 

appropriate for bands 2, 3, and 4 (p = 0.00) whilst PVI significantly combined with bands 2 

and 4 (p = 0.00). The rest of the extended models of classical MVIs, NDVI, TVI, SAVI, ARVI 

and SARVI significantly combined with the Landsat 8 OLI green band (band 3) (p < 0.05) and 

their predictive performance improved by at least 3 % (Figure 6 (a) – (d) and 7 (a) and 

(b)).Although extending TSAVI and PVI regression models by combining with other visible 

spectral bands portrayed plausible predictions of herbaceous AGB, these extended MVIs 

estimated herbaceous AGB with the same accuracy as extended ratio-based MVIs. In 

particular, the extended NDVI regression model had an RMSE of 0.091 kgm-2 whilst the 

extended ARVI model had an RMSE of 0.093 kgm-2. Based on these findings, the following 

SMLR predictive model that yielded the highest r2 and lowest RMSE was chosen to produce an 

herbaceous AGB map for the Nuanetsi ranch (Figure 3.8) and for validation: 

 

AGB (kgDMm¯²) = 1.267985 × SR +  0.00120 × R –  0.00045 × G –  0.00061 × NIR–  1.70743  

 

Where; AGB is herbaceous aboveground biomass; SR is simple ratio; R, G and NIR are red 

green and near infra-red bands, respectively.
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Figure 3. 4: Performance of atmospherically corrected vegetation indices (a) ARVI, (b) SARVI and(c) EVI in predicting aboveground biomass 

(AGB) production. 



 

50 

 

 

Figure 3. 5: Comparison of measured values of aboveground biomass (AGB) and extended ratio-based MVI model predicted AGB values for (a) 

SR, (b) NDVI and (c) TVI. 



 

51 

 

3.4 Discussion 

The observed wide variation in herbaceous AGB was expected as typified by the adaptation of 

native pastures to uneven redistribution of water, nutrients and solar radiation in the range 

ecosystem. The sampling procedure used was considered to have generated realistic 

herbaceous AGB data that could build realistic relationships with MVIs and visible spectral 

bands. The findings of ratio based MVIs outperforming soil adjusted and atmospheric corrected 

MVIs when singly regressed with measured herbaceous AGB in chromic luvisols soils of C. 

mopane savannas of southern African (r2 = 0.64) concur with some previous studies done in 

other biomes. According to Ren and Feng (2014) soil adjusted MVIs did not improve green 

AGB estimation over ratio-based MVIs in semi-arid rangelands. Gara et al. (2016) made a 

similar observation for woody biomass in C. mopane savanna. A work based on HVIs in C. 

mopane savanna rangelands, Ramoelo et al. (2012) also found ratio-based VIs to be able to 

provide accurate herbaceous AGB estimates in granite derived soils. The plausible 

performance of ratio-based MVIs relative to other MVIs tested could be due to high model 

stability as indicated by their low RMSEs and others have already shown a good relationship   

between MVIs and LAI in similar savannas of South Africa (Masemola et al, 2016).  

The soil adjusted MVIs poorly predicted herbaceous AGB, only SAVI had a similar 

accuracy as ratio based MVIs (r2 = 0.61, p < 0.05). The inclusion of a soil line in the derivation 

of TSAVI and PVI could have greatly reduced their utility in predicting herbaceous AGB (Ren 

and Feng, 2014). The soil characteristics that affect soil reflectance of the visible spectrum are 

soil type, texture, organic matter content, moisture content, colour and the presence of iron 

oxide (Huete et al, 1985; Huete and Jackson, 1988). Soils at Nuanetsi cattle ranch are chromic 

luvisols formed from mafic gneiss (metamorphic) rocks that are rich in fero-magnesian 

minerals (van Engelen et al, 2004). The soils are fine to medium grained loamy sand and dark 

brown in colour (CSRI, 2007). Such soil properties are usually associated with low soil 

reflectance of the visible spectrum as observed by Ringrose (1987) and (Ringrose et al. (1989) 

in southern African savanna rangelands and Todd et al. (1998) in short grass steppe ecosystem 

or in situ (Huete and Jackson, 1987). This could also explain the dominance of ratio-based 

MVIs over soil adjusted MVIs as described by Todd and Hoffer (1998) and the failure of 

MSAVI to account for any variation in herbaceous AGB at the study site (p > 0.05). In addition, 

since herbaceous AGB measurements were done during peak period of vegetation growth when 

herbaceous cover was maximum, soil adjusted MVIs could be insensitive to variation in 

herbaceous cover in the C. mopane savanna rangeland. 
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Figure 3. 6: Comparison of measured values of aboveground biomass (AGB) and extended soil adjusted MVI model predicted AGB values for 

(a) TSAVI, (b) SAVI, (c) PVI and (d) MSAVI. 
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Figure 3. 7: Comparison of measured values of aboveground biomass (AGB) and extended atmospheric corrected MVI model predicted AGB 

values for (a) ARVI (b) SARVI. 
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The observed good accuracy of herbaceous AGB estimation yielded by atmospheric corrected 

MVIs (ARVI-RMSE of 0.097 kgm-2) that was comparable to ratio-based MVIs (TVI-RMSE 

of 0.094 kgm-2) indicates high model stability and good relationship with grass biophysical 

parameters. The refinement of the NIR band (band 5) in Landsat 8 OLI could have successfully 

excluded atmospheric features that absorb water vapour and enhanced sensor response to 

vegetation reflectance.   However, it was expected that atmospheric corrected MVIs could give 

relatively higher accuracies than ratio- based MVIs because atmospheric corrected MVIs are 

adjusted for background soil reflectance in their formula. The good accuracy of atmospheric 

corrected MVIs that was far much better than soil adjusted MVIs was anticipated as observed 

for highveld grasslands of south central Africa (Masemola et al, 2016). Correction factors for 

atmospheric contaminants incorporated in hybrid MVIs could have resulted in their good 

predictive power of measured herbaceous AGB over soil adjusted MVIs. 

Combining other visible spectral bands with classical MVIs improved the capacity of 

extended regression models for predicting observed herbaceous AGB as planned and observed 

in other studies (Fourty and Baret, 1997). Extended soil adjusted MVIs, PVI and TSAVI and 

the extended SR regression function accounted for 44, 46 and 7 % more of the variability in 

measured herbaceous AGB respectively through their combinations with bands 2, 3, 4 and 5. 

Using Landsat 7 TM, Kraus and Samimi (2002) and Cohen et al. (2003) also found a similar 

trend in southern African savanna and temperate broadleaf ecosystems, respectively. However, 

as with any other remote sensing products (Teillet et al, 1997), difference in spectral bands 

width between Landsat 7 ETM+ and 8 OLI sensors makes it difficult to compare MVIs derived 

from these products. Most of the classical MVIs (NDVI, TVI, SAVI, ARVI and SARVI) 

significantly combined with the green band (Landsat 8 OLI band 3) (p < 0.05) and improved 

the predictive performance of the extended models by at least 3 %. The spectral reflectance 

measured by the green band (0.533-0.590 µm) of Landsat 8 OLI in the visible electromagnetic 

spectrum is reflected to a larger extend by leaf pigments, particularly chlorophyll of vegetation 

(Baret and Guyot, 1991; Bannari et al, 1995). The green band therefore improved the accuracy 

of extended ratio-based regression functions as the ratio MVIs have been shown to increase 

their utility in dark coloured, low reflecting soils (Huete and Jackson, 1987).
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Figure 3. 8: Herbaceous aboveground biomass (AGB) map for Nuanetsi ranch. 
 

The improvement in accuracy of classical MVIs extended with the Landsat 8 green band 

demonstrate the importance of including this band when predicting AGB in photosynthetically 

active herbage (peak biomass). In southern African savanna rangelands, Moleele et al. (2001) 

and Samimi and Kraus (2004) found high correlation coefficients between NDVI and Landsat 

TM spectral bands red (band 3) and green (band 4) whilst Calvão and Palmeirim (2004) found 

similar relationships in the Mediterranean scrub. In this study, the combination of Landsat 8 

OLI green band with MVIs proved to be critical in herbaceous AGB estimation since soil 

adjusted MVIs (e.g. TSAVI, r2 = 0.67) estimated AGB with the same accuracy as extended 

ratio-based MVIs and atmospheric corrected MVIs (ARVI and SARVI). High r2 values above 

0.71 for various combinations of Landsat ETM+ optical bands have been observed in southern 

Africa by Kraus and Samimi (2002). In the current study the mismatch between image 

acquisition date and time for field measurement of AGB could have affected the accuracy of 

derived regression models. 

This study add-value to the previous studies in that the appropriate regression models 

for herbaceous AGB estimation were selected from a wide range of MVIs including 

atmospheric corrected MVIs that have been rarely evaluated in southern Africa. Some of the 

models developed in this region did not successfully predict herbaceous AGB e.g. Moleele et 

al. (2001). Other studies focused on using measured AGB in predicting other vegetation 
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attributes such as grass nutrient quality in communal lands (Zengeya et al, 2013) and forest 

carbon biomass (Gara et al, 2016) which have relatively little relevance to livestock production.  

The study also identified the Landsat 8 OLI green band as the prominent band that produces 

plausible MVIs regression models, probably enhanced by a relatively narrow NIR spectral zone 

refined to avoid atmospheric absorption features and improve vegetation spectral response. 

These findings have important implications in monitoring and mapping herbaceous AGB 

production. To get more accurate values for r2 between measured herbaceous AGB and 

vegetation reflectance, satellite images should be collected at the closest time before ground 

measurements are done. In addition, the number of sampling plots can be increased whilst the 

number of quadrats can also be increased, or quadrat size can be enlarged to enhance accuracy 

of herbaceous AGB estimation. It would be more useful to apply these models to other range 

sites that portray diverse soil types and herbaceous vegetation cover in southern African 

savannas to determine their consistency and further improvements.  

 

3.5 Conclusions  

This study examined the factors that determine the measurement accuracy of herbaceous AGB 

estimation by ratio-based, soil adjusted and atmospheric corrected vegetation indices and 

visible spectral bands from Landsat 8 OLI sensor. Based on the linear regression analyses 

performed, ratio-based indices outperformed soil adjusted and atmospheric corrected MVIs in 

single and multi linear relationships with measured herbaceous AGB. As expected, combining 

visible spectral bands and MVIs significantly improvement in herbaceous AGB estimation, 

irrespective of the type of MVI. Extended soil adjusted MVIs showed the greatest increase in 

coefficient of determination after SMLR though the relationships were not as accurate as 

atmospherically corrected and ratio based MVIs. Inclusion of the Landsat 8 OLI green band in 

most MVIs that were evaluated for extended regression models significantly improved their 

performance for herbaceous AGB prediction. The findings demonstrate that the combination 

of classical MVIs and other Landsat 8 optical spectral bands, especial the green band provides 

the best models for estimating AGB in C. mopane savanna rangelands. The extended SR model 

that yielded the highest r2 and lowest RMSE is recommended for farmers when estimating 

herbaceous AGB in similar southern African savannas. It is suggested that other MVIs not 

tested in this study and HVIs should be evaluated to enhance our understanding about their 

accuracies for herbaceous AGB prediction in C. mopane rangelands in this biome. 
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CHAPTER 4  

Response of remotely sensed herbaceous aboveground biomass to rainfall variability 

and droughts in a south-central African savanna 
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Abstract 

Herbaceous aboveground biomass (AGB) production in semi-arid regions is highly sensitive 

to erratic seasonal rainfall and frequent droughts. Adaptive management of cattle at broad scale 

is often difficult due to unavailability of site-specific, long-term data for monitoring rainfall 

variation and subsequent herbaceous AGB production. This study examined the response of 

spatial and temporal variation of AGB production within and across herbaceous communities 

to rainfall variability and drought intensity using AGB derived from peak-season Landsat 

images available between 1992 and 2017. Rainfall variability was evaluated using coefficient 

of variation (CV) while the frequency and intensity of droughts were assessed using a 6-month 

standardised precipitation index (6SPI) for November to April. Standardised anomalies of 

herbaceous AGB yields were derived to detect deviations from normal conditions. The CV of 

total wet season rainfall was high, varying between 33 and 40 %. Different drought intensities 

occurred concurrently in dry years. Spatial heterogeneity of AGB production across herbaceous 

communities were high and deviated from mean AGB by 51 to 69 %. The spatial pattern of 

herbaceous AGB production was highly sensitive to seasonal rainfall distribution, particularly 

in dry years when different drought intensities occur concurrently. Temporal variability of 

AGB production within herbaceous communities fluctuated by 18 to 35 % more than rainfall. 

However, the landscape-level temporal variation of AGB production remained stable despite 

the increase of drought incidences experienced in the region in the last fifty years. This 

highlights the need by range managers to put more management emphasis towards maintaining 

or enhancing inherent unevenness within local herbaceous communities to increase the stability 

of rangeland productivity and, to adapt to anticipated climatic changes. The study demonstrates 

a workflow for estimating and visualising the spatio-temporal variation in AGB that can be 

effectively generalised for other ranches in the regions to improve management planning.  

Key words: satellite, drought, herbage, monitoring, variability. 
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4.1 Introduction 

Semi-arid rangelands are ecologically and economically important in southern Africa as they 

occupy 40.2 % of total land covered by savannas (Rutherford et al., 2006) and support livestock 

and wildlife ranching. These rangelands have evolved from broad-scale, long term changes in 

climate particularly rainfall variability and localised, short term disturbance events such as 

drought, grazing and fire (Hempson et al., 2007; Mberego et al., 2013). The abiotic and biotic 

factors have interacted over time to create complexity in the system at a high degree of spatial 

and temporal variation in plant community production (Scoones, 1995). Such large and 

complex rangeland systems are associated with inherent heterogeneity that provides these 

systems with some internal properties which enhance their stability to environmental variation 

(Fynn, 2012). However, rangeland management has long relied on experimental knowledge 

derived from fine-scale observations (Teague et al., 2013), and sought to override the inherent 

heterogeneity across multiple scales and behaviour of disturbances (Fuhlendorf et al., 2017). 

With the anticipated increases in rainfall variability and drought frequency, understanding the 

landscape-scale relationships between spatial and temporal variation in aboveground biomass 

(AGB) would enhance our ability to predict the productivity changes in herbaceous 

communities due to climatic changes.  

Recent advances in landscape ecology concept stipulate that, high spatial variability 

across local communities is naturally associated with greater temporal stability at landscape 

level, whereas variability within local communities is related to lower temporal stability 

(McGranahan et al., 2016). The robustness of these relationships in the herbaceous layer has 

long been demonstrated for community composition and biodiversity attributes as drivers of 

ecosystem functioning and stability in pyric herbivory in livestock systems in mesic- (Wang 

and Loreau, 2014) and in wildlife systems in dry rangelands (Coller and Siebert, 2015; 

Kennedy et al., 2003). But in dry rangelands of southern Africa where grazing is driven by 

droughts, herbaceous community production dynamics are mostly influenced by inter-annual 

rainfall variation (Buitenwerf et al., 2011) and, drought influences the spatio-temporal 

heterogeneity of community composition and production (Connor, 2015; Vetter, 2009). Lack 

of ecological data at appropriate spatial and time scales has limited our ability to analyse these 

multiscale relationships in herbaceous community production and its response to drought 

disturbances.  

Remote sensing tools have long provided spatially, and temporally consistent 

information required for monitoring community heterogeneity and drought disturbances in 
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rangelands. Most of these assessments used low spatial resolution satellites (Brown, 2008) at 

regional (Chamaillé-Jammes and Fritz, 2009; Wessels et al., 2006) and continental scales 

(Winkler et al., 2017). However, low resolution satellites do not provide spatially explicit 

representations of AGB among herbaceous communities in savanna rangelands due to high 

plant diversity at local scale. More so, the spatial coverage of many grazing lands in southern 

Africa is too small to allow application of low spatial resolution satellite products for effective 

decision-making. This highlight the need for embracing new-generation, medium spatial 

resolution imagery which enable spatially explicit assessments of herbaceous community 

heterogeneity and behaviour of short-term disturbances in rangelands. 

Medium spatial resolution remote sensing products have the potential to provide 

detailed spatial representation of AGB production at multiple scales and at timescales sufficient 

for long term assessment of heterogeneity in herbaceous communities.  For example, Sentinel 

imagery has demonstrated the intra-seasonal spatial and temporal variability of herbaceous 

AGB in tropical southern Africa (Shoko et al., 2019). Given the increase in frequency and 

intensity of dry conditions and decrease in wet years that occurred after the global climate 

shifted in the 1970s (Gaughan et al., 2016), the interannual variation of herbaceous AGB 

production might have shifted too. Such climatic changes prompt the need for developing a 

context-specific methodological framework for assessing the temporal response of herbaceous 

community production to drought disturbances to inform management planning.    

In this study, we used peak-season Landsat images and satellite-based rainfall estimates 

to develop and validate a statistical model for estimating herbaceous AGB and, used the model 

to analyse the spatial and temporal variability in AGB production across herbaceous 

communities at landscape level. A six-month standardised precipitation index for drought was 

used in a convergence-of-evidence approach with standardised anomalies of herbaceous AGB 

production to detect deviations from normal conditions. This workflow could be used to 

enhance our understanding of herbaceous community stability under local drought 

disturbances. This understanding can help in predicting the effects of projected climatic 

changes on the spatial and temporal patterns of AGB production across herbaceous 

communities (Fuhlendorf et al., 2017).  
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4.1.1 Objectives 

This study aimed to: 

• characterise rainfall variability and drought intensity and frequency at ranch-scale to 

inform opportunistic management decision-making 

• develop and use a remote sensing model for predicting the response of herbaceous AGB 

to rainfall variability and droughts between 1992 and 2017. 
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4.2 Materials and methods 

4.2.1 Ecological features of Nuanetsi cattle ranch 

Nuanetsi Cattle Ranch is located on a low altitude (480 m.a.s.l), undulating plane semi-arid 

region in the south of Zimbabwe and covers 1139.13 km2 of land.  The climate is warm, with 

strongly seasonal wet summers and long cool dry winters. The rainfall pattern is sharply 

unimodal and most of the rain occurs between November and March, often as high intensity 

storms of short duration that are unevenly distributed. The long term mean annual rainfall (40-

year mean) is 462 mm with an interannual coefficient of variation of 35 % (Oxfam-UNDP/GEF 

2015), with the late summer (January to March) contributing 40 % of the annual rainfall. Wet 

season rainfall is strongly affected by El Nino and La Nina phenomena (Makarau and Jury, 

1997). Maximum daily temperature in summer are frequently above 32 °C while mean annual 

temperature is 25 °C (Mason, 2001). The length of growing period ranges between 90 and 120 

days.  

The soils are formed from gneiss and granite geological formations (Farrell, 1968). At 

landscape scale, the vegetation is dominated by moderately tall C. mopane tree stands in 

nutrient-rich, mafic-gneiss derived soils that are predominant at the study area. These soils tend 

to support a medium substratum of productive, palatable perennial suit of tufted grasses, 

particularly Urochloa mosambicensis and Panicum maximum that are sensitive to grazing. 

