
Regularised feed forward neural networks for

streamed data classification problems

by

Mathys Ellis

Submitted in partial fulfillment of the requirements for the degree

Master of Science (Computer Science)

in the Faculty of Engineering, Built Environment and Information Technology

University of Pretoria, Pretoria

August 2020

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Publication data:

Mathys Ellis. Regularised feed forward neural networks for streamed data classification problems. Master’s dissertation,

University of Pretoria, Department of Computer Science, Pretoria, South Africa, August 2020.

Electronic, hyperlinked versions of this dissertation are available online, as Adobe PDF files, at:

http://cirg.cs.up.ac.za/

http://upetd.up.ac.za/UPeTD.htm

1

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

http://cirg.cs.up.ac.za/
http://upetd.up.ac.za/UPeTD.htm

Regularised feed forward neural networks for data stream

classification problems

by

Mathys Ellis

E-mail: mox.1990@gmail.com

Abstract

Streamed data classification problems (SDCPs) require classifiers with the ability to

learn and to adjust to the underlying relationships in data streams, in real-time. This

requirement poses a challenge to classifiers, because the learning task is no longer just

to find the optimal decision boundaries, but also to track changes in the decision bound-

aries as new training data is received. The challenge is due to concept drift, i.e. the

changing of decision boundaries over time. Changes include disappearing, appearing,

or shifting decision boundaries. This thesis proposes an online learning approach for

feed forward neural networks (FFNNs) that meets the requirements of SDCPs. The

approach uses regularisation to optimise the architecture via the weights, and quantum

particle swarm optimisation (QPSO) to dynamically adjust the weights. The learning

approach is applied to a FFNN, which uses rectified linear activation functions, to form

a novel SDCP classifier. The classifier is empirically investigated on several SDCPs.

Both weight decay (WD) and weight elimination (WE) are investigated as regularisers.

Empirical results show that using QPSO with no regularisation, causes the classifier

to completely saturate. However, using QPSO with regularisation enables the classifier

to dynamically adapt both its implicit architecture and weights as decision boundaries

change. Furthermore, the results favour WE over WD as a regulariser for QPSO.

Keywords: Data streams, Classification problems, Feed Forward Neural Networks,

Quantum Particle Swarm Optimisation, Regularisation, Concept drift.

Supervisors : Dr. A. S. Bosman and Prof. A. P. Engelbrecht (Co-supervisor)

Department : Department of Computer Science

Degree : Master of Science

2

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

mailto:mox.1990@gmail.com

The true sign of intelligence is not knowledge but imagination.

Albert Einstein (1879 – 1955)

3

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Acknowledgements

I would like to thank the following people and institutions:

• My supervisors, Doctor Anna Bosman and Professor Andries Engelbrecht, for their

insight and guidance during the course of this thesis.

• My parents, Thys and Moeka Ellis, for their unwavering support.

• Theonette van Niekerk, for her loving support.

• The National Research Foundation (NRF), for their financial support.

4

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Contents

List of Figures vii

List of Algorithms xi

List of Tables xii

1 Introduction 1

1.1 Motivation . 2

1.2 Objectives . 3

1.3 Contributions . 4

1.4 Thesis Outline . 5

2 Computational intelligence problems 7

2.1 Problem classes . 8

2.1.1 Optimisation . 8

2.1.2 Approximation . 10

2.2 Problem environments . 13

2.2.1 Static environments . 13

2.2.2 Dynamic environments . 14

2.3 Summary . 16

3 Particle swarm optimisation 18

3.1 How particle swarm optimisation works 19

3.1.1 Momentum component . 20

3.1.2 Cognitive and social components 22

3.1.3 Swarm diversity . 22

i

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3.1.4 Exploration-exploitation trade-off 23

3.1.5 Controlling velocity . 24

3.1.6 Swarm size . 25

3.1.7 Neighbourhood topology . 26

3.1.8 Particle initialisation . 28

3.1.9 Iteration strategies . 29

3.1.10 Stopping conditions . 29

3.2 Particle swarm optimisation in dynamic environments 30

3.2.1 Issues to consider for dynamic environments 30

3.2.2 Dynamic particle swarm optimisation 31

3.3 Summary . 34

4 Artificial neural networks 36

4.1 How artificial neural networks work . 36

4.2 Architecture . 38

4.2.1 Feed forward neural networks 39

4.2.2 Neuron unit types . 41

4.2.3 Activation functions . 42

4.3 Learning . 43

4.3.1 Learning strategy . 45

4.3.2 Model errors . 46

4.3.3 Performance measures . 47

4.3.4 Overfitting . 51

4.3.5 Underfitting . 53

4.3.6 Weight initialisation . 53

4.3.7 Stopping conditions . 55

4.3.8 Architecture selection . 55

4.3.9 Weight adjustment . 57

4.4 Training artificial neural networks using particle swarm optimisation . . 60

4.4.1 Particle swarm optimisation training algorithms 61

4.4.2 Saturation . 62

4.4.3 Measuring saturation . 63

ii

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4.5 Summary . 64

5 Stream data classification problems: A real-world concern 65

5.1 Background . 65

5.2 Streamed data classifier requirements 67

5.3 Literature review on streamed data classifiers and related works 70

5.3.1 Online learning approaches . 70

5.3.2 Decision trees . 72

5.3.3 Ensembles . 73

5.3.4 Artificial Neural networks . 74

5.3.5 Conclusion . 76

5.4 Summary . 78

6 Quantifying the environment of a streamed data classification prob-

lem 79

6.1 Issues with potential severity measures 80

6.2 Identifying environment instances . 81

6.3 Spatial severity measure . 84

6.4 Temporal severity measure . 85

6.5 Normalising severity measures . 85

6.5.1 Normalising spatial severity . 86

6.5.2 Normalising temporal severity 87

6.6 Dynamism of problem environments . 87

6.7 Summary . 91

7 Regularised feed forward neural networks as streamed data classifiers 92

7.1 Proposed architecture . 92

7.2 Back propagation learning algorithms 94

7.2.1 Back propagation weights adjustment algorithm 94

7.2.2 Weight decay learning algorithm 96

7.2.3 Weight elimination learning algorithm 96

7.3 Quantum particle swarm optimisation learning algorithms 97

iii

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

7.3.1 Quantum particle swarm optimisation weights adjustment algo-

rithm . 97

7.3.2 Weight decay learning algorithm 97

7.3.3 Weight elimination learning algorithm 97

7.4 Proposed streamed data classifiers . 98

7.5 Justification of proposed streamed data classifiers 99

7.5.1 Saturation issue . 99

7.5.2 Local optimum trapping issue 100

7.5.3 Bounded memory requirement 101

7.5.4 Unbounded dataset requirement 101

7.5.5 Concept drift requirement . 102

7.5.6 Random dynamics requirement 102

7.5.7 Online learning requirement . 103

7.5.8 High speed data streams requirement 103

7.5.9 One-pass requirement . 104

7.5.10 Limited number of tunable control parameters requirement . . . 104

7.5.11 Maintain low model complexity requirement 105

7.5.12 Robustness requirement . 106

7.5.13 Fault tolerance requirement . 106

7.5.14 Conclusion . 106

7.6 Summary . 107

8 Empirical process 108

8.1 Hypotheses about classifiers . 108

8.2 Baseline classifiers . 110

8.3 Benchmark streamed data classification problems 110

8.3.1 Reasons for using the five problem domains 111

8.3.2 Problem domains . 112

8.3.3 Data preparation . 118

8.3.4 Construction of benchmark problems 120

8.3.5 Problem environment analysis 123

8.3.6 Problem difficulty analysis . 133

iv

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

8.4 Performance measurement . 136

8.4.1 Performance measuring methodology 136

8.4.2 Saturation performance measures 140

8.4.3 Accuracy performance measures 141

8.4.4 Structural complexity performance measures 142

8.4.5 Computational complexity performance measures 145

8.4.6 Overfitting performance measures 146

8.4.7 Control parameter impact on performance measures 146

8.4.8 Weight distribution performance measures 147

8.4.9 Swarm diversity performance measures 148

8.5 Control parameter tuning process . 148

8.6 Benchmarking process . 152

8.7 Result analysis methodology . 153

8.7.1 Descriptive statistics . 153

8.7.2 Mann-Whitney-U-based ranking 154

8.7.3 Performance trends . 155

8.8 Summary . 156

9 Empirical analysis 157

9.1 Accuracy performance analysis . 158

9.2 Saturation analysis . 167

9.3 Complexity performance analysis . 176

9.4 Saturation, accuracy and complexity performance trends analysis . . . 182

9.5 Overfitting analysis . 187

9.6 Overall statistical rank analysis . 191

9.7 Control parameters analysis . 194

9.8 Weight distribution analysis . 198

9.9 Swarm diversity analysis . 205

9.10 Conclusion . 213

9.10.1 Remarks on the primary objective 213

9.10.2 Remarks on the secondary objectives 215

9.11 Summary . 220

v

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

10 Conclusions 221

10.1 Summary of Conclusions . 221

10.2 Future Work . 224

Bibliography 227

A Performance trend graphs 241

B Acronyms 282

C Symbols 284

C.1 Chapter 2 . 284

C.2 Chapter 3 . 284

C.3 Chapter 4 . 286

C.4 Chapter 6 . 288

C.5 Chapter 7 . 289

C.6 Chapter 8 . 290

vi

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

List of Figures

2.1 Illustration of the two types of global optima 9

2.2 Minimisation optimisation problem with local minima 11

2.3 Example of a classification problem . 13

2.4 Illustration of a dynamic classification problem 15

2.5 Dynamic environment classifications . 16

3.1 PSO topology comparisons . 26

3.2 Sampling distribution comparisons . 34

4.1 3-layer FFNN architecture . 40

4.2 Activation functions comparison . 42

4.3 ANN overfitting versus underfitting . 54

4.4 Neuron saturation . 63

6.1 Contour plot of ζbw with respect to Θ′bw and τ ′bw 90

8.1 Moving hyperplane problem domain illustration 113

8.2 Dynamic sphere problem domain illustration 114

8.3 Slding thresholds problem domain illustration 116

8.4 SEA concepts problem domain illustration 117

8.5 Illustration of sliding window algorithm 121

8.6 Benchmark problems’ environment severity levels 130

8.7 Severity trends for streamed data classification problems 131

8.8 Overall benchmark problems’ environment severity levels 132

8.9 Streamed data classification problem difficulty 134

9.1 PCCg versus problem difficulty scatter plot 167

vii

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

9.2 Raw MSEg and MSEt trends versus moving average MSEg ± σMSEg

and MSEt trends, and OMSEg for the BP classifiers 189

9.3 Raw MSEg and MSEt trends versus moving average MSEg ± σMSEg

and MSEt trends, and OMSEg for the QPSO classifiers 190

9.4 Classifier versus overall inverted MWU-Rank 192

9.5 Classifier versus overall MWU-Comparison winning percentages 193

9.6 Control parameter statistics for classifiers 196

9.7 Weight frequency distribution graphs for the classifiers 203

9.8 Average weight magnitude versus problem difficulty scatter plot 205

9.9 Swarm diverity trend of the QPSO-N classifier for the A1 hyperplane

problem . 208

9.10 Swarm diversity trends of the QPSO-WD and QPSO-WE classifiers for

the A1 hyperplane, A1 sphere and A1 thresholds problems 210

9.11 Swarm diversity trends of the QPSO-WD and QPSO-WE classifiers for

the A1 SEA and A1 electricity problems 211

9.12 Swarm diversity trends of the QPSO-WD and QPSO-WE classifiers for

selected SEA problems . 212

A.1 Legend for the performance trend analysis graphs 241

A.2 Performance trends of the BP classifiers for the A1 – A4 Hyperplane

problems . 242

A.3 Performance trends of the QPSO classifiers for the A1 – A4 Hyperplane

problems . 243

A.4 Performance trends of the BP classifiers for the B1 – B4 Hyperplane

problems . 244

A.5 Performance trends of the QPSO classifiers for the B1 – B4 Hyperplane

problems . 245

A.6 Performance trends of the BP classifiers for the C1 – C4 Hyperplane

problems . 246

A.7 Performance trends of the QPSO classifiers for the C1 – C4 Hyperplane

problems . 247

viii

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

A.8 Performance trends of the BP classifiers for the D1 – D4 Hyperplane

problems . 248

A.9 Performance trends of the QPSO classifiers for the D1 – D4 Hyperplane

problems . 249

A.10 Performance trends of the BP classifiers for the A1 – A4 Sphere problems 250

A.11 Performance trends of the QPSO classifiers for the A1 – A4 Sphere

problems . 251

A.12 Performance trends of the BP classifiers for the B1 – B4 Sphere problems 252

A.13 Performance trends of the QPSO classifiers for the B1 – B4 Sphere

problems . 253

A.14 Performance trends of the BP classifiers for the C1 – C4 Sphere problems 254

A.15 Performance trends of the QPSO classifiers for the C1 – C4 Sphere

problems . 255

A.16 Performance trends of the BP classifiers for the D1 – D4 Sphere problems 256

A.17 Performance trends of the QPSO classifiers for the D1 – D4 Sphere

problems . 257

A.18 Performance trends of the BP classifiers for the A1 – A4 Thresholds

problems . 258

A.19 Performance trends of the QPSO classifiers for the A1 – A4 Thresholds

problems . 259

A.20 Performance trends of the BP classifiers for the B1 – B4 Thresholds

problems . 260

A.21 Performance trends of the QPSO classifiers for the B1 – B4 Thresholds

problems . 261

A.22 Performance trends of the BP classifiers for the C1 – C4 Thresholds

problems . 262

A.23 Performance trends of the QPSO classifiers for the C1 – C4 Thresholds

problems . 263

A.24 Performance trends of the BP classifiers for the D1 – D4 Thresholds

problems . 264

ix

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

A.25 Performance trends of the QPSO classifiers for the D1 – D4 Thresholds

problems . 265

A.26 Performance trends of the BP classifiers for the A1 – A4 SEA problems 266

A.27 Performance trends of the QPSO classifiers for the A1 – A4 SEA problems 267

A.28 Performance trends of the BP classifiers for the B1 – B4 SEA problems 268

A.29 Performance trends of the QPSO classifiers for the B1 – B4 SEA problems 269

A.30 Performance trends of the BP classifiers for the C1 – C4 SEA problems 270

A.31 Performance trends of the QPSO classifiers for the C1 – C4 SEA problems 271

A.32 Performance trends of the BP classifiers for the D1 – D4 SEA problems 272

A.33 Performance trends of the QPSO classifiers for the D1 – D4 SEA problems 273

A.34 Performance trends of the BP classifiers for the A1 – A4 Electricity

problems . 274

A.35 Performance trends of the QPSO classifiers for the A1 – A4 Electricity

problems . 275

A.36 Performance trends of the BP classifiers for the B1 – B4 Electricity

problems . 276

A.37 Performance trends of the QPSO classifiers for the B1 – B4 Electricity

problems . 277

A.38 Performance trends of the BP classifiers for the C1 – C4 Electricity

problems . 278

A.39 Performance trends of the QPSO classifiers for the C1 – C4 Electricity

problems . 279

A.40 Performance trends of the BP classifiers for the D1 – D4 Electricity

problems . 280

A.41 Performance trends of the QPSO classifiers for the D1 – D4 Electricity

problems . 281

x

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

List of Algorithms

1 Synchronous Particle Swarm Optimisation algorithm 21

2 Quantum Particle Swarm Optimisation algorithm 35

3 Supervised 3-layer FFNN stochastic BP algorithm 60

4 SDCP environment instance extraction algorithm 82

5 Supervised rectified linear unit (ReLU) summation 3-layer FFNN BP

weights adjustment algorithm for an environment instance 95

6 Supervised ReLU summation 3-layer FFNN QPSO weights adjustment

algorithm for an environment instance 98

7 Sliding windows algorithm . 121

xi

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

List of Tables

5.1 Comparison of the requirements focused on by the reviewed classifiers . 77

8.1 Sliding window parameter configurations for benchmark problems . . . 123

8.2 Environment analysis of the hyperplane problems 126

8.3 Environment analysis of the sphere problems 127

8.4 Environment analysis of the thresholds problems 128

8.5 Environment analysis of the SEA problems 129

8.6 Environment analysis of the electricity problems 129

8.7 Parameter tuning’s parameter sets . 150

8.8 Benchmark parameters for BP-N . 150

8.9 Benchmark parameters for BP-WD . 151

8.10 Benchmark parameters for BP-WE . 151

8.11 Benchmark parameters for QPSO-N . 151

8.12 Benchmark parameters for QPSO-WD 152

8.13 Benchmark parameters for QPSO-WE 152

9.1 Descriptive statistics and MWU-based ranking results of the classifiers

with regards to the collective means of the problem domains for accu-

racy performance measures . 160

9.2 Descriptive statistics and MWU-based ranking results of the classifiers

with regards to the collective means of the problem difficulty for accu-

racy performance measures . 162

9.3 Descriptive statistics and MWU-based ranking results of the classifiers

with regards to the collective means of the problem environments for

accuracy performance measures . 164

xii

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

9.4 MWU-based pairwise comparison of the classifiers for accuracy perfor-

mance measures (Wins/Ties/Losses percentages) 165

9.5 Descriptive statistics and MWU-based ranking results of the classifiers

with regards to the collective means of the problem domains for satu-

ration performance measures . 169

9.6 Descriptive statistics and MWU-based ranking results of the classifiers

with regards to the collective means of the problem difficulty for satu-

ration performance measures . 173

9.7 Descriptive statistics and MWU-based ranking results of the classifiers

with regards to the collective means of the problem environments for

saturation performance measures . 174

9.8 MWU-based pairwise comparison of the classifiers for saturation per-

formance measures (Wins/Ties/Losses percentages) 175

9.9 Descriptive statistics and MWU-based ranking results of the classifiers

with regards to the collective means of the problem domains for com-

plexity performance measures . 178

9.10 Descriptive statistics and MWU-based ranking results of the classifiers

with regards to the collective means of the problem difficulty for com-

plexity performance measures . 179

9.11 Descriptive statistics and MWU-based ranking results of the classifiers

with regards to the collective means of the problem environments for

complexity performance measures . 180

9.12 MWU-based pairwise comparison of the classifiers for complexity per-

formance measures (Wins/Ties/Losses percentages) 181

9.13 MWU-based ranking of the classifiers with regards to the performance

measures (Wins/Ties/Losses percentages) 191

9.14 Comparison of the control parameters of the classifier and the overall

performance of the classifiers . 195

9.15 Descriptive statistics and MWU-based ranking results of the classifiers

with regards to the collective means of the problem domains for weight

distribution performance measures . 199

xiii

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

9.16 Descriptive statistics and MWU-based ranking results of the classifiers

with regards to the collective means of the problem difficulty for weight

distribution performance measures . 200

9.17 Descriptive statistics and MWU-based ranking results of the classifiers

with regards to the collective means of the problem environments for

weight distribution performance measures 201

9.18 MWU-based pairwise comparison of the classifiers for weight distribu-

tion performance measures (Wins/Ties/Losses percentages) 202

9.19 Descriptive statistics and MWU-based ranking results of the QPSO

classifiers with regards to the collective means of the problem domains

for D . 206

9.20 Descriptive statistics and MWU-based ranking results of the QPSO

classifiers with regards to the collective means of the problem difficulty

for D . 206

9.21 Descriptive statistics and MWU-based ranking results of the QPSO

classifiers with regards to the collective means of the problem environ-

ments for D . 207

9.22 MWU-based pairwise comparison of the classifiers forD (Wins/Ties/Losses

percentages) . 208

xiv

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 1

Introduction

The power to question is the basis of all human progress.

Indira Gandhi (1917 – 1984)

Data streams are common sources of data in the real world [1]. Because data streams

provide sequential access to real-time data, the data they provide is referred to as

streamed data [1][60]. The task of classifying streamed data according to a set of known

labels in real-time is known as the streamed data classification problem (SDCP) [27].

Streamed data can undergo changes due to their real-world sources [98]. These

changes cause the decision boundaries of SDCPs to either disappear, appear, or shift [94].

If a classifier is unable to track decision boundary changes, then the classifier will expe-

rience concept drift [98]. That is, the classifier will not be able to classify correctly due

to the changed decision boundaries [112].

Various studies have been done on SDCPs and their potential classifiers, includ-

ing feed forward neural networks (FFNNs) [1][13][21][24][60][62][67][76][93][98][102][109].

FFNNs are a powerful class of classifiers provided by the field of computational intelli-

gence (CI) [101][119].

To prevent concept drift in a FFNN, the FFNN must be able to dynamically opti-

mise its architecture and to dynamically adjust its weights [23][96][98][127]. The studies

mentioned, however, showed that little work has been done on the subject of dynamic

architecture optimisation for FFNNs with regards to SDCPs.

1

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 1. Introduction 2

This thesis proposes a novel online learning algorithm that uses regularisation to dy-

namically optimise the architecture, and quantum particle swarm optimisation (QPSO)

to dynamically adjust the weights. QPSO is a dynamic population-based CI optimiser,

that combines principles of swarm movement and electron motion within atoms to op-

timise a problem [6]. The learning algorithm was applied to a 3-layer FFNN, using

rectified linear units (ReLUs), to create a classifier for SDCP.

Both weight decay (WD) and weight elimination (WE) were considered as regu-

larisers. The classifiers were empirically investigated on 80 SDCPs from five problem

domains. The gradient-based back propagation (BP) optimisation algorithm for FFNNs

was used as a benchmark for the classifiers [119].

The remainder of the chapter is organised as follows. Section 1.1 motivates the work

reported in this thesis. Section 1.2 discusses the objective and sub-objectives of the

research. Section 1.3 presents the contributions that the thesis has made to the field of

CI. Lastly, Section 1.4 outlines the organisation of the remainder of the thesis.

1.1 Motivation

This section briefly motivates the work reported in this thesis. SDCP literature on

3-layer FFNN classifiers is limited.

Literature on the superset of SDCPs, i.e. dynamic classification problems, and 3-

layer FFNN classifiers have been more abundant. Rakitianskaia and Engelbrecht [98]

and Rakitianskaia [94] investigated the use of 3-layer FFNNs, trained by dynamic par-

ticle swarm optimisers (PSOs), as classifiers for dynamic classification problems [94].

Rakitianskaia [94] concluded that QPSO is suitable for training FFNNs which experi-

ence concept drift. Rakitianskaia [94], however, did not investigate the use of dynamic

architecture optimisation in dynamic classification problems.

Aside from Rakitianskaia and Engelbrecht [98] and Rakitianskaia [94], there have

not been any other significant investigations into the use of 3-layer FFNN, trained by

dynamic PSOs, for dynamic classification problems. Most research on 3-layer FFNNs

trained by PSOs focused on static classification problems, i.e. classification problems

whose data does not undergo change [68][95][96][97][99][115].

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 1. Introduction 3

Rakitianskaia and Engelbrecht [98] and Rakitianskaia [94], also did not cater for

the effects of saturation that are common for PSO-based training of FFNN [96][115].

Rakitianskaia and Engelbrecht [96][97] did investigate several approaches to overcome

the issue of saturation. However, controlling saturation was found to be a non-trivial

task. Rakitianskaia and Engelbrecht [95] and Bosman et al [10] have suggested that

regularisation can aid 3-layer FFNNs trained by PSOs for static classification problems

by reducing saturation. Gupta and Lam [50] have shown that using WD regularisation

can also improve the performance of FFNNs for static classification problems with noise.

Furthermore, studies have shown that WD regularisation and WE regularisation can

improve performance with respect to accuracy and complexity for FFNNs on static

classification problems [10][68][95][118].

Despite the existence of regularisation techniques and QPSO, no work on using them

together to train FFNNs for SDCPs has been done. Lastly, SDCP literature on 3-layer

FFNNs use computationally expensive activation functions [76][102][109]. The real-time

nature of streamed data, however, requires classifiers to be as computationally inexpense

as possible [1][24]. A computationally less expensive alternative to commonly used FFNN

activation functions, e.g. sigmoid, is the ReLU activation function [81][108].

Despite ReLU activation function being computationally inexpensive, their main ad-

vantage is that ReLU activation function do not saturate in the presences of positive

signals [115].

The above gaps in SDCP literature motivate the investigation into regularised FFNNs

as classifiers for SDCPs.

1.2 Objectives

The main objective of this thesis is to investigate the use of regularised FFNNs, trained

by QPSO, as classifiers for SDCPs. The following sub-objectives are set out in order to

ensure that the main objective of the thesis is achieved:

• Provide a sufficient overview of CI, PSOs, artificial neural networks (ANNs) and

SDCPs.

• Review the literature on classifiers for SDCPs to motivate this work.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 1. Introduction 4

• Identify the requirements and issues that FFNNs need to address in order to be

suitable for SDCPs.

• Find a method for simulating SDCPs for FFNNs.

• Find a suitable set of SDCPs which can be used to benchmark the classifiers in-

vestigated by this thesis.

• Propose a method to quantitatively analyse the dynamic environments of SDCPs,

in order to gain a better understanding of the characteristics of the benchmark

SDCPs.

• Propose a number of learning algorithms that use regularisation.

• Propose a viable FFNN design, i.e. architecture, that can be learnt by the proposed

learning algorithms.

• Empirically investigate the proposed classifiers using the benchmark SDCPs.

• Determine if any of the proposed classifiers are suitable for SDCPs.

• Identify any shortcomings of the proposed classifiers, and propose possible future

enhancements.

1.3 Contributions

The thesis makes the following contributions to the research area of SDCP, within the

field of CI:

• A more complete quantification of the requirements that SDCPs impose on FFNN

classifiers than currently available in the literature.

• A quantitative method for analysing the dynamic environments of SDCPs.

• A classification scheme for determining how difficult it is for a classifier to accu-

rately learn SDCPs.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 1. Introduction 5

• An approach for the application and analysis of FFNNs classifiers on SDCPs.

• A statistically sound empirical investigation of regularised FFNN classifiers for

SDCPs.

• A basis for doing future research on regularised and non-regularised FFNN classi-

fiers for SDCPs.

• A basis for doing future research on the use of dynamic PSO and dynamic archi-

tecture selection to train FFNN classifiers for SDCPs.

1.4 Thesis Outline

The rest of the thesis is organised as follows:

• Chapter 2 provides a brief background on the field of CI, and the problems of

optimisation and approximation.

• Chapter 3 discusses PSO, with a focus on PSOs for dynamic environments and

the QPSO.

• Chapter 4 discusses ANNs, with a focus on FFNNs, BP, PSO-based training, and

regularisation.

• Chapter 5 discusses SDCPs and reviews currently available literature on SDCP

and their classifiers.

• Chapter 6 proposes several measures for quantitative analysis of the dynamic

environments of SDCPs.

• Chapter 7 proposes the regularised FFNN classifiers for SDCPs.

• Chapter 8 presents the hypotheses that were evaluated by the empirical investi-

gation, and the way in which the empirical investigation was conducted.

• Chapter 9 empirically analyses and discusses the proposed classifiers.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 1. Introduction 6

• Chapter 10 provides the conclusions and future work that were derived from the

work done in this thesis.

The following appendices appear at the end of the thesis:

• Appendix A provides the performance trend graphs for the performance trend

analysis of Chapter 9.

• Appendix B provides a list of the important acronyms used, or newly defined, in

this thesis, as well as their associated definitions.

• Appendix C lists and defines the mathematical symbols used in this thesis, cat-

egorised according to the relevant chapters in which they appear.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2

Computational intelligence problems

If I had 60 minutes to solve a problem, I’d spend 55 minutes defining it,

and 5 minutes solving it.

Albert Einstein (1879 – 1955)

CI is a field within the discipline of artificial intelligence (AI) [33]. CI attempts to

create “intelligent” software-based problem solvers for complex problems, whose analyt-

ical solutions are too complex or expensive to calculate [33]. Real-world problems, which

are problems that occur in real-life situations, tend to be complex [33][39]. Hence, the

major driving force behind CI is real-world application [33].

The primary real-world complexities encountered in CI literature are randomness,

error, change, time, and space. Randomness refers to the unpredictable nature of the real-

world; error refers to the potential for erroneous problem solver behaviours and erroneous

problem information; change describes the potential for problem information to change

over time; time describes the computational time constraints of problems; lastly, space

refers to the spatial constraints of problem solvers, i.e. available memory [1][2][33][75].

CI problem solvers are generally made up of models and algorithms that are inspired

by nature [33][94]. The reason that CI models and algorithms draw on nature for inspi-

ration is because nature has been very successful at solving problems. Such success is

illustrated, for example, by the flying patterns formed by a flock of birds that improve

the overall aerodynamics of the flock [28]. In the remainder of this thesis, any problem

7

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2. Computational intelligence problems 8

targeted by CI is referred to as a CI problem. CI problems are best understood in light of

their categorisation. This chapter introduces and discusses the various categorisations,

with the intention of giving sufficient background on the CI problems that are examined

in this thesis.

The remainder of the chapter is organised as follows: Section 2.1 discusses two com-

monly occurring classes of CI problems. Section 2.2 discusses the two types of envi-

ronments in which CI problems occur, i.e. static and dynamic. Lastly, Section 2.3

summarises the chapter.

2.1 Problem classes

A CI problem class is the categorisation of what the information available in the problem

domain represents [33][94]. Knowing what the information represents is important, be-

cause it determines the objective of a problem solver [33]. Two fundamental classes of CI

problems are optimisation and approximation [33][39]. These two classes are elaborated

on in sections 2.1.1 and 2.1.2, respectively.

2.1.1 Optimisation

An optimisation problem is a class of CI problems that consists of one or more functions,

known as objective functions, and zero or more constraints [94]. An objective function

represents a metric that is used to evaluate the quality of a solution. The solution is

a vector of values assigned to the decision variables of the objective function. Thus, a

solution represents a possible answer to the mathematical problem in question [33][63].

A space representing the quality of all the possible solutions, known as the problem’s

search space, is created by the objective function and the decision variables’ domains.

The objective of an optimisation problem solver is to search the search space to find

the best solutions, known as the global optima, for the problem [33]. Problem solvers

that deal with optimisation problems are called optimisers. When an optimiser stops

searching because it has found an optimal solution, the optimiser is said to have converged

on a solution.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2. Computational intelligence problems 9

Optimisation of an objective function takes one of two forms: minimisation or max-

imisation [33]. The former sees global optima as global minima. The latter sees global

optima as global maxima. Figure 2.1 presents an illustration of the objective function

curves of an arbitrary minimisation and maximisation optimisation problem.

(a) A maximisation problem with global maxima (b) A minimisation problem with global minima

Figure 2.1: Illustration of the two types of global optima

Optimisation problems can be categorised based on the number of objectives they

have, as follows:

• single-objective, i.e. one objective function [33].

• multi-objective, i.e. two or three objective functions [56].

• many-objective, i.e. more than three objective functions [59].

Multi- and many-objective problems are more difficult than single-objective problems,

because the sub-objectives tend to work against each other, creating a set of non-

dominating optima [56]. Each optimum in the set is a solution that provides a trade-off

between the various sub-objectives [59]. Thus, most of the optima need to be found so

that an appropriate trade-off solution can be chosen by domain experts [33]. A real-world

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2. Computational intelligence problems 10

example of a multi-objective optimisation function is an attempt to find the best stock

portfolio that will provide maximum growth and minimum risk over a specified number

of years.

Furthermore, optimisation problems can be boundary constrained, functionally con-

strained, or unconstrained [33][96]. Boundary constrained optimisation problems are

subject to search space boundaries. On the other hand, functionally constrained opti-

misation problems have constraints that render certain decision variable values infea-

sible [56]. Unconstrained optimisation problems do not impose any constraints on the

problem [97]. The remainder of this thesis considers only unconstrained optimisation

problems, because ANNs do not make use of any constraints [39].

A fatal problem that optimisers face is local optimum trapping : Any search space

can be divided into regions. Each region may have an optimum. However, these optima

might not be global optima, i.e. the best possible solutions for the entire search space.

Such solutions are referred to as local optima, i.e. the optima that represent the best

solutions in their corresponding region [33]. Local optimum trapping occurs when an

optimiser has converged to one of the local optima rather than to a global optimum, and

is unable to escape the region in which the local optimum is located [9][99]. A trapped

optimiser cannot escape, because it does not have any information about a better region

to which it can move, and does not have the means to gain such information. Therefore,

local optimum trapping deteriorates optimiser performance, provided the optimiser does

not have means to overcome local optimum trapping [33][39].

Figure 2.2 shows a local region on an objective function curve of a minimisation

optimisation problem that can cause local optimum trapping.

2.1.2 Approximation

An approximation problem, also known as a function approximation problem, is a class of

CI problems where the objective is to find a functional mapping between an I-dimensional

input space and a K-dimensional target space, given a data set of patterns (D) [39][126].

That is,

f : IRI → IRK

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2. Computational intelligence problems 11

Figure 2.2: Minimisation optimisation problem with local minima

Each pattern, Dp, is a tuple, (~z,~t), of vectors, where ~z is the input vector consisting of

I decision variables (independent variables) and ~t is the target vector consisting of K

output variables (dependent variables) [2][126]. Problem solvers that deal with approxi-

mation problems are known as approximators [126].

Approximators produce models, i.e. parametrised functional mappings that approxi-

mate the given function. A classic example of a model is a linear combination of decision

variables.

Models have one or more adjustable variables called model parameters, e.g. the coef-

ficients in a linear combination of a set of independent variables [31]. Model parameters

enable the model to approximate various functions [39]. Finding the model parameters’

values that provide the best approximation of a particular function is an optimisation

problem [33].

Approximators tend to automate the optimisation of model parameters through the

use of optimisers [39][94]. CI-based approximators usually refer to such optimisers as

learning algorithms [2].

Learning algorithms are guided by one or more error functions, i.e. objective func-

tions, that calculate the model error. The model error is the deviation between the

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2. Computational intelligence problems 12

model’s approximation and target function [39].

The magnitude of the model error is directly related to how well the data set repre-

sents the target function, i.e. the distribution and size of the data set [2][126]. The less

representative the data set is of the target function, the more difficult it will be to obtain

an accurate approximation [33][39]. Thus, the higher the model error tends to be.

To prevent high model errors, the approximation must be made carefully so as to

not only represent the provided data set, but also unseen patterns. This allows the

approximation to generalise well, i.e. accurately approximate the target vectors of the

patterns not used during model construction [2][33][126]. To produce an approximator

that can generalise well requires a fairly-sized data set of well-distributed samples and

a mechanism in the learning algorithm that can predict the generalisation error of the

model [126].

Typical sub-classes of approximation problems include [33][105]:

• Prediction problems, which deal with the approximation of complex trends that

can be used to forecast future movements, e.g. storm paths [75][105].

• Classification problems, which deal with the labelling of patterns according to

known classifications, e.g. intrusion detection [2][33]. Approximators dealing with

classification problems are called classifiers [1][116]. A classifier learns to label

patterns by approximating the classification function that maps an input vector

to a discrete class [33][98]:

f : IRI → {t1, t2, ..., tK}

Classification functions represent the decision boundaries, e.g. separating hyper-

planes, that separate the patterns of different target classes [94]. Figure 2.3 pro-

vides an illustration of a 2-dimensional classification problem, with two classes and

non-linear decision boundaries.

The focus of this thesis is on classification problems. Hence, the remainder of the thesis

will only consider classification problems in discussions related to approximation.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2. Computational intelligence problems 13

Figure 2.3: Example of a 2-dimensional classification problem with two classes and non-linear

boundaries

2.2 Problem environments

A CI problem can further be categorised in terms of its problem environment, i.e. how

the available information about the problem changes over time [25][33]. A CI problem

can have either a static environment or a dynamic environment [60].

In the context of a classification problem, the problem environment refers to how

its decision boundaries change over time [94]. Static and dynamic environments for

classification problems are discussed in Sections 2.2.1 and 2.2.2, respectively.

2.2.1 Static environments

The decision boundaries of a problem with a static environment do not change in any

way while the classifier is trained [25]. That is, once an optimal model is found, it

does not change. Classification problems with static environments are known as static

classification problems [30].

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2. Computational intelligence problems 14

2.2.2 Dynamic environments

On the other hand, the decision boundaries of a problem with a dynamic environment

can change in any way and at any point during the learning process [94]. Decision

boundary changes include shifting, rotation, disappearance, and appearance of decision

boundaries [62]. Each changed “version” of the decision boundaries is known as an

environment instance of the classification problem [6]. Classification problems with

dynamic environments are known as dynamic classification problems [33].

The decision boundaries of dynamic classification problems undergo changes due to

changes in the data set of the problem [94]. Changes in the decision boundaries of the

problem result in classifiers experiencing the phenomenon known as concept drift [98].

In the context of classification problems, concept drift refers to classifiers becoming stale,

i.e. unable to classify correctly, because the decision boundaries learnt by the classifier

no longer approximate the decision boundaries of the problem [13][94]. Concept drift

also occurs when the model architecture, i.e. the structure of the classifier’s model,

changes [49].

Figure 2.4 provides an illustration of a dynamic 2-dimensional classification problem,

with two classes, that has undergone one environment change. The figure demonstrates

that a classifier trained on the previous environment instance will incorrectly classify

several patterns as class A instead of B. A classifier experiencing concept drift, therefore,

needs to correct its approximation through re-optimisation [62].

Dynamic classification problems are more difficult than static classification problems,

because learning algorithms for dynamic classification problems need to track decision

boundary changes, in addition to approximating the classification function [8][94]. Real-

world classification problems typically are dynamic, because real-world data sets tend to

change over time [8].

Decision boundary changes manifest in the error functions of learning algorithms as

changing optima [30][99]. The severity, i.e. intensity, of optima changes are described

by two parameters [3][11][25]:

• The spatial severity, which describes the magnitude of change that happens when

changes occur. The smaller the spatial severity, the less severe the changes are and

vice versa.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2. Computational intelligence problems 15

Figure 2.4: Two-dimensional dynamic classification problem with two classes and non-linear

boundaries

• The temporal severity, which describes the frequency at which the changes occur

over time. The smaller the temporal severity, the less frequent the changes and

vice versa.

Duhain and Engelbrecht [25] presented a holistic classification scheme for dynamic

optimisation problems using the two severity parameters. Because of the relationship

between decision boundary changes and changing optima, the Duhain and Engelbrecht

classification scheme can also be applied to dynamic classification problems. Four classes

of dynamic classification problems are defined as illustrated by Figure 2.5 and discussed

below:

• Quasi-static environments experience low amounts of spatial and temporal severity,

i.e. decision boundary changes are not very severe and do not occur often [25].

This type of environment includes static and almost-static environments. Hence,

a quasi-static environment should have a low performance impact on a classifier.

• Progressive environments experience low spatial severity and high temporal sever-

ity [25], i.e. decision boundary changes are not severe, but occur frequently [25].

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2. Computational intelligence problems 16

Figure 2.5: Dynamic environment classifications: Spatial severity versus temporal severity

Hence, the decision boundaries change smoothly over time.

• Abrupt environments experience high spatial severity and low temporal severity,

i.e. decision boundary changes can be quite severe, but occur infrequently [25].

Hence, the decision boundaries do not change often, but, when they do change,

the changes are significant.

• Chaotic environments experience high amounts of both spatial severity and tem-

poral severity, i.e. decision boundary changes are severe and occur very fre-

quently [25]. This makes the decision boundaries very erratic, and gives learn-

ing algorithms little time to train the classifier. Of the four classes, this type of

environment will impact a classifier’s performance the most [25][33].

2.3 Summary

This chapter discussed the CI problems of optimisation and approximation. Approxima-

tion itself is an optimisation problem, i.e. to find the optimal model to approximate a

given function. A common type of approximation problem is the classification problem.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2. Computational intelligence problems 17

Classification problems can either be static or dynamic, based on whether the decision

boundaries remained constant or changed over time. These changing decision bound-

aries result in classifiers experiencing concept drift, i.e. classifiers become outdated.

Hence, the classifiers need to re-optimise their models to be able to classify correctly.

Additionally, dynamic classification problems can further be classified as either quasi-

static, progressive, abrupt or chaotic, using the spatial and temporal severities of their

environments.

Chapters 3 and 4 build on the content discussed in this chapter through the introduc-

tion of a group of optimisers, known as particle swarm optimisers (PSOs), and a group

of approximators, known as artificial neural networks (ANNs), respectively.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3

Particle swarm optimisation

The fiercest serpent may be overcome by a swarm...

Isoroku Yamamoto (1884 – 1943)

Particle swarm optimisation (PSO) is a class of stochastic population-based optimisers

that was introduced by Kennedy and Eberhart [28] in 1995. Population-based optimisers

make use of more than one candidate solution at a time to optimise a problem, as opposed

to traditional local search optimisation algorithms, such as hill climbers, that use only

one solution at a time [33][39].

PSO has been successfully applied to a multitude of optimisation problems, ranging

from single-objective to dynamic optimisation problems [9][33][48][52][85][95][98][127].

The remainder of this chapter elaborates on PSO, with the intention of giving sufficient

background on PSO as a basis for the discussion in the remainder of this thesis.

The remainder of the chapter is organised as follows: Section 3.1 explains the me-

chanics of PSOs. Section 3.2 presents the issues that standard PSO algorithms face when

dealing with dynamic optimisation problems, and discusses alternative PSOs that are

better suited for dynamic optimisation problems. Lastly, Section 3.3 provides a summary

of this chapter.

18

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3. Particle swarm optimisation 19

3.1 How particle swarm optimisation works

The first PSOs were derived from the movement patterns of bird flocks [28]. PSO consists

of a swarm, which consists of np particles. The position of each particle in the swarm

represents a candidate solution. The solution is stored as the particle’s N -dimensional

position vector, ~x. Over the course of several optimisation iterations, the particles work

together, as a collective, to find optimal solutions in the N -dimensional search space of

the objective function [28][33],

f : IRN → IR

Particle movement is determined by one or more update rules, collectively referred

to as the particle’s behaviour. Behaviour can vary between particles [6]. Sub-swarms are

thus formed by grouping particles based on their behaviours [34][48].

The standard particle update rules require each particle to have an N -dimensional

velocity vector, ~v. The velocity vector represents the step size and direction of the

particle’s movement at iteration t. Three components make up the velocity calculation:

the momentum, cognitive, and social components [28][33]. Section 3.1.1 elaborates on

the momentum component, and Section 3.1.2 elaborates on both the cognitive and social

components.

The standard particle update rules consist of a velocity update rule,

vij(t+ 1) = ωvij(t) + c1r1j(t)[yij(t)− xij(t)] + c2r2j(t)[ŷij(t)− xij(t)] (3.1)

and a position update rule,

xij(t+ 1) = xij(t) + vij(t+ 1) (3.2)

where vij(t) is the j-th element of the velocity vector of particle i at iteration t; yij(t) is

the j-th element of the personal best position of particle i at the iteration t; ŷij(t) is the

value of the j-th element of the neighbourhood best position of particle i at iteration

t; and xij(t) is the j-th element of particle i’s position vector at iteration t; r1j(t) and

r2j(t) are the j-th elements of ~r1 and ~r2, respectively [33]. The elements of ~r1 and

~r2 are sampled uniformly from the range [0, 1] [28]. The variables c1 and c2 represent

the user-specified positive acceleration coefficients of the particle, and ω represents the

user-specified inertia weight of the particle.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3. Particle swarm optimisation 20

Together, the three velocity components aid in the control of a swarm’s exploration-

exploitation trade-off through swarm diversity [33][89]. Section 3.1.3 discusses the notion

of swarm diversity, and Section 3.1.4 discusses the exploration-exploitation trade-off.

Care should be taken when manipulating the three components’ parameters because

velocity can explode and lead to a diverging swarm. Section 3.1.5 explains how the

velocity calculation can be controlled to prevent the swarm from diverging.

Before a PSO can start optimising a problem, the following five design decisions have

to be made:

1. How many particles should be used?

2. What kind of neighbourhood topology, i.e. social structure, will particles use?

3. How will particles be initialised?

4. When will particles be updated during an iteration?

5. Which stopping conditions should be used to stop the optimisation process?

Sections 3.1.6 to 3.1.10 discuss the effect of these algorithm settings, respectively.

Kennedy and Eberhart [28] initially developed two PSOs, known as the global best

(gBest) and local best (lBest) PSOs. Both make use of the standard particle update rule

and the synchronous iteration strategy, i.e. particle information is updated at the end

of each iteration. Note that ω was initially not included, but implied as being equal to

one. Since the introduction of the inertia weight by Shi and Eberhart [104], its use has

become the de facto in the gBest and lBest PSOs literature.

The difference between the two PSOs is their selection of the social guide, i.e. their

neighbourhood topology [33]. The gBest PSO employs the star topology, while the lBest

PSO uses the ring topology.

Algorithm 1 presents the pseudocode employed by the gBest and lBest PSOs.

3.1.1 Momentum component

Momentum represents a particle’s previous movement direction and magnitude [33].

Thus, momentum prevents the particles from rapidly changing direction, which may

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3. Particle swarm optimisation 21

Algorithm 1 Synchronous Particle Swarm Optimisation algorithm

Input: ω, c1, c2, np, f(~x), stopping conditions

for i = 0 to np do

Initialise ~xi randomly

Initialise ~vi to zero vector

Set ~yi as ~xi

Calculate particle i’s quality, using f(~x)

end for

Set t to 0

while Stopping conditions not true do

for i = 0 to np do

Determine ~̂yi by looking for the best personal best in particle i’s neighbourhood

Update ~vi using Equation (3.1)

Update ~xi using Equation (3.2)

Calculate particle i’s quality, using f(~xi)

end for

for i = 0 to np do

if (~xi is better than ~yi) then

~yi = ~xi

end if

end for

t = t+ 1

end while

return Best position found so far

cause it to haphazardly search and, as a result, miss good solutions [29]. The momentum

component’s contribution to the velocity is controlled by the inertia weight, ω [98].

The larger the value of ω is, the larger the momentum component’s contribution to

the velocity [33]. Thus, the longer it takes for a particle to drastically change course.

This can make the particle search more of the search space, i.e. explore. However, if the

particle keeps moving in the same direction, then a large ω can be bad for the particle

because the particle’s velocity might explode. This can cause the particle to skip over

optimal solutions, and leave the search space all together.

On the other hand, the smaller the value of ω is, the easier it is for the particle to

change course; thus, the more chance the particle has to concentrate on a region in the

search space, i.e. exploit. However, if the ω is too small the particle might not be able

to escape the region and become subject to local optimum trapping.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3. Particle swarm optimisation 22

3.1.2 Cognitive and social components

The cognitive component represents the effect of the particle’s past success on its cur-

rent movement, i.e. nostalgia, whereas the social component simulates the effect of the

particle’s neighbours’ success on the particle’s movement, i.e. envy [28][33].

Both components make use of a guide. Guides are positions of the best solutions

found either by a particle, group of particles, or the entire swarm thus far [64]. The

cognitive guide, ~yi, is the personal best of particle i, and the social guide, ~̂yi, is the

neighbourhood best of the particle [33][64].

Both the cognitive and the social guides’ contributions to the velocity are controlled

by their respective user-specified positive acceleration coefficient, c1 and c2, and their

respective uniformly sampled vectors, ~r1 and ~r2 [28].

The contributions of the cognitive or social component are weighted by the result

of multiplying the respective component’s positive acceleration coefficient and sampled

vector, e.g. c1~r1 [28]. Hence, c1 and c2 control the maximum possible contributions

that their respective component’s guide can make to the velocity calculation [33]. If

one positive acceleration coefficient is larger than the other, then there exists a greater

chance that the respective component might overshadow the other [33].

3.1.3 Swarm diversity

Swarm diversity describes how different the particles’ positions in the swarm are, i.e.

the spread of the particles in the N -dimensional search space [33][89]. A diverse swarm

indicates that particles are not close to one another, i.e. have not yet converged. A non-

diverse swarm, on the other hand, indicates that particles have either converged around

a point in the search space or collapsed [8]. The more diverse a swarm is, the more

information the PSO has about the search space. Diverse swarms are less susceptible to

local optimum trapping than non-diverse swarms [33].

Swarm diversity, D, can be measured as the average Euclidean distance between

particles and the swarm’s centre, as follows [89]:

D =

∑np

i=1

√∑N
n=1 (xij − x̄j)2

np
(3.3)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3. Particle swarm optimisation 23

where np is the size of the swarm; xij is the j-th element of the position vector of particle

i in the swarm; and x̄j is the j-th element of the position vector of the swarm centre,

which is calculated as the average over all the particle positions.

3.1.4 Exploration-exploitation trade-off

Exploration describes an optimiser’s ability to search a wide area of the search space [89].

Exploitation, on the other hand, describes the optimiser’s ability to concentrate on a par-

ticular area of the search space, thereby allowing the optimiser to converge if needed [33].

In the context of PSOs, exploration manifests in diverse swarms and exploitation

manifests in non-diverse swarms [89][94]. If the exploration and exploitation levels are

not appropriate for the optimisation problem, then the PSO might explore or exploit at

the wrong times which may result in sub-optimal performance [33][52][89]. Hence, the

user needs to decide on an appropriate exploration and exploitation trade-off [33].

The trade-off, however, is problem dependent, and control of it varies from optimiser

to optimiser [33][52][89]. In static environments, the literature argues that optimisers,

such as PSOs, should start off by exploring and then progress towards exploiting. This

strategy allows the search to first determine the potential of various regions and then to

focus on those regions with the most potential in order to find the best solution(s) [94].

In dynamic environments, the same explore-first-exploit-last strategy is recommended,

but the strategy should be repeated for each environment instance, because each envi-

ronment instance can be seen as a standalone problem [7][9][94]. Another suggested

approach for dynamic environments is to have some members of the population to al-

ways explore while others exploit the findings of the exploring members, i.e. to maintain

diversity [6].

PSOs that make use of the standard particle update rules allow exploration-

exploitation trade-off control through ω, c1 and c2 [33][89][98].

The larger ω becomes, the more PSO facilitates exploration, since particles have

slower reactions to their cognitive and social guides. Slower reaction means that the parti-

cles can move further beyond the boundaries imposed by cognitive and social guides [33].

This allows the PSO to maintain swarm diversity. On the other hand, the smaller ω be-

comes, the more a PSO facilitates exploitation because particles’ movements become

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3. Particle swarm optimisation 24

more controlled by the cognitive and social guides. Thus, particles struggle to move

beyond the boundaries imposed by the cognitive and social guides [33]. Depending on

the values of c1 and c2, this leads to a reduction in swarm diversity.

If c1 = c2, then the exploration-exploitation trade-off is controlled primarily through

ω. However, if c1 6= c2, then the trade-off can be influenced as follows: if c1 > c2,

then particles will concentrate more on their individual regions in the search space than

on the region occupied by their neighbourhood best position, because the cognitive

guide is favoured more [33]. This allows the current diversity to be preserved to some

degree. If c1 < c2, then particles will concentrate more on the region occupied by their

neighbourhood best position [33]. Hence, the swarm’s diversity will be reduced by some

degree. Therefore, the former case, i.e. c1 > c2, allows more exploration than the latter

case, i.e. c1 < c2.

Manipulation of ω, c1, and c2 directly effects the acceleration of the particles during

optimisation. Thus, the direct effect these control parameters have on the performance of

a PSO. Optimal values for ω, c1, and c2, however, are problem-dependent [33][94]. Care

should however be taken as certain combinations of ω, c1, and c2 values can result in

exploding velocities [32]. Exploding velocities ultimately lead to divergence, i.e. particles

move further and further apart from each other, therefore preventing the swarm from

exploiting [32][94]. Cleghorn and Engelbrecht [18] empirically confirmed that there are

regions within the value space of ω, c1, and c2 that result in a convergent optimisation

process.

3.1.5 Controlling velocity

One possible solution to delay exploding velocities is velocity clamping, which places an

upper bound on the magnitude of the velocity [98]. The upper bound is determined by

the vector ~vmax. The vector ~vmax, however, is problem-dependent. Velocity clamping

also adds more computational complexity to the PSO, specifically with reference to

control parameter tuning [33]. Aside from problem dependency, velocity clamping can

cause particles to change search direction or overshoot an optimum when at maximum

velocity [33]. These two problems can lead to sub-optimal solutions being found, or a

lack of convergence.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3. Particle swarm optimisation 25

A more effective way of choosing ω, c1, and c2 than manually tuning their values, is

to apply the constriction coefficient constant,

χ =
2κ

|2− φ−
√
φ(φ− 4)|

(3.4)

to the velocity update Equation (3.1) as follows [20][29][99]:

vij(t) = χ[vij(t) + c1r1j(t)[yij(t)− xij(t)] + c2r2j(t)[ŷij(t)− xij(t)]] (3.5)

where κ is a constant and φ = c1r1j + c2r2j.

The key advantage of using the constriction coefficient is that if Equation (3.5) is used

under the constraints φ ≥ 4 and κ ∈ [0, 1], then the swarm will converge in terms of sta-

tistical expectation to a point that may or may not be an optimum [20][29]. This ensures

that velocities will not explode, therefore eliminating the need for velocity clamping [33].

Another alternative is to assign values to ω, c1, and c2 that satisfy the theoreti-

cally derived convergence conditions of the constriction coefficient. A set of well-known,

empirically tested values are ω = 0.729844 and c1 = c2 = 1.496180 [29][98][115].

Theoretical analysis of the PSO has further restricted the convergence conditions, to

guarantee a higher order of stability as follows [15][16][17][19]:

|w| < 1

0 < c1 + c2 <
24(1− ω2)

7− 5ω

For the purpose of this thesis, it is sufficient to know that the values suggested above for

ω, c1, and c2 conform to these convergence conditions. For more detailed works on the

subject, the reader is referred to the works of Cleghorn and Engelbrecht [16][17][19].

3.1.6 Swarm size

One of the most important PSO parameters to consider is the swarm size, np. A small

swarm size means that there are only a few particles searching the search space. On the

other hand, a large swarm size means that there are many particles searching the search

space. Larger swarms allow for more exploration than smaller swarms [94]. However,

the larger the swarm, the more computationally expensive the PSO [82].

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3. Particle swarm optimisation 26

Malan and Engelbrecht [82] showed that there is a critical swarm size, i.e. a limit,

for each problem that, if exceeded, will result in the PSO’s performance deteriorating.

The choice for np is thus problem dependent, though studies indicate a good range to

be between 10 and 30 particles [33][98][115].

3.1.7 Neighbourhood topology

The neighbourhood topology of a PSO describes the social structure of particles, defining

how social guides are selected [64][94]. Three widely used neighbourhood topologies are

the star, ring, and Von Neumann topologies [33][94]. Figure 3.1 provides illustrations of

the three topologies for a swarm with nine particles. Each circle represents a particle,

and a line between two particles indicate that they can communicate with each other.

(a) Star topology (b) Ring topology (c) Von Neumann topology

Figure 3.1: PSO topology comparisons for a swarm with 9 particles

Star topology

The star topology allows all particles in the swarm to exchange information about their

best positions with one another [64]. The social guide is the best particle found by the

entire swarm, because the swarm forms one neighbourhood [35].

The star topology allows information about the best positions in the search space to

flow very quickly within the swarm; this in turn can lead to rapid convergence of the

swarm [64][94]. Rapid convergence also entails a quick loss in swarm diversity, because

particles are moving towards the global best position. Literature argues that the star

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3. Particle swarm optimisation 27

topology tends to favour exploitation [64]. However, Engelbrecht [35] empirically showed

the best topology to be problem dependent.

Ring topology

The ring topology forms neighbourhoods of three particles based on the particle’s index

in the swarm [35]. Each particle i forms a neighbourhood with the particles to its left,

i.e. (i − 1) mod np, and right, i.e. (i + 1) mod np [64]. The social structure forms a

ring-like shape, with overlapping neighbourhoods [64].

The small overlapping neighbourhoods slow down the flow of information about the

best positions found among particles in the swarm. This slows down swarm convergence

and the rate at which swarm diversity is lost [64]. Literature argues that the ring topology

tends to favour exploration. However, Engelbrecht [35] empirically showed that the ring

topology performance is problem dependent.

Von Neumann topology

The Von Neumann topology, named after John Von Neumann for his pioneering work

in cellular automata, structures the swarm into a grid, the edges of which are connected

to the edge on the opposite side of the grid [64][94]. In this way, each particle has a

neighbour in each of the four basic directions, north, east, south and west [64][94]. Note

that like the ring topology, the neighbourhood of the Von Neumann topology is based

on particle indices.

The lattice social structure results in a slower flow of information about the best

positions found among particles than the star topology [33]. Information about best po-

sitions flows faster than in the ring topology, because information flows in four directions

instead of two [94].

The Von Neumann topology, therefore, tends to balance exploration and exploitation

better than the other two topologies. On average, the Von Neumann topology tends to

perform better than the star and ring topologies, across various problems, including

dynamic optimisation problems [33][64][94][115].

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3. Particle swarm optimisation 28

3.1.8 Particle initialisation

Before starting the optimisation process, the positions and velocities of the np particles

need to be initialised. Initialisation of these two vectors is important because the start-

ing positions and velocities of particles affect the PSO’s likelihood of finding a global

optimum [33].

Position initialisation

Due to starting positions having an impact on the efficiency of a PSO, the positions

should be initialised to cover the entire search space in a uniform manner [33][37]. This

prevents biased searches, and reduces the likelihood of the swarm not exploring certain

regions of the search space [98].

Literature therefore recommends that particle positions be uniformly initialised within

the boundary constraints of the search space [33]. The boundary constraint of an opti-

misation problem is the valid value range of each vector element in the position vector

of a solution [33].

Some optimisation problems do not have boundary constraints, in which case the

positions should be initialised to a reasonable range within the search space [33][37]. The

roaming behaviour of standard PSO particles allows the particles to move outside their

initialisation range in search for optimal solutions [37]. Smaller position initialisation

ranges should, therefore, be preferred over larger ranges for unbounded optimisation

problems [37].

Velocity initialisation

PSO performance can be degraded significantly if the initial velocity values are too

high, because the resulting large step sizes may result in particles skipping over global

optima and leaving the search space. A common way to initialise velocities is to initialise

them uniformly in a range that is a fraction of the boundary constraints, for instance, a

quarter [33]. However, this approach tends to lead to the problem of to large step sizes.

As an alternative, Engelbrecht [32] suggested initialising velocities to zero, because it

enhances PSO performance by reducing the time wasted searching in infeasible regions.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3. Particle swarm optimisation 29

3.1.9 Iteration strategies

An iteration for a population-based optimiser is a single step of the optimisation process

that iterated through all the entities in the population once. The iteration strategy of

a PSO can be classified as either asynchronous or synchronous. This choice is based on

when guides are updated, i.e. when the change in position of a particle becomes visible

to the other particles [36].

Asynchronous strategy

Asynchronous PSOs update the personal best position and neighbourhood best positions

of the particles immediately after the new position of a particle has been calculated [36].

Any information about the search space that is found by the particle is, thus, immediately

conveyed to the particles that still need to move during that iteration [33].

The literature suggests that this type of iteration generally works better with the

ring topology than with the star topology, because information can flow quicker through

the swarm [33]. Engelbrecht [36] showed that the choice of iteration strategy should

be based on the characteristics of the optimisation problem rather than on the type of

topology. This observation was also supported by Engelbrecht’s findings in [38].

Synchronous strategy

Synchronous PSOs update the particles’ personal best positions and neighbourhood best

positions only after all the particles’ new positions have been calculated [36]. Information

about the best positions found by a particle in the current iteration is, thus, only available

to the other particles during the next iteration [33].