Some patches of nutrient-poor, heavily utilized areas comprising of sparse tree-shrub layer of 

Combretum and Grewia spp. that are associated with short substrata of wiry, unpalatable grass 

species such as Eragrotis spp. and Aristida spp. (Farrell, 1968), are visible at broad scale. 

annual grass species and forbs are commonly found (Taylor and Walker, 1978). At community 

level, the 250-metre resolution land cover map of the Food and Agricultural Organisation 

(FAO)’s land cover classification system (LCCS) show up to eight vegetation types, which 

vary from closed- tree/shrubland to open herbaceous vegetation are identified across Nuanetsi 

ranch (Figure 3.1). As in other semi-arid savannas of southern Africa, forbs contributed a small 

proportion of the herbaceous vegetation across all communities. Extensive commercial cattle 

ranching has been the main land use since early 1900s (Walker et al., 1981). Within each 

vegetation type, beef cattle are stocked throughout the year at moderate stocking rates in multi-

paddock grazing systems. Each management unit comprised of 2- to 5- paddocks per herd, with 

paddocks ranging from 300 to 1500 hectares.  
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4.2.2 Land cover assessment 

A vegetation survey was conducted between 3 and 18 February 2017 to collect data for 

performing a satellite-based land cover classification scheme. Seventeen and forty ground 

control points (GCPs) for woody and herbaceous vegetation, respectively were identified in 

separate 30 x 30 m plots that were selected across the eight vegetation types found at Nuanetsi 

ranch. The vegetation types were delineated by overlaying the FAO’s LCCS map with a spatial 

resolution of 250 m (Di Gregorio et al., 2016) on the ranch map (see Figure 3.1). The major 

and minor horizontal axes of the canopy of all woody species identified in the sampled plots 

were measured and used to estimate canopy cover of each woody species using the formula of 

Smith and Walker (1983). The GCPs for herbaceous vegetation were determined in 30 m x 30 

m plots of pure grassland that were surveyed by Svinurai et al. (2018). 

To select images suitable for classifying vegetation cover components, two 

assumptions usually accepted in studying land surface phenology in southern African savannas 

were considered. Firstly, given no major change in land use, the proportion of tree cover that 

is measured as maximum tree greenness is constant between years and the grass layer causes 

most variation in greenness (Scanlon et al., 2002). Secondly, tree green-up rates are constant 

and longer but grasses have a higher landscape-leaf area index (LAI) than trees at the peak of 

the season (Archibald and Scholes, 2007). Following these assumptions, cloud-free, 30 m 

spatial resolution Landsat images of 1993, 1999, 2006, 2013 and 2017 were selected in April 

or May for classifying land cover components. These months were considered the best time for 

herbaceous AGB analysis since maximum leaf green up for herbaceous cover occurs 4 to 5 

months into the growing season (Archibald and Scholes 2007) and has the best contrast 

between tree and herbage cover.  

The images were processed by the United States Geological Survey (USGS) data 

management unit and downloaded from Earth Explorer. Landsat thematic mapper 5 (TM) 

sensor (1992-1998) images were atmospherically corrected using Fast Line-of-sight 

Atmospheric Analysis of Spectral Hypercube (FLAASH) in ENVI software. Landsat 5 

thematic mapper (TM), Landsat 7 enhanced TM plus (ETM+) and Landsat 8 Operational Land 

Imager (OLI) images were corrected for surface reflectance by the USGS prior to download. 

A supervised classification approach was used to train and classify the five selected images to 

delineate land surface cover into three classes namely, woody (tree and shrub), herbaceous 

(grass and forb) and bare ground using the approach of Eastman (2003). Firstly, training and 

validation data sets were determined using random polygon files generated in the Landsat 8 
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image of May 2017 and overlaid as KML files on Google Earth images using a method 

described by Ludwig et al. (2016). The spectral characteristics of each cover class were then 

acquired from GCPs and high spatial resolution (2.5m) SPOT images embedded in Google 

Earth domain to train a classification algorithm. Using the training data sets, maximum 

likelihood classifier (MLC) was used to classify land cover into woody, herbaceous and bare 

ground in the three RGB layers of raster image file.  

The other four historical Landsat images were then separately classified using the image 

differencing technique (Eastman, 2003) based on training sites defined above. Each band in 

each polygon was subtracted from the respective band in the 2017 image at a threshold value 

of ±1 around the mean to ascertain that only polygons that have not undergone changes between 

1993 and 2017 were retained for classification. Using validation data sets, classification 

accuracy for land cover map for each year was assessed using the kappa statistic. An example 

of the classified image is shown in Fig.4.1. The woody cover layer from the five maps was 

masked out to constrain AGB prediction to herbaceous vegetation areas.  

 

 

Figure 4. 1: Land cover class map of Nuanetsi ranch (09 May 2017) 

 

 

 



 

65 

 

4.2.3 Rainfall data  

Daily rainfall (mm) is the climate variable that was used for predicting remotely sensed 

herbaceous AGB. An open access RFE database, the NOAA- CPC -ARC2 (Novella and Thiaw, 

2013) was chosen for its utilities that enabled the aim of the study to be achieved. The dataset 

provides a long-time series of daily rainfall (1983 to present) at a spatial resolution of 0.01° 

(~10 km), suitable for analysis of rainfall and herbaceous AGB production at local level. This 

data is built by the NOAA CPC from quality-controlled Global Telecommunication System 

(GTS) rain gauge data and thermal infra-red derived rainfall estimates available for Africa and 

Europe from the European Organisation for the Exploitation of Meteorological Satellites 

(EUMETSAT). The data was downloaded in geotiff file format from the NOAA CPC servers 

and processed using ArcGIS to produce area-weighted averages of grid-cell rainfall data over 

Nuanetsi ranch. Only pixels with 30 % or more area lying within the study area were used in 

the analysis. To test accuracy of the RFE data prior to use, the data compared with gauge data 

from Mwenezi District Agritex (MDA) office located 10 km southwest of Nuanetsi ranch. The 

CPC-ARC2 rainfall underestimated total wet season rainfall for MDA by between 11 and 21 

% (47 to 91 mm) across grid-cells (see Figure 4.2). These findings prompted the need to correct 

the drier RFEs for the local conditions.  

A spatio-temporal bias correction scheme was applied to the ARC2 rainfall data using 

daily gauge data for MDA for the 1988 to 2017 period. This is a linear-based scheme that 

corrects bias for individual rain gauge stations by calculating the bias correction factor for a 

given day. Bias correction factor is only calculated for a given day if a minimum of 5 rainy 

days occurred within the preceding ten-day period that received a minimum rainfall 

accumulation depth of 5 mm. Final estimates are obtained by multiplying daily RFEs by the 

bias correction factor of the corresponding 10-day period. The linear-based bias correction 

scheme was chosen since it is effective in reducing daily mean RFE bias in semi-arid regions 

of Zimbabwe (Gumindoga et al., 2016). After bias-correction, the rainfall data preserved an 

increasing trend in the raw NOAA- CPC -ARC2 rainfall data over the 26 year period and was 

considered suitable for predicting herbaceous AGB. 
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Figure 4. 2: Seasonal rainfall measured at MDA station and estimated by the CPC-ARC2 

rainfall on a grid cell before (A) and after (B) bias correction. 

 

4.2.4 Modelling remotely sensed herbaceous aboveground biomass 

A dataset of 19 cloud-free, Landsat images (path 169, row 075) available between April and 

May (91 and 151 days of year) 1992 to 2017 was processed and downloaded from USGS’s 

Earth Explorer (Table 4.1). Landsat 5 TM images were processed using the procedure 

described in Section 4.2.2. Landsat 7 EMT+ images for the period after 2010 were intentionally 

removed from the processed dataset since they had scan-line errors (stripes). A multilinear 

regression model developed from a Landsat 8 image for Nuanetsi ranch in 2017 (Svinurai et 

al. 2018) was applied to all processed images in the Landsat time series to produce herbaceous 

AGB maps for the entire period. The herbaceous biomass derived from 30-m pixels of the grass 

layer were statistically resampled to ~10 km grid-cells to match the spatial resolution of ARC2 

rainfall data. In south-central Africa, growing season ends in first week of April with a standard 

deviation 4 weeks (Mupangwa et al., 2011). This period coincides with peak grass growth prior 

to onset of grass senescence biomass and biomass estimates are least affected by dead plant 

material and possible grazing. Herbaceous AGB estimated from Landsat images for the April 

to May period were thus considered as the appropriate proxy for total end-of-season (EOS) 

herbaceous AGB and were used to construct rainfall-biomass relationships. 
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  Table 4. 1: Landsat satellite images used in this study 

Landsat 

imagery 

Spectral bandwidth (µm) Period No. of 

images Green Red Near 

Infrared 

TM 0.520-0.600 0.630-0.690 0.760-0.900 April & May 1993 to 

2005 

7 

ETM+ 0.519-0.601 0.631-0.692 0.772-0.898 April & May 2006 to 

2012 

3 

OLI 0.533-0.590 0.636-0.673 0.851-0.879 April & May 2013 to 

2017 

9 

TM, thematic mapper; ETM+, enhanced TM plus; OLI, Operational Land Imager. 

 

To develop the best model for predicting remotely sensed herbaceous AGB using wet season 

rainfall, two sets of models were separately derived for April and May. Multiyear EOS 

herbaceous AGB averages estimated in all grid cells for April and May image scenes were 

separately grouped and paired with corresponding total rainfall into single regression 

equations. The emphasis was to develop a relationship between the whole range of rainfall 

received at the study site and herbaceous AGB for each EOS month (April or May) over the 

years for which the images were available. During preliminary model fitting, a highly sensitive 

rainfall- herbaceous AGB relationship was observed for seasons that received 600 mm or more 

rainfall. To approximate this behaviour, linear, power and exponential regressions were fitted 

between rainfall and herbaceous biomass, if the data for these variables were normally 

distributed. The leave-out-one method was used to select the best rainfall-herbaceous AGB 

model based on precision and accuracy. The following exponential regression model for May 

produced the most precise (r2 = 0.81) and accurate (RMSE, 1559 kgha-1) fit.  

AGB = 829.9e0.0037x where: 

AGB is herbaceous aboveground biomass (kgha-1) and, x is total wet season rainfall (mm) 

(Figure 4.3). The model’s prediction error falls within the range of uncertainty for other 

herbaceous AGB models developed from multispectral vegetation indices in the broad-leaved 

savanna biome of southern Africa (Dwyer, 2011). Thus, the model was considered appropriate 

for assessing the response of herbaceous AGB to rainfall variation and drought intensity. 
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Figure 4. 3: Exponential regression for predicting remotely sensed herbaceous aboveground 

biomass using seasonal rainfall. Broken lines denote 95% confidence intervals for the fitted 

exponential regression model. 
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4.2.5. Data analyses 

Daily rainfall data for 26 years (1992 to 2017) were used to analyse seasonal rainfall variation 

in all grid cells defined for Nuanetsi ranch in the CPC-ARC2 dataset. Seasonal mean and 

percentage coefficient of variation were examined for raw grid-cell rainfall and herbaceous 

AGB to characterise spatial and temporal variability. The standardised precipitation index 

(SPI) of Mckee et al. (1993) was used to analyse the frequency, intensity and spatial extent of 

drought events. The SPI is based on the normalised long-term probability distribution function 

of observed rainfall such that SPI values are considered as standard deviations from the 

climatological median (WMO, 2012). Though the time series should be 30 years minimum, 

SPI can still be calculated on 20 years’ data (WMO and GWP, 2016). A 6-month, November 

to April, SPI (6SPI) for each grid cell was calculated for the period between 1992 and 2017 

using FORTRAN software. Seasonal rainfall greater than median rainfall are indicated by 

positive SPI values whilst negative SPI values indicate less than median rainfall (Table 4.2). 

Drought starts when the SPI value is -1.0 or less and ends when the value becomes positive 

(WMO, 2012).  

Response of herbaceous AGB to drought intensity was assessed by calculating the 

relative percent changes in EOS herbageproduction before and after the rainfall event. The 

relative increase in range of production between years was calculated from the lower values of 

the ranges since safe stocking rates for livestock are determined by the herbaceous biomass 

available in seasons of lowest production (Danckwerts et al., 1993). Only drought events where 

pre- and post-drought years received normal rainfall were considered in the analysis to avoid 

the confounding effects of herbaceous AGB in pre- and -post drought conditions. A graph of 

standard anomaly scores of EOS herbaceous AGB production was plotted for each grid cell to 

determine deviations of datum from median value. The median value represents the normal 

herbaceous AGB production while deviations above or below the median value mean that 

current season differs from 70 % of the previous seasons in the time series, assuming a normal 

distribution. The graph was drawn on the same x-axis with the graph for SPI to provide a robust 

analysis of rainfall and herbaceous AGB anomalies. If one of the variables shows an anomaly 

and the other one is close to normal conditions, anomalies in herbaceous AGB are considered 

unrelated to rainfall.   
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Table 4. 2: Classification of intensity and probability of occurrence of drought events 

SPI value Drought intensity Probability of occurrence, % (years) 

2 or more Extremely wet  2.3 (1 in 50 yrs) 

1.5 to 1.99 Severely wet 4.4 (1 in 20 yrs) 

1.0 to 1.49 Moderately wet 9.2 (1 in 10 yrs) 

0 to 0.99 Mildly wet 34.1 (1 in 3 yrs) 

-0.99 to 0 Mild drought 34.1 (1 in 3 yrs) 

-1.0 to -1.49 Moderate drought 9.2 (1 in 10 yrs) 

-1.5 to -1.99 Severe drought 4.4 (1 in 20 yrs) 

-2 or less Extreme drought 2.3 (1 in 50 yrs) 
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4.3 Results  

4.3.1 Spatial and temporal variability of rainfall and drought events. 

Overall, rainfall varied widely in space and over time whilst the frequency of moderate and 

severe drought occurrence has increased. The mean, median, minimum and maximum total 

seasonal rainfall across grid cells were 528, 478, 207 and 1030 mm, respectively. The 

coefficient of variation of total wet season rainfall was very high, varying between 33 and 46 

%. About half of the rainfall grid cells (7 of 12) had a CV between 33 and 35 % predominantly 

in the north-central areas whilst the other areas in southwestern region had CV between 36 and 

40 % (Figure 4.4). The 6SPI values for the 26-year climate window differed both spatially and 

temporally as portrayed in Figure 4.5 Different drought intensities occurred concurrently in 

some dry years as indicated by the ranges of SPI values in Table 4.3. For example, one fifth of 

the grid cells experienced severely dry conditions during the extreme drought of 1992 while 

about a third of the study area experienced moderately dry conditions during the mild drought 

of 1998. These anomalies in spatial representation of drought intensity were pronounced in the 

southwestern areas of the ranch. 
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Figure 4. 4: Coefficients of variation of seasonal (a) rainfall and (b) herbaceous aboveground biomass (AGB) for the period 1992 to 2017.
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4.3.2 Response of herbaceous biomass to rainfall variability and drought.  

Total mean, minimum and maximum wet season herbaceous AGB ranged from 4350 to 5100, 

1260 to 1700 and 9440 to 14450 kg DM ha-1 respectively across grid-cells. The median 

herbaceous AGB ranged between 3650 and 4890 kg DM ha-1. Figure 4.5 illustrates the 

variability in herbaceous AGB for the study area estimated using Landsat 7 EM+ and Landsat 

8 OLI images. Overall, the area produced noticeable variations in herbaceous AGB, both in 

space and over time. The highest accumulation in herbaceous AGB production across the ranch 

were observed between moderately dry and mildly wet seasons (Figure 4.6 (a) and (b)) whilst, 

low variations were observed between mildly dry and mildly wet seasons (Figure 4.6 (a) and 

(b)). 

Seasonal herbaceous AGB production among grid cells was very unstable, having a 

very high, wide-range standard deviation (2300 to 3000 kg DM ha-1) that varies by 51 to 69 % 

more than mean AGB. Herbaceous AGB changes across the study areas were variable and 

highly sensitive to seasonal rainfall variation. The south-western areas of the ranch experienced 

notable changes over time (e.g. grid cells bounded in red, Figure 4.6) whilst the north-central 

areas remained stable (e.g. grid cells bounded in black, Figure 4.6), despite the seasonal 

changes. Herbaceous AGB production was at least 18 % more variable than rainfall across grid 

cells. Grid cells that showed relatively low rainfall variability (< 35 % C.V.) were 18 to 21 % 

more variable in herbaceous AGB production, while grid cells that experienced relatively high 

rainfall variation (>35 % C.V.) experienced 28 to 35 % more variation in herbaceous AGB. 
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Figure 4. 5: Six-month (NDJFMA) standardised precipitation index (SPI) and herbaceous 

aboveground biomass deviation from median for typical (a) stable and (b) unstable areas 

between 1992 and 2017. Broken line represents threshold for onset of moderate drought, SPI 

≤ -1. 
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Table 4.3 provides the responses of seasonal herbaceous AGB production to drought seasons. 

The response of herbaceous AGB to dry conditions was widely variable across drought 

intensities. Mean relative production increases varied with different drought intensities in the 

order of 153 to 214 % following extreme and mild droughts, but were exceptionally greater, 

426 %, following moderate drought. The poorest relative herbaceous AGB production increase, 

160 %, occurred when post drought seasonal rainfall fell below the long-term median e.g in 

1993 and 2006. In contrary, herbaceous AGB production improved by at least two-fold when 

post drought seasonal rainfall fell near or above the long-term median e.g in 1999 and 2003. 

Ranges in herbage production between post drought years were also greatest seasons that 

received rainfall near or above long-term median, while least ranges in AGB production were 

observed for post drought seasons with below-normal rainfall. The ranges in herbage 

production were also relatively small in wet seasons succeeding mild droughts, particularly in 

the stable north-central areas of the ranch. Stable and unstable areas showed the same response 

to rainfall anomalies across seasons, but they differed in their magnitude of response e.g. in 

2008 and 2015 (Figure 4.5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

76 

 

 
Figure 4. 6: Variability in herbaceous aboveground biomass in stable (red) and unstable (black) areas in (a) moderate drought and 

 (b) mildly wet season, and in (c) mildly dry and (d) mildly wet season. 
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4.4 Discussion 

We demonstrate a methodological framework for characterising the spatio-temporal variation 

in AGB within a landscape that can be generalized for other ranches in the study region to 

improve management planning. As expected for semi-arid savanna rangelands, high and 

unstable spatial variations of AGB production across herbaceous communities were observed 

over time. The results indicated that the spatial pattern of herbaceous AGB production is highly 

sensitive to seasonal rainfall distribution, particularly in dry years when different drought 

intensities occur concurrently. Temporal variability of AGB production within herbaceous 

communities fluctuated more than rainfall but the landscape-level temporal variation of AGB 

production was stable despite the increase in drought disturbances experienced in the past fifty 

years in southern Africa. The findings emphasise the importance for building knowledge about 

management practices that maintain or enhance inherent heterogeneity in herbaceous 

communities and lead to increased stability of rangeland productivity in face of the anticipated 

climatic changes. 

 

4.4.1 Spatial and temporal variability of rainfall and drought events. 

The study findings reveal high variability in wet season rainfall within and between seasons as 

expected for sub-tropical rangelands. These findings concur with many studies that CV of 

rainfall in southern lowveld of Zimbabwe is very high (Oxfam-UNDP/GEF, 2015). In the 

Nuanetsi catchment, Barnes and Mcneill (1978), Fuller and Prince (1996) and Oxfam-

UNDP/GEF (2015) observed rainfall variabilities to be 35.8, 31.7 and 35 %, respectively. In 

south eastern lowveld of Zimbabwe, Dye and Spear (1982) observed a CV of 47 % at Tuli. The 

differences in rainfall variability within the same region among these studies emanate from 

variances in starting year of analysis and time scales.  

Significant spatial variations in rainfall were also observed across the study area, with 

different drought intensities occurring simultaneously in some dry years. These variations are 

inherent in south-central Africa because the convection movements that frequently induce 

rainfall cause intra-seasonal patchiness in distribution (Makarau and Jury, 1997). Frequency of 

occurrence and intensity of moderate drought was also found to be increasing in the past three 

decades. In southern Africa, the frequency and intensity of dry years have significantly 

increased since the global climate shift in the 1970s (Gaughan et al., 2016). Projected climate 

change for this region also predict increase in intra- and inter-seasonal rainfall variability and 

drought frequency and intensity (Jia et al., 2019). Thus, the observed and anticipated increases 
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in rainfall variation pinpoints the importance of using cheaply available satellite observational 

tools to provide ranch managers with information for effectively monitoring climate risks and 

improving management planning. 

 

4.4.2 Response of herbaceous biomass to rainfall variability and drought events 

The spatial representation of herbaceous AGB observed in this study indicate that variations in 

AGB production are variable across the ranch and over time, a characteristic feature of grazed 

C4 grass communities in semi-arid rangelands of southern Africa. In agreement with these 

findings, it has been long established that these rangelands portray high spatial heterogeneity 

in herbaceous AGB production, for example in northern (Svinurai et al. 2018) and southern 

Limpopo river basins (Dwyer, 2011; Mutanga and Rugege, 2006) and Drakensberg (Shoko et 

al., 2019). Herbaceous AGB changes across the ranch were variable over time, especially 

between drought and post-drought seasons. Some areas showed notable changes in AGB while 

others remained stable. Mapping the spatial representation of AGB helps ranch managers in 

adjusting animal distribution relative to spatial heterogeneity in forage resources among 

paddocks to prevent excessive use of unstable areas.  

Higher temporal variability in seasonal herbaceous AGB than seasonal rainfall 

variability was detected in this study. This study corroborates other field and remote sensing 

studies that have been conducted at local and regional levels in south-central Africa. For 

example in field studies, Dye and Spear (1982) and Kelly and Walker (1976) made similar 

observations in south eastern lowveld of Zimbabwe while O´Connor et al. (2001) found more 

than 50 % variation in AGB compared to rainfall CV in the northern lowveld of South Africa. 

Using low spatial resolution imagery at regional scale, Fuller and Prince (1996) and Mberego 

and Gwenzi (2014) also observed high sensitivity of NDVI to rainfall in southern Zimbabwe 

while Chidumayo (2001), Martiny et al. (2006), and Wessels et al. (2006) made similar findings 

in south-central Africa. However, there was no observable change in temporal variability of 

AGB production despite the increase in frequency and intensity of dry conditions that has been 

observed after the global climate shifted in 1970s. 
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Table 4.3: Response of seasonal herbaceous aboveground biomass yield to drought intensity  

Drought 

intensity 

 

Season Mean SPI  

for 

drought 

event 

Mean seasonal 

rainfall (mm) 

 Mean seasonal herbaceous  

AGB production (kg DM 

ha-1)  

Relative  

seasonal  

AGB 

production 

increase 

(%) 

Drought 

year 

Post 

drought 

year 

 Drought 

year 

Post drought 

year 

Mild 

drought 

1998 -0.8 370 576  3278 7020 214 

Range -1.3 to 0.1 332-422 546-609  2838-3949 6261-7906 221* 

 

Moderate 

droughts 

2002 -1.2 301 694  2557 10897 426 

Range -1.4 to -1 226-381 633-755  1914-3394 8645-13575 452 

 

2005  -1.3 196 321  1723 2728 160 

Range -1.4 to -1.1 164-252 294-351  1522-2025 2464-3037 162 

  
Extreme 

drought 

1992 -2.1 186 300  1678 2566 153 

Range -2.34 to -1.76 113-277 254-399  1260-2300 2100-3600 167 

SPI, six-month (November to April) Standardised Precipitation Index for the period between 1992 and 2017.  

*Relative AGB yield increase was calculated from values of lower limits of the range of AGB production in  

drought and post drought year. 
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The response of herbaceous AGB to dry conditions was highly variable across drought 

intensities and differed with the amount of post drought rainfall relative to the long-term 

median. Low herbaceous AGB production occurred when post drought rainfall was below 

average. For semi-arid environments, it is well known that a rainfall deficit in the previous year 

will result in production lower than expected for the current rain season (Sala et al. 2012). In 

semi-arid Colophospermum mopane savannas, herbage recovery immediately following 

drought is usually slow as drought may cause increased mortality of herbaceous species as well 

as reducing seed production (Jordaan et al., 2004; O’Connor, 1998). This may limit recruitment 

of perennial grasses in subsequent years. The short-term responses of herbaceous AGB to the 

spatial patterns of drought intensity estimated in this study can help ranch managers to develop 

a more flexible grazing program to respond to drought.  

Relatively high herbaceous AGB production increases across the ranch were detected 

in above-normal post drought seasons. Such high production increases can be attributed to 

rejuvenation of annual grasses which vary in production by up to four-fold (Kelly and Walker, 

1976). It was also found that wide ranges in herbaceous AGB response to dry seasons occurred 

in above-normal post drought seasons. This possibly occurred due to high variation in aridity 

as different drought intensities occurred concurrently in dry years. In semi-arid rangeland 

ecosystems, wet and dry seasons are characterised by different distributions in rainfall events 

(Schwinning and Sala, 2004). As cited previously, tropical regions of southern Africa portray 

high patchiness in rainfall distribution at local level. High spatial variability in rainfall causes 

high spatial and temporal variability in herbage production (Mberego et al., 2013). These 

findings provide guidance to ranch managers to adjust stocking in above-average seasons to 

maximise livestock carrying capacity. 

Overall, high spatial variation among herbaceous communities and absence of change 

in temporal variability indicate the greater stability in the herbaceous layer in the study 

landscape. Our findings concur with McGranahan et al. (2016)’s concept of landscape ecology 

theory which suggest that spatial variability of local communities influences the temporal 

stability in AGB production at landscape level. The enhanced stability properties of the 

herbaceous layer in semi-arid C. mopane savannas has been observed for species richness and 

abundance attributes (Buitenwerf et al., 2011; Coller and Siebert, 2015). Productive, palatable 

perennial grasses contribute significantly to forage stability in this savanna (Tessema et al., 

2016). In semi-arid C. mopane savannas of the Limpopo river basin, U. mosambicensis has a 

high relative abundance and is able to increase and decrease in abundance in above- and below-



 

81 

 

average seasons, respectively (Kennedy et al., 2003; O’Connor, 2015). Thus, there is need for 

range managers in this region to put more management emphasis towards strategies that 

maintain or enhance inherent heterogeneity within the landscape and increase the stability of 

rangeland productivity and resilience to future climate change. 

 

4.5 Conclusions 

Spatial heterogeneity of AGB production across herbaceous communities were high and 

deviated from the mean AGB by 51 to 69 %. The results indicated that the spatial pattern of 

herbaceous AGB production is highly sensitive to seasonal rainfall distribution, with greatest 

unevenness occurring in dry years when different drought intensities occur concurrently. 

Temporal variability of AGB production within herbaceous communities fluctuated by 18 to 

35 % more than rainfall. However, the landscape-level C.V. of AGB production remained 

stable despite that the frequency and intensity of droughts has increased in the last fifty years 

in tropical southern Africa. These findings support the emerging concept in landscape ecology 

theory which suggest that, high spatial unevenness of AGB production across local herbaceous 

communities reduces temporal variability in AGB production at landscape level. This 

highlights the need by range managers to put more management emphasis towards maintaining 

or enhancing inherent unevenness within local herbaceous communities to increase the stability 

of rangeland productivity and, to adapt to anticipated climatic changes.  

 

 

 

 

 

 

 

 

 

 

 

 



 

82 

 

CHAPTER 5  

Parameterization and calibration of the Sustainable Grazing Systems model for 

simulating native grass growth with limited data  
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Abstract 

Despite the economic challenges faced by cattle ranch managers to capitalise in systems for 

monitoring herbage biomass, simulation modelling present opportunities for estimating 

herbage and animal production on a near real-time basis. This study was conducted to 

parameterise the Sustainable Grazing Systems (SGS) model using geographical layers of 

landscape and soil data obtained from previous soil surveys conducted at Nuanetsi ranch and, 

to calibrate the model using measured herbaceous aboveground biomass (AGB). Herbaceous 

AGB was measured in forty 0.1 ha plots in the 2016/17 season to provide data for fitting model 

outputs. Demarcation of the entire slope into four catena units revealed a distinctive downslope 

sequence of bands of land types that were up to 5 kilometres wide. Mafic gneiss, siliceous 

gneiss and alluvium are the main soil families that separately dominated in three land types. 

The soils were very shallow with a maximum topsoil and total effective depth of 20 and 85 cm, 

respectively across land types. Annual mean measured and modelled herbaceous AGB was 

3877 and 3071 kg DM ha-1, respectively. The SGS model significantly represented measured 

herbage AGB (P < 0.01), accounting for up to 60 % variation in herbaceous AGB (r2 = 0.57). 

The relationship between model outputs and corresponding field measured herbage biomass 

was very stable with an average error of 820 kg DM ha-1. An integrated methodological 

framework for parameterising and calibrating the SGSs pasture-simulation model developed 

in this study can benefit model users in data-constrained environments. 

 

Keywords 

Parameterisation, calibration, simulation, prediction error 
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5.1 Introduction 

Landscape-level assessments of remotely sensed herbaceous AGB production presented in 

Chapter 3 and 4 are quick and plausible for describing the static behaviour of rangeland 

systems. The assessments consider the whole ranch as the system boundary and rainfall as a 

state or internal variable. However, empirical remote sensing models fails to explicitly 

characterise the dynamic growth of herbaceous AGB under local environmental conditions and 

have weak predictive power when applied to other regions (Foody, 2003). At paddock-level, 

rainfall assumes a forcing role in the land-vegetation system with the efficiency of rain use for 

biomass production being determined by the influence of intra-seasonal rainfall distribution on 

soil moisture content in sweetveld (Ellery et al., 1995; Veenendaal et al., 1996). The effects are 

further modified by topographic variation which cause soil fertility differences that are difficult 

to observe (Pickup, 1991; Scholes, 1990). Soil water, above- and below- ground plant growth 

and animal responses to variable climate, topography and herbivory thus depend on the 

complexity of interactions among these factors (Frost et al., 1986; Scholes et al., 2003). Death 

of long-term measurements of herbaceous AGB on research stations and farms in developing 

countries due to inadequate resources has resulted in lack of updated information about these 

interactions. There is need to embrace research tools that account for many factors that 

influence herbaceous AGB production.  

The basis for improving extensive beef systems is to build knowledge about herbage 

and animal production under prevailing conditions at whole farm level. Systems analysis 

modelling is the only useful approach for understanding the complex interactions affecting 

components of a system  (Grant et al., 1997). System models provide a quantitative analysis of 

complex interactions and feedbacks of many variables under local environmental and 

management conditions (Rickert et al., 2000). In the past two decades, empirical and 

mechanistic modelling gained huge attention globally in predicting herbage and animal 

production (Snow et al., 2014). However, in semi-arid rangelands of southern Africa, 

simulation modelling has been limitedly applied to empirical models for plant growth (Oomen 

et al., 2016; Wiegand et al., 1998) and a few deterministic and stochastic models for herbage 

and animal production (Illius et al., 1998; Kazembe, 2010; Richardson et al., 2000).  Moreover, 

empirical models give false results if they are applied to regions that lack the experimental data 

used to develop them. Mechanistic WFMs are more realistic than empirical models as they are 

capable of simulating soil, plant and animal processes at a high level of detail.  
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 Mechanistic models such as the Sustainable Grazing Systems (SGS) model are capable 

of simulating herbage growth in multi-species swards and deal adequately with long-term 

herbage production dynamics. The balance among complexity, realism and versatility obtained 

during construction of mechanistic models enable the models to be applied to new regions by 

adjusting default model parameters (Johnson, 2011). Such models have been limitedly applied 

to high rainfall and semi-arid biomes in Australia (Doran-Browne et al., 2014; Johnson et al., 

2003) and rarely used in southern Africa savanna rangelands (Andrade et al., 2016). But, other 

than the inherent errors of model structure, their application has been limited due to errors 

associated with system input variables and data measured for deriving parameters.  

The precision of WFMs depends on their ability to use spatially distributed climate 

input data and parameters and constants that should be adjusted. In developing countries, 

climate data is rarely available at ranch-level due to sparse national meteorological stations. 

Also, system parameters and state variables are unknown as they cannot be fully included in 

experiments due to high environmental variation (Johnson, 2011). The increasing availability 

of high temporal- and spatial- resolution geographical data of environmental variables provide 

a means for closing data gaps when adapting WFMs to resource-constrained environments 

(Angerer, 2012). Remote sensing and geographic information systems (GIS) are inseparable 

tools important for mapping climate input variables for WFMs (Ovando et al., 2018). They also 

enable stratification of rangeland systems into soil, vegetation and management units for 

retrieving explanatory variables (Schellberg et al., 2008). These ancillary data are useful in 

model calibration yet they have been rarely explored in southern Africa. The integrated data 

sources thus offer complementarities to field experiments that need to be explored to 

understand their suitability and transferability under specific site conditions. This improves 

accuracy of forage production estimates modelled by WFMs and confidence in using them, 

enables identification of drivers of forage production, development of local forage maps and 

prioritisation of areas for management. This study was aimed at developing SGS model 

parameter sets for simulating native grass production in C. mopane rangelands and evaluting 

performance of model output. 
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5.1.1 Objectives  

The specific objectives of this study were to: 

• develop soil and plant module parameters and site-specific inputs of the SGS pasture 

model for predicting grass production in a C. mopane tree-shrub savanna. 

• evaluate the performance of SGS pasture model in simulating inter-canopy native grass 

growth in a C. mopane tree-shrub savanna. 
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5.2 Materials and methods 

5.2.1 Ecological structure of Colosphermum mopane savanna at Nuatesi ranch 

The geographical location and ecological characteristics of the Nuanetsi beef cattle ranch have 

been described in Sections 3.2.1 and 4.2.1.  The specific environmental features of sampled 

plots to which the SGS model was calibrated were derived from various spatial data layers as 

outlined in Section 5.2.3 below. The region receives low annual rainfall ranging from 300 to 

500 mm mainly in summer between November and March, with the late summer (January to 

March) contributing 40 % of the annual rainfall (Figure 5.1). 

 

 
Figure 5. 1: Mean total seasonal rainfall, minimum and maximum monthly temperature for 

Nuanetsi ranch (1992-2017). 

 

5.2.2 Overview of the Sustainable Grazing Systems pasture model  

The SGS pasture model is an Australian biophysical model comprising of nested empirical and 

mechanistic sub-models that seek to analyse and explain interlinked processes amongst water, 

nutrients, herbaceous plants, animals and management components in grazing lands. Processes 

amongst components are driven by daily weather variables at the plot or paddock level. The 

model was originally developed by Johnson and Thornley (1983) and Johnson and Thornley 

(1985) with the main emphasis on the cell-level physiological response of pasture species to 

climatic conditions, with subsequent improvements by Johnson and Thornley (1987) and 

Johnson et al. (1989). The soil water module was upgraded by Johnson et al. (2003) whilst the 
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soil nutrient module was also improved and documented by Johnson et al. (2008) and Johnson 

(2008), respectively. Further effort to improve the model’s animal component was based on 

the metabolizable energy (ME) intake system (Johnson et al. 2012). The SGS model is large, 

comprising of many differential equations in its sub-models. Detailed equations used in model 

development can be found in Johnson (2008) and Johnson (2016). The model has been used to 

assess pasture growth rates (Cullen et al., 2008) and impacts of climate change on C3 and C4 

grasses in subtropical and temperate regions of Australia (Cullen et al., 2009). Recently, the 

model has been used to simulate the growth of tropical C4 perennial and annual grasses and 

legumes in northern Australian rangelands (Doran-Browne et al., 2014).  

 

5.2.3 Derivation of model parameters  

The soil water, nutrients (C, N) and pasture modules are the main biophysical components of 

the SGS pasture model that were parameterised in this study. The modules have over 100 

biophysical system parameters of soil water and nutrients, canopy structure and growth of 

pasture species that could potentially be adjusted. However, these parameters were not 

available at the level of detail required to allow the model to be adapted to the Nuanetsi ranch. 

To overcome this challenge, an integrated framework was used to derive parameters from 

geographical layers of climate, topography, soil and vegetation, satellite images and extensive 

review of published experiments for southern African savannas (see Figure 5.2). Consequently, 

a total of eighteen parameters were adjusted and the remainder was used as default values.   
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Figure 5. 2: Framework of the flow of information used to parameterise the SGS pasture 

model. 

 

5.2.3.1 Landscape and climate variables 

In flat undulating landscapes of the Lowveld, soil water and nutrients are redistributed from 

crest to adjacent foot slope areas over time and the process results in zonal patterns of both 

woody and herbaceous vegetation (Witkowski and O’Connor, 1996). To represent this effect, 

the Advanced Spaceborne Thermal Emission and Reflection Radiometer digital elevation 

model (ASTER DEM) was used to stratify the whole ranch into four land types following the 

patch hierarchy approach of Venter et al. (2003) (Figure 5.3). In this approach, the terms crest, 

mid-slope, foot slope, and valley bottom are used to refer to the relative topographic position 

of land types starting from interfluve to drainage channel. Elevation, slope, aspect, and latitude 

of plots or paddocks for land types to which the model was applied were derived from the 

ASTER DEM. Additional information about geology and landform was obtained by overlaying 

the Nuanetsi ranch map on the map of the Soil and Terrain of Southern Africa database 

(SOTERSAF) (ISCRI, 2005) using GIS software.  
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Figure 5. 3: 

Map of (a)  elevation of land types and rivers and (b) soil type (based on ISCRI (2005)) of Nuanetsi ranch 
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Spatially aggregated data for daily solar radiation (Wm-2) and rainfall (mm) and spatially 

interpolated data for daily minimum and maximum temperature (°C) for the 1982 to 2017 

period were used as inputs to run the SGS pasture model. Daily global solar radiation for the 

period 1985 to 2005 that has been validated for the southern African region by Lefèvre et al. 

(2012) was obtained from the HelioClim-1 database (Lefevre et al., 2014). Other solar radiation 

data for 2006 to 2017 were downloaded from the (Copernicus Atmospheric Monitoring Service 

(CAMS) servers through the Solar Radiation Data (SODA) portal (Schroedter-Homscheidt et 

al., 2016). The Zimbabwe Sugar Association Experiment Station (ZSAES), located 60 km 

north of Nuanetsi ranch, has been measuring solar radiation and minimum and maximum 

temperature at a daily time step since 1967. Solar radiation data from this weather station was 

used to correct the bias of satellite solar radiation estimates. Daily minimum and maximum 

temperature were spatially interpolated for the four land types using an inverse distance 

weighting approach (Moeletsi et al., 2016). Daily rainfall data available from the National 

Oceanic and Atmospheric Administration Climate Prediction Centre African Rainfall 

Climatology version 2 (NOAA-CPC-ARC2) at a spatial resolution of approximately 10 km 

(0.01°) at the equator since 1980 (Novella and Thiaw, 2013) was downloaded from NOAA-

CPC servers. This data was processed by applying a spatio-temporal bias correction scheme 

using gauge data from the Mwenezi District Agritex Office. The spatial resolution of ancillary 

data sources used in the SGS model parameterisation is given in Table 5.1. All GIS processes 

and cartography were done in ArcGIS® (ESRI, Redlands, CA, USA) and original projection 

systems for datasets used were all converted to the World Geological Survey (WGS) 84 datum 

system.  
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Table 5. 1: Sources and spatial resolution of ancillary data used in model parameterisation 

  

Environmental 

variable 

Source Spatial resolution 

Soil lithology and type SOTERSAF† 1:1 000 000 

Altitude, aspect, slope ASTER DEM‡ 30 m 

Rainfall NOAA CPC ARC2⁋ 10 km 

Solar radiation Soda HeleoClim1 5 km 

Temperature Interpolation 80 km 

Land cover FAO LCCS⸸ 250 m 

Herbaceous biomass Landsat 5 to 8 30 m 
†Soil and Terrain of Southern Africa database; ‡Advanced Spaceborne Thermal Emission and 

Reflection Radiometer Digital Elevation Model; ⁋National Oceanic and Atmospheric 

Administration Climate Prediction Centre African Rainfall Climatology version 2; ⸸Food and 

Agriculture Organisation Land Cover Classification System. 

 

5.2.3.2 Soil and plant parameters 

Explanatory variables of soil profile layers of sites used in model calibration were singled out 

from soil survey data previously collected across the Nuanetsi sub-catchment by the Chemistry 

and Soil Research Institute (CSRI) of the Department of Research and Specialist Services. 