3.1.10 Stopping conditions

A PSO’s optimisation process makes use of a set of stopping conditions, to determine

when to terminate the search process [33].

Common PSO stopping conditions include the maximum number of objective func-

tion evaluations, maximum number of iterations and an acceptable level of error has

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3. Particle swarm optimisation 30

been reached [33]. Note that parameters used by these three stopping conditions are

problem dependent [33].

3.2 Particle swarm optimisation in dynamic envi-

ronments

PSOs, such as the gBest and lBest PSOs, are considered to be static PSOs. That is, they

fail to work for dynamic optimisation problems. Section 3.2.1 discusses the reasons why

static PSOs are not suitable for dynamic optimisation problem. Lastly, Section 3.2.2

presents examples of PSOs that have been developed to work in dynamic environments.

3.2.1 Issues to consider for dynamic environments

Static PSOs are not suitable for dynamic optimisation problems for three reasons [8]:

1. They have no means of detecting environment changes.

2. They have no means of coping with personal and neighbourhood best positions

that have become stale, i.e. no longer be the best.

3. They have no means to overcome loss of swarm diversity.

These three issues are discussed in the remainder of this section.

Change detection

PSOs need to know when environment changes occur, so that a PSO can ensure that its

particles do not become trapped in unfruitful regions of the search space. If the particles

do become trapped, the PSO’s performance will be degraded, as discussed in Section

2.2.2.

A way for PSOs to detect changes is to use sentry particles [33]. Sentries are initialised

to random, fixed positions in the search space at the start of the search, and do not move

during the search [9]. Since the positions of sentries do not change during the search,

sentries monitor for changes in the environment over time [9][33]. If there is a change in

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3. Particle swarm optimisation 31

particle fitness between the beginning and the end of an iteration for a sentry particle,

then the environment has changed.

Outdated memory

Memory refers to the personal and neighbourhood best positions of a particle. When

an environment change happens, the memory of a particle may no longer be the best

position found by the particle and its neighbours [98]. Memory that is no longer valid is

called outdated memory [6][8]. Any outdated memory needs to be corrected, otherwise,

particles will be misinformed and be attracted to sub-optimal regions [8].

A way to handle outdated memory is to ensure that the quality of personal and

neighbourhood best positions are recalculated and checked against the current positions,

every time a change is detected, or at every iteration [6][8].

Swarm diversity loss

Losing swarm diversity is a natural consequence of the PSO converging, as discussed in

Section 3.1.3. However, if the current environment instance changes, the PSO needs to

start searching again, because optimality of the current solutions cannot be assumed.

To stimulate exploration of the new environment, swarm diversity needs to be restored

or increased [8].

A way to overcome this issue to is to re-initialise the PSO whenever a change is de-

tected [94]. Another way is to prevent complete convergence of the swarm by maintaining

swarm diversity [6].

3.2.2 Dynamic particle swarm optimisation

Various PSOs have been designed to address the three shortcomings of non-dynamic

PSOs. Three dynamic PSOs, namely the reinitialising PSO, the charged particle swarm

optimisation (CPSO) algorithm, and the QPSO algorithm, are discussed in the remainder

of this section.

Note that the remainder of this thesis focuses only on the QPSO algorithm. The other

two dynamic PSOs are provided to demonstrate to the reader that there are various ways

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3. Particle swarm optimisation 32

of making a PSO dynamic.

Reinitialising particle swarm optimisation

The reinitialising PSO is a dynamic PSO that uses sentry particles to detect change,

and complete swarm reinitialisation to restore swarm diversity and to update outdated

memory [33][98].

This approach might fail to detect changes if there are not enough particles in the

search space, because the positions of sentries need to experience change for change

detection to occur [33][98]. Furthermore, reinitialisation of the swarm prevents previ-

ously acquired knowledge about the search space to be reused, thus, potentially wasting

computational effort [33][98].

Charged particle swarm optimisation

Blackwell and Bentley [9] proposed the CPSO for dynamic optimisation problems. The

CPSO is inspired by the physics of electrostatic charges. Some particles are assigned

positive charges and the velocity Equation (3.1) is modified to take the charges into

account [9]. Particles with a charge higher than zero repel each other when they are too

close to one another.

This prevents the loss of swarm diversity through the prevention of complete conver-

gence [98]. The issue of outdated memory is addressed by allowing the fitness of personal

best and neighbourhood best positions to be recalculated during each iteration.

Quantum particle swarm optimisation

Blackwell and Branke [6] proposed a simpler and computationally less expensive alter-

native to the CPSO, known as the QPSO. QPSO is inspired by the quantum mechanics

model of an atom where positions of electrons around the atom are sampled from some

probability distribution. The standard PSO model is adapted by introducing quantum

particles [6].

Quantum particles act as if they are electrons around the nucleus of an atom, where

the nucleus is the social guide of the respective particle [6]. The quantum mechanics

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3. Particle swarm optimisation 33

model of an atom dictates that an electron’s position is somewhere within the sphere

around the nucleus of an atom [52]. The exact position of an electron, however, can

only be guessed with some degree of certainty as it is constantly changing [6]. Hence,

quantum particles’ positions are estimated to be somewhere in a hypersphere around the

social guide at a specific point in time.

These concepts are implemented by dividing the swarm of the QPSO into two sub-

swarms, each with a different set of behaviours [6]. Note that splitting the swarm equally

between the two sub-swarms has been found to be very effective [6][98].

The first sub-swarm uses the standard particle update rules, and the second sub-

swarm uses the quantum update rules [6][98]. Note that the original implementation

uses the star topology, though any topology can be used [6][94].

The quantum update rule set, unlike the standard update rule set, only consists of a

position update rule defined as follows [52]:

xij(t+ 1) ∼ d(ŷij(t), r) (3.6)

where d refers to a user-defined sampling distribution and r refers to the radius around

~̂y. Quantum particles’ positions are re-sampled every iteration, using the statistical

distribution d, from a hypersphere around the ~̂y particle, with a radius r [6].

Each particle is sampled from the hypersphere as follows:

1. Sample a vector whose elements are ∈ [−1, 1], using the uniform distribution.

2. Convert the resulting vector in step 1 into a unit vector.

3. Sample a value in the range of [0, r], using the user-defined distribution.

4. Multiply the vector found in step 2 by the value found in step 3.

5. The sampled position vector is equal to ~̂y plus the resulting vector of step 4.

The quantum update rule prevents complete convergence of the swarm, thus pre-

venting swarm diversity loss. The combination of standard and quantum update rules

allow the quantum particles to continuously explore the search space, while the standard

particles exploit the quantum particles’ findings [6]. A larger value for r results in a

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3. Particle swarm optimisation 34

larger sample area around ~̂y, thus enabling quantum particles to explore more of the

search space [6]. The inverse of this occurs for smaller values of r.

A commonly used sampling distribution is the uniform distribution [6][52]. However,

Harrison et al. [52] investigated the effect of various sampling distributions on QPSO

performance, and found that the de facto uniform distribution performs neither the best

nor worst in dynamic environments. Harrison et al. [52] suggested the use of the linear

decreasing distribution with a small radius.

Figure 3.2 provides a comparison of the uniform and linear decreasing distributions

on a 2-dimensional sampling area using 10000 samples.

(a) Uniform sampling distribution (b) Linear decreasing sampling distribution

Figure 3.2: Sampling distribution comparisons for 2-dimensional vector: 10000 samples

Algorithm 2 presents the pseudo code for the QPSO, which can make use of any

topology.

Note that QPSO is focussed on by this thesis instead of the other dynamic PSOs

variants, because QPSO is computationally less complex than other dynamic PSO. Fur-

thermore, there is a significant body of research on QPSO, including improvements and

its successful use to train ANNs.

3.3 Summary

This chapter discussed a class of powerful stochastic population-based optimisation al-

gorithms called PSO. PSOs have various configurations ranging from particle behaviour

to neighbourhood topologies, each with their own set of best practices.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3. Particle swarm optimisation 35

The two original PSOs, gBest and lBest, are inefficient for dynamic optimisation

problems due to their inability to detect changes, to overcome swarm diversity loss,

and to cope with outdated memory. A simple, but highly efficient PSO alternative for

dynamic optimisation problems is the QPSO.

The next chapter, discusses ANNs, and also discuses how the QPSO can be applied

as a learning algorithm for ANNs.

Algorithm 2 Quantum Particle Swarm Optimisation algorithm

Input: ω, c1, c2, np, r, distribution d, f(~x), stopping conditions

for i = 0 to np do

Initialise ~xi randomly

Initialise ~vi to zero vector

Set ~yi as ~xi

Calculate the quality of particle i using f(~x)

end for

Assign standard particle update rules randomly to half of the swarm

Assign quantum update rule to the remaining half of the swarm

Set t to 0

while Stopping conditions not true do

for i = 0 to np do

Determine ~̂yi by looking for the best personal best position the in neighbourhood of particle i

if (particle i is a quantum particle) then

Update ~xi using Equation (3.6)

else

Update ~vi using Equation (3.1)

Update ~xi using Equation (3.2)

end if

Calculate the quality of particle i using f(~x)

end for

for i = 0 to np do

if (~xi is better than ~yi) then

~yi = ~xi

end if

end for

t = t+ 1

end while

return Best position found so far

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4

Artificial neural networks

All models are wrong; some models are useful.

George Edward Pelham Box (1919 – 2013)

Over the course of the last couple of decades, artificial neural networks (ANNs) have

evolved to become very successful approximators for a broad spectrum of approximation

problems [33][39][106]. This chapter discusses ANNs, with focus on ANNs as classifiers.

The remainder of the chapter is organised as follows. Section 4.1 discusses the general

mechanics of ANNs. Section 4.2 discusses the concept of ANN architecture and intro-

duces the FFNN architecture, commonly used for classification problems. Section 4.3

explains how ANNs learn a functional mapping, with focus on the supervised learning

approach for FFNNs. Section 4.4 discusses the usage and issues of PSO-based learning

for FFNNs. Lastly, Section 4.5 summaries the chapter.

4.1 How artificial neural networks work

ANNs are mathematical graph-like models that can approximate mathematical func-

tions [33][126]. ANNs draw their inspiration from the human brain. The human brain

is a complex network of cells, called neurons, that are connected by pathways, called

synapses [84]. McCulloch and Pitts [84] first captured these structures and the activity

within them in 1943, by designing a mathematical model for constructing and analysing

single neurons in the human brain.

36

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4. Artificial neural networks 37

Biological neural networks use electro-chemical charges to carry signals within them

[84][101]. These charges flow from neuron to neuron via synapses. Charges from incom-

ing synapses accumulate in a neuron, until some threshold is reached [84][101]. Upon

reaching the thresholds, the neuron activates by discharging the built-up charge via

its outgoing synapses [39]. The electro-chemical impulse is split across the outgoing

synapses, in proportion to the strengths of each synapse [33].

In the context of ANNs, neurons are seen as information processing units [106].

Synapses, on the other hand, are seen as unidirectional weighted edges that dictate the

flow of information between neurons [39]. Note that this thesis refers to the neuron from

which a synapse flows as the source neuron, and the neuron to which the synapse flows

as the destination neuron.

Furthermore, neuron activation is seen as the mathematical transformation of the

information, represented by incoming synapses, into a single value, known as the ac-

tivation value. An activation function and neuron unit type specification dictate ac-

tivation [33][101][106]. The activation function describes how the activation value is

produced [119]. The neuron unit type specifies how the information from incoming

synapses is fed into the activation function [106]. These two aspects are known as neu-

ron components.

Hence, neuron components and synapses represent the adjustable variables, i.e. model

parameters, of an ANN. Besides neurons and synapses, all ANNs make use of input

neurons and output neurons. Input neurons allow the inputs, i.e. the values of the in-

dependent variables, of a pattern to be fed into an ANN. Output neurons provide the

outcome of processing the pattern, i.e. the values of the dependent variables [39][101].

The ANN needs to learn the function, i.e. f(~z) = ~t + ε, which maps the independent

variables to the dependent variables of an approximation problem with an ε amount of

error [33][121]. Note that the terms “training” and “learning” are used interchangeably

in ANN literature [31][33][39][106].

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4. Artificial neural networks 38

4.2 Architecture

The architecture of an ANN describes the overall structure of an ANN [39][69][121]. The

structural aspects of an ANN can be grouped into two groups [39][69][121]:

• Firstly, operation and interconnectivity of neurons and synapses; in other words,

how the neurons and synapses are organised, and which activation functions and

neuron unit types are used.

• Secondly, the graph structure of an ANN; in other words, the total number of

neurons (nn), synapses (ns) and neuron layers (nl) that are in the ANN. Neuron

layers are sub-groups of neurons in an ANN, e.g. input neurons form the input

layer.

Neuron and synapse operation and interconnectivity are strongly influenced by the

type of approximation problem, e.g. classification; whereas the actual structure is more

influenced by the specific instance of the problem, e.g. the number of independent and

dependent variables of a classification problem. Architecture, therefore, has a direct

influence on the approximation ability of an ANN [33].

Examples of architectures include [33][71]:

• Recurrent neural networks (RNNs), which are usually used for problems where

the function is dependent on previous outputs or inputs. Recursive mathematical

functions or text prediction are typical examples of problems addressed by RNNs.

• Convolutional neural networks (CNNs), which are used for problems where the

function is buried in deep layers of features. Image and audio recognition are

typical examples of problems addressed by CNNs.

• FFNNs, which are commonly used for classification problems.

The remainder of this thesis focuses on FFNNs, because of their ability as classifiers.

Section 4.2.1 discusses FFNNs. Section 4.2.2 elaborates on neuron unit types commonly

used in FFNNs. Lastly, Section 4.2.3 discusses the activation functions commonly used

in FFNNs.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4. Artificial neural networks 39

4.2.1 Feed forward neural networks

FFNNs, also known as multi-layer perceptrons (MLPs), were derived from Rosenblatt’s

perceptron [101][106]. FFNNs group input and output neurons into two separate lay-

ers [69][101]. Between these two layers, multiple hidden layers are allowed [33]. Each

hidden layer consists of variable numbers of hidden neurons [39]. Note that a FFNN with

more than one hidden layer is classified as a deep neural network (DNN) [71]. DNNs are

beyond the scope of this thesis.

All activation functions for hidden and output neurons require a bias, thus a single

bias neuron is placed in the preceding layer [39]. A FFNN bias neuron has a constant

value of −1 [115]. The weights of synapses connected to bias neurons are called threshold

values [33].

Each neuron, excluding bias neurons, is connected to all the neurons in the preceding

layer [33]. Information flows from the input neurons in a forward direction towards the

output neurons [33][101].

The commonly used 3-layer FFNN consists of an input layer, one hidden layer, and

an output layer [33]. Three-layer FFNNs are commonly used for two reasons:

• Firstly, 3-layer FFNNs are intuitively easier to understand and less complex to

design than FFNNs with more than one hidden layer [33][39].

• Secondly, Cybenko [22] proved that 3-layer FFNNs, using sigmoid activation func-

tions, can learn any continuous function. Later, Hornik [57] generalised even further

by showing that 3-layer FFNNs can learn any continuous function provided that

the hidden layer has enough hidden neurons for the function in question, and that

the activation functions are non-linear and arbitrarily bounded. Therefore, 3-layer

FFNNs are universal approximators [57][126]. Sonoda and Murata [108] further

proved that, if activation functions are non-polynomial, they do not need to be

bounded for the universal approximation theorem to hold. Note that the number

of hidden neurons needed in the case of a 3-layer FFNNs can be exponentially more

than that needed by FFNNs to accurate classifications [86]. This is not a concern

for this thesis, because the thesis investigates classification problems whose number

of hidden neurons have been empirically determined.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4. Artificial neural networks 40

From a notational point of view, this thesis uses the notation

ni-nh-nk

to represent the neuron layout of a 3-layer FFNN, where ni is the number of input

neurons, nh is the number of hidden neurons, and nk is the number of output neurons.

Note that ni and nh excludes the bias neurons.

Figure 4.1 presents a structural diagram of a 3-layer FFNN where the circles represent

non-bias neurons, the rounded squares represent bias neurons, the lines between neurons

represent synapses, and the dashed rectangles represent the neuron layers.

In Figure 4.1, zi is the activation value of input neuron i that corresponds to the i-th

element in input vector ~z, hh is the activation value of the hidden neuron h, and ok is the

activation value of the output neuron k that corresponds to the k-th element in target

vector ~t. Furthermore, whi is the weight of the synapse from input neuron i to hidden

neuron h; and wkh is the weight of the synapse from hidden neuron h to output neuron

k.

Figure 4.1: 3-layer FFNN architecture

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4. Artificial neural networks 41

4.2.2 Neuron unit types

Neuron unit types determine the way in which the weights of incoming synapses and the

values of source neurons are used to produce the weighted net input signal, net, used by

the activation function [33][39].

Two commonly used neuron unit types are product units and summation units [33].

Product unit

Product units compute the net input signal using

netin =

nin∏
j=1

v
win,j

in,j (4.1)

where nin is the number of incoming synapses for the activating neuron which includes

any synapses from bias neurons, win,j is the weight of the incoming synapse j, and vin,j

is the value of the source neuron of the j-th incoming synapse [26].

Summation unit

Summation units compute the net input signal as the weighted sum [33], i.e.

netin =

nin∑
j=1

vin,jwin,j (4.2)

Compared to product units, summation units store less information [26][74]. That is,

more summation units than product units are required to approximate a function to the

same accuracy [33]. Product units, however, tend to increase the number of local optima

and the magnitude of gradients [74]. This usually hinders the learning process of an

FFNN, especially for learning algorithms that use gradients [74]. Population-based opti-

misation algorithms, such as PSO, have been more successful than gradient-based learn-

ing algorithms at training product unit FFNNs for static classification problems [61][114].

At the time of writing it is unknown how effective product units are in dynamic

classification problems. Only summation units will be used in the remainder of this

thesis.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4. Artificial neural networks 42

4.2.3 Activation functions

Many different activation functions have been proposed in FFNN literature. Activation

functions dictate how the activation value of a neuron is calculated from the net input

signal [39][115]. Because the curve of a particular activation function might be more

suitable for the function curve of a particular approximation problem than another ac-

tivation function’s curve, choosing the correct activation function is essential for good

performance [2][39][115].

Two commonly used non-linear activation functions are the sigmoid and rectified

linear functions [39][71][85][98][115].

Figure 4.2 presents a visual comparison of the two activation functions with a zero

bias.

(a) Sigmoid (b) Rectified linear

Figure 4.2: Activation functions comparison: sigmoid versus rectified linear

Sigmoid

The sigmoid activation function is defined as

fSig(net) =
1

1 + e−λ(net−θ) (4.3)

where θ is the bias, and λ controls the steepness of the curve [72][115]. The net input

signal is in the range (−∞,∞), but the active range of the sigmoid function, i.e. the

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4. Artificial neural networks 43

range where the most visible changes in fSig(net) exist, is [−
√

3,
√

3] when λ = 1 and

θ = 0 [33][115].

The sigmoid function smooths the continuous activation curve in the range (0, 1) [72].

This property has allowed the sigmoid function to be applied successfully in a number

of 3-layer FFNN applications [33][39][72][81][115]. Sigmoid is therefore commonly used

as the default activation function for 3-layer FFNN [81][98][115].

Rectified linear

The ReLU activation function is a more recent activation function than the sigmoid func-

tion, and has become the de facto activation function for DNNs, e.g. CNNs [71][81][115].

The reason for the popularity of the ReLU function over bounded activation functions,

such as sigmoid, is its low level of computational complexity and that it does not suffer

from the vanishing gradient problem [71][115]. The ReLU activation function is defined

as

fReL(net) = max{λ(net− θ), 0} (4.4)

It is easy to see that the ReLU activation function is a modified version of the linear

activation function, which is defined as fL(net) = λ(net − θ) [33][115]. The simple

modification of applying the max function ensures that the range of the activation value

is bounded below by 0, i.e left bounded.

Unlike the sigmoid function, the active range of the ReLU function is [0,∞), when

θ = 0. Furthermore, the gradient of the ReLU is non-continuous, i.e. d
dnet

fReL(net) = 0

when (net− θ) ≤ 0 and d
dnet

fReL(net) = λ when (net− θ) > 0.

4.3 Learning

Finding the best ANN for the problem, i.e. training an ANN, is an optimisation problem,

called the ANN learning problem [31][49]. The ANN learning problem comprises of two

objectives [2][39][79]:

1. find the architecture that minimises the complexity of the ANN, i.e. the number

of neurons and synapses, and

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4. Artificial neural networks 44

2. find the synapse weight values that minimises the error function.

Typically, the two objectives are seen as two separate optimisation problems [23][31].

Because the optimal weights are not just dependent on the problem, but also on the

architecture, the two optimisation problems are typically done in sequence. That is, the

optimal architecture must first be found before the optimal synapse weights [79]. It is

also possible to optimise the architecture and synapse weights simultaneously [95][118].

These two optimisation problems are handled by the architecture selection and weight

adjustment, respectively [33]. Together, these optimisation processes form the learning

algorithm for an ANN. A learning algorithm iteration, i.e. one traversal through the

entire data set used to train the ANN, is known as an epoch [2][33][39]. In their most

basic form, learning algorithms consist of the following two steps [31][121]:

1. Select an initial architecture through trial-and-error, from domain knowledge, or

by using an architecture selection algorithm.

2. Adjust the weights using an optimisation algorithm.

It is possible for architecture selection to be done dynamically, i.e. during weight

adjustment or every time before the weights are adjusted. If a learning algorithm per-

forms architecture selection during weight adjustment, then the ANN learning problem

is a multi-objective optimisation problem, because both objectives are optimised at the

same time. This thesis focuses on such learning algorithms.

Before applying learning algorithms to ANNs, there are several issues that need to

be considered [2][33][94][115][121]:

1. How will the learning algorithm use the information in the dataset to learn an

ANN?

2. What error function should be used to determine how well the problem has been

approximated?

3. What measurements can be used to evaluate the performance of an ANN?

4. How can the inability to generalise, because of exact curve-fitting to a dataset, i.e.

overfitting, be prevented?

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4. Artificial neural networks 45

5. How can the inability to generalise, because of too weak curve-fitting to a dataset,

i.e. underfitting, be prevented?

6. How will the weights be initialised?

7. Under what conditions should the learning process stop?

If the above issues are not properly addressed, learning will more than likely result in

sub-optimal ANNs [2]. Sections 4.3.1 to 4.3.7 discuss these issues, respectively. Section

4.3.8 elaborates on architecture selection. Lastly, Section 4.3.9 elaborates on weight

adjustment.

4.3.1 Learning strategy

The approach a learning algorithm takes to train an ANN is known as a learning strat-

egy [33]. The learning strategy used depends on the amount of information available in

the patterns of a data set, e.g. do the patterns have an input and target vector or just

an input vector [39][62]. There are three well-known learning strategies [33][39][69]:

1. Unsupervised learning, which is a learn-by-exploration strategy designed for approx-

imation problems where patterns have only inputs and decision boundaries that

can be potentially used to label the input vectors need to be found. Unsupervised

learning strategies are typically applied to clustering problems.

2. Reinforcement learning, which is a learn-by-interaction strategy designed for ap-

proximation problems where patterns have only inputs, but environmental feed-

back on the output of a model is available. Reinforcement learning strategies are

typically applied to game problems.

3. Supervised learning, which is a learn-by-example strategy designed for approxi-

mation problems where patterns have both inputs and targets available. Super-

vised learning strategies are typically applied to classification problems. Supervised

learning calculates the model error of the ANN, by applying some error function to

the targets of the patterns and outputs generated by the processing of the patterns.

The model error, determined by the error function, is then used by the learning

algorithm to optimise the current ANN [106].

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4. Artificial neural networks 46

The focus of this thesis is on classification problems. Unsupervised and reinforcement

learning strategies will, therefore, not be considered further in this thesis.

4.3.2 Model errors

Model errors guide learning algorithms (refer to Section 2.1.2 for a definition of model

error). How informative a model error is for weight adjustment and architecture selection

depends on [2][113]:

• The error function used to calculate the model error. If the error function is not

relevant for the problem, e.g. a maximisation function for a classification problem,

then weight adjustment and architecture selection will fail.

• The number of patterns in the data set used to calculate the model error. The

less patterns there are, the less informative the model error becomes, because less

is known about the function space of the approximation problem. Hence, weight

adjustment and architecture selection stand a greater chance of failing.

• The quality of the patterns in the data set used to calculate the model error.

The more errors there are in the data set, or less representative the data set is of

the approximation problem, the more inaccurate the model error will be. Hence,

weight adjustment and architecture selection stand a greater chance of failing.

There are three types of model errors typically used when training ANNs [33][98][113]:

1. The training error, Et, is calculated using the training set, Dt. The training error

quantifies how well the ANN has learned the given training patterns, i.e. how well

the function represented by the training patterns has been approximated. Hence,

Et is used to determine the weight adjustments.

2. The generalisation error, Eg, is calculated using the generalisation set, Dg. The

generalisation error quantifies the ability of the ANN to predict the targets associ-

ated with the patterns not used during training, and is calculated after the ANN

has been completely trained.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4. Artificial neural networks 47

3. The validation error, Ev, is calculated using the validation set, Dv. The validation

error is an estimate of the generalisation error of the ANN during training. It

is used by learning algorithms that need an estimate of the generalisation error

during training.

Dt, Dg and Dv are mutually exclusive, randomly selected subsets of the data set [33].

For dynamic environments, the three sets are selected at the start of every environment

instance. The number of patterns per set is usually a percentage of the entire data set

D. The splitting percentages are presented using the notation

pg-pv-pt

where each is the percentage of patterns in D that is used for Dg, Dv and Dt, respectively.

This approach for defining model errors is known as the hold-out error approach [45].

The sum square error (SSE) and the mean square error (MSE) are commonly used

to calculate Et, Ev, and Eg for a supervised ANN [2][39][119]. SSE is calculated using

SSE =

|D|∑
p=1

K∑
k=1

(tp,k − op,k)2 (4.5)

and MSE is calculated as

MSE =
SSE

|D| ×K
(4.6)

where D is a data set consisting of |D| patterns. Each pattern p = 1, ..., |D| consists of

an input vector and a target vector, i.e. (~zp,~tp) [2][10][94]. Therefore, D = {(~zp,~tp)|p =

1, ..., |D|}, tp,k is the k-th target of pattern p, and op,k is the output value of the k-th

output neuron when ~zp is processed by the ANN. Note that MSE and SSE are minimised.

4.3.3 Performance measures

Performance measures are used to evaluate and compare trained ANNs. There are

two important categories of performance measures to consider, namely accuracy and

complexity [33].

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4. Artificial neural networks 48

Accuracy

Accuracy performance measures, in the case of supervised learning algorithms, eval-

uate how close the outputs of the ANN are to their expected values, i.e. the tar-

gets [113]. Accuracy is the primary category of ANN performance measures used in

literature [2][39][113].

SSE and MSE are regarded as accuracy measures, however, they are not the only ac-

curacy measures. Another accuracy measure for classification problems is the percentage

good classifications (PGC), which is defined as

PGC =

∑|D|
p=1 yp

|D|
(4.7)

where yp is defined as

yp =

0, if ε < |~tp − ~op|

1, otherwise
(4.8)

and ε is the error threshold; ~op is the output vector of the ANN when processing pattern

p [113].

Another accuracy measure can be derived from the PGC by setting ε = 0. This

measure is called the percentage correct classifications (PCC) [113].

MSE is one of the commonly used accuracy measure [33][85][94][95][113][115]. How-

ever, the literature also recommends the use of PCC, since MSE on its own does not

represent a fair view of the accuracy performance of an ANN for classification prob-

lems due to MSE not evaluating correct pattern classification, but rather error magni-

tude [33][113]. The difference in the unit of measure between error magnitude and correct

classification also makes interpreting MSE values difficult. Note that, unlike MSE and

SSE, PCC is maximised.

Confusion matrices are also commonly used to analyse the accuracy performance of a

classifier [41]. A confusion matrix is constructed by creating a square matrix whose rows

represent the predicated classes and whose columns represent the expected classes [41].

Each element of the matrix is filled in with a count of the number of times the expected

class is classified as the predicated class of the element [41][123]. A confusion matrix

allows the levels of confusion, i.e. incorrect classifications, per class to be quantified [41].

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4. Artificial neural networks 49

Another accuracy performance visualisation, using confusion matrices, are reciever

operating characteristic (ROC) curves [65]. ROC curves visualise the trade–off between

classifying a pattern as a particular class correctly or incorrectly [41]. To create a ROC

curve for a particular class, a ROC space for the class must first be created. A ROC space

is a two dimensional space that sees a classifier classifying a pattern as the particular

class in the following ways [41]:

1. True positive, when the pattern is correctly predicted to be a particular class.

2. False positive, when the pattern is incorrectly predicted to be a particular class.

3. True negative, when the pattern is correctly predicted to not be a particular class.

4. False negative, when the pattern is incorrectly predicted to not be a particular

class.

Note that the four classifications above can be seen as elements of a confusion matrix of

a binary classifier.

Points on a ROC curve are formed by calculating two classification rates from the

ROC space [65]. First, the true positive rate is calculated as the ratio between the number

of correct positive classifications and the actual number of positive patterns [41]. Second,

the false positive rate is calculated as the ratio between the number of incorrect positive

classifications and the actual number of negative patterns [123]. Using a variable error

threshold, like PGC does, various pairs of true positive and false positive rates can be

determined for a particular class [123].

Interpretation of the two rates is relatively straight forward. When both rates are

zero, the classifier is classifying all patterns as negative [41]. On the other hand when

both rates are one the classifier is classifying all patterns as positive. The classifier is

perfect when the true positive rate is one and the false positive rate is zero and vice

versa [41].

Plotting the true positive rate against the false positive rate results in a ROC curve

for the classifier [41]. A linear ROC curve means that the classifier is as good as a

random classifier [123]. A ROC that curves above the linear line indicates a classifier

that is better than a random classifier and vice versa [65].

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4. Artificial neural networks 50

ROC curves have the added advantage of being immune to data sets that have skewed

class distributions, because true positive and false positive rates are ratios based on the

performance of a single class [41][65][123]. The construction of ROC curves, however,

can be time consuming. Furthermore ROC curves work best for classification problems

which have only two classes. Classification problems with more than two classes require

a ROC curve for each class.

Complexity

Complexity performance measures evaluate the structural and computational complexity

of an ANN [33].

Structural complexity refers to the size of the ANN [10][31][49][79][95]. Two simple

structural complexity measures are the total number of synapses (ns) and the total

number of neurons (nn).

These two measures give limited insight into the structural complexity of an ANN, be-

cause they do not consider the weight values of a synapse. For example, consider a FFNN

with summation units. If a weight is zero then according to Equation (4.2) the synapse

will not have any effect on the net input signal [31][118]. The synapse can therefore be

considered irrelevant in determining the output of neurons in the FFNN [31][33][68].

It is possible for a neuron in the FFNN to also be considered irrelevant when its

activation value is always zero [31][49]. This is because any synapse from a neuron with

an activation value of zero will not have any effect on the net input signal.

The above discussion leads to two other alternative measures, namely the effective

number of synapses (nse), and the effective number of neurons, nne . Together, nse and

nne represent the effective structural complexity of an ANN.

The weight values of irrelevant synapses or the activation values of irrelevant neurons

are seldom exactly zero. These values can, however, be close enough to zero so that

the contributions to the outputs of ANN are negligible [118]. Unfortunately, there are

no unanimously agreed upon “irrelevant” threshold for weights and activation values,

because such thresholds depend mostly on the activation functions [10][31][33][95][118].

The use of statistical hypothesis tests have been found to be very effective in determining

irrelevant synapses and neurons [31]. These hypothesis tests generally test the signifi-

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4. Artificial neural networks 51

cance of a weight and the sensitivity of the network to that weight [31]. Any attempt

made at determining the effective structural complexity should therefore consider such

statistical tests.

Computational complexity, on the other hand, refers to two aspects:

• The computational effort required to train the ANN. This aspect is dependent on

the training set and the computational complexity of the optimisation algorithm

employed by the learning algorithm.

• The computational effort used by the ANN to process a pattern. This aspect is

dependent on ns, nn, the activation functions, and the neuron unit types used by

the ANN.

This thesis focuses on architecture selection and the use of classifiers. Hence, only

the measures relevant to measuring the structural complexity and computational effort

of using a FFNN are considered in the remainder of this thesis.

4.3.4 Overfitting

Overfitting is generally described in literature through the concepts of bias, i.e. how

far the outputs of the ANN are from their targets, and variance, i.e. how scattered the

outputs are for similar unseen inputs [2][23][47]. An ANN overfits when it has a low bias

and high variance [2][47].

If the error function is minimised, then the occurrence of a low bias and high variance

is indicated by a decrease in the training error while the validation error increases as

learning progresses [33]. Hence, an overfitted ANN can accurately approximate training

patterns, but fails to generalise test patterns [23][33][47]; the ANN effectively learns the

noise in the training data. Overfitting generally occurs when

• the ANN is too complex for the problem at hand,

• the ANN is trained for too long, and

• the training set contains noise.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4. Artificial neural networks 52

If Ev is calculated using the error function, then overfitting can be detected by the

trigger,

Ev > Ēv + σEv (4.9)

where Ēv is the moving average of Ev and σEv is the standard deviation of the validation

errors used to calculate Ēv [33].

The moving average period for Ēv is specified in epochs. The larger the moving

average period is, the less sensitive the detection method becomes to fluctuations in Ev,

because the moving average is including more validation errors. Large moving average

periods can result in false negatives when detecting overfitting. On the other hand,

the smaller the moving average period is, the more sensitive the method becomes. Too

small moving average periods can lead to false positives when detecting overfitting. The

moving average period thus controls the overfitting detection sensitivity [33].

Two disadvantages of Equation (4.9) are that the equation does not consider Et, and

that the equation introduces an additional control parameter that is problem depen-

dent [33].

If the training error is not considered, false positives for overfitting can occur. For

example, consider the case in which both training and validation errors increase over

time. In such an event Equation (4.9) would detect overfitting. It cannot be said,

however, that the training set is being overfitted, because the ANN is also failing to

learn the training set.

Robël [100] suggested an alternative overfitting detection trigger when using MSE to

calculate Et and Ev. The trigger is defined as,

ρ(t) > ϕρ(t) (4.10)

where ρ(t) is called the generalisation factor at epoch t and ϕρ(t) is the threshold at

epoch t. The two terms are defined as follows [100]:

ρ(t) =
Ev(t)

Et(t)
(4.11)

with

ϕρ(t) = min{ϕρ(t− 1), ρ̄+ σρ, 1.0} (4.12)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4. Artificial neural networks 53

where ρ̄ is the moving average of ρ over a given number of epochs, and σρ is the standard

deviation of the moving average [33][100]. The overfitting detection approach therefore

results in overfitting being detected when the validation error is more than the training

error, or when the two errors are moving significantly away from each other [33][100].

4.3.5 Underfitting

Underfitting is a less commonly referred to phenomenon in ANN literature, and is es-

sentially the inverse of overfitting, i.e. high bias and low variance [2][47]. Underfitting

translates to both the training and validation errors eventually stagnating at an unac-

ceptable level.

Underfitting typically occurs when the architecture of an ANN is not complex enough

to model the function of an approximation problem [33]. Underfitting, however, also

occurs when the architecture is sufficient, but the ANN has not been trained enough.

An underfitted ANN, therefore, struggles to specialise, i.e. the ANN cannot approximate

both training and test patterns [2][47].

Figure 4.3 illustrates how overfitting contrasts to underfitting by demonstrating their

effect on the training and validation errors, and by illustrating the difference between

the expected and approximated functions. The approximation problem illustrated in the

figure has one input variable and one output variable.

4.3.6 Weight initialisation

Weight initialisation is the process of setting the synapse weights to an initial value [42].

Weight initialisation should be done with care, because the speed and performance of

most weight adjustment algorithms are sensitive to the initial weight values [33][69].

It is considered good practice to initialise weights uniformly within a range around

zero, because there will be no bias towards certain regions in the search space [72].

Initialising the weights in this manner also prevents initially large weights that could

lead to premature convergence [33][42][72]. A sensible initialisation range for weights, is[
−1√
fanin

,
1√

fanin

]
(4.13)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4. Artificial neural networks 54

(a) Overfitting – error level (b) Underfitting – error level

(c) Overfitting – function level (d) Underfitting – function level

Figure 4.3: ANN overfitting versus underfitting

where fanin is the number of incoming synapses to the neuron, whose synapses are

being initialised [72][120].

Note that He et al. [55] proposed He normal initialisation for ReLU units, however,

the approach is used primarily for DNN with more than one hidden layer. This thesis

focuses on 3-layer FFNNs with one hidden layer thus Equation 4.13 is used instead of

He normal initialisation.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4. Artificial neural networks 55

4.3.7 Stopping conditions

Learning algorithms make use of stopping conditions to determine when ANN training

should be terminated [39]. Stopping conditions determine how long an ANN trains on a

given data set, and thereby influences what the ANN can learn [98]. As already indicated,

if training is terminated too early, the ANN may underfit, while terminating training

too late may lead to overfitting.

Stopping conditions, such as maximum number of epochs, overfitting detection and

acceptable Ev level, are commonly used by ANN learning algorithms [33]. For the

purpose of this thesis, it is sufficient for the reader to know that the maximum number of

epochs stopping condition limits the number of training epochs ne to the value n∗e [2][33].

Further discussion on stopping conditions are considered to be outside the scope of

this thesis, because this thesis requires ANNs to train on streams of data. Therefore,

in practice there is no stopping condition, and the ANN will continue training as data

becomes available in the stream.

4.3.8 Architecture selection

The objective of architecture selection is to prevent overfitting and underfitting by en-

suring that the complexity of the ANN architecture is appropriate for the approximation

problem [79]. Architecture selection algorithms are broadly characterised into three

groups [33]:

1. Construction algorithms, which select small architectures initially and then grow

these architectures until overfitting is observed [79].

2. Pruning algorithms, which initially select oversized architectures, and then shrink

these architectures until underfitting is observed [31].

3. Regularisation algorithms, which do not explicitly change the architecture, but

rather neutralise the contribution of unnecessary weights by driving their weight

values to zero [10][118].

This thesis focuses on regularisation for 3-layer FFNNs. Therefore, construction and

pruning approaches fall outside the scope of the thesis.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4. Artificial neural networks 56

Regularisation augments the error function by adding a regularisation (or penalty)

term, Er, to penalise structural complexity as follows [118]:

E ′t = Et + λrEr (4.14)

where E ′t is the regularised error function, and λr is the regularisation coefficient.

The regularisation coefficient weighs the influence of the regularisation term on the

overall error. The regularisation terms considered by this thesis need to be minimised

thus the larger λr is, the more complexity is penalised resulting in more weight values

to be driven towards zero at the cost of increasing the model error [50][68]. Too large

λr values may result in underfitting, because important weights might also be driven

to zero [95]. On the other hand, too small λr values may result in overfitting, because

E ′t will be more concerned with fitting the training set than reducing model complexity,

and therefore fit noise [118]. The exact value for λr is problem dependent and has

to be carefully tuned in order to achieve a balance between model error and model

complexity [33].

Regularisation is attractive because it is a simple on-line approach to architecture

optimisation, and there is no need to decide on a threshold value to determine when a

weight/neuron should be removed [50][118]. Regularisation, however, does introduce an

additional problem dependent parameter, i.e. λr.

Two well-known regularisation terms are weight decay (WD) and weight elimination

(WE), discussed below [33][95].

Weight decay

WD is defined as

Er =
1

2

ns∑
j=1

w2
j (4.15)

In essence, WD counts the number of synapses based on their weight value [95]. ANNs

with larger weight values will be penalised more than ANNs with smaller weight val-

ues [95].

Because WD penalises the total amount of weight that can be assigned to the

synapses, the training algorithm is forced to allocate weights to only the necessary

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4. Artificial neural networks 57

synapses. Therefore, the training algorithm will drive the weights of irrelevant synapses

to zero [50].

A drawback of WD is that it does not associate any notion of relevance to the values of

weights. WD, therefore, penalises a weight value with the same aggressiveness regardless

if the value is relevant or not [10][68].

Weight elimination

WE was proposed by Weigend et al. [118] to overcome the issue of equal aggressive

penalisation of relevant and irrelevant weight values seen in WD, and is defined as

Er =
ns∑
j=1

w2
j

w2
0

1 +
w2

j

w2
0

(4.16)

where w0 is a non-zero threshold, which controls the level at which weight values be-

come irrelevant. The larger w0 is, the less large weights are penalised, because they are

considered more relevant, i.e. needed to model the problem better, and vice versa [118].

The main drawback of WE is that it introduces another control parameter that needs

to be tuned [33].

Bosman et al. [10] found that WE both smooths the gradients of the minima and

introduces additional minima into the search space. The weight value threshold param-

eter, w0, controls the sharpness of the introduced minima, i.e. the magnitude of their

gradients. The value of w0, however, is problem dependent [10][94].

4.3.9 Weight adjustment

Optimisation algorithms adjust the weights of an ANN such that the given error func-

tion is optimised [47][121]. Weight adjustment is a static optimisation problem if the

training set and architecture does not undergo changes. On the other hand, when either

the training set or architecture changes during training, weight adjustment becomes a

dynamic optimisation problem [49][79].

The original perceptron model adjusted weights by using simple supervised meth-

ods, e.g. trial-and-error [101]. These methods were later replaced by the BP algorithm

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4. Artificial neural networks 58

which adjusted the weights using gradient descent (GD) [119]. Various algorithms for

adjusting the weights of FFNNs have since come into existence, e.g. LeapFrog, quick-

prop, scaled conjugate gradient, and PSO [5][39][40][98][107]. Regardless of these new

algorithms, BP is still used as a baseline for learning algorithm comparisons in FFNNs

literature [85][98]. This thesis investigates learning algorithms that train FFNNs on dy-

namic classification problems, therefore, BP will be used to benchmark the investigated

optimisation algorithms against. The remainder of this section, therefore, provides the

reader with sufficient background on BP.

BP is a static, local-search, gradient-based optimisation algorithm proposed by Wer-

bos [119] in 1974. BP was originally developed as a supervised algorithm for adjusting

the weights of a 3-layer FFNN, but since has been improved and adapted for other

architectures [33][106].

BP has three modes of learning, namely batch learning, mini-batch learning and

stochastic learning [39]. Batch learning accumulates all the weight changes required

by the training patterns into a single weight update. Mini-batch learning is similar to

batch learning, however, it differs in that it breaks the training set up into small batches

such that the number of patterns in a batch is 1 < |D| < |Dt| [33][122]. On the other

hand, stochastic learning changes the weights after each pattern presentation [33]. With

regards to weight adjustment, this thesis focuses on data streams, therefore, only the

stochastic BP is considered for the remainder of this thesis.

Stochastic BP consists of two phases, i.e. feed forward and back propagation [119]:

1. The feed forward phase takes each pattern in the training set, and calculates the

output signals for all hidden and output neurons in the FFNN [33].

2. The back propagation phase starts by calculating the error between the targets

and actual outputs for the pattern [119]. Next, the error is used to calculate an

error signal for each output neuron. This error signal is propagated backwards to

the hidden layer, and is used to adjust the weights between the hidden and output

layers. The error signal for each hidden neuron is then calculated, and propagated

backwards to the input layers so that the weights between the input and hidden

layers can be adjusted [69][119].

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4. Artificial neural networks 59

Because of the use of gradient calculations, the exact implementation of BP is depen-

dent on the error function, activation functions, and neuron unit types [72]. Furthermore,

BP requires that the weights are not initialised to the same value, otherwise the optimi-

sation will fail due to all weights making equal contribution to the error, resulting in all

weights being changed by the same amount [33][72].

BP is subject to local optimum trapping, because it conducts a local-search and is

sensitive to initial conditions [72][94]. Stochastic BP can further suffer from haphazard

changes in the search trajectory, due to constant changes in the sign of the weight or

the overshooting of a local minimum [39][72]. Various extensions have been devised to

overcome these shortcomings, such as the momentum term (α) and the learning rate

(η) control parameters [10][33][39]. These two control parameters are implemented by

augmenting the general weight update equation as follows

wj(t+ 1) = wj(t)− η∆wj(t) + α∆wj(t− 1) (4.17)

where wj is the j-th weight and ∆wj(t) is the change that weight wj experiences at epoch

t. The two control parameters work as follows:

• The momentum parameter controls the contribution of the previous weight change

to the current weight change. Thus, it makes changes in the sign of the change

more difficult [10]. A larger α smooths the search trajectory. If too large, then

the search can miss fruitful regions of the search space due the search trajectory

taking a long time to change [39]. If sufficient momentum is used, it can help the

search to skip over regions that can cause local optima trapping [39][72].

• The learning rate parameter controls the change actually experienced by the par-

ticular weight [10]. That is, the parameter controls the rate at which the FFNN

learns a pattern. The larger η is, the larger the change [10]. If η is too small, the

search will follow the gradient path almost exactly and take a long time to converge

to the minimum, or even worse, become stuck in sub-optimal regions “en route”

to the minimum [39]. On the other hand, too large η values will cause the search

to converge quickly. The quick convergence can cause the search to overshoot a

good minimum. The learning rate, therefore, ultimately controls the exploration-

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4. Artificial neural networks 60

exploitation trade-off for BP, where a smaller η allows more exploration and vice

versa [33][69].

Note that the values of both control parameters are problem dependent.

Algorithm 3 presents generalised pseudo code for the stochastic BP algorithm for a

supervised 3-layer FFNN [33][115].

Algorithm 3 Supervised 3-layer FFNN stochastic BP algorithm

Input: η, α, initialised FFNN, D, pg , pv , pt, stopping conditions

Set t to 0

Set Dg as pg × |D| randomly chosen patterns from D

Set Dv to pv × |D| randomly chosen patterns from the remaining patterns in D

Set Dt to the remaining patterns in D

while Stopping condition not true do

Shuffle Dt

for p = 0 to |Dt| do
Feed forward pattern p into the FFNN

Calculate neuron activations using the activation function

Calculate the error of the pattern using the error function

Calculate error signals

Adjust FFNN’s output to hidden layer weights using Equation (4.17)

Adjust FFNN’s hidden to input layer weights using Equation (4.17)

end for

t = t+ 1

end while

return Trained FFNN

4.4 Training artificial neural networks using particle

swarm optimisation

PSOs have been successfully employed to select architectures for ANNs and to adjust

their weights [58][61][85][98][114][115][127]. While PSOs have been successful in training

ANNs, PSO does suffer from the problem of saturation [95][96][97].

Section 4.4.1 discusses several training algorithms that use PSO to select architectures

and to adjust weights. Section 4.4.2 elaborates on the issue of saturation. Lastly, Section

4.4.3 discusses an approach to quantify saturation.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4. Artificial neural networks 61

4.4.1 Particle swarm optimisation training algorithms

Algorithms that use PSO to adjust ANN weights start off by initialising np instances

of an ANN [85]. Each particle’s position vector represents the weights and biases of

an ANN [33][85]. These position vectors are commonly referred to as weight vectors.

Weight vectors are usually initialised using the approaches discussed in Section 4.3.6.

The objective function is the ANN’s error function [98]. MSE is typically used by PSO-

based weight adjustment algorithms [98][115].

Five advantages that PSO-based weight adjustment algorithms have over BP are:

1. their resilience to local optimum trapping [98],

2. their ability to handle concept drift, if a dynamic PSO is used, e.g. QPSO [52],

3. they do not use computationally expensive derivative calculations [85],

4. they are computationally simple and easy to implement [61], and

5. there is empirically and theoretically derived guidance on control parameter value

assignment to guarantee that an equilibrium state will be reached [16].

Rakitianskaia and Engelbrecht [98] investigated the use of QPSO and CPSO to train

3-layer FFNNs for dynamic classification problems. It was found that QPSO and CPSO

performed similarly to each other, and tended to outperform BP in terms of accuracy [98].

Rakitianskaia and Engelbrecht [98], however, did not consider optimising the architecture

after an environment change.

Zang et al. [127] proposed a PSO-based learning algorithm for 3-layer FFNNs that

incorporates architecture selection. The gBest PSO tracks and optimises the number

of hidden neurons and connection density of potential architectures. The quality of

each architecture is the quality of the best particle found by applying the gBest PSO

to the weights of the particular architecture. All the weights for the architecture are

adjusted if hidden neurons are removed. If hidden neurons are added, only the new

weights are adjusted [127]. However, Zang et al. [127] did not consider that dynamic

architecture selection results in a dynamic optimisation problem itself, where the search

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4. Artificial neural networks 62

space dimensionality changes over time. Neither did they consider dynamic classification

problems.

A key issue that is neglected in the above works pertaining to the use of PSO to train

ANN is saturation [97].

4.4.2 Saturation

A neuron is saturated, when its activation value is always near the asymptotic ends of

a bounded activation function [72][97]. For example, if the sigmoid activation function

used, the asymptotic ends are either

lim
net→∞

fSig(net) = 1 (4.18)

or

lim
net→−∞

fSig(net) = 0 (4.19)

Saturation hinders the ability of an ANN to approximate problems, because it reduces

the set of possible activation values of a neuron to a binary set of activation values [72][96].

The set of possible activation values of a neuron is called its information capacity [96].

Figure 4.4 illustrates the reduction in information capacity of a neuron by comparing

the activation value distributions of a saturated and unsaturated neuron. Note that

saturation limits the range of activation values produced by the activation function of a

neuron.

When PSO is used to adjust the weights, saturation can have a serious negative effect

on the performance and also lead to overfitting [96][115]. If the ANN begins to saturate,

then the error function constantly produces similar information about the search space.

Velocities thus either stagnate or explode because the memory of the PSOs never changes.

Both cases usually prevent the search from converging to an optimal solution [95][96][97].

Rakitianskaia and Engelbrecht [96] showed that controlling saturation in PSOs is

a difficult task because of the mechanics of PSOs. One method to reduce premature

saturation is to initialise the weights around zero, because large weights tend to lead to

premature saturation [96].

Saturation can potentially be reduced through the use of ReLU activation functions,

because they limit saturation to one side [115]. Furthermore, it was shown that ReLU

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4. Artificial neural networks 63

(a) Saturated neuron f(net) distribution (b) Unsaturated neuron f(net) distribution

Figure 4.4: Neuron saturation: Saturated versus unsaturated neuron activation value distri-

butions example

activation functions are statistically equivalent in performance to the commonly used

sigmoid activation function, when using PSO to adjust the weights [115].

Furthermore, Rakitianskaia and Engelbrecht [99] theorised that regularisation may

potentially reduce unwanted saturation, due to regularisation reducing the weight magni-

tudes. Later, Rakitianskaia and Engelbrecht [95] showed that regularisation techniques,

such as WD, do indeed help to reduce saturation in 3-layer FFNNs. The study in [95]

was, however, limited to static classification problems.

4.4.3 Measuring saturation

Rakitianskaia and Engelbrecht [96] originally proposed to measure saturation as the aver-

age absolute net input signal of hidden neurons in a 3-layer FFNN. Later, Rakitianskaia

and Engelbrecht [97] proposed

ϕbw =

∑B
b=1 |ḡ′b|fb∑B
b=1 fb

(4.20)

as an alternative saturation measure, where B is the number of activation value bins

created by using the binning width bw, fb is the frequency, i.e. number of hits, for bin b,

and ḡ′b is the average activation value, scaled to the range [−1, 1].

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4. Artificial neural networks 64

The saturation level measured by ϕbw is in the range [0, 1]. If ϕbw is zero, then there

is no saturation. On the other hand, if the value is one, then the neurons are completely

saturated [97]. A value less than 0.5 indicates a normal distribution of activation values,

while a value of 0.5 indicates an uniform distribution of activation values [97].

Rakitianskaia and Engelbrecht [97] argued that the alternative measure in Equation

(4.20) should be used, because it takes into account that saturation is bounded in nature

and affects the activation values, whereas Rakitianskaia and Engelbrecht’s [96] measure

was only bounded below and did not consider the activation values but net input signals.

4.5 Summary

This chapter reviewed ANNs as a powerful class of approximators. The concept of archi-

tecture was discussed, and the 3-layer FFNN was suggested for classification problems.

Furthermore, learning a classification problem using an ANN was shown to be a multi-

objective optimisation problem that consists of architecture selection, i.e. optimising the

architecture to find the simplest representation for the problem, and weight adjustment,

i.e. optimising the weights to accurately fit the problem.

Regularisation approaches, such as WD and WE, were discussed as simple yet ef-

fective approaches to FFNN architecture selection. The BP algorithm was presented as

the benchmark approach to weight adjustment for FFNNs. Two key problems with BP,

however, is its lack of mechanisms to handle environment changes and susceptibility to

local optimum trapping.

Dynamic PSO-based training was presented as an alternative to BP, because of the

ability of a dynamic PSO to address the issues of concept drift and local optimum

trapping. A prevalent issue with PSO-based training, however, is saturation. The use

of ReLU activation functions and regularisation was discussed as a means to alleviate

saturation in PSO-based training.

The next chapter introduces streamed data classification problems (SDCPs), and

discusses how ANNs have been used as classifiers for SDCPs.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5

Stream data classification problems:

A real-world concern

I know that I know nothing.

Socratic paradox

This chapter expands on Section 2.1.2 by introducing a class of classification problems

called streamed data classification problems (SDCPs). SDCPs are the core problems

dealt with by this thesis. Note that this thesis refers to classifiers for SDCPs as streamed

data classifiers.

The remainder of the chapter is organised as follows: Section 5.1 presents a brief

overview of SDCPs to demonstrate why classifiers for SDCPs must be found. Section

5.2 elaborates on the issues that streamed data classifiers must address when working

with SDCPs. Section 5.3 provides a review of the literature on streamed data classifiers.

Lastly, Section 5.4 summaries the chapter.

5.1 Background

Any set of quantitative or qualitative values originating from a subject is called data

[103][117]. Data can be described using five different dimensions, i.e. volume, variety,

velocity, veracity and value [103]. Volume describes the amount of data. Variety de-

scribes the structural differences between data. Velocity describes the speed at which

65

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5. Stream data classification problems: A real-world concern 66

data becomes available. Veracity describes the accuracy and authenticity of the data.

Value describes the usefulness of the information contained in the data [103].

Most computational devices generate data over the course of time [103][117]. Such

devices are therefore said to generate data streams [1][102][103]. The rise of the inter-

net and other forms of device connectivity has resulted in data streams being shared

between devices, across organisations and individuals [1]. Data streams can be synthe-

sised into information about the subjects, e.g. users or processes, generating the data

streams [1][75][102][103].

Information that can be used to provide insight or to optimise processes, such as

the information in data streams, is considered a currency in today’s information so-

ciety [70][117]. Data streams are thus becoming more and more valuable for various

organisations [103].

The increase in both the computational power and uses of computational devices

have resulted in data streams that contain large amounts of data that are generated

at high speeds, and that vary in structure, veracity, and value [21][60][102][103]. Data

that exhibits a large magnitude in at least volume, variety and velocity are termed big

data [103]. Aside from the big data nature of data streams, data streams are based on

real-world subjects, e.g. users and processes. Data streams are therefore subject to the

real-world complexities of randomness, error, change, time, and space [75]. The task

of extracting useful information from data streams is therefore a non-trivial real-world

task, referred to as a streamed data problem (SDP) [60][75][102].

CI categorises SDPs as dynamic approximation problems [1][75]. However, not all dy-

namic approximation problems are SDPs, because potential approximators need to cater

for the big data nature and real-world complexities of sequentially-accessible streams of

data in addition to just learning in the presence of concept drift [1]. A SDP requiring

classification is known as a SDCP. The remainder of this thesis focuses on SDCPs. The

reader is referred to the work by Aggarwal [1] for more information on SDPs.

To illustrate the difference between SDCPs and a regular dynamic classification prob-

lem, consider the problem of modelling the price movement of a financial market. This

problem requires that the price movement is classified in terms of trends, e.g. upward,

downward, or flat. Like any regular dynamic classification problem, the decision bound-

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5. Stream data classification problems: A real-world concern 67

aries of the given problem are subject to change. Theses decision boundaries changes

are due to the underlying market conditions, market structure and participants changing

over time. Unlike regular dynamic classification problems, the data set of the given prob-

lem, i.e. financial market pricing data, is considered big data in nature [103]. The given

problem, therefore, also requires the classifier to process and learn from a continuous

sequential stream of real-world data, in real-time [76].

5.2 Streamed data classifier requirements

SDCPs impose eleven additional requirements on classifiers when compared with those

requirements imposed by static classification problems [1][24][44][60][67][70][75]. These

requirements are derived from the big data nature and real-world complexities of data

streams [1]. The eleven requirements are as follows:

1. Bounded memory: A computer does not have unlimited memory. A streamed

data classifier must therefore not exceed the amount of available memory, otherwise

the classifier will fail [1]. Alternatively, the classifier can employ a swapping or

sampling mechanism that can reduce the amount of data held in memory.

2. Unbounded dataset: Real-world data streams are infinite, thus, a streamed data

classifier can not store all the patterns. The classifier must only use the patterns

necessary to approximate the classification function [1][60].

3. Concept drift: Real-world data streams can cause classifiers to experience con-

cept drift (refer to Section 2.2.2). The unbounded data set requirement makes it

impossible to know whether or not concept drift occurs at some point in the data

stream. A streamed data classifier must therefore be able to handle concept drift

at all times [1][67].

4. Random dynamics: The temporal and spatial severity levels experienced by real-

world data streams are subject to randomness in the problem domain. Not only

can data change in SDCPs, but the temporal and spatial severities can also change

over time [1][88]. A streamed data classifier must thus be effective in quasi-static,

abrupt, progressive, and chaotic environments.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5. Stream data classification problems: A real-world concern 68

5. Online learning: Training the classifier only once is not sufficient for solving

SDCPs, because there is a chance that concept drift can occur later on in the

data stream. A streamed data classifier must therefore be online, i.e. continuously

learning [21][27][67].

6. High speed data streams: Real-world data streams tend to flow at high speeds,

due to the number of users and uses of computational devices [60]. A streamed data

classifier must thus be able to process patterns fast enough so that the classifier

can be used before the classifier becomes stale, i.e. outdated [1][92][98].

7. One-pass: Literature suggests that a streamed data classifier has one shot at

learning a pattern if the classifier is to stand a chance at adhering to the high

speed requirement [1][24][60][67]. Because the classifier has only one attempt to

learn each pattern, the classifier must be an efficient learner, i.e be able to extract

as much useful information from a pattern without overfitting to the pattern, in

order to make accurate classifications [21][60].

8. Limited number of tunable control parameters: Optimisation of the con-

trol parameters of a learning algorithm is known as control parameter tuning.

Control parameter tuning is generally done when a classifier is offline, i.e. not

learning [53][115]. The online learning requirement, however, allows a streamed

data classifier to be offline only at the start of the learning process. Control pa-

rameter tuning can thus only be performed using a portion of the data stream.

Self-adaptive approaches that tune control parameters during training do exist,

but add additional complexity [1][53]. Regardless of the approach used to tune

the control parameters, the process can be simplified by reducing the number of

control parameters, and reducing the size of the value ranges searched. Learning

algorithms should therefore have as few as possible control parameters to optimise,

and should allow for searching for control parameter values which provide good

performance over a majority of problems [67][102].

9. Maintain low model complexity: Model complexity refers to the number of

model parameters in a classifier (refer to Section 2.1.2). Every model parameter

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5. Stream data classification problems: A real-world concern 69

adds time and space complexity to both the learning and execution of the classi-

fier [33][67]. If the time complexity is too high, then high speed requirements may

be violated. If the space complexity is too high, then bounded memory require-

ments may be violated. A streamed data classifier should thus have as few model

parameters as possible [1]. Unfortunately, the minimum model complexity required

is dependent on the decision boundaries [94]. Thus, the minimum model complex-

ity can change as decision boundaries appear, disappear, shift, and rotate [44]. A

streamed data classifier must therefore also be able to adapt its model complexity

to environment changes.

10. Robustness: A real-world data stream most likely contains erroneous patterns

which may degrade the accuracy of a classifier [13][102]. The literature refers to

these erroneous patterns as noise [1][13][94][102]. Note that the literature also

uses the term noise to describe an excess of valid but similar patterns [33], for

the purpose of this thesis noise will mean any erroneous patterns. Noise generally

occurs due to machine faults or user error, e.g. precision errors or inaccurate data

capture [13][33]. A streamed data classifier needs to be robust enough not to be

affected by noise [1].

11. Fault tolerance: The implementation of a streamed data classifier needs to be

able to handle faults resulting from hardware failures upon which the classifier

is implemented [21]. This requirement, however, only becomes more prevalent

when classifiers are implemented using specialised hardware designed just for the

classifier, e.g. field-programmable gate array circuits, or when the implementation

is scaled across various hardware resources using virtualisation [1][21].

Naturally, the more of the above issues a classifier can address, the greater the chance

of the classifier to succeed when applied to SDCPs. These requirements should be con-

sidered during the design of any streamed data classifier, and the evaluation of potential

classifiers for SDCP.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5. Stream data classification problems: A real-world concern 70

5.3 Literature review on streamed data classifiers

and related works

Research on streamed data classifiers has gained popularity over the last two decades

[1][102][105]. The majority of early research mostly focused on online learning and con-

cept drift [1][13][24][60][76][98][111][112][116]. Overtime, research has begun to include

the other streamed data classifier requirements discussed in Section 5.2, for example

[1][21][27][67][70][80][88][92][102][109].

The purpose of the literature review presented in this section is two fold:

• Firstly, the review sets out to identify what SDCP literature has investigated so

far.

• Secondly, the review sets out to motivate the work of this thesis. This is done

by showing that there is no significant research into the use of regularised 3-layer

FFNNs, trained by dynamic PSO-based algorithms, as streamed data classifiers.

Section 5.3.1 reviews online learning approaches. Sections 5.3.2, 5.3.3 and 5.3.4 re-

spectively review decision trees, ensembles and ANN as streamed data classifiers. Section

5.3.5 presents the conclusions drawn from the review, and whether the two goals were

achieved.

5.3.1 Online learning approaches

Various approaches that allow a classifier to continuously learn, i.e. online learning,

have been proposed [54][80][102]. Online learning literature broadly classifies online

approaches into two categories [76][80][111]:

• Chuck-by-chunk, which accumulates the next n patterns in the data stream into

a chunk, and then trains the classifier using the chunk. Once a chuck has been

processed sufficiently by the classifier the next chunk is processed.

• Pattern-by-pattern, which processes each pattern in the data stream individually.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5. Stream data classification problems: A real-world concern 71

This section focuses on the latter category, because learning pattern-by-pattern ad-

heres to the one-pass requirement of the SDCP. Some well-known pattern-by-pattern

approaches are listed below:

• Stochastic gradient descent is a commonly used pattern-by-pattern approach [33][80].

Each pattern is learnt by adjusting the model parameters of the classifier according

to their instantaneous error gradients [80].

• Online convex optimisation is an approach that converts the optimisation process

of the classifier into an iterative game in which the classifier is an online player [54].

At each iteration of the game the classifier makes a decision about an input, i.e.

classifies the input [54]. The goal is for the classifier to try and minimize the regret

that the classifier experienced by making a decision [54]. Regret is calculated as

the difference between the loss of the decision and the loss of best possible decision

known at the time [54]. The loss function is based on a convex set of the all the

possible classifications, i.e. a set in which all elements are within a continuous,

bounded Euclidean space [54]. Note that stochastic gradient descent is a variant

of online convex optimisation [54].

• The Winnow algorithm uses a binary classifier to classify each pattern that is

presented. The Winnow algorithm uses reinforcement learning, and takes a user-

defined constant as control parameter to guide demotion and promotion step

sizes [77]. If the classification is incorrect, then the model parameters of the clas-

sifier is adjusted by the Winnow algorithm, as follows [77]:

– If the classification was suppose to be zero, then weights linked to each input

that was equal to one are set to zero.

– Otherwise, the weights linked to each input that was equal to one are multi-

plied by the user-defined constant.

There exist various other approaches to online learning, however, they are beyond

the scope of this review. The reader is directed to the comprehensive survey by Losing

et al. [80] for more information on online learning approaches for SDCPs.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5. Stream data classification problems: A real-world concern 72

5.3.2 Decision trees

Decision trees are approximators that use a tree data structure to approximate func-

tions [39][60]. The non-terminal nodes represent evaluation criteria, i.e. a set of logi-

cal condition statements [24]. On the other hand, terminal nodes represent final out-

comes. Decision trees, therefore, provide a series of logical steps to determine approxi-

mations [1][24][39][60]. There are three types of decision trees [4][39][43][60][66]:

• Regression trees, which are used to approximate mathematical functions. The

terminal nodes of regression trees represent real number values.

• Model trees, which are used to approximate piecewise mathematical functions. The

terminal nodes of model trees represent linear functions.

• Classification trees, which are used as classifiers. The terminal nodes of classifica-

tion trees represent classifications.

Regression and model trees are considered to be outside the scope of this thesis,

because this thesis deals with classification problems. Note that the literature generally

refers to classification trees as decision trees, in accordance with this convention any

further references to decision trees will mean classification trees [1][24][39][60].

Domingos and Hulten [24] proposed a constant memory and time per pattern, i.e.

one-pass, decision tree, called the very fast decision tree (VFDT), for learning high speed

data streams. The VFDT achieves the one-pass requirement by making use of Hoeffding

decision trees. Unfortunately, the VFDT does not cater for concept drift.

Later, Hulten et al. [60] modified VFDT to handle concept drift, and called the new

decision tree algorithm concept-adapting very fast decision tree (CVFDT). CVFDT is

able to handle concept drift by growing an alternative decision in the background, when

the CVFDT detects incorrect classifications in the current decision tree [60][66]. The

alternative tree replaces the current decision tree once it has become more accurate than

the current decision tree. Hulten et al. [60] showed that the CVFDT is more effective at

handling concept drift compared to traditional decision tree algorithms.

Decision trees are outside the scope of this thesis. The reader is, however, referred

to the comprehensive survey of decision trees by Kotsiantis [66].

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5. Stream data classification problems: A real-world concern 73

5.3.3 Ensembles

An ensemble is a group of high variance, low bias, i.e. overfitted, classifiers working to-

gether to reduce the high variance in the outcomes of the ensemble members [33][109][116].

There are various ways in which the outcomes of an ensemble is determined. Such as

aggregating the outcomes, using outcomes of the best generalising classifiers, voting on

the outcomes, or a linear combination of outcomes [33][67][78][94][109][116].

Ensemble learning techniques, such as bagging and boosting, have been developed

[33][67]. A bagging approach trains each ensemble member with a randomly sampled

subset of the training set [12]. Boosting, on the other hand, orders the ensemble members

sequentially and then trains them in that order instead of in parallel. The first ensemble

member is trained on all the training patterns. The next ensemble member in the

sequence is trained on the residual, i.e. the patterns that the previous ensemble members

in the sequence could not learn [125].

Chu et al. [13] also showed that ensembles of classifiers were more robust than single

classifiers. Care should, however, be taken with the size of the ensemble, because too

many ensemble members will make the ensemble too computationally complex, while

too few ensemble members will lead to poor generalisation performance [73].

In addition to their robustness, ensembles are good at handling concept drift [67][94].

Ensembles generally handle concept drift by applying the notion of age or minimum

generalisation error to its members [94]. This allows too old or too inaccurate ensemble

members to be detected and replaced with a classifier trained on new data [13][112][116].

Another approach to address concept drift in ensembles is to simply add newly trained

ensemble members over time [67][116].

The main benefits of ensembles are their robustness to noise and ability to adjust to

concept drift. Their computational complexity, however, might not make them suitable

for high speed data streams. Furthermore, the classifiers that make up the ensembles

must have some effectiveness in solving SDCPs, if the classifiers are to provide any

meaningful contribution to the ensembles.

Ensembles have been developed to successfully deal with SDCPs [67][73][109][116].

Wang et al. [116] proposed an ensemble of classifiers that can be used for SDCPs. The

ensemble weights the relevance of each classifier in the current epoch using an expected

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5. Stream data classification problems: A real-world concern 74

accuracy for the current chunk of patterns in the data stream [116]. The approach has

the advantages of handling concept drift, coping with high speed, robustness and online

learning [116].

Telec et al. [109] investigated the use of an ensemble of different ANNs for modelling

a data stream of real-estate market prices. Telec et al. [109] showed ANN ensembles to

be more effective than ensembles which make use of non-ANN classifiers. Furthermore,

Telec et al. [109] showed that larger ensembles provide better generalisation performance

than smaller ensembles.

Ensembles are outside the scope of this thesis. However, the reader is referred to the

comprehensive survey of ensembles by Krawczyk et al. [67].

5.3.4 Artificial Neural networks

Various ANN approaches have been developed to solve SDCPs [21][76][93][94][98][102].

Cui et al. [21] introduced a new one-pass sequence learning ANN architecture called

hierarchical temporal memory (HTM), based on the recent neuroscience discovery of

synaptic integration in the cerebral cortex. Sequence learning is a type of classification

problem that requires classification of the outcome from a sequence of past patterns [21].

To do so, the classifier must maintain temporal context [21][33]. Temporal context refers

to the time-based contextual dependencies that can exist between patterns, i.e. a se-

quence of events that provides context for the next event [21]. HTM allows for tem-

poral context to be built up and maintained by the ANN. Cui et al. [21] showed that

HTM was more effective, robust, and fault tolerant than RNNs and other traditional

ANNs in streamed data sequence learning problems. The HTM, however, does not pro-

vide mechanisms to control model complexity, handle random dynamics, and reduce the

number of tunable control parameters. Furthermore, the algorithm was not evaluated on

SDCPs but streamed data sequence learning problems. Thus, the applicability of HTM

to SDCPs is unknown.

Pratama et al. [93] proposed an online random neural network (RdNN), called the

recurrent type-2 random vector functional link network (RT2McRVFLN), to address

SDPs. RdNNs, first proposed by Gelenbe [46], are ANNs which are based on the bio-

logical behaviour of neuron circuits. The mechanics of RdNNs are outside the scope of

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5. Stream data classification problems: A real-world concern 75

this thesis. The reader is however referred to Gelenbe [46] for more information. Note

that the RT2McRVFLN is a type of RNN and not a FFNN. The RT2McRVFLN was

found to be competitive against other streamed data classifiers in-terms the accuracy-to-

simplicity trade-off, and was able to control model complexity to some extent [93]. The

algorithm, however, did not provide any explicit means to deal with bounded memory,

noisy patterns, system faults, reduce the number of tunable control parameters, and en-

sure patterns were only processed once during training. Furthermore, the RT2McRVFLN

was not compared to traditional benchmarks algorithms such as stochastic BP, and the

empirical analysis was done on a limited set of three benchmark problems.

Liang et al. [76] proposed a fast online sequence learning FFNN based on extreme

learning machine (ELM) concepts, called online sequential extreme learning machine

(OS-ELM) [76]. ELMs are FFNNs that allow fast training by inverting the training set

matrix and output matrix, in order to find the optimal weights. Because there is no

guarantee that the exact inverse might exist, a pseudo matrix inversion formula, i.e. the

Moore-Penrose generalised inverse, is used instead of normal matrix inversion [76]. The

pseudo matrix inversion attempts to find an approximate inverse that minimises the least

square error [76]. The advantages of OS-ELM is its ability to handle situations requiring

high speed data processing and little parameter tuning. The algorithm, however, did

not provide any explicit means to deal with concept drift, noisy patters, system faults,

and model complexity.

Sancho-Asensio et al. [102] proposed a robust, online, concept-drift handling classifier

system for SDCPs called supervised neural constructivist system (SNCS). SNCS makes

use of FFNNs, stochastic BP, and genetic algorithms (GAs) [102]. GAs are population-

based optimisers like PSOs. GAs, however, are based on evolutionary concepts and not

swarm movements [33][39]. The GA is used to select an FFNN architecture, while BP

is used to adjust the weights. The algorithm, however, did not provide any explicit

means to deal with bounded memory, high-speed data streams, system faults, reduce

the number of tunable control parameters, and ensure patterns were only processed once

during training.

Rakitianskaia and Engelbrecht [98] and Rakitianskaia [94] investigated the use of

3-layer FFNNs, trained by dynamic PSOs, as classifiers for dynamic classification prob-

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5. Stream data classification problems: A real-world concern 76

lems [94]. Rakitianskaia [94] concluded that the dynamic PSOs, including the QPSO,

are suitable for learning FFNNs which experience concept drift in online situations, and

can in some cases outperform stochastic BP. Rakitianskaia [94], however, did not inves-

tigate classification problems with respect to the other SDCP requirements, discussed in

Section 5.2. Furthermore, Rakitianskaia [94] did not cater for the effects of saturation

that plague PSO-based FFNN learning algorithms [96][115].

Aside from Rakitianskaia and Engelbrecht [98] and Rakitianskaia [94], there has

not been any other significant investigations into the use of 3-layer FFNNs, trained by

dynamic PSOs. Most research on 3-layer FFNNs trained by PSOs focused on static clas-

sification problems and classification problems that require only the handling of concept

drift, and not SDCPs [10][95][98][99][102][115].

Gupta and Lam [50] have shown that WD combined with the BP algorithm can

handle static classification problems with noise. Furthermore, studies have shown that

WD and WE can improve the accuracy and complexity performance of both BP and

PSO weights adjustment algorithms [10][68][95][118]. However, current studies, i.e.

[10][50][68][95][118], considered only static classification problems and not dynamic clas-

sification problems.

5.3.5 Conclusion

Table 5.1 summaries the streamed data classifier requirements focused on by the clas-

sifiers reviewed in this Section 5.3. From the above review of current SDCP literature

and table 5.1, the following conclusions are made:

• Most streamed data classifiers that were investigated considered limited subsets of

the SDCP requirements presented in Section 5.2.

• There is no significant research into the use of regularised 3-layer FFNNs to deal

with SDCPs.

• The issue of saturation has been addressed for 3-layer FFNNs trained by static

PSOs, but the suggested approaches have not been tested on streamed data FFNN

classifiers trained by dynamic PSOs.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5. Stream data classification problems: A real-world concern 77

T
a
b
le

5
.1
:

C
om

p
ar

is
on

of
th

e
re

q
u

ir
em

en
ts

fo
cu

se
d

on
b
y

th
e

re
v
ie

w
ed

cl
a
ss

ifi
er

s

R
e
q
u
ir

e
m

e
n
ts

fo
cu

se
d

o
n

R
e
v
ie

w
e
d

cl
a
ss

ifi
e
rs

V
F

D
T

[2
4]

C
V

D
F

T
[6

0]
E

n
se

m
bl

e-
ba

se
d

[1
09

][
11

6]
H

T
M

[2
1]

O
S

-E
L

M
[7

6]
R

T
2M

C
R

vF
L

N
[9

3]
S

N
C

S
[1

02
]

S
to

ca
st

ic
B

P
F

F
N

N
[9

4]
[9

8]
Q

P
S

O
F

F
N

N
[9

4]
[9

8]

B
ou

n
de

d
m

em
or

y
X

X
X

X
X

X

U
n

bo
u

n
de

d
da

ta
se

t
X

X
X

X
X

X
X

X

C
on

ce
pt

dr
if

t
X

X
X

X
X

X

R
an

do
m

dy
n

am
ic

s
X

X
X

O
n

li
n

e
le

ar
n

in
g

X
X

X
X

X
X

X
X

X

H
ig

h
sp

ee
d

X
X

X
X

X
X

O
n

e-
pa

ss
X

X
X

X

L
im

it
ed

n
u

m
be

r
of

tu
n

ab
le

co
n

tr
ol

pa
ra

m
et

er
s

X
X

X
X

M
ai

n
ta

in
lo

w
m

od
el

co
m

pl
ex

-

it
y

X
X

R
ob

u
st

n
es

s
X

X
X

F
au

lt
to

le
ra

n
ce

X

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5. Stream data classification problems: A real-world concern 78

• There is no significant research into the use of combining regularisation and dy-

namic PSOs to train 3-layer FFNNs for SDCPs.

The work of this thesis is thus necessary, because there is a gap in SDCP literature with

regards to regularised 3-layer FFNNs.

5.4 Summary

The chapter defined data streams as a sequence of data points. SDCPs were then

introduced as a class of non-trivial classification problems based on data streams. The

big data and real-world nature of data streams, however, was shown to impose eleven

additional requirements on streamed data classifiers. These requirements make SDCP

non-trivial classification problems. Furthermore, background on streamed data classifiers

and related works was provided. This review of related work showed that the work done

by this thesis is necessary.

This chapter concludes the background part of this thesis. The next two chapters

presents the original proposals made by this thesis starting with Chapter 6. Chapter 6

proposes a quantitative method for analysing and classifying the dynamic environments

of SDCPs.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6

Quantifying the environment of a

streamed data classification problem

If you can’t measure it, you can’t improve it.

Peter Ferdinand Drucker (1909 – 2005)

Classification of the environment of a CI problem according to the four dynamic

environments discussed in Section 2.2 requires the spatial and temporal severity of the

problem to be known. Current literature thus far has made no suggestions on how

to measure the spatial and temporal severities of streamed data classification problems

(SDCPs). This chapter proposes several measures to quantify the spatial and temporal

severities of SDCPs so that their dynamic environments can be classified as either quasi-

static, abrupt, progressive, or chaotic. This thesis uses the term severity measure to

describe any method that can quantify either the temporal or spatial severity of an

optimisation problem.

The remainder of this chapter is organised as follows: Section 6.1 discusses the issues

that need to be considered when designing severity measures for SDCPs. Section 6.2

discusses the identification of environment instances in SDCPs. Section 6.3 proposes a

method for measuring the spatial severity of SDCPs. Section 6.4 proposes a method for

measuring the temporal severity of SDCPs. Section 6.5 proposes a way of normalising

the proposed severity measures so that they can be used to classify the environment of an

79

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Quantifying the environment of a streamed data classification problem 80

SDCP. Section 6.6 discusses how to classify SDCP environments, using the normalised

severity measures. Lastly, Section 6.7 summaries the chapter.

6.1 Issues with potential severity measures

Any severity measure for SDCPs will need to consider the following three issues:

• Environment instance identification: To be able to measure the severity of a change

or the frequency between changes, a severity measure requires knowledge of how

the distribution of the targets changed and when the change occurred. The most

effective way of knowing what changes occurred and when, is to determine the

environment instances of a problem. SDCPs, however, present the classification

problem as a continuous sequence of patterns, instead of sets of patterns that

represent environment instances. A way of defining and identifying environment

instances in a data stream is therefore required for the severity measures of SDCPs.

• Severity measures provide estimations of actual severities : Real-world data streams

are unbounded. Any reading from a severity measure will therefore be an estimate

of the actual severity, because the reading will only be based on a sub-sequence of

patterns in the data stream. Furthermore, the reading will represent an average

because the severity levels can change during the course of the sub-sequence.

• Environment classifications based on severity measures are subjective: The tran-

sition between quasi-static, abrupt, progressive and chaotic environments are rel-

ative to the upper bounds of both the spatial and temporal severities (refer to

Figure 2.5). However, the environment classification scheme of Duhain and Engel-

brecht [25] does not specify any definitive upper bounds for both types of severities.

Some user-defined upper bounds, therefore, need to be chosen to make environment

classifications comparable across various SDCPs. Any environment classifications

are thus subjective to the choice of the two upper bounds.

Data streams in controlled environments are either artificially generated or extracted

from real-world data stream, hence the number of patterns in these data streams is finite.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Quantifying the environment of a streamed data classification problem 81

This allows the changes that occur in these data streams to be known and limited. The

exact upper bounds of temporal and spatial severities can thus be determined. Severity

measures can thus still provide insight into data streams in controlled environments.

6.2 Identifying environment instances

An environment instance of a dynamic classification problem is the set of patterns that

represent the decision space of a classification problem for some period in time (refer

to Section 2.2.2 on dynamic environments). Environment instances have four proper-

ties [25][33][98]:

1. Each environment instance contains one or more patterns.

2. A pattern can reoccur more than once in an environment instance.

3. The mappings between the inputs and targets, i.e. the input–target pairs, never

change in the same environment instance, because then a new environment instance

has been created.

4. The distribution of the targets for an environment instance must have changed

when comparing an environment instance to the preceding environment instance.

Note that an environment change can result in the instances of a pattern disappearing,

appearing, or their targets changing to reflect the the changes in the distribution of the

targets.

Non-SDCPs explicitly indicate the patterns of an environment instance for the given

problem. SDCPs, however, do not. Spatial and temporal severities, however, must be

based on the environment instances in the SDCP [25]. Algorithm 4 is, therefore, proposed

as a way of extracting environment instances from SDCPs based on data streams in

controlled environments. The algorithm takes two parameters:

1. The sequentially-ordered set of patterns that occur in the data stream, D.

2. The bin width bw, where bw ≥ 0. The bin width is used to bin the elements of

the input vectors into interval groups with the size of bw. Binning allows similar

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Quantifying the environment of a streamed data classification problem 82

input vectors to be seen as the same. This is essential for data streams where input

vectors do not repeat or the input vectors are erroneous.

Algorithm 4 works in two modes: binning disabled, i.e. bw = 0, and binning enabled,

i.e. bw > 0. Regardless of the mode, the main mechanics of the algorithm is the same:

the algorithm scans sequentially through the ordered set of patterns D, and allocates

each pattern to either the current or next environment instance. If the input vector

has previously been recorded in the current environment instance, then the algorithm

checks to see if the target has changed, otherwise the pattern is added to the current

environment instance. If the target has changed, a new environment instance is added

to the array of environment instances, and the pattern is added to the new environment

instance.

Algorithm 4 SDCP environment instance extraction algorithm

Input: bw, D

Initialise an empty 2D array of patterns, named Environment instances

Initialise an empty array of patterns, named Environment instance

for p = 0 to |D| do
Set ~zp as Dp’s input vector

Set ~tp as Dp’s target vector

Set ~bp as Dp’s input vector

if Binning mode is enabled, i.e. bw > 0 then

for i = 0 to I do

Calculate a as bw ×
⌊
zp,i
bw

⌋
.

Calculate b as a+ bw

Bin the i-th element of ~zp to the bin with the interval [a, b).

Assign binned value for zp,i to bp,i

end for

end if

if If the binned input vector ~bp matches any of the other binned input vectors in Environment instance then

if ~tp is not exactly the same as the target associated with the matched binned input vector in Environment

instance then

Append the array Environment instance to the array Environment instances

Empty the array Environment instance

end if

end if

Append the binned pattern (~bp,~tp) to the array Environment instance

end for

return The array Environment instances

If binning is enabled, then the elements of the input vector of each pattern are binned

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Quantifying the environment of a streamed data classification problem 83

and used instead of the raw input vector by Algorithm 4. Without the binning mode,

Algorithm 4 will fail in each of the following cases:

• If there is noise, i.e. erroneous patterns, in the data stream, then the algorithm will

detect false environment changes and create non-existent environment instances.

Algorithm 4, thus, over estimates the number environment instances.

• If an input vector only occurs in one environment instance in the data stream, then

the algorithm will not be able to use the input vector to detect change and may

leave out environment instances. Algorithm 4, thus, underestimates the number

environment instances.

The binning procedure groups similar input vectors into a binned input vector. The

patterns associated with each of the original input vectors are now all associated with

the binned input vector. The likelihood of the targets associated with the binned input

vector changing is thus higher than when the targets were associated with their original

input vectors. Algorithm 4 controls the likelihood of targets changing by changing the

size of the bins via the bin width parameter, bw.

The larger bw is, the less binned input vectors there are and the higher the likelihood

of targets changing. If bw is too large, then any two patterns whose targets differ,

irrespective of their input vectors, will be seen as a change because all patterns will have

the same binned input vector. If bw is too small, then the number of pattern instances

associated with the input vectors and their binned input vectors will remain unchanged.

The binning mode, therefore, transforms the original data stream before extracting

the environment instances. To avoid significant alteration of the original data stream

while overcoming the issues of noise and non-repetition of input vectors, bw needs to be

optimised. An optimal value for bw will bin the input vectors such that:

• the number of binned input vectors is similar to the number of input vectors in the

original data stream, while

• ensuring that binned input vectors have at least two patterns associated with it.

The former constraint prevents the data stream from being transformed significantly,

while the latter constraint increases the chances for similar but not same input vectors

to experience changes.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Quantifying the environment of a streamed data classification problem 84

Two key advantages of Algorithm 4 is that the algorithm is deterministic and is

agnostic of any classifier.

6.3 Spatial severity measure

Spatial severity describes the magnitude of change experienced when the environment

changes [25]. A possible way to quantify spatial severity is to calculate the average

change experienced by the environment instances with respect to the changes in targets,

as follows:

Θbw =

∑|Ibw |
e=1

∑|Ibw,e|
p=1 ∆Θ(Ibw,e,p)

|Ibw |
(6.1)

where Θbw is the average spatial severity over all of the environment instances extracted

by Algorithm 4 using a bin width bw, Ibw is the set of extracted environment instances,

and Ibw,e is the set of binned patterns for the e-th environment instance in Ibw . Ibw,e,p is

the p-th pattern in Ibw,e. ∆Θ(Ibw,e,p) is the spatial change for Ibw,e,p, which is calculated

as follows:

• If the binned input vector of Ibw,e,p occurred in a pattern earlier in Ibw,e or it did

not occur in Ibw,e−1, then ∆Θ(Ibw,e,p) = 0.

• Otherwise, ∆Θ(Ibw,e,p) is the Euclidean distance between the target of Ibw,e,p and

the target of the first pattern with the same input vector found in Ibw,e−1. The

Euclidean distance is used because targets can have one or more floating-point

values.

Furthermore, Θbw ∈ [0,∆∗Θ] where ∆∗Θ is the maximum change that can be expe-

rienced by a target. If Θbw = 0, then there are no changes. If Θbw = 1, then each

environment instance experiences one unit of change on average. The higher Θbw is, the

more severe the average change across all the environment instances. Note that new

input patterns are not considered as changes by Θbw because there is no previous target

vector to compare with.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Quantifying the environment of a streamed data classification problem 85

6.4 Temporal severity measure

Temporal severity describes how long an environment instance exists [25]. In SDCPs a

unit of time is one pattern, because streamed data classifiers process each pattern exactly

once. A possible way to quantify temporal severity is to calculate the average number of

patterns in the environment instances, i.e. the average size of the environment instances,

extracted by Algorithm 4 using a bin width bw, as follows:

τbw =

∑|Ibw |
e=0 |Ibw,e|
|Ibw |

(6.2)

=
|D|
|Ibw |

where τbw ∈ [1, |D|]. τbw < 1 is undefined, because each environment instance must at

least have one pattern. The larger τbw is, the longer it takes for changes to happen, i.e.

lower temporal severity. Temporal severity therefore increases as τbw decreases towards

1. If τbw = |D|, then there are no changes.

6.5 Normalising severity measures

The goal of the severity measures is to allow the classification of the dynamic envi-

ronments of various SDCPs. Because the measures Θbw and τbw are not normalised,

any classification of a dynamic environment of one SDCP is not necessarily equivalent

to the exact same classification made for a different SDCP. This inconsistency in the

classifications is due to the following three issues:

1. Different units of measure issue. The severity measures represent different

units of measure. That is, spatial severity is based on Euclidean distance versus

temporal severity that is based on the number of patterns. The environment clas-

sification scheme of Duhain and Engelbrecht [25] requires comparable values such

as percentages or ratios in respect to the bounds of the measures.

2. Same sized data stream issue. The upper bounds of both severity measures

are related to |D|. Hence, any percentage or ratio can only be compared to SDCPs

with same sized data stream.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Quantifying the environment of a streamed data classification problem 86

3. Inverse issue. τbw associates smaller values with greater levels of temporal sever-

ity. The inverse, i.e. 1
τbw

, is required by the environment classification scheme of

Duhain and Engelbrecht [25].

This section discusses the approaches used to normalise both measures. Section 6.5.1

discusses the normalisation of Θbw . Section 6.5.2 discusses the normalisation of τbw .

6.5.1 Normalising spatial severity

The different units of measure issue can be addressed by normalising the severity value

to a ratio between the severity value and the bounds of the particular severity measures

as follows:
Severity value− Lower bound

Upper bound− Lower bound

This approach, however, requires SDCP based on data streams in controlled environ-

ments, because of the need for upper bounds.

The same sized data stream issue can be addressed by using the maximum severity

value found from the set of SDCPs that are being benchmarked, as the upper bound of

the particular severity measure.

Using the solutions proposed above, spatial severity can be normalised as follows:

Θ′bw =
Θbw

max
|S|
d=1 Θbw(Sd)

(6.3)

where S is the set of data stream datasets and Sd is the d-th data stream in S. Θ′bw
normalises Θbw to a value with the range [0, 1]. If Θ′bw = 0 then there is no change, i.e.

the lowest level of spatial severity possible. If Θ′bw = 1 then the particular SDCP has a

spatial severity equal to the highest spatial severity found in S.

Note that if the unit of the target vector elements for one problem is different from

those of another problem, e.g. binary, integer, or floating-point, then the units of the

change magnitudes of the two problems will also be different. The spatial severity of

the one problem will therefore not be comparable to the spatial severity of the other

problem. It is thus important to ensure that the target vectors are encoded to the same

unit. This thesis encodes the all target vectors into binary target vectors.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Quantifying the environment of a streamed data classification problem 87

6.5.2 Normalising temporal severity

The different units of measure issue and same sized data stream issue for τbw can be

addressed in the same way as for Θbw (refer to Section 6.5.1).

The inverse issue can be resolved by using the difference between a severity value and

the upper bound of the value, as follows:

Upper bound− Value

.

Using the solutions proposed above, temporal severity can be normalised as follows:

τ ′bw = 1− τbw − 1

max
|S|
d=1 τbw(Sd)− 1

(6.4)

τ ′bw normalises τbw to a linear value with the range [0, 1]. If τ ′bw = 0 then there is no

change, i.e. lowest temporal severity possible. If τ ′bw = 1 then the particular SDCP has

a temporal severity equal to the highest temporal severity in found in S.

Note that it is possible for max
|S|
d=1 τbw(Sd) to be equal to 1, in which case τ ′bw will be

undefined. However, in such a case all of the SDCP in S are experiencing the highest

degree of temporal severity possible and τ ′bw can be said to be 1 for each of the SDCPs.

6.6 Dynamism of problem environments

Using Θ′bw and τ ′bw , it is possible to classify the environments of SDCPs according to

environment classification scheme of Duhain and Engelbrecht [25], as follows:

Λbw(Θ′bw , τ
′
bw) =



Quasi-Static, if Θ′bw ≤ 0.5 and τ ′bw ≤ 0.5

Abrupt, else if τ ′bw ≤ 0.5

Progressive, else if Θ′bw ≤ 0.5

Chaotic, otherwise

(6.5)

where Λbw(Θ′bw , τ
′
bw

) is the environment classification for a SDCP with a normalised

spatial severity of Θ′bw and normalised temporal severity of τ ′bw .

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Quantifying the environment of a streamed data classification problem 88

The normalised severity measures, Θ′bw and τ ′bw , form a 2-dimensional plane in con-

tinuous space. An environment of a SDCP thus exhibits the characteristics for each of

the four dynamic environment types to some degree. The environment classification,

Λbw , and the two normalised severity measures, however, do not provide any information

to indicate to what degree the given problem environment behaves like the class Λbw .

What would assist in this matter, is a singular value that indicates how an environment

of a problem is dominated by Λbw and the other three types of dynamic environments.

The degree by which the environment of a problem is dominated by each of the four

types of dynamic environments can be calculated as follows:

ζQ,bw = 1−

√
(τ ′bw)2 + (Θ′bw)2

√
2

(6.6)

ζA,bw = 1−

√
(τ ′bw)2 + (1−Θ′bw)2

√
2

(6.7)

ζP,bw = 1−

√
(1− τ ′bw)2 + (Θ′bw)2

√
2

(6.8)

ζC,bw = 1−

√
(1− τ ′bw)2 + (1−Θ′bw)2

√
2

(6.9)

where ζQ,bw , ζA,bw , ζP,bw , and ζC,bw are the domination values of the quasi-static, abrupt,

progressive and chaotic classifications, respectively. Equations (6.6) to (6.9) quantify

domination as a ratio. The numerator of the ratio is the Euclidean distance of the

point created by the severity measures from the point of complete domination. The

denominator of the ratio is the maximum possible distance from complete domination

in the 2-dimensional plane, i.e.
√

2. Each domination value is in the range [0, 1]. A

domination value of 0 indicates no domination, i.e. the environment does not behave at

all like the particular type of dynamic environment. On the other hand a domination

value of 1 indicates complete domination, i.e. the environment only has characteristics

of the particular type of dynamic environment.

The values ζQ,bw , ζA,bw , ζP,bw , and ζC,bw , however, only show how their respective

dynamic environment type influences the environment of a problem, and not how all

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Quantifying the environment of a streamed data classification problem 89

four dynamic environment types influence the environment of the problem at the same

time. The four domination values can be unified into a single value, as follows:

ζbw = max{ζQ,bw , ζA,bw , ζP,bw , ζC,bw} −min{ζQ,bw , ζA,bw , ζP,bw , ζC,bw} (6.10)

where ζbw ∈ [0, 1]. Equation 6.10 uses the range of the four domination values, be-

cause it allows all four domination values to be interpreted via the difference between

the most influential dynamic environment type, i.e. Λbw , and least influential dynamic

environment type. Values of ζbw are interpreted, as follows:

• When ζbw = 0, then an environment is balanced amongst all four dynamic environ-

ment types. That is, all four dynamic environment types have an equal influence

on the environment of the problem.

• When ζbw = 1, then the environment only exhibits the characteristics of the dy-

namic environment type identified by Λbw , e.g. static if Λbw is quasi-static.

• When ζbw ≈ 0.5, then the environment of the problem primarily exhibits charac-

teristics of both the dynamic environment type identified by Λbw and an adjacent

dynamic environment type.

• The larger ζbw is, the more the environment of the problem behaves like the type

of dynamic environment identified by Λbw .

• The smaller ζbw is, the more domination is distributed amongst the four dynamic

environment types. That is, the less the environment of the problem exhibits

characteristics of just one dynamic environment type.

To assist in visualising and understanding ζbw , refer to Figure 6.1. Figure 6.1 provides

a visualisation of ζbw values with respect to Θ′bw and τ ′bw using 20 contour intervals. By

overlaying Figure 6.1 with Figure 2.5 it becomes clear that Equation (6.10) breaks each

region of the four dynamic environment types, i.e. the four quadrants, into diagonal-like

bands. The bands are orientated in such a way that they face the two extremes of each

region, i.e. from the centre of the severity space to the relevant corner. Furthermore,

the bands become more concave as ζbw approaches a value of one. On the other hand,

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Quantifying the environment of a streamed data classification problem 90

the bands become straighter as ζbw approaches a value of zero. Figure 6.1 indicates that

a majority of problems have environments that display characteristics from two or more

dynamic types of environments.

Using ζbw together with Λbw provides a summarised analysis of the dynamic envi-

ronment of an SDCP, because Λbw indicates the dominant dynamic environment type

and ζbw indicates the degree to which the environment of the SDCP conforms to the

characteristics of Λbw . Another benefit of summarising the environment with only Λbw

and ζbw is that the location of Θ′bw and τ ′bw can be estimated accurately.

Figure 6.1: Contour plot of ζbw with respect to Θ′bw and τ ′bw using 20 levels

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6. Quantifying the environment of a streamed data classification problem 91

6.7 Summary

The chapter proposed a quantitative method of determining whether the overall envi-

ronment of an SDCP is quasi-static, abrupt, progressive or chaotic. This included an

algorithm for identifying environment instances in SDCPs, and a method for measuring

both the spatial and temporal severity across the environment instances.

A measure for determining the degree by which the characteristics of the environment

classification dominates the environment of a SDCP, was also proposed.

The quantitative method allows the environments of SDCPs to be classified auto-

matically. Knowing the dynamic environment types of the SDCP provides a better

understanding of the performance trends of streamed data classifiers, and another level

for aggregating empirical results when comparing streamed data classifiers.

The next chapter introduces the regularisation-based FFNN streamed data classifiers

investigated in this thesis.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 7

Regularised feed forward neural

networks as streamed data classifiers

Everything should be made as simple as possible, but not simpler.

Albert Einstein (1879 – 1955)

Regularised 3-layer FFNNs have not been investigated thoroughly as streamed data

classifiers, despite their ability to manage the complexity of the data. To address this

gap in the research, this chapter proposes four regularised 3-layer FFNN classifiers for

SDCPs. The term regularised classifier is used in this thesis to describe any classifier

that uses regularisation.

The remainder of the chapter is organised as follows. Section 7.1 describes the FFNN

architecture used for the purpose of this study. Section 7.2 describes two BP-based

regularisation learning algorithms. Section 7.3 describes two QPSO-based regularisation

learning algorithms. Section 7.4 presents the four streamed data classifiers. Section 7.5

justifies the use of the proposed classifiers as streamed data classifiers. Lastly, Section

7.6 summaries the chapter.

7.1 Proposed architecture

This thesis uses a 3-layer FFNN with the same structure as illustrated in Figure 4.1.

The remainder of this thesis refers to this architecture as the proposed architecture.

92

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 7. Regularised feed forward neural networks as streamed data classifiers 93

The proposed architecture employs summation units (refer to Equation (4.2)). In-

stead of using traditional bounded activation functions, such as the sigmoid function,

the proposed architecture uses the left-bounded ReLU activation function with λ = 1

and θ = 0 (refer to Equation (4.4)). The ReLU activation function is favoured over

the sigmoid function, because of its lower computational complexity and non-vanishing

gradients [81].

All the synapse weights, including the bias neuron weights, are uniformly initialised

within the range described by Equation (4.13).

The number of input neurons are fixed to the input vector size of the SDCP, i.e.

I. The number of hidden neurons are chosen in such a way that the architecture is

over-parametrised, i.e. the architecture has more hidden neurons than needed for the

particular problem. Note, that this thesis investigates problems where the number of

hidden neurons required have been empirically determined. Furthermore, note that any

FFNN with an over-parametrised architecture has the ability to approximate at the

same level of accuracy as FFNNs with a smaller architecture provided that the over-

parametrised architecture does not overfit [31][33].

Both the input and the hidden layers contain a single bias neuron. The input signal

of the bias neurons are fixed at −1.

The architecture assumes the use of binary encoded targets, e.g. each element in a

target vector is either 0 or 1 [91]. If there are two classes, then binary encoding is used,

otherwise, one-hot encoding is used [51][91]. Hence, the number of output neurons is

dependent on the number of discrete classes a SDCP has. If there are two classes, then

the FFNN uses one output neuron, otherwise the FFNN uses one output neuron per

class [51].

The ReLU activation function results in output neurons values that are bounded

below by 0. Output neuron values, however, need to be bounded to the range [0, 1]

for binary classification target vectors. A common approach to bounding the values of

output neurons is to use thresholds [33][39][94]. The value of an output neuron, ok, is

therefore constrained to the range [0, 1], as follows:

ok =

1, if ok ≥ 1.0

ok, otherwise
(7.1)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 7. Regularised feed forward neural networks as streamed data classifiers 94

Note that the constraint on the output neuron values does not change the gradient of

the output neurons, because the gradient of the ReLU activation function is considered

to be 1 if netok > 0, otherwise the gradient is 0.

In the case of two discrete classes, an output neuron value of 0 or 1 indicates if the

pattern represents one class or the other. In the case of more than two discrete classes,

each output indicates if the pattern represents the class or not. A value of 0 indicates

that the pattern does not represent the class in question. A value of 1 indicates that the

pattern represents the class in question. If more than one output neuron has a value of

1, then the classification is also considered to be incorrect.

7.2 Back propagation learning algorithms

This section describes a WD learning algorithm and a WE learning algorithm for streamed

data classifiers that use stochastic BP to adjust the weights of the FFNN.

Section 7.2.1 discusses the implementation of the BP algorithm used. Section 7.2.2

discusses the BP-based WD learning algorithm. Lastly, Section 7.2.3 discusses the BP-

based WE learning algorithm.

7.2.1 Back propagation weights adjustment algorithm

The proposed architecture requires the output-to-hidden layer and hidden-to-input layer

weights to change.

Each output-to-hidden layer weight, wkh, is changed as follows [33][115]:

wkh(t+ 1) = wkh(t) + ∆wkh(t) + α∆wkh(t− 1) (7.2)

where ∆wkh(t) is the change that weight wkh experiences at epoch t, calculated as

∆wkh(t) = −ηδokhh

where hh is the activation value of the h-th hidden neuron, δok is the error signal of the

k-th output neuron, calculated as

δok = −(tk − ok)f
′

ReL(
J+1∑
h=1

wkhhh) (7.3)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 7. Regularised feed forward neural networks as streamed data classifiers 95

and −(tk−ok) is the partial derivative of Equation (4.5) for a single pattern, and J is the

number of hidden neurons excluding bias neurons in the hidden layer. f
′
ReL is the partial

derivative of fReL(netok) with respect to the net input signal, netok , which is calculated

as the weighted sum of inputs into the ok. Because of the piecewise nature of fReL, the

activation function is not differentiable at 0 [81][108][115]. In practice when training

with BP, f
′
ReL is considered to be 1 if netok > 0, otherwise f

′
ReL is 0 [71][81][115].

Each hidden-to-input layer weight, whi, is changed as follows [33][115]:

whi(t+ 1) = whi(t) + ∆whi(t) + α∆whi(t− 1) (7.4)

where ∆whi(t) is the change that weight whi experiences at epoch t, calculated as

∆whi(t) = −ηδhhzi

and δhh is the error signal of the h-th hidden neuron, calculated as

δhh = (
K∑
k=1

δokwkh)f
′

ReL(
I+1∑
i=1

whizi) (7.5)

where zi is the value of the i-th input neuron.

Algorithm 5 presents the pseudo code for the BP implementation used in this thesis.

Algorithm 5 is derived from Algorithm 3. Algorithm 5 focuses on the training of a

pattern for SDCPs, and not on FFNN initialisation and training set selection. Algorithm

5 considers each training set to consist out of one pattern, because of the one-pass

requirement of SDCPs (see Section 5.2).

Algorithm 5 Supervised ReLU summation 3-layer FFNN BP weights adjustment algo-

rithm for an environment instance

Input: η, α, the FFNN, pattern p

Feed forward pattern p’s inputs into the FFNN

Calculate error signal for the output layer neurons, using Equation (7.3)

Calculate error signal for the hidden layer neurons, using Equation (7.5)

Adjust FFNN’s output to hidden layer weights, using Equation (7.2)

Adjust FFNN’s hidden to input layer weights, using Equation (7.4)

return FFNN

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 7. Regularised feed forward neural networks as streamed data classifiers 96

7.2.2 Weight decay learning algorithm

To incorporate WD regularisation into Algorithm 5 is a relatively straightforward pro-

cess [10][118]. The regularisation Equation (4.14), with Er as the WD Equation (4.15),

must be used as the new training error function, instead of SSEp. To do so, the partial

derivative of the product between the regularisation coefficient (λr) and the WD penalty

term (Equation (4.15)), calculated as

∂

∂wn

[
λr

1

2

ns∑
n=1

w2
n

]
= λrwn (7.6)

must be incorporated into the weight adjustment equations (7.2) and (7.4) as follows:

∆wkh(t) = −η(δokhh + λrwkh) (7.7)

∆whi(t) = −η(δhhzi + λrwhi) (7.8)

7.2.3 Weight elimination learning algorithm

WE regularisation can be incorporated into Algorithm 5 in the same way as was done

with WD regularisation in Section 7.2.2. The partial derivative of the product between

the regularisation coefficient (λr) and the WE penalty term (Equation (4.16)), calculated

as

∂

∂wn

λr ns∑
n=1

w2
n

w2
0

1 + w2
n

w2
0

 = λr
∂

∂wn

[
ns∑
n=1

w2
n

w2
0 + w2

n

]
(7.9)

= λr
2wnw

2
0

(w2
0 + w2

n)2
(7.10)

must be incorporated into the weight adjustment equations (7.2) and (7.4) as follows:

∆wkh(t) = −η
[
δokhh + λr

2wkhw
2
0

(w2
0 + w2

kh)
2

]
(7.11)

∆whi(t) = −η
[
δhhzi + λr

2whiw
2
0

(w2
0 + w2

hi)
2

]
(7.12)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 7. Regularised feed forward neural networks as streamed data classifiers 97

7.3 Quantum particle swarm optimisation learning

algorithms

This section describes a WD learning algorithm and a WE learning algorithm for streamed

data classifiers that use QPSO to adjust the weights of the FFNN.

Section 7.3.1 discusses the implementation of the QPSO weights adjustment algo-

rithm. Section 7.3.2 discusses the QPSO-based WD learning algorithm. Lastly, Section

7.3.3 discusses the QPSO-based WE learning algorithm.

7.3.1 Quantum particle swarm optimisation weights adjustment

algorithm

Algorithm 6 presents the pseudo code for the QPSO weights adjustment algorithm im-

plementation used in this thesis. Algorithm 6 is derived from Algorithm 2 and the

implementations discussed in Section 4.4. Algorithm 6 focuses only on training a swarm

of particles for a pattern of a SDCPs, and not on swarm initialisation and training set

selection. Algorithm 5 considers each training set to consist out of one pattern, because

of the one-pass requirement of SDCPs (see Section 5.2).

7.3.2 Weight decay learning algorithm

Application of WD regularisation to Algorithm 6 requires even fewer modifications than

needed with Algorithm 3. Regularisation is achieved by changing the training error

function from MSE to the regularisation Equation (4.14), with Er as the WD Equation

(4.15).

7.3.3 Weight elimination learning algorithm

WE regularisation can be incorporated into Algorithm 6 in the same way as was done

with WD regularisation in Section 7.3.2. Hence, the training error function is changed

from MSE to the regularisation Equation (4.14), with Er as WE Equation (4.16).

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 7. Regularised feed forward neural networks as streamed data classifiers 98

Algorithm 6 Supervised ReLU summation 3-layer FFNN QPSO weights adjustment

algorithm for an environment instance

Input: ω, c1, c2, r, distribution d, swarm of np particles, pattern p

for i = 0 to np do

Calculate the quality of ~yi, using Equation (4.6) and pattern p

end for

for i = 0 to np do

Set ~̂yi as the best personal best position in the Von Neumann neighbourhood of particle i

if (particle i is a quantum particle) then

Update ~xi using Equation (3.6)

else

Update ~vi using Equation (3.1)

Update ~xi using Equation (3.2)

end if

end for

for i = 0 to np do

Calculate the quality of ~xi using Equation (4.6) and pattern p

if (~xi is better than ~yi) then

~yi = ~xi

end if

end for

return Swarm of np particles

7.4 Proposed streamed data classifiers

By combining the proposed architecture and four regularisation learning algorithms, the

following four streamed data classifiers are formed:

• BP-WD, which uses the WD BP-based learning algorithm (presented in Section

7.2.2) to train the FFNN. BP-WD has three tunable control parameters, i.e. α, η

and λr.

• BP-WE, which uses the WE BP-based learning algorithm (presented in Section

7.2.3) to train the FFNN. BP-WE has four tunable control parameters, i.e. α, η,

λr and w0.

• QPSO-WD, which uses the WD QPSO-based learning algorithm (presented in

Section 7.3.2) to train the FFNN. QPSO-WD has seven tunable control parameters,

i.e. ω, c1, c2, np, distribution d, r and λr.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 7. Regularised feed forward neural networks as streamed data classifiers 99

• QPSO-WE, which uses the WE QPSO-based learning algorithm (presented in Sec-

tion 7.3.3) to train the FFNN. QPSO-WE has eight tunable control parameters,

i.e. ω, c1, c2, np, distribution d, r, λr and w0.

Because of the online learning requirement for SDCPs, no stopping conditions are

used to terminate the learning algorithms of the four streamed data classifiers. However,

each training set is only trained for one epoch. The maximum number of epochs stopping

condition is, therefore, used to enforce the one-pass requirement.

Note that the term proposed classifiers is used to refer to BP-WD, BP-WE, QPSO-

WD and QPSO-WE, for the remainder of this thesis.

7.5 Justification of proposed streamed data classi-

fiers

This section discusses how the four streamed data classifiers (proposed in Section 7.4),

address the issues of saturation, local optimum trapping, and the eleven SDCP require-

ments. Sections 7.5.1 to 7.5.13 present the discussions with reference to each of the

thirteen issues, i.e. handling saturation, addressing local optima trapping, and the 11

design requirements of SDCPs. Lastly, Section 7.5.14 concludes the discussions.

7.5.1 Saturation issue

The left-bounded property of the ReLU activation function only allows saturation to

occur on the left-side [97][115]. It was hypothesised by [115] that this feature of the ReLU

function could potentially allow saturation to be reduced. No studies have, however, been

carried out to evaluate the extent to which this is true. The ReLU activation function is

employed by the four proposed classifiers due to its potential of reducing saturation. The

use of ReLU activation functions as a means of reducing saturation will be investigated

empirically by this thesis.

All four proposed classifiers make use of regularisation. Regularisation has been

shown to reduce saturation when PSOs are used to adjust weights [10][95].

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 7. Regularised feed forward neural networks as streamed data classifiers 100

Rakitianskaia and Engelbrecht [96] suggested that by controlling the velocity and

preventing it from exploding would reduce saturation, e.g. using velocity clamping. Ve-

locity can be more effectively controlled by using the constriction coefficient [29]. The

constriction coefficient does not explicitly set a hard limit on the velocity of particles, like

velocity clamping, but rather guarantees that that the neutral particles in the swarm will

reach first order and second order stability, i.e. the swarm will converge so that the ex-

pectation and variance of the positions are constant, under certain conditions [14][15][29].

These stability guarantees will ensure that velocity will not explode [14]. The use of the

constriction coefficient can be emulated by setting the inertia parameter, ω, and positive

acceleration coefficient parameters, c1 and c2 to the values discussed in Section 3.1.5.

This approach is used by QPSO-WD and QPSO-WE, because it introduces no addi-

tional computational effort. Note that the quantum particles of QPSO do not make use

of a velocity component, hence, their velocity cannot explode nor does the constriction

coefficient affect them.

The proposed classifiers, therefore, were set up to reduce saturation.

7.5.2 Local optimum trapping issue

Both BP-WD and BP-WE allow the momentum and learning rate of the BP algorithm

to be tuned. This reduces the susceptibility of BP-WD and BP-WE to local optimum

trapping, because a suitable exploration-exploitation trade-off can be found for a SDCP

(refer to Section 4.3.9). Note that in practical applications, the momentum and learning

rate might not be an effective solution for preventing local optimum trapping, because

the momentum and learning rate can not be adjusted as the environment changes.

On the other hand, QSO-WD and QPSO-WE are less susceptible to local optimum

trapping, because their weight adjustment algorithms are population-based. Further-

more, the quantum particles in QSO-WD and QPSO-WE never converge fully, but con-

tinue to explore, therefore reducing the chance of local optimum trapping.

Lastly, the use of regularisation provides more information about the search space,

i.e. model complexity, than learning algorithms that only account for accuracy [10]. BP-

WD and BP-WE should thus stagnate less quickly, because gradients are generally larger

in magnitude. This helps the search build momentum to escape from a local minimum.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 7. Regularised feed forward neural networks as streamed data classifiers 101

On the other hand, QPSO-WD and QPSO-WE should converge slower, because the

regularised search space will typically contain more optima which will increase swarm

diversity. The slow down aids in reducing local optimum trapping, because if a particle

gets trapped, the other particles take longer to also get trapped. The other particles,

thus, have more time to search for better solutions.

The proposed classifiers, therefore, were set up to reduce local optimum trapping.

QPSO-WD and QPSO-WE, however, are more capable to reduce local optimum trapping

than BP-WD and BP-WE.

7.5.3 Bounded memory requirement

Three-layer FFNNs do not necessarily need to be excessively large to learn classification

problems, as seen in [31], [94], [95] and [109]. Furthermore, regularisation is an architec-

ture selection algorithm that does not alter the number of synapses or neurons. Hence,

the number of neurons and synapses that are selected initially does not change during

training, for either of the four proposed classifiers.

The bounded memory requirement can, therefore, be adhered to by each of the pro-

posed classifiers provided that the initial architecture does not violate the bounded mem-

ory requirement.

7.5.4 Unbounded dataset requirement

Because all the proposed classifiers make use of regularisation, their ability to unlearn

any patterns that were learned is enhanced, i.e., made faster. The proposed classifiers,

therefore, have a greater chance of automatically replace old unnecessary information

with new relevant information as the data stream progresses. Furthermore, the proposed

classifiers also do not run the risk of building up excessive collections of patterns, because

each pattern is only kept for one epoch.

The four proposed classifiers thus will be able to operate on an infinite number of

patterns.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 7. Regularised feed forward neural networks as streamed data classifiers 102

7.5.5 Concept drift requirement

Rakitianskaia [94] concluded that BP has the ability to handle certain types of dynamic

environments, but can still become trapped by an optimum of the previous environment

instance. The reason for this is because BP has no explicit change detection or change

handling mechanisms.

On the other hand, QSO-WD and QPSO-WE make use of the dynamic QPSO algo-

rithm to adjust their weights. The QPSO algorithm implicitly supports change detection

through the revaluation of the quality of each particle every epoch, and change handling

through quantum particles (refer to Section 3.2.2). Hence, QSO-WD and QPSO-WE are

well-suited at handling concept drift in SDCPs [8][98].

Using regularisation with BP and PSO on static problems have been found to im-

prove performance [50][95]. The main reason for this is that regularisation allows the

classifiers to select the architecture during training and not just the weights [50]. The se-

lection ability of regularisation should, thus, help to reduce the chances of the classifiers

producing stale models.

Lastly, Bosman et al. [10] showed that regularisation penalisation terms, such as

WE, can create search spaces with steeper gradients and more minimums. This can help

Algorithm 5, which has a momentum term, to build up enough momentum to escape

from local regions of previous environment instances.

All four proposed classifiers, therefore, have taken steps to address the concept drift

requirement. QPSO-WD and QPSO-WE, however, employ more effective measures for

handling concept drift than BP-WD and BP-WE.

7.5.6 Random dynamics requirement

BP-WD and BP-WE only partially adhere to the random dynamics requirement, because

evidence in [94] suggests that BP can handle only some types of dynamic environments.

Regularisation might also be able to assist in this regard.

The QPSO algorithm has been shown to be effective in dynamic environments with

various levels of spatial and temporal severities [6][52][94]. Harrison et al. [52] shows

that the effectiveness of the QPSO algorithm across quasi-static, progressive, abrupt

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 7. Regularised feed forward neural networks as streamed data classifiers 103

and chaotic environments is greater when using the linear decreasing distribution than

when using the uniform distribution. The QPSO-WD and QPSO-WE implementations

therefore make use of the linear decreasing distribution for the purpose of this study.

All four proposed classifiers have taken steps to address the random dynamics re-

quirement. QPSO-WD and QPSO-WE, however, employ more effective measures for

handling the random dynamics of SDCPs than BP-WD and BP-WE.

7.5.7 Online learning requirement

Each of the proposed classifiers learns from every pattern that comes through a data

stream. The proposed classifiers, therefore, adhere to the online learning requirement.

7.5.8 High speed data streams requirement

The combination of the low complexity ReLU activation function and summation units

makes the proposed classifiers significantly faster at processing patterns and learning

than FFNNs classifiers using other combinations of bounded activation functions, e.g.

sigmoid, and neuron unit types, e.g. product units [71][115].

The computational complexity of QPSO-WD and QPSO-WE can, however, exceed

that of BP-WD and BP-WD, if too many particles are used. Various studies have

suggested the use of 30 particles as a good swarm size that balances performance and

computational complexity [33][52][98][115]. Hence, both QPSO-WD and QPSO-WE use

30 particles in this study.

Because of the concept drift requirement and low model complexity requirement,

some form of architecture selection strategy is required for FFNN streamed data clas-

sifiers. Construction and pruning architecture selection algorithms add additional com-

putational complexity to the learning algorithm, because of their explicit growing or

shrinking operations [79]. Regularisation, however, requires no extra computational

power to be spent on explicit growing and shrinking operations.

The proposed classifiers, therefore, have taken reasonable steps to keep computa-

tional complexity as low as possible. In extremely high speed environments these steps,

however, may not be sufficient.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 7. Regularised feed forward neural networks as streamed data classifiers 104

7.5.9 One-pass requirement

Each of the proposed classifiers processes every data point that comes through a data

stream exactly once, because the maximum number of epochs per training set is one,

Maxne = 1, and the size of the training set is always one, |Dt| = 1. Thus, the proposed

classifiers adhere to the one-pass requirement.

7.5.10 Limited number of tunable control parameters require-

ment

BP-WD and BP-WE respectively have three and four tunable control parameters. On

the other hand, QPSO-WD and QPSO-WE respectively have seven and eight tunable

control parameters. The five control parameters ω, c1, c2, np and d, however, are fixed

for the purpose of the study. QPSO-WD and QPSO-WE, thus, have only two and three

tunable control parameters, respectively.

Self-adaptive learning algorithms, i.e. learning algorithms that tune their control

parameters on-the-fly, would be the ultimate solution for this requirement. None of the

proposed classifiers, however, considers self-adaptation for the following four reasons:

1. Self-adaptive approaches generally use additional optimisation algorithms to tune

control parameters. These additional optimisation algorithms tend to have problem

dependent control parameters. This creates an infinite, recursive need for self-

adaptive algorithms. Self-adaptation that use optimisation algorithms is thus not

an option for real-world streamed data problem (SDP), unless some creative way

to deal with this recursive need is proposed.

2. Current self-adaptive approaches introduce additional computational and imple-

mentation complexity [33][53]. If too much computational complexity is added,

then the high speed requirement would be violated.

3. Harrison et al. [53] argued that current self-adaptive algorithms for PSOs are inad-

equate, because they waste time by searching ranges that are ineffective or violate

the theoretically derived convergence conditions for the PSO control parameters.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 7. Regularised feed forward neural networks as streamed data classifiers 105

4. Pamparà and Engelbrecht [90] recently proposed an efficient self-adaptive QPSO,

that adapts the radius control parameter by using the maximum swarm diversity

of the quantum sub-swarm and standard sub-swarm. However, the algorithm does

not adapt any other control parameters. The effect that regularisation will have

on the performance of the self-adaptive algorithm is also unknown. Because the

primary purpose of this thesis is to investigate the use of regularisation in FFNN

stream data classifiers, the algorithm by Pamparà and Engelbrecht [90] is not

considered by the study.

The four proposed classifiers, therefore, adhere to the limited number of tunable con-

trol parameters requirement. Under the consideration that five of the control parameters

for both QPSO-WD and QPSO-WE are fixed in this study, QPSO-WD and QPSO-WE

adhere more to the requirement than BP-WD and BP-WE.