Estimates of soil physical variables of the crest- and mid-slope soils and, foot slope soil were 

obtained from CSRI (2007) and CSRI (2003), respectively. The surveys show that crest- and 

mid-slope soils have medium-grained sandy loam over medium-grained sandy whilst foot 

slope soil comprise of coarse-grained loamy sands over medium-grained loamy sands. Soil 

layer depths for the crest land type were adjusted to represent moderately deep soil with a total 

depth of 80 cm (Table 5.2). The crest soil profile was set to a relatively deeper A horizon 

compared to the corresponding horizon in mid-slope soil. Parameters for the mid-slope land 

type were set to a shallow depth of 60 cm, with a horizon A of intermediate-depth underlying 

horizon B of moderate clay content (CSRI, 2007). In foot-slope soil catena, soil depth was also 

adjusted to typify shallow alluvial soils (CSRI, 2003). These soil properties resemble the 

dominant soil catena usually associated with medium C. mopane tree/shrub vegetation types in 

southern Lowveld of Zimbabwe (Dye and Walker 1980). 

In the SGS soil water module, water is included in the grassland through rainfall and is 

intercepted by the herbaceous canopy, litter or bare soil (Johnson et al., 2003). The water 

balance was assumed to be different in soil profiles from crest- to foot- slope since soil texture 

and profile depth determine the soil moisture dynamics. In an unimodal growing season 



 

93 

 

experienced in southern Africa, soil moisture held by shallow surface horizon deplete rapidly 

after rainfall events and may drop below the wilting point for several weeks between rainfall 

events (Scholes and Walker 1993). Available water capacity (AWC) is moderately small across 

soil families in semi-arid regions and soil moisture is rarely at field capacity. Therefore, AWC 

was set between 10.0 - 14.9 % volume (CSRI, 2007; CSRI, 2003).  

 

Table 5. 2: Soil physical and chemical variables of land types used for model calibration 

  
Factor Parameter  Units Default 

Duplex 

Foot slope 

soil  

Default 

Medium 

Mid slope 

soil 

Crest soil 

Soil 

physical 

variables 

Altitude  m.a.s.l  404  441 487 

Parent material - - Alluvium - Mafic 

gneiss 

Mafic 

gneiss 

A horizon depth  cm 50 12.8 50 11.3 17.2 

B1 horizon 

depth  

cm 100 16.4 100 18.6 25 

B2 horizon 

depth  

cm 200 30 200 30 40 

Soil 

chemical 

variables 

A horizon clay 

composition  

% 30 10 30 12 12 

B1 horizon clay 

composition  

% 30 17 30 18 20 

B2 horizon clay 

composition  

% 30 17 30 18 20 

 

The plant growth module in the SGS model uses solar radiation to estimate net radiation 

through calculations of light interception and photosynthesis in a mixture of up to five 

herbaceous species. The module also simulates uptake of nutrients and water from the soil by 

each species and their partition between roots, shoots and seeds, plant development, tissue 

turnover, and senescence, and respiration from plant growth and maintenance. Herbaceous 

species composition was assessed in the 2016/17 season for forty sampling plots where the 

SGS model run was conducted. Herbaceous species composition was visually assessed in ten 

0.25 m2 quadrats for each sampling plot by a field taxonomist using the dry weight rank method 

(Mannetje and Haydock 1963). Over twenty grass species were identified during the 

assessment of species composition, only two native graminoid herbaceous species were 

dominant: Urochloa mosambicensis, a loosely tufted, productive, palatable, perennial grass 

and, Eragrostis curvula, a tufted, productive, unpalatable perennial grass. U. mosambicensis 

and E. curvula were widely spread across the ranch, representing 90 % (first and second dry-

weight ranks) of species composition in 56 and 14 % of all plots, respectively. The other plots 

had mixed herbaceous species that were low in abundance and were excluded from 
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parameterisation. Default growth parameter values were adjusted for the two grasss species to 

acceptable ranges using data from published independent experiments. Species parameter 

values for canopy height were obtained from the Tropical Forages online database (Cook et al., 

2005). Adjustments to parameter values for dry matter partitioned to shoot, leaf fraction of new 

shoot growth, leaves per tiller and specific leaf area were based on Ernst and Tolsma (1992). 

The maximum rooting depths of grasses were set at 15 and 25 cm for stands occurring in the 

crest and mid- and foot slope land types, respectively (CSRI, 2003; 2007) (Table 5.3). The 

minimum and maximum temperatures for tropical grasses range between 10 and 15°C and, 30-

35°C, respectively (Cooper and Tainton, 1968). The default minimum and optimum growth 

temperatures of 12 and 35°C were thus retained. The maximum leaf net photosynthesis rate 

was adjusted to 35 µmolm-2s-1 as measured by Mantlana et al. (2008) in south-central Africa. 

In all submodules used in this study, default data were used where a site or regional data were 

not available.  

 

5.2.3 Measured and remotely sensed herbaceous biomass  

Herbaceous AGB data for calibrating the SGS model were measured in forty sampling plots in 

the 2016/17 growing season using the total-cut technique as described in Section 3.2.2.1. 

Remotely sensed MVIs for herbaceous AGB, namely SR, NDVI and SAVI were calculated 

from spectral reflectance of Landsat 8 image pixels corresponding to the sampled plots as 

outlined in Section 3.2.2.2. The field and spectral data were separately compared with 

herbaceous biomass outputs simulated in the respective sampling plots to adapt the SGS pasture 

model to site conditions.  
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Table 5. 3: Plant species and community growth parameters and initial condition values used for grasses at simulated sites 

Factor Parameter  Units Default 

Native-C4 

grass 

Urochloa 

mosambicensis 

Eragrostis 

curvula 

Reference  

Canopy Maximum height  cm 50 100 120 Cook et al. (2005) 

Specific leaf area at ambient 

CO2  

m2leaf 

kgDM-1 

16 15 12 Ernst and Tolsma (1992) 

Growth Maximum leaf net 

photosynthesis rate at 

reference conditions  

µml 

CO2/m2/s 

20 35 35 Mantlana et al. (2008) 

Root Maximum root depth  cm 100 20 20 Dye and Walker (1980) 

Depth to 50 % of root mass  cm 20 10 10 CSRI (2007) 

Temperature Low-temperature effects: Full °C 3 3 3 Cooper and Tainton (1968) 

Low-temperature effects: Initial  °C 7 7 7 Cooper and Tainton (1968) 
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5.2.4. Calibration of the model 

A manual, iterative procedure of manipulating default model parameter values for Australian 

rangelands was used to adapt the model to local agro-ecological conditions. The procedure was 

aimed to provide one set of parameters that represent the real rangeland conditions at sampled 

plots and, best fit with measured or remotely sensed herbaceous AGB. Point calibration and 

annual simulation runs for herbage growth were performed in twenty-eight plots by adjusting 

parameters accordingly for each climate grid, land type, soil family and grass species. Daily 

grass growth simulations at each plot were performed between July 2007 and June 2017 

following the summer season weather calendar to produce 11 plot-by-year assessments. Model 

outputs from the first 10 year-lead in period (2007 and 2016) were discarded to allow 

stabilisation of model parameters and output from the 2017 growing season were used to 

calibrate the model.  

 

5.2.5 Analysis of model outputs 

The model outputs analysed included daily grass growth rate (kg DM ha-1d-1) and biomass 

production (kg DM ha-1). A standard procedure for evaluating performance of models 

involving calculation of summary statistics (mean, minimum, maximum, mean bias), root 

mean square error (RMSE), decomposition of RMSE (bias, slope, and random components) 

and graphical analysis of residuals (Mcphee and Walmsley, 2017) was used to analyse the 

measured, remotely-sensed and simulated data. In fitting values of measured or remotely 

sensed biomass with model predicted values, simulated biomass was used in the x-axis as they 

are assumed to be without errors. Values of measured and remotely sensed herbaceous AGB 

that poorly represented modelled values in corresponding plots were discarded from model 

fitting as outliers. Model parameters were adjusted until mean biomass yield simulated by the 

SGS pasture model was maximised within 5 % of measured and remotely sensed biomass. The 

coefficient of determination (r2) was used to measure the precision with which the model 

predicted measured or remotely sensed herbaceous AGB. A plot of residuals versus predictor 

variables was used to assess the envelope of acceptable precision around the line of zero 

deviation and the proportion of points that lie within it (Mitchell and Sheehy, 1997). The RMSE 

was included as the appropriate measure for assessing the predictive accuracy of a model 

calibrated with parameters from independent experiments (Tedeschi 2006). 
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5.3 Results 

Annual mean herbaceous AGB measured in all plots retained for model fitting was 3877 kg 

DM ha-1 whilst the modelled mean 3071 kg DM ha-1. Minimum measured and simulated 

biomass was 1450 and 2968 kg DM ha-1, respectively whilst maximum values of 5370 and 

3157 kg DM ha-1 corresponding to measured and simulated biomass were obtained. The mean 

bias was 807 kg DM ha-1 whilst the relative bias of 0.21 was obtained. The relationship between 

measured and modelled herbaceous AGB showed that the SGS model represented herbage 

biomass reasonably well, accounting for up to 60 % variation in herbaceous AGB (r2 = 0.57; P 

< 0.01) (see Figure 5.4 (a)). Figure 5.4 (b) is a plot of residuals versus predictor variables which 

shows the deviation of individual predictions from the paired observations (line of zero 

deviation) for the whole dataset. The results show that 56 % (9 of 16) of all predictions of 

herbaceous AGB fell within the 95 % confidence limits of their respective observations whilst 

25 % (4 of 16) and 19 % (3 of 16) were under- and over-predictions, respectively. The RMSE 

calculated from the study revealed that model outputs deviated from the corresponding field 

measured herbage biomass by 820 kg DM ha-1. Modelled and remotely sensed herbaceous 

AGB were reasonably correlated across all land types with an r2 value of 0.46 for NDVI (Figure 

5.5).  
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Figure 5. 4: Comparison of (a) simulated and measured herbaceous AGB and (b) predicted 

values and residuals in all plots 
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Figure 5. 5: Comparison of simulated herbaceous AGB and Normalised Difference 

Vegetation Index (NDVI).   
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5.4 Discussion 

The relationship between measured and modelled herbaceous AGB showed that the SGS model 

represented herbage biomass reasonably well, accounting for up to 60 % variation in 

herbaceous AGB. Similar levels of agreements have been observed in other tropical regions 

where pasture models have been applied. Using the SGS model, Cullen et al. (2008) observed 

an r2 of 0.58 in subtropical perennial grasses in south-eastern Queensland whilst Doran-Browne 

et al. (2014) obtained an r2 of 0.6 in native C4 perennial and annual grasses in northern 

Australia. In mixed prairie, the APEX model underestimated growth of five individual 

herbaceous species  (r2 range from 0.25 to 0.67) (Zilverberg et al., 2017). In addition, the 

GPFARM model accounted for 66 % variability of observed forage production in mixed prairie 

(Andales et al., 2006). These agreements are below the commonly accepted level of high 

agreements (r2 > 0.8) for model calibration. High agreements between measured and predicted 

herbaceous biomass are generally obtained for empirical models because their parameters fit 

well with measured data (Thornley and Johnson, 2000; Wallach et al., 2014). Notwithstanding 

the high accuracy of empirical models, outputs still vary considerably in native pastures due to 

random spatial variability. In northern Australian rangelands, 47 to 64 % of end-of-season 

biomass predictions from GRASP were within 95 % confidence intervals of field data (Cobiac, 

2006). Such large deviations of individual seasonal predictions from measured grass biomass 

were observed in this study.  

High spatial variability in grass production is an inherent feature of semi-arid regions 

of Zimbabwe that exists at plot-scale (Kelly and Mcneill, 1980). For example, Svinurai et al. 

(2018) observed grass production to vary from 1340 to 7530 kg DM ha-1 in a season. Poilecot 

and Gaidet (2011) also observed native grass biomass yield to vary from 1433 to 4257 kg DM 

ha-1 in shallow sandy soils in northern lowveld game ranch of Zimbabwe. In undulating 

landscapes of lowveld regions, variability in grass production often results from uneven 

distribution of rainfall and high diversity of grass species which evolve from their competition 

for soil water and nutrients (Venter et al., 2003). This random variation leads to huge errors 

when predicting herbaceous AGB and could not be accounted for by the SGS model using the 

current parameter sets. It is thus challenging to obtain high agreements between measured and 

simulated variables in complex natural systems because natural variability is high (Oreskes et 

al., 1994). Also, the assumptions of linear regression could not be met, and this highlights the 

need for testing other assessment measures that do not consider individual seasonal predictions. 
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The use of plant parameters from literature gathered from times and locations not 

covered by field observations to calibrate the SGS model is subject to errors. The RMSE can 

be reliably used to assess the accuracy of models calibrated with such parameters derived from 

independent experiments (Tedeschi 2006). The SGS model predicted herbaceous AGB 

measured in respective sampling plots with a reasonable average error. Model outputs predicted 

the observed herbaceous AGB at an RMSE value (820 kg DM ha-1) which lies within the 

acceptable level of accuracy for estimating herbaceous AGB in southern African broad-leaved 

savannas. Trollope and Potgieter (1986) estimated a RMSE of 898 kg DM ha-1 from herbaceous 

data measured across seven vegetation types in the KNP using the disc pasture meter. Given 

that plant parameters used in this study were derived from times and locations not covered by 

field measurements, long-term simulations are required to further evaluate the SGS model’s 

stability are recommended.  

 

5.5 Conclusions 

An integrative and iterative procedure was used in this study to build parameter sets for 

calibrating the SGS model to simulate grass growth. The SGS model represented measured 

herbaceous biomass reasonably well, accounting for up to 60 % variation in herbaceous AGB 

at low average error (RMSE, 820 kg DM ha-1) despite there being a huge discrepancy in 

summary statistics and residuals. Model predictions were also significantly correlated with 

NDVI (r2, 0.52). These findings indicate that, when dynamic models are tested in natural 

systems, measures for individual predictions provide low performance scores while better 

scores are obtained with measures for whole set of predictions. The integrated workflow for 

parameterising and calibrating the SGSs pasture-simulation model developed in this study can 

benefit other model users in data-constrained environments. 
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CHAPTER 6  

Evaluation of the Sustainable Grazing Systems pasture simulation model’s predictive 

capacity 
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Abstract 

Whilst pasture simulation models enable a mechanistic assessment of grass growth, their 

outputs are associated with inherent uncertainty when applied in seasons and locations where 

field measurements of parameters used to calibrate the models are unavailable. To build 

confidence in using these models under such conditions, there is need for independent data to 

quantify errors associated with simulated outputs. This study was aimed at assessing the 

adequacy of the SGS pasture model in simulating grass growth over 26 years using parameter 

sensitivity analysis and comparison of model output with remotely sensed herbaceous AGB. 

Total end-of-season herbaceous AGB estimated by the rainfall- AGB model developed in 

Section 3.2.6.2. was used as independent data for testing model outputs. Adjustment of 

parameters for shallow mafic-gneiss derived soils in mid- and foot slope land types and U. 

mosambicensis and E. curvula resulted in higher growth rate of these species relative to native 

C4 grass simulated from default soil and plant parameter settings. Growth predictions of both 

U. mosambicensis and E. curvula were higher than yield estimates of default native C4 grass 

by 26 to 98 % between November and April in the mid- and foot slope land types. Across all 

land types, mean remotely sensed- and modelled AGB was 3644 and 1674 kg DM ha-1, 

respectively. The SGS model underestimated remotely sensed AGB by 51 % across all land 

types, with an overall mean bias error of -1970 kg DM ha-1. Despite these under estimations, 

model predictions were significantly correlated with remotely sensed herbaceous AGB (P < 

0.05) (r2 = 0.63 to 0.72; RMSE range = 981 to 1396 kg DM ha-1). These findings highlight the 

importance of testing measures for individual and whole predictions when evaluating process-

based models in natural environments. 
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6.1 Introduction 

Precision of WFMs relies on the model’s ability to use many input parameters and initial states 

at a wider scale that may be unknown in a landscape (Johnson, 2011). The parameters and 

inputs are highly variable in space whilst their adjustment in the model is required for upscaling 

point simulations. The process of parameterising and calibrating of simulation models includes 

errors associated with measurements of parameters in experiments and unavailability of 

parameters at specific locations and times. Similar uncertainties are found in the previous 

chapter in which soil and plant parameters and outputs from times and locations not covered 

by field observations were used to calibrate the SGS model. The fundamental test for building 

confidence in using system models involves quantifying the uncertainties through comparison 

of outputs from simulation models with observed data independent from model calibration data 

(Grant et al., 1997). Validation is a process that determine whether the behaviour of simulation 

model output has satisfactory accuracy for the model’s intended purpose over the domain to 

which the model is applied or not (Sargent, 2010). The process enables the general behaviour 

of the model to be examined to check for inconsistences with patterns for behaviour of the 

actual system.  

For measured data to be valid for use in simulation model validation, it must have been 

collected on the system specifically for developing and testing a model (Sargent, 2010). 

However, availability of appropriate, accurate and enough site-specific observed data of state 

variables remains a challenge (Walker and Langridge, 1996). It is difficult, time consuming 

and expensive to collect appropriate, accurate and enough data for validating simulation 

models. Only a few short-term grazing trials have been conducted specifically for modelling 

studies in the sourveld e.g. Dye and Walker (1987), Richardson’s Savanna model (Kazembe, 

2010; Richardson et al., 2000) and Illius et al. (1998). Short-term simulation experiments do 

not represent actual paddock conditions which are a result of long-term impacts of determinants 

in the rangeland system. As a result, there is little and old information known about the 

application of simulation models in ecology and management of sweetveld in Zimbabwe. There 

is need for alternative methods for evaluating the accuracy with which WFMs reproduce the 

known theoretical knowledge in regions where field observations are limited or not available. 

Use of combinations of validation techniques is a commonly accepted approach that 

can benefit model users (Tedeschi 2006), especially in data limited environments. Model users 

can benefit from exploring the behaviour of model outputs and where possible, behaviour of 

model output should be compared with behaviour of another model’s output (Sargent, 2010). 
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Behaviour of simulated grass growth rates can be examined to check for general consistencies 

with patterns and behaviour of the actual system. The outputs are usually compared with 

information published for different locations within a biome to identify any irregularities. 

While this form of model evaluation is essential, remote sensing is also important in providing 

long-term data for assessing simulation models (Angerer, 2012; Scanlon et al., 2005). 

 Herbaceous biomass modelling using remote sensing is increasingly becoming an 

attractive source of independent data for evaluating simulation models due to its large area 

cover and higher temporal frequencies of collection than field measurements. For example, in 

East Africa Jarlan et al. (2008) used SPOT at microscale whilst in southern Africa Scanlon et 

al. (2005) flux tower measurements have been used to evaluate a simulation model. Most of 

these studies incurred highly expensive equipment for in situ measurements rendering use of 

the approach ineffective for routine herbage monitoring. Herbaceous AGB modelled from 

cheap, medium resolution satellite images such as those in Chapter 4 can be matched with 

simulated outputs to validate WFMs.  

Once discrepancies in model output are adequately assessed, WFMs can be applied 

with confidence to predict grass growth and production on a timely basis. The information can 

help to enhance our understanding of the complex interactions that cause inherent variability 

in rangelands (Rickert et al., 2000). Pasture simulation models can also assist to identify 

suitable and effective management practices for maximising production of grasses and animals 

(Jones et al., 2017b). When used to forecast future events, the models can help to identify risk 

areas that require emphasis on management. This study was aimed at evaluating the adequacy 

of SGS modules of soil water and plant growth in predicting growth of productive native grass 

species that are the key determinants to animal productivity in sweetveld. 

 

6.1.1 Objectives  

The purposes of the study were to:  

• Test the effects of varying specific parameter values of identified soil-plant factors in 

the SGS pasture model on native grass growth rates and production. 

• Compare output from the SGS pasture simulation model with remotely sensed 

herbaceous aboveground biomass. 
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6.2 Materials and methods 

6.2.1 Description of sites and parameters used for model evaluation  

The geographical location and ecological characteristics of the Nuanetsi beef cattle ranch have 

been described in Sections 3.2.1 and 4.2.1. In order to select sites for validating the SGS model, 

grazing management units were subjectively delineated in each land type based on distinctive 

rainfall regimes. This was achieved by overlaying a 10-km resolution map of CPC-ARC2 

rainfall product on the elevation map (Figure 5.3) of Nuanetsi ranch. The rainfall regimes were 

characterised from the gridded map according to median rainfall, coefficient of variation and 

frequency of drought events experienced in each grid-cell between 1992 and 2017. This process 

led to selection of three grid cells that represented the land types and rainfall regimes found 

across the ranch (see Table 6.1).  Elevation, latitude, and profile inclination (%) at each grazing 

management unit were derived from the DEM.  