7.5.11 Maintain low model complexity requirement

In the context of the proposed classifiers, model complexity refers to the structural com-

plexity of their FFNN architectures. Activation functions used in FFNN allow decision

boundaries to be mapped by a set of parametrised mathematical functions. The more

similar the curve of the activation function is to the shape of the decision boundaries, the

less activation functions are required. This allows FFNNs to have a high information

capacity at relatively low levels of model complexity [2][33][71][74][96]. The proposed

classifiers makes use of FFNNs, therefore, they do not necessarily require high amounts

of model complexity to be able classify accurately.

Regularisation does not change the model complexity of the proposed classifiers, but

it does change their effective model complexity, i.e. effective structural complexity (refer

to Section 4.3.3). The mathematics behind summation units in the proposed classifiers

allows regularisation to deactivate or activate individual synapses, because zero weights

make the relevant input signals have no effect on net input signal. This is not the case

for product units where a single zero weight would cause the net input signal to be zero.

The proposed classifiers thus are able to maintain their effective model complexity at

synapse level. Furthermore, the effective model complexity can be converted into actual

model complexity through the use of a suitable pruning algorithm, if need be [31]. The

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 7. Regularised feed forward neural networks as streamed data classifiers 106

proposed classifiers, therefore, have taken reasonable steps to adhere to the requirement

of maintaining low model complexity.

7.5.12 Robustness requirement

None of the proposed classifiers provides a way to prevent noisy patterns from effecting

the model, such as pattern filtering using data-validation or cross-validation [75][110][124].

Regularisation, however, enables the four proposed classifiers to prevent the memorisa-

tion of noise by driving unnecessary weights to zero [50].

To be able to prevent the memorisation of noise, regularisation needs to know which

patterns are valid and which are noise. To distinguish between the patterns, regulari-

sation assumes that the majority of patterns are valid, because a weight required by a

valid pattern will have a smaller training error on average, than the training error of

weight of the same value but required by a noisy pattern [50][110][118]. Regularisation,

therefore, fails to handle noise in the case where there are more erroneous patterns than

valid patterns, because the erroneous patterns will be used to determine the training

error in the majority of times [50][110].

The four proposed classifiers thus have the ability to tolerate, at least, low levels of

noise in data streams.

7.5.13 Fault tolerance requirement

The proposed classifiers do not adhere to the fault tolerance requirement, because the

design of the classifiers delegates this requirement to the underlying software and hard-

ware. This is a reasonable expectation as most mature programmable computation

systems provide mechanisms to error correct and handle faults occurring at a hardware

level.

7.5.14 Conclusion

The above discussions show that the proposed classifiers are able to handle the issues of

local optimum trapping and saturation that effect FFNNs (refer to Sections 4.3.9 and

4.4.2). The above discussions also show that the proposed classifiers meet the eleven

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 7. Regularised feed forward neural networks as streamed data classifiers 107

design requirements that need to be addressed by streamed data classifiers (refer to

Section 5.2). Several important points were highlighted by the discussions, as follows:

1. QPSO-WD and QPSO-WE have a potential advantage over BP-WD and BP-WE,

because their learning algorithms are dynamic.

2. Under the consideration that five of the control parameters for both QPSO-WD and

QPSO-WE are fixed in this study, QPSO-WD has fewer tunable control parameters

than BP-WD. The same is true for QPSO-WE and BP-WE.

3. BP-WD and BP-WE have a learning algorithm speed advantage over QPSO-WD

and QPSO-WE per epoch, making BP-WD and BP-WE more suitable for high

speed data streams.

4. The proposed classifiers have the ability to tolerate low levels of noise in data

streams due to their passive approach to handling noisy patterns.

5. The proposed classifiers need to be implemented on hardware and software that

can handle machine faults.

7.6 Summary

This chapter proposed four regularised FFNN streamed data classifiers, i.e. BP-WD, BP-

WE, QPSO-WD and QPSO-WE. All four classifiers make use of an over-parametrised

ReLU summation 3-layer FFNN architecture.

BP-WD uses a BP-based WD learning algorithm. BP-WE uses a BP-based WE

learning algorithm. QPSO-WD uses a QPSO-based WD learning algorithm. QPSO-

WE uses a QPSO-based WE learning algorithm. Discussions on how the proposed

classifiers approach the issues of saturation, local optimum trapping, and the eleven

SDCP requirements were also presented.

The next three chapters present the empirical analysis of the proposed algorithms,

starting with Chapter 8. Chapter 8 discusses the procedure that was followed to empir-

ically analyse the streamed data classifiers.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8

Empirical process

What can be asserted without evidence can be dismissed without evidence.

Christopher Hitchens (1949 – 2011)

This chapter outlines the empirical process followed to investigate the four streamed

data classifiers proposed in Section 7.4.

The remainder of the chapter is organised as follows. Section 8.1 presents the set of

hypotheses that were empirically investigated. Section 8.2 summarises two additional

non-regularised FFNN streamed data classifiers that were used as baselines to compare

the proposed classifiers to. Section 8.3 presents the SDCPs that were used to evaluate

the performance of the classifiers. Section 8.4 discusses the methodology used to measure

the performance of the streamed data classifiers. Section 8.5 discusses the process used

to tune the control parameters of the classifiers on the different SDCPs. Section 8.6 de-

scribes how each tuned classifier was benchmarked. Section 8.7 presents the methodology

followed to analyse the obtained results. Lastly, Section 8.8 summarises the chapter.

8.1 Hypotheses about classifiers

Based on the discussions in Section 7.5 and the findings of the brief literature review in

Section 5.3, the following hypotheses are proposed in this thesis:

108

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Empirical process 109

1. The proposed classifiers will outperform their non-regularised counterparts on all

the SDCPs, because the non-regularised counterparts do not make provision for

architecture selection.

2. QPSO-WD will outperform BP-WD on most of the SDCPs, because the QPSO-

WD is more suited for handling concept drift than BP-WD.

3. QPSO-WE will outperform BP-WE on most of the SDCPs, because the QPSO-WE

is more suited for handling concept drift than BP-WE.

4. The BP-WE and QPSO-WE will outperform their WD counterparts on all the

SDCPs, because WE accounts for weights relevancy during regularisation.

5. The proposed classifiers will have lower effective model complexity than their non-

regularised counterparts on all the SDCPs, because the proposed classifiers imple-

ment regularisation to perform architecture selection.

6. The proposed classifiers will have lower levels of saturation than their non-regularised

counterparts on all the SDCPs, because regularisation has been shown to reduce

saturation.

7. The performance of the proposed classifiers will not scale well with an increase in

noise, because none of the proposed classifiers provide any means of filtering noisy

patterns. Regularisation, however, will help to unlearn some of the noise.

8. BP-WD and BP-WE will not be able to handle the dynamic environments of the

SDCPs as effectively as QPSO-WD and QPSO-WE will, because BP is a static

optimisation algorithm whereas the QPSO is a dynamic optimisation algorithm.

9. QPSO-WD and QPSO-WE will be able to maintain swarm diversity when dealing

with the SDCPs.

These hypotheses are empirically investigated in Chapter 9 to determine their validity.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Empirical process 110

8.2 Baseline classifiers

In addition to the four classifiers proposed in Section 7.4, two non-regularised versions

were used:

• BP-N, which uses Algorithm 5 (presented in Section 7.2.1) to train the proposed

architecture (presented in Section 7.1). BP-N has two control parameters that

need to be tuned, namely α, η.

• QPSO-N, which uses Algorithm 6 (presented in Section 7.3.1) to train the proposed

architecture (presented in Section 7.1). QPSO-N has six control parameters that

need to be tuned, namely ω, c1, c2, np, d, r. In the comparisons of QPSO-N with

QPSO-WD and QPSO-WE, the control parameters ω, c1, c2, np and d were fixed in

QPSO-N to the same values used for QPSO-WD and QPSO-WE (refer to Section

7.5).

These two classifiers represent the non-regularised classifiers for hypothesis one, four

and five, and provide a baseline for the comparisons. Note that for the remainder of

this thesis, the term BP classifiers refers to the BP-N, BP-WD and BP-WE classifiers.

Likewise, the term QPSO classifiers refers to the QPSO-N, QPSO-WD and QPSO-WE

classifiers.

8.3 Benchmark streamed data classification prob-

lems

The empirical investigation used the five classification problem domains used in [94] to

construct the benchmark SDCPs. Sixteen SDCPs were constructed from each of the five

problem domains, using the sliding window algorithm. These 80 SDCPs were used to

benchmark the classifiers. Note that the 80 SDCPs are referred to as the benchmark

problems for the remainder of this thesis.

Section 8.3.1 provides the reasoning behind using the five problem domains. Section

8.3.2 discusses each of the five problem domains. Section 8.3.3 discusses how the data

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Empirical process 111

sets of the five problem domains were pre-processed. Section 8.3.4 discusses the slid-

ing window algorithm that was used to generate the benchmark SDCPs. Section 8.3.5

presents an analysis of the environments of the benchmark problems using the method

proposed in Chapter 6. Lastly, Section 8.3.6 presents an analysis of how difficult it is

for a classifier to learn an environment instance of a benchmark problem. Note that the

analyses conducted in sections 8.3.5 and 8.3.6 are done in an effort to supplement the

empirical analysis of the classifiers by this thesis.

8.3.1 Reasons for using the five problem domains

These five problem domains were used for the reasons outlined below:

• Rakitianskaia [94] determined optimised 3-layer FFNNs architectures for each of

the five problem domains. The optimal nh found in [94] is, thus, a good basis for

determining the over-parametrised architectures that were used in this thesis. This

thesis used over-parametrised architectures that were obtained by multiplying the

optimised nh value with a factor of two. The number of hidden neurons used by a

classifier in this thesis was two times that of the classifiers in [94]. This allowed an

assessment of how effective regularisation is as an architecture selection technique

for SDCPs.

• Rakitianskaia’s [94] results provided a means to see whether saturation has been

mitigated by the proposed classifiers, because [94] did not cater for saturation.

• The five problem domains represent a good mix of classification problems ranging

from artificial to real-world classification problems. The domains further contained

examples of noise, irrelevant inputs, and high and low dimensionality.

• Rakitianskaia’s [94] investigation only required classifiers to handle concept drift

and noise. Rakitianskaia’s results could, thus, be compared with the results ob-

tained by this thesis to see if the additional design requirements by SDCP, such as

online learning, bounded memory, high speed data streams, one-pass, unbounded

dataset, maintain low model complexity and random dynamics, had an effect on

the performance of 3-layer FFNNs.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Empirical process 112

8.3.2 Problem domains

Five problem domains were used to generate the benchmark problems, namely the mov-

ing hyperplane, dynamic sphere, sliding thresholds, SEA concepts and electricity pricing.

The remainder of this section elaborates on each of the five problem domains.

Moving hyperplane problem domain

The artificial moving hyperplane problem domain, or hyperplane domain for short, is

based on the hyperplane equation, defined as

y =
I∑
i=1

(
aizi

)
+ c (8.1)

where ai is the gradient of the i-th input variable, and c is an arbitrary user-selected

constant [94].

The classification problem is formed by splitting y into class A and class B, as follows:

target class =

A, if y > θ

B, if y ≤ θ
(8.2)

where θ is the class threshold [94]. The remainder of thesis refers to problems based on

the hyperplane domain as the hyperplane problems. Figure 8.1 illustrates the hyperplane

domain with one input variable and two classes. Figures 8.1a and 8.1b each represent

an environment instance. The dashed lines represent the decision boundaries formed by

θ, the black dots represent class A, and the white dots represent class B.

The hyperplane domain used in the empirical investigation was based on that used

by [94]. The hyperplane problems consisted of 10 input variables and two classes.

Data for the hyperplane domain was generated as follows: 1000 input vectors were

generated by uniformly sampling zi ∈ [0, 1]. Ten environment instances, each consisting

of 1000 patterns, were generated by using the 1000 input vectors and uniformly sampling

c ∈ [0, 1] and θ ∈ [0, 1] per environment instance. Hence, the data set consisted of 10000

patterns.

Rakitianskaia [94] used a 10-6-1 FFNN. Hence, the over-parametrised architecture

used for the hyperplane problems in this study was a 10-12-1 FFNN.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Empirical process 113

(a) Environment instance 1 (b) Environment instance 2

Figure 8.1: Moving hyperplane problem domain illustration

Dynamic sphere problem domain

The artificial dynamic sphere problem domain, sphere domain for short, is based on the

hypersphere equation, defined as

r2 =
I∑
i=1

(
zi + ci

)
(8.3)

where r2 is the squared radius of the hypersphere, and ci is the i-th element of the

hypersphere centre [94].

The classification problem is formed by splitting y into class A and class B, as follows:

target class =

A, if r2 > r2
θ

B, if r2 ≤ r2
θ

(8.4)

where r2
θ is the squared radius of the threshold hypersphere [94]. The remainder of

thesis refers to problems based on the sphere domain as the sphere problems. Figure 8.2

illustrates the sphere domain with two input variables and two classes. Figures 8.2a and

8.2b each represent an environment instance. The dashed circles represent the decision

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Empirical process 114

boundaries formed by r2
θ and ~c, the black dots represent class A, and the white dots

represent class B.

(a) Environment instance 1 (b) Environment instance 2

Figure 8.2: Dynamic sphere problem domain illustration

The sphere domain, used in the empirical investigation, was based on that used

by [94]. The sphere problems consisted of three input variables and two classes.

Data for the sphere domain was generated as follows: 1000 3-dimensional input

vectors were generated by uniformly sampling zi ∈ [0, 1]. Ten environment instances,

each consisting of 1000 patterns, were generated by using the 1000 input vectors and

uniformly sampling ci ∈ [0, 1] and r2
θ ∈ [0, 1] per environment instance. Hence, the data

set consisted of 10000 patterns.

Rakitianskaia [94] used a 3-4-1 FFNN. Hence, the over-parametrised architecture

used for the sphere problems in this study was a 3-8-1 FFNN.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Empirical process 115

Sliding thresholds problem domain

The artificial sliding thresholds problem domain, thresholds domain for short, is based

on the two parallel lines, defined as

f1(~z) = θ1 (8.5)

f2(~z) = θ2 (8.6)

which are constrained by

θ1 < θ2 (8.7)

where θ1 and θ2 are threshold constants that determine the placement of the lines f1 and

f2, respectively [94].

The classification problem is formed by splitting the input space into three classes,

as follows:

target class =


A, if f3(~z) ≤ θ1

B, if f3(~z) ≥ θ2

C otherwise

(8.8)

where f3(~z) is a function for extracting the input variable of ~z that is constrained by

the thresholds [94]. f3(~z) causes the rest of the input variables to be irrelevant for all

the patterns. That is, the sliding thresholds problem domain simulates problems with

excess information, which can also be considered as a form of noise [94].

In the case of a 2-dimensional input vector, f3(~z) = z1. Therefore, the parallel lines

are vertical thresholds. The remainder of thesis refers to problems based on the sliding

thresholds problem domain as the thresholds problems.

The thresholds domain, used in the empirical investigation, was based on that used

by [94]. The thresholds problems consisted of two input variables and three classes.

Data for the thresholds domain was generated as follows: 1000 2-dimensional input

vectors were generated by uniformly sampling xi ∈ [0, 1]. Ten environment instances,

each consisting of 1000 patterns, were generated by using the 1000 input vectors and uni-

formly sampling θ1 ∈ [0, 1] and θ2 ∈ [0, 1], such that θ1 < θ2, per environment instance.

Hence, the data set consisted of 10000 patterns. Figure 8.3 illustrates the thresholds do-

main used by this thesis. Figures 8.3a and 8.3b each represent an environment instance.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Empirical process 116

The vertical dashed lines represent the decision boundaries θ1 and θ2, the black dots

represent class A, the white dots represent class B, and the grey dots represent class C.

(a) Environment instance 1 (b) Environment instance 2

Figure 8.3: Sliding thresholds problem domain illustration

Rakitianskaia [94] used a 2-3-3 FFNN. Hence, the over-parametrised architecture

used for the thresholds problems in this study was a 2-6-3 FFNN.

SEA concepts problem domain

The artificial SEA concepts problem domain [94], SEA domain for short, is based on the

3-dimensional space defined as

y = z1 + z2 (8.9)

The classification problem is formed by splitting y into class A and class B, as follows:

target class =

A, if y ≤ z3

B, if y > z3

(8.10)

where the class threshold is the third input variable of the SEA problem [94]. The

remainder of thesis refers to problems based on the SEA domain as the SEA problems.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Empirical process 117

The SEA domain, used in the empirical investigation, was based on that used by [94].

The SEA problems consisted of three input variables and two classes.

Data for the SEA domain was generated as follows: 10000 3-dimensional input vec-

tors were generated by uniformly sampling z1 ∈ [0, 1] and z2 ∈ [0, 1]. Four environment

instances were generated by dividing the 10000 input vectors into four blocks, and as-

signing one of the values in [7, 8, 9, 9.5] to z3 of each block. Hence, the data set consisted

of 10000 patterns. Figure 8.4 illustrates the SEA domain used by this thesis. Each block

represents an environment instance. The dashed curves represent the decision boundary

based on z3, the black dots represent class A, and the white dots represent class B.

Figure 8.4: SEA concepts problem domain illustration

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Empirical process 118

Furthermore, [94] injected 10% noise into each environment instance by randomly

changing 10% of the pattern targets. SEA problems simulated noisy SDCPs, whose

exact input vectors almost never repeated. This problem is included to test hypothesis

seven.

Rakitianskaia [94] used a 3-4-1 FFNN. Hence, the over-parametrised architecture

used for the SEA problems in this study was a 3-8-1 FFNN.

Electricity pricing problem domain

The real-world electricity pricing problem domain, electricity domain for short, is based

on the electricity market in the state of New South Wales, Australia [94].

The electricity price at any particular moment is based on supply and demand, as

is the case with any free-market. There are various factors that influence the supply of

and demand for electricity ranging from number of end-users and weather, to production

levels [94]. The problem domain consisted of six input variables and two classes [94].

The data set of the electricity pricing problem domain consisted of 27552 patterns.

Each input vector represented six parameters that potentially influence the price of

electricity [94]. The input vectors were generated by recording the six parameters every

half an hour for the period 7 May 1996 to 5 December 1998 [94].

Each pattern has one of two classes as the target class. Class A indicates that the

price at the time that the input vector was recorded is higher than the moving average

price over the last 24 hours. On the other hand, class B indicates that the current price

is lower than the 24 hour moving average price [94]. The aim of the problem is to predict

whether the electricity price will go up or down based on the six parameters.

The remainder of the thesis refers to problems based on the electricity domain as the

electricity problems. Rakitianskaia [94] used a 6-6-1 FFNN. Hence, the over-parametrised

architecture used for the electricity problems in this study was a 6-12-1 FFNN.

8.3.3 Data preparation

The raw data sets of each of the five problem domains were pre-processed to ensure

that each of the data sets were consistent and compatible with the classifiers used. Pre-

processing was done using the three-step process outlined below.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Empirical process 119

Step 1: Encode non-numerical class labels to numerical class labels

The classifiers produce binary encoded outputs [91]. The class labels, however, are non-

numerical. The labels, therefore, first encoded into to a numerical representation. Each

class label was encoded to a positive integer that represented the order of occurrence in

the dataset. For example, the class label that occurred in the first pattern was encoded

to 0 for all of its instances in the remaining patterns. The next class label was encoded

to 1 for all of its instances.

Step 2: Encode numerical class labels into binary classification target vectors

Next, the numerical class labels were encoded into binary classification target vectors.

If there are two classes, then binary encoding is used [71][94]. In which case the target

vector has one binary element that indicates which of the two classes the pattern belongs

to [71].

If there are more than two classes, then the one-hot encoding scheme is used. In

which case the target vector has one binary element per class [51]. Each binary element

indicates whether or not the pattern belongs to a particular class [51][71]

Step 3: Scale input vector values

All input values were scaled to the range [0, 1]. Scaling was performed through the use

of the linear min-max scaling technique, as follows [33][115]:

vs =

[
vu − vu,min

vu,max − vu,min

][
vs,max − vs,min

]
+ vs,min (8.11)

where vs ∈ [vs,min, vs,max] is the scaled value of the original value vu ∈ [vu,min, vu,max].

Scaling was done for the following two reasons:

1. Van Wyk and Engelbrecht [115] concluded that scaled data sets resulted in better

performance than unscaled data sets when using ReLU FFNNs trained by PSO

weights adjustment algorithms.

2. Engelbrecht [33] recommended that the range of the inputs for a FFNN should be

in the active range of the activation functions. Rectified linear activation functions,

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Empirical process 120

however, have a left-bounded active range, i.e. [0,∞), which is not compatible with

Equation (8.11). An upper bound of one was chosen to prevent the input values

from causing premature saturation in the hidden layer.

8.3.4 Construction of benchmark problems

The SDCPs were constructed using the sliding window algorithm, presented in this

section. The sliding window algorithm is commonly used to construct a dynamic classi-

fication problem from the data set of a problem domain [45][92]. Before explaining how

the sliding window algorithm was used to create SDCPs, this section explains how the

algorithm is used to construct dynamic classification problems.

Algorithm 7 presents the sliding window algorithm [94]. Algorithm 7 makes use of

the parameters wm, wf and ws, which are defined as follows:

• The window size, wm, is a positive non-zero parameter that controls the number

of patterns in each data window. The larger the value of wm, the more patterns

there are in each data window.

• The window frequency, wf , is a positive non-zero parameter that controls the num-

ber of times each instance of the sliding window is repeated [94]. The larger the

value of wf , the more times each instance of sliding window is iterated over by the

classifier.

• The window step size, ws, is a positive non-zero parameter that controls the rate at

which the sliding window moves [94]. The larger the value of ws, the more patterns

the algorithm skips during a step of the sliding window.

Algorithm 7 creates nw sequential wm-sized data windows by sliding a wm-sized sliding

window across the data set of the problem domain. The sliding window is slid from the

start of the data set of problem domain, by moving the sliding window by ws patterns,

until there are no more patterns to fill the sliding window. Each data window created by

the sliding window represents an environment instance. Each sliding window is repeated

wf times, before moving the sliding window foreword to simulate the time period an

environment instance is available for.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Empirical process 121

Algorithm 7 Sliding windows algorithm

Input: D, wm, wf , ws

Initialise an empty 2D array of patterns, data windows

p = 0

while p+ wm ≤ |D| do
Initialise empty array of patterns, sliding window

for i = 0 to wm do

Append pattern Dp+i to sliding window

end for

for i = 0 to wf do

Append the sliding window to data windows

end for

p = p+ ws

end while

return data windows

Figure 8.5 illustrates the flattened sequence of data windows constructed by Algo-

rithm 7 with the parameters wm = 2, ws = 3 and wf = 3.

Figure 8.5: Illustration of sliding window algorithm

Furthermore, the total number of data windows, nw, that can be created from an

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Empirical process 122

arbitrary data set, D, is calculated as follows [94]:

nw = wf

(
1 +
|D| − wm

ws

)
(8.12)

SDCPs are a subclass of dynamic classification problems, where each data window

consists of one pattern due to the one-pass requirement. Algorithm 7 can be used to

construct SDCPs by simply setting the window size, wm, to 1 and flattening the 2-

dimensional array of data windows. Note that in this case each data window no longer

represents an environment instance but just a pattern.

The sixteen benchmark problems for each benchmark problem domain were generated

using this approach. The values for window frequency (wf) and window step size (ws)

were selected in combinatorial fashion, using the value set {1, 2, 5, 10}.
These parameter choices caused the sliding window algorithm to construct data

streams by duplicating and skipping patterns in the data set of the problem domain,

as follows:

1. The smaller wf , the less times the same pattern was duplicated and vice versa. If

wf = 1, then the patterns of the problem domain were not duplicated.

2. The smaller ws, the larger the sample of patterns from the data set of the problem

domain was and vice versa. If ws = 1, then all the patterns of the problem domain

were present in the data stream.

Table 8.1 labels the sixteen benchmark problems generated per problem domain

according to their window frequency (wf) and window step size (ws) values. These

labels were used throughout the remainder of this thesis. The four extreme benchmark

problems were at the four corners of table, i.e A4, D1, D4 and A1.

According to Equation (8.12), A4 problems had the longest data stream and D1

problems had the shortest data stream. D4 problems skipped and duplicated the patterns

most, and had the same number of patterns as the A1 problems. A1 problems were

special cases in the sense that they converted the data set of the problem domain into

a stream without altering the occurrence of patterns. An A1 problem is, thus, referred

to as the streamed benchmark problem of its problem domain for the remainder of this

thesis.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Empirical process 123

Table 8.1: Sliding window parameter configurations of the sixteen benchmark problems gen-

erated per problem domain.

wf

1 2 5 10

1 A1 A2 A3 A4

ws 2 B1 B2 B3 B4

5 C1 C2 C3 C4

10 D1 D2 D3 D4

8.3.5 Problem environment analysis

The environments of the 80 benchmark problems were pre-analysed using the method

proposed in Chapter 6 to determine:

• The characteristics of the dynamic environments of the benchmark problems.

• The relationship between the parameters of the sliding window algorithm and the

characteristics of the dynamic environment they generated.

The insight gained by this analysis was used to supplement the discussions of the em-

pirical investigation of the proposed classifiers.

Analysis process

The following measures were recoded per benchmark problem by this analysis: the num-

ber of windows, nw, the number of environment instances, |Ibw |, the spatial severity, Θbw ,

the temporal severity, τbw , the normalised spatial severity, Θ′bw , the normalised temporal

severity, τ ′bw , the dynamic environment classification, Λbw , and the dominance of the dy-

namic environment classification, ζbw . Note that because wm was 1 for the benchmark

problems, the number of windows, nw, is equal to the number of patterns, |D|.
Algorithm 4 presented in Chapter 6, was used to extract the actual environment

instances from the benchmark problems. Algorithm 4 uses a binning width (bw) to help

cater for SDCPs containing noise and input vectors that do not reoccur (refer to Section

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Empirical process 124

6.2). The binning width for the hyperplane, sphere and threshold problems was set to

0, because all the input vectors occurred more than once in each problem, and none of

the problems contained noise.

The SEA problems, however, contained noise and not all the input vectors repeated.

The electricity problems were assumed to contain noise, because of their real-world

domain. Furthermore, a scan through the data set of the electricity domain revealed

that input vectors sometimes only occurred once in the dataset. Hence, the SEA and

electricity problems had their binning width optimised per benchmark problem. The

binning width optimisation was done in the following manner:

• Because a change in the window frequency does not change the inputs vectors in

the data set of the problem domain, the data sets of A1, B1, C1 and D1 were

used to find the binning widths of all the other A, B, C and D series benchmark

problems. That is, the binning width found for A1 of a particular problem was

used for A2, A3, and A4 of the same problem domain.

• All values for the binning width in the range (0, 1) were tested, using increments

of 0.00001. The range (0, 1) was used for the following reasons:

– If bw < 0, then Algorithm 4 would invert the signs of the pattern values, which

is not desired.

– If bw = 0, then Algorithm 4 would use the exact patterns, which was not

desired.

– If bw ≥ 1, then all the patterns would be represented by one input vector due

to all the values of the input vectors being in the range [0, 1].

• The binning width value closest to zero, that resulted in each input vector repeating

at least once during the data stream, was considered optimal, because it resulted

in the most number of unique input vectors (refer to Section 6.2).

The normalised values for spatial and temporal severity, i.e. Θ′bw and τ ′bw , were

calculated on two levels:

• The problem domain level, which used the maximum of the particular severity

found in the set of 16 benchmark problems per problem domain. This level was

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Empirical process 125

used to analyse the effect of window step size and window frequency on the data

sets of the problem domains.

• The overall level, which used the maximum of the particular severity found in the

set of 80 benchmark problems. This level was used to compare the severities of all

the benchmark problems against each other.

Analysis discussion

Tables 8.2 to 8.6 present the values of the environment analysis measures for each of the

benchmark problems in each of the five problem domains. Note that values for Θ′bw and

τ ′bw were calculated on a problem domain level. To visualise the data in these tables the

following figures were constructed:

Figures 8.6a to 8.6e plot the normalised temporal and spatial severities for each of

the five problem domains. Each point is labelled according to the benchmark problem

labels in Table 8.1.

Figure 8.7 illustrates the relationships between the window frequency and window

step size parameters of Algorithm 7, and the spatial and temporal severities. The data

points, in each of the four graphs, represent the average value of the severity measure

for the particular values of the sliding window parameters in question.

The results in Tables 8.2 to 8.6 and Figures 8.6a to 8.7d show that both the spatial

and temporal severity of the data set of a problem domain were generally affected by

the choices of window frequency and window step size.

Window frequency (wf) had an inverse linear relationship with the temporal severity,

but had no effect on spatial severity. On the other hand, window step size (ws) had an

inverse exponential relationship with temporal severity, and a decreasing exponential

relationship with spatial severity. The electricity problems mostly adhered to this obser-

vation, except for B1, B2, B3 and B4, which experienced a linear relationship between

ws and spatial severity. This was due to the environment instances decreasing while the

spatial severity increased.

The temporal severity of non-streamed benchmark problems varied about the tem-

poral severity of the streamed benchmark problem, whereas the spatial severity of non-

streamed benchmark problems was always lower than the spatial severity of streamed

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Empirical process 126

Table 8.2: Environment analysis of the hyperplane problems

Name nw bw |Ibw | Θbw τbw Θ′
bw

τ ′
bw

Λbw ζbw

A1 10000 0 10 482.900 1000.000 1.000 0.900 Chaotic 0.881

A2 20000 0 10 482.900 2000.000 1.000 0.800 Chaotic 0.764

A3 50000 0 10 482.900 5000.000 1.000 0.500 Chaotic 0.437

A4 100000 0 10 482.900 10000.000 1.000 0 Abrupt 1.000

B1 5000 0 10 242.700 500.000 0.503 0.950 Chaotic 0.407

B2 10000 0 10 242.700 1000.000 0.503 0.900 Chaotic 0.370

B3 25000 0 10 242.700 2500.000 0.503 0.750 Chaotic 0.245

B4 50000 0 10 242.700 5000.000 0.503 0.500 Chaotic 0.003

C1 2000 0 10 92.700 200.000 0.192 0.980 Progressive 0.762

C2 4000 0 10 92.700 400.000 0.192 0.960 Progressive 0.749

C3 10000 0 10 92.700 1000.000 0.192 0.900 Progressive 0.702

C4 20000 0 10 92.700 2000.000 0.192 0.800 Progressive 0.608

D1 1000 0 10 47.600 100.000 0.099 0.990 Progressive 0.877

D2 2000 0 10 47.600 200.000 0.099 0.980 Progressive 0.870

D3 5000 0 10 47.600 500.000 0.099 0.950 Progressive 0.848

D4 10000 0 10 47.600 1000.000 0.099 0.900 Progressive 0.802

benchmark problems. The B series electricity problems were an exception to this obser-

vation.

Out of all 16 sliding window configurations, A4 experienced the lowest temporal

severity, and resulted in the most abrupt environment out of the 16 sliding window

configurations. D1 experienced the highest spatial severity, and resulted in the most

progressive environment out of the 16 sliding window configurations. Note that in the

electricity domain, D1 was classified as chaotic. The A1 problems were the most chaotic,

except for the electricity domain where B1 was the most chaotic and A1 was the second

most chaotic. Note that none of the benchmark problems were classified as quasi static.

In terms of environment dominance (ζbw), artificial B4 problems, however, tended

to have ζbw values near zero. In the case of the electricity domain, C4 had a ζbw value

near zero. Furthermore, the distribution of ζbw values indicates that almost 45% of the

problems environments were dominated by mainly two types of environments, namely

chaotic and progressive.

Figure 8.8 plots the temporal and spatial severity normalised on the overall level

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Empirical process 127

Table 8.3: Environment analysis of the sphere problems

Name nw bw |Ibw | Θbw τbw Θ′
bw

τ ′
bw

Λbw ζbw

A1 10000 0 10 477.800 1000.000 1.000 0.900 Chaotic 0.881

A2 20000 0 10 477.800 2000.000 1.000 0.800 Chaotic 0.764

A3 50000 0 10 477.800 5000.000 1.000 0.500 Chaotic 0.437

A4 100000 0 10 477.800 10000.000 1.000 0 Abrupt 1.000

B1 5000 0 10 240.700 500.000 0.504 0.950 Chaotic 0.408

B2 10000 0 10 240.700 1000.000 0.504 0.900 Chaotic 0.371

B3 25000 0 10 240.700 2500.000 0.504 0.750 Chaotic 0.246

B4 50000 0 10 240.700 5000.000 0.504 0.500 Chaotic 0.004

C1 2000 0 10 97.100 200.000 0.203 0.980 Progressive 0.749

C2 4000 0 10 97.100 400.000 0.203 0.960 Progressive 0.736

C3 10000 0 10 97.100 1000.000 0.203 0.900 Progressive 0.690

C4 20000 0 10 97.100 2000.000 0.203 0.800 Progressive 0.597

D1 1000 0 10 49.000 100.000 0.103 0.990 Progressive 0.872

D2 2000 0 10 49.000 200.000 0.103 0.980 Progressive 0.866

D3 5000 0 10 49.000 500.000 0.103 0.950 Progressive 0.843

D4 10000 0 10 49.000 1000.000 0.103 0.900 Progressive 0.798

for the 80 benchmark problems. The 80 benchmark problems did not provide for one

problem that could be regarded as quasi-static. This should not be a problem for the

investigation, because quasi-static environments will have the least impact on classifier

performance (refer to Section 2.2.2). Furthermore, the benchmark suite consisted of very

few abrupt problems. However, the benchmark suite consisted of many of the edge-case

problems and progressive problems.

The hyperplane, sphere, and thresholds problems were mostly spread across the

abrupt, progressive and chaotic regions of the dynamic environment classification scheme

by [25]. Figure 8.8 clearly shows that the hyperplane and sphere problems exhibited very

similar problem environments. On the other hand, the thresholds problems showed the

highest levels of spatial severity and chaotic behaviour. Thresholds problem A4 was the

most abrupt problem in the benchmark suite. Thresholds problem A1 was the most

chaotic problem of the benchmark suite.

The SEA and electricity problems were clustered in the more extreme regions of the

progressive classification. The SEA problems tended to exhibit higher spatial severity

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Empirical process 128

Table 8.4: Environment analysis of the thresholds problems

Name nw bw |Ibw | Θbw τbw Θ′
bw

τ ′
bw

Λbw ζbw

A1 10000 0 10 581.100 1000.000 1.000 0.900 Chaotic 0.881

A2 20000 0 10 581.100 2000.000 1.000 0.800 Chaotic 0.764

A3 50000 0 10 581.100 5000.000 1.000 0.500 Chaotic 0.437

A4 100000 0 10 581.100 10000.000 1.000 0 Abrupt 1.000

B1 5000 0 10 288.358 500.000 0.496 0.950 Progressive 0.408

B2 10000 0 10 288.358 1000.000 0.496 0.900 Progressive 0.371

B3 25000 0 10 288.358 2500.000 0.496 0.750 Progressive 0.246

B4 50000 0 10 288.358 5000.000 0.496 0.500 Progressive 0.004

C1 2000 0 10 115.117 200.000 0.198 0.980 Progressive 0.755

C2 4000 0 10 115.117 400.000 0.198 0.960 Progressive 0.742

C3 10000 0 10 115.117 1000.000 0.198 0.900 Progressive 0.696

C4 20000 0 10 115.117 2000.000 0.198 0.800 Progressive 0.602

D1 1000 0 10 56.993 100.000 0.098 0.990 Progressive 0.877

D2 2000 0 10 56.993 200.000 0.098 0.980 Progressive 0.871

D3 5000 0 10 56.993 500.000 0.098 0.950 Progressive 0.849

D4 10000 0 10 56.993 1000.000 0.098 0.900 Progressive 0.802

than the electricity benchmark problems. The electricity problems exhibited the highest

levels of temporal severity. Electricity D1 was the most progressive problem in the bench-

mark suite. The main cause for Algorithm 4 detecting so many environment changes in

the SEA and electricity problems was noise.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Empirical process 129

Table 8.5: Environment analysis of the SEA problems

Name nw bw |Ibw | Θbw τbw Θ′
bw

τ ′
bw

Λbw ζbw

A1 10000 0.09098 88 22.795 113.636 1.000 0.901 Chaotic 0.882

A2 20000 0.09098 88 22.795 227.273 1.000 0.801 Chaotic 0.765

A3 50000 0.09098 88 22.795 568.182 1.000 0.500 Chaotic 0.437

A4 100000 0.09098 88 22.795 1136.364 1.000 0 Abrupt 1.000

B1 5000 0.12501 82 12.951 60.976 0.568 0.947 Chaotic 0.473

B2 10000 0.12501 82 12.951 121.951 0.568 0.893 Chaotic 0.434

B3 25000 0.12501 82 12.951 304.878 0.568 0.732 Chaotic 0.296

B4 50000 0.12501 82 12.951 609.756 0.568 0.464 Abrupt 0.104

C1 2000 0.16664 49 8.980 40.816 0.394 0.965 Progressive 0.526

C2 4000 0.16664 49 8.980 81.633 0.394 0.929 Progressive 0.501

C3 10000 0.16664 49 8.980 204.082 0.394 0.821 Progressive 0.416

C4 20000 0.16664 49 8.980 408.163 0.394 0.641 Progressive 0.247

D1 1000 0.20074 35 6.229 28.571 0.273 0.976 Progressive 0.666

D2 2000 0.20074 35 6.229 57.143 0.273 0.951 Progressive 0.650

D3 5000 0.20074 35 6.229 142.857 0.273 0.875 Progressive 0.592

D4 10000 0.20074 35 6.229 285.714 0.273 0.749 Progressive 0.476

Table 8.6: Environment analysis of the electricity problems

Name nw bw |Ibw | Θbw τbw Θ′
bw

τ ′
bw

Λbw ζbw

A1 27552 0.50001 3161 1.610 8.716 0.894 0.910 Chaotic 0.804

A2 55104 0.50001 3161 1.610 17.432 0.894 0.809 Chaotic 0.698

A3 137760 0.50001 3161 1.610 43.581 0.894 0.506 Chaotic 0.369

A4 275520 0.50001 3161 1.610 87.162 0.894 0 Abrupt 0.873

B1 13776 0.50001 2000 1.802 6.888 1.000 0.932 Chaotic 0.918

B2 27552 0.50001 2000 1.802 13.776 1.000 0.852 Chaotic 0.824

B3 68880 0.50001 2000 1.802 34.440 1.000 0.612 Chaotic 0.555

B4 137760 0.50001 2000 1.802 68.880 1.000 0.212 Abrupt 0.750

C1 5511 0.98080 1776 1.069 3.103 0.593 0.976 Chaotic 0.519

C2 11022 0.98080 1776 1.069 6.206 0.593 0.940 Chaotic 0.495

C3 27555 0.98080 1776 1.069 15.515 0.593 0.832 Chaotic 0.411

C4 55110 0.98080 1776 1.069 31.030 0.593 0.651 Chaotic 0.244

D1 2756 0.98080 1174 1.058 2.348 0.587 0.984 Chaotic 0.518

D2 5512 0.98080 1174 1.058 4.695 0.587 0.957 Chaotic 0.501

D3 13780 0.98080 1174 1.058 11.738 0.587 0.875 Chaotic 0.440

D4 27560 0.98080 1174 1.058 23.475 0.587 0.739 Chaotic 0.322

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Empirical process 130

(a) Hyperplane problems (b) Sphere problems

(c) Thresholds problems (d) SEA problems

(e) Electricity problems

Figure 8.6: Benchmark problems’ environment severity levels

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Empirical process 131

(a) ws versus τ ′bw (b) ws versus Θ′
bw

(c) wf versus τ ′bw (d) wf versus Θ′
bw

Figure 8.7: Severity trends for streamed data classification problems

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Empirical process 132

Figure 8.8: Overall benchmark problems’ environment severity levels

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Empirical process 133

8.3.6 Problem difficulty analysis

The problem environment classification scheme, i.e. quasi-static, abrupt, progressive

and chaotic, qualifies the level of adaptability required by the classifier. That is, the

classification scheme indicates the amount of adaptation required by the model and the

time frame in which the adaptation must be performed by the classifier. The classification

scheme, however, does not provide insight into how difficult it is for the classifier to learn

the environment instances of a problem. This thesis refers to this concept as problem

difficulty.

Classifying the problem difficulty of the benchmark problems

The difficulty of a SDCP can be quantified in two dimensions [2][39][69]:

1. Data availability, which describes the number of unique input–target pairs there

are in an environment instance. The more unique input–target pairs there are, the

more is known about the classification problem. Thus, the less the classifier has

to generalise. The reverse is also true. Data availability, therefore, provides an

indication of the generalisation ability required by classifiers to solve the problem.

2. Pattern re-occurrence, which describes the number of times patterns repeat

during an environment instance. The more times a classifier sees an input–target

pair, the more time the classifier has to learn from the example. The reverse is also

true. Pattern re-occurrence, therefore, provides an indication of the rate at which

classifiers need to learn examples.

Because the window step size and window frequency parameters control the skipping

and repeating of input–target pairs for SDCPs, they can be used to define the problem

difficulty, as follows:

• The window step size estimates the data availability dimension. The larger the

value of ws is, the less data is available and therefore the more difficult the problem

is. The reverse is also true.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Empirical process 134

• The window frequency estimates the pattern re-occurrence dimension. The larger

the value of wf is, the more pattern instances of an input–target pair there are,

and therefore the less difficult the problem is. The reverse is also true.

Four difficulty classes for SDCPs, based on data availability and pattern re-occurrence,

are proposed as illustrated by Figure 8.9.

Figure 8.9: Streamed data classification problem difficulty: wf versus ws

• Easy: A low ws and high wf result in data streams that skip very few patterns

in the data set of the problem domain, but repeats each pattern many times.

Easy SDCPs, therefore, have high data availability and high pattern re-occurrence.

Chances of underfitting and overfitting is relatively low for easy SDCPs. Hence,

classifiers just need basic learning capabilities to handle this difficulty. Out of the

16 benchmark problems for a problem domain, A3, B3, A4 and B4 were considered

easy.

• Moderate-I: A low ws and low wf result in data streams that skip very few

patterns in the data set of the problem domain, and does not contain many repeats

of the patterns. Moderate-I SDCPs, therefore, have high data availability and

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Empirical process 135

low pattern re-occurrence. The risk of underfitting is high in moderate-I SDCPs,

because the classifiers has a very short time frame in which to extract information

from a pattern. The classifier needs to be able to learn patterns quickly, but does

not necessarily need to generalise accurately with few examples to handle this

difficulty. Out of the 16 benchmark problems for a problem domain, A1, B1, A2

and B2 were considered moderate-I.

• Moderate-II: A high ws and high wf result in data streams that skip many

patterns in the data set of the problem domain, and provide many repeats of each

pattern. Moderate-II SDCPs, therefore, have low data availability and high pattern

re-occurrence. The risk of overfitting is high for moderate-II SDCPs, because the

classifier will be exposed to many repeats of the same example. The classifier needs

to be able to generalise accurately using few examples, but does not necessarily

need to learn quickly to handle this difficulty. Out of the 16 benchmark problems

for a problem domain, C3, D3, C4 and D4 were considered moderate-II.

• Hard: A high ws and low wf result in data streams that skip many patterns

in the data set of the problem domain, and provide few repeats of each pattern.

Hard SDCPs, therefore, have low data availability and low pattern re-occurrence.

The risk of underfitting or overfitting is high in hard SDCPs, because the number

of examples are limited and the time-frame to learn an example is very short.

Classifiers need be able to learn patterns quickly and generalise accurately using a

very limited number of examples, to handle this difficulty. Out of the 16 benchmark

SDCPs for a problem domain, C1, D1, C2, and D2 were considered hard.

Note that the problem difficulty scheme is relative to the problem domain. Prob-

lems with the same problem difficulty class but with different domains are therefore not

directly comparable, e.g., a hard problem in one domain might be easier than a easy

problem in another problem domain.

Analysis discussion

Comparing the problem difficulty classifications to the environment classifications (re-

fer to Section 8.3.5) of the benchmark problems, it was observed that hard problems

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Empirical process 136

tended to be progressive most of the time. Easy problems on the other hand tended

to be abrupt, and sometimes chaotic. Moderate-I problems tended to be chaotic, and

moderate-II problems tended to be progressive most of the time. The difficulty of learn-

ing environment instances, therefore, does not coincide with the difficulty of adapting to

environment changes.

A comparison of problem difficulty, and the temporal and spatial severities of SDCPs,

it was observed that easy problems had a lower temporal severity than that of the

streamed benchmark problems, but their spatial severity was similar to that of the

streamed benchmark problems. Moderate-I problems were associated with spatial and

temporal severities that were similar to those of the streamed benchmarks. On the other

hand, moderate-II problems had lower spatial and temporal severities than that of the

streamed benchmark problems. Lastly, hard problems had a lower spatial severity than

that of the streamed benchmark problems, but their temporal severity was similar to

that of the streamed benchmark problems. Streamed benchmark problems, therefore,

represented the average case in terms of problem difficulty, and worst case in terms of

problem environment.

The problem difficulty classification scheme and the findings in this analysis of the

benchmark problems was used to supplement the empirical investigation of the proposed

classifiers.

8.4 Performance measurement

Various aspects about the performance of the classifiers were measured in order to eval-

uate the hypothesis stated in Section 8.1. Section 8.4.1 discusses the approach used to

measure the performance of streamed data classifiers. Sections 8.4.2 to 8.4.9 present the

various performance aspects measured by this thesis.

8.4.1 Performance measuring methodology

Measuring the performance of classifiers in dynamic environments is different from mea-

suring performance in a static environment, because the performance across multiple

environments needs to be considered [98]. To address this concern, performance was

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Empirical process 137

quantified using the collective mean approach [87]. The collective mean of a model error

is defined as

C̄ε =

∑T
t=1 ε(t)

T
(8.13)

where T is the total number of epochs learned; and ε(t) is the performance measure, ε, for

the best model found at either the end or start of epoch t, depending on the performance

measure [87].

The three key advantages of the collective mean approach are [94][98]:

• The approach does not require any additional information about the environment

changes, e.g. when changes occured, to interpret the value of the performance

measure.

• The approach provides complete coverage of the performance measure over all

environment instances. That is, the collective mean of a performance measure

represents the best value average found across all environment instances.

• The approach allows classifiers using local searches, e.g. GD, to be compared to

classifiers using population-based searches, e.g. PSO, because the approach takes

the best model found for an epoch.

The primary disadvantage of the collective mean approach is that the approach uses

averages, thus, exceptionally good performance in some epochs might cause the results to

skew. This disadvantage can be mitigated if classification problems with a large number

of epochs are used and/or if the trend of the performance measure is also analysed.

SDCPs introduce three additional complications for calculating performance mea-

sures during learning, as follows [45]:

1. Sequential availability. That is, patterns are only available one after the other.

Therefore, there is no way of knowing what other patterns in the future form part

of the current environment instance until they have arrived.

2. One-pass requirement. That is, each pattern can only be processed once. A window

of an environment instance using the past patterns can, therefore, not be used to

learn the classifier.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Empirical process 138

3. Bounded memory requirement. That is, patterns can not be stored by the learning

algorithm for later use.

Performance measures for SDCPs, thus, need to be consider the following:

• Firstly, if the generalisation, validation and training sets are used to train a model,

then the sets will always contain the same pattern per epoch.

• Secondly, the performance measures using these sets can only be measured before

or after the model has been trained with a pattern.

One of the sets is, thus, rendered redundant.

The hold-out error method (refer to Section 4.3.2) used commonly in static and

dynamic classification methods is, therefore, not applicable to SDCPs [67]. Gama et

al. [45] suggested the use of the predictive sequential error, also known as the prequential

error as an alternative to the hold-out error method. The prequential error can be

calculated in two ways, namely using a the sliding window or a fading-factor [45].

The sliding window approach takes the last n patterns, and applies a performance

measure to the current model using each of the n patterns [45]. The n calculated values

are then averaged to form the prequential error for the epoch. The parameter n controls

the smoothness of the error. The larger the value of n, the smoother, but the less

reflective of the real error the performance curve becomes, and vice versa [45]. Because

this approach does not adhere to the bounded memory and one-pass requirements, this

approach can only be used for performance analysis of the classifiers.

The fading-factor approach accumulates the values of a performance measure into a

single value by applying a weight, in the range (0, 1), to the prequential sequential error

value of the previous epoch. The weight is the rate at which the past error becomes

less significant, i.e. fades. The weight needs to be optimised per problem [45]. The

advantages of the fading-factor approach are:

• It does not violate the one-pass and bounded memory requirements [45]. This

allows the fading-factor prequential error to be used to calculate generalisation

and training errors during the learning of SDCPs.

• It converges to the same error value as determined by the hold-out error method [45].

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Empirical process 139

The fading-factor, however, does come with its own disadvantages:

• The fading-factor approach is less interpretable than the sliding window approach

from an analysis perspective, because it is not intuitive which old patterns effected

the error value.

• In the context of generalisation and training errors, the fading factor approach

introduces an additional problem dependent parameter when compared with the

approach used by this thesis. Thus, making the classifiers less in line with the

limited number of tunable control parameters requirement.

This thesis did not consider the fading factor approach due to the above disadvan-

tages.

In light of the above discussions, this thesis adopted the following approach:

1. First, performance measures used to evaluate the training performance of a classi-

fier were applied to the trained model(s) at the end of an epoch.

2. Second, performance measures used to evaluate the generalisation performance of

a classifier were applied to the model(s) at the start of an epoch.

3. Third, it was decided that the validation set was only to be used for the purposes of

performance analysis. The validation set was used to implement the sliding window

prequential error. The validation set used the last 30 patterns. The value of 30

was chosen based on the idea that 30 is the minimum number of samples required

to get a fair statistical sample, without excessive computational effort [56][83].

Performance measures, based on the validation set, were applied to the trained

model(s) at the end of an epoch. This, however, meant that performance measures

using the validation set no longer represented an estimation of the generalisation

performance, but rather how well the classifier preserved its performance over

the last 30 patterns. This thesis, therefore, refers to this implementation of the

validation error as the memory error or Em.

Note that, unlike Gama et al. [45], any performance measure was still applied to

the validation set while it contained less than 30 patterns, which only occurred in

the first 29 epochs.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Empirical process 140

4. Fourth, the performance analysis was done using the collective means of the per-

formance measures.

8.4.2 Saturation performance measures

Equation (4.20) was used to measure saturation in the hidden neurons. Because the

measure requires bounded activation functions, the measure had to be altered for it to

work with ReLU activation functions.

An upper bounds parameter was introduced in order to bound the activation values.

The value of the upper bound parameter estimates the level of activation that would

cause ReLU hidden neurons to saturate the FFNN in a detrimental way. No research

on what bounds would be appropriate for ReLU activation functions has been done,

therefore, several upper bounds were investigated [97].

Rakitianskaia and Engelbrecht [96] argued that saturation in the output neurons was

necessary for classification, but premature saturation in the hidden layers was unwanted.

Thus, the smaller the activation values in the hidden neurons, the lower the chance of

premature saturation [96]. Reasonable values for the upper bound are, therefore, values

greater or equal to the upper bounds of the active ranges of the output neurons.

Three upper bounds, i.e. 1, 5 and 10, were chosen near to the upper bound of the

active ranges of the output neurons, i.e. 1. These three parametrisations of ϕbw were

denoted as ϕbw,1, ϕbw,5, ϕbw,10.

The minimum of ϕbw,1, ϕbw,5 and ϕbw,10 was used to represent the saturation of the

classifier. The minimum was used, for two reasons:

• The three measures, ϕbw,1, ϕbw,5 and ϕbw,10, will not necessarily saturate at the

same time, because of the different upper bounds.

• At the time of the investigation it was unclear which upper bound provided the

most accurate measure of saturation in the hidden layers.

The binning width (bw) was set to 0.1 in all three cases to ensure that the three

different measures were consistent. The value of 0.1 also ensured that all three measures

had 10 or more bins, as recommended by Rakitianskaia and Engelbrecht [97]. Equation

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Empirical process 141

(4.20) also required a set of patterns to determine saturation. Thus, the following two

saturation measures were used:

1. The saturation based on the generalisation set, ϕg, defined as

min{ϕ0.1,1, ϕ0.1,5, ϕ0.1,10}

where ϕ0.1,1, ϕ0.1,5 and ϕ0.1,10 is based on the generalisation set.

2. The saturation based on the validation set, ϕv, defined as

min{ϕ0.1,1, ϕ0.1,5, ϕ0.1,10}

where ϕ0.1,1, ϕ0.1,5 and ϕ0.1,10 is based on the validation set.

8.4.3 Accuracy performance measures

The accuracy of the classifiers was measured using the following five measures:

1. MSE based on the generalisation set, MSEg (refer to Equation (4.6)).

2. MSE based on the validation set, MSEm (refer to Equation (4.6)). MSEm was

measured to determine how well the classifiers remembered concepts learnt from

the last 30 patterns in terms of MSE.

3. MSE based on the training set, MSEt (refer to Equation (4.6)).

4. PCC based on the generalisation set, PCCg (refer to Equation (4.7)).

5. PCC based on the validation set, PCCm (refer to Equation (4.7)). PCCm was

measured to determine how well the classifiers remembered concepts learnt from

the last 30 patterns in terms of PCC.

Note that PCC based on the training set was not measured, because PCC was not used

to train the classifiers.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Empirical process 142

8.4.4 Structural complexity performance measures

Because of regularisation, the proposed classifiers change the structural complexity by re-

ducing weight values towards zero. Thus, the optimal structural complexity and effective

structural complexities need to be compared.

The optimal structural complexity was considered to be the structural complexity of

the optimal architectures discussed in Section 8.3. The effective structural complexity,

i.e. nse and nne , of a 3-layer FFNNs can be calculated, if a smaller architecture that

has similar accuracy can be found (refer to Section 4.3.3). Pruning algorithms are well-

suited for this purpose. The effective structural complexity was calculated by adapting

the variance nullity testing pruning algorithm by Engelbrecht [31].

Variance nullity testing

Variance nullity testing is a statistical hypothesis testing technique, which tests whether

the effect that a change in the weight of a synapse has on the outcomes of a ANN, i.e.

the sensitivity of a synapse, varies statistically significantly across a set of patterns [31].

If the variance of the sensitivity is not significant, then the synapse is considered to

be irrelevant and can be pruned [31]. Note that the validation set was used for these

performance measures.

The sensitivity of a synapse can either be measured in terms of the objective function

or output neuron values. The latter has the advantage of being independent of both the

weights adjustment algorithm, and the objective function [31].

Variance nullity testing calculates sensitivity as the first-order derivative of the out-

puts with regards to the weight of the synapse [31]. The vector formed by the derivatives

of a synapse and one or more outputs is known as the output sensitivity vector [31]. Each

synapse forms one such vector per pattern [31]. Together, these vectors form the output

sensitivity matrix, S(p), for pattern p in a data set D [31].

S(p) is used to calculate the output sensitivity norm of the j-th synapse for pattern

p, as follows:

N
(p)
j =

K∑
k=1

S
(p)
k,j (8.14)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Empirical process 143

where S
(p)
k,j is the output sensitivity of the j-th synapse for the k-th output neuron, when

using the pattern p [31].

Using N
(p)
j , the average sensitivity norm of the j-th synapse, across all patterns in

the given data set D, is calculated as [31]:

N̄j =

∑|D|
p=1 N

(p)
j

|D|
(8.15)

N̄j is used to determine the sample variance of the sensitivity norm for the j-th synapse,

as follows [31]:

σ2
j =

∑|D|
p=1 (N

(p)
j − N̄j)

2

|D| − 1
(8.16)

Using σ2
j , variance nullity testing constructs a Chi-square distribution test statistic

for the variance in the sensitivity of the j-th synapse, as follows

Υj =
(|D| − 1)σ2

j

σ2
0

(8.17)

where σ2
0 is the maximum amount of variance that an irrelevant synapse can display [31].

Hence, a larger σ2
0 allows more pruning and vice versa [31]. Engelbrecht [31] suggested

a value close to zero, e.g. 0.0001, in order to prevent haphazard pruning.

The significance of the variance is tested by using the Chi-squared distribution (χ2)

and null hypothesis, defined as H0 : σ2
j < σ2

0 [31]. The null hypothesis, H0, thus states

that any situation where σ2
j ≥ σ2

0 would reject H0. On the other hand, any situation

where σ2
j < σ2

0 would accept the H0.

Using Equation (8.17) and H0, the critical value for the hypothesis test is defined as

Υc = χ2
|D|−1,1−αv

(8.18)

where χ2
df,c is the χ2 distribution using df degrees of freedom and confidence interval of c;

and αv is the significance level, which controls the level of confidence that must be shown

by the hypothesis test when determining the relevancy of a synapse [31]. A larger value

for αv will result in a larger chance of incorrectly pruning a synapse [31]. Engelbrecht [31]

suggested that the test statistic should be very confident before pruning, i.e. αv = 0.01,

in order to prevent false positives. The variance nullity algorithm considers any synapse

with a test statistic below the critical value as irrelevant.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Empirical process 144

Adapted variance nullity pruning algorithm

This thesis used the variance nullity testing in the following way: The effective number of

synapses (nse) was calculated by counting the number of weights that do not have a test

statistic below the critical value. The effective number of neurons (nne) was determined

by pruning the FFNN using the following two steps:

1. First, the irrelevant synapses were removed in such a way that the outputs of the

FFNN will always produce values. In other words, each output must at a minimum

be connected to either an input neuron or a bias neuron, directly or indirectly.

2. Second, all neurons that are not outputs, and do not have any incoming and

outgoing synapses left after the first step, must be removed.

The number of remaining neurons is nne . The measure, however, needs to be configured

in terms of αv and σ2
0. Based on the recommendations made in [31], σ2

0 was set to 0.0001

and αp was set to 0.01. The algorithm made use of the validation set and was executed

at the end of every epoch to determine nse and nne .

Structural complexity performance measures used

Structural complexity was measured by comparing the optimal architectures found by

Rakitianskaia [94] to the effective architecture found by the classifiers. This was done

by calculating the ratio between the total number of a particular structural component,

e.g. neuron or synapse, in the optimal and the effective architectures, i.e. an oversize

ratio. The following two oversize ratios were used as structural complexity performance

measures:

1. The hidden neuron oversize ratio, nhor . This ratio was calculated by dividing nhe by

the number of hidden neurons, including bias neurons, in the optimal architecture

for the particular problem domain, where nhe is the number of neurons in the

hidden layer obtained by the adapted variance nullity pruning algorithm. Because

of the oversize factor of 2 (refer to Section 8.3), nhor ∈ [0, 2]. If nhor = 1, then the

optimal and effective architecture contained the same number of hidden neurons.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Empirical process 145

2. The synapse oversize ratio, nsor . This ratio was calculated by dividing nse by the

number of synapses in the optimal architecture for the particular problem domain.

Because the oversize factor of 2 also doubled the number of synapses, nsor ∈ [0, 2].

If nsor = 1, then the optimal and effective architecture contained the same number

of synapses.

8.4.5 Computational complexity performance measures

The lower bound of the computational complexity of the classifiers to process one pattern

was estimated, as follows

ΩFFNN = 2na + ns (8.19)

where ns is the number of synapses, and na is the number of activated neurons, which is

na = nn − (ni + nb)

where nn is the number of neurons, ni is the number of input neurons, and nb is the

number of bias neurons. Equation (8.19) makes the following three assumptions:

1. Each synapse will have at least one computational step, because each synapse

weight will be used to calculate an input signal, i.e. wis,n × vis,n.

2. Each activated neuron will at least have two computational steps, because each

activated neuron requires the calculation of a net input signal and an activation

value.

3. Input and bias neurons will have no computational steps, because no activation or

net input signal is calculated for them during processing.

The lower bound of the effective computational complexity of the FFNNs, ΩFFNNe ,

was calculated by applying Equation (8.19) to the effective models produced by the

adapted variance nullity pruning algorithm at the end of every epoch (refer to Section

8.4.4).

The effective reduction in computational complexity, due to the learning algorithm,

was derived from ΩFFNN and ΩFFNNe , as follows

Ωr = 100× ΩFFNN − ΩFFNNe

ΩFFNN

(8.20)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Empirical process 146

where Ωr represents the percentage by which the learning algorithm reduced the com-

putational complexity of the classifier to process one pattern.

The remainder of this thesis refers to Ωr as the complexity reduction measure.

8.4.6 Overfitting performance measures

Overfitting was measured using the following two measures:

1. The boolean result of the overfitting constraint Equation (4.10), Oρ, at the end of

every epoch. This measure returned 1 if a classifier was overfitting for an epoch,

otherwise 0 was returned.

2. The boolean result of the overfitting constraint Equation (4.9), OMSEg , at the start

of every epoch. This measure returned 1 if a classifier was overfitting for an epoch,

otherwise 0 was returned. This measure used MSEg instead of MSEm, because

MSEm did not estimate the generalisation error but rather the classifiers ability

to remember past patterns (refer to Section 8.4.1).

Both Oρ and OMSEg make use of moving averages. To ensure that the moving average

is smooth enough for the data stream in question, the moving average period should be

chosen in accordance to the length of the data stream. A moving average period of 3%

the length of the data stream was used. This allowed the measures to be comparable

across different SDCPs, regardless of the length of the data streams.

8.4.7 Control parameter impact on performance measures

The more tunable control parameters there are, the more parameter configurations need

to be evaluated during parameter tuning. Another factor that plays a part in the number

of control parameter configurations is the size of the value set used for each control

parameter. The larger a value set, the more parameter configurations there are that

need to be tested. The number of control parameter configurations tested for a classifier

(|Dc|) was calculated as follows:

|Dc| =
nc∏
i=1

(|Vi|) (8.21)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Empirical process 147

where nc is the number of tunable control parameters, and Vi is the set of potential

values for the i-th control parameter.

The impact of the control parameters on saturation, accuracy, and complexity per-

formance of the classifiers was analysed by comparing the differences in the performance

measures to the differences in the number of control parameter configurations of the

classifiers.

For example, consider a case with two classifiers, where their accuracy performance

differed insignificantly, but the classifier with the slightly better accuracy had one more

control parameter than the other classifier. The extra control parameter, therefore,

had very little impact on the accuracy performance, but would increase the parameter

configurations that needed to be tested. Hence, the additional parameter would not be

worth the gain in accuracy performance.

8.4.8 Weight distribution performance measures

The regularisation algorithms maintain model complexity by altering the weight values.

In the literature, especially architecture selection studies, it is often considered that the

smaller the magnitudes of the weights are, the less complex an ANN is [10][31][33][118].

Hence, the distributions of both the weight values and weight magnitudes were calculated

at the end of every epoch using the following measures:

1. The average magnitude of the weights, w̄, defined as

w̄ =

∑ns

j=1 |wj|
ns

(8.22)

where |wj| is the magnitude, i.e. the absolute value, of the j-th weight, wj, in the

ANN.

2. The standard deviation of the weight magnitudes, σw, defined as

σw =

√∑ns

j=1 (|wj| − w̄)2

ns − 1
(8.23)

3. The weights frequency distribution, Ξw, was constructed by binning the weights

using a binning width. The frequency of each bin was calculated by counting

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Empirical process 148

the number of weights that fall into the range of that bin [95][97]. The binning

width was set to 0.1 for the weights in the range [−1, 1], and 1 for the weights in

the ranges of [−5,−1) and (1, 5]. Any weights larger or smaller than the covered

ranges were counted under their nearest bin. These bin widths were used, because

the values of weights in ANN with regularisation tended to be less than one, and

saturated ANN tended to have weight values that were significantly more than

one [10][68][95][96][97].

8.4.9 Swarm diversity performance measures

To evaluate the exploration and exploitation states of the QPSO classifiers, the swarm

diversity was measured using Equation (3.3). The measure is denoted as D.

8.5 Control parameter tuning process

All six of the classifiers used in the investigation had control parameters that required to

be tuned. Various studies [10][29][52][72][95] have indicated good ranges for the control

parameters. These ranges were used to construct the value sets for the purpose of control

parameter tuning.

Furthermore, the control parameter tuning process assumed all the control param-

eters to be dependent on the problem domain and the other control parameters. The

issue of problem domain dependence was addressed by using the streamed benchmark

problem of each of the five problem domains. The issue of parameter dependence was

addressed by testing all the control parameter configurations.

The control parameter tuning process trained each classifier, using each parameter

configuration, 30 times per streamed benchmark problem. The collective mean of MSEg,

C̄MSEg , was recorded after each of the 30 runs. The collective means were then averaged.

Thirty samples were taken in order to get a valid statistical sample, because the six

classifiers made use of stochastic learning algorithms [56].

The parameter configuration with the lowest average C̄MSEg for a classifier in a

particular problem domain was considered to be the optimal parameter configuration.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Empirical process 149

Table 8.7 presents the various control parameter value sets used for tuning the six

classifiers. The BP value sets were used by the BP classifiers. The QPSO value sets

were used by the QPSO classifiers. The WD value sets were used by the WD-specific

parameters in BP-WD and QPSO-WD. The WE value sets were used by the WE-specific

parameters in BP-WE and QPSO-WE.

The control parameters w, c1, c2, d, and np were fixed because the values in Table 8.7

have been found to be optimal or de facto in ANN and PSO literature [29][33][52][99][115].

Discussion of these took place in Chapter 7.

The value sets of the remaining control parameters were chosen in such a way to

ensure that the ranges of the control parameter values, suggested by literature, were

uniformly covered.

BP literature suggests values in the range of [0, 1] for both α and η [33][39][72].

Increments of 0.1 starting at 0.1 were used to cover α’s and η’s ranges.

QPSO literature suggests that small r values should be used when using the linear-

decreasing distribution for sampling the positions of quantum particles. This prevents

potentially very random position vectors from causing the swarm to search haphaz-

ardly [52]. The proposed range, thus, focused mostly on small values. Because Harrison

et al. [52] investigated optimisation problems and not classification problems, some large

values were included in the value set of r.

To allow comparison between the classifiers using WD and WE, the same regularisa-

tion coefficient (λr) value set was used for BP-WD, QPSO-WD, BP-WE and QPSO-WE.

Bosman et al. [10] recommended that, when using weights elimination, λr should use the

range [0.001, 0.1]. Hence, the value set chosen for λr focused more around the range

[0.001, 0.1], but allowed for values outside the range also to be considered, because WD

might require such values for SDCPs. Furthermore, Bosman et al. [10] recommended

that w0 should be set to 0.01. Hence, the value set chosen for w0 focused on values

around 0.01.

The optimal parameter configurations found for BP-N, BP-WD, BP-WE, QPSO-N,

QPSO-WD and QPSO-WE, per problem domain, are listed in Tables 8.8, 8.9, 8.10, 8.11,

8.12 and 8.13, respectively.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Empirical process 150

Table 8.7: Parameter sets for all classifier parameter tuning simulations

Parameter Value sets

General parameters

Number of runs 30

Maxne 1

nw Set per benchmark problem as discussed in section 8.3

ni Set per problem domain as discussed in section 8.3

nh Set per problem domain as discussed in section 8.3

no Set per problem domain as discussed in section 8.3

BP parameters

α [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]

η [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]

QPSO parameters

np 30

U Linear decreasing

r [0.1, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 3.5, 5.0]

r1 and r2 range [0, 1]

c1 and c2 1.496180

ω 0.729844

WD parameters

λr [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5]

WE parameters

λr [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5]

w0 [0.005, 0.0075, 0.01, 0.025, 0.05, 0.1, 0.5, 1.0]

Table 8.8: Benchmark parameters for BP-N

Parameter Problem

Hyperplane Sphere Thresholds SEA Electricity

α 0.1 0.2 0.1 0.1 0.1

η 0.1 0.1 0.1 0.1 0.3

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Empirical process 151

Table 8.9: Benchmark parameters for BP-WD

Parameter Problem

Hyperplane Sphere Thresholds SEA Electricity

α 0.1 0.2 0.1 0.1 0.1

η 0.1 0.1 0.1 0.1 0.3

λr 0.0001 0.0001 0.0001 0.0001 0.0001

Table 8.10: Benchmark parameters for BP-WE

Parameter Problem

Hyperplane Sphere Thresholds SEA Electricity

α 0.1 0.2 0.1 0.1 0.1

η 0.1 0.1 0.1 0.1 0.1

λr 0.01 0.0001 0.0005 0.0001 0.01

w0 0.005 0.05 0.5 0.05 0.05

Table 8.11: Benchmark parameters for QPSO-N

Parameter Problem

Hyperplane Sphere Thresholds SEA Electricity

r 5.0 5.0 0.1 5.0 5.0

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Empirical process 152

Table 8.12: Benchmark parameters for QPSO-WD

Parameter Problem

Hyperplane Sphere Thresholds SEA Electricity

r 0.1 0.1 0.1 0.1 0.25

λr 0.5 0.01 0.01 0.001 0.01

Table 8.13: Benchmark parameters for QPSO-WE

Parameter Problem

Hyperplane Sphere Thresholds SEA Electricity

r 0.1 0.1 0.25 0.1 0.25

λr 0.05 0.01 0.01 0.01 0.1

w0 0.5 0.5 0.5 0.1 1.0

8.6 Benchmarking process

After the control parameter tuning process was completed, the optimal parameter con-

figurations in Tables 8.8 to 8.13 were used to carry out the benchmarking of the six

classifiers. The benchmarking simulations measured the performance of the six classi-

fiers on the 80 benchmark problems, using the performance measures discussed in Section

8.4.

Each performance measure was sampled 30 times per classifier-benchmark pair, i.e.

the combination of a classifier and a benchmark problem. Performance measures were

calculated for each epoch in each run, for each classifier-benchmark pair. The classifier-

benchmark pairs each used the optimal parameter configuration that corresponded to

the problem domain of the benchmark problem.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Empirical process 153

8.7 Result analysis methodology

The benchmarking results were analysed using a top-down approach, which used de-

scriptive statistics, Mann-Whitney-U-based ranking, and performance trends. Each of

these analysis techniques are discussed in sections 8.7.1, 8.7.2, and 8.7.3 respectively.

8.7.1 Descriptive statistics

The performance measures of each benchmark run was summarised using the collective

mean approach. In the case of the weights frequency distribution (Ξw), each frequency

bin was summarised using the collective mean approach to get the collective mean of the

weights frequency distribution, C̄Ξw , for each run.

Afterwards, the collective means for each performance measure were aggregated over

the 30 runs for each classifier-benchmark pair using the descriptive statistical measures

mean and standard deviation. The thesis uses the notation x̄ ± σ to represent the two

descriptive statistical measures, where x̄ refers to the mean and σ refers to the standard

deviation.

The benchmark results were further aggregated on four additional levels:

• Classifier-domain level per performance measure. This aggregation level grouped

results of the classifiers for a particular performance measure by the benchmark

problem domains, i.e. the hyperplane, sphere, thresholds, SEA, and electricity

domains.

• Classifier-difficulty level per performance measure. This aggregation level grouped

results of the classifiers for a particular performance measure by the benchmark

problem difficulties, i.e. easy, moderate-I, moderate-II, and hard (refer to Section

8.3.6).

• Classifier-environment level per performance measure. This aggregation level

grouped results of the classifiers for a particular performance measure by the prob-

lem environments, i.e. abrupt, progressive, and chaotic. Quasi-static was left out

as there were no quasi-static benchmark problems in the benchmark problem suite

that was used (refer to Section 8.3.5).

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Empirical process 154

• Classifier-measure level per classifier. This aggregation level grouped results of the

classifiers by performance measure over all the benchmark problems.

8.7.2 Mann-Whitney-U-based ranking

Helbig and Engelbrecht [56] suggested a ranking approach for optimisers based on the

number of favourable and unfavourable statistical differences when comparing optimisers

on dynamic multi-objective optimisation problems. Since the ANN learning problem is

a dynamic multi-objective optimisation problem (refer to Section 4.3) a similar approach

was adopted for comparing the classifiers.

A series of Mann-Whitney U (MWU) pair-wise comparisons were done to see if the

performance of one classifier was significantly different from another classifier on the same

benchmark problem. If there was a significant difference between the two classifiers, then

the classifier whose performance measure had a more favourable median was considered

the winner. If there was no significant difference, the classifiers were considered tied.

A two-tailed MWU test was used, because the hypothesis test was based on weather

or not their was a statistical difference in the performance of the two classifiers. The

MWU tests were performed using a confidence interval of 0.95, i.e., a significance level

of 0.05. Any p-value below 0.05 indicated a significant difference.

The total number of wins, ties and losses for each classifier were tallied per per-

formance measure. The classifier with the least number of losses for the performance

measure was the winner and was assigned the highest rank, i.e. 1. If there was a tie

between the number of losses, then the classifier with more wins was considered better.

The notation winning percentage/drawing percentage/losing percentage is used in this

thesis to represent the MWU-based ranking results. The percentage of wins, ties and

losses were each calculated as follows:

numberofwins/ties/losses

wins+ ties+ losses
× 100

In the case where a rank was needed, the notation was extended as follows: rank

(winning percentage/drawing percentage/losing percentage). If a classifier, for example,

had the result 2(40/50/10), then the classifier was ranked second best out of the pool of

classifiers. Furthermore, the result indicated that the classifier won 40%, tied 50%, and

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Empirical process 155

lost 10% of the time in all the pair-wise comparisons between the classifier and the other

classifiers in the pool. The MWU ranks should be compared to the ranks in the same

row of a results table.

8.7.3 Performance trends

Trend analysis was carried out on the various performance measures. The 30 run values of

a performance measure per epoch were averaged. It is possible that a epoch average could

have infinitely large values, because of its performance measure, e.g. swarm diversity,

and weight magnitude. In the case where epoch averages had a potentially broad range

of values, e.g. [10−300, 10300], a logarithmic scale was used.

Next, all trend lines were smoothed using a moving average with a period of 3% of

the number of patterns in the SDCP. This allowed the performance trend of the measure

to be extracted regardless of the number of patterns in the SDCP.

The sample standard deviation of the moving average was also determined for D and

MSEg. Two bands were formed along each moving average trend. The positive band

represents the moving average plus the standard deviation. The negative band represents

the moving average minus the standard deviation. These bands represented the volatility

of the performance trend. A larger channel meant more volatility in the performance

trend, and vice versa.

Lastly, the Pearson correlation coefficient was used to quantify the level of linear

correlation between the performance trends of the measures, where needed. The Pearson

correlation coefficient is defined as

ρx,y =
n
∑n

i=1 xiyi −
∑n

i=1 xi
∑n

i=1 yi√
n
∑n

i=1 x
2
i − (

∑n
i=1 xi)

2
√
n
∑n

i=1 y
2
i − (

∑n
i=1 yi)

2
(8.24)

where xi and yi are the i-th values of the two data series being compared, and n is the

size of the two data series. The sign of the Pearson correlation coefficient indicates the

direction of the linear correlation. That is, a negative value shows an inverse relation-

ship, and a positive value shows a linear relationship. The magnitude of the coefficient

indicates the strength of the linear correlation. That is, a value of 0 means no correlation.

On the other hand, a magnitude of 1 indicates a one to one correlation. A magnitude of

0.5 indicates a mild correlation. A magnitude of 0.8 indicates a strong correlation.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 8. Empirical process 156

8.8 Summary

This chapter detailed the nine hypotheses made about the use of the proposed classifiers

for SDCPs, and the procedure used to investigate these hypothesis. To assist with the

investigation of the hypotheses, two baseline streamed data classifiers were introduced.

The procedure utilised a benchmark suite of 80 SDCPs to tune the control parameters

of the classifiers. The tuned classifiers were then benchmarked using the benchmark suite.

Performance was calculated using several performance measures, covering a broad range

of performance areas. The procedure employed statistical analysis, MWU-ranking, and

performance trend analysis to analysis the benchmark results.

Chapter 9 presents the analysis of the benchmarking results for the six classifiers,

namely BP-N, BP-WD, BP-WE, QPSO-N, QPSO-WD, and QPSO-WD.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9

Empirical analysis

This chapter presents the empirical analysis of the benchmark results for the six classi-

fiers. The results were calculated using the performance measures discussed in Section

8.4, and the procedures in sections 8.5 and 8.6. The results are analysed using the

methodology in Section 8.7.

The primary objective of this empirical analysis is to empirically determine whether

or not the hypotheses in Section 8.1 were valid. The secondary objectives of the empirical

analysis are to gain a better understanding of how the classifiers dealt with SDCPs, and

to determine what improvements could be made to the proposed classifiers.

The remainder of this chapter is organised as follows. Sections 9.1, 9.2, and 9.3 present

a statistical analysis of the collective mean results of the accuracy performance measures,

saturation measures, and complexity performance measures, respectively. Note that

complexity performance measures include both structural and computational complexity

measures. Section 9.4 compares the saturation, accuracy and complexity performance

trends to see how the classifiers behaved over time. Section 9.5 analyses the overfitting

behaviour of the classifiers. Section 9.6 summaries the above discussions by presenting

the overall MWU ranking of the classifiers based on their saturation, accuracy and

complexity performance.

The remaining sections of the chapter analyse the auxiliary performance measures

to better understand the findings made by the above discussions as follows. Section 9.7

analyses the control parameters of the classifiers. Section 9.8 analyses the weight distri-

157

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 158

butions of the classifiers. Section 9.9 analyses the swarm diversity of the QPSO classifiers.

Section 9.10 presents the overall conclusions drawn from the empirical analysis. Lastly,

Section 9.11 summarises the chapter.

Note that any value in a result table that is in bold indicates the best value in the

set. Conversely, a value in italics indicates the worst value in the set. The ∞ symbol

indicates values that was the maximum value of 10308.25. Furthermore, this chapter

employs the notations and terminology presented in Chapter 8.

9.1 Accuracy performance analysis

This section analyses the collective means of the five accuracy performance measures

MSEt, MSEm, MSEg, PCCm and PCCg (refer to Section 8.4.3). The key objectives

of the accuracy performance analysis are to determine:

1. How good the classifiers were at learning patterns. The MSEt was used as an

indicator of how well the classifiers learned patterns.

2. How good the classifiers were at remembering previously learned patterns. The

MSEm and PCCm were used as indicators of well the classifiers remembered pre-

viously learned patterns.

3. How good the classifiers were at generalising. The MSEg and PCCg were used as

indicators of how well the classifiers generalised.

4. If the regularised classifiers were more accurate than their non-regularised coun-

terparts.

5. If the regularised QPSO classifiers were more accurate than their regularised BP

counterparts.

6. The effects of problem difficulty, environment, dimensionality, and noise on the

accuracy performance of the classifiers.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 159

7. If the categorisation of problem difficulty was reflected in the accuracy results.

That is, does decreasing problem difficulty, increase the accuracy of the classifiers,

and vice versa.

8. If there were signs of overfitting.

Table 9.1 presents the statistical and MWU-based ranking analysis of the accuracy

performance with regards to the classifiers for each of the problem domains. Table 9.2

presents the statistical and MWU-based ranking analysis of the accuracy performance

with regards to the classifiers for each of the problem difficulties. Table 9.3 presents the

statistical and MWU-based ranking analysis of the accuracy performance with regards

to the classifiers for each of the problem environments. Table 9.4 presents the overall

MWU-based ranking results of how the classifiers faired against each other based on their

accuracy performance. The accuracy results in Tables 9.1 to 9.4 show the following:

BP-N was the best overall at generalising and remembering patterns in SDCPs. Fur-

thermore, BP-N was capable of good levels of accuracy in various dynamic environments.

This went against the expectations of the study.

As expected, the MSE measures showed QPSO-N to have the worst accuracy on all

the problem domains. On the contrary, the PCC measures showed that QPSO-N per-

formed very well, at times surpassing the PCC results of the regularised QPSO classifiers.

These contrasting observations were most likely the result of complete saturation.

The idea of complete saturation is supported by the fact that PCC results were near

to 12.5% in the thresholds domain, whereas the PCC results for the other four problem

domains were near to 50%. This is because the thresholds domain is the only problem

domain among the five problem domains that had three target classes, while the rest

had two target classes. Consider the following example:

If a two target class classifier is completely saturated, then the outputs will always

be one or the other class. Thus, a saturated two target class classifier has a 50% chance

of being correct. Saturation, however, can only occur after some period of training. The

probability of the classifier classifying a pattern correctly should, therefore, be higher

than 50%. The same idea can be applied to a three target class classifier, however, the

classifier should be able to classify more than 12.5% of the patterns correctly. The 12.5%

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 160

Table 9.1: Descriptive statistics and MWU-based ranking results of the classifiers with regards

to the collective means of the problem domains for accuracy performance measures

(a) Training mean square error (MSEt)

Domain Classifier

BP-N BP-WD BP-WE QPSO-N QPSO-WD QPSO-WE

Hyperplane 0.0027±0.0035 0.0027±0.0033 0.0029±0.0036 0.3537±0.0249 0.0664±0.0144 0.0404±0.0173

1(70.00/27.50/2.50) 2(70.00/25.00/5.00) 3(63.75/20.00/16.25) 6(0.00/0.00/100.00) 5(20.00/0.00/80.00) 4(40.00/0.00/60.00)

Sphere 0.0216±0.0153 0.0221±0.0157 0.0216±0.0156 0.3245±0.1101 0.0061±0.0026 0.0142±0.0081

4(32.50/26.25/41.25) 5(21.25/18.75/60.00) 3(36.25/27.50/36.25) 6(0.00/5.00/95.00) 2(70.00/5.00/25.00) 1(97.50/2.50/0.00)

Thresholds 0.0103±0.0056 0.0107±0.0056 0.0113±0.0056 0.2464±0.0451 0.0230±0.0058 0.0143±0.0051

1(86.25/13.75/0.00) 2(68.75/20.00/11.25) 3(55.00/12.50/32.50) 6(0.00/0.00/100.00) 5(20.00/0.00/80.00) 4(40.00/13.75/46.25)

SEA 0.0598±0.0234 0.0606±0.0232 0.0598±0.0235 0.3183±0.0628 0.0043±0.0033 0.0949±0.0400

2(36.25/32.50/31.25) 4(25.00/21.25/53.75) 2(36.25/32.50/31.25) 5(0.00/0.00/100.00) 1(100.00/0.00/0.00) 3(53.75/11.25/35.00)

Electricity 0.0260±0.0182 0.0285±0.0180 0.0536±0.0651 0.4993±0.0920 0.0178±0.0056 0.0279±0.0086

2(67.50/1.25/31.25) 5(43.75/1.25/55.00) 3(60.00/0.00/40.00) 6(0.00/0.00/100.00) 1(80.00/0.00/20.00) 4(46.25/2.50/51.25)

(b) Memory mean square error (MSEm)

Domain Classifier

BP-N BP-WD BP-WE QPSO-N QPSO-WD QPSO-WE

Hyperplane 0.0443±0.0274 0.0455±0.0265 0.0430±0.0254 0.3845±0.0436 0.1448±0.0175 0.1405±0.0186

2(77.50/11.25/11.25) 3(60.00/7.50/32.50) 1(91.25/3.75/5.00) 6(0.00/0.00/100.00) 5(20.00/6.25/73.75) 4(33.75/6.25/60.00)

Sphere 0.0702±0.0335 0.0715±0.0334 0.0710±0.0337 0.3988±0.0476 0.1961±0.0225 0.1813±0.0304

1(73.75/26.25/0.00) 3(60.00/26.25/13.75) 2(65.00/30.00/5.00) 6(0.00/0.00/100.00) 5(20.00/1.25/78.75) 4(38.75/1.25/60.00)

Thresholds 0.0331±0.0174 0.0335±0.0173 0.0337±0.0175 0.2846±0.0163 0.1275±0.0108 0.1098±0.0164

1(76.25/23.75/0.00) 2(61.25/30.00/8.75) 3(61.25/28.75/10.00) 6(0.00/0.00/100.00) 5(20.00/5.00/75.00) 4(35.00/5.00/60.00)

SEA 0.1282±0.0258 0.1291±0.0246 0.1286±0.0257 0.3708±0.0158 0.3603±0.0302 0.2282±0.0286

1(72.50/27.50/0.00) 3(61.25/22.50/16.25) 2(67.50/27.50/5.00) 6(2.50/5.00/92.50) 5(12.50/5.00/82.50) 4(40.00/0.00/60.00)

Electricity 0.2203±0.0436 0.2264±0.0424 0.2901±0.0445 0.5398±0.0409 0.2864±0.0697 0.2714±0.0668

1(92.50/1.25/6.25) 2(75.00/1.25/23.75) 4(37.50/0.00/62.50) 6(0.00/0.00/100.00) 5(33.75/0.00/66.25) 3(60.00/0.00/40.00)

(c) Memory percentage correct classification error (PCCm)

Domain Classifier

BP-N BP-WD BP-WE QPSO-N QPSO-WD QPSO-WE

Hyperplane 80.5178±10.2529 79.5854±9.5886 79.9934±9.4008 61.5537±4.3628 1.5456±0.9681 13.7709±8.1818

1(85.00/11.25/3.75) 3(62.50/7.50/30.00) 2(78.75/8.75/12.50) 4(40.00/0.00/60.00) 6(0.00/0.00/100.00) 5(20.00/0.00/80.00)

Sphere 67.5005±11.7622 66.5257±11.2983 67.0630±11.6111 60.1143±4.7564 55.2463±2.4030 58.4173±2.7255

1(73.75/16.25/10.00) 3(46.25/13.75/40.00) 2(60.00/16.25/23.75) 5(32.50/11.25/56.25) 6(15.00/1.25/83.75) 4(41.25/3.75/55.00)

Thresholds 67.2708±10.9450 66.2988±10.5605 65.1331±10.5987 26.8981±13.7610 24.7291±1.1552 42.4968±6.3503

1(93.75/6.25/0.00) 2(75.00/10.00/15.00) 3(58.75/3.75/37.50) 5(11.25/11.25/77.50) 6(7.50/5.00/87.50) 4(33.75/3.75/62.50)

SEA 35.8517±9.9392 35.2188±9.6418 35.7408±10.0975 62.9222±1.5763 48.3348±3.1967 62.0699±3.5445

4(20.00/16.25/63.75) 6(0.00/13.75/86.25) 5(16.25/17.50/66.25) 1(86.25/8.75/5.00) 3(60.00/0.00/40.00) 2(85.00/8.75/6.25)

Electricity 40.0129±16.3249 35.4457±12.6871 6.6181±7.9148 46.0194±4.0921 14.7658±2.4112 7.4306±1.4391

1(87.50/1.25/11.25) 3(67.50/1.25/31.25) 6(6.25/1.25/92.50) 2(83.75/0.00/16.25) 4(37.50/1.25/61.25) 5(15.00/0.00/85.00)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 161

(d) Generalisation mean square error (MSEg)

Domain Classifier

BP-N BP-WD BP-WE QPSO-N QPSO-WD QPSO-WE

Hyperplane 0.0296±0.0260 0.0299±0.0256 0.0294±0.0249 0.3804±0.0503 0.1081±0.0399 0.0921±0.0490

1(82.50/15.00/2.50) 3(62.50/16.25/21.25) 2(71.25/16.25/12.50) 6(0.00/0.00/100.00) 5(20.00/1.25/78.75) 4(38.75/1.25/60.00)

Sphere 0.0551±0.0377 0.0557±0.0381 0.0553±0.0379 0.3752±0.0603 0.0985±0.0688 0.0973±0.0657

2(71.25/26.25/2.50) 3(60.00/21.25/18.75) 1(71.25/27.50/1.25) 6(0.00/0.00/100.00) 5(20.00/2.50/77.50) 4(37.50/2.50/60.00)

Thresholds 0.0273±0.0172 0.0276±0.0171 0.0280±0.0171 0.2738±0.0202 0.0750±0.0391 0.0598±0.0361

1(83.75/16.25/0.00) 2(70.00/18.75/11.25) 3(62.50/12.50/25.00) 6(0.00/0.00/100.00) 5(20.00/0.00/80.00) 4(40.00/0.00/60.00)

SEA 0.1114±0.0478 0.1119±0.0472 0.1115±0.0477 0.3568±0.0282 0.1831±0.1363 0.1751±0.0526

1(57.50/37.50/5.00) 3(43.75/31.25/25.00) 2(55.00/40.00/5.00) 6(0.00/5.00/95.00) 5(35.00/12.50/52.50) 4(30.00/31.25/38.75)

Electricity 0.0998±0.0699 0.1023±0.0690 0.1210±0.0817 0.5255±0.0476 0.1170±0.0942 0.1173±0.0868

1(81.25/2.50/16.25) 3(58.75/1.25/40.00) 2(61.25/1.25/37.50) 6(0.00/0.00/100.00) 4(53.75/0.00/46.25) 5(42.50/0.00/57.50)

(e) Generalisation percentage correct classification error (PCCg)

Domain Classifier

BP-N BP-WD BP-WE QPSO-N QPSO-WD QPSO-WE

Hyperplane 81.8334±11.9262 81.2043±11.4578 81.5766±11.3502 61.9385±5.0492 1.4871±0.9773 13.5273±8.7044

1(85.00/12.50/2.50) 3(61.25/13.75/25.00) 2(73.75/13.75/12.50) 4(40.00/0.00/60.00) 6(0.00/0.00/100.00) 5(20.00/0.00/80.00)

Sphere 67.5769±12.1462 66.7762±11.9000 67.2979±12.1965 62.4632±6.0127 64.5992±7.9827 69.3535±9.2659

2(52.50/25.00/22.50) 4(30.00/20.00/50.00) 3(42.50/26.25/31.25) 5(26.25/13.75/60.00) 6(30.00/2.50/67.50) 1(68.75/12.50/18.75)

Thresholds 66.5919±10.9518 65.6423±10.5532 64.4263±10.5758 28.2938±14.3404 25.7685±1.7229 48.9703±10.7458

1(91.25/7.50/1.25) 2(75.00/11.25/13.75) 3(58.75/3.75/37.50) 5(13.75/8.75/77.50) 6(7.50/5.00/87.50) 4(33.75/3.75/62.50)

SEA 35.0198±9.7107 34.4524±9.4374 34.8365±9.6887 64.3005±2.8193 69.6214±16.6769 68.8185±7.0830

4(17.50/22.50/60.00) 6(0.00/20.00/80.00) 5(8.75/25.00/66.25) 3(67.50/6.25/26.25) 2(82.50/2.50/15.00) 1(83.75/3.75/12.50)

Electricity 45.1450±17.8577 39.0552±15.3828 10.1391±11.4931 47.4473±4.7624 17.8350±2.4587 8.3214±1.5849

1(88.75/1.25/10.00) 3(66.25/2.50/31.25) 5(12.50/1.25/86.25) 2(82.50/0.00/17.50) 4(35.00/0.00/65.00) 6(12.50/0.00/87.50)

is derived by multiplying the 50% probabilities of the three mutually exclusive outputs

together, i.e. 50%× 50%× 50%.

The above example also explains why the MSE values showed poor performance for

QPSO-N, because these values were at the extreme values of zero and one most of the

time. If the QPSO-N did suffer from complete saturation then, the QPSO-N would be

unsuitable for SDCPs. Thus this needs to be confirmed by analysing the saturation

measures.

Regularisation degraded the accuracy performance of the BP weights adjustment

algorithm. However, regularisation, especially WE, improved the MSE performance of

the QPSO weights adjustment algorithm for SDCPs.

The low MSEt values of all the classifiers, except QPSO-N, showed that the classifiers

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 162

Table 9.2: Descriptive statistics and MWU-based ranking results of the classifiers with regards

to the collective means of the problem difficulty for accuracy performance measures

(a) Training mean square error (MSEt)

Difficulty Classifier

BP-N BP-WD BP-WE QPSO-N QPSO-WD QPSO-WE

Easy 0.0134±0.0163 0.0145±0.0168 0.0232±0.0513 0.4090±0.0940 0.0188±0.0183 0.0400±0.0542

1(68.00/13.00/19.00) 5(44.00/9.00/47.00) 2(64.00/16.00/20.00) 6(0.00/0.00/100.00) 4(54.00/0.00/46.00) 3(46.00/10.00/44.00)

Moderate-I 0.0332±0.0308 0.0341±0.0311 0.0336±0.0320 0.3686±0.1016 0.0240±0.0250 0.0398±0.0273

1(50.00/21.00/29.00) 5(43.00/15.00/42.00) 3(51.00/16.00/33.00) 6(0.00/0.00/100.00) 4(63.00/0.00/37.00) 2(67.00/0.00/33.00)

Moderate-II 0.0130±0.0139 0.0136±0.0140 0.0135±0.0142 0.3521±0.0956 0.0216±0.0204 0.0376±0.0373

1(66.00/19.00/15.00) 2(54.00/15.00/31.00) 2(54.00/15.00/31.00) 5(0.00/0.00/100.00) 3(52.00/1.00/47.00) 4(47.00/4.00/49.00)

Hard 0.0367±0.0250 0.0374±0.0254 0.0491±0.0401 0.2640±0.1027 0.0295±0.0304 0.0360±0.0175

1(50.00/28.00/22.00) 3(42.00/30.00/28.00) 5(32.00/27.00/41.00) 6(0.00/4.00/96.00) 4(63.00/3.00/34.00) 2(62.00/10.00/28.00)

(b) Memory mean square error (MSEm)

Difficulty Classifier

BP-N BP-WD BP-WE QPSO-N QPSO-WD QPSO-WE

Easy 0.0672±0.0639 0.0701±0.0661 0.0849±0.0961 0.4165±0.0930 0.1918±0.0842 0.1590±0.0515

1(93.00/3.00/4.00) 3(61.00/4.00/35.00) 2(64.00/7.00/29.00) 6(0.00/0.00/100.00) 5(26.00/1.00/73.00) 4(48.00/1.00/51.00)

Moderate-I 0.1009±0.0862 0.1028±0.0886 0.1103±0.1039 0.3997±0.0965 0.2283±0.1021 0.1809±0.0713

1(77.00/22.00/1.00) 3(64.00/18.00/18.00) 2(63.00/24.00/13.00) 6(0.00/1.00/99.00) 5(20.00/4.00/76.00) 4(40.00/3.00/57.00)

Moderate-II 0.0957±0.0661 0.0984±0.0689 0.1236±0.1174 0.3873±0.0924 0.2185±0.0908 0.1861±0.0649

1(77.00/19.00/4.00) 2(66.00/19.00/15.00) 3(61.00/18.00/21.00) 6(0.00/1.00/99.00) 5(23.00/4.00/73.00) 4(41.00/3.00/56.00)

Hard 0.1330±0.0744 0.1336±0.0745 0.1343±0.0775 0.3792±0.0788 0.2534±0.1009 0.2189±0.0760

1(67.00/28.00/5.00) 3(63.00/29.00/8.00) 2(70.00/23.00/7.00) 6(2.00/2.00/96.00) 5(16.00/5.00/79.00) 4(37.00/3.00/60.00)

(c) Memory percentage correct classification error (PCCm)

Difficulty Classifier

BP-N BP-WD BP-WE QPSO-N QPSO-WD QPSO-WE

Easy 71.1375±17.3775 67.5381±18.8088 61.4998±28.4872 46.4666±19.9619 30.5553±21.3814 41.3074±21.8379

1(86.00/0.00/14.00) 2(56.00/1.00/43.00) 3(52.00/2.00/46.00) 5(38.00/1.00/61.00) 6(25.00/1.00/74.00) 4(40.00/1.00/59.00)

Moderate-I 54.2860±23.0222 53.4626±23.4110 48.5740±30.6027 50.9033±14.5641 28.1327±20.0461 35.9494±24.7014

1(71.00/12.00/17.00) 2(51.00/7.00/42.00) 4(47.00/8.00/45.00) 3(49.00/9.00/42.00) 6(21.00/2.00/77.00) 5(40.00/4.00/56.00)

Moderate-II 63.1757±15.6818 61.6657±15.8855 53.7555±27.3672 51.9559±15.4558 29.8271±21.6721 37.8279±23.6618

1(81.00/5.00/14.00) 2(55.00/5.00/40.00) 3(46.00/8.00/46.00) 4(45.00/7.00/48.00) 6(22.00/2.00/76.00) 5(35.00/5.00/60.00)

Hard 44.3238±18.3547 43.7930±18.4561 39.8093±24.1654 56.6804±9.2216 27.1823±19.9601 32.2637±23.2768

2(50.00/24.00/26.00) 3(39.00/24.00/37.00) 4(31.00/20.00/49.00) 1(71.00/8.00/21.00) 6(28.00/1.00/71.00) 5(41.00/3.00/56.00)

were able to learn the decision boundaries from patterns in SDCPs accurately. However,

the training and generalisation accuracies of these classifiers showed signs of overfitting.

Furthermore, the memory errors, i.e. MSEm and PCCm tended to be worse than

the generalisation errors, i.e. MSEg and PCCg. This was more prominent in the

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 163

(d) Generalisation mean square error (MSEg)

Difficulty Classifier

BP-N BP-WD BP-WE QPSO-N QPSO-WD QPSO-WE

Easy 0.0291±0.0260 0.0305±0.0265 0.0389±0.0531 0.4109±0.0936 0.0515±0.0202 0.0628±0.0535

1(82.00/7.00/11.00) 3(53.00/4.00/43.00) 2(73.00/9.00/18.00) 6(0.00/0.00/100.00) 4(40.00/4.00/56.00) 5(36.00/8.00/56.00)

Moderate-I 0.0790±0.0486 0.0798±0.0488 0.0791±0.0496 0.3960±0.0932 0.1593±0.0870 0.1298±0.0458

1(71.00/22.00/7.00) 3(57.00/19.00/24.00) 2(66.00/23.00/11.00) 6(0.00/2.00/98.00) 5(26.00/3.00/71.00) 4(42.00/7.00/51.00)

Moderate-II 0.0358±0.0258 0.0366±0.0261 0.0386±0.0290 0.3606±0.0939 0.0595±0.0206 0.0678±0.0383

1(79.00/19.00/2.00) 2(63.00/16.00/21.00) 3(60.00/19.00/21.00) 6(0.00/0.00/100.00) 5(33.00/2.00/65.00) 4(33.00/8.00/59.00)

Hard 0.1146±0.0630 0.1151±0.0631 0.1196±0.0689 0.3619±0.0844 0.1950±0.0935 0.1728±0.0735

1(69.00/30.00/1.00) 2(63.00/32.00/5.00) 3(58.00/27.00/15.00) 6(0.00/2.00/98.00) 5(20.00/4.00/76.00) 4(40.00/5.00/55.00)

(e) Generalisation percentage correct classification error (PCCg)

Difficulty Classifier

BP-N BP-WD BP-WE QPSO-N QPSO-WD QPSO-WE

Easy 70.6192±18.8573 66.6190±21.6140 62.7592±27.7451 47.0649±20.0484 40.2676±32.1852 49.2104±27.8631

1(83.00/5.00/12.00) 3(49.00/4.00/47.00) 2(51.00/7.00/42.00) 5(34.00/0.00/66.00) 5(34.00/0.00/66.00) 4(39.00/4.00/57.00)

Moderate-I 54.2417±21.3290 53.1408±21.9535 47.6658±29.8415 51.2764±14.4195 31.6236±23.4974 37.9179±26.4395

1(69.00/12.00/19.00) 2(49.00/10.00/41.00) 4(43.00/9.00/48.00) 3(46.00/9.00/45.00) 6(25.00/2.00/73.00) 5(45.00/4.00/51.00)

Moderate-II 67.8696±15.6180 66.2484±15.6093 56.9481±26.6778 54.7571±15.8841 40.3784±32.2936 45.1703±29.9416

1(69.00/15.00/16.00) 2(51.00/15.00/34.00) 3(37.00/18.00/45.00) 5(33.00/7.00/60.00) 6(33.00/3.00/64.00) 4(46.00/4.00/50.00)

Hard 44.2032±17.6472 43.6963±17.7294 39.2478±23.7219 58.4563±9.4052 31.1794±23.9303 34.8941±25.8256

2(47.00/23.00/30.00) 3(37.00/25.00/38.00) 5(26.00/22.00/52.00) 1(71.00/7.00/22.00) 6(32.00/3.00/65.00) 4(45.00/4.00/51.00)

regularised QPSO classifiers than the BP classifiers. The regularised QPSO classifiers,

therefore, forgot patterns significantly faster than the regularised BP classifiers. This

explained the lower than expected accuracy performance results of the regularised QPSO

classifiers.

The MSE and PCC performance measures provided conflicting conclusions. This was

in-line with the findings by Twomey and Smith [113] for static classification problems.

Both measures should, therefore, be considered in studies that look at streamed data

stream classifiers.

The regularised QPSO classifiers showed potential at handling noisy problems, while

the BP classifiers did not. This was evident from the SEA domain, where the regularised

QPSO classifiers significantly outperformed the BP classifiers according to the PCC

measures, with QPSO-WD and QPSO-WE achieving very similar results. Note that the

regularised QPSO classifiers did not fair so well on the real-world electricity problem.

Furthermore, high dimensional SDCPs had a detrimental effect on the accuracy of

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 164

Table 9.3: Descriptive statistics and MWU-based ranking results of the classifiers with regards

to the collective means of the problem environments for accuracy performance measures

(a) Training mean square error (MSEt)

Environment Classifier

BP-N BP-WD BP-WE QPSO-N QPSO-WD QPSO-WE

Progressive 0.0226±0.0230 0.0230±0.0233 0.0231±0.0229 0.2722±0.0748 0.0264±0.0272 0.0353±0.0311

1(57.22/26.67/16.11) 2(50.00/25.56/24.44) 3(43.33/23.33/33.33) 6(0.00/2.22/97.78) 5(50.00/2.22/47.78) 4(56.11/6.67/37.22)

Abrupt 0.0122±0.0124 0.0136±0.0128 0.0430±0.0832 0.4392±0.0990 0.0160±0.0161 0.0473±0.0641

1(74.29/8.57/17.14) 4(45.71/2.86/51.43) 2(65.71/11.43/22.86) 6(0.00/0.00/100.00) 3(60.00/0.00/40.00) 5(40.00/5.71/54.29)

Chaotic 0.0278±0.0275 0.0289±0.0276 0.0339±0.0389 0.4054±0.0945 0.0221±0.0216 0.0396±0.0346

1(56.76/16.22/27.03) 5(41.62/11.89/46.49) 2(54.05/15.14/30.81) 6(0.00/0.00/100.00) 3(65.41/0.00/34.59) 4(57.84/5.41/36.76)

(b) Memory mean square error (MSEm)

Environment Classifier

BP-N BP-WD BP-WE QPSO-N QPSO-WD QPSO-WE

Progressive 0.0789±0.0462 0.0795±0.0461 0.0788±0.0463 0.3431±0.0571 0.2041±0.0940 0.1680±0.0548

2(67.78/27.78/4.44) 3(61.11/28.89/10.00) 1(69.44/26.67/3.89) 6(1.11/1.67/97.22) 5(17.22/5.56/77.22) 4(36.11/3.89/60.00)

Abrupt 0.0721±0.0594 0.0757±0.0612 0.1069±0.1149 0.4430±0.0981 0.1911±0.0875 0.1567±0.0536

1(91.43/0.00/8.57) 3(60.00/0.00/40.00) 2(62.86/0.00/37.14) 6(0.00/0.00/100.00) 5(31.43/0.00/68.57) 4(54.29/0.00/45.71)

Chaotic 0.1241±0.0931 0.1272±0.0950 0.1481±0.1227 0.4379±0.0889 0.2474±0.0949 0.2095±0.0769

1(86.49/11.89/1.62) 2(66.49/9.73/23.78) 3(60.00/12.97/27.03) 6(0.00/0.54/99.46) 5(23.24/2.16/74.59) 4(44.32/1.62/54.05)

(c) Memory percentage correct classification error (PCCm)

Environment Classifier

BP-N BP-WD BP-WE QPSO-N QPSO-WD QPSO-WE

Progressive 59.6057±17.4275 58.8505±17.2130 58.6347±17.0091 52.0496±17.1994 31.3512±20.3961 42.2506±19.5774

1(63.89/16.67/19.44) 3(46.67/16.67/36.67) 2(48.33/15.56/36.11) 4(45.56/9.44/45.00) 6(20.00/2.22/77.78) 5(42.78/5.00/52.22)

Abrupt 69.7218±17.8179 63.9425±19.8207 57.3227±28.4463 46.6844±20.0509 32.7962±22.0601 41.5980±24.1980

1(77.14/0.00/22.86) 3(48.57/2.86/48.57) 2(51.43/5.71/42.86) 4(45.71/2.86/51.43) 6(28.57/2.86/68.57) 5(40.00/2.86/57.14)

Chaotic 54.7189±24.0935 53.0533±24.1710 42.1802±34.6732 51.8796±12.7650 25.8306±20.2804 30.6692±25.2160

1(78.92/5.95/15.14) 3(54.05/3.24/42.70) 4(38.38/4.32/57.30) 2(56.76/3.78/39.46) 6(27.03/0.54/72.43) 5(35.14/1.62/63.24)

the regularised QPSO classifiers. This was not the case for the BP classifiers.

The problem difficulty classification scheme proposed in Section 8.3.6 was shown to

be valid for SDCPs at a high-level. However, QPSO-N did not follow the classification

scheme. This was due to the complete saturation of QPSO-N (refer to Section 9.2).

Furthermore, according to the accuracy results moderate-I problems generally were more

difficult than moderate-II problems. Thus, window frequency (wf) has a more severe

effect on the accuracy performance of a stream data classifier than window step size (ws).

Figure 9.1 illustrates the above by plotting the mean of the PCCg in Table 9.2e against

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 165

(d) Generalisation mean square error (MSEg)

Environment Classifier

BP-N BP-WD BP-WE QPSO-N QPSO-WD QPSO-WE

Progressive 0.0592±0.0500 0.0596±0.0499 0.0594±0.0497 0.3231±0.0601 0.1149±0.0887 0.1057±0.0702

1(70.00/28.33/1.67) 2(61.11/27.78/11.11) 3(61.67/26.67/11.67) 6(0.00/1.11/98.89) 5(23.33/3.33/73.33) 4(36.67/7.22/56.11)

Abrupt 0.0252±0.0192 0.0269±0.0196 0.0555±0.0825 0.4398±0.0988 0.0403±0.0161 0.0629±0.0633

1(85.71/5.71/8.57) 3(51.43/2.86/45.71) 2(77.14/5.71/17.14) 6(0.00/0.00/100.00) 4(45.71/2.86/51.43) 5(31.43/0.00/68.57)

Chaotic 0.0773±0.0610 0.0785±0.0610 0.0809±0.0665 0.4291±0.0845 0.1321±0.0925 0.1195±0.0698

1(78.38/13.51/8.11) 3(58.38/10.81/30.81) 2(64.32/15.14/20.54) 6(0.00/1.08/98.92) 5(32.97/3.24/63.78) 4(40.00/8.11/51.89)

(e) Generalisation percentage correct classification error (PCCg)

Environment Classifier

BP-N BP-WD BP-WE QPSO-N QPSO-WD QPSO-WE

Progressive 60.1007±18.5690 59.4296±18.4118 59.1302±18.2265 54.1608±17.7076 38.7415±28.7047 48.2806±24.3954

1(55.00/21.67/23.33) 2(42.22/22.78/35.00) 3(39.44/22.22/38.33) 5(40.56/8.89/50.56) 6(29.44/3.89/66.67) 4(51.11/5.00/43.89)

Abrupt 68.4628±19.4940 61.9730±23.3047 58.9761±26.9168 47.0126±20.1263 44.2696±35.1474 49.2819±30.1378

1(80.00/2.86/17.14) 3(40.00/8.57/51.43) 2(48.57/8.57/42.86) 4(42.86/0.00/57.14) 5(40.00/0.00/60.00) 6(37.14/2.86/60.00)

Chaotic 56.6435±23.4713 54.6165±23.7548 42.9973±33.7676 52.7626±12.6670 31.4702±26.1957 34.0751±28.8328

1(76.22/8.11/15.68) 2(51.89/5.41/42.70) 4(37.30/7.03/55.68) 3(51.89/3.78/44.32) 6(30.81/0.54/68.65) 5(37.84/3.24/58.92)

Table 9.4: MWU-based pairwise comparison of the classifiers for accuracy performance mea-

sures (Wins/Ties/Losses percentages)

(a) Training mean square error (MSEt)

Classifier Classifier

BP-N BP-WD BP-WE QPSO-N QPSO-WD QPSO-WE

BP-N — 53.75/45.00/1.25 36.25/48.75/15.00 98.75/1.25/0.00 48.75/0.00/51.25 55.00/6.25/38.75

BP-WD 1.25/45.00/53.75 — 31.25/30.00/38.75 98.75/1.25/0.00 47.50/0.00/52.50 50.00/10.00/40.00

BP-WE 15.00/48.75/36.25 38.75/30.00/31.25 — 98.75/1.25/0.00 51.25/1.25/47.50 47.50/11.25/41.25

QPSO-N 0.00/1.25/98.75 0.00/1.25/98.75 0.00/1.25/98.75 — 0.00/1.25/98.75 0.00/0.00/100.00

QPSO-WD 51.25/0.00/48.75 52.50/0.00/47.50 47.50/1.25/51.25 98.75/1.25/0.00 — 40.00/2.50/57.50

QPSO-WE 38.75/6.25/55.00 40.00/10.00/50.00 41.25/11.25/47.50 100.00/0.00/0.00 57.50/2.50/40.00 —

Overall rank 1(58.50/20.25/21.25) 3(45.75/17.25/37.00) 2(50.25/18.50/31.25) 6(0.00/1.00/99.00) 5(58.00/1.00/41.00) 4(55.50/6.00/38.50)

(b) Memory mean square error (MSEm)

Classifier Classifier

BP-N BP-WD BP-WE QPSO-N QPSO-WD QPSO-WE

BP-N — 55.00/43.75/1.25 41.25/46.25/12.50 100.00/0.00/0.00 98.75/0.00/1.25 97.50/0.00/2.50

BP-WD 1.25/43.75/55.00 — 21.25/43.75/35.00 100.00/0.00/0.00 98.75/0.00/1.25 96.25/0.00/3.75

BP-WE 12.50/46.25/41.25 35.00/43.75/21.25 — 100.00/0.00/0.00 88.75/0.00/11.25 86.25/0.00/13.75

QPSO-N 0.00/0.00/100.00 0.00/0.00/100.00 0.00/0.00/100.00 — 2.50/5.00/92.50 0.00/0.00/100.00

QPSO-WD 1.25/0.00/98.75 1.25/0.00/98.75 11.25/0.00/88.75 92.50/5.00/2.50 — 0.00/12.50/87.50

QPSO-WE 2.50/0.00/97.50 3.75/0.00/96.25 13.75/0.00/86.25 100.00/0.00/0.00 87.50/12.50/0.00 —

Overall rank 1(78.50/18.00/3.50) 3(63.50/17.50/19.00) 2(64.50/18.00/17.50) 6(0.50/1.00/98.50) 5(21.25/3.50/75.25) 4(41.50/2.50/56.00)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 166

(c) Memory percentage correct classification error (PCCm)

Classifier Classifier

BP-N BP-WD BP-WE QPSO-N QPSO-WD QPSO-WE

BP-N — 77.50/22.50/0.00 68.75/23.75/7.50 61.25/3.75/35.00 76.25/1.25/22.50 76.25/0.00/23.75

BP-WD 0.00/22.50/77.50 — 38.75/20.00/41.25 60.00/3.75/36.25 76.25/0.00/23.75 76.25/0.00/23.75

BP-WE 7.50/23.75/68.75 41.25/20.00/38.75 — 52.50/2.50/45.00 57.50/1.25/41.25 61.25/0.00/38.75

QPSO-N 35.00/3.75/61.25 36.25/3.75/60.00 45.00/2.50/52.50 — 82.50/5.00/12.50 55.00/16.25/28.75

QPSO-WD 22.50/1.25/76.25 23.75/0.00/76.25 41.25/1.25/57.50 12.50/5.00/82.50 — 20.00/0.00/80.00

QPSO-WE 23.75/0.00/76.25 23.75/0.00/76.25 38.75/0.00/61.25 28.75/16.25/55.00 80.00/0.00/20.00 —

Overall rank 1(72.00/10.25/17.75) 2(50.25/9.25/40.50) 4(44.00/9.50/46.50) 3(50.75/6.25/43.00) 6(24.00/1.50/74.50) 5(39.00/3.25/57.75)

(d) Generalisation mean square error (MSEg)

Classifier Classifier

BP-N BP-WD BP-WE QPSO-N QPSO-WD QPSO-WE

BP-N — 60.00/40.00/0.00 40.00/48.75/11.25 100.00/0.00/0.00 88.75/0.00/11.25 87.50/8.75/3.75

BP-WD 0.00/40.00/60.00 — 23.75/38.75/37.50 100.00/0.00/0.00 85.00/1.25/13.75 86.25/8.75/5.00

BP-WE 11.25/48.75/40.00 37.50/38.75/23.75 — 100.00/0.00/0.00 87.50/1.25/11.25 85.00/8.75/6.25

QPSO-N 0.00/0.00/100.00 0.00/0.00/100.00 0.00/0.00/100.00 — 0.00/5.00/95.00 0.00/0.00/100.00

QPSO-WD 11.25/0.00/88.75 13.75/1.25/85.00 11.25/1.25/87.50 95.00/5.00/0.00 — 17.50/8.75/73.75

QPSO-WE 3.75/8.75/87.50 5.00/8.75/86.25 6.25/8.75/85.00 100.00/0.00/0.00 73.75/8.75/17.50 —

Overall rank 1(75.25/19.50/5.25) 3(59.00/17.75/23.25) 2(64.25/19.50/16.25) 6(0.00/1.00/99.00) 5(29.75/3.25/67.00) 4(37.75/7.00/55.25)

(e) Generalisation percentage correct classification error (PCCg)

Classifier Classifier

BP-N BP-WD BP-WE QPSO-N QPSO-WD QPSO-WE

BP-N — 70.00/30.00/0.00 65.00/32.50/2.50 61.25/2.50/36.25 73.75/0.00/26.25 65.00/3.75/31.25

BP-WD 0.00/30.00/70.00 — 36.25/32.50/31.25 58.75/2.50/38.75 73.75/0.00/26.25 63.75/2.50/33.75

BP-WE 2.50/32.50/65.00 31.25/32.50/36.25 — 51.25/2.50/46.25 58.75/0.00/41.25 52.50/2.50/45.00

QPSO-N 36.25/2.50/61.25 38.75/2.50/58.75 46.25/2.50/51.25 — 58.75/10.00/31.25 50.00/11.25/38.75

QPSO-WD 26.25/0.00/73.75 26.25/0.00/73.75 41.25/0.00/58.75 31.25/10.00/58.75 — 30.00/0.00/70.00

QPSO-WE 31.25/3.75/65.00 33.75/2.50/63.75 45.00/2.50/52.50 38.75/11.25/50.00 70.00/0.00/30.00 —

Overall rank 1(67.00/13.75/19.25) 2(46.50/13.50/40.00) 3(39.25/14.00/46.75) 4(46.00/5.75/48.25) 6(31.00/2.00/67.00) 5(43.75/4.00/52.25)

the problem difficulties for each classifier.

Lastly, SDCPs that have low temporal severity, e.g. abrupt, allowed classifiers to

achieve the best levels of accuracy. Thus, longer environment instances allowed for

better accuracy to be achieved, because there is more time to learn.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 167

Figure 9.1: PCCg versus problem difficulty scatter plot

9.2 Saturation analysis

This section analyses the collective means of the two saturation performance measures

ϕg and ϕv, including their components (refer to Section 8.4.2). Note that the saturation

measures calculate saturation levels for the hidden neurons only. The key objectives of

the saturation analysis are to determine:

1. If the level of saturation experienced by the BP-based classifiers differed from the

level experienced by the QPSO-based classifiers.

2. If the regularised classifiers saturated less than their non-regularised counterparts.

3. If ReLU activation functions helped to reduce saturation.

4. The effects of problem difficulty, environment, dimensionality, and noise on the

saturation levels of the classifiers.

5. If the saturation measures were suitable for ReLU activation functions.

6. If the saturation measures could be simplified.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 168

7. Confirm the presences of complete saturation in QPSO-N.

Table 9.5 presents the statistical and MWU-based ranking analysis of the saturation

levels with regards to the classifiers for each of the problem domains. Table 9.6 presents

the statistical and MWU-based ranking analysis of the saturation levels with regards to

the classifiers for each of the problem difficulties. Table 9.7 presents the statistical and

MWU-based ranking analysis of the saturation levels with regards to the classifiers for

each of the problem environments. Table 9.8 presents the MWU-based ranking results

of how the classifiers faired against each other over all the problems based on saturation

levels. The saturation results in Tables 9.5 to 9.8 show the following:

The saturation measures, i.e. ϕv and ϕg, very closely reflected the same outcomes

for most of the problem domains. The SEA problem domain, however, exhibited some

minor, but negligible variations between ϕv and ϕg. The average Pearson correlation

coefficient for the two measures was 0.995±0.0112. The correlation between the two

measures indicates that only one of the two measures need to be measured. Because ϕg

does not violate the one-pass requirement of SDCPs, and is computationally less complex

than ϕv, it should be preferred over ϕv.

Of the three saturation components for ϕv and ϕg, the components using an upper

bound of one, i.e. ϕ0.1,1v and ϕ0.1,1g , correlated the most with their corresponding satura-

tion measures for the problem domains. The average Pearson correlation coefficients for

ϕv and ϕ0.1,1v was 0.9302±0.2506. The average Pearson correlation coefficients for ϕg and

ϕ0.1,1g was 0.9118±0.2652. The other two components, however, correlated significantly

less with a maximum average Pearson correlation coefficient of 0.7317±0.3506. This

meant that the activation values of the classifiers were mostly in the range [0, 1] most

often regardless of classifier or problem domain. Using only the ϕ0.1,1 component as a

measure of saturation in the hidden neurons should, therefore, be sufficient for streamed

data classifiers using ReLU activation functions.

The complete saturation of QPSO-N was confirmed by the results of the saturation

measures. This supported the explanation in Section 9.1 as to why the QPSO-N showed

abnormal accuracy performance.