 

Table 6. 1: Landscape attributes of simulated paddocks 

Land type 

(Grid cell) 

Median 

rainfall 

(mm) 

C.V 

rainfall 

(%) 

Drought 

events 

(1992-

2017) 

Paddoc

k ID 

Location 

(Lat/Lon) 

Elevation 

(m) 

Paddock 

size (ha) 

Woody 

cover 

(%)  

Crest 

(I) 

452 39 6 B33 -21.37 31.07 517 627 18 

B34 -21.38 31.10 510 680 23 

Vet 2 -21.39 31.07 511 1131 21 

Mid slope 

(H) 

447 36 5 B19 -21.41 30.99 480 489 16 

B20 -21.43 30.98 484 457 14 

B30 -21.43 31.01 483 526 11 

Foot slope 

(B) 

468 34 4 A18 -21.18 31.12 448 518 24 

A24 -21.21 31.13 454 1010 26 

A25 -21.20 31.11 464 434 22 
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The final grazing management units that were chosen for validating the SGS model in each 

land type are shown in Figure 6.1. Each land type was assumed to contain vegetation that has 

a unique response to rainfall due to natural variability within the landscape, resource (water 

and nutrients) redistribution and their interactions that influence the level and direction of 

change in herbaceous AGB production. In order to evaluate the SGS model using independent 

data, many plot-specific parameter values described in Chapter 5 were averaged to single 

values that were generic to each land type. The generic parameters that represent common land 

types within a land system enables the model to be applied to other similar land systems within 

the lowveld region. The plots to which the SGS model was calibrated in Chapter 5 were 

grouped according to soil (land) type, herbaceous species composition and a combination of 

both. 

 

 

 

 
Figure 6. 1: Location of model validation sites and ARC2 rainfall grid-cells overlaid on 

elevation map of Nuanetsi ranch 
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Based on field results from CSRI (2003) for foot slope soil and CSRI (2007) for crestal and 

mid slope soils, there were two soil families in each land type. In crest and mid slope land 

types, mafic gneiss soil family was found in 79 % (11 of 14) and 65 % (11 of 17) of the surveyed 

pits, respectively. In foot slope soil, fine alluvium soil family was found in 60 % (6 of 10) plots. 

The plots occurring in the above dominant soil families were grouped to represent generic 

parameters of the respective land types. All values of individual parameters were averaged 

across each year and each land type to produce single values for that land type. The resultant 

soil parameters used for validating the SGS model are presented in Table 6.2.  

 

Table 6. 2: Soil geology and physical properties of sites used for model validation 

Soil Catena Geology/ 

parent 

material 

Range 

(mean) 

altitude 

(m) 

Texture Slope 

(%) 

Soil depth (cm) 

Total Effective A B1 

Crestal soil Mafic 

gneiss 

480-500 

(487) 

mSaL/  

mSaL or 

mSaCL 

2 50-

100 

79.9 17.17 25 

Mid slope 

soils 

Mafic 

gneiss 

435- 480 

(441) 

mSaL/  

mSaL or 

mSaCL 

2 40-60 62 11.3 18.6 

Foot slope 

soils 

Med 

Alluvium 

380- 415 

(404) 

cLS/ mLS-

mSL 

1 > 150 152.5 12.8 16.4 

mSaL/ mSaL or mSaCL, Medium grained sandy loam topsoil over medium grained sandy loam or sandy clay 

loam sub-soil; cLS/ mLS-mSL, coarse grained loamy sands topsoil over medium grained loamy sands to sandy 

loams. 

 

6.2.2 Model evaluation techniques 

There are no formally acceptable and completely objective techniques for validating the 

adequacy of predictions from simulations models (Grant et al., 1997). The best approach to 

assess the adequacy of performance of mathematical models when comparing model-predicted 

and observed values is to use a variety of evaluation measurements (Sargent, 2010; Tedeschi, 

2006). Other than the single-season herbaceous biomass data, there were no other historical 

observed data, yet the data is needed for testing simulation models. To close this data gap, 

parameter sensitivity analysis and comparison of model output with output from other reliable 

models are the techniques that were used to evaluate the SGS model. Parameter sensitivity 

analysis was conducted to test the effect of adjusting different parameters of three land (soil) 

types and two pasture species. All parameters that were adjusted in SGS model to suite site 

conditions were obtained from literature and therefore hold some level of uncertainty. To test 

the extent of change that modifications to parameter settings made in the soil water and grass 

growth modules, the model was also run using default parameter settings for the respective soil 
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types and grass species family. To evaluate the model using statistical tests, estimates of 

herbaceous AGB predicted by a rainfall-based model for herbaceous AGB model for grid cells 

corresponding to sites where long-term model simulations were performed were used. The 

rainfall-herbaceous AGB model was developed from satellite-based estimates of rainfall and 

remotely sensed herbaceous AGB and, validated as outlined in Section 4.2.4.  

 

6.2.3 Model simulations 

Plot-specific parameters developed in Chapter 5 were reduced to single, generic values for 

common soil families found at Nuanetsi ranch to enable the model to be evaluated on a long-

time basis and be applicable to similar soil types in the region. Based on results from soil 

surveys conducted by CRSI, fine alluvium soil family was common in 60 % of sampled pits in 

foot slope (CSRI, 2003) while mafic gneiss was dominant in 79 and 65 % of the pits surveyed 

in the crest and mid-slope land types, respectively (CSRI, 2007). All values for each individual 

parameter were averaged across each soil family to produce a single value for the land type. A 

simulation experiment was then conducted over 36 years (1982 to 2017) to analyse the extent 

of improvement made by parameter adjustments and to check for deviations of model 

behaviour from real system behaviour. Firstly, daily grass growth simulations were run 

separately for all combinations of land type and pasture species using adjusted parameter sets 

in three 500-ha paddocks constituting a grazing management unit. Then, growth simulations 

of default native C4 grass were performed using default parameters of duplex and medium-

texture soils corresponding to foot slope and, crest and mid-slope soil types. Another simulation 

experiment was conducted over the same period to show the importance of the hypothesis that 

leaf regrowth rate after defoliation is dependent on carbohydrate reserves in roots and residual 

dry matter of stubble. Simulations were performed with grass cut to residual dry matter levels 

of 500, 750 and 1000 kg DM ha-1 at the end of each month. Observed values of initial conditions 

of state variables were considered as parameters because the data was not available at the start 

of simulations. In addition, outputs in the first 10-year lead-in period of all simulations were 

discarded to allow the model to stabilise. Thus, outputs between 1992 and 2017 seasons were 

used respectively to calibrate and evaluate the SGS model.  
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6.2.4: Analysis of model output 

The model outputs analysed includ daily grass growth rate (kg DM ha-1d-1) and biomass 

production (kg DM ha-1). Daily outputs were averaged over each calendar month to convert 

them to values of monthly averages for each paddock. Model outputs for the three paddocks 

were averaged to come up with weighted grass growth rates and production for each grazing 

management unit. The behaviour of model outputs was explored qualitatively by examining 

the percent decrease or increase in outputs resulting from default and adjusted parameters. 

Percentiles of monthly growth rates were then calculated, and comparisons were made between 

outputs obtained from default and adjusted parameters of soil and grass species. To ascertain 

the reliability of outputs, the growth rates were compared with values published in the literature 

for broad-leaved savannas of south-central Africa.  

A standard procedure for evaluating performance of models involving calculation of 

summary statistics (mean, minimum, maximum, mean bias), root mean square error (RMSE), 

decomposition of RMSE (bias, slope, and random components) and graphical analysis of 

residuals (Mcphee and Walmsley, 2017) was used to analyse the measured, remotely-sensed 

and simulated data. In fitting values of measured or remotely sensed biomass with model 

predicted values, simulated biomass was used in the x-axis as they are assumed to be without 

errors. The coefficient of determination (r2) was used to measure the precision with which the 

model predicted measured or remotely sensed herbaceous AGB. A plot of residuals versus 

predictor variables was used to assess the envelope of acceptable precision around the line of 

zero deviation and the proportion of points that lie within it (Mitchell and Sheehy, 1997). The 

RMSE was included as the appropriate measure for assessing the predictive accuracy of a 

model calibrated with parameters from independent experiments (Tedeschi 2006). 
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6.3 Results 

 

6.3.1 Sensitivity analysis 

The grass production predicted in this study portray a typical growth and yield pattern known 

for grasses native to the broad-leafed savanna of southern Africa (Figures 6.2 and 6.3). In 

winter, the growth rates of U. mosambicensis predicted using adjusted parameters were low, 

with a mean, median and maximum yield falling below 0.06, 0.0 and 0.6 kg DM ha-1 d-1, 

respectively. The growth rate increased rapidly, reaching mean, median and maximum peak 

biomass corresponding to 7.3, 4.5 and 33 kg DM ha-1 d-1 in January, respectively. The mean 

growth rate across land types between November and March ranged between 2.9 and 7.2 kg 

DM ha-1 d-1 whilst the median growth rate varied from 0.9 to 5.5 kg DM ha-1 d-1 (see Figure 6.2 

(a)). However, there was an abrupt 18 % decline in the median growth rate of U. mosambicensis 

and E. curvula stands in mid- and foot slope land types in January while a steady growth rate 

was maintained in crest land type between December and February (Figure 6.2 (a)). The 

median growth rate of U. mosambicensis in mid-slope land type was 7 to 24 % high relative to 

the upper slope land type, at peak period (December to February).  

The highest growth rates of U. mosambicensis were predicted between December and 

February when residual DM was cut at 750 kg DM ha-1 followed by growth rates from 

simulations run with cutting set at 1000 kg DM ha-1. The least growth rate predictions were 

obtained when residual DM was cut at 500 kg DM ha-1 (Figure 6.2 (b)). The median growth 

rate of U. mosambicensis stands cut to 750 and 1000 kg DM ha-1 residual DM suddenly dropped 

by 12 and 18 %, respectively in January whilst grass cut at residual DM of 500kg DM ha-1 

maintained a stable growth rate between December and February.  
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Figure 6. 2: Modelled median grass growth rate (kg DM ha-1d-1) of Urochloa mosambicensis 

across (a) land types and (b) grazed residual dry matter levels. 
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Simulated grass production portrayed a seasonal pattern identical to that of growth rate (Figure 

6.3). Between November and March, absolute monthly grass biomass yield ranged between 

115 and 228 kg DM ha-1 across all land types. The maximum monthly grass biomass yield 

during this period was 209, 220 and 228kg DM ha-1 for crest-, mid- and foot-slope land types, 

respectively. Adjustment of parameters for moderately deep soil in crest land type led to high 

growth by the default native C4 grass relative to local grass species (Figure 6.3 (a)). However, 

in shallow mafic-gneiss derived soils in mid- and foot slope land types, parameter 

modifications resulted in lower growth rates of default native C4 grass compared to local 

grasses (Figure 6.3 (b) and (c)). Grass production between local grass species showed less 

difference in all land types. Grass yield predictions for both U. mosambicensis and E. curvula 

between November and April were higher than yield estimates of default native C4 grass by 

29 to 98 % and 26 to 86 % in mid- and foot slope land types, respectively (Figure 6.3 (b) and 

(c)). These differences were biggest between November and January. 
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Figure 6. 3: Modelled absolute monthly herbaceous aboveground (kg DM ha-1) of default 

native C4 and adjusted grass species parameters in (a) upper-, (b) mid- and (c) foot slope land 

types. 
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 6.3.2 Comparison of SGS model output with remotely sensed herbaceous aboveground 

biomass 

As with predictions for field biomass data, there were huge discrepancies in summary statistics 

and residuals between simulated and remotely sensed AGB across all datasets. The mean 

remotely sensed AGB varied between 3644 and 4170 kg DM ha-1 whilst the mean modelled 

AGB ranged between 1674 and 1997 kg DM ha-1. Minimum remotely sensed and simulated 

biomass was 1445 and 1249 kg DM ha-1, respectively whilst maximum values of 7214 and 

2281 kg DM ha-1 corresponding to remotely sensed and simulated biomass, respectively, were 

attained. The SGS model had a tendency of underestimating remotely sensed AGB by between 

51 and 59 % across all land types. The mean bias ranged from -1970 to -2461 kg DM ha-1 

whilst the relative bias varied from -0.51 to -1.18. Despite the underestimation of remotely 

sensed herbaceous AGB by the SGS model, the model predictions were significantly correlated 

with remotely sensed herbaceous AGB (P < 0.05), accounting for between 63 and 72 % of the 

variation (Figure 6.4 (a)). A plot of residuals versus predictor variables shows the deviation of 

individual predictions from corresponding observations across all land types (Figure 6.4 (b)). 

The results illustrate that 39 % (19 of 49) of all predictions of herbaceous AGB fell within the 

95 % confidence limits of their respective observations whilst 30.6 (15 of 49) and 30.6 % (15 

of 49) were under- and over-predictions, respectively. The RMSE of all predictions across land 

types was 981 kg DM ha-1 and ranged from 1122 to 1396 kg DM ha-1 with predictions in the 

upper slope having the lowest accuracy.   
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Figure 6. 4: Plot of (a) remotely sensed and modelled grass biomass and (b) residuals and 

model predicted values of grass biomass 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

117 

 

6.4 Discussions 

6.4.1 Sensitivity analysis 

The long-term patterns of pasture growth displayed by model outputs agree with the typical 

behaviour of summer growth of perennial grasses in the tropical biome of southern Africa. For 

example, low growth rates of DM were observed in winter because there is no rainfall and 

temperatures are low whilst the grass growth rate in summer increased rapidly because of high 

rainfall and temperatures which can rise beyond 30°C. The SGS model also represented the 

effects of mid-summer droughts on median grass growth reasonably by showing a decline in 

growth rate in January (Figure 6.2). Frequent mid-summer droughts or dry spells are a 

characteristic feature of arid savannas receiving annual rainfall below 600 mm in the Limpopo 

river basin (Huntley, 1982). This was confirmed by the DM accumulation pattern of outputs 

predicted by the SGS model. Also, there is a good agreement between estimates of monthly 

growth rates predicted by the SGS model and growth rates measured in other rangelands of 

southern Africa. In the south-eastern lowveld region of Zimbabwe, Kelly and Walker (1976) 

observed daily growth rate to vary from 9 to 11.5, 6.6 to 11 and 5 to 10 kg DM ha-1d-1 in open 

vegetation corresponding to lightly-, moderately- utilised and non-utilised stands, depending 

on seasonal rainfall. Creswell et al. (1982) observed a peak mean herbaceous biomass growth 

rate of 5kg DMha-1 in mid-November in a semi-arid savanna of northern South Africa. Thus, 

the comparability of growth rates of local grasses predicted by the model to those observed in 

the region builds confidence in parameter sets used.   

Default model parameters were intentionally adjusted within acceptable ranges 

representative of the southern African savanna biome to explore their effect on grass growth. 

This was necessary because the optimum growing conditions of local native grasses and their 

responses to available soil water and nutrients differ from those in tropical regions of Australia 

where the SGS model was developed and tested. The model was able to illustrate the effect of 

adjusted soil depth parameters on soil moisture infiltration and retention and subsequent plant 

growth, meaningfully. For example, in deep sandy loam soils of arid southern Australia, 

summer-season growth rates of 50 or more kg DM ha-1d-1 have been predicted (Descheemaeker 

et al., 2014), that is, 65 % higher than maximum growth rates simulated in this study. The 

model output from modified parameters also successfully showed the pattern in grass 

production known to exist along the slope of lowveld granitic/gneiss catena. Dye and Walker 

(1980) also observed lower grass productivity in crest- relative to mid- and foot- slope land 

types. These results illustrate that the same model structure with different parameters for soil 



 

118 

 

and plant species produced grass growth patterns that are consistent with expectations for 

lowveld granitic/gneiss catena. This gives confidence in applying the model to new regions. 

As with the growth rate, the pattern of grass production simulated in this study was 

expected for shallow sandy-loam soils. Similar grass production trends have been observed in 

shallow crest soils of the southern region of Kruger National Park mean monthly grass 

production ranging from 40 to 160 kg DM ha-1 between December and June (Alard 2009). In 

Bloemfontein, monthly growth rates ranged between 100 and 400 kg DM ha-1 between 

November and March, depending on seasonal rainfall  (de Waal, 1990). These findings suggest 

that local variation in grass production in semi-arid rangelands of southern Africa could be 

caused by natural variability in soil moisture and soil nutrient availability that cannot be 

simulated by point-based models.  

 

6.4.2 Comparison of SGS model output with remotely sensed herbaceous aboveground 

biomass 

Findings from this study demonstrate that the SGS model can display a logistic growth and 

response of native grasses to seasonal effects of climate under south-central African conditions. 

The modelled herbaceous AGB showed an acceptable level of representation of remotely 

sensed herbaceous AGB for African savanna. These findings concur with Boone et al. (2002) 

who obtained a good illustration (r2 ≥ 0.60) between SAVANNA model outputs and NDVI 

derived from low spatial resolution (1-km) AVHRR across grass-, shrub- and woodlands in 

northern Tanzania. Using the same model and satellite product in the Kalahari thornveld and 

shrub bushveld in north western South Africa, Boone et al. (2004) found reasonable agreement 

between NDVI and modelled vegetation biomass (r2 = 0.42). Also, Popp et al. (2009) found 

that NDVI account for most variation (r2 = 0.69 to 0.79) is modelled vegetation biomass in the 

Nama karoo shrub savanna of southern Namibia. The SGS model can thus be used with some 

confidence basing on its precision level that is comparable to other simulation models. 

As mentioned earlier about the comparison of measured and simulated data in complex 

natural systems, there are also challenges associated with comparing the output of another 

model with simulated herbage biomass. Climate variables are important in systems analysis of 

rangelands as they affect herbaceous biomass production (Scholes and Walker 1993). Daily 

rainfall and solar radiation inputs used in this study were derived from interpolation of satellite 

estimates whilst temperature was spatially interpolated using data collected at two sparse 

weather stations. The process of deriving these inputs might have introduced substantial 
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amounts of non-random errors due to the absence of measured weather data at the study area. 

Thus, the climate data used in this study has its flaws which might have affected model outputs. 

However, given that weather data was not available on the ranch, satellite-based and spatially 

interpolated data were the only suitable choices and, were considered as representative.  

As with predictions for field biomass data, low performance scores for measures of 

individual predictions were observed between simulated and remotely sensed herbaceous 

AGB. Minimum and maximum herbaceous biomass production simulated in this study are also 

above and below the respective production often observed in southern African savanna 

(Mutanga and Rugege 2006). Low and high herbaceous biomass yield responses to 

corresponding extreme dry and wet years are often observed in semi-arid regions where rainfall 

variability is high. Failure by the SGS model to reproduce these dynamics as expected for 

rangelands indicates the model’s limited capacity to simulate some of the biophysical processes 

involved. Poor agreement between simulated and remotely sensed biomass values can be 

attributed to errors of climate inputs and parameters cited previously and those associated with 

variation in spectral reflectance properties of herbaceous vegetation. Variation in herbaceous 

vegetation reflectance is affected by vegetation structure, density and condition which vary in 

space due to wide species diversity and grazing (Kumar et al., 2016). Given the inherent 

uncertainties associated with inputs, parameters and remotely sensed biomass used in this 

study, it is imperative to test the extent to which the model predicts responses in the whole set 

of predictions. 