The BP classifiers saturated significantly less than the QPSO classifiers the majority

of the time. Thus the BP weights adjustment algorithm was less prone to saturation than

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 169

Table 9.5: Descriptive statistics and MWU-based ranking results of the classifiers with regards

to the collective means of the problem domains for saturation performance measures

(a) Saturation in hidden neurons based on generalisation set (ϕg)

Domain Classifier

BP-N BP-WD BP-WE QPSO-N QPSO-WD QPSO-WE

Hyperplane 0.6774±0.0707 0.6996±0.0860 0.6787±0.0519 0.9978±0.0022 0.7872±0.0095 0.7924±0.0189

1(88.75/3.75/7.50) 3(61.25/7.50/31.25) 2(76.25/6.25/17.50) 6(0.00/0.00/100.00) 4(31.25/8.75/60.00) 5(25.00/8.75/66.25)

Sphere 0.6843±0.0667 0.6947±0.0716 0.6864±0.0708 0.9988±0.0016 0.7815±0.0107 0.8524±0.0401

1(73.75/23.75/2.50) 3(58.75/21.25/20.00) 2(72.50/23.75/3.75) 6(0.00/0.00/100.00) 4(40.00/1.25/58.75) 5(20.00/0.00/80.00)

Thresholds 0.6548±0.0898 0.6588±0.0930 0.7046±0.1173 0.9967±0.0036 0.7135±0.0063 0.8026±0.0179

1(72.50/21.25/6.25) 2(68.75/20.00/11.25) 4(45.00/8.75/46.25) 6(0.00/0.00/100.00) 3(62.50/3.75/33.75) 5(23.75/1.25/75.00)

SEA 0.7072±0.0801 0.7137±0.0799 0.7105±0.0869 0.9987±0.0015 0.7542±0.0037 0.7565±0.0111

1(55.00/28.75/16.25) 4(43.75/25.00/31.25) 2(58.75/21.25/20.00) 6(0.00/0.00/100.00) 5(46.25/20.00/33.75) 3(27.50/42.50/30.00)

Electricity 0.8389±0.0339 0.8615±0.0472 0.4093±0.2423 0.9996±0.0005 0.7236±0.0049 0.7376±0.0067

4(36.25/3.75/60.00) 5(20.00/3.75/76.25) 1(97.50/0.00/2.50) 6(0.00/0.00/100.00) 2(81.25/0.00/18.75) 3(61.25/0.00/38.75)

(b) Saturation in hidden neurons based on validation set (ϕv)

Domain Classifier

BP-N BP-WD BP-WE QPSO-N QPSO-WD QPSO-WE

Hyperplane 0.6777±0.0707 0.6999±0.0859 0.6789±0.0518 0.9980±0.0021 0.7872±0.0096 0.7918±0.0189

1(87.50/5.00/7.50) 3(61.25/8.75/30.00) 2(76.25/6.25/17.50) 6(0.00/0.00/100.00) 4(31.25/8.75/60.00) 5(25.00/8.75/66.25)

Sphere 0.6853±0.0671 0.6953±0.0716 0.6877±0.0716 0.9989±0.0014 0.7823±0.0096 0.8558±0.0385

1(73.75/23.75/2.50) 3(58.75/21.25/20.00) 2(72.50/23.75/3.75) 6(0.00/0.00/100.00) 4(40.00/1.25/58.75) 5(20.00/0.00/80.00)

Thresholds 0.6679±0.0970 0.6700±0.0990 0.7162±0.1236 0.9969±0.0033 0.7147±0.0061 0.8098±0.0193

1(70.00/23.75/6.25) 2(66.25/22.50/11.25) 4(45.00/11.25/43.75) 6(0.00/0.00/100.00) 3(62.50/6.25/31.25) 5(23.75/1.25/75.00)

SEA 0.7079±0.0794 0.7144±0.0792 0.7113±0.0864 0.9989±0.0013 0.7582±0.0053 0.7683±0.0107

1(56.25/27.50/16.25) 3(45.00/25.00/30.00) 2(60.00/20.00/20.00) 6(0.00/0.00/100.00) 4(53.75/12.50/33.75) 5(26.25/32.50/41.25)

Electricity 0.8466±0.0329 0.8689±0.0452 0.4093±0.2424 0.9996±0.0004 0.7237±0.0048 0.7378±0.0067

4(36.25/3.75/60.00) 5(20.00/3.75/76.25) 1(97.50/0.00/2.50) 6(0.00/0.00/100.00) 2(80.00/1.25/18.75) 3(61.25/1.25/37.50)

(c) Saturation in hidden neurons based on generalisation set and upper bound of 1 (ϕ0.1,1g)

Domain Classifier

BP-N BP-WD BP-WE QPSO-N QPSO-WD QPSO-WE

Hyperplane 0.6806±0.0676 0.7028±0.0830 0.6814±0.0496 0.9996±0.0004 0.7872±0.0095 0.7924±0.0189

1(87.50/5.00/7.50) 3(61.25/8.75/30.00) 2(76.25/6.25/17.50) 6(0.00/0.00/100.00) 4(31.25/8.75/60.00) 5(25.00/8.75/66.25)

Sphere 0.6868±0.0659 0.6968±0.0704 0.6894±0.0706 0.9997±0.0003 0.7846±0.0098 0.8639±0.0364

1(72.50/25.00/2.50) 3(58.75/23.75/17.50) 2(71.25/25.00/3.75) 6(0.00/0.00/100.00) 4(40.00/1.25/58.75) 5(20.00/0.00/80.00)

Thresholds 0.6756±0.0989 0.6762±0.0994 0.7273±0.1287 0.9989±0.0012 0.7186±0.0061 0.8394±0.0235

1(67.50/23.75/8.75) 1(67.50/23.75/8.75) 3(43.75/13.75/42.50) 5(0.00/0.00/100.00) 2(65.00/3.75/31.25) 4(22.50/2.50/75.00)

SEA 0.7103±0.0780 0.7165±0.0780 0.7136±0.0852 0.9997±0.0003 0.7665±0.0088 0.8764±0.0143

1(65.00/22.50/12.50) 3(53.75/18.75/27.50) 2(67.50/18.75/13.75) 6(0.00/0.00/100.00) 4(61.25/5.00/33.75) 5(20.00/0.00/80.00)

Electricity 0.8390±0.0339 0.8616±0.0472 0.4603±0.3042 0.9999±0.0001 0.7237±0.0049 0.7376±0.0067

4(41.25/3.75/55.00) 5(22.50/5.00/72.50) 2(81.25/1.25/17.50) 6(0.00/0.00/100.00) 1(85.00/0.00/15.00) 3(65.00/0.00/35.00)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 170

the QPSO weights adjustment algorithm. Using ReLU activation functions with the BP

weights adjustment algorithm, therefore, is effective in handling saturation. However,

the same was not true for the QPSO weights adjustment algorithm. This was evident

from the fact that QPSO-N saturated almost completely all the time.

Regularisation helped to reduce saturation in both the regularised BP classifiers

and the regularised QPSO classifiers. Regularisation, however, was more successful in

reducing saturation for the regularised QPSO classifiers than for the regularised BP

classifiers.

BP-WE had the lowest levels of saturation for the BP classifiers. QPSO-WD had

the lowest levels of saturation for the QPSO classifiers. However, WD caused the BP

weights adjustment algorithm to become less effective at handling saturation. Hence,

the behaviour of the regularisation approaches differed over different weights adjustment

algorithms.

The regularised QPSO classifiers had significantly more consistent saturation lev-

els than the BP classifiers across the problem domains, difficulties, and environments.

Hence, the regularised QPSO classifiers were better at controlling saturation in the hid-

den neurons, than the BP classifiers.

Noise caused the BP classifiers to saturate more. On the other hand, noise caused

the QPSO classifiers to saturate less. On the other hand, problem dimensionality did

not have any significant effect on the saturation levels.

Furthermore, the problem difficulty results show that the more patterns there were

in the SDCP, the more saturated the classifiers became. This relationship, however, was

much more prevalent for the BP classifiers, than for the QPSO classifiers. On the other

hand, the problem environment results showed that as temporal severity decreased and

spatial severity increased, the more saturated the classifiers became. The BP classifiers

were more susceptible to this phenomenon than the QPSO classifiers.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 171

(d) Saturation in hidden neurons based on validation set and upper bound of 1 (ϕ0.1,1v)

Domain Classifier

BP-N BP-WD BP-WE QPSO-N QPSO-WD QPSO-WE

Hyperplane 0.6805±0.0679 0.7027±0.0832 0.6813±0.0497 0.9997±0.0003 0.7872±0.0096 0.7918±0.0189

1(87.50/5.00/7.50) 3(61.25/8.75/30.00) 2(76.25/6.25/17.50) 6(0.00/0.00/100.00) 4(31.25/8.75/60.00) 5(25.00/8.75/66.25)

Sphere 0.6867±0.0661 0.6967±0.0706 0.6893±0.0707 0.9998±0.0003 0.7837±0.0092 0.8638±0.0364

1(72.50/25.00/2.50) 3(58.75/23.75/17.50) 2(71.25/25.00/3.75) 6(0.00/0.00/100.00) 4(40.00/1.25/58.75) 5(20.00/0.00/80.00)

Thresholds 0.6751±0.0992 0.6757±0.0998 0.7269±0.1291 0.9990±0.0011 0.7176±0.0059 0.8390±0.0235

1(67.50/25.00/7.50) 1(67.50/25.00/7.50) 3(43.75/13.75/42.50) 5(0.00/0.00/100.00) 2(62.50/6.25/31.25) 4(22.50/2.50/75.00)

SEA 0.7105±0.0775 0.7168±0.0776 0.7137±0.0847 0.9998±0.0003 0.7664±0.0088 0.8765±0.0143

1(65.00/22.50/12.50) 3(53.75/18.75/27.50) 2(67.50/17.50/15.00) 6(0.00/0.00/100.00) 4(62.50/3.75/33.75) 5(20.00/0.00/80.00)

Electricity 0.8467±0.0329 0.8690±0.0452 0.4603±0.3043 0.9999±0.0001 0.7238±0.0048 0.7378±0.0067

4(41.25/3.75/55.00) 5(21.25/6.25/72.50) 2(81.25/2.50/16.25) 6(0.00/0.00/100.00) 1(83.75/1.25/15.00) 3(65.00/1.25/33.75)

(e) Saturation in hidden neurons based on generalisation set and upper bound of 5 (ϕ0.1,5g)

Domain Classifier

BP-N BP-WD BP-WE QPSO-N QPSO-WD QPSO-WE

Hyperplane 0.9098±0.0265 0.9167±0.0312 0.9103±0.0210 0.9986±0.0014 0.9547±0.0028 0.9536±0.0048

1(87.50/5.00/7.50) 3(62.50/10.00/27.50) 2(78.75/2.50/18.75) 6(0.00/0.00/100.00) 5(25.00/7.50/67.50) 4(30.00/7.50/62.50)

Sphere 0.9012±0.0212 0.9082±0.0243 0.9013±0.0208 0.9993±0.0009 0.9247±0.0074 0.9381±0.0284

2(72.50/25.00/2.50) 3(52.50/16.25/31.25) 1(75.00/22.50/2.50) 6(0.00/0.00/100.00) 5(32.50/7.50/60.00) 4(22.50/18.75/58.75)

Thresholds 0.8488±0.0247 0.8547±0.0267 0.8715±0.0345 0.9976±0.0025 0.9120±0.0054 0.8948±0.0113

1(83.75/16.25/0.00) 2(76.25/16.25/7.50) 3(51.25/16.25/32.50) 6(0.00/0.00/100.00) 5(20.00/10.00/70.00) 4(31.25/16.25/52.50)

SEA 0.9102±0.0339 0.9138±0.0333 0.9111±0.0340 0.9992±0.0009 0.8907±0.0136 0.7939±0.0114

2(45.00/23.75/31.25) 5(25.00/20.00/55.00) 3(36.25/27.50/36.25) 6(0.00/0.00/100.00) 4(57.50/5.00/37.50) 1(96.25/3.75/0.00)

Electricity 0.9647±0.0085 0.9699±0.0108 0.7677±0.0754 0.9998±0.0003 0.9235±0.0027 0.9339±0.0034

4(38.75/1.25/60.00) 5(20.00/1.25/78.75) 1(100.00/0.00/0.00) 6(0.00/0.00/100.00) 2(80.00/0.00/20.00) 3(60.00/0.00/40.00)

(f) Saturation in hidden neurons based on validation set and upper bound of 5 (ϕ0.1,5v)

Domain Classifier

BP-N BP-WD BP-WE QPSO-N QPSO-WD QPSO-WE

Hyperplane 0.9099±0.0264 0.9167±0.0311 0.9104±0.0209 0.9986±0.0014 0.9549±0.0027 0.9537±0.0048

1(87.50/5.00/7.50) 3(62.50/10.00/27.50) 2(78.75/2.50/18.75) 6(0.00/0.00/100.00) 5(25.00/7.50/67.50) 4(30.00/7.50/62.50)

Sphere 0.9013±0.0212 0.9083±0.0242 0.9014±0.0208 0.9993±0.0009 0.9248±0.0074 0.9381±0.0284

2(72.50/25.00/2.50) 3(52.50/16.25/31.25) 1(75.00/22.50/2.50) 6(0.00/0.00/100.00) 5(32.50/7.50/60.00) 4(22.50/18.75/58.75)

Thresholds 0.8489±0.0246 0.8547±0.0266 0.8716±0.0344 0.9976±0.0025 0.9123±0.0054 0.8948±0.0112

1(83.75/16.25/0.00) 2(76.25/16.25/7.50) 3(51.25/16.25/32.50) 6(0.00/0.00/100.00) 5(20.00/10.00/70.00) 4(31.25/16.25/52.50)

SEA 0.9104±0.0338 0.9140±0.0332 0.9113±0.0339 0.9992±0.0009 0.8905±0.0135 0.7939±0.0113

2(45.00/23.75/31.25) 5(22.50/21.25/56.25) 4(36.25/27.50/36.25) 6(0.00/0.00/100.00) 3(58.75/6.25/35.00) 1(96.25/3.75/0.00)

Electricity 0.9665±0.0081 0.9716±0.0103 0.7677±0.0754 0.9997±0.0003 0.9235±0.0027 0.9339±0.0034

4(38.75/1.25/60.00) 5(20.00/1.25/78.75) 1(100.00/0.00/0.00) 6(0.00/0.00/100.00) 2(80.00/0.00/20.00) 3(60.00/0.00/40.00)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 172

(g) Saturation in hidden neurons based on generalisation set and upper bound of 10 (ϕ0.1,10g)

Domain Classifier

BP-N BP-WD BP-WE QPSO-N QPSO-WD QPSO-WE

Hyperplane 0.9549±0.0133 0.9583±0.0156 0.9552±0.0105 0.9980±0.0020 0.9773±0.0014 0.9768±0.0024

1(87.50/5.00/7.50) 3(62.50/10.00/27.50) 2(78.75/2.50/18.75) 6(0.00/0.00/100.00) 5(25.00/7.50/67.50) 4(30.00/7.50/62.50)

Sphere 0.9506±0.0106 0.9541±0.0122 0.9507±0.0104 0.9990±0.0013 0.9623±0.0037 0.9632±0.0147

2(72.50/25.00/2.50) 3(52.50/16.25/31.25) 1(75.00/22.50/2.50) 6(0.00/0.00/100.00) 5(32.50/7.50/60.00) 4(22.50/18.75/58.75)

Thresholds 0.9241±0.0121 0.9272±0.0133 0.9348±0.0163 0.9977±0.0025 0.9559±0.0027 0.9265±0.0197

1(73.75/20.00/6.25) 2(65.00/21.25/13.75) 4(48.75/11.25/40.00) 6(0.00/0.00/100.00) 5(20.00/5.00/75.00) 3(55.00/17.50/27.50)

SEA 0.9551±0.0170 0.9569±0.0167 0.9556±0.0170 0.9990±0.0012 0.9449±0.0071 0.8586±0.0194

2(45.00/22.50/32.50) 5(22.50/20.00/57.50) 4(36.25/26.25/37.50) 6(0.00/0.00/100.00) 3(58.75/6.25/35.00) 1(100.00/0.00/0.00)

Electricity 0.9824±0.0043 0.9850±0.0054 0.8838±0.0377 0.9997±0.0004 0.9617±0.0014 0.9669±0.0017

4(38.75/1.25/60.00) 5(20.00/1.25/78.75) 1(100.00/0.00/0.00) 6(0.00/0.00/100.00) 2(80.00/0.00/20.00) 3(60.00/0.00/40.00)

(h) Saturation in hidden neurons based on validation set and upper bound of 10 (ϕ0.1,10v)

Domain Classifier

BP-N BP-WD BP-WE QPSO-N QPSO-WD QPSO-WE

Hyperplane 0.9550±0.0132 0.9584±0.0155 0.9552±0.0104 0.9980±0.0020 0.9774±0.0013 0.9769±0.0024

1(87.50/5.00/7.50) 3(62.50/10.00/27.50) 2(78.75/2.50/18.75) 6(0.00/0.00/100.00) 5(25.00/7.50/67.50) 4(30.00/7.50/62.50)

Sphere 0.9506±0.0106 0.9541±0.0121 0.9507±0.0104 0.9990±0.0013 0.9624±0.0037 0.9632±0.0147

2(72.50/25.00/2.50) 3(52.50/16.25/31.25) 1(75.00/22.50/2.50) 6(0.00/0.00/100.00) 5(32.50/7.50/60.00) 4(22.50/18.75/58.75)

Thresholds 0.9242±0.0121 0.9273±0.0132 0.9349±0.0163 0.9977±0.0025 0.9561±0.0027 0.9266±0.0197

1(73.75/20.00/6.25) 2(65.00/21.25/13.75) 4(48.75/11.25/40.00) 6(0.00/0.00/100.00) 5(20.00/5.00/75.00) 3(55.00/17.50/27.50)

SEA 0.9552±0.0169 0.9570±0.0166 0.9557±0.0169 0.9990±0.0012 0.9447±0.0070 0.8585±0.0194

2(45.00/22.50/32.50) 5(22.50/20.00/57.50) 4(36.25/26.25/37.50) 6(0.00/0.00/100.00) 3(58.75/6.25/35.00) 1(100.00/0.00/0.00)

Electricity 0.9832±0.0041 0.9858±0.0051 0.8839±0.0377 0.9996±0.0004 0.9618±0.0014 0.9670±0.0017

4(38.75/1.25/60.00) 5(20.00/1.25/78.75) 1(100.00/0.00/0.00) 6(0.00/0.00/100.00) 2(80.00/0.00/20.00) 3(60.00/0.00/40.00)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 173

Table 9.6: Descriptive statistics and MWU-based ranking results of the classifiers with regards

to the collective means of the problem difficulty for saturation performance measures

(a) Saturation in hidden neurons based on generalisation set (ϕg)

Difficulty Classifier

BP-N BP-WD BP-WE QPSO-N QPSO-WD QPSO-WE

Easy 0.7753±0.0546 0.8041±0.0664 0.7538±0.0695 0.9998±0.0001 0.7510±0.0307 0.8048±0.0595

2(67.00/9.00/24.00) 4(41.00/12.00/47.00) 3(59.00/10.00/31.00) 6(0.00/0.00/100.00) 1(72.00/5.00/23.00) 5(36.00/14.00/50.00)

Moderate-I 0.7564±0.0619 0.7644±0.0666 0.6288±0.2396 0.9992±0.0006 0.7563±0.0323 0.7916±0.0445

2(60.00/21.00/19.00) 3(47.00/21.00/32.00) 1(65.00/17.00/18.00) 6(0.00/0.00/100.00) 4(55.00/9.00/36.00) 5(31.00/16.00/53.00)

Moderate-II 0.6813±0.0735 0.6939±0.0768 0.6245±0.1326 0.9983±0.0017 0.7502±0.0318 0.7851±0.0446

2(73.00/10.00/17.00) 3(57.00/8.00/35.00) 1(80.00/7.00/13.00) 6(0.00/0.00/100.00) 4(42.00/7.00/51.00) 5(29.00/6.00/65.00)

Hard 0.6371±0.1113 0.6401±0.1128 0.5444±0.1464 0.9960±0.0031 0.7505±0.0300 0.7716±0.0222

2(61.00/25.00/14.00) 3(57.00/21.00/22.00) 1(76.00/14.00/10.00) 6(0.00/0.00/100.00) 4(40.00/6.00/54.00) 5(30.00/6.00/64.00)

(b) Saturation in hidden neurons based on validation set (ϕv)

Difficulty Classifier

BP-N BP-WD BP-WE QPSO-N QPSO-WD QPSO-WE

Easy 0.7807±0.0548 0.8081±0.0655 0.7581±0.0740 0.9998±0.0001 0.7514±0.0304 0.8089±0.0587

2(67.00/9.00/24.00) 4(41.00/13.00/46.00) 3(59.00/10.00/31.00) 6(0.00/0.00/100.00) 1(74.00/3.00/23.00) 5(35.00/13.00/52.00)

Moderate-I 0.7627±0.0635 0.7703±0.0682 0.6326±0.2418 0.9993±0.0006 0.7581±0.0323 0.7965±0.0444

2(60.00/21.00/19.00) 3(47.00/21.00/32.00) 1(66.00/16.00/18.00) 6(0.00/0.00/100.00) 4(55.00/11.00/34.00) 5(31.00/13.00/56.00)

Moderate-II 0.6852±0.0753 0.6978±0.0790 0.6264±0.1337 0.9983±0.0017 0.7507±0.0314 0.7889±0.0445

2(73.00/10.00/17.00) 3(57.00/8.00/35.00) 1(80.00/7.00/13.00) 6(0.00/0.00/100.00) 4(45.00/4.00/51.00) 5(29.00/3.00/68.00)

Hard 0.6397±0.1123 0.6425±0.1139 0.5455±0.1467 0.9963±0.0029 0.7526±0.0301 0.7764±0.0230

2(59.00/27.00/14.00) 3(56.00/23.00/21.00) 1(76.00/16.00/8.00) 6(0.00/0.00/100.00) 4(40.00/6.00/54.00) 5(30.00/6.00/64.00)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 174

Table 9.7: Descriptive statistics and MWU-based ranking results of the classifiers with regards

to the collective means of the problem environments for saturation performance measures

(a) Saturation in hidden neurons based on generalisation set (ϕg)

Environment Classifier

BP-N BP-WD BP-WE QPSO-N QPSO-WD QPSO-WE

Progressive 0.6303±0.0655 0.6369±0.0682 0.6481±0.0773 0.9968±0.0027 0.7524±0.0317 0.7908±0.0319

1(75.56/19.44/5.00) 2(66.67/16.11/17.22) 3(68.33/12.22/19.44) 6(0.00/0.00/100.00) 4(36.11/7.22/56.67) 5(22.22/7.22/70.56)

Abrupt 0.7932±0.0566 0.8320±0.0724 0.7753±0.0605 0.9999±0.0000 0.7475±0.0289 0.7958±0.0665

2(65.71/5.71/28.57) 5(31.43/11.43/57.14) 3(57.14/5.71/37.14) 6(0.00/0.00/100.00) 1(77.14/8.57/14.29) 4(42.86/20.00/37.14)

Chaotic 0.7773±0.0539 0.7918±0.0584 0.6020±0.2332 0.9995±0.0004 0.7525±0.0309 0.7844±0.0528

2(55.14/15.14/29.73) 4(38.38/15.68/45.95) 1(74.05/12.97/12.97) 6(0.00/0.00/100.00) 3(63.24/5.95/30.81) 5(38.38/11.89/49.73)

(b) Saturation in hidden neurons based on validation set (ϕv)

Environment Classifier

BP-N BP-WD BP-WE QPSO-N QPSO-WD QPSO-WE

Progressive 0.6340±0.0672 0.6402±0.0696 0.6514±0.0802 0.9970±0.0025 0.7539±0.0313 0.7965±0.0306

1(73.89/21.11/5.00) 2(65.56/17.78/16.67) 3(68.33/13.33/18.33) 6(0.00/0.00/100.00) 4(38.33/6.11/55.56) 5(22.22/5.00/72.78)

Abrupt 0.7976±0.0562 0.8348±0.0715 0.7783±0.0643 0.9999±0.0000 0.7478±0.0287 0.7996±0.0658

2(65.71/5.71/28.57) 5(31.43/11.43/57.14) 3(57.14/5.71/37.14) 6(0.00/0.00/100.00) 1(80.00/5.71/14.29) 4(42.86/17.14/40.00)

Chaotic 0.7826±0.0562 0.7968±0.0602 0.6042±0.2351 0.9995±0.0004 0.7535±0.0310 0.7877±0.0530

2(55.68/14.59/29.73) 4(38.92/15.68/45.41) 1(74.59/12.43/12.97) 6(0.00/0.00/100.00) 3(63.24/5.95/30.81) 5(37.84/10.81/51.35)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 175

Table 9.8: MWU-based pairwise comparison of the classifiers for saturation performance

measures (Wins/Ties/Losses percentages)

(a) Saturation in hidden neurons based on generalisation set (ϕg)

Classifier Classifier

BP-N BP-WD BP-WE QPSO-N QPSO-WD QPSO-WE

BP-N — 56.25/43.75/0.00 36.25/27.50/36.25 100.00/0.00/0.00 63.75/1.25/35.00 70.00/8.75/21.25

BP-WD 0.00/43.75/56.25 — 25.00/23.75/51.25 100.00/0.00/0.00 58.75/2.50/38.75 68.75/7.50/23.75

BP-WE 36.25/27.50/36.25 51.25/23.75/25.00 — 100.00/0.00/0.00 78.75/1.25/20.00 83.75/7.50/8.75

QPSO-N 0.00/0.00/100.00 0.00/0.00/100.00 0.00/0.00/100.00 — 0.00/0.00/100.00 0.00/0.00/100.00

QPSO-WD 35.00/1.25/63.75 38.75/2.50/58.75 20.00/1.25/78.75 100.00/0.00/0.00 — 67.50/28.75/3.75

QPSO-WE 21.25/8.75/70.00 23.75/7.50/68.75 8.75/7.50/83.75 100.00/0.00/0.00 3.75/28.75/67.50 —

Overall rank 2(65.25/16.25/18.50) 3(50.50/15.50/34.00) 1(70.00/12.00/18.00) 6(0.00/0.00/100.00) 4(52.25/6.75/41.00) 5(31.50/10.50/58.00)

(b) Saturation in hidden neurons based on validation set (ϕv)

Classifier Classifier

BP-N BP-WD BP-WE QPSO-N QPSO-WD QPSO-WE

BP-N — 55.00/45.00/0.00 35.00/28.75/36.25 100.00/0.00/0.00 62.50/2.50/35.00 71.25/7.50/21.25

BP-WD 0.00/45.00/55.00 — 23.75/25.00/51.25 100.00/0.00/0.00 57.50/3.75/38.75 70.00/7.50/22.50

BP-WE 36.25/28.75/35.00 51.25/25.00/23.75 — 100.00/0.00/0.00 78.75/1.25/20.00 85.00/6.25/8.75

QPSO-N 0.00/0.00/100.00 0.00/0.00/100.00 0.00/0.00/100.00 — 0.00/0.00/100.00 0.00/0.00/100.00

QPSO-WD 35.00/2.50/62.50 38.75/3.75/57.50 20.00/1.25/78.75 100.00/0.00/0.00 — 73.75/22.50/3.75

QPSO-WE 21.25/7.50/71.25 22.50/7.50/70.00 8.75/6.25/85.00 100.00/0.00/0.00 3.75/22.50/73.75 —

Overall rank 2(64.75/16.75/18.50) 3(50.25/16.25/33.50) 1(70.25/12.25/17.50) 6(0.00/0.00/100.00) 4(53.50/6.00/40.50) 5(31.25/8.75/60.00)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 176

9.3 Complexity performance analysis

This section analyses the collective means of the three complexity performance measures

nsor , nhor and Ωr (refer to sections 8.4.4 and 8.4.5). The key objectives of the complexity

performance analysis are to determine:

1. How well the classifiers reduced their computational complexity. The complexity

reduction measure, Ωr, is used as an indicator for the reduction in computational

complexity.

2. How well the classifiers maintained their structural complexity. The oversize ratios

for synapses (nsor) and hidden neurons (nhor) are used as indicators for the level

of structural complexity.

3. Whether the regularised classifiers were less complex than their non-regularised

counterparts.

4. Whether the regularised QPSO classifiers were less complex than their regularised

BP counterparts.

5. Whether or not WE was better than WD, at reducing the complexity of the models.

6. Whether or not regularisation managed to find the optimal architectures for the

various problem domains.

7. How the computational and structural complexity measures compared.

8. The effects of problem difficulty, environment, dimensionality, noise and saturation

on the complexity performance of the classifiers.

9. The relation between the accuracy and complexity of the classifiers.

Table 9.9 presents the statistical and MWU-based ranking analysis of the complexity

performance with regards to the classifiers for each of the problem domains. Table 9.10

presents the statistical and MWU-based ranking analysis of the complexity performance

with regards to the classifiers for each of the problem difficulties. Table 9.11 presents the

statistical and MWU-based ranking analysis of the complexity performance with regards

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 177

to the classifiers for each of the problem environments. Table 9.12 presents the overall

MWU-based ranking results of how the classifiers faired against each other based on

their complexity performance. The complexity performance results in Tables 9.9 to 9.12

show the following:

The synapse oversize ratio (nsor) and the complexity reduction measure (Ωr) pro-

duced the same rankings for the problem domains, problem difficulties, and problem

environments. Therefore, either measure can be used to estimate the lower bound com-

putational complexity of a FFNN. Furthermore, The values for nsor never exceeded 1.67.

Architecture selection should therefore be employed by FFNN streamed data classifiers.

The mean values for nsor were significantly lower than the mean values of hidden

neuron oversize ratio (nhor) for all the problem domains, problem difficulties, and problem

environments. Thus, as expected, synapses have a higher chance of being irrelevant than

hidden neurons. Architecture selection algorithms for SDCP should, therefore, function

at a synapse level rather than at a neuron level.

The above observations also provided evidence that the pruning algorithm proposed

by Engelbrecht [31] was able to determine the effective model for the FFNN classifiers.

The BP classifiers had the worst complexity performance results, therefore, the BP

weights adjustment algorithm was not naturally proficient at maintaining complexity.

On the other hand, QPSO-N had the best complexity performance, however, QPSO-N

was completely saturated. Complete saturation thus improves complexity performance,

because complete saturation degrades information capacity thereby rendering various

hidden neurons irrelevant and prune-able.

WE helped both weight adjustment algorithms, i.e. BP and QPSO, to achieve better

complexity performance, than WD. However, not all regularisation approaches aided the

complexity performance of the BP weights adjustment algorithm, for example WD.

QPSO-WD and QPSO-WE were outperformed by QPSO-N with regards to com-

plexity performance. However, both classifiers maintained reasonable saturation levels

(refer to Section 9.2). Thus, regularisation helped to boost the complexity performance

of the QPSO weights adjustment algorithm without allowing unwanted saturation in the

hidden neurons.

Generally, complexity and saturation levels correlated to the extent, that the more

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 178

Table 9.9: Descriptive statistics and MWU-based ranking results of the classifiers with regards

to the collective means of the problem domains for complexity performance measures

(a) Synapse oversize ratio (nsor)

Domain Classifier

BP-N BP-WD BP-WE QPSO-N QPSO-WD QPSO-WE

Hyperplane 1.0353±0.4076 0.9993±0.4344 1.0882±0.3281 0.4831±0.4538 1.0830±0.0758 1.0455±0.1257

4(32.50/11.25/56.25) 2(48.75/12.50/38.75) 6(28.75/10.00/61.25) 1(92.50/1.25/6.25) 5(27.50/13.75/58.75) 3(38.75/13.75/47.50)

Sphere 1.3240±0.1977 1.3182±0.2016 1.2483±0.2260 0.4353±0.3242 0.8249±0.0937 0.7404±0.1358

6(0.00/17.50/82.50) 5(3.75/18.75/77.50) 4(36.25/3.75/60.00) 1(92.50/5.00/2.50) 3(61.25/7.50/31.25) 2(76.25/7.50/16.25)

Thresholds 1.4926±0.1906 1.4923±0.1923 1.3266±0.3675 0.5722±0.2152 0.9077±0.0542 0.8847±0.0706

5(2.50/23.75/73.75) 6(1.25/23.75/75.00) 4(31.25/13.75/55.00) 1(95.00/5.00/0.00) 3(56.25/15.00/28.75) 2(63.75/18.75/17.50)

SEA 1.6581±0.1540 1.6638±0.1553 1.5526±0.1951 0.3129±0.2499 0.8123±0.1015 0.8336±0.1582

5(2.50/18.75/78.75) 6(1.25/17.50/81.25) 4(36.25/3.75/60.00) 1(97.50/2.50/0.00) 2(67.50/13.75/18.75) 3(60.00/13.75/26.25)

Electricity 1.0709±0.3756 0.9983±0.4437 0.2669±0.1122 0.2473±0.2809 0.7608±0.2385 0.7394±0.2357

6(0.00/6.25/93.75) 5(21.25/7.50/71.25) 2(83.75/0.00/16.25) 1(93.75/2.50/3.75) 4(35.00/3.75/61.25) 3(55.00/2.50/42.50)

(b) Hidden neuron oversize ratio (nhor)

Domain Classifier

BP-N BP-WD BP-WE QPSO-N QPSO-WD QPSO-WE

Hyperplane 1.8140±0.1184 1.8151±0.1176 1.8201±0.1115 1.2011±0.2073 1.6515±0.0518 1.6022±0.0859

4(21.25/16.25/62.50) 5(12.50/15.00/72.50) 6(6.25/8.75/85.00) 1(100.00/0.00/0.00) 3(60.00/7.50/32.50) 2(72.50/7.50/20.00)

Sphere 1.8054±0.0871 1.8057±0.0861 1.7788±0.1111 1.1468±0.1307 1.3932±0.0423 1.3627±0.0579

5(6.25/27.50/66.25) 6(5.00/27.50/67.50) 4(5.00/32.50/62.50) 1(97.50/2.50/0.00) 3(60.00/10.00/30.00) 2(71.25/10.00/18.75)

Thresholds 1.9997±0.0003 1.9996±0.0004 1.8337±0.2273 1.2406±0.1687 1.6366±0.0277 1.5513±0.0292

6(0.00/26.25/73.75) 5(1.25/26.25/72.50) 4(31.25/16.25/52.50) 1(100.00/0.00/0.00) 3(56.25/0.00/43.75) 2(76.25/1.25/22.50)

SEA 1.9765±0.0282 1.9776±0.0264 1.8996±0.0946 1.0949±0.0925 1.3500±0.0442 1.3749±0.0749

5(2.50/25.00/72.50) 6(0.00/23.75/76.25) 4(26.25/13.75/60.00) 1(100.00/0.00/0.00) 2(65.00/15.00/20.00) 3(60.00/15.00/25.00)

Electricity 1.9237±0.1198 1.8465±0.2632 1.3621±0.1805 1.0792±0.1110 1.4457±0.0934 1.4529±0.0979

6(3.75/7.50/88.75) 5(11.25/7.50/81.25) 2(66.25/7.50/26.25) 1(100.00/0.00/0.00) 3(48.75/16.25/35.00) 4(42.50/16.25/41.25)

(c) Complexity reduction (Ωr)

Domain Classifier

BP-N BP-WD BP-WE QPSO-N QPSO-WD QPSO-WE

Hyperplane 38.2707±19.5678 39.9280±20.7881 35.7858±15.8544 68.0819±22.4192 37.2063±3.8543 39.2882±6.4000

4(32.50/10.00/57.50) 2(47.50/12.50/40.00) 6(27.50/10.00/62.50) 1(92.50/2.50/5.00) 5(28.75/11.25/60.00) 3(41.25/13.75/45.00)

Sphere 25.0045±8.1887 25.2092±8.3043 28.0618±9.5303 65.5667±13.3104 48.3571±3.9048 51.7793±5.6133

6(1.25/16.25/82.50) 5(3.75/17.50/78.75) 4(36.25/3.75/60.00) 1(92.50/7.50/0.00) 3(60.00/8.75/31.25) 2(75.00/8.75/16.25)

Thresholds 13.4331±7.0227 13.4445±7.0883 21.2988±15.8277 55.3341±9.6979 38.8067±2.2554 40.5509±2.8741

5(2.50/23.75/73.75) 6(1.25/23.75/75.00) 4(32.50/12.50/55.00) 1(96.25/3.75/0.00) 3(56.25/7.50/36.25) 2(70.00/11.25/18.75)

SEA 10.7911±5.8345 10.5770±5.8643 15.5920±8.1741 70.6273±10.1498 49.3925±4.2119 48.2965±6.6059

5(3.75/17.50/78.75) 6(1.25/16.25/82.50) 4(36.25/3.75/60.00) 1(97.50/2.50/0.00) 2(68.75/12.50/18.75) 3(60.00/12.50/27.50)

Electricity 36.9424±16.0253 40.5884±20.0353 74.4535±6.1764 77.9930±12.2729 53.9616±10.4044 54.7438±10.3306

6(0.00/6.25/93.75) 5(18.75/6.25/75.00) 2(82.50/1.25/16.25) 1(93.75/3.75/2.50) 4(37.50/5.00/57.50) 3(53.75/5.00/41.25)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 179

Table 9.10: Descriptive statistics and MWU-based ranking results of the classifiers with

regards to the collective means of the problem difficulty for complexity performance measures

(a) Synapse oversize ratio (nsor)

Difficulty Classifier

BP-N BP-WD BP-WE QPSO-N QPSO-WD QPSO-WE

Easy 1.0001±0.4229 0.9489±0.4850 0.8042±0.4267 0.1467±0.1156 0.7546±0.2130 0.6771±0.2024

6(12.00/10.00/78.00) 5(26.00/11.00/63.00) 3(51.00/3.00/46.00) 1(100.00/0.00/0.00) 4(38.00/8.00/54.00) 2(53.00/8.00/39.00)

Moderate-I 1.4224±0.2995 1.4041±0.3392 1.1824±0.5020 0.3447±0.1930 0.9392±0.1134 0.9225±0.1199

6(4.00/14.00/82.00) 5(14.00/15.00/71.00) 4(48.00/3.00/49.00) 1(100.00/0.00/0.00) 3(48.00/13.00/39.00) 2(58.00/11.00/31.00)

Moderate-II 1.2433±0.2548 1.2321±0.2663 1.0308±0.4299 0.2972±0.1617 0.8281±0.1232 0.7993±0.1365

6(12.00/12.00/76.00) 5(17.00/12.00/71.00) 4(43.00/3.00/54.00) 1(100.00/0.00/0.00) 3(49.00/5.00/46.00) 2(60.00/6.00/34.00)

Hard 1.5991±0.1493 1.5924±0.1520 1.3685±0.5401 0.8520±0.2791 0.9891±0.1074 0.9960±0.1106

6(2.00/26.00/72.00) 5(4.00/26.00/70.00) 4(31.00/16.00/53.00) 1(77.00/13.00/10.00) 3(63.00/17.00/20.00) 2(64.00/20.00/16.00)

(b) Hidden neuron oversize ratio (nhor)

Difficulty Classifier

BP-N BP-WD BP-WE QPSO-N QPSO-WD QPSO-WE

Easy 1.8347±0.1388 1.7778±0.2310 1.5523±0.2595 1.0293±0.0276 1.4437±0.1495 1.3910±0.1216

6(9.00/12.00/79.00) 5(11.00/12.00/77.00) 4(41.00/5.00/54.00) 1(100.00/0.00/0.00) 3(53.00/6.00/41.00) 2(65.00/7.00/28.00)

Moderate-I 1.9454±0.0693 1.9407±0.0715 1.8067±0.2033 1.1235±0.0923 1.5309±0.1282 1.5105±0.0923

6(3.00/22.00/75.00) 5(6.00/19.00/75.00) 4(27.00/19.00/54.00) 1(100.00/0.00/0.00) 3(60.00/9.00/31.00) 2(65.00/9.00/26.00)

Moderate-II 1.8673±0.1318 1.8688±0.1309 1.7255±0.2082 1.0999±0.0767 1.4670±0.1288 1.4425±0.1023

5(13.00/17.00/70.00) 6(4.00/18.00/78.00) 4(26.00/13.00/61.00) 1(100.00/0.00/0.00) 3(60.00/7.00/33.00) 2(66.00/7.00/27.00)

Hard 1.9681±0.0492 1.9683±0.0492 1.8708±0.1921 1.3574±0.1520 1.5399±0.1269 1.5312±0.1104

6(2.00/31.00/67.00) 5(3.00/31.00/66.00) 4(14.00/26.00/60.00) 1(98.00/2.00/0.00) 3(59.00/17.00/24.00) 2(62.00/17.00/21.00)

(c) Complexity reduction (Ωr)

Difficulty Classifier

BP-N BP-WD BP-WE QPSO-N QPSO-WD QPSO-WE

Easy 38.3735±20.2503 41.0578±23.6296 48.4252±20.5454 79.2003±8.1788 50.8954±11.0611 54.4435±10.4101

6(12.00/10.00/78.00) 5(26.00/10.00/64.00) 3(52.00/2.00/46.00) 1(100.00/0.00/0.00) 4(40.00/3.00/57.00) 2(55.00/5.00/40.00)

Moderate-I 20.3844±13.4807 21.2301±15.1635 31.1449±23.3110 70.4918±10.7328 42.8294±6.4122 43.6601±6.3657

6(5.00/12.00/83.00) 5(11.00/14.00/75.00) 4(47.00/3.00/50.00) 1(100.00/0.00/0.00) 3(51.00/8.00/41.00) 2(63.00/9.00/28.00)

Moderate-II 28.0433±12.4052 28.5030±12.9329 37.7471±20.6881 72.5754±9.5302 47.7451±6.4639 49.0907±6.5124

6(13.00/11.00/76.00) 5(17.00/11.00/72.00) 4(43.00/3.00/54.00) 1(100.00/0.00/0.00) 3(49.00/5.00/46.00) 2(60.00/6.00/34.00)

Hard 12.7523±7.1299 13.0067±7.2815 22.8363±24.8065 47.8150±13.3698 40.7094±5.4741 40.5326±5.3570

6(2.00/26.00/72.00) 5(4.00/26.00/70.00) 4(30.00/17.00/53.00) 1(78.00/16.00/6.00) 3(61.00/20.00/19.00) 2(62.00/21.00/17.00)

saturated the hidden neurons of the classifiers were, the less complexity they required.

For instance, the regularised QPSO classifiers had an average Pearson correlation coef-

ficient between ϕg and Ωr of 0.6616±0.3112.

Noise affected complexity performance. That is, the more a classifier captured noise,

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 180

Table 9.11: Descriptive statistics and MWU-based ranking results of the classifiers with re-

gards to the collective means of the problem environments for complexity performance measures

(a) Synapse oversize ratio (nsor)

Environment Classifier

BP-N BP-WD BP-WE QPSO-N QPSO-WD QPSO-WE

Progressive 1.4498±0.2815 1.4457±0.2863 1.3981±0.3051 0.6064±0.3403 0.9098±0.1353 0.9010±0.1566

6(7.78/21.11/71.11) 5(9.44/21.11/69.44) 4(26.67/11.11/62.22) 1(90.00/6.11/3.89) 3(59.44/12.78/27.78) 2(62.78/15.56/21.67)

Abrupt 0.8959±0.4648 0.8327±0.5350 0.6786±0.4619 0.1008±0.0971 0.6469±0.2452 0.5615±0.2032

6(8.57/8.57/82.86) 5(25.71/11.43/62.86) 3(57.14/0.00/42.86) 1(100.00/0.00/0.00) 4(37.14/8.57/54.29) 2(54.29/5.71/40.00)

Chaotic 1.2658±0.3593 1.2345±0.4045 0.8821±0.5267 0.2778±0.2210 0.8902±0.1557 0.8522±0.1697

6(7.03/11.35/81.62) 5(18.92/11.89/69.19) 3(56.76/2.70/40.54) 1(97.30/1.08/1.62) 4(42.16/9.19/48.65) 2(55.68/8.11/36.22)

(b) Hidden neuron oversize ratio (nhor)

Environment Classifier

BP-N BP-WD BP-WE QPSO-N QPSO-WD QPSO-WE

Progressive 1.9138±0.1156 1.9147±0.1147 1.8729±0.1381 1.2444±0.1748 1.5200±0.1437 1.4892±0.1199

5(7.22/26.67/66.11) 6(3.33/27.22/69.44) 4(12.78/21.11/66.11) 1(98.89/1.11/0.00) 3(61.11/8.89/30.00) 2(69.44/9.44/21.11)

Abrupt 1.8063±0.1611 1.7128±0.3011 1.4687±0.3064 1.0133±0.0134 1.3793±0.1532 1.3276±0.1179

6(5.71/11.43/82.86) 5(17.14/11.43/71.43) 4(45.71/5.71/48.57) 1(100.00/0.00/0.00) 3(48.57/8.57/42.86) 2(60.00/8.57/31.43)

Chaotic 1.9127±0.1023 1.8971±0.1364 1.6595±0.2419 1.0895±0.0891 1.4935±0.1193 1.4756±0.1024

5(6.49/16.22/77.30) 6(6.49/14.59/78.92) 4(37.30/12.43/50.27) 1(100.00/0.00/0.00) 3(56.76/10.81/32.43) 2(60.54/10.81/28.65)

(c) Complexity reduction (Ωr)

Environment Classifier

BP-N BP-WD BP-WE QPSO-N QPSO-WD QPSO-WE

Progressive 18.3308±12.8432 18.4948±13.0873 20.6277±13.5472 57.4849±15.6555 42.8254±6.6542 43.4609±7.0773

6(8.33/20.56/71.11) 5(9.44/20.56/70.00) 4(26.67/11.11/62.22) 1(90.56/7.22/2.22) 3(58.33/12.78/28.89) 2(63.33/14.44/22.22)

Abrupt 42.9507±22.4625 46.4366±26.5322 54.4125±22.7194 81.3608±7.3639 56.2029±12.7666 60.0649±10.8693

6(8.57/8.57/82.86) 5(25.71/8.57/65.71) 3(57.14/0.00/42.86) 1(100.00/0.00/0.00) 4(40.00/5.71/54.29) 2(54.29/5.71/40.00)

Chaotic 27.8515±16.1282 29.3267±18.3145 45.3942±24.4885 74.6667±10.5461 46.1744±7.7276 47.8241±7.9971

6(7.57/10.27/82.16) 5(17.30/11.35/71.35) 3(56.22/2.70/41.08) 1(97.30/1.62/1.08) 4(44.32/5.95/49.73) 2(57.84/7.03/35.14)

the less the classifier could reduce model complexity. This could be seen in the complexity

results of the BP classifiers for the SEA problems begin worse than for other problems.

The complexity performance of the regularised QPSO classifiers did not degrade when

faced with noise in the SEA problems, because regularisation managed to unlearn the

noise as per their accuracy performance (refer to Section 9.1).

An increase in the problem difficulty resulted in a decrease in the complexity per-

formance of the classifiers, and vice versa. Thus, the problem difficulty classification

scheme in Section 8.3.6 could also be used to determine the complexity performance of

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 181

Table 9.12: MWU-based pairwise comparison of the classifiers for complexity performance

measures (Wins/Ties/Losses percentages)

(a) Synapse oversize ratio (nsor)

Classifier Classifier

BP-N BP-WD BP-WE QPSO-N QPSO-WD QPSO-WE

BP-N — 3.75/63.75/32.50 13.75/11.25/75.00 0.00/0.00/100.00 10.00/1.25/88.75 10.00/1.25/88.75

BP-WD 32.50/63.75/3.75 — 13.75/13.75/72.50 0.00/0.00/100.00 15.00/2.50/82.50 15.00/0.00/85.00

BP-WE 75.00/11.25/13.75 72.50/13.75/13.75 — 3.75/0.00/96.25 33.75/2.50/63.75 31.25/3.75/65.00

QPSO-N 100.00/0.00/0.00 100.00/0.00/0.00 96.25/0.00/3.75 — 88.75/6.25/5.00 86.25/10.00/3.75

QPSO-WD 88.75/1.25/10.00 82.50/2.50/15.00 63.75/2.50/33.75 5.00/6.25/88.75 — 7.50/41.25/51.25

QPSO-WE 88.75/1.25/10.00 85.00/0.00/15.00 65.00/3.75/31.25 3.75/10.00/86.25 51.25/41.25/7.50 —

Overall rank 6(7.50/15.50/77.00) 5(15.25/16.00/68.75) 4(43.25/6.25/50.50) 1(94.25/3.25/2.50) 3(49.50/10.75/39.75) 2(58.75/11.25/30.00)

(b) Hidden neuron oversize ratio (nhor)

Classifier Classifier

BP-N BP-WD BP-WE QPSO-N QPSO-WD QPSO-WE

BP-N — 20.00/66.25/13.75 13.75/36.25/50.00 0.00/0.00/100.00 0.00/0.00/100.00 0.00/0.00/100.00

BP-WD 13.75/66.25/20.00 — 13.75/33.75/52.50 0.00/0.00/100.00 1.25/0.00/98.75 1.25/0.00/98.75

BP-WE 50.00/36.25/13.75 52.50/33.75/13.75 — 0.00/0.00/100.00 16.25/3.75/80.00 16.25/5.00/78.75

QPSO-N 100.00/0.00/0.00 100.00/0.00/0.00 100.00/0.00/0.00 — 98.75/1.25/0.00 98.75/1.25/0.00

QPSO-WD 100.00/0.00/0.00 98.75/0.00/1.25 80.00/3.75/16.25 0.00/1.25/98.75 — 11.25/43.75/45.00

QPSO-WE 100.00/0.00/0.00 98.75/0.00/1.25 78.75/5.00/16.25 0.00/1.25/98.75 45.00/43.75/11.25 —

Overall rank 5(6.75/20.50/72.75) 6(6.00/20.00/74.00) 4(27.00/15.75/57.25) 1(99.50/0.50/0.00) 3(58.00/9.75/32.25) 2(64.50/10.00/25.50)

(c) Complexity reduction (Ωr)

Classifier Classifier

BP-N BP-WD BP-WE QPSO-N QPSO-WD QPSO-WE

BP-N — 6.25/61.25/32.50 13.75/11.25/75.00 0.00/0.00/100.00 10.00/1.25/88.75 10.00/0.00/90.00

BP-WD 32.50/61.25/6.25 — 13.75/13.75/72.50 0.00/0.00/100.00 13.75/0.00/86.25 12.50/1.25/86.25

BP-WE 75.00/11.25/13.75 72.50/13.75/13.75 — 2.50/1.25/96.25 35.00/0.00/65.00 30.00/5.00/65.00

QPSO-N 100.00/0.00/0.00 100.00/0.00/0.00 96.25/1.25/2.50 — 88.75/8.75/2.50 87.50/10.00/2.50

QPSO-WD 88.75/1.25/10.00 86.25/0.00/13.75 65.00/0.00/35.00 2.50/8.75/88.75 — 8.75/35.00/56.25

QPSO-WE 90.00/0.00/10.00 86.25/1.25/12.50 65.00/5.00/30.00 2.50/10.00/87.50 56.25/35.00/8.75 —

Overall rank 6(8.00/14.75/77.25) 5(14.50/15.25/70.25) 4(43.00/6.25/50.75) 1(94.50/4.00/1.50) 3(50.25/9.00/40.75) 2(60.00/10.25/29.75)

classifier for SDCPs at a high-level.

Furthermore, the more times a unique input–target pair was repeated, the more fitted

the classifiers became, and accordingly, the more complexity was reduced. The degree

of fitting of the classifiers was also significantly influenced by temporal severity, but not

significantly by spatial severity.

Abrupt environments resulted in the best complexity performance, and progressive

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 182

environments the worst.

The dimensionality of a problem had inconsistent effects on complexity performance

between the BP classifiers and the QPSO classifiers. That is, higher dimensional prob-

lems, i.e. the hyperplane and electricity domains, lead to better complexity performance

for the BP classifiers. On the other hand, higher dimensional problems, lead to worse

complexity performance for the QPSO classifiers.

Lastly, the complexity results and correlation coefficients showed that there was no

consistent relationship between accuracy and complexity performance.

9.4 Saturation, accuracy and complexity performance

trends analysis

The statistical analysis of the saturation levels, accuracy performance and complexity

performance in the previous sections, resulted in various findings, including several re-

lationships between the performance measures. The statistical analyses were, however,

performed on the collective means of the performance measures. This only gave a high-

level view of the classifiers’ performance.

A low-level analysis that considers the performance trends of the classifiers over

time for each benchmark problem is, therefore, carried out in this section to verify

and confirm the findings of the previous sections. Furthermore, investigation of the

performance trends of the classifiers allowed the time-based behaviours of the classifiers

to be identified.

This section compares the performance trends of ϕg, MSEg, MSEm, MSEt, PCCg,

PCCm, and Ωr on each of the benchmark problems. Because PCCg, PCCm, and Ωr

were in the range [0, 100], the values of ϕg, MSEg, MSEm, and MSEt were linearly

scaled to the same range by multiplying their values by 100. Furthermore, ϕv was not

used because it was shown in the saturation analysis (refer to Section 9.2) that ϕv was

practically identical to ϕg.

Note that, due to the sheer volume of performance trend graphs used by this analysis,

the graphs have been omitted from this section. However, the graphs are presented in

appendix A for the benefit of the reader.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 183

Figure A.1 in appendix A provides the legend for all the performance trend graphs

analysed in this section.

The performance trends of the classifiers for the five problem domains are presented

in figures A.2 to A.41. The figures are grouped according to the problem domain. These

figures are then further grouped and sorted according to the window step size (ws) series,

i.e. series A to series D, and the weights adjustment algorithm, i.e. BP and QPSO. Figure

A.2, for example, presents the performance trend graphs of the BP classifiers for the A1

to A4 hyperplane problems. Analysis of the performance trends in figures A.2 to A.41

revealed the following:

The performance trends of the BP classifiers were very similar to each other per

benchmark problem. Thus, using regularisation with the BP weights adjustment al-

gorithm to learn a ReLU FFNN SDCP did not improve performance trends. WE did

manage to slightly improve the complexity reduction trends of the BP weights adjust-

ment algorithm, but at the expense of the accuracy performance trends.

Furthermore, the sub-par accuracy trends of the BP classifiers for the SEA and

electricity problems supported the idea that a static weights adjustment algorithm like

BP, regardless of regularisation, was not suitable for noisy SDCPs.

The saturation trends of the BP classifiers generally showed a progressive or rapid

increase to high levels. Furthermore, the BP-WE completely saturated for the electricity

A4 problem. Thus, the BP classifiers stood a high chance of complete saturation for

SDCPs with longer data streams. Investigation into problems with longer data streams

should be carried out in future work.

The performance trends of QPSO-N oscillated widely and showed an early onset of

complete saturation for all benchmark problems. The complete saturation caused the

trends of the PCC measures to be very similar to each other, the same was true for the

trends of the MSE measures. Furthermore, complete saturation caused the complexity

reduction trends for the QPSO-N to rise rapidly and remain stable around a high level,

e.g. 90%. This supports findings that complete saturation occurs after some learning has

taken place and leads to irrevocable overfitting, because of a significant loss of information

capacity. The performance trends of QPSO-N therefore confirmed that the classifier

completely saturated on all SDCPs.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 184

The accuracy performance trends of the classifiers were effected more severely by

complete saturation when the classifiers dealt with SDCPs that had more than two target

classes than when the classifiers dealt with SDCPs that only had two target classes. This

supported the explanation given in the accuracy performance analysis (refer to Section

9.1).

WD and WE regularisation significantly improved the performance trends of the

QPSO weights adjustment algorithm. Regularisation stabilised saturation trends for

the QPSO weights adjustment algorithm through the stabilisation of the complexity

reduction trend. The performance trends suggested that only saturation in the hidden

neurons that was necessary for accuracy performance was preserved by regularised QPSO

classifiers. QPSO-WE was the best at distinguishing between necessary and unnecessary

saturation for most problems. QPSO-WD, however, reduced all saturation regardless.

The main reason for this is the difference in the aggressiveness of the weight penalisation

for the two regularisation terms.

QPSO-WE and QPSO-WD handled noisy SDCPs differently. QPSO-WE showed

possible signs that it might be susceptible to overfitting for very long data streams

when noise is present. The aggressive weight penalisation by QPSO-WD prevented any

overfitting. Thus the aggressive weight penalisation is not necessarily detrimental for its

accuracy performance on noisy SDCPs. Regardless, the performance trends suggested

that QPSO-WE was better than QPSO-WD for the noisy problems, because not only

could QPSO-WE learn to generalise effectively and maintain complexity, but QPSO-WE

could also remember effectively.

The regularised QPSO classifiers were not good at remembering, whereas the BP

classifiers were only able to forget some of what they had learnt. This was evident in

the memory accuracy trends, i.e. MSEm and PCCm, that were usually worse than

the generalisation accuracy trends, i.e. MSEg and PCCg. Furthermore, the MSEm

trends of the regularised QPSO classifiers were most of the time significantly worse

than their MSEg and MSEt trends. Note that the MSEt trends came close to zero in

most problems, and in some cases stayed close to zero for the duration of the problem.

Both BP and QPSO weight adjustment algorithms were unable to adjust the rates at

which they learnt and unlearned information as needed. A possible solution would be to

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 185

dynamically adjust η for the BP classifiers and λr for all the classifiers.

The PCC trends and their MSE counterparts shared an inverted relationship for

the majority of the benchmark problems, as expected. The PCC trends, however, were

significantly more sensitive to environment changes than the MSE trends. Thus the

classifiers stayed close to the correct outputs even when they classified incorrectly. Note

that PCC operates in a discrete space, i.e. 0% or 100%, while MSE operates in a

continuous space, i.e. [0, 1].

The BP classifiers were able to delay saturation longer for SDCPs that had a high

temporal severity and a low amount of information, i.e. large window step size. On the

other hand, high temporal severity appeared to prevent the regularised QPSO classifiers

from learning, because the rate at which they unlearned information were too large.

The BP classifiers were not effective at forgetting, whereas the regularised QPSO

classifiers were. This was supported by the decreasing complexity reduction trends (Ωr)

and increasing saturation trends of the BP classifiers for most benchmark problems.

On the other hand, QPSO classifiers had more constant and stable trends in terms of

complexity reduction and saturation.

The BP classifiers showed signs of overfitting to early environment instances, because

of their very high learning rate. Further investigation into overfitting and optimising the

learning rate is required. Additionally, the benchmark suite should also generate longer

data streams from the problem domains to support this further investigation.

The regularised QPSO classifiers were able to get near to the optimal complexity

levels consistently, whereas the BP classifiers did not. This supported the idea that

architecture selection should be used with a dynamic weights adjustment algorithm for

SDCPs.

Furthermore, complexity performance trends generally varied significantly between

environment changes and between problems. To avoid a situation were a FFNN is not

complex enough, a fully connected FFNN should be used for streamed data classifiers.

The accuracy and complexity performance trends showed that the BP classifiers were

able to allocate information efficiently to the neurons during periods of high accuracy.

That is complexity reduction was high during times of high accuracy.

The performance trends of the BP classifiers also showed that problem dimensionality

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 186

effects saturation. That is, increases in dimensionality leads to saturation trends rising

faster to higher levels, and becoming more volatile. Furthermore, lower dimensionality

SDCPs were better for the regularised QPSO classifiers, than for the BP classifiers, and

allowed the regularised QPSO classifiers to perform closer to the BP classifiers without

the threat of rising saturation.

The presence of noise or irrelevant information increased the rate of saturation for

the BP classifiers, especially if there was prolonged exposure to patterns with these

characteristics. This was not the case for the QPSO classifiers.

The problem difficulty classification scheme proposed in Section 8.3.6 was supported

by the performance trends. Furthermore, increases in the window step size appeared to

consistently increase the intra-environment volatility of the performance trends, i.e. the

volatility of the trends during an environment instance. On the other hand, increases in

the window frequency appeared to consistently decrease intra-environment volatility in

performance trends and improve accuracy performance.

The performance trends were more sensitive to temporal than spatial severity. Fur-

thermore, high spatial severity generally had a counter effect on high temporal sever-

ity. This was evident from the observations that abrupt environments did not have a

significant impact on the performance trends, whereas progressive environments had a

significant detrimental effect on the performance trends, and chaotic environments only

worsened performance trends slightly when compared to abrupt environments.

All the classifiers had significantly worse performance trends for the electricity prob-

lems than for the other problems. This suggests that a real-world domain could be more

challenging for the classifiers than expected. The benchmark suite should acquire more

real-world problem domains to further investigate this. Additionally, the benchmark

suite should also acquire artificial problems with extremely high temporal severity, be-

cause this appeared to be a key characteristic of the real-world electricity domain (refer

to Section 8.3.5)

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 187

9.5 Overfitting analysis

The discussions in sections 9.2 to 9.4 suggested that overfitting was present in the classi-

fiers. This section analyses the two overfitting measures Oρ and OMSEg (refer to Section

8.4.6).

Figures 9.2 and 9.3 present a comparison between the raw MSEg and MSEt trends,

and the 3% moving average MSEg and MSEt trends for the BP classifiers and QPSO

classifiers, respectively. The graphs on the left-hand side represent the raw trends. The

graphs on the right-hand side represent the moving average trends. The moving average

trend graphs are also overlaid with the detection results of OMSEg . Note that figures

9.2 and 9.3 include the plus and minus moving average standard deviation bands for the

MSEg trend to provide insight into the stability of the MSEg trend.

Figures 9.2 and 9.3 represent the typical behaviour found for the classifiers for the

benchmark problems. The raw MSE performance trends revealed extremely volatile

trends that would either bounce between zero and very high levels, or remain at zero for

several epochs. This was a side effect of the classifiers learning each pattern for only one

epoch, i.e. the one-pass requirement.

The overfitting measure Oρ produced meaningless values, because of the division by

zero that occurred due to the presence of zeros in the raw MSEt trend. The overfitting

measure Oρ, therefore, cannot work with SDCPs. An alternative overfitting measure

that considers MSEt and MSEg needs to be developed. A possible starting point can

be looking at the difference between MSEt and MSEg. Another starting point could be

to add a very small negligible value to MSEt, e.g. 1× 10−16.

The zero MSEt values did not present problems for the overfitting measure, OMSEg .

The OMSEg results, however, left much to be desired. The biggest concern is that OMSEg

suffered from many false positives. The main reason for the false positives was the high

volatility of the MSEg values. This can be seen in the large standard deviation bands

in the moving average trend graphs.

Another issue with OMSEg was that it only relied on the moving average of MSEg

and did not consider MSEt. This lead to false positives in the cases were the trend

volatility was high but the directions in which MSEg and MSEt moved were the same,

i.e. correlated.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 188

The average Pearson correlation coefficient for MSEg and MSEt was 0.6137±0.3711.

Thus when MSEg increased or decreased so too did MSEt most of the time. Hence, the

classifiers were generally not overfitting, but OMSEg indicated that the classifiers were

overfitting. A possible solution to this problem is to compare the direction of the trends

of both MSEg and MSEt.

OMSEg trends for the completely saturated QPSO-N, which experienced overfitting

early on, revealed a further issue with OMSEg . That is, OMSEg did not consider if overfit-

ting happened in prior environments, which lead to false negatives. A possible solution

could be to integrate the saturation measure into the overfitting measure. Another pos-

sible solution is to convert the overfitting measure into a flip-flop operator, i.e. stays in

a state until a certain event occurs.

The findings above indicate that an alternative overfitting measure that mitigates

problems of division by zero, only considering MSEg, and dynamic environments is

required in order to detect overfitting in SDCPs successfully. Several suggestions to

solve these problems were made.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 189

(a) Raw trends – BP-N – Electricity B2 (b) Moving average trends – BP-N – Electricity B2

(c) Raw trends – BP-WD – SEA A1 (d) Moving average trends – BP-WD – SEA A1

(e) Raw trends – BP-WE – Sphere C1 (f) Moving average trends – BP-WE – Sphere C1

Figure 9.2: Raw MSEg and MSEt trends versus moving average MSEg±σMSEg and MSEt

trends, and OMSEg for the BP classifiers

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 190

(a) Raw trends – QPSO-N – Hyperplane A1 (b) Moving average trends – QPSO-N – Hyperplane A1

(c) Raw trends – QPSO-WD – Thresholds B4 (d) Moving average trends – QPSO-WD – Thresholds B4

(e) Raw trends – QPSO-WE – Hyperplane B3 (f) Moving average trends – QPSO-WE – Hyperplane B3

Figure 9.3: Raw MSEg and MSEt trends versus moving average MSEg±σMSEg and MSEt

trends, and OMSEg for the QPSO classifiers

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 191

9.6 Overall statistical rank analysis

Table 9.13 presents the overall rankings for the classifiers based on the results of the

MWU pairwise comparisons of the saturation levels, accuracy performance, and com-

plexity performance in sections 9.1, 9.2, and 9.3. The rank of a classifier for each of

the three performance categories, i.e. saturation, accuracy and complexity, was deter-

mined using the average wins-ties-loses percentages of the classifier in each category.

The accuracy-complexity rank of the classifier was determined by averaging the aver-

age wins-ties-loses percentages for the accuracy and complexity performance categories.

The overall rank of the classifier was determined by averaging the average wins-ties-loses

percentages for the three performance categories.

Table 9.13: MWU-based ranking of the classifiers with regards to the performance measures

(Wins/Ties/Losses percentages)

Measure Classifier

BP-N BP-WD BP-WE QPSO-N QPSO-WD QPSO-WE

ϕg 2(65.25/16.25/18.50) 3(50.50/15.50/34.00) 1(70.00/12.00/18.00) 6(0.00/0.00/100.00) 4(52.25/6.75/41.00) 5(31.50/10.50/58.00)

ϕv 2(64.75/16.75/18.50) 3(50.25/16.25/33.50) 1(70.25/12.25/17.50) 6(0.00/0.00/100.00) 4(53.50/6.00/40.50) 5(31.25/8.75/60.00)

Saturation rank 2(65.00/16.50/18.50) 3(50.38/15.88/33.75) 1(70.13/12.13/17.75) 6(0.00/0.00/100.00) 4(52.88/6.38/40.75) 5(31.37/9.63/59.00)

MSEg 1(75.25/19.50/5.25) 3(59.00/17.75/23.25) 2(64.25/19.50/16.25) 6(0.00/1.00/99.00) 5(29.75/3.25/67.00) 4(37.75/7.00/55.25)

MSEm 1(78.50/18.00/3.50) 3(63.50/17.50/19.00) 2(64.50/18.00/17.50) 6(0.50/1.00/98.50) 5(21.25/3.50/75.25) 4(41.50/2.50/56.00)

PCCg 1(67.00/13.75/19.25) 2(46.50/13.50/40.00) 3(39.25/14.00/46.75) 4(46.00/5.75/48.25) 6(31.00/2.00/67.00) 5(43.75/4.00/52.25)

PCCm 1(72.00/10.25/17.75) 2(50.25/9.25/40.50) 4(44.00/9.50/46.50) 3(50.75/6.25/43.00) 6(24.00/1.50/74.50) 5(39.00/3.25/57.75)

Accuracy rank 1(73.19/15.38/11.44) 2(54.81/14.50/30.69) 3(53.00/15.25/31.75) 6(24.31/3.50/72.19) 5(26.50/2.56/70.94) 4(40.50/4.19/55.31)

nsor 6(7.50/15.50/77.00) 5(15.25/16.00/68.75) 4(43.25/6.25/50.50) 1(94.25/3.25/2.50) 3(49.50/10.75/39.75) 2(58.75/11.25/30.00)

nhor 5(6.75/20.50/72.75) 6(6.00/20.00/74.00) 4(27.00/15.75/57.25) 1(99.50/0.50/0.00) 3(58.00/9.75/32.25) 2(64.50/10.00/25.50)

Ωr 6(8.00/14.75/77.25) 5(14.50/15.25/70.25) 4(43.00/6.25/50.75) 1(94.50/4.00/1.50) 3(50.25/9.00/40.75) 2(60.00/10.25/29.75)

Complexity rank 6(7.42/16.92/75.67) 5(11.92/17.08/71.00) 4(37.75/9.42/52.83) 1(96.08/2.58/1.33) 3(52.58/9.83/37.58) 2(61.08/10.50/28.42)

Accuracy-complexity rank 4(40.30/16.15/43.55) 5(33.36/15.79/50.84) 3(45.38/12.33/42.29) 1(60.20/3.04/36.76) 6(39.54/6.20/54.26) 2(50.79/7.34/41.86)

Overall rank 2(48.53/16.26/35.20) 3(39.03/15.82/45.15) 1(53.63/12.26/34.11) 6(40.13/2.03/57.84) 5(43.99/6.26/49.76) 4(44.32/8.10/47.58)

Figures 9.4 and 9.5 illustrate the rank categories, i.e. the saturation, accuracy, com-

plexity, accuracy-complexity, and overall results of Table 9.13. Figure 9.4 plots the in-

verted rank, i.e. reserved rank number so that higher values indicate better performance,

for the five rank categories against the classifiers. Figure 9.5 plots the MWU-comparison

winning percentages for the five rank categories against the classifiers.

The overall saturation rankings confirmed that QPSO-N was significantly more satu-

rated than any other classifier. According to the saturation rank, the BP classifiers were

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 192

Figure 9.4: Classifier versus overall inverted MWU-Rank

significantly less saturated than the QPSO classifiers, with BP-WE being the least sat-

urated. The difference between BP-N and BP-WE saturation rank losses was negligible.

Whereas, the saturation rank losses of BP-WD was significantly worse than both BP-N

and BP-WE. This confirmed the findings that the BP weights adjustment algorithm had

some ability to handle saturation, and that only certain regularisation algorithms could

improve this ability. Note that the saturation ranks results did not reveal the increasing

saturation trends observed in the BP classifiers (refer to Section 9.4). This supports the

idea that SDCPs did not allow the BP classifiers to learn long enough to see the trend

affect the collective means.

The saturation rank for QPSO-WD and QPSO-WE support the finding that QPSO-

WD was better at reducing saturation than QPSO-WE. However, because the accuracy

rank of QPSO-WE is better than that of QPSO-WD, the rankings also support the

finding that QPSO-WE was able to identify necessary saturation from unnecessary sat-

uration.

According to the accuracy ranks, the BP classifiers outperformed the QPSO classifiers

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 193

Figure 9.5: Classifier versus overall MWU-Comparison winning percentages

significantly. The accuracy ranks supported the findings that regularisation degraded

the accuracy of the BP weights adjustment algorithm significantly, whereas, the QPSO

weights adjustment algorithm benefited significantly from regularisation with regards

to accuracy, with QPSO-WE boosting accuracy performance the most. The saturation

ranks support the finding that the boost in accuracy for the QPSO-WD and QPSO-WE

was due to better saturation control.

The complexity rankings showed the QPSO classifiers to be significantly better than

the BP classifiers at reducing and maintaining complexity at those reduced levels. QPSO-

N reduced complexity the most and BP-N the least. The saturation ranks in conjunction

with the complexity rank of QPSO-N confirm the finding that the reduction in infor-

mation capacity allowed the QPSO-N to achieve significantly high levels of complexity

reduction.

The complexity ranks provide further support for the finding that WE did help the

BP weights algorithm to maintain complexity, whereas WD did not assist in maintaining

complexity of the classifiers. WE also provided better complexity results than WD for

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 194

the QPSO weights adjustment algorithm. QPSO-WD, however, performed very close to

QPSO-WE.

QPSO-N had the best accuracy-complexity rank. The result, however, can be safely

ignored as an anomaly caused by the complete saturation of the QPSO-N on problems

with only two target classes. Under this consideration, QPSO-WE was ranked as the

most proficient at managing the complexity and accuracy performance, followed by the

BP classifiers. This suggests that using a dynamic weights adjustment algorithm and

regularisation for SDCPs has potential, and should be researched further.

The overall ranks showed the BP-WE to be the best classifier. However, the ability for

BP-WE to handle saturation and complexity came at a significant expense to accuracy

performance. BP-N should, therefore, rather be considered the better BP classifier.

The overall ranks showed that the QPSO classifiers were worse than the BP classifiers.

QPSO-WE, however, competed with BP-WD in the accuracy and complexity rankings.

9.7 Control parameters analysis

This section analyses the control parameters of the classifiers. The key objectives for the

control parameter analysis are to determine:

1. The impact of the control parameters on the performance of the classifiers. The

approach documented in Section 8.4.7 was used to determine the impact of the

control parameters.

2. Whether the performance gains justify the time spent tuning the control parame-

ters. Note that time to test a parameter configuration was assumed to be constant

for all classifiers. Thus the time spent on tuning the control parameters of a clas-

sifier spent was quantified as the number control parameter configurations (|Dc|)
that were tested (refer to Equation 8.21).

3. If it is possible to reduce the time taken to tune control parameters for the classifiers

by reducing the ranges for optimal parameter values. The optimal values of the

control parameters are listed in Tables 8.8 to 8.13 in Section 8.5 of Chapter 8.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 195

Table 9.14 presents the impact of the control parameters for each classifier on the

control parameter tuning process. The table included the number of control parameters

of each classifier (nc), and the number control parameter configurations tested (|Dc|). To

determine the impact made by these control parameter numbers, the table also includes

the five MWU-based rank categories that were presented in Table 9.13 (refer to Section

9.6).

Table 9.14: Comparison of the control parameters of the classifier and the overall performance

of the classifiers

Classifier

BP-N BP-WD BP-WE QPSO-N QPSO-WD QPSO-WE

nc 2 3 4 1 2 3

|Dc| 81 648 5184 9 72 576

Saturation rank 2(65.00|16.50|18.50) 4(50.38|15.88|33.75) 1(70.13|12.13|17.75) 6(0.00|0.00|100.00) 3(52.88|6.38|40.75) 5(31.37|9.63|59.00)

Accuracy rank 1(73.19|15.38|11.44) 2(54.81|14.50|30.69) 3(53.00|15.25|31.75) 6(24.31|3.50|72.19) 5(26.50|2.56|70.94) 4(40.50|4.19|55.31)

Complexity rank 6(7.42|16.92|75.67) 5(11.92|17.08|71.00) 4(37.75|9.42|52.83) 1(96.08|2.58|1.33) 3(52.58|9.83|37.58) 2(61.08|10.50|28.42)

Accuracy-complexity rank 4(40.30|16.15|43.55) 6(33.36|15.79|50.84) 3(45.38|12.33|42.29) 1(60.20|3.04|36.76) 5(39.54|6.20|54.26) 2(50.79|7.34|41.86)

Overall rank 2(48.53|16.26|35.20) 6(39.03|15.82|45.15) 1(53.63|12.26|34.11) 5(40.13|2.03|57.84) 4(43.99|6.26|49.76) 3(44.32|8.10|47.58)

Figure 9.6 illustrates nc in terms of the red bars, and |Dc| in terms of the black line.

Note that both quantities are scaled to the same y-axis, however, the values for the red

bars appear on the left hand side of the graph and the values for the black line appears

on right side of the graph. Figure 9.6 was used in conjunction with Figures 9.4 and 9.5

to analyse the impact of the control parameters on the classifiers performance.

The results show that QPSO-N was the classifier with the lowest number of param-

eter configurations, but QPSO-N was also the classifier with the worst saturation and

accuracy ranks. On the other hand, BP-WE was the classifier with the most parameter

configurations, with 579 times more parameter configurations than QPSO-N. The large

difference, however, lead to the highest saturation rank and overall rank, but also signif-

icantly worse accuracy and complexity scores. These results suggest that the classifiers

with many or very few control parameters did not provide a good trade-off between

performance, and the time taken to tune the control parameters.

QPSO-WD had the second least number of parameter configurations to test, with

eight times more configurations than QPSO-N. QPSO-WD placed fourth overall and

displayed average performance in the other rank categories. On the other hand, BP-

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 196

Figure 9.6: Control parameter statistics for classifiers

WD had the second most number of parameter configurations to test, with 72 times

more configurations than QPSO-N, but also had no remarkable performance statistics

in any of the performance categories. This provided further support that the classifiers

with too many or too few control parameters did not provide a good trade-off between

performance, and the time taken to tune the control parameters.

BP-N and QPSO-WE had the middle most number of parameter configurations,

but also the most impressive performance. QPSO-WD had 64 times more parameter

configurations than QPSO-N, and BP-N had only 9 times more parameter configurations

than QPSO-N. Considering the overall ranks of BP-N and QPSO-WE, the BP-N had the

best trade-off between performance and time taken to tune the control parameters, and

the QPSO-WE had the second best trade-off. The results also indicate that BP-N was

the most suitable classifier out of the BP classifiers tested for SDCPs, and QPSO-WE

was the most suitable classifier out of the QPSO classifiers tested for SDCPs.

Lastly, in terms of the optimal values for the control parameters of the classifiers the

following was observed:

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 197

The momentum term (α) and learning rate (η) values never exceeded values of 0.3,

and were the majority of the time 0.1. This suggests that the ranges used for the these

two control parameters could be reduced to [0, 0.4]. Furthermore, BP-N and BP-WD

had the same α and η values. This provides an explanation for the similar performance

trends of these two classifiers. BP-WE had the same α values as BP-N and BP-WD.

However, the η values for BP-WE were different from BP-N and BP-WD for the elec-

tricity problems. Consequently, the performance trends of BP-WE differed significantly

from the performance trends of BP-N and BP-WD on the electricity problems. This

supported the finding that WE had an effect on the BP weights adjustment algorithm,

whereas WD did not.

The above observations showed the BP weights adjustment algorithm required a

very low learning rate and momentum for SDCPs in order to cope with the dynamic

environments.

The radius (r) values of the regularised QPSO classifiers never exceed 0.25 and were

mainly 0.1, which supports the recommendations by Harrison et al. [52]. On the other

hand, QPSO-N generally had very high r values, e.g. 5. These high values are a result

of the search trying to move back into feasible regions of the search space, through

exploration, after complete saturation moved the search deep into infeasible regions of the

search space. The differences between the r values of the QPSO classifiers supported the

finding that WD and WE influenced the QPSO weights adjustment algorithm differently.

The regularisation lambdas (λr) of BP-WD and BP-WE favoured values under 0.01.

Furthermore, the λr value for BP-WD was 0.0001 for all problems. Thus the range for

the λr values of the regularised BP classifiers could be reduced for SDCPs.

On the other hand, the mode for λr for both regularised QPSO classifiers was 0.01.

QPSO-WD, however, had a larger range of values for λr than QPSO-WE, i.e. 0.499

versus 0.09. Thus the value of λr could generally be chosen from a small range around

0.01. However, the value is problem and weights adjustment algorithm dependent.

The values for the weights relevancy threshold (w0) were scattered over a wide large

range for BP-WE. Values of w0 for the QPSO-WE were also scattered over a wide range,

but tended to favour larger values than those values used by BP-WE. QPSO-WE used the

largest value out of the possible values for w0, i.e. 1, for the electricity problems. Thus

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 198

the value ranges of w0 are dependent on the underlying weights adjustment algorithms.

A wide range for w0 should therefore be used when optimising classifiers using WE on

SDCP.

9.8 Weight distribution analysis

The discussions in sections 9.2 to 9.7 showed that the performance of the classifiers dif-

fered amongst each other and from expectations. However, the discussions could not

reveal exactly why this was the case. Because the training algorithms trained the clas-

sifiers by changing the weights, the weight distributions gave a direct view of how each

classifier handled the benchmark problems. Knowing how the classifiers handled the

benchmark problems will assist in understanding why the performance differed. This

section analyses the collective means of the two weights magnitude distribution perfor-

mance measures w̄ and σw, and the weights frequency distribution (Ξw) (refer to Section

8.4.8) in an effort to understand the variations in the performance of the classifiers. The

key objectives of the weight distribution analysis are to determine:

1. Why the two weight adjustment algorithms, i.e. BP and QPSO, performed differ-

ently.

2. Why the regularisation aided the QPSO classifiers, but not BP classifiers.

3. How WD and WE compared in terms of the weight distribution, and what this

meant in terms of their performance.

4. The effects of problem difficulty, environment, dimensionality, noise and complete

saturation on the weight distribution of the classifiers, to further understand the

performance results analysed thus far.

Table 9.15 presents the statistical and MWU-based ranking analysis of the weight

magnitude distributions with regards to the classifiers for each of the problem domains.

Table 9.16 presents the statistical and MWU-based ranking analysis of the weight magni-

tude distributions with regards to the classifier for each of the problem difficulties. Table

9.17 presents the statistical and MWU-based ranking analysis of the weight magnitudes

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 199

Table 9.15: Descriptive statistics and MWU-based ranking results of the classifiers with

regards to the collective means of the problem domains for weight distribution performance

measures
(a) Average weights magnitude (w̄)

Domain Classifier

BP-N BP-WD BP-WE QPSO-N QPSO-WD QPSO-WE

Hyperplane 0.2943±0.0392 0.2751±0.0280 0.3046±0.0327 ∞±∞ 0.0668±0.0045 0.0820±0.0060

4(36.25/3.75/60.00) 3(57.50/2.50/40.00) 5(22.50/1.25/76.25) 6(0.00/0.00/100.00) 1(100.00/0.00/0.00) 2(80.00/0.00/20.00)

Sphere 0.4812±0.0793 0.4510±0.0522 0.4571±0.0632 ∞±∞ 0.1980±0.0265 0.2220±0.0317

5(20.00/13.75/66.25) 3(36.25/21.25/42.50) 4(36.25/20.00/43.75) 6(0.00/0.00/100.00) 1(91.25/6.25/2.50) 2(82.50/6.25/11.25)

Thresholds 0.5484±0.0773 0.5217±0.0560 0.4261±0.0370 ∞±∞ 0.2252±0.0151 0.3783±0.0779

5(20.00/8.75/71.25) 4(31.25/10.00/58.75) 3(62.50/3.75/33.75) 6(0.00/0.00/100.00) 1(100.00/0.00/0.00) 2(72.50/5.00/22.50)

SEA 0.4032±0.0405 0.3911±0.0249 0.3750±0.0211 ∞±∞ 0.3436±0.0550 ∞±∞
4(46.25/18.75/35.00) 2(57.50/22.50/20.00) 1(73.75/16.25/10.00) 6(0.00/0.00/100.00) 3(71.25/5.00/23.75) 5(20.00/0.00/80.00)

Electricity 0.3072±0.0418 0.2242±0.0868 0.0921±0.0178 ∞±∞ 0.1881±0.0116 0.1606±0.0053

4(20.00/0.00/80.00) 3(53.75/0.00/46.25) 1(97.50/0.00/2.50) 5(0.00/0.00/100.00) 3(53.75/0.00/46.25) 2(75.00/0.00/25.00)

(b) Standard deviation of weights magnitude (σw)

Domain Classifier

BP-N BP-WD BP-WE QPSO-N QPSO-WD QPSO-WE

Hyperplane 0.2754±0.0357 0.2539±0.0249 0.2675±0.0394 ∞±∞ 0.0538±0.0026 0.0889±0.0366

5(21.25/2.50/76.25) 3(48.75/3.75/47.50) 4(45.00/3.75/51.25) 6(0.00/0.00/100.00) 1(100.00/0.00/0.00) 2(80.00/0.00/20.00)

Sphere 0.3500±0.0737 0.3257±0.0527 0.3694±0.0894 ∞±∞ 0.1563±0.0187 0.6119±0.2057

3(52.50/13.75/33.75) 2(71.25/8.75/20.00) 4(40.00/10.00/50.00) 6(0.00/0.00/100.00) 1(100.00/0.00/0.00) 5(20.00/0.00/80.00)

Thresholds 0.4861±0.1270 0.4640±0.1022 0.5357±0.1701 ∞±∞ 0.1964±0.0055 0.7253±0.3217

3(51.25/21.25/27.50) 2(58.75/20.00/21.25) 4(35.00/11.25/53.75) 6(0.00/0.00/100.00) 1(100.00/0.00/0.00) 5(25.00/7.50/67.50)

SEA 0.3101±0.0469 0.2942±0.0341 0.3356±0.0629 ∞±∞ 0.2570±0.0407 ∞±∞
3(60.00/12.50/27.50) 1(80.00/8.75/11.25) 4(43.75/7.50/48.75) 6(0.00/0.00/100.00) 2(78.75/6.25/15.00) 5(20.00/0.00/80.00)

Electricity 0.3099±0.0604 0.2426±0.0887 0.2238±0.0453 ∞±∞ 0.1424±0.0084 0.1295±0.0042

5(21.25/0.00/78.75) 3(53.75/0.00/46.25) 4(50.00/1.25/48.75) 6(0.00/0.00/100.00) 2(76.25/1.25/22.50) 1(97.50/0.00/2.50)

with regards to the classifier distributions for each of the problem environments. Table

9.18 presents the overall MWU-based ranking results of how the classifiers faired against

each other over all the problems based on their weight magnitude distribution.

Figure 9.7 presents the aggregated weights frequency distributions (Ξw) for the clas-

sifiers (refer to Section 8.7.1). The scales of the y-axis for the graphs differ as follows.

The BP classifiers all have the same y-axis scale, and the QPSO classifiers all have the

same y-axis scale. Note that small artefacts occurred when the bin intervals changed

from 0.1 to 1. However, this is to be expected because of the new bin interval is ten

times greater than the previous bin interval.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 200

Table 9.16: Descriptive statistics and MWU-based ranking results of the classifiers with

regards to the collective means of the problem difficulty for weight distribution performance

measures
(a) Average weights magnitude (w̄)

Difficulty Classifier

BP-N BP-WD BP-WE QPSO-N QPSO-WD QPSO-WE

Easy 0.4585±0.1507 0.3791±0.1761 0.3525±0.1541 ∞±∞ 0.1845±0.0761 0.3552±0.2906

5(25.00/1.00/74.00) 4(60.00/3.00/37.00) 2(61.00/4.00/35.00) 6(0.00/0.00/100.00) 1(87.00/1.00/12.00) 3(61.00/3.00/36.00)

Moderate-I 0.4128±0.1139 0.3883±0.1271 0.3459±0.1491 ∞±∞ 0.2126±0.1082 ∞±∞
5(30.00/11.00/59.00) 4(44.00/14.00/42.00) 3(62.00/6.00/32.00) 6(0.00/0.00/100.00) 1(77.00/5.00/18.00) 2(68.00/2.00/30.00)

Moderate-II 0.3934±0.0864 0.3686±0.0938 0.3145±0.1176 ∞±∞ 0.1919±0.0763 0.3169±0.2500

5(28.00/8.00/64.00) 4(42.00/11.00/47.00) 3(57.00/9.00/34.00) 6(0.00/0.00/100.00) 1(89.00/2.00/9.00) 2(67.00/4.00/29.00)

Hard 0.3627±0.0769 0.3546±0.0759 0.3110±0.1256 ∞±∞ 0.2284±0.1074 0.3417±0.2903

5(31.00/16.00/53.00) 4(43.00/17.00/40.00) 3(54.00/14.00/32.00) 6(0.00/0.00/100.00) 1(80.00/1.00/19.00) 2(68.00/0.00/32.00)

(b) Standard deviation of weights magnitude (σw)

Difficulty Classifier

BP-N BP-WD BP-WE QPSO-N QPSO-WD QPSO-WE

Easy 0.4034±0.1449 0.3350±0.1566 0.4446±0.1896 ∞±∞ 0.1468±0.0591 0.7023±0.5043

3(45.00/3.00/52.00) 2(75.00/1.00/24.00) 5(37.00/2.00/61.00) 6(0.00/0.00/100.00) 1(94.00/0.00/6.00) 4(46.00/0.00/54.00)

Moderate-I 0.3636±0.1025 0.3390±0.1110 0.3551±0.1394 ∞±∞ 0.1696±0.0803 ∞±∞
4(40.00/9.00/51.00) 2(59.00/11.00/30.00) 5(40.00/7.00/53.00) 6(0.00/0.00/100.00) 1(91.00/3.00/6.00) 3(52.00/6.00/42.00)

Moderate-II 0.3263±0.0646 0.3035±0.0600 0.3187±0.0825 ∞±∞ 0.1513±0.0587 0.4960±0.3620

4(41.00/7.00/52.00) 2(65.00/4.00/31.00) 5(43.00/3.00/54.00) 6(0.00/0.00/100.00) 1(96.00/0.00/4.00) 3(48.00/0.00/52.00)

Hard 0.2918±0.0508 0.2868±0.0485 0.2672±0.0625 ∞±∞ 0.1771±0.0801 0.3922±0.3218

4(39.00/21.00/40.00) 2(51.00/17.00/32.00) 3(51.00/15.00/34.00) 6(0.00/0.00/100.00) 1(83.00/3.00/14.00) 5(48.00/0.00/52.00)

The weight distribution results in Tables 9.15 to 9.18, and Figure 9.7 show the fol-

lowing:

The weight distributions of the BP classifiers differed significantly in nature to that

of the QPSO classifiers.

BP-N had a broad normal distribution with a negative mean. BP-WD did not alter

this distribution drastically, but BP-WE did. BP-WE shifted most of the distribution to

the negative side. The regularised BP classifiers in general had narrow weight distribu-

tions, that were skewed to the negative side. Furthermore, BP-WE saturated completely

on the electricity A4 problem (refer to Section 9.4). The average weight magnitudes for

the electricity domain, however, was very small.

The above observations show a large number of zero and negative weights for the BP

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 201

Table 9.17: Descriptive statistics and MWU-based ranking results of the classifiers with

regards to the collective means of the problem environments for weight distribution performance

measures
(a) Average weights magnitude (w̄)

Environment Classifier

BP-N BP-WD BP-WE QPSO-N QPSO-WD QPSO-WE

Progressive 0.4091±0.1019 0.3978±0.0949 0.3728±0.0593 ∞±∞ 0.2145±0.0986 0.3747±0.2701

5(30.56/14.44/55.00) 4(41.67/17.22/41.11) 3(46.67/12.78/40.56) 6(0.00/0.00/100.00) 1(91.67/1.67/6.67) 2(65.00/2.78/32.22)

Abrupt 0.4529±0.1672 0.3427±0.2007 0.3229±0.1805 ∞±∞ 0.1889±0.0709 0.3938±0.3268

5(25.71/0.00/74.29) 3(65.71/0.00/34.29) 2(71.43/0.00/28.57) 6(0.00/0.00/100.00) 1(82.86/0.00/17.14) 4(54.29/0.00/45.71)

Chaotic 0.3960±0.1153 0.3538±0.1277 0.2918±0.1687 ∞±∞ 0.1974±0.0925 ∞±∞
5(27.03/5.41/67.57) 4(49.19/7.57/43.24) 2(67.57/5.41/27.03) 6(0.00/0.00/100.00) 1(75.14/3.24/21.62) 3(69.19/2.16/28.65)

(b) Standard deviation of weights magnitude (σw)

Environment Classifier

BP-N BP-WD BP-WE QPSO-N QPSO-WD QPSO-WE

Progressive 0.3251±0.0923 0.3161±0.0882 0.3407±0.1172 ∞±∞ 0.1713±0.0743 0.5553±0.3528

3(46.11/17.78/36.11) 2(61.11/13.89/25.00) 4(43.33/10.56/46.11) 6(0.00/0.00/100.00) 1(93.33/1.11/5.56) 5(33.33/2.22/64.44)

Abrupt 0.3978±0.1658 0.3020±0.1716 0.4440±0.2198 ∞±∞ 0.1481±0.0544 0.7488±0.5751

4(45.71/0.00/54.29) 2(77.14/0.00/22.86) 5(37.14/0.00/62.86) 6(0.00/0.00/100.00) 1(91.43/0.00/8.57) 3(48.57/0.00/51.43)

Chaotic 0.3572±0.1005 0.3188±0.1055 0.3334±0.1440 ∞±∞ 0.1538±0.0689 ∞±∞
5(35.68/4.32/60.00) 2(61.08/4.32/34.59) 4(43.24/4.32/52.43) 6(0.00/0.00/100.00) 1(88.65/2.16/9.19) 3(63.24/1.08/35.68)

classifiers. Too many zero and/or negative weights will result in net input signals that are

zero or less. Thus, neurons with net input signals of zero or less will have activation values

with zero gradients due to the ReLU activation function. The BP weight adjustment

algorithm will lose control over the weights, i.e. not be able to adjust the weights, that

result in such net input signals, because the algorithm is gradient-based. Once control

is lost the BP algorithm will not be able to adjust the weight again. Because SDCPs

are dynamic and unbounded in the real-world, weights need to be constantly adjusted.

The BP classifiers would thereafter eventually fail for SDCPs. It can be argued that

regularisation adds additional training information, i.e. model complexity, which will

still provide a gradient in the case of weights being negative. However, the optimisation

will only be focused on optimising model complexity and not accuracy. Furthermore,

regularisation only drove weights faster to zero. Thus adding regularisation to the BP

weights adjustment algorithm did not help. A possible solution for the problem of losing

control over the weights could be to reinitialise the weights when the majority of weights

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 202

Table 9.18: MWU-based pairwise comparison of the classifiers for weight distribution perfor-

mance measures (Wins/Ties/Losses percentages)

(a) Average weights magnitude (w̄)

Classifier Classifier

BP-N BP-WD BP-WE QPSO-N QPSO-WD QPSO-WE

BP-N — 0.00/28.75/71.25 16.25/13.75/70.00 100.00/0.00/0.00 6.25/2.50/91.25 20.00/0.00/80.00

BP-WD 71.25/28.75/0.00 — 26.25/23.75/50.00 100.00/0.00/0.00 13.75/2.50/83.75 25.00/1.25/73.75

BP-WE 70.00/13.75/16.25 50.00/23.75/26.25 — 100.00/0.00/0.00 30.00/0.00/70.00 42.50/3.75/53.75

QPSO-N 0.00/0.00/100.00 0.00/0.00/100.00 0.00/0.00/100.00 — 0.00/0.00/100.00 0.00/0.00/100.00

QPSO-WD 91.25/2.50/6.25 83.75/2.50/13.75 70.00/0.00/30.00 100.00/0.00/0.00 — 71.25/6.25/22.50

QPSO-WE 80.00/0.00/20.00 73.75/1.25/25.00 53.75/3.75/42.50 100.00/0.00/0.00 22.50/6.25/71.25 —

Overall rank 5(28.50/9.00/62.50) 4(47.25/11.25/41.50) 3(58.50/8.25/33.25) 6(0.00/0.00/100.00) 1(83.25/2.25/14.50) 2(66.00/2.25/31.75)

(b) Standard deviation of weights magnitude (σw)

Classifier Classifier

BP-N BP-WD BP-WE QPSO-N QPSO-WD QPSO-WE

BP-N — 0.00/27.50/72.50 45.00/18.75/36.25 100.00/0.00/0.00 5.00/1.25/93.75 56.25/2.50/41.25

BP-WD 72.50/27.50/0.00 — 72.50/8.75/18.75 100.00/0.00/0.00 8.75/2.50/88.75 58.75/2.50/38.75

BP-WE 36.25/18.75/45.00 18.75/8.75/72.50 — 100.00/0.00/0.00 3.75/3.75/92.50 55.00/2.50/42.50

QPSO-N 0.00/0.00/100.00 0.00/0.00/100.00 0.00/0.00/100.00 — 0.00/0.00/100.00 0.00/0.00/100.00

QPSO-WD 93.75/1.25/5.00 88.75/2.50/8.75 92.50/3.75/3.75 100.00/0.00/0.00 — 80.00/0.00/20.00

QPSO-WE 41.25/2.50/56.25 38.75/2.50/58.75 42.50/2.50/55.00 100.00/0.00/0.00 20.00/0.00/80.00 —

Overall rank 3(41.25/10.00/48.75) 2(62.50/8.25/29.25) 5(42.75/6.75/50.50) 6(0.00/0.00/100.00) 1(91.00/1.50/7.50) 4(48.50/1.50/50.00)

are less than or equal to zero, or when accuracy starts to worsen.

Saturation in the BP classifiers was, therefore, caused by a loss of control over the

weights, because of the combined effect of zero gradients and dynamic environments. The

ReLU FFNN classifiers must, therefore, not use the BP weights adjustment algorithm

when dealing with SDCPs.

QPSO-N, on the other hand, had all its weights distributed to the edges of negative

and positive portions of the distributions. This is a definitive confirmation of complete

saturation. The regularised QPSO classifiers both changed the weight distribution of

QPSO-N to a narrow normal distribution around zero. The weight distribution of QPSO-

WE was slightly more narrower than the weight distribution of QPSO-WD, but the

weight value range of QPSO-WE was greater.

The above observations showed that the QPSO weights adjustment algorithm was

immune to the zero gradients of the ReLU activation functions. QPSO-N, however, still

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 203

(a) BP-N (b) BP-WD (c) BP-WE

(d) QPSO-N (e) QPSO-WD (f) QPSO-WE

Figure 9.7: Weight frequency distribution graphs for the classifiers

suffered from saturation due to an uncontrolled explosion of weights. The difference be-

tween the QPSO-N and the regularised QPSO classifiers was that the regularised QPSO

classifiers had more information about the search space to control, namely complexity

performance. Hence, the lack of search space information, i.e. boundaries, was the cause

of saturation for the QPSO classifiers.

Higher dimensional SDCPs lead to smaller weight magnitudes and distributions, than

lower dimensional SDCPs. This was supported by all the classifiers, except QPSO-N.

The higher the dimension of the problem, the more synapses there are compared to the

number of outputs. Thus the less each hidden neuron has to contribute on average to

the outputs in order to produce an output.

The average magnitude of the weights for QPSO-WE reached extreme levels in the

noisy SEA problem domain, with just as extreme standard deviations. Thus noisy SDCPs

interfered with the ability for QPSO-WE to control the weights. However, the interfer-

ence had no significant effect on the overall performance of the QPSO-WE, because it

was limited to Moderate-I chaotic SEA problems.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 204

QPSO-WD had small weight magnitudes for the benchmark problems. This obser-

vation explains the stability that was seen in the complexity and saturation performance

trends of QPSO-WD. Compared to BP-WD, QPSO-WD had significantly smaller weight

magnitudes on average. Thus, the aggressiveness that WD showed towards penalising

the weights was enhanced through the use of a dynamic weights adjustment algorithm.

The weight magnitude distributions for QPSO-WE and BP-N generally showed sim-

ilar trends for the problem difficulties and problem environments. However, the distri-

bution of weights for QPSO-WE conformed more to the normal distribution than BP-N.

Thus, QPSO-WE showed that it had potential as a stream data classifier.

Problem difficulty had varying effects on the weight magnitudes distributions of the

classifiers. The magnitudes of the weights for the classifiers were larger and more dis-

tributed for moderate-I problems than for moderate-II problems. In the case of the

BP classifiers and QPSO-WE, the magnitudes of the weights were larger and more dis-

tributed for easy problems than for hard problems. There is a weak inverse relationship

between the problem difficulty and the weights magnitude distribution for all the classi-

fiers except QPSO-N and QPSO-WD. QPSO-WD weight magnitudes, however, tended

to become larger and more distributed as the problem difficulty increased. Figure 9.8

illustrates the above by plotting the mean of the average weight magnitudes in Table

9.16 against the problem difficulties for each classifier. Note that Figure 9.8 excludes

QPSO-N due to its infinitely large values.

The problem environments also had varying effects on the weight distributions of the

classifiers. BP-N and QPSO-WE both had smaller weight magnitudes and distributions

for progressive problems than for abrupt problems. The other classifiers showed the in-

verse thereof. This further supported the finding that QPSO-WE and BP-N shared some

similarities in controlling the weights, especially in progressive and abrupt environments.

Weight distribution analysis was found to be critical in understanding the behaviours

of classifiers in this study, because the analysis provided explanations for the unexpected

behaviours in the performance of the classifiers.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 205

Figure 9.8: Average weight magnitude versus problem difficulty scatter plot

9.9 Swarm diversity analysis

This section analyses the swarm diversity performance measure D of the QPSO classi-

fiers (refer to Section 8.4.9). The key objectives of the swarm diversity analysis are to

determine:

1. The swarm diversity levels experienced by the various QPSO classifiers.

2. Whether or not the QPSO classifiers could adjust the swarm diversity as needed.

3. Whether or not the QPSO classifiers explored or exploited more.

4. The effects of problem difficulty, environment, dimensionality, noise and complete

saturation on the exploration-exploitation trade-off of the QPSO classifiers.

Table 9.19 presents the statistical and MWU-based ranking analysis of the swarm

diversity with regards to the QPSO classifiers for each of the problem domains. Table

9.20 presents the statistical and MWU-based ranking analysis of the swarm diversity with

regards to the QPSO classifiers for each of the problem difficulties. Table 9.21 presents

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 206

the statistical and MWU-based ranking analysis of the swarm diversity with regards to

the QPSO classifiers for each of the problem environments. Table 9.22 presents the overall

MWU-based ranking results of how the QPSO classifiers faired against each other over

all the problems based on their swarm diversity. The swarm diversity results in Tables

9.19 to 9.22 show the following:

Table 9.19: Descriptive statistics and MWU-based ranking results of the QPSO classifiers

with regards to the collective means of the problem domains for D

Domain Classifier

QPSO-N QPSO-WD QPSO-WE

Hyperplane ∞±∞ 0.5515±0.0448 0.6832±0.0669

3(0.00/0.00/100.00) 1(100.00/0.00/0.00) 2(50.00/0.00/50.00)

Sphere ∞±∞ 1.4283±0.3476 1.1051±0.6068

3(0.00/0.00/100.00) 2(56.25/6.25/37.50) 1(87.50/6.25/6.25)

Thresholds ∞±∞ 1.2556±0.1741 1.4449±0.4049

3(0.00/0.00/100.00) 1(78.13/12.50/9.38) 2(59.38/12.50/28.13)

SEA ∞±∞ 3.3617±1.1768 ∞±∞
3(0.00/0.00/100.00) 2(50.00/0.00/50.00) 1(100.00/0.00/0.00)

Electricity ∞±∞ 1.6456±0.3540 1.4172±0.2540

3(0.00/0.00/100.00) 2(50.00/0.00/50.00) 1(100.00/0.00/0.00)

Table 9.20: Descriptive statistics and MWU-based ranking results of the QPSO classifiers

with regards to the collective means of the problem difficulty for D

Difficulty Classifier

QPSO-N QPSO-WD QPSO-WE

Easy ∞±∞ 1.2432±0.6265 0.7483±0.3104

3(0.00/0.00/100.00) 2(60.00/5.00/35.00) 1(85.00/5.00/10.00)

Moderate-I ∞±∞ 1.9026±1.3402 ∞±∞
3(0.00/0.00/100.00) 2(62.50/5.00/32.50) 1(82.50/5.00/12.50)

Moderate-II ∞±∞ 1.3394±0.6276 0.9760±0.3721

3(0.00/0.00/100.00) 2(70.00/0.00/30.00) 1(80.00/0.00/20.00)

Hard ∞±∞ 2.1090±1.3496 2.0720±1.3742

3(0.00/0.00/100.00) 1(75.00/5.00/20.00) 2(70.00/5.00/25.00)

Swarm diversity for QPSO-N was extreme in all of the problem domains. Swarm

diversity for QPSO-WE was extreme for the noisy SEA problems. The MWU ranking

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 207

Table 9.21: Descriptive statistics and MWU-based ranking results of the QPSO classifiers

with regards to the collective means of the problem environments for D

Environment Classifier

QPSO-N QPSO-WD QPSO-WE

Progressive ∞±∞ 1.6429±1.1741 1.4955±1.2028

3(0.00/0.00/100.00) 1(76.39/5.56/18.06) 2(68.06/5.56/26.39)

Abrupt ∞±∞ 1.1877±0.4920 0.6416±0.3054

3(0.00/0.00/100.00) 2(57.14/0.00/42.86) 1(92.86/0.00/7.14)

Chaotic ∞±∞ 1.7412±1.0917 ∞±∞
3(0.00/0.00/100.00) 2(59.46/2.70/37.84) 1(87.84/2.70/9.46)

indicated that swarm diversity of QPSO-WE was significantly less than the swarm di-

versity of the other classifiers 100% of the time for the SEA problems. This supports

the findings that only a negligible number of runs for the SEA problems lead to the

extreme swarm diversity. These observations showed that complete or high levels of

saturation increased the weight magnitudes which in turn lead to high swarm diversity

for the QPSO classifiers. Thus, complete saturation prevented the QPSO classifiers from

exploiting a good solution.

Low dimensionality, noise and high temporal severity lead to the regularised QPSO

classifiers exploring more, especially in the presence of noise. This was evident in the fact

that benchmark problems exhibiting these characteristics, e.g. sphere, thresholds and

SEA, had significantly higher swarm diversity than those benchmark problems that did

not exhibit these characteristics. The results also showed that easier problems resulted

in the regularised QPSO classifiers exploiting more, on average, than harder problems.

Figures 9.9 to 9.12 present the swarm diversity trend graphs. Note that Figures 9.9

to 9.12 include the plus and minus moving average standard deviation bands for the

swarm diversity trend to provide insight into the stability of the swarm diversity trend.

Figure 9.9 presents the swarm diversity trend of the QPSO-N on the hyperplane

A1 problems. The swarm diversity trends for QPSO-N took on a similar shape for all

problems. Problems with higher temporal severity took longer to approach the extreme

levels.

Figures 9.10 and 9.11 present the swarm diversity trends of the regularised QPSO

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 208

Table 9.22: MWU-based pairwise comparison of the classifiers for D (Wins/Ties/Losses per-

centages)

Classifier Classifier

QPSO-N QPSO-WD QPSO-WE

QPSO-N — 0.00/0.00/100.00 0.00/0.00/100.00

QPSO-WD 100.00/0.00/0.00 — 33.75/7.50/58.75

QPSO-WE 100.00/0.00/0.00 58.75/7.50/33.75 —

Overall rank 3(0.00/0.00/100.00) 2(66.88/3.75/29.38) 1(79.38/3.75/16.88)

classifiers for the A1 problems. Note that the swarm diversity trends for the A1 problems

of the hyperplane, sphere, thresholds and electricity domains represent the typical shape

of the swarm diversity trend experienced by the regularised QPSO classifiers in these

domains. Decreasing spatial severity of the A1 problems lead to more volatile trends,

while decreasing the temporal severity of the A1 problems resulted in smoother trends.

Figure 9.9: Swarm diversity trend of the QPSO-N classifier for the A1 hyperplane problem

Chaotic environments resulted in the highest levels of swarm diversity. Progressive

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 209

environments followed suit. The abrupt environments had significantly lower levels of

swarm diversity than the progressive environments. This indicates that the regularised

QPSO classifiers explored more while dealing with problems that had chaotic environ-

ments than those problems with other environments.

Decreasing the spatial severity of chaotic environments, to make them progressive,

allowed for slightly more exploitative behaviour. Temporal severity, however, demon-

strated the greatest effect on the swarm diversity of the regularised QPSO classifiers.

That is, decreasing temporal severity dramatically decreases swarm diversity. Thus,

allowing the classifier to exploit more.

The above observations show that regularised QPSO classifiers possess the ability to

detect environment changes in various kinds of dynamic environments in the SDCPs,

and to react accordingly.

The aggressive penalisation of the weights by QPSO-WD (refer to Section 9.8) pre-

vented QPSO-WD from exploiting. This was evident from the fact that its swarm

diversity was the majority of the time significantly higher than that of QPSO-WE.

QPSO-WE showed potential as a classifier for noisy SDCPs, because it was able to

maintain swarm diversity in the noisy SDCPs. Note that there is a high probability

that the electricity domain contains noise, because the SEA problems caused the swarm

diversity trends of the QPSO-WD to have a similar shape to that of the electricity

problems.

On a closing remark, the swarm diversity trends standard deviation bands were very

narrow. Thus, swarm diversity trends were very consistent. The very volatile raw MSE

trends observed in Section 9.5 did therefore not have much of an effect on the regularised

QPSO classifiers ability to manage swarm diversity.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 210

(a) Hyperplane A1 – QPSO-WD (b) Hyperplane A1 – QPSO-WE

(c) Sphere A1 – QPSO-WD (d) Sphere A1 – QPSO-WE

(e) Thresholds A1 – QPSO-WD (f) Thresholds A1 – QPSO-WE

Figure 9.10: Swarm diversity trends of the QPSO-WD and QPSO-WE classifiers for the A1

hyperplane, A1 sphere and A1 thresholds problems

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 211

(a) SEA A1 – QPSO-WD (b) SEA A1 – QPSO-WE

(c) Electricity A1 – QPSO-WD (d) Electricity A1 – QPSO-WE

Figure 9.11: Swarm diversity trends of the QPSO-WD and QPSO-WE classifiers for the A1

SEA and A1 electricity problems

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 212

(a) SEA B1 – QPSO-WD (b) SEA B1 – QPSO-WE

(c) SEA B2 – QPSO-WD (d) SEA B2 – QPSO-WE

(e) SEA D2 – QPSO-WD (f) SEA D2 – QPSO-WE

Figure 9.12: Swarm diversity trends of the QPSO-WD and QPSO-WE classifiers for selected

SEA problems

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 213

9.10 Conclusion

This section concludes the empirical analysis. Section 9.10.1 presents the conclusions

made with regards to the primary objective of the empirical analysis. Section 9.10.2

presents the conclusions made with regards to the secondary objectives of the empirical

analysis.

9.10.1 Remarks on the primary objective

The primary objective of this analysis was to validate the nine hypotheses made in

Section 8.1. The conclusions, with regards to the hypotheses, are as follows.

Hypothesis 1 stated that the proposed classifiers would outperform their counterparts,

which were not regularised, on all of the SDCPs. The overall statistical ranks validated

the hypothesis. BP-WE was considered the best BP classifier, and QPSO-WE was

considered the best QPSO classifier. BP-WE, however, was 20% less accurate than

BP-N, and ranked only marginally better than BP-N overall. BP-N had both the best

overall accuracy rank and required significantly less parameter configuration to be tested,

than BP-WE. Furthermore, BP-WD performed significantly worse than BP-N overall.

Under consideration of all these aspects, hypothesis 1 was only valid for the QPSO

classifiers.

Hypothesis 2 stated that QPSO-WD would outperform BP-WD on most of the

SDCPs. The overall statistical ranks invalidated this hypothesis. QPSO-WD, however,

did have a significantly better complexity performance rank than BP-WD. The satura-

tion rank of the two classifiers also did not differ significantly. Furthermore, QPSO-WD

had significantly less parameter configurations to test than BP-WD. Another problem-

atic aspect with BP-WD was that the classifier suffered from a loss of control over its

weights. Under consideration of all these aspects, hypothesis 2 was found to be partially

validated.

Hypothesis 3 stated that QPSO-WE would outperform BP-WE on most of the

SDCPs. The overall statistical ranks invalidated this hypothesis. QPSO-WE, how-

ever, did have a significantly better complexity performance rank. QPSO-WE also had

significantly less parameter configurations to test than BP-WE. Like BP-WD, BP-WE

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 214

also suffered from the problematic loss of control over its weights. Under consideration

of all these aspects, hypothesis 3 was found to be partially validated.

Hypothesis 4 stated that BP-WE and QPSO-WE would outperform their WD coun-

terparts on all of the SDCPs. The overall statical ranks validated this hypothesis. Fur-

thermore, the empirical analysis showed that the uniform weight penalisation approach

by WD caused the under performance.

Hypothesis 5 stated that the proposed classifiers would have lower effective model

complexity than their non-regularised counterparts on all of the SDCPs. The complex-

ity ranks validated this hypothesis for the BP classifiers, but not for the QPSO classi-

fiers. QPSO-N suffered from complete saturation. The complete saturation rendered the

QPSO-N unusable and resulted in the abnormally high complexity performance. The

complexity performance of QPSO-N is, therefore, considered as meaningless. Thus, the

empirical analysis validated hypothesis 5 for the QPSO classifiers also.

Hypothesis 6 stated that the proposed classifiers would have lower levels of saturation

than their non-regularised counterparts on all the SDCPs. The saturation ranks validated

this hypothesis for the QPSO classifiers, but only partially validated the hypothesis for

the BP classifiers. That is, only BP-WE had significantly lower saturation levels than

BP-N. Furthermore, there were rising saturation trends amongst all of the BP classifiers

due to the loss of control over their weights. This loss of control was accelerated through

the use of regularisation. Thus, the empirical analysis invalidated hypothesis 6 for all

the proposed BP classifiers.

Hypothesis 7 stated that the performance of the proposed classifiers would not scale

well with an increase in noise. The empirical analysis validated this hypothesis for the

BP classifiers. The regularised QPSO classifiers, however, performed very well in the

noisy SEA SDCPs. The regularised QPSO classifiers, especially QPSO-WE, showed

potential for noisy SDCPs.

Hypothesis 8 stated that BP-WD and BP-WE would not be able to handle the

dynamic environments of the SDCPs as effectively as QPSO-WD and QPSO-WE would.

Between the regularised BP and regularised QPSO classifiers, accuracy performance

tended to favour the regularised BP classifiers, regardless of the dynamic environment of

the SDCPs. The accuracy performance trends of the regularised BP classifiers, however,

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 215

showed signs of overfitting to previous environment instance, whereas the regularised

QPSO classifiers did not. Furthermore, the regularised QPSO classifiers maintained

stability in both saturation and complexity performance regardless of the environment

of a SDCP. The empirical analysis, therefore, only had enough evidence to partially

validate hypothesis 8. SDCPs with significantly more patterns need to be tested.

Hypothesis 9 stated that QPSO-WD and QPSO-WE would be able to maintain their

swarm diversity when dealing with the SDCPs. The empirical analysis validated this

hypothesis. Note that QPSO-WE did show some loss of swarm diversity control in a

negligible amount of runs belonging to the SEA B1 problem.

All in all, five of the nine hypothesis were empirically validated, namely hypotheses

4, 5, 9. The remaining four hypotheses were partially validated, namely 1, 2, 3, 6, 7, 8.

9.10.2 Remarks on the secondary objectives

The secondary objectives of the empirical analysis were to gain a better understanding

of how the classifiers dealt with SDCPs, and to determine what improvements could

be made to the proposed classifiers. The conclusions with regards to the secondary

objectives, are as follows.

Remarks on saturation

Saturation in the BP classifiers increased slowly over time. The trend was caused by a

loss of control over the weights, due to the zero gradients of the ReLU activation functions

in dynamic environments. The BP weights adjustment algorithm should, therefore, not

be used to train ReLU FFNNs that deal with SDCPs. Regularisation only antagonises

the loss of control over the weights, with BP-WE even experiencing complete saturation

for the electricity A4 problem.

Saturation in the QPSO classifiers was severe when it occurred. The complete sat-

uration was due to the weights exploding uncontrollably because of a lack of search

space information, i.e. boundaries. Regularisation managed to successfully reduce the

saturation experienced by the QPSO weights adjustment algorithm. QPSO-WE showed

some ability with regards to distinguishing between necessary and unwanted saturation

in most SDCPs. QPSO-WD, however, simply curbed all saturation regardless.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 216

Complete saturation of the classifiers resulted in extreme levels of complexity re-

duction. The PCC results correlated to the number of output neurons. That is, the

more output neurons a completely saturated classifier had, the more the accuracy per-

formance degraded. The use of MSE measures in addition to the PCC measures assisted

with detecting complete saturation.

Furthermore, complete saturation caused the accuracy performance trends based

on the same error measure to group together, and the complexity reduction trends to

stabilise at a high level, after some initial period of learning. Complete saturation, lastly,

lead to meaningless exploration by the swarm of the QPSO classifiers.

Both ϕg and ϕv delivered almost exactly the same results. Thus, ϕg can be used by a

streamed classifier during learning, if needed. Furthermore, the appropriate upper bound

for the saturation measures, i.e. ϕv and ϕg, when using the proposed architecture was

found to be one. Higher upper bounds produced irreverent findings about the saturation

levels. The saturation measure, therefore, can be used with ReLU activation functions

if the upper bound used is the same as the upper bound of the output neuron.

Lastly, there was no strong evidence to support the idea that the ReLU activation

functions decreased the saturation levels of the hidden neurons in streamed data classi-

fiers.

Remarks on accuracy

BP-N was the best at generalising and remembering patterns in SDCPs. However, the

slow continuous rise of saturation warned of potential overfitting in the long run. Training

accuracies tended to be very good for all classifiers, except QPSO-N.

The one-pass requirement resulted in highly volatile raw MSEt and MSEg trends of

SDCPs. So much so that MSEt and MSEg would bounce between zero and one. The

volatile raw MSE trends, however, did not stop the regularised QPSO classifiers from

managing swarm diversity. Further research into methods for reducing the volatility, or

creating classifiers that are capable of handling the volatility needs to be conducted.

QPSO-WD could not exploit solutions effectively, because of the aggressive penal-

isation of the weights by WD. Furthermore, the performance trends showed that the

regularised QPSO classifiers were unable to adjust the rate at which information was

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 217

unlearnt as needed. If the regularised QPSO classifiers had some way of dynamically

adjusting the unlearning rate, then they would gain a significant accuracy performance

boost. A possible solution would be basing the aggressiveness of the penalisation of

the weights on the accuracy performance, i.e. better accuracy performance means less

aggressive penalisation and vice versa.

Lastly, the regularised QPSO classifiers generally had both low MSE and PCC errors.

Remarks on complexity

The regularised QPSO classifiers managed to get effective architectures close to the

size of optimal architectures found by Rakitianskaia [94]. In some cases even better.

Architecture selection should, thus, be employed by fully connected FFNN streamed

data classifiers. Preferably with dynamic weights adjustment algorithms. Architecture

selection algorithms for SDCPs must also function at a synapse-level instead of a neuron-

level for the best performance.

The complexity performance results showed that the pruning algorithm proposed by

Engelbrecht [31] was effective at determining the effective model for the FFNN classifiers.

Ways of integrating the pruning algorithm with streamed algorithms should be researched

as it can be an effective pruning algorithm for streamed data classifiers.

Furthermore, the ReLU activation functions stored less information than the sigmoid

activation functions, because in general the classifiers did not manage to reduce the size

of the effective architectures to that of the optimal architectures.

Lastly, the accuracy and complexity trends of the BP classifiers showed that the BP

classifiers allocated information efficiently to the neurons during periods of high accuracy.

Lastly, the oversize synapse ratio, nsor , can be used to estimate computational com-

plexity.

Remarks on noise

The results showed that regularised QPSO classifiers managed to unlearn noise, while

the BP classifiers did not. Noise had an effect on the complexity performance of the

classifiers. That is, the more a streamed data classifier captured noise, the less the clas-

sifier could reduce its model complexity. Furthermore, capturing noise lead to increased

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 218

levels of saturations, especially if there was prolonged exposure to noisy patterns.

Remarks on problem dimensionality

High dimensional SDCPs generally had a detrimental effect on the accuracy and com-

plexity performance of the regularised QPSO classifiers, but not on the BP classifiers.

Problem dimensionality did not have any significant effect on the saturation levels.

Remarks on problem difficulty

The problem difficulty classification scheme proposed in Section 8.3.6 was supported

by the empirical findings. Moderate-I problems were found to be more difficult than

moderate-II problems.

Lastly, increasing the window step size increased the intra-environment volatility in

performance trends. On the other hand, increasing window frequency decreased the

intra-environment volatility in performance trends and improved accuracy performance.