A comparison of the overall prediction error of a simulation model with the error of the 

empirical remote sensing model is an alternative test that provides confidence in the 

performance of simulation models. The SGS model output predicted remotely sensed 

herbaceous AGB at an accuracy level that is comparable to field measurements. The average 

errors values of simulated herbaceous AGB (981 to 1396 kg DM ha-1) fall within the range of 

errors of measured (930 kg DM ha-1, Svinurai et al. 2018) and satellite-derived herbaceous 

biomass (1171 kg DM ha-1, Dwyer 2011) for broad-leaved savannas of southern Africa. In the 

savannas of KNP, Mutanga and Rugege (2006) found RMSEs ranging from 830 to 1374 kg 

DM ha-1 from geospatial and remote sensing regression modelling, respectively whilst Dwyer 

(2011) found the RMSE to vary between 1171 and 1711 kg DM ha-1. These results imply that 

when model parameters are derived from independent experiments to represent natural 

systems, statistical tests that consider complete set of predictions provide plausible assessment 

of model accuracy. 
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The findings from this study suggest that individual seasonal predictions deviate 

considerably from measured and remotely sensed herbaceous AGB and, the high natural 

variability of southern African savannas is the major source of uncertainty. When summarised, 

under- and over-predictions refute each other to produce acceptable error values. This is 

supported by predicted growth rate values of U. mozambisensis which typified growth rates of 

grasses native to southern Africa savannas. Errors of SGS model outputs associated with the 

modified inputs and parameters fell within acceptable levels of measurement error. Therefore, 

the parameter sets developed in this study can be used with some confidence as they give 

overall model error comparable to other empirical methods of herbaceous biomass estimation 

in the region. Further testing of the SGS model under a variety of environmental conditions in 

southern Africa is required to gain more confidence in applying the model. 

 

 6.5 Conclusions  

The behaviour of SGS model outputs was successfully explored qualitatively by examining the 

sensitivity of outputs resulting from default and adjusted parameters and quantitatively in a 

linear regression between remotely sensed- and model-predicted values. The model predicted 

the typical growth pattern known for grasses native to semi-arid region of southern Africa. 

Growth predictions of U. mosambicensis and E. curvula were higher than yield estimates of 

default native C4 grass by 26 to 98 % between November and April across mid- and foot slope 

land types. Model predictions were also significantly correlated with remotely sensed AGB at 

reasonable overall performance error (RMSE, 981 kg DM ha-1). However, modelled AGB 

underestimated remotely sensed AGB across land types. These findings indicate that, when 

dynamic models are tested in natural systems, measures for individual predictions provide low 

performance scores while better scores are obtained with measures for whole set of predictions. 
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CHAPTER 7  

Modelling the effects of grazing strategies on native grass production, animal intake and 

growth in Brahman steers 
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Abstract  

Inadequate information about the long-term effects of grazing strategies on native grass 

production and animal growth poses limitations to sustainable management of beef cattle. A 

simulation study was conducted over 20-years to analyse the implications of different stocking 

rates (SRs) and multi-paddock grazing systems for Brahman steers grazing in mopane tree-

shrub savanna. Simulations included three multi-paddock grazing systems (2-, 3- and 4- 

paddocks per herd) and four SRs that were compared for their effects on herbage production, 

dry matter intake (DMI) and steer liveweight gain (LWG) using the SGS model. The four SRs 

included the recommended SR (10haLU-1), 30 % higher (7 haLU-1) and, 50 and 100 % lower 

(15 and 20 haLU-1, respectively) SR. Overall, no observable differences were found in herbage 

production and DMI response to all treatments for multi-paddock grazing systems and SRs. 

Average herbage yield and animal production of weaners were 2540 kg DM ha-1 and 5 kghead-

1day-1, respectively. Also, multi-paddock grazing effects on animal production were 

approximately similar across treatments but differential responses of LWG to SRs were more 

pronounced. Weaners stocked at the recommended SR grew persistently at high rate, reaching 

a maximum LWG of 234 kgyear-1 but animal productivity was adversely affected in the long-

term. Increasing the recommended SR by 30 % resulted in reduced DMI and LWG of weaners 

in the short term whereas reducing the benchmark SR by 50 % or more enabled persistent high 

animal intake and growth in the long term. These results provide a useful criterion for choosing 

an effective SR to achieve sustained herbage and animal production with minimum risk. The 

findings suggest that ranch managers should put more management emphasis on SRs over 

multi-paddock grazing systems since proper SRs enable maximised rangeland and cattle 

productivity over time.  
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7.1 Introduction 

Despite their importance to economic development, extensive beef production systems in semi-

arid rangelands of southern Africa have evolved from highly variable climatic conditions 

(Walker et al., 1981). Management of these rangelands is difficult as decisions must be adapted 

to large variation of seasonal climate and persistent droughts. In the past fifty years, grazing 

experiments led to advances in grazing management concepts aimed to enhance the decision-

making skills of ranch managers (Stuth and Maraschin, 2000). However, experiments are have 

limited scope to represent the huge variation in climate and environment in rangelands and, 

have often provided inconclusive results about the viability of grazing strategies across 

locations (Briske et al. 2008). Moreover, there are disagreements between experimental and 

experiential knowledge about the effects of grazing systems and SRs on forage and animal 

production (Teague et al., 2013). Recently, research emphasis has shifted to the overriding 

interactive influence of climate variation and SRs on forage production and cattle weight gains 

(Reeves et al., 2014, 2013). For research to be valuable to managers, there is need for 

embracing a systems analysis approach which enables recommendations to be made at grazing 

management unit level based on long-term, landscape level changes.  

Whole farm systems models give quantitative description of interactions of components 

in rangeland systems, some of which have opposing effects and are too complex to be analysed 

by the human mind (Rickert et al., 2000). Simulation models provide state variables of the soil-

plant-animal system that enable the analysis of the long-term growth patterns of herbage and 

cattle relative to climate conditions (Doran-Browne et al., 2014; Fang et al., 2014). In southern 

African savanna rangelands, previous efforts in modelling the impacts of grazing strategies 

have been limited to deterministic and stochastic approaches (Illius et al., 1998; Richardson et 

al., 2000), mostly applied on a short-term basis (Kazembe, 2010). These types of models, 

however, are founded on animal component models that do not accurately predict body 

composition due to lack of detailed and accurate experimental data (McNamara et al., 2016). 

However, fat and protein deposition are influential variables for predicting nutrients 

requirements for growth in animals which vary with breeds (Tedeschi, 2019). Given that 

mechanistic models contain default parameters for body composition that are adjustable across 

genotypes, they offer model users in resource-limited regions opportunities to adequately 

represent the dynamics of metabolism and growth. Thus, extending the use of mechanistic 

models to long-term impact assessments of grazing strategies will assist ranch managers in 

making strategic decisions.  



 

124 

 

Process-based models (PBMs) are a subset of mechanistic models that explicitly 

integrate different levels of biological organisation to understand the behaviour of grazing 

systems and to compare the productivity and sustainability impacts of management practices 

(Tedeschi, 2019). The models have many built in management options that enable detailed 

simulation and impact analysis of management actions. In semi-arid rangelands of southern 

Africa, SR and adequate resting are key management factors that influence animal production 

(van de Pol and Jordaan, 2008). Stocking rate causes variability in herbaceous vegetation 

community and production (Derner and Hart, 2007) and animal weight gains (Derner et al., 

2008), with the grazing effects varying with location, climate and timing and period of grazing 

(Teague et al., 2008). The interactions between biophysical and management factors are 

complicated and difficult to quantify or comprehend yet they are important in decision making. 

There is need, therefore, for broadening experimental knowledge by using PBMs that 

effectively incorporate soil, plant, and animal inputs to explicitly represent the complex 

interactions in rangelands and improve management planning.   

Process-based models have been widely applied to assess the influence of grazing systems 

and SRs on rangeland and cattle production in the wet and dry regions of North America  (Fang 

et al., 2014) and northern Australia (Doran-Browne et al., 2014), respectively but rarely in 

southern African rangelands. Nevertheless, the current SRs for Zimbabwean rangelands are 

still based on archaic recommendations for agroecological regions (Vincent and Thomas, 

1960). Considering the increase in dry years and decrease in wet years that occurred in the 

region after the 1970s’ global climate shift (Gaughan et al., 2016), there is possibility that the 

seasonal dynamics of herbage production and livestock carrying capacities changed too. This 

emphasises the need for re-evaluating grazing strategies under changing grazing pressures to 

prevent degradation of herbaceous vegetation to a less productive community. Process-based 

models provide useful information needed to improve ranch managers’ skills for selecting 

effective long-term SRs that avoid deterioration of herbage condition (O’Reagain et al., 2014). 

These models are capable of resolving the proper combination of grazing systems and SRs, 

thus enabling ranch managers to choose grazing strategies that maintain plant vigour, 

composition and productivity (Teague et al., 2013). This study, therefore, aimed to parametrise 

the animal module of the SGS model and use the whole model to analyse the effects of multi-

paddock grazing systems and SRs on herbage production, intake, and growth of Brahman 

weaner steers. 
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7.1.1 Objectives  

The aims of this study were to: 

• parameterise the animal sub module of the SGS pasture model to simulate growth of 

Brahman weaners in a south-central African savanna. 

• apply a newly parameterised SGS model to analyse the effects of multi-paddock 

grazing systems and stocking rates on herbaceous AGB production, intake and growth 

of beef weaner steers. 

 

7.2 Materials and methods 

7.2.1 Description of the commercial beef ranching system 

Zimbabwe has about 5 million beef cattle and about 75 % of the herd is raised under extensive 

management in four southern provinces which have comparative advantages for commercial 

beef production (Mavedzenge et al., 2006). The commercial beef systems are based exclusively 

on exotic breeds which are dominated by the Brahman genotype. To evaluate the impact of 

grazing strategies, Nuanetsi cattle ranch was chosen as the representative farm which 

implements the animal husbandry practises widely used in southern Zimbabwe. The ranch lies 

in the semi-arid region with a long-term annual mean rainfall of 460 mm and has an area of 

113 9.13 km2. The area is predominantly covered by Colophospermum mopane tree/shrub 

savanna and a sub canopy layer of native, multispecies herbaceous community. The dominant 

soil type is dark brown, shallow chromic luvisol of medium texture that is formed from mafic-

gneiss parent material. A detailed ecological description of the ranch is provided Sections 3.2.1, 

4.2.1 and 5.2.1. Given its large spatial coverage, the ranch presents a complicated land use 

system which requires high level of management for viability of large herd sizes. 

The ranch operates an extensive ‘breed and sell’ beef production system with a capacity 

of 10000 heads. The ‘breed and sell’ beef production system involve two intermeshed systems, 

that is, a breeding system of cows with calves for herd replacement and bulls and, cows with 

bulls producing steers and heifers for sale. The paddocks range in size from 350 to 1500 

hectares with an average size of 500 hectares. Depending on size, each paddock has up to 3 

water points that are sited strategically to achieve homogenous use of forage resources. Each 

herd is managed in a grazing management unit comprising of 2, 3 or 4 paddocks. Cows are 

bred between December and March so that calving would occur in summer and, are culled 

based on their performance records. Supplementation with protein-rich supplements is done in 

some dry seasons when necessary. Calves, i.e. progeny less than 120 kg, are weaned at 7 



 

126 

 

months of age, reared on the veld until they reach 18 months at which they are either upgraded 

to 1-year old steers and heifers or sold. Animal productivity is very high and up to 100kg per 

head per year post-weaning weight gain can be achieved. 

  

7.2.2 The animal growth modelling tool 

7.2.2.1 Overview of the SGS animal module  

The SGS animal module was developed by Johnson et al. (2012) with the intention of 

integrating it with the pasture module into a whole-system biophysical model. The whole-

system model is meant to simulate animal growth and its response to pasture, forage, 

concentrate and mixed ration when supplied as combined feed (Johnson, 2016). The animal 

module was developed to simulate intake in cattle and sheep in relation to feed composition 

(protein, neutral detergent fibre (NDF) and neutral detergent solubles (NDS)), animal weight 

and pasture quality and availability. The intake is then converted into ME which is used for 

metabolic processes of growth, maintenance, lactation and pregnancy in the simulation, thus 

affecting these processes directly. 

Energy dynamics in the animal’s body depend on the balance between ME intake and 

the ME requirement for a class and breed of animal. Growth and energy dynamics are simulated 

in response to energy available in the body, which include water, protein and fat (Johnson et 

al. 2012). The module simulates animal growth by partitioning metabolizable energy intake 

into maintenance and growth or pregnancy, lactation and nitrogen dynamics which were 

recently included in the model by Johnson et al. (2016). Animal protein content determines the 

state of metabolism and its growth is simulated as a function of protein weight using the rate-

state, Gompertz equation denoted as:  

d𝑊𝑝

d𝑡
= µ𝑊𝑝e−𝐷𝑡  where; 

𝑊p is empty body weight protein content, 𝑡 (d) is time, 𝜇 (d-1) is initial specific growth rate 

for 𝑊p, and 𝐷 (d-1) is a parameter for the decay with time of the specific growth rate, μ is the 

Gompertz coefficient: initial protein specific growth rate during growth. The potential protein 

growth is thus the net accumulation of protein which is the difference between protein synthesis 

and degradation. To derive the actual protein growth from this equation energy available from 

intake is used.  

Fat growth is modelled as a secondary process related to protein growth and maximum 

potential fat fraction of body weight, a factor that varies throughout the growth of the animal 
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depending on total body weight. Body fat is used to provide metabolic energy for resynthesis 

of degraded protein to maintain the animal during time of low body energy reserves. The energy 

for protein resynthesis and activity energy provided by body fats take precedence over the 

growth of new tissue. Availability of energy also determines body composition during growth 

and at maturity. When energy intake is enough for potential protein growth and associated fat 

growth, normal growth occurs. Body fat content increases linearly with body weight under 

normal growth and the fat was modelled using the following equation as described by Johnson 

(2016): 

𝑓.𝐹,𝑛𝑜𝑟𝑚. = 𝑓.𝐹,𝑏.+ (𝑓.𝐹,𝑚𝑎𝑡,𝑛𝑜𝑟𝑚.− 𝑓.𝐹,𝑏. ) (
𝑊.𝑛𝑜𝑟𝑚.−𝑊𝑏

𝑊. 𝑚𝑎𝑡,𝑛𝑜𝑟𝑚.−𝑊𝑏
) where; 

𝑊𝑏, kg, is the birth weight, 𝑓𝐹, 𝑏 is the fat fraction at birth and subscripts 𝑚𝑎𝑡 and 𝑛𝑜𝑟𝑚 refer 

to ‘mature’ and ‘normal’. The model contains default parameters for energy that have been 

defined for energy densities and efficiencies of synthesis for protein and fat, and efficiencies 

of fat catabolism and protein degradation. 

 

7.2.2.2 Animal and feed management parameters 

The SGS animal module has many parameters for growth and reproduction that were not 

available at the mechanistic level required for all cattle classes found at the ranch and, thus the 

animal module was parameterised for steer calves only. The parameter values were prescribed 

using published literature whilst default values were maintained where information was not 

available (see Table7.1). A Gompertz coefficient of 2.6 % per day for initial specific growth 

rate of EBW protein content in Brahman cattle was used (Miguel et al., 2012). The fat growth 

coefficient of 0.03 kg fat per kg protein per day set in the model as the maximum daily fat 

deposition as a fraction of EBW protein content was also used for cattle (Johnson et al., 2012). 

The protein and fat content of body weight gain and expected body fat content at a given weight 

depend on rate of daily weight gain (National Research Council, 2000). Parameters for body 

fat content were adjusted for three levels of productivity i.e., average daily gain (ADG) of 0.6, 

0.8 and 1 kg for medium-frame beef cattle.  
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Table 7. 1: Animal weight, body composition and growth parameters used for Brahman 

weaner steers  

Animal parameter 

(units) 

Default 

Value 

Growth rate (kghd-1day-1) Reference 

0.6 0.8 1.0 

Birth weight (kg) 50 32 32 32 Pico et al. (2004) 

*Normal mature 

weight (kg) 

600 431 431 431 Schoeman (1996) 

Fat at normal 

mature weight (%) 

30 13.4 19.4 25.6 National Research Council 

(2000) 

Fat at maximum 

mature weight (%) 

45 14.5 21.4 28.5 National Research Council 

(2000) 

Gompertz 

coefficient: initial 

protein specific 

growth rate during 

growth (%/day) 

1.2 2.6 2.6 2.6 Miguel et al. (2012). 

*Body weight of steers at approximately 430 days of age. 

 

To assess the effect of manipulating animal body composition parameters and to select the 

growth rate representative of Brahman weaner steers stocked at moderate SR, the model was 

set to simulate animal growth using adjusted and default animal parameter sets and outputs of 

were compared with published experiments. The model adequately represented the 

characteristic growth patterns known for weaner steers raised in semi-arid rangelands of 

southern Africa (see Figure 7.1). Simulated median LWG ranged between 169 and 228 kghead-

1yr-1 and these predictions fall within the range of published weight gains for beef cattle stocked 

at moderate levels. For example, LWG between 82 and 220 kg head-1yr-1 have been observed 

in crossbred Brahman weaners stocked at medium SR (Fynn and Connor 2000) while modelled 

LWG of steers varied between and 250 kg head-1yr-1 (Kazembe 2010). Parameter sets for steers 

growing at an ADG of 1 kg produced LWG values closest to published literature and were thus 

used in all simulations for assessing grazing strategies. 
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Figure 7. 1: Liveweight of weaner steers weaned in July (even numbered years) and January 

(odd numbered years) under three growth rates. Dotted line represents the weaning weight of 

calves. 

 

The feed management parameters of the SGS were adjusted on the basis that beef cattle raised 

on sweetveld maintain or gain body weight during the dry season due to the presence of 

palatable browse that is consistently available throughout the year  (Barnes, 1979; Clatworthy, 

1998). Thus, the composition of forage supplement component in the SGS model was set to 

represent the average nutritive value of three browse species dominant in the study area namely, 

Colophospermum mopane, Combretum apiculatum and Grewia flavescenes. The CP content 

of foliage of these trees and shrubs range between 10.9 to 15.9 % (Walker, 1974),  10.5 to 15.7 

% (Barnes, 1979), 12.6 to 15.6 % (Clatworthy, 1998; Lukhele and Ryssen, 2003). An average 

value of 13 % CP was thus used in the model for the forage supplement. In vitro studies 

conducted by Lukhele and Ryssen (2003) show that NDF range from 32 % for C. apiculatum 

to 38 % for C. mopane while NDF digestibility range from 53 % for C. mopane to 64 % for C. 

apiculatum. Therefore, average values of 35 and 50 % corresponding to NDF % and NDF 

digestibility were used for forage composition in the model. The maximum forage intake was 

set at 2.5 % of mature body weight since the herbage in sweetveld is palatable and highly 

digestible. The CP %, NDF % and NDF digestibility values of 12, 20 and 60 % were set 
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concentrate composition in the SGS model based on recommendations of nutrient requirements 

for steers growing on native pasture (Sibanda, 1998).  

Preliminary model simulations were run to test whether animal production can be 

sustained with grass only, grass and forage supplement or grass supplemented with forage and 

concentrate. These simulations revealed that cattle under a grass-based diet persistently lost 

weight over time while adding concentrate to grass and forage in the animal diet provided 

marginal growth benefits (see Figure 7.2). Therefore, feed management parameters for grass 

supplemented with browse foliage were used in all simulations for evaluating grazing 

management impacts.  

 

 

 
Figure 7. 2: Liveweight of weaner steers weaned in July (even numbered years) and January 

(odd numbered years) under three feed management practices. Dotted line represents the 

weaning weight of calves. 
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7.2.3 Evaluation of herbage and animal responses to gazing strategies. 

Ecological considerations for managing semi-arid rangelands of southern Africa depict that 

grazing strategies should be designed with a view to maintain or improve the grazing resource 

by fixed moderate but persistent level of stocking (Danckwerts et al., 1993; Walker et al., 

1981). This is achieved by controlling the period of stay and absence of grazing to enable 

palatable, productive perennial grasses to grow at desired quality (van de Pol and Jordaan, 

2008). Based on these propositions, two facets of grazing management were analysed. Firstly, 

the impacts of multi-paddock grazing systems were analysed followed by evaluation of the 

sustainability of SRs widely recognised for the region.  

In sweetveld, Barnes (1979) reported that use of 3-paddocks or less per herd provide 

the basis for maintaining or improving the grazing resource whilst Danckwerts and Daines 

(1981) recommended use of 2, 3 or 4 paddocks per herd. High herbaceous biomass production 

in semi-arid rangelands is enhanced by short period of stay and long periods of absence by 

cattle (Kazembe, 2010). As a result, the effects of periods of stay of 5, 10, 15 and 20 days were 

tested by running the model for each period of stay and multi-paddock grazing system. The 

most bearable period of stay for each multi-paddock grazing system was used to compare the 

impacts of the three multi-paddock grazing systems. The most sustainable multi-paddock 

grazing system was then considered for the assessment of SRs. 

A preliminary review of SR recommendations for the region suggest  SRs of 1 livestock 

unit (LU): 9.6 and  1LU: 10 hectares for cattle grazing for Nuanetsi cattle ranch (Walker, 1975) 

and Bufallo Range ranch (Taylor and Walker 1978), respectively. The SR of 1LU: 10 hectares 

was thus considered as the recommended rate for the ranch.  Regional recommendations of 

SRs for the semi-arid rangelands of southern Zimbabwe vary widely from 1 LU: 12 to 20 

hectares (Vincent and Thomas, 1960) to 1LU: 6 to 12 or more hectares  (Barnes1979). To 

represent the wide variation in SRs for region, the recommended SR was increased to 1LU: 7 

hectares and lowered to 15 and 20 haLU-1. The impacts of four SRs on the sustainability of 

herbaceous plant and animal production were analysed. The number of weaners steer required 

to match each of the SRs was determined using the formulae: 

LU = 4500.75/ W0.75; where: 

W is the average weight of an animal; and LU, also known as an animal unit (AU) is defined 

as medium-frame beef steer with a live weight of 450 kg, which gains 0.5 kg per day on grass 

pasture with a digestible energy of 55 % (Mesinerr, 1983). The animal requires 75MJ of 

metabolizable energy (ME) per day.  
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7.2.4 Model simulation runs 

The SGS pasture model has up to 100 paddocks that can be modelled individually in different 

soil types, soil nutrient conditions, pasture species and stock management practices. Daily 

climate data for Nuanetsi ranch, namely solar radiation (Wm-2), rainfall (mm) and minimum 

and maximum temperature (°C) for the July 1988 to June 2017 period were obtained from 

different spatial data sources. Daily global solar radiation and rainfall were obtained from 

servers of the HelioClim-1 (Lefevre et al., 2014) and the National Oceanic and Atmospheric 

Administration Climate Prediction Centre African Rainfall Climatology version 2 (Novella and 

Thiaw, 2013), respectively. Daily minimum and maximum temperature were spatially 

interpolated from weather station data using an inverse distance weighting method. Soil 

properties of sandy loam chromic luvisol, the dominant soil type at the study area (Figure 5.3 

(b)), were obtained from soil surveys for ranch.  

Simulation experiments were performed in individual paddocks to examine grass 

growth and animal production response to separate treatments of three multi-paddock grazing 

systems and four SRs. The grazing management units were constituted by 2-, 3- or 4- paddocks 

per herd in the grazing system simulation experiment, whilst a 3-paddock per herd system was 

used for the SR simulation experiment. The area of paddocks modelled was set at 500 ha 

representing the average size of paddocks at the study site. The starting weight for Brahman 

weaners, that is 205-day weight at about 7 months, was set at 212 (Pico et al., 2004) whilst 

normal mature weight of Brahman cattle was set at 431 kg (Schoeman, 1996). The weaner 

steers were brought into the paddocks in July and January in even- and odd- numbered years, 

respectively to represent the recommended weaning periods in the region. The weaners were 

managed on a fixed-time rotation basis in three 4-month phases and were removed after one 

year. Twenty repeated annual assessments of grass production, intake and animal growth were 

performed for each treatment in 2, 3 or 4 replicate paddocks to produce 40, 60 and 80 site-by-

year observations corresponding to the three multi-paddock grazing systems. At the beginning 

of each simulation run, coordinates and elevation of the central point of each paddock were 

entered in the model to enable adjustment for atmospheric pressure at that paddock. Output 

from the first 10 years of each simulation were discarded as this period was regarded for 

allowing model parameters to stabilise to levels that are typical of the real system. Daily model 

outputs produced in each paddock were averaged to come up with weighted grass production 

(kg DM ha-1), dry matter intake (kghead-1day-1) and live weight (kghead-1) for each grazing 

management unit. 
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7.2.5 Analysis of model outputs 

The behaviour of model outputs from simulation runs for three multi-paddock grazing systems 

and four SRs were separately analysed over a 20-year period. Graphical analysis of time series 

was done to detect differences in response of herbage and animal to grazing management 

practices. The mean, median, minimum and maximum derived from box and whisker plots 

were used to determined herbage and animal responses in selected individual seasons. The box 

and whisker plot describe the central tendency of the variable in terms of the median of the 

values. The variability in the values of variables is represented in this plot by the 25th and 75th 

percentiles, (larger box in the plot) and the minimum and maximum values of the variable 

represented by the "whiskers" in the plot. Relative difference in herbage production, animal 

intake and liveweight gain between simulated outputs of grazing management options were 

also calculated. 
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7.3 Results 

Overall, there were no observable differences found in response of herbage production and 

DMI to all treatments for multi-paddock grazing systems and SRs. Also, multi-paddock grazing 

effects on animal production were almost similar across treatments but differential responses 

of LWG to SRs were more pronounced. Weaners stocked at the recommended SR grew 

persistently at high rate, reaching a maximum LWG of 234 kgyear-1 but animal productivity 

was adversely affected in the long-term. Increasing the recommended SR by 30 % resulted in 

reduced DMI and LWG of weaners over 4- to 5-year cycles whereas 50 % lower SR achieved 

sustained high animal intake and growth in the long term.  

 

7.3.1: Effects of stocking rates on plant and animal responses 

The effects of four SRs on herbage production, DMI and LWG are presented Figure 7.3. 

Descriptive statistics of herbage production modelled between 1998 and 2017 show that 

herbage yield averaged approximately the same (2524 to 2586 kg DM ha-1) across the four 

SRs, ranging from 990 to 3700 kg DM ha-1 (see Figure 7.4 (a)). The coefficient of variation in 

herbage production ranged from 23 % for high SR (7haLU-1) to 27 % for SRs of 15 and 20 

haLU-1 over the 20 years. The DMI of weaners was approximately similar among the four SRs 

with an average of 5 kghead-1day-1 and ranging between 3.8 and 7.3 kghead-1day-1. Mean LWG 

of weaners stocked at 7haLU-1 varied by 9 kg from the LWG of weaners (234 kg) stocked at 

the recommended or lower SRs. The minimum liveweight of weaners ranged from 179kg in 

20 haLU-1 to 183 kg in 7 haLU-1 (Figure 7.3 (c)). Maximum LWG of 345 kg head-1 for weaners 

stocked at the recommended rate was 32 kg more than maximum LWG of weaners stocked at 

15 haLU-1 over the 20-year period.  
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Figure 7. 3: Model outputs of (a) herbaceous aboveground biomass (b) dry matter intake and (c) liveweight of weaner steers weaned in July 

(even numbered years) and January (odd numbered years) under three stocking rates. Dotted line in (c) represents the weaning weight of calves 

at the start of the simulation.
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Despite the high LWG response, the pasture stocked at the recommended rate only supported 

a sustained DMI and LWG during the first 13 years after which animal productivity was 

adversely affected (Figure 7.3). Increasing SR by 30 % from the recommended rate resulted in 

reduced DMI and LWG of weaners over 4 to 5 years seasonal cycles (Figure 7.3 (b) and (c)). 

Pasture in paddocks stocked at 50 to 100 % lower SRs than the recommended rate persistently 

supported animal intake and growth over the 20 years (Figure 7.3 (b) and (c)) though there 

were no justifiable animal responses for increasing the SR beyond 50 %.  

Differences in model outputs of herbage and animal production among the four SR 

treatments were also pronounced during moderate and mild drought seasons. For example, 

during the mild drought season of 1998, DMI and LW of cattle stocked at 15 haLU-1 exceeded 

that of cattle under stocked at recommended rate by 1 kghead-1day-1 and 45 kg kghead-1, 

respectively despite having herbage yield that is 14 % (300 kg DM ha-1) less (Figure 7.4). 

During the moderate drought season of 2005, LWG of weaners was almost similar between 

cattle stocked at recommended rate and 15 haLU-1 though herbage yield from paddocks stocked 

at recommended rate was 66 % higher. The greatest loss in DMI and LW between a 30 % high 

SR and the recommended rate was observed in successive mild drought seasons. For example, 

in 2006 and 2007, the DMI of weaners stocked at the recommended rate fell by 1.1 and 0.7 

kghead-1day-1 whilst the LWG was 81.7 and 35.6 kghead-1 lower, respectively (Figure 7.4). 
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Figure 7. 4: Box and whisker plot of (a) Herbaceous biomass (b) Dry matter intake and (c) 

Liveweight of weaner steers stocked at three stocking rates for selected years between 1998 

and 2017. The smallest box in the box plot represent median values. 
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7.3.2 Effects of multi-paddock grazing systems on plant and animal responses 

Aboveground herbage production modelled between 1998 and 2017 show that herbage yield 

averaged approximately the same (2515 - 2560 kg DM ha-1) across the three multi-paddock 

grazing systems, ranging from 1000 to 3600 kg DM ha-1 (see Figure 7.5 (a)). The lowest 

coefficient of variation in herbage production of 23 % was observed in the alternate stocking 

system whilst the three and four multi-paddock grazing systems had the highest CV of 27 % 

over the 20 years. Alternate stocking showed a consistently opposing trend in herbage 

production relative to the three- and four- paddocks per herd systems. The DMI of weaners did 

not vary widely among the three multi-paddock grazing systems. It ranged between 3.8 and 7 

kghead-1day-1 and averaged at 5 kghead-1day-1. Also, the mean LW of weaners was almost 

similar (231-234 kg) across the three multi-paddock grazing systems. The minimum loss of 

liveweight of weaners to 180kg was the same across the three multi-paddock grazing systems 

evaluated (Figure 7.5 (c)). Maximum LWG of weaners in the alternate stocking system of 331 

kg head-1, however exceeded the maximum LWG of weaners in the recommended grazing 

system of 3-paddocks per herd by 17 kg over the 20-year period. Dry matter intake and LWG 

of weaners in the alternate stocking system declined drastically after 13 years (Figure 7.5 (b) 

and (c)).
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Figure 7. 5: Model outputs of (a) herbaceous aboveground biomass, (b) dry matter intake and (c) liveweight of weaner steers weaned in July 

(even numbered years) and January (odd numbered years) under 3 paddock systems. Dotted line in (c) represents the weaning weight of calves at 

the start of the simulation.
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The most noticeable differences in herbage and animal productivity among the three multi-

paddock grazing systems were observed during mild and moderate drought seasons.  Despite 

14 % (300 kg DM ha-1) more herbage yield than the 3- paddocks per herd system during the 

mild drought season of 1998, LWG of weaners in the alternate stocking system was 20.4 kg 

lower. During the moderately dry season of 2005, LWG of weaners was almost similar between 

the alternate stocking and the 3- and 4-paddocks per herd systems though herbage yield was 

66 % higher in the alternate stocking system. The greatest loss in DMI and LW was observed 

in successive mild drought seasons. For example, in 2011 and 2012, the DMI of weaners reared 

under the alternate stocking system fell by 1.4 and 1.2 kghead-1day-1 whilst the LWG was 85.1 

and 65.4 kg lower, respectively (Figure 7.6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

141 

 

 

 

 

Figure 7. 6: Box and whisker plot of (a) Herbaceous biomass, (b) Dry matter intake and (c) 

liveweight of weaner steers stocked in three paddock systems for selected years between 

1998 and 2017. The smallest box in the box plot represent median values. 
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7.4 Discussion 

This study has demonstrated the effect of multi-paddock grazing systems and SRs on plant and 

animal responses. Overall findings showed that there are no observable differences in herbage 

production and DMI response to all treatments for multi-paddock grazing systems and SRs. 

Also, multi-paddock grazing systems displayed approximately similar effects on animal 

production across treatments but differential responses of LWG to SRs were more pronounced. 

Increasing the recommended SR resulted in reduced DMI and LWG of weaners in the short 

term while persistently high animal intake and growth occurred in the long term under reduced 

SR. These results illustrate the potential of PBMs in providing direction for selecting the 

appropriate SR that achieves a continuous herbage and animal production with minimum risk 

in the long term. Generally, the findings suggest that ranch managers should put more 

management emphasis on SRs over multi-paddock grazing systems since proper SRs enable 

maximised cattle productivity over time.  

 

7.4.1 Effects of stocking rates on plant and animal responses 

The findings reveal that, irrespective of the SR, there are no observable differences in herbage 

production. As reported in many field studies, increasing or decreasing SR from the 

recommended rate does not show distinguished differences on herbage production. In in south 

western rangelands of Zimbabwe, Denny and Barnes (1977) and Barnes and Denny (1991) 

made the same observation in open savanna grassland whilst Gammon (1978) obtained similar 

results in granite sand veld. Also Derner and Hart (2007) and Biondini et al. (1998) did not find 

any consistent effects of increasing grazing intensity on aboveground grass production in semi-

arid mixed-grass prairie of North America. Using a modelling approach in native pastures of 

northern Australia, a modest increase in SRs above the recommended rate posed little adverse 

effects on pasture condition or individual animal performance (Scanlan et al., 2013). However, 

a decline in pasture condition was realised when SR was further increased above the long-term 

carrying capacity in simulations across nine regions (Scanlan et al., 2011). These 

inconsistences in herbage response reveal that the extent to which SRs can be increased without 

reducing herbage production is not clear. Some studies have noted that herbage responses to 

various SRs differ across climate regions and locations due to differences in soil nutrient status 

(Illius et al., 2000; Smart et al., 2010). The systems model enabled further assessment of the 

subsequent effects of high SRs on DMI and LWG and provided a better understanding of the 

biophysical impacts.  
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The findings showed that increasing SR from the prescribed rate reduces animal 

production, a widely recognized opinion. Very high SRs led to reduction in LWG per hectare 

and economic returns in northern Australian rangelands (Scanlan et al., 2013). In mixed- prairie 

in central North American plains, individual steer weights decreased with increasing SR 

(Derner et al., 2008). The reduction in animal performance at high SR shown in this study can 

be attributed to reduction in herbage availability per animal. Stocking rates higher than the 

recommended rates often result in reduced plant vigour and productivity due to reduced root 

energy reserves necessary for quick regrowth (Peddie et al., 1995). Considering that increasing 

the prescribed SR by 30 % resulted in reduced DMI and LWG of weaners after every 4 to 5 

years in study area, stoking cattle at the rate of 7haLU-1 is very risky.  

However, other field studies showed that steer production per hectare increased with 

increasing SRs but production was also highly sensitive to climate variability (Reeves et al., 

2013). In southwestern Zimbabwe, Barnes and Denny (1991) observed that a SR twice the 

recommended regional average sustained steer weight gains per hectare for 5 years without 

causing adverse effects on rangeland condition. Their grazing experiment was conducted in 

small paddocks that are below 50 hectares and over short to medium timeframes (5-11 years). 

Such field studies do not represent all the actual conditions in rangelands where paddocks are 

large, up to 1500 hectares, and are grazed over many decades at low SRs (Teague et al., 2013). 

These findings illustrate that animal production responses to high SRs are difficult to compare 

across grazing systems and depend on productivity units used. As such, the extent to which 

SRs can be increased to attain optimum animal production and sustain herbage production over 

long timeframes across locations is not clear (Smart et al., 2010). This emphasises the need for 

site- and time-specific comparisons of performance of different SRs on cattle productivity.  

 

7.4.2 Effects of multi-paddock grazing systems on plant and animal responses 

Strategies of using 2 to 4 paddocks per herd at a SR 50 % lower than the recommended rate 

enabled pastures to recover periodically throughout the growing season and sustained steer 

production over time. Similar findings were obtained for a grazing trial in the mesic regions of 

central Zimbabwe in which 20-day periods of stay gave lower gains of Afrikander steers than 

5- and 10-day periods of stay (Denny et al. 1974). These simple, less intensive management 

strategies can allow one-third of the grazing management unit to be utilised and two-thirds to 

be rested and, enable adequate growing season recovery in each paddock every 2-4 years (van 
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de Pol and Jordaan, 2008). This creates forage reserve that can be carried over to the next 

season to reduce forage deficits associated with climate variability. 

As with varying SRs, many studies have illustrated that responses of herbage 

production are the same irrespective of grazing system used (Barnes and Denny, 1991; 

Heitschmidt et al., 1987) or SR  (Norton, 1998). Using a modelling approach, Noy-meir (1976) 

found little effect of moderate rotation with few paddocks and short grazing cycles on plant 

productivity in arid rangelands. As expected, increasing the number of paddocks from 2 to 4 

per herd resulted increased anima intake and liveweight gain. The findings concur with those 

from Kazembe (2010) who found a linear increase in cattle growth when paddocks per herd 

were increased from  1 to 12 in a simulation study, though this was a short -term study. The 

benefit of increasing the number of paddocks per herd is that the period of stay in individual 

paddocks and subsequent defoliation effects on grass growth is reduced, leaving more days for 

resting pasture (Barnes, 1972; Teague et al., 2008). In addition, the option enables range 

managers to control grazing resources and manage other factors such as diseases, reproduction, 

mortalities, and breeding, which could not be simulated by the SGS model. It is worth noting 

that conclusive experimental evidence about the effect of grazing systems on animal production 

are generally lacking in southern African savannas, particularly sweetveld. This could be 

attributed to the difficulty of controlling the large number of variables that influence 

comparison of grazing systems (Barnes et al., 2008; Briske et al., 2008). 

Overall, this study adds value to previous grazing experiments (Barnes and Denny 

1991) and modelling studies (Kazembe, 2010; Richardson et al., 2000) performed in semi-arid 

rangelands of southern Africa by assessing the long-term effects of multi-paddock grazing 

systems and SRs on herbage and animal production using a whole-farm mechanistic model. 

The modelling exercise identified 15haLU-1 as the SR that attains optimum cattle production 

and sustain herbage production over long timeframes. The study provides evidence that SR has 

greater effect on animal intake and production than multi-paddock grazing systems and, ranch 

managers should prioritise SRs management over grazing systems to maximise productivity. 

The study findings demonstrate the potential of PBMs in providing direction for selecting the 

appropriate SR that achieves a continuous herbage and animal production with minimum risk 

in the long term. Though the biophysical impacts of the grazing systems and SRs were assessed, 

their effects on economic viability of the ranch enterprise remains unknown. For the current 

findings to be valuable to ranch managers, further efforts are required to quantify the economic 

effects of the SRs recommended for southern African rangelands. 
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7.5 Conclusions  

The whole SGS model produced reasonable illustrations about the effects of varying SRs and 

multi-paddock grazing systems on Brahman weaner steers grazing natural pasture. Overall, 

there were no observable differences found in response of herbage production and DMI to all 

treatments for multi-paddock grazing systems and SRs. Also, multi-paddock grazing effects on 

animal production were almost similar across treatments but differential responses of LWG to 

SRs were more pronounced. Weaners stocked at the recommended SR grew persistently at 

high rate, but animal productivity was adversely affected in the long-term. Increasing the 

recommended SR by 30 % resulted in reduced DMI and LWG of weaners in the short term 

whereas 50 % lower SR achieved sustained high animal intake and growth over time. Since 

there were no reasonable animal responses for decreasing the recommended SR beyond 50 % 

in this study, 15haLU-1 should be regarded as the long-term carrying capacity. The findings 

illustrate the potential of PBMs in providing direction for selecting the appropriate SR that 

achieves continued herbage and animal production with minimum risk in the long term. 
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CHAPTER 8  

General discussion and conclusions 
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8.1 Introduction 

The design and improvement of sustainable grazing management practices is necessary for the 

continued growth of beef production in these semi-arid rangelands of southern Africa. With 

the beef sector’s potential to contribute up to 24 % of agricultural GDP and the likelihood of 

increasing rainfall variability due to climate change, evaluation of the long-term implications 

of recommended and alternative grazing management practices on the viability of beef 

enterprises is essential. Reliable data on herbage and animal production in response to the 

seasons likely to be experienced is needed for these evaluations. Such data were not available 

at Nuanetsi ranch prior to this study and it was impossible to undertake these evaluations. This 

study reduced these data gaps by developing empirical models for predicting herbaceous AGB 

from Landsat satellite images and using these models and other remotely sensed variables to 

calibrate and evaluate the SGS model. It is now possible to apply the simulation model to 

analyse the sustainability of different grazing management practices in studied land types using 

the datasets of satellite-derived variables. 

This chapter aims to discuss the capability of combing empirical remote sensing models 

with a simulation model in predicting herbaceous AGB and, the implications of grazing 

management practices on herbage and animal production. An overview of the potential of using 

optical remote sensing models developed in this study to predict herbaceous biomass and assess 

its response to climate variability is presented in Section 8.2. This is followed by a discussion 

of the capability of the SGS model in analysing the sustainability impacts of various SRs and 

multi-paddock grazing systems on herbage and animal production in Section 8.3. Section 8.4 

highlights the effects of environmental factors on the quality of visible spectral reflectance data 

used to predict herbaceous AGB. Errors associated with data used to calibrate and evaluate the 

simulation model and inadequacy of the model’s structure pose limitations to model use. It is 

important to know these limitations as outlined in Section 8.5. In Section 8.6. the major 

conclusions are presented in whilst Section 8.7, the recommendations for future research to 

build on the results of this study are suggested  

  

8.2 Performance of optical remote sensing in predicting herbaceous biomass 

This study has developed capacity to predict herbage production in the tree/shrub savanna using 

empirical remote sensing models constructed from visible spectra. By using visible spectral 

bands which account for site specific effects of atmospheric contaminants, vegetation 

properties and soil background features, classical and extended MVIs models for herbaceous 
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AGB estimation with high accuracy were developed. In Chapter 3, very stable relationships 

were constructed between herbaceous AGB measured in field and predicted by the empirical 

models, with a standard error between 840 and 1480 kgha-1. The accuracy is comparable to that 

obtained in field measurements e.g. an RMSE of 898 kg DM ha-1 observed by Trollope and 

Potgieter (1986). In many savanna vegetation types of KNP, Mutanga and Rugege (2006) 

found an RMSE of 1374 kg DM ha-1 for a remote sensing regression model trained from single 

season data, whilst Dwyer (2011) found the RMSE to vary from 1171 to 1711 kg DM ha-1 

using data trained from individual and combined seasons. These models enable mapping of the 

spatial representation of AGB which helps ranch managers in adjusting animal distribution 

relative to spatial heterogeneity in forage resources to prevent excessive use of preferred areas.  

In Chapter 4, a rainfall- AGB model generated reasonable estimates of herbage biomass 

(RMSE, 1557 kg DM ha-1) at a large spatial extent. Such landscape metrices of herbage 

production are important for near-real time monitoring of the spatial pattern of herbaceous 

AGB production. Temporal variability of AGB production within herbaceous communities 

fluctuated by 18 to 35 % more than rainfall. However, the landscape-level temporal variation 

of AGB production remained stable despite the increase of drought incidences experienced in 

the region in the last fifty years. This highlights the need by range managers to put more 

management emphasis towards maintaining or enhancing inherent unevenness within local 

herbaceous communities to increase the stability of rangeland productivity and, to adapt to 

anticipated climatic changes. In addition, the rainfall- AGB model produced a 26-year dataset 

of herbaceous AGB across three land types, despite the high sensitivity of the model to rainfall 

variation. The data provided independent data for evaluating the behaviour of outputs of the 

SGS model in Chapter 6.   

 

8.3 Capacity of SGS model to predict herbage and animal production  

The integration of spatial data layers such as DEMs, soil and land cover maps and satellite 

images using GIS software enabled demarcation of sites for applying the SGS model. These 

sites were objectively defined for SGS model calibration depending on uniformity of 

environmental and management factors. Spatial data layers developed from this study can now 

be used to define monitoring sites for routine vegetation measurements or validating models. 

The use of site-specific and generic parameters of soil and plant enabled the SGS model to 

predict measured (RMSE, 820 kg DM ha-1) and remotely sensed herbaceous AGB production 

(RMSE, 981 kg DM ha-1) at reasonable levels of accuracy. These average errors fall within the 
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range of the lowest error values obtained from field measured and remotely sensed herbaceous 

AGB in semi-arid rangelands of southern Africa. These findings indicate that the framework 

of combining measured and spatial data layers adopted in this study can reasonably represent 

the key processes that influence growth of U. mosambicensis and E. curvula under the three 

land types found at Nuanetsi ranch. However, measures for individual predictions provided 

low performance scores for both field-measured and remotely sensed AGB. 

Despite the huge individual prediction errors, the SGS model predicted cattle production 

within reasonable ranges for southern African rangelands using parameter sets developed for 

the animal module. For example, Fynn and Connor (2000) observed LWG of crossbred 

Brahman weaners to vary between 86 and 225 kg head-1yr-1 for medium SR in a grazing trial 

conducted in semi-arid savanna of southern Africa. The SGS model also demonstrated that 

forage supplement from trees and shrubs enable animal production to be sustained throughout 

the dry season in semi-arid rangelands, a nutrition experience widely acknowledged in southern 

Africa (Clatworthy, 1998). Given these reasonable cattle growth predictions by the SGS model, 

it can be implied that the model compensated plant biomass prediction error by adjusting 

animal parameters (Ma et al., 2019).  

The SGS model can potentially be applied to evaluate the impacts of other grazing 

management practices on sustainability of rangeland productivity using animal growth 

parameters compiled in this study that are specific to Brahman breed. Based on these parameter 

sets, it was possible to analyse the impact of varying SR from the recommended rate for the 

region. The model could also illustrate that, irrespective of the grazing system, the are no 

observable differences in plant responses. This is an undisputed opinion construed from grazing 

trials that have been performed over different vegetation types (Briske et al., 2008) and, 

because the SGS model outputs showed the same trend, it can be used with much greater 

confidence. 

 

8.4 Limitations to remote sensing application in predicting herbaceous biomass  

The main limitation of using remote sensing to predict herbaceous AGB demonstrated in 

Chapter 3 is that extrapolation of the empirical models from the study area to new areas is 

problematic. Herbaceous AGB estimates from empirical models are site specific because soil 

background features and atmospheric contaminants that affect soil reflectance and sensor 

response to vegetation reflectance of the visible spectrum vary widely across land systems. 

These factors limit the use of empirical models for descriptive and predictive purposes as they 



 

150 

 

do not have adequate predictive power when they are applied to other sites within the region 

where they were developed from. Similarly, the non-stationarity problem applies to rainfall- 

AGB models developed in Chapter 4 due the high spatial variability of vegetation and soil 

characteristics and sensitivity of spectral reflectance values to rainfall variation.   

Another limitation is that, it is impossible to use remote sensing to predict biomass for 

specific livestock species utilising the vegetation. In this study, empirical models were 

developed to predict herbaceous AGB which contributes up to 70 % of cattle diet. However, 

despite contributing the smaller portion of cattle diets, woody biomass is responsible for the 

consistent availability of forage quantity and quality in sweetveld and enable animal condition 

to be sustained throughout the year as illustrated in Chapter 7. It is prudent therefore, to develop 

empirical remote sensing models that account for biomass of trees and shrubs that are palatable 

or available to specific livestock species (Angerer, 2012).  

The outcome of field measurements of herbaceous AGB in Chapter 3 was premeditated to 

provide data required for calibrating the SGS model when it was applied to 0.1-hectare plots. 

The data were peak biomass clippings that were collected in one growing season due to high 

resource requirements. The soil parameters used were also measured in two different seasons 

for the crest and mid- and foot slope land types. These parameter sets are of limited value if 

the SGS model is to be applied to other seasons and land types. To build confidence in using 

simulation models, long-term independent data is required for historical data validation (Grant 

et al., 1997). A rainfall- AGB model for predicting annual herbage yield was therefore 

developed in Chapter 4 for this purpose. Whilst the statistical model generated output 

behaviour that mimics the behaviour of simulated outputs, the mean bias error was huge. 

Combing images from satellites products with low revisit time with images from high revisit 

time satellites such as Sentinel and MODIS (Baumann et al., 2017) can enable development of 

models that are capable of mimicking the large-scale dynamic behaviour of grass growth.  

It was emphasised in Chapter 4 that rainfall is the primary climate variable that determine 

herbage production while solar radiation and temperature are known to affect evaporative 

demand in sweetveld (Scholes and Walker, 1993). Except for rainfall data obtained from a local 

rain gauge, data for the other climate variables were only available at meteorological stations 

that are hundreds of kilometres away from the ranch. Spatially aggregated data for daily rainfall 

and solar radiation derived from satellite-based estimates and temperature data interpolated 

from two distant weather stations were thus used. The spatial aggregation and interpolation of 

the climate variables to fill such data gaps may introduce substantial error. It can be reasonably 
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assumed that, from time to time, the interpolated data may be different from the actual 

conditions on the simulated site thus, limiting the accuracy of model predictions. In most 

resource-constrained environments, the availability of on-site daily climate data remains a 

challenge for applying simulation models and satellite-based estimates are the alternative data 

available. An attempt to reduce the errors associated with the processed climate data was done 

by applying bias correction schemes in Chapter 4 and 5 and the output were considered as 

representative of the simulated sites. 

 

8.5 Limitations to SGS model application in grazing management  

Improvement in understanding of the dynamics of natural systems and computational 

capability has led to the development of highly complicated, mechanistic models such as the 

SGS model. These developments have raised the need for robust methods to quantify the 

increasing uncertainty associated with the models for research purposes. The major sources of 

error associated with simulation models relate to model structure, measurement, and natural 

variability. Errors due to measurement and natural variability result from lack of complete 

knowledge about model inputs. When there is unreasonable prediction error from a simulation, 

the importance of the prediction in management decisions is limited. It is thus important to 

know the different sources of error to identify areas for improving field measurements and 

model structure in future.  

Data from geographical layers of climate, topography, soil and vegetation, and remote 

sensing and field experiments conducted in the southern African savanna biome were used to 

parameterise and evaluate the SGS model in this study. Such an integrated data gathering 

approach for model calibration results in a cascade of errors which affect the simulation outputs 

(Angerer, 2012). For example, the process of deriving climate inputs might have introduced 

substantial non-random errors due to the absence of measured weather data at the study area. 

Similarly, use of plant parameters from literature gathered from times and locations not covered 

by field observations includes errors arising from systemic differences in environmental 

conditions (Katz, 2002). These errors possibly account for the relatively low agreements 

between measured and simulated herbaceous AGB values obtained in this study. However, it 

was difficult to accurately estimate values of initial conditions and state variables for the study 

area and, a tiered approach was the only suitable choice due to differences in data availability. 

Where resources are available, intensive field experiments should be conducted to provide data 

for parametrising and evaluating simulation models. 
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Model structure error is the most difficult error to quantify and there are some limitations 

associated with the structure of the SGS model (Doran-Browne et al., 2014). In this study, three 

major limitations were detected with regards to the structure of the SGS model. Firstly, the 

model was not sensitive to extreme wet and dry weather conditions as indicated by the low 

coefficient of variation of seasonal herbage production (CV range from 15 to 22 % across land 

types). However, herbaceous biomass predictions in semi-arid regions are very sensitive to 

climate variability as typified by Colophospermum mopane savanna rangelands (Buitenwerf et 

al., 2011). Many models for grazing lands do not adequately simulate the response of 

herbaceous vegetation to extreme climate events (Kipling et al., 2019). Therefore, further 

improvements in SGS model structure are required to enable realistic predictions of herbaceous 

AGB under extreme weather events. 

Another limitation is that, as with many grazing land models (Robertson et al., 2015), the 

SGS model does not explicitly model dynamics of soil nutrients, especially N and P. These 

nutrients are however limiting in Mopane savannas to which the SGS model was applied yet 

they are the primary determinants of seasonal herbage production and quality (Hempson et al., 

2007). Soil moisture and soil nutrient availability also determine the spatial variation in 

productivity within a land system (Fritz and Duncan, 1994). It is therefore imperative to put 

further efforts towards improving the N, P and S dynamics in the SGS model to enable a better 

representation of nutrient cycling in soils with low macro-nutrient content. 

Lastly, inclusion of an explicit tree/shrub growth module in the SGS model can enable a 

more realistic representation of the biophysical processes occurring in savanna rangelands. In 

savanna rangelands, trees and shrubs pose negative, neutral and positive effects on herbaceous 

production and biomass allocation and the effects can vary with tree age, size and density 

(Scholes, 2003). On one hand, woody vegetation supress productivity of subcanopy grasses by 

intercepting solar radiation and rainfall and by competing for water and nutrients when their 

root systems intersect. On the other hand, productivity of subcanopy layer can be enhanced by 

reduced soil temperature and plant water stress and by improved soil nutrient status. These 

interactions need to be considered in grass growth simulations to enable effective management 

decisions to be made. 
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8.6 General conclusions 

• Combining MVIs with Landsat 8 optical bands, especially green band, provides the 

best models for estimating AGB in C. mopane savanna rangelands. 

• Spatial heterogeneity of AGB production across herbaceous communities were high 

and deviated from mean AGB by 51 to 69 %.  

• Temporal variability of AGB production within herbaceous communities fluctuated by 

18 to 35 % more than rainfall  

• Landscape-level temporal variation of AGB production was stable despite the increase 

in drought disturbances experienced in the region 

• Herbaceous AGB yield response to droughts was highly variable across drought 

intensities, depending on post-drought rainfall amount relative to long-term median. 

• Growth predictions of grass species simulated with adjusted parameters were 26 to 98 

% higher than native C4 grass production predicted from default parameters. 

• The SGS model represented measured herbage AGB reasonably well, accounting for 

up to 60 % variation in herbaceous AGB.  

• The SGS model underestimated remotely sensed AGB though predictions for whole 

dataset were significant and reasonably accurate. 

• No observable differences were found in herbage production and DMI response to all 

treatments for multi-paddock grazing systems and SRs. 

• Multi-paddock grazing effects on animal production were approximately similar across 

treatments but differential responses of LWG to SRs were more pronounced  

• Increasing the recommended SR resulted in reduced DMI and LWG of weaners in the 

short term whereas reducing the benchmark SR enabled persistent animal intake and 

growth in the long term. 
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8.7 Recommendations for future research 

 

Field data collection for calibrating remote sensing and pasture simulation models 

• Develop models capable of representing the dynamic behaviour of grass growth by 

combing Landsat data with data from high revisit time, hyperspectral satellites such as 

MODIS. 

• Improve empirical remote sensing models to include tree and shrub biomass that is 

palatable or available to specific livestock species. 

• Evaluate the effect of various satellite-based estimates of climate variables on accuracy 

of SGS model predictions.  

• Generate intensive field measurements of most influential factors limiting herbage 

growth to improve performance simulation models. 

 

Improvements to model structure 

• Improve SGS model’s sensitivity to extreme wet and dry conditions typical of semi-

arid regions. 

• Include dynamics of cycling of N and P that are limiting in mafic gneiss derived soils 

which dominate lowveld rangelands. 

• Inclusion of a tree/shrub growth component since tree-grass interactions are 

characteristic determinants of savanna functioning. 
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Annex  I: Vegetation composition at Nuanetsi ranch 

Grass species 

Botanical name    Common name  Botanical name   Common name 

Aristida junciformis   Bristle grass   Hyparrhenia filipendula Thatching grass  

Aristida congesta   Bristle grass   Panicum maximum  Guinea grass (Sabi panicum) 

Bracharia nigropedata  Black footed bracharia Perotis patens   Bottlebrush / Rainbow grass 

Bothriochloa insculpta  Pinhole grass   Pogonathria squarosa  Herringbone grass 

Chloris virgate   Old lands grass   Rhynchelytrum repens  Natal red top    

Cynodon dactylon   Couch grass    Setaria pallidifusca  Annual timothy 

Dactyloctenium aegpytium  Crow’s foot    Setaria verticillata  Bur grass     

Digitaria milanjiana   Mlanje finger grass   Sporobolous panicoides Famine grass 

Digitaria eriantha   Finger grass    Stereochlaena cameronii  Gilston grass     

Eragrotis superba   Heart seed love grass  Trachyprogon spicata  Giant spear grass    

Eragrotis curvula   Weeping love grass   Urochloa mosambicensis Gonya grass   

  

 

Forb species 

Botanical name    Common name  Botanical name   Common name 

Aloe cameronii var. cameronii Cameron's ruwari aloe  Justicia kirkiana  - 

Amaranthus hybridus   Pigweed   Lactuca capensis  Wild lettuce 

Borreria dibrachiata   Winged forget-me-not  Nidorella resedifolia  Poverty, common nidorella 

Boophone distacha   Tumble weed or veld fan Ocimum gratissimum  Wild basil 

Cichorium intybus    Chicory    Oldenlandia corymbose - 

Clotoraria kirkia   Rattlepods    Richardia brasiliensis  Mexican clover  

Commelina benghalensis  Wandering jew  Tagetes minuta  Mexican marigold 

Cucumis metuliferus Naudin  African horned cucumber Tephrosia radicans  - 

Cyperaceae     Sedge    Tribulus zeyheri  Large-flowered devil-thorns 

Gisekia Africana   Dungambizi      
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Tree species 

Botanical name    Common name (Shona)   Botanical name   Common name (Shona) 

Acacia nicolita   Scented-pod acacia (muwunga)  Commiphora marlotii  Paperbark (mupepe/munyera) 

Acacia nigriscens   Knobthorn (munanga/ chinanga)  Dichrostachys ceneria Sickle bush (mupangara) 

Albizia amara A harveyi  Muwora     Kirkia acuminata  Bastard marula (mubvumira) 

Colophospermum mopane  Mopane (mupani)   Lannea stuhlmannii L. Kirkia Burtt Davy (musvinwa) 

Celtis Africana   White stinkwood / Common celtis  Sesbania grandiflora  Agati or hummingbird tree 

Combretum apiculatum  russet compretum (mubondo)   Sclerocarya caffra Marula (mupfura)    

Combretum molle   soft-leaved compretum (mubondo)  Ziziphus mucronata  Buffalo thorn (muchecheni)  

Combretum imberbe   leadwood (mutsviru)    

Combretum hereroense  mouse-eared combretum (murovamhuru)    

  

Shrub species 

Botanical name    Common name (Shona)   Botanical name   Common name (Shona) 

Acanthospermum hispidum  Upright starbur    Indigofera arrecta  African indigo (mutsvairo)  

Cassia abbreviata   Long-tail cassia    Indigofera vicioides  -   

Cissus cornifolia   Wild grape (muzambiringa)    Securinega virosa  Snow berry (musosoti) 

Dalbergia melanoxylon  African blackwood (mugwiti)   Sida cordifolia maculate Flannel weed  

Grewia decemovulata   Miombo dwarf donkey-berry   Solanum panduriforme Bitter / Snake / Thorn apple 

Grewia flavescenes   Donkey berry (mubhubhunu)    Tramfta rhomboidia  Diamond burbark / Chinese bur 

Grewia inaequilatera   Donkey berry (mutehwa)    
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Annex  II: Vegetation types found at Nuanetsi ranch 

FAO Land cover classification map for Nuanetsi ranch (after (Di Gregorio et al., 2016)) and photos of dominant vegetation types (a) Acacia and eragrostis, 

(b) Combretum apiculutum (c) C. apiculutum and panicum maximum and, (d) Colophospermum mopane and panicum maximum (obtained in February 2017). 
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Annex  III: Screenshot of the user interface of soil water module part of the SGS model 

 