Remarks on dynamic environments

The BP classifiers saturated slower in SDCPs that had a high temporal severity and

a low amount of information, i.e. a high window step size. On the other hand, high

temporal severity prevented the regularised QPSO classifiers from learning, because their

unlearning rates were too large. This further supported the need to do further research

into dynamically adjusting the unlearning rates of the regularised QPSO classifiers.

The classifiers generally performed the best in abrupt environments, and second

best in the chaotic environments. High levels of temporal severity, therefore, had a

significantly more detrimental effect on the performance of the classifiers than the high

levels of spatial severity. High spatial severity mostly countered the detrimental effect

of high temporal severity.

Lastly, decreasing spatial severity of the A1 problems generally lead to more volatile

swarm diversity trends, while decreasing the temporal severity of the A1 problems re-

sulted in smoother swarm diversity trends. Thus, the regularised QPSO were able to

manage their swarm diversity in all classes of dynamic environments.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 219

Remarks on general behaviour

The BP and QPSO weights adjustment algorithm behaved significantly differently from

each other for SDCPs. Behaviour amongst the BP classifiers did not differ significantly in

the majority of the SDCPs. On the other hand, behaviour amongst the QPSO classifiers

did differ significantly.

Remarks on overfitting

There were signs of overfitting amongst the classifiers in the accuracy performance trends.

Overfitting could, however, not be validated by the overfitting indicators, because nei-

ther Oρ nor OMSEg were appropriate overfitting indicators for SDCPs. Both measures

failed, because of the volatile accuracy trends, dynamic environments, and for not taking

the behaviour of MSEt into account. Future research into more suitable measures is,

therefore, required.

Remarks on control parameters

BP-N had the best trade-off between performance and the time taken to tune the control

parameters. QPSO-WE provided the second best trade-off. This furthered the case for

using QPSO-WE and BP-N for SDCP.

The value ranges of the momentum term (α) and learning rate (η) control parameters

for the BP classifiers could both be reduced to [0, 0.4]. The finding that the BP classifiers

kept their learning rate very low, showed that the BP classifiers required a very low

learning rate and momentum for SDCPs in order to cope with the dynamic environments.

The values of the radius (r) control parameter for the regularised QPSO classifiers

never exceed 0.25, and were mostly 0.1. The recommendation by Harrison et al. [52] to

keep the radius of QPSO small was, therefore, supported by the empirical analysis.

The ranges and values of regularisation coefficient (λr) control parameter was found to

be problem domain and weights adjustment algorithm dependent. Furthermore, values

for the weights relevancy threshold (w0) control parameter should be selected from a

wide range, i.e. (0, 1], when optimising the parameter for streamed data classifiers.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 9. Empirical analysis 220

Remarks on benchmark suite

The benchmark suite must acquire more real-world problem domains as there is only

one. Benchmark problems with significantly more patterns should be constructed from

the problem domains, because the data streams did not allow the streamed classifiers to

train long enough to confirm the effect of the performance trends that progressed slowly.

The benchmark suite must also acquire more artificial problems with extremely high

temporal severity, because this was suggested to be a key characteristic of the real-

world electricity domain. Benchmark SDCP that are quasi-static in relation to the

other benchmark SDCPs must also be added, because none of the benchmark problems

represented quasi-static environments.

9.11 Summary

This chapter presented the empirical analysis of the six classifiers that were investigated

by this thesis. The analysis included the statistical analysis and performance trend anal-

ysis of the saturation, accuracy and complexity performance measures. These results

were, further, used to rank the classifiers. Additional insight into the characteristics of

the six classifiers were gained by analysing their overfitting behaviour, control parame-

ters, weight distributions, and swarm diversity.

The empirical analysis validated several of the hypothesis made in Section 8.1. Fur-

thermore, the empirical analysis provided important insight into the behavioural char-

acteristics of the streamed data classifiers, as well as potential areas of improvement.

Next, Chapter 10 presents the conclusions made by this thesis.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 10

Conclusions

This chapter presents a summary of the work done in this thesis and the possible deriva-

tions thereof.

The remainder of the chapter is organised as follows. Section 10.1 summarises the

conclusions made during the thesis with regards to the objectives set out in Section 1.2.

Lastly, Section 10.2 provides possible topics for future research.

10.1 Summary of Conclusions

The main objective of this thesis was to investigate the application of regularised feed

forward neural networks (FFNNs), trained by quantum particle swarm optimisation

(QPSO), as classifiers for streamed data classification problems (SDCPs). This was

accomplished as follows:

Background for the investigation was provided through detailed discussions on the

topics of computational intelligence (CI), particle swarm optimisers (PSOs), artificial

neural networks (ANNs) and streamed data problems (SDPs). The discussions focused

on dynamic optimisation problems, QPSOs, FFNNs, regularisation, saturation, SDCP,

and current literature on streamed data classifiers.

The ability to continuously adapt was found to be instrumental to the success of a

streamed data classifier. Recent studies have successfully incorporated dynamic weights

optimisation approaches, such as QPSO, into FFNNs for dynamic classification problems.

221

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 10. Conclusions 222

Studies thus far, however, have not considered architecture optimisation with dynamic

weights optimisation for dynamic classification problems, let alone SDCP. This is despite

the fact that efficient approaches, such as regularisation, exist.

This dissertation, therefore, proposed an online learning algorithm based on QPSO

and regularisation to train FFNNs for SDCPs. weight decay (WD) and weight elimina-

tion (WE) were used as regularisers. Because regularisation literature with regards to

SDCPs is limited, a back propagation (BP) variant of the learning algorithm was also

proposed. The learning algorithms were each applied to a 3-layer FFNNs architecture,

which used rectified linear unit (ReLU) activation functions and summation units. The

four resulting classifiers were named QPSO-WD, QPSO-WE, BP-WD, and BP-WE.

The investigation empirically evaluated the proposed classifiers by pitting them against

each other, and their non-regularised counterparts, namely QPSO-N and BP-N, on 80

benchmark problems. The benchmark problems were derived from five problem domains

using the sliding window algorithm.

To provide a better understanding of the benchmark problems, this thesis proposed

several novel methods for quantitatively evaluating SDCPs. The methods included an

algorithm to extract the environment instances from an extract of a SDCP; a set of

quantitative measures that can be used to determine the spatial and temporal severity

in SDCPs; and a classification scheme to quantify, and describe how difficult it is for a

classifier to accurately learn a SDCPs. These methods were successfully applied to the 80

benchmark problems, and provided significant insight into the findings of the empirical

investigation.

The results of the benchmarking process were analysed using a statistically-sound

approach employing descriptive statistics, Mann-Whitney U (MWU)-based ranking, and

performance trend analysis. The following findings were made by the empirical analysis:

The BP-N classifier learned SDCPs quickly and accurately. BP-N was the most

accurate classifier of all the classifiers. BP-N, however, had a tendency to experience

increasing saturation as the data stream progressed. The same increasing saturation

trend occurred in BP-WD and BP-WE, with BP-WE completely saturating in some

cases.

Saturation in the BP classifiers was caused by a loss of control over the weights,

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 10. Conclusions 223

i.e. the learning algorithm was unable to adjust the weights. This loss of control was

a result of the combined effect that the dynamic environments and the zero gradients

of the ReLU activation function had on the BP algorithm. Furthermore, regularisation

only accelerated the loss of control.

QPSO-WE provided well-rounded performance, and overall showed the most poten-

tial as a streamed data classifier. The main issue with the QPSO-WE was its accuracy

performance. On the other hand, the aggressive weight penalisation of WD resulted

in very stable complexity and saturation performance, but degraded accuracy perfor-

mance significantly. The only time QPSO-WD was found worth considering was in

noisy SDCPs.

QPSO-N completely saturated all the time. Unlike the BP classifiers, saturation in

the QPSO classifiers was caused by a lack of search space information, i.e. boundaries

imposed by additional constraints on the classifier.

With regards to complexity performance, the regularised QPSO classifiers managed

to get effective architectures close to the size of the optimal architectures found by

Rakitianskaia [94]. In some cases even better. The regularised BP classifiers failed to

get architectures close to the optimal architectures.

Architecture selection should, therefore, be employed by fully connected FFNN streamed

data classifiers, preferably with dynamic weights adjustment algorithms. Furthermore,

architecture selection algorithms for SDCPs should function at a synapse-level instead

of a neuron-level.

Lastly, the performance trends for accuracy measures experienced high levels of

volatility. This volatility was found to be one of the main causes for the unforeseen

behaviours of the classifiers. The one-pass requirement was identified as the main cul-

prit, because it does not allow the classifier to see the entire environment instance per

epoch.

The above findings by this thesis showed that regularised FFNN classifiers, using

a dynamic weight adjustment algorithm, such QPSO, had potential. However, several

improvements need to be made to make the QPSO classifiers suitable for SDCPs.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 10. Conclusions 224

10.2 Future Work

The following future work is derived from the findings made during the course of this

thesis:

Future research into alternatives to the various components making up the proposed

classifiers should be done. Potential avenues include the investigation into the usage

of other dynamic PSOs weight adjustment algorithms, using product units, instead of

summation units, using sigmoid and other bounded activation functions, and using other

regularisers.

In terms of alternative algorithmic settings, the performance of small swarm sizes for

PSO classifiers should be investigated. If smaller swarms result in similar accuracy, then

the computational complexity of the classifiers can be reduced. Another potential area

that can be investigated is to use different error functions for the classifiers. Because

SDCPs are classification problems, a possible starting point is to use the cross entropy

loss function instead of the mean square error (MSE) to train the classifiers. Another

algorithmic setting that should be investigated is the use of different weight initialisation

ranges, such as He normal initialisation proposed by He et al. [55].

The empirical analysis showed that the current set of benchmark SDCPs needs more

benchmark problems. Thus the benchmark suite should be built on to create a more

comprehensive benchmark suite for future research. This includes adding more domains,

especially real-world domains, and more examples of quasi-static, abrupt, and chaotic

environments. Additionally, benchmark problems with longer data streams should also

be added. Another avenue that can be considered is to add additional functionality to

the sliding windows algorithm, such as random shuffling of patterns that are repeated in

an environment instance and noise generation.

The empirical analysis revealed six behaviours/characteristics pertaining to the clas-

sifiers, that if mitigated or exploited, could improve performance. Firstly, the regularised

QPSO classifiers had a tendency to get both low MSE and percentage correct classifi-

cations (PCC) errors. A potential starting point would be to investigate the effect of

reducing the range of the output neurons to [0.1, 0.9]. That is, if the activation value of

the output neuron is more than 0.9, then the value is changed to 1.

Secondly, the classifiers experienced volatile accuracy performance trends due to the

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 10. Conclusions 225

one-pass requirement. If the volatility could be reduced, then performance could be

improved. A potential starting point is to investigate the use of fading factors to calculate

the training error as suggested by Gama et al. [45].

Thirdly, noise had a negative effect on the classifiers. Research into creating a low

computational complexity noise-filtering mechanism for SDCP classifiers should be done.

A starting point would be to first do a more detailed investigation into the effect of noise

on the proposed classifiers, and the current approaches to noise filtering.

Fourth, the “loss of control over weights” in the BP classifiers caused unwanted

saturation. The ReLU activation function was the main cause of this. Alternative

activation functions for the BP classifiers should investigated, such as the sigmoid or the

leaky ReLU activation functions.

The fifth behaviour was the unwanted saturation for the QPSO classifiers that was

caused by a “lack of search space information”. Regularisation clearly reduced this issue,

but not completely. Additional forms of controlling saturation in the classifiers should

be investigated, such as velocity clamping and search space boundaries.

The sixth and final behaviour that should be considered is that the regularised QPSO

classifiers could not manage their unlearning rate dynamically, because of the static

values of the regularisation coefficient, λr, and the relevance threshold, w0. A possible

solution would be basing these control parameters on accuracy in such a way that better

accuracy performance would result in less aggressive penalisation and vice versa. Another

possible solution would be to dynamically adjust η for the BP classifiers and λr for all

the classifiers.

The pruning algorithm by Engelbrecht [31] proved effective in determining the effec-

tive model complexity. Future research into adapting it to replace regularisation should

be done. If done successfully, this would allow effective computational complexity to be

realised during learning. A starting point would be to see if basing the effective reduction

in complexity, Ωr, on the generalisation set, Dg, instead of the validation set, Dv, returns

similar results to what was observed during the empirical analysis.

Finding alternative overfitting measures for the streamed data classifiers is another

topic for future research, because the current measures proved inadequate. If alterna-

tives are not found, then applying algorithms to SDCP that are dependent on detecting

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 10. Conclusions 226

overfitting would not be possible.

Investigate the use of regularisation with PSO in a non-ANN context, for the purpose

of potentially replacing velocity clamping.

Lastly, the streamed benchmark problem approach to tuning control parameters

proved effective, but not ideal. A self-adaptive version of the proposed classifiers should,

therefore, be investigated in the future. A possible starting point is looking at the self-

adaptive QPSO proposed by Pamparà and Engelbrecht [90].

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Bibliography

[1] C.C. Aggarwal. Data Streams: Models and Algorithms. Springer, first edition,

2007.

[2] E. Alpaydn. Introduction to Machine Learning. The MIT Press, second edition,

2010.

[3] P.J. Angeline. Tracking extrema in dynamic environments. In Proceedings of

the 6th International Conference on Evolutionary Programming, pages 335–345.

Springer, April 1997.

[4] M. Azzeh. Software effort estimation based on optimized model tree. In Proceedings

of the 7th International Conference on Predictive Models in Software Engineering.

ACM, September 2011.

[5] R. Battiti. First- and second-order methods for learning: Between steepest descent

and newton’s method. Neural Computation, 4(2):141–166, March 1992.

[6] T. Blackwell and J. Branke. Multi-swarm optimization in dynamic environments.

In Applications of Evolutionary Computing. EvoWorkshops. Lecture Notes in Com-

puter Science, volume 3005, pages 489–500. Springer, 2004.

[7] T. Blackwell and J. Branke. Multiswarms, exclusion, and anti-convergence in dy-

namic environments. IEEE Transactions on Evolutionary Computing, 10(4):459–

472, August 2006.

[8] T. Blackwell, J. Branke, and X. Li. Particle swarms for dynamic optimization

problems. In Swarm Intelligence, pages 193–217. Springer, 2008.

227

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Bibliography 228

[9] T.M. Blackwell and P.J. Bentley. Dynamic search with charged swarms. In Proceed-

ings of the Annual Conference on Genetic and Evolutionary Computation, pages

19–26. Morgan Kaufmann Publishers Incorporated, July 2002.

[10] A. Bosman, A. Engelbrecht, and M. Helbig. Fitness landscape analysis of weight-

elimination neural networks. Neural Processing Letters, 48(1):353–373, August

2018.

[11] J. Branke, E. Salihoğlu, and Ş. Uyar. Towards an analysis of dynamic environ-

ments. In Proceedings of the 7th annual conference on Genetic and evolutionary

computation, pages 1433–1440. ACM, 2005.

[12] L. Breiman. Bagging predictors. Machine Learning, 24:123–140, 1996.

[13] F. Chu, Y. Wang, and C. Zaniolo. An adaptive learning approach for noisy data

streams. In Proceedings of the International Conference on Data Mining, pages

351–354. IEEE, November 2004.

[14] C. W. Cleghorn. Particle swarm optimization: Understanding order-2 stability

guarantees. In Proceedings of the International Conference on the Applications of

Evolutionary Computation, pages 535–549. Springer, 2019.

[15] C. W. Cleghorn and B. Stapelberg. Particle swarm optimization: Stability analysis

using n-informers under arbitrary coefficient distributions, 2020.

[16] C.W. Cleghorn and A. Engelbrecht. Particle swarm optimizer: The impact of

unstable particles on performance. In Proceedings of the Symposium Series on

Computational Intelligence, pages 1–7. IEEE, December 2016.

[17] C.W. Cleghorn and A.P. Engelbrecht. A generalized theoretical deterministic par-

ticle swarm model. Swarm Intelligence, 8(1):35–59, March 2014.

[18] C.W. Cleghorn and A.P. Engelbrecht. Particle swarm convergence: An empirical

investigation. In Proceedings of the Congress on Evolutionary Computation, pages

2524–2530. IEEE, July 2014.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Bibliography 229

[19] C.W. Cleghorn and A.P. Engelbrecht. Particle swarm stability: a theoretical exten-

sion using the non-stagnate distribution assumption. Swarm Intelligence, 12(1):1–

22, March 2018.

[20] M. Clerc. The swarm and the queen: towards a deterministic and adaptive particle

swarm optimization. In Proceedings of the Congress on Evolutionary Computation,

volume 3, pages 1951–1957. IEEE, July 1999.

[21] Y. Cui, C. Surpur, S. Ahmad, and J. Hawkins. A comparative study of htm and

other neural network models for online sequence learning with streaming data.

In Proceedings of the International Joint Conference on Neural Networks, pages

1530–1538. IEEE, July 2016.

[22] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathemat-

ics of Control, Signals, and Systems, 2(4):303–314, 1989.

[23] P. Domingos. A few useful things to know about machine learning. Communica-

tions of the ACM, 55(10):78–87, October 2012.

[24] P. Domingos and G. Hulten. Mining high-speed data streams. In Proceedings of

the SIGKDD International Conference on Knowledge discovery and data mining,

volume 6, pages 71–80. ACM, August 2000.

[25] J.G.O.L. Duhain and A.P. Engelbrecht. Towards a more complete classification

system for dynamically changing environments. In Proceedings of the Congress on

Evolutionary Computation, pages 1–8. IEEE, June 2012.

[26] R. Durbin and D.E. Rumelhart. Product units: A computationally powerful and

biologically plausible extension to backpropagation networks. Neural Computation,

1(1):133–142, 1989.

[27] K.B. Dyer, R. Capo, and R. Polikar. Compose: A semisupervised learning frame-

work for initially labeled nonstationary streaming data. IEEE Transactions on

Neural Networks and Learning Systems, 25(1):12–26, January 2014.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Bibliography 230

[28] R. Eberhart and J. Kennedy. A new optimizer using particle swarm theory. In Pro-

ceedings of the International Symposium on Micro Machine and Human Science,

pages 39–43. IEEE, October 1995.

[29] R.C. Eberhart and Y. Shi. Comparing inertia weights and constriction factors

in particle swarm optimization. In Proceedings of the Congress on Evolutionary

Computation, volume 1, pages 84–88. IEEE, July 2000.

[30] R.C. Eberhart and Y. Shi. Tracking and optimizing dynamic systems with particle

swarms. In Proceedings of the Congress on Evolutionary Computation, pages 94–

100, May 2001.

[31] A. Engelbrecht. A new pruning heuristic based on variance analysis of sensitivity

information. IEEE Transactions on Neural Networks, 12(6):1386–1399, November

2001.

[32] A. Engelbrecht. Particle swarm optimization: Velocity initialization. In Proceedings

of the Congress on Evolutionary Computation, pages 1–8. IEEE, June 2012.

[33] A.P. Engelbrecht. Computational Intelligence: An introduction. John Wiley and

Sons Ltd., second edition, 2007.

[34] A.P. Engelbrecht. Heterogeneous Particle Swarm Optimization, pages 191–202.

Springer, September 2010.

[35] A.P. Engelbrecht. Particle swarm optimization: Global best or local best? In Pro-

ceedings of the BRICS Congress on Computational Intelligence and 11th Brazilian

Congress on Computational Intelligence, pages 124–135. IEEE, September 2013.

[36] A.P. Engelbrecht. Particle swarm optimization: Iteration strategies revisited. In

Proceedings of the 2013 BRICS Congress on Computational Intelligence and 11th

Brazilian Congress on Computational Intelligence, pages 119–123. IEEE, Septem-

ber 2013.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Bibliography 231

[37] A.P. Engelbrecht. Roaming behaviour of unconstrained particles. In Proceedings of

the BRICS Congress on Computational Intelligence and 11th Brazilian Congress

on Computational Intelligence, pages 104–111. IEEE, September 2013.

[38] A.P. Engelbrecht. Asynchronous particle swarm optimization with discrete

crossover. In Proceedings of the Symposium on Swarm Intelligence, pages 1–8.

IEEE, December 2014.

[39] W. Ertel. Introduction to Artificial Intelligence. Springer, first edition, 2011.

[40] S.E. Fahlman. Faster-learning variations on back-propagation: An empirical study.

In D.S. Touretzky, G.E. Hinton, and T.J. Sejnowski, editors, Proceedings of the

1988 Connectionist Models Summer School, pages 38–51. Morgan Kaufmann Pub-

lishers Incorporated, 1989.

[41] T. Fawcett. An introduction to roc analysis. Pattern Recognition Letters,

27(8):861–874, June 2006.

[42] M. Fernndez-Redondo and C. Hernndez-Espinosa. Weight initialization methods

for multilayer feedforward. In Proceedings of the European Symposium on Artificial

Neural Networks, pages 119–124. D-Facto public, April 2001.

[43] E. Frank, Y. Wang, S. Inglis, G. Holmes, and I.H. Witten. Using model trees for

classification. Machine Learning, 32(1):63–76, July 1998.

[44] J. Gama. A survey on learning from data streams: current and future trends.

Progress in Artificial Intelligence, 1(1):45–55, April 2012.

[45] J. Gama, R. Sebastião, and P.P. Rodrigues. Issues in evaluation of stream learning

algorithms. In Proceedings of the SIGKDD International Conference on Knowledge

Discovery and Data Mining. ACM, January 2009.

[46] E. Gelenbe. Random neural networks with negative and positive signals and prod-

uct form solution. Neural Computation, 1(4):502–510, December 1989.

[47] S. Geman, E. Bienenstock, and R. Doursat. Neural networks and the bias/variance

dilemma. Neural Computation, 4(1):1–58, 1992.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Bibliography 232

[48] D. Gies and Y. Rahmat-Samii. Vector evaluated particle swarm optimization

(vepso): optimization of a radiometer array antenna. In Proceedings of the Anten-

nas and Propagation Society Symposium, volume 3, pages 2297–2300. IEEE, June

2004.

[49] S.U. Guan and S. Li. Incremental learning with respect to new incoming input

attributes. Neural Processing Letters, 14(3):241–260, December 2001.

[50] A. Gupta and S.M. Lam. Weight decay backpropagation for noisy data. Neural

Networks, 11(6):1127–1138, 1998.

[51] S.L. Harris and D.M. Harris. Digital Design and Computer Architecture. Morgan

Kaufmann, arm edition, 2016.

[52] K. Harrison, B.M. Ombuki-Berman, and A.P. Engelbrecht. The effect of probabil-

ity distributions on the performance of quantum particle swarm optimization for

solving dynamic optimization problems. In Proceedings of the Symposium Series

on Computational Intelligence, pages 242–250. IEEE, December 2015.

[53] K.R. Harrison, A.P. Engelbrecht, and B.M. Ombuki-Berman. The sad state of self-

adaptive particle swarm optimizers. In Proceedings of the Congress on Evolutionary

Computation (CEC), pages 431–439, July 2016.

[54] E. Hazan. Introduction to online convex optimization. Foundations and Trends R©

in Optimization, 2(3–4):157–325, 2015.

[55] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing

human-level performance on imagenet classification. In Proceedings of the Inter-

national Conference on Computer Vision, pages 1026–1034. IEEE, 2015.

[56] M. Helbig and A.P. Engelbrecht. Analysing the performance of dynamic multi-

objective optimisation algorithms. In Proceedings of the Congress on Evolutionary

Computation, pages 1531–1539. IEEE, June 2013.

[57] K. Hornik. Approximation capabilities of multilayer feedforward networks. Neural

Networks, 4(2):251–257, December 1991.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Bibliography 233

[58] R. Huang and S. Tong. Evolving product unit neural networks with particle swarm

optimization. In Proceedings of the International Conference on Image and Graph-

ics, pages 624–628. IEEE, September 2009.

[59] E.J. Hughes. Evolutionary many-objective optimisation: many once or one many?

In Proceedings of the Congress on Evolutionary Computation, volume 1, pages

222–227. IEEE, September 2005.

[60] G. Hulten, L. Spencer, and P. Domingos. Mining time-changing data streams.

In Proceedings of the seventh SIGKDD International Conference on Knowledge

discovery and data mining, pages 97–106. ACM, August 2001.

[61] A. Ismail and A.P. Engelbrecht. Global optimization algorithms for training prod-

uct unit neural networks. In Proceedings of the International Joint Conference on

Neural Networks, pages 132–137. IEEE, July 2000.

[62] A. Jadhav and L. Deshpande. An efficient approach to detect concept drifts in data

streams. In Proceedings of the 7th International Advance Computing Conference,

pages 28–32. IEEE, January 2017.

[63] Y. Jin. A comprehensive survey of fitness approximation in evolutionary compu-

tation. The Journal of Soft Computing, 9(1):3–12, January 2005.

[64] J. Kennedy and R. Mendes. Population structure and particle swarm performance.

In Proceedings of the Congress on Evolutionary Computation, volume 2, pages

1671–1676. IEEE, May 2002.

[65] C. Kim, S.H. Cha, Y.J. An, and N. Wilson. On roc curve analysis of artificial

neural network classifiers. In Proceedings of the 30th International Florida Artificial

Intelligence Research Society Conference, pages 318–321. AAAI Publications, May

2017.

[66] S.B. Kotsiantis. Decision trees: a recent overview. Artificial Intelligence Review,

39(4):261–283, April 2013.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Bibliography 234

[67] B. Krawczyk, L.L. Minku, J. Gama, J. Stefanowski, and M. Wozniak. Ensemble

learning for data stream analysis: A survey. Information Fusion, 37:132–156, 2017.

[68] A. Krogh and J.A. Hertz. A simple weight decay can improve generalization. In

Proceedings of the 4th International Conference on Neural Information Processing

Systems, NIPS’91, pages 950–957. Morgan Kaufmann Publishers Incorporated,

December 1991.

[69] B. Krose and P. van der Smagt. An introduction to Neural networks. University

of Amsterdam, eighth edition, November 1996.

[70] R. V. Kulkarni, S. H. Patil, and R. Subhashini. An overview of learning in data

streams with label scarcity. In Proceedings of the International Conference on

Inventive Computation Technologies, volume 2, pages 1–6, August 2016.

[71] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521:436–444, May

2015.

[72] Y. LeCun, L., G.B. Orr, and K.R. Müller. Efficient BackProp, volume 7700, pages

9–50. Springer, 1998.

[73] D.H. Lee and D.S. Kang. The application of the artificial neural network ensemble

model for simulating streamflow. Procedia Engineering, 154:1217–1224, 2016.

[74] L.R. Leerink, C.L. Giles, B.G. Horne, and M.A. Jabri. Learning with product

units. Advances in Neural Information Processing Systems, 7:537–544, 1995.

[75] J. Leskovec, A. Rajaraman, and J.D. Ullman. Mining of Massive Datasets. Cam-

bridge University Press, second edition, November 2014.

[76] N.Y. Liang, G.B. Huang, P. Saratchandran, and N. Sundararajan. A fast and ac-

curate online sequential learning algorithm for feedforward networks. IEEE Trans-

actions on Neural Networks, 17(6):1411–1423, 2006.

[77] N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-

threshold algorithm. Machine Learning, 2(4):285–318, April 1988.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Bibliography 235

[78] N. Littlestone and M.K. Warmut. The weighted majority algorithm. In Proceedings

of the 30th Annual Symposium on Foundations of Computer Science, pages 256–

261. IEEE, October 1989.

[79] D. Liu, T.S. Chang, and Y. Zhang. A constructive algorithm for feedforward neural

networks with incremental training. IEEE Transactions on Circuits and Systems

I: Fundamental Theory and Applications, 49(12):1876–1879, December 2002.

[80] V. Losing, B. Hammer, and H. Wersing. Incremental on-line learning: A review

and comparison of state of the art algorithms. Neurocomputing, 275:1261–1274,

2018.

[81] A.L. Maas, A.Y. Hannun, and A.Y. Ng. Rectifier nonlinearities improve neural

network acoustic models. In Proceedings of the ICML Workshop on Deep Learning

for Audio, Speech, and Language Processing, 2013.

[82] K.M. Malan and A.P. Engelbrecht. Algorithm comparisons and the significance

of population size. In Proceedings of the Congress on Evolutionary Computation,

pages 914–920. IEEE, June 2008.

[83] H.B. Mann and D.R. Whitney. On a test of whether one of two random variables is

stochastically larger than the other. Annals of Mathematical Statistics, 18(1):50–

60, January 1947.

[84] W.S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous

activity. The bulletin of mathematical biophysics, 5(4):115–133, December 1943.

[85] R. Mendes, P. Cortez, M. Rocha, and J. Neves. Particle swarms for feedforward

neural network training. In Proceedings of the International Joint Conference on

Neural Networks, pages 1895–1899. IEEE, May 2002.

[86] H. Mhaskar, Q. Liao, and T. Poggio. Learning functions: When is deep better

than shallow. CBMM Memo, (045), 2016.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Bibliography 236

[87] R.W. Morrison. Performance measurement in dynamic environments. In J. Branke,

editor, Proceedings of GECCO Workshop on Evolutionary Algorithms for Dynamic

Optimization Problems, August 2003.

[88] B. Ngom, A. Boly, and R. Chiky. ”forgetting functions” in the context of data

streams for the benefit of decision-making. In Proceedings of the International

Workshop on Computational Intelligence for Multimedia Understanding, pages 1–

5, October 2016.

[89] O. Olorunda and A.P. Engelbrecht. Measuring exploration/exploitation in particle

swarm using swarm diversity. In Proceedings of the Congress on Evolutionary

Computation, pages 1128–1134. IEEE, May 2008.

[90] G. Pamparà and A.P. Engelbrecht. Self-adaptive quantum particle swarm opti-

mization for dynamic environments. Unpublished article (currently under review),

2019.

[91] K. Potdar, T.S. Pardawala, and C.D. Pai. A comparative study of categorical

variable encoding techniques for neural network classifiers. International Journal

of Computer Applications, 175:7–9, 10 2017.

[92] S. Pramod and O.P. Vyas. Data stream mining: A review on windowing approach.

Global Journal of Computer Science and Technology Software and Data Engineer-

ing, 12(11), 2012.

[93] M. Pratama, P. P. Angelov, J. Lu, E. Lughofer, M. Seera, and C. P. Lim. A

randomized neural network for data streams. In Proceedings of the International

Joint Conference on Neural Networks, pages 3423–3430. IEEE, May 2017.

[94] A. Rakitianskaia. Using particle swarm optimisation to train feedforward neu-

ral networks in dynamic environments. Master’s thesis, University of Pretoria,

December 2011.

[95] A. Rakitianskaia and A. Engelbrecht. Weight regularisation in particle swarm

optimisation neural network training. In Proceedings of the Symposium on Swarm

Intelligence, pages 1–8. IEEE, December 2014.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Bibliography 237

[96] A. Rakitianskaia and A. Engelbrecht. Saturation in pso neural network training:

Good or evil? In Proceedings of the Congress on Evolutionary Computation, pages

125–132. IEEE, May 2015.

[97] A. Rakitianskaia and A. Engelbrecht. Measuring saturation in neural networks. In

Proceedings of the Symposium Series on Computational Intelligence, pages 1423–

1430. IEEE, December 2015.

[98] A. Rakitianskaia and A.P. Engelbrecht. Training neural networks with pso in dy-

namic environments. In Proceedings of the Congress on Evolutionary Computation,

pages 667–673. IEEE, May 2009.

[99] A.S. Rakitianskaia and A.P. Engelbrecht. Training high-dimensional neural net-

works with cooperative particle swarm optimiser. In Proceedings of the Congress

on Evolutionary Computation, pages 4011–4018. IEEE, July 2014.

[100] A. Robël. The dynamic pattern selection algorithm: Effective training and con-

trolled generalization of backpropagation neural networks. Technical report, Insti-

tut fur Angewandte Informatik, Technische Universitat, Berlin, 1994.

[101] F. Rosenblatt. The perceptron: A probabilistic model for information storage and

organization in the brain. Psychological Review, 65(6):386–408, November 1958.

[102] A. Sancho-Asensio, A. Orriols-Puig, and E. Golobardes. Robust on-line neural

learning classifier system for data stream classification tasks. Soft Computing,

18(8):1441–1461, August 2014.

[103] A.F.C. Santos, Í.P. Teles, O.M.P. Siqueira, and A.A. de Oliveira. Big Data: A

Systematic Review, pages 501–506. Springer, 2017.

[104] Y. Shi and R. Eberhart. A modified particle swarm optimizer. In Proceedings of

the International Conference on Evolutionary Computation, pages 69–73. IEEE,

May 1998.

[105] Y. Singh and A.S. Chauhan. Neural networks in data mining. Journal of Theoret-

ical and Applied Information Technology, 5(6):37–42, 2009.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Bibliography 238

[106] B.R. Smith. Neural Network Enhancement of Closed-Loop Controllers for Ill-

Modeled Systems with Unknown Nonlinearities. PhD thesis, Virginia Polytechnic

Institute and State University, Virginia, December 1997.

[107] J.A. Snyman. A new and dynamic method for unconstrained minimization. Applied

Mathematical Modelling, 6(6):449–462, 1982.

[108] S. Sonoda and N. Murata. Neural network with unbounded activation func-

tions is universal approximator. Applied and Computational Harmonic Analysis,

43(2):233–268, 2017.

[109] Z. Telec, B. Trawiński, T. Lasota, and G. Trawiński. Evaluation of neural net-

work ensemble approach to predict from a data stream. In Proceedings of the In-

ternational Conference on Computational Collective Intelligence, pages 472–482.

Springer, September 2014.

[110] C.M. Teng. A comparison of noise handling techniques. In Proceedings of the 14th

International Florida Artificial Intelligence Research Society Conference, pages

269–273. AAAI, January 2001.

[111] C.K. Tham. On-line learning using hierarchical mixtures of experts. In Proceedings

of the Fourth International Conference on Artificial Neural Networks, pages 347–

351. IET, June 1995.

[112] A. Tsymbal. The problem of concept drift: Definitions and related work. Technical

report, Trinity College, Dublin, 2004.

[113] J.M. Twomey and A.E. Smith. Performance measures, consistency, and power

for artificial neural network models. Mathematical and Computer Modelling, 21(1-

2):243–258, January 1995.

[114] F. van den Bergh and A.P. Engelbrecht. Training product unit networks using

cooperative particle swarm optimisers. In Proceedings of the International Joint

Conference on Neural Networks, pages 126–131. IEEE, July 2001.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Bibliography 239

[115] A.B. van Wyk and A.P. Engelbrecht. Analysis of activation functions for particle

swarm optimised feedforward neural networks. In Proceedings of the Congress on

Evolutionary Computation, pages 423–430. IEEE, July 2016.

[116] H. Wang, W. Fan, P.S. Yu, and J. Han. Mining concept-drifting data streams using

ensemble classifiers. In Proceedings of the SIGKDD International Conference on

Knowledge discovery and data mining, volume 9, pages 226–235. ACM, August

2003.

[117] F. Webster. Theories of the Information Society. Routledge, third edition, 2006.

[118] A.S. Weigend, D.E. Rumelhart, and B.A. Huberman. Generalization by weight-

elimination with application to forecasting. In Proceedings of the Conference on

Advances in Neural Information Processing Systems, volume 3, pages 875–882.

Morgan Kaufmann Publishers Incorporated, 1990.

[119] P.J. Werbos. Beyond Regression: New tools for prediction and analysis in the

Behavioural Sciences. PhD thesis, Harvard University, Boston, 1974.

[120] L.F.A. Wessels and E. Barnard. Avoiding false local minima by proper initialization

of connections. IEEE Transactions on Neural Networks, 3(6):899–905, 1992.

[121] B.M. Wilamowski. Neural network architectures and learning. In Proceedings of

the International Conference on Information Technology, pages TU1–TU12. IEEE,

2003.

[122] D.R. Wilson and T.R. Martinez. The general inefficiency of batch training for

gradient descent learning. Neural Networks, 16(10):1429–1451, 2003.

[123] K. Woods and K.W. Bowyer. Generating roc curves for artificial neural networks.

IEEE Transactions on Medical Imaging, 16(3):329–337, June 1997.

[124] R. Xu and D.C. Wunsch. Survey of clustering algorithms. IEEE Transactions on

Neural Networks, 16(3):14–23, May 2005.

[125] F. Yoav and E.S. Robert. A short introduction to boosting. Journal of Japanese

Society for Artificial Intelligence, 14:771–780, October 1999.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Bibliography 240

[126] Z. Zainuddin and O. Pauline. Function approximation using artificial neural net-

works. International Journal of Systems Applications, Engineering and Develop-

ment, 1(4):173–178, December 2007.

[127] C. Zhang, H. Shao, and Y. Li. Particle swarm optimisation for evolving artificial

neural network. In Proceedings of the International Conference on Systems, Man,

and Cybernetics, volume 4, pages 2487–2490. IEEE, October 2000.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix A

Performance trend graphs

This appendix provides the performance trend graphs for the saturation, accuracy and

complexity performance trend analysis done in section 9.4. Figure A.1 provides the

legend for the performance trend graphs in figures A.2 to A.41. Note that all these

graphs are discussed in section 9.4.

Figure A.1: Legend for the performance trend analysis graphs

241

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix A. Performance trend graphs 242

(a) Hyperplane A1 – BP-N (b) Hyperplane A1 – BP-WD (c) Hyperplane A1 – BP-WE

(d) Hyperplane A2 – BP-N (e) Hyperplane A2 – BP-WD (f) Hyperplane A2 – BP-WE

(g) Hyperplane A3 – BP-N (h) Hyperplane A3 – BP-WD (i) Hyperplane A3 – BP-WE

(j) Hyperplane A4 – BP-N (k) Hyperplane A4 – BP-WD (l) Hyperplane A4 – BP-WE

Figure A.2: Saturation, accuracy, and complexity performance trends of the BP classifiers

for the A1 – A4 Hyperplane problems

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix A. Performance trend graphs 243

(a) Hyperplane A1 – QPSO-N (b) Hyperplane A1 – QPSO-WD (c) Hyperplane A1 – QPSO-WE

(d) Hyperplane A2 – QPSO-N (e) Hyperplane A2 – QPSO-WD (f) Hyperplane A2 – QPSO-WE

(g) Hyperplane A3 – QPSO-N (h) Hyperplane A3 – QPSO-WD (i) Hyperplane A3 – QPSO-WE

(j) Hyperplane A4 – QPSO-N (k) Hyperplane A4 – QPSO-WD (l) Hyperplane A4 – QPSO-WE

Figure A.3: Saturation, accuracy, and complexity performance trends of the QPSO classifiers

for the A1 – A4 Hyperplane problems

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix A. Performance trend graphs 244

(a) Hyperplane B1 – BP-N (b) Hyperplane B1 – BP-WD (c) Hyperplane B1 – BP-WE

(d) Hyperplane B2 – BP-N (e) Hyperplane B2 – BP-WD (f) Hyperplane B2 – BP-WE

(g) Hyperplane B3 – BP-N (h) Hyperplane B3 – BP-WD (i) Hyperplane B3 – BP-WE

(j) Hyperplane B4 – BP-N (k) Hyperplane B4 – BP-WD (l) Hyperplane B4 – BP-WE

Figure A.4: Saturation, accuracy, and complexity performance trends of the BP classifiers

for the B1 – B4 Hyperplane problems

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix A. Performance trend graphs 245

(a) Hyperplane B1 – QPSO-N (b) Hyperplane B1 – QPSO-WD (c) Hyperplane B1 – QPSO-WE

(d) Hyperplane B2 – QPSO-N (e) Hyperplane B2 – QPSO-WD (f) Hyperplane B2 – QPSO-WE

(g) Hyperplane B3 – QPSO-N (h) Hyperplane B3 – QPSO-WD (i) Hyperplane B3 – QPSO-WE

(j) Hyperplane B4 – QPSO-N (k) Hyperplane B4 – QPSO-WD (l) Hyperplane B4 – QPSO-WE

Figure A.5: Saturation, accuracy, and complexity performance trends of the QPSO classifiers

for the B1 – B4 Hyperplane problems

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix A. Performance trend graphs 246

(a) Hyperplane C1 – BP-N (b) Hyperplane C1 – BP-WD (c) Hyperplane C1 – BP-WE

(d) Hyperplane C2 – BP-N (e) Hyperplane C2 – BP-WD (f) Hyperplane C2 – BP-WE

(g) Hyperplane C3 – BP-N (h) Hyperplane C3 – BP-WD (i) Hyperplane C3 – BP-WE

(j) Hyperplane C4 – BP-N (k) Hyperplane C4 – BP-WD (l) Hyperplane C4 – BP-WE

Figure A.6: Saturation, accuracy, and complexity performance trends of the BP classifiers

for the C1 – C4 Hyperplane problems

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix A. Performance trend graphs 247

(a) Hyperplane C1 – QPSO-N (b) Hyperplane C1 – QPSO-WD (c) Hyperplane C1 – QPSO-WE

(d) Hyperplane C2 – QPSO-N (e) Hyperplane C2 – QPSO-WD (f) Hyperplane C2 – QPSO-WE

(g) Hyperplane C3 – QPSO-N (h) Hyperplane C3 – QPSO-WD (i) Hyperplane C3 – QPSO-WE

(j) Hyperplane C4 – QPSO-N (k) Hyperplane C4 – QPSO-WD (l) Hyperplane C4 – QPSO-WE

Figure A.7: Saturation, accuracy, and complexity performance trends of the QPSO classifiers

for the C1 – C4 Hyperplane problems

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix A. Performance trend graphs 248

(a) Hyperplane D1 – BP-N (b) Hyperplane D1 – BP-WD (c) Hyperplane D1 – BP-WE

(d) Hyperplane D2 – BP-N (e) Hyperplane D2 – BP-WD (f) Hyperplane D2 – BP-WE

(g) Hyperplane D3 – BP-N (h) Hyperplane D3 – BP-WD (i) Hyperplane D3 – BP-WE

(j) Hyperplane D4 – BP-N (k) Hyperplane D4 – BP-WD (l) Hyperplane D4 – BP-WE

Figure A.8: Saturation, accuracy, and complexity performance trends of the BP classifiers

for the D1 – D4 Hyperplane problems

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix A. Performance trend graphs 249

(a) Hyperplane D1 – QPSO-N (b) Hyperplane D1 – QPSO-WD (c) Hyperplane D1 – QPSO-WE

(d) Hyperplane D2 – QPSO-N (e) Hyperplane D2 – QPSO-WD (f) Hyperplane D2 – QPSO-WE

(g) Hyperplane D3 – QPSO-N (h) Hyperplane D3 – QPSO-WD (i) Hyperplane D3 – QPSO-WE

(j) Hyperplane D4 – QPSO-N (k) Hyperplane D4 – QPSO-WD (l) Hyperplane D4 – QPSO-WE

Figure A.9: Saturation, accuracy, and complexity performance trends of the QPSO classifiers

for the D1 – D4 Hyperplane problems

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix A. Performance trend graphs 250

(a) Sphere A1 – BP-N (b) Sphere A1 – BP-WD (c) Sphere A1 – BP-WE

(d) Sphere A2 – BP-N (e) Sphere A2 – BP-WD (f) Sphere A2 – BP-WE

(g) Sphere A3 – BP-N (h) Sphere A3 – BP-WD (i) Sphere A3 – BP-WE

(j) Sphere A4 – BP-N (k) Sphere A4 – BP-WD (l) Sphere A4 – BP-WE

Figure A.10: Saturation, accuracy, and complexity performance trends of the BP classifiers

for the A1 – A4 Sphere problems

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix A. Performance trend graphs 251

(a) Sphere A1 – QPSO-N (b) Sphere A1 – QPSO-WD (c) Sphere A1 – QPSO-WE

(d) Sphere A2 – QPSO-N (e) Sphere A2 – QPSO-WD (f) Sphere A2 – QPSO-WE

(g) Sphere A3 – QPSO-N (h) Sphere A3 – QPSO-WD (i) Sphere A3 – QPSO-WE

(j) Sphere A4 – QPSO-N (k) Sphere A4 – QPSO-WD (l) Sphere A4 – QPSO-WE

Figure A.11: Saturation, accuracy, and complexity performance trends of the QPSO classifiers

for the A1 – A4 Sphere problems

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix A. Performance trend graphs 252

(a) Sphere B1 – BP-N (b) Sphere B1 – BP-WD (c) Sphere B1 – BP-WE

(d) Sphere B2 – BP-N (e) Sphere B2 – BP-WD (f) Sphere B2 – BP-WE

(g) Sphere B3 – BP-N (h) Sphere B3 – BP-WD (i) Sphere B3 – BP-WE

(j) Sphere B4 – BP-N (k) Sphere B4 – BP-WD (l) Sphere B4 – BP-WE

Figure A.12: Saturation, accuracy, and complexity performance trends of the BP classifiers

for the B1 – B4 Sphere problems

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix A. Performance trend graphs 253

(a) Sphere B1 – QPSO-N (b) Sphere B1 – QPSO-WD (c) Sphere B1 – QPSO-WE

(d) Sphere B2 – QPSO-N (e) Sphere B2 – QPSO-WD (f) Sphere B2 – QPSO-WE

(g) Sphere B3 – QPSO-N (h) Sphere B3 – QPSO-WD (i) Sphere B3 – QPSO-WE

(j) Sphere B4 – QPSO-N (k) Sphere B4 – QPSO-WD (l) Sphere B4 – QPSO-WE

Figure A.13: Saturation, accuracy, and complexity performance trends of the QPSO classifiers

for the B1 – B4 Sphere problems

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix A. Performance trend graphs 254

(a) Sphere C1 – BP-N (b) Sphere C1 – BP-WD (c) Sphere C1 – BP-WE

(d) Sphere C2 – BP-N (e) Sphere C2 – BP-WD (f) Sphere C2 – BP-WE

(g) Sphere C3 – BP-N (h) Sphere C3 – BP-WD (i) Sphere C3 – BP-WE

(j) Sphere C4 – BP-N (k) Sphere C4 – BP-WD (l) Sphere C4 – BP-WE

Figure A.14: Saturation, accuracy, and complexity performance trends of the BP classifiers

for the C1 – C4 Sphere problems

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix A. Performance trend graphs 255

(a) Sphere C1 – QPSO-N (b) Sphere C1 – QPSO-WD (c) Sphere C1 – QPSO-WE

(d) Sphere C2 – QPSO-N (e) Sphere C2 – QPSO-WD (f) Sphere C2 – QPSO-WE

(g) Sphere C3 – QPSO-N (h) Sphere C3 – QPSO-WD (i) Sphere C3 – QPSO-WE

(j) Sphere C4 – QPSO-N (k) Sphere C4 – QPSO-WD (l) Sphere C4 – QPSO-WE

Figure A.15: Saturation, accuracy, and complexity performance trends of the QPSO classifiers

for the C1 – C4 Sphere problems

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix A. Performance trend graphs 256

(a) Sphere D1 – BP-N (b) Sphere D1 – BP-WD (c) Sphere D1 – BP-WE

(d) Sphere D2 – BP-N (e) Sphere D2 – BP-WD (f) Sphere D2 – BP-WE

(g) Sphere D3 – BP-N (h) Sphere D3 – BP-WD (i) Sphere D3 – BP-WE

(j) Sphere D4 – BP-N (k) Sphere D4 – BP-WD (l) Sphere D4 – BP-WE

Figure A.16: Saturation, accuracy, and complexity performance trends of the BP classifiers

for the D1 – D4 Sphere problems

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix A. Performance trend graphs 257

(a) Sphere D1 – QPSO-N (b) Sphere D1 – QPSO-WD (c) Sphere D1 – QPSO-WE

(d) Sphere D2 – QPSO-N (e) Sphere D2 – QPSO-WD (f) Sphere D2 – QPSO-WE

(g) Sphere D3 – QPSO-N (h) Sphere D3 – QPSO-WD (i) Sphere D3 – QPSO-WE

(j) Sphere D4 – QPSO-N (k) Sphere D4 – QPSO-WD (l) Sphere D4 – QPSO-WE

Figure A.17: Saturation, accuracy, and complexity performance trends of the QPSO classifiers

for the D1 – D4 Sphere problems

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix A. Performance trend graphs 258

(a) Thresholds A1 – BP-N (b) Thresholds A1 – BP-WD (c) Thresholds A1 – BP-WE

(d) Thresholds A2 – BP-N (e) Thresholds A2 – BP-WD (f) Thresholds A2 – BP-WE

(g) Thresholds A3 – BP-N (h) Thresholds A3 – BP-WD (i) Thresholds A3 – BP-WE

(j) Thresholds A4 – BP-N (k) Thresholds A4 – BP-WD (l) Thresholds A4 – BP-WE

Figure A.18: Saturation, accuracy, and complexity performance trends of the BP classifiers

for the A1 – A4 Thresholds problems

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix A. Performance trend graphs 259

(a) Thresholds A1 – QPSO-N (b) Thresholds A1 – QPSO-WD (c) Thresholds A1 – QPSO-WE

(d) Thresholds A2 – QPSO-N (e) Thresholds A2 – QPSO-WD (f) Thresholds A2 – QPSO-WE

(g) Thresholds A3 – QPSO-N (h) Thresholds A3 – QPSO-WD (i) Thresholds A3 – QPSO-WE

(j) Thresholds A4 – QPSO-N (k) Thresholds A4 – QPSO-WD (l) Thresholds A4 – QPSO-WE

Figure A.19: Saturation, accuracy, and complexity performance trends of the QPSO classifiers

for the A1 – A4 Thresholds problems

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix A. Performance trend graphs 260

(a) Thresholds B1 – BP-N (b) Thresholds B1 – BP-WD (c) Thresholds B1 – BP-WE

(d) Thresholds B2 – BP-N (e) Thresholds B2 – BP-WD (f) Thresholds B2 – BP-WE

(g) Thresholds B3 – BP-N (h) Thresholds B3 – BP-WD (i) Thresholds B3 – BP-WE

(j) Thresholds B4 – BP-N (k) Thresholds B4 – BP-WD (l) Thresholds B4 – BP-WE

Figure A.20: Saturation, accuracy, and complexity performance trends of the BP classifiers

for the B1 – B4 Thresholds problems

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix A. Performance trend graphs 261

(a) Thresholds B1 – QPSO-N (b) Thresholds B1 – QPSO-WD (c) Thresholds B1 – QPSO-WE

(d) Thresholds B2 – QPSO-N (e) Thresholds B2 – QPSO-WD (f) Thresholds B2 – QPSO-WE

(g) Thresholds B3 – QPSO-N (h) Thresholds B3 – QPSO-WD (i) Thresholds B3 – QPSO-WE

(j) Thresholds B4 – QPSO-N (k) Thresholds B4 – QPSO-WD (l) Thresholds B4 – QPSO-WE

Figure A.21: Saturation, accuracy, and complexity performance trends of the QPSO classifiers

for the B1 – B4 Thresholds problems

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix A. Performance trend graphs 262

(a) Thresholds C1 – BP-N (b) Thresholds C1 – BP-WD (c) Thresholds C1 – BP-WE

(d) Thresholds C2 – BP-N (e) Thresholds C2 – BP-WD (f) Thresholds C2 – BP-WE

(g) Thresholds C3 – BP-N (h) Thresholds C3 – BP-WD (i) Thresholds C3 – BP-WE

(j) Thresholds C4 – BP-N (k) Thresholds C4 – BP-WD (l) Thresholds C4 – BP-WE

Figure A.22: Saturation, accuracy, and complexity performance trends of the BP classifiers

for the C1 – C4 Thresholds problems

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix A. Performance trend graphs 263

(a) Thresholds C1 – QPSO-N (b) Thresholds C1 – QPSO-WD (c) Thresholds C1 – QPSO-WE

(d) Thresholds C2 – QPSO-N (e) Thresholds C2 – QPSO-WD (f) Thresholds C2 – QPSO-WE

(g) Thresholds C3 – QPSO-N (h) Thresholds C3 – QPSO-WD (i) Thresholds C3 – QPSO-WE

(j) Thresholds C4 – QPSO-N (k) Thresholds C4 – QPSO-WD (l) Thresholds C4 – QPSO-WE

Figure A.23: Saturation, accuracy, and complexity performance trends of the QPSO classifiers

for the C1 – C4 Thresholds problems

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix A. Performance trend graphs 264

(a) Thresholds D1 – BP-N (b) Thresholds D1 – BP-WD (c) Thresholds D1 – BP-WE

(d) Thresholds D2 – BP-N (e) Thresholds D2 – BP-WD (f) Thresholds D2 – BP-WE

(g) Thresholds D3 – BP-N (h) Thresholds D3 – BP-WD (i) Thresholds D3 – BP-WE

(j) Thresholds D4 – BP-N (k) Thresholds D4 – BP-WD (l) Thresholds D4 – BP-WE

Figure A.24: Saturation, accuracy, and complexity performance trends of the BP classifiers

for the D1 – D4 Thresholds problems

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix A. Performance trend graphs 265

(a) Thresholds D1 – QPSO-N (b) Thresholds D1 – QPSO-WD (c) Thresholds D1 – QPSO-WE

(d) Thresholds D2 – QPSO-N (e) Thresholds D2 – QPSO-WD (f) Thresholds D2 – QPSO-WE

(g) Thresholds D3 – QPSO-N (h) Thresholds D3 – QPSO-WD (i) Thresholds D3 – QPSO-WE

(j) Thresholds D4 – QPSO-N (k) Thresholds D4 – QPSO-WD (l) Thresholds D4 – QPSO-WE

Figure A.25: Saturation, accuracy, and complexity performance trends of the QPSO classifiers

for the D1 – D4 Thresholds problems

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix A. Performance trend graphs 266

(a) SEA A1 – BP-N (b) SEA A1 – BP-WD (c) SEA A1 – BP-WE

(d) SEA A2 – BP-N (e) SEA A2 – BP-WD (f) SEA A2 – BP-WE

(g) SEA A3 – BP-N (h) SEA A3 – BP-WD (i) SEA A3 – BP-WE

(j) SEA A4 – BP-N (k) SEA A4 – BP-WD (l) SEA A4 – BP-WE

Figure A.26: Saturation, accuracy, and complexity performance trends of the BP classifiers

for the A1 – A4 SEA problems

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix A. Performance trend graphs 267

(a) SEA A1 – QPSO-N (b) SEA A1 – QPSO-WD (c) SEA A1 – QPSO-WE

(d) SEA A2 – QPSO-N (e) SEA A2 – QPSO-WD (f) SEA A2 – QPSO-WE

(g) SEA A3 – QPSO-N (h) SEA A3 – QPSO-WD (i) SEA A3 – QPSO-WE

(j) SEA A4 – QPSO-N (k) SEA A4 – QPSO-WD (l) SEA A4 – QPSO-WE

Figure A.27: Saturation, accuracy, and complexity performance trends of the QPSO classifiers

for the A1 – A4 SEA problems

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix A. Performance trend graphs 268

(a) SEA B1 – BP-N (b) SEA B1 – BP-WD (c) SEA B1 – BP-WE

(d) SEA B2 – BP-N (e) SEA B2 – BP-WD (f) SEA B2 – BP-WE

(g) SEA B3 – BP-N (h) SEA B3 – BP-WD (i) SEA B3 – BP-WE

(j) SEA B4 – BP-N (k) SEA B4 – BP-WD (l) SEA B4 – BP-WE

Figure A.28: Saturation, accuracy, and complexity performance trends of the BP classifiers

for the B1 – B4 SEA problems

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix A. Performance trend graphs 269

(a) SEA B1 – QPSO-N (b) SEA B1 – QPSO-WD (c) SEA B1 – QPSO-WE

(d) SEA B2 – QPSO-N (e) SEA B2 – QPSO-WD (f) SEA B2 – QPSO-WE

(g) SEA B3 – QPSO-N (h) SEA B3 – QPSO-WD (i) SEA B3 – QPSO-WE

(j) SEA B4 – QPSO-N (k) SEA B4 – QPSO-WD (l) SEA B4 – QPSO-WE

Figure A.29: Saturation, accuracy, and complexity performance trends of the QPSO classifiers

for the B1 – B4 SEA problems

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix A. Performance trend graphs 270

(a) SEA C1 – BP-N (b) SEA C1 – BP-WD (c) SEA C1 – BP-WE

(d) SEA C2 – BP-N (e) SEA C2 – BP-WD (f) SEA C2 – BP-WE

(g) SEA C3 – BP-N (h) SEA C3 – BP-WD (i) SEA C3 – BP-WE

(j) SEA C4 – BP-N (k) SEA C4 – BP-WD (l) SEA C4 – BP-WE

Figure A.30: Saturation, accuracy, and complexity performance trends of the BP classifiers

for the C1 – C4 SEA problems

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix A. Performance trend graphs 271

(a) SEA C1 – QPSO-N (b) SEA C1 – QPSO-WD (c) SEA C1 – QPSO-WE

(d) SEA C2 – QPSO-N (e) SEA C2 – QPSO-WD (f) SEA C2 – QPSO-WE

(g) SEA C3 – QPSO-N (h) SEA C3 – QPSO-WD (i) SEA C3 – QPSO-WE

(j) SEA C4 – QPSO-N (k) SEA C4 – QPSO-WD (l) SEA C4 – QPSO-WE

Figure A.31: Saturation, accuracy, and complexity performance trends of the QPSO classifiers

for the C1 – C4 SEA problems

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix A. Performance trend graphs 272

(a) SEA D1 – BP-N (b) SEA D1 – BP-WD (c) SEA D1 – BP-WE

(d) SEA D2 – BP-N (e) SEA D2 – BP-WD (f) SEA D2 – BP-WE

(g) SEA D3 – BP-N (h) SEA D3 – BP-WD (i) SEA D3 – BP-WE

(j) SEA D4 – BP-N (k) SEA D4 – BP-WD (l) SEA D4 – BP-WE

Figure A.32: Saturation, accuracy, and complexity performance trends of the BP classifiers

for the D1 – D4 SEA problems

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix A. Performance trend graphs 273

(a) SEA D1 – QPSO-N (b) SEA D1 – QPSO-WD (c) SEA D1 – QPSO-WE

(d) SEA D2 – QPSO-N (e) SEA D2 – QPSO-WD (f) SEA D2 – QPSO-WE

(g) SEA D3 – QPSO-N (h) SEA D3 – QPSO-WD (i) SEA D3 – QPSO-WE

(j) SEA D4 – QPSO-N (k) SEA D4 – QPSO-WD (l) SEA D4 – QPSO-WE

Figure A.33: Saturation, accuracy, and complexity performance trends of the QPSO classifiers

for the D1 – D4 SEA problems

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix A. Performance trend graphs 274

(a) Electricity A1 – BP-N (b) Electricity A1 – BP-WD (c) Electricity A1 – BP-WE

(d) Electricity A2 – BP-N (e) Electricity A2 – BP-WD (f) Electricity A2 – BP-WE

(g) Electricity A3 – BP-N (h) Electricity A3 – BP-WD (i) Electricity A3 – BP-WE

(j) Electricity A4 – BP-N (k) Electricity A4 – BP-WD (l) Electricity A4 – BP-WE

Figure A.34: Saturation, accuracy, and complexity performance trends of the BP classifiers

for the A1 – A4 Electricity problems

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix A. Performance trend graphs 275

(a) Electricity A1 – QPSO-N (b) Electricity A1 – QPSO-WD (c) Electricity A1 – QPSO-WE

(d) Electricity A2 – QPSO-N (e) Electricity A2 – QPSO-WD (f) Electricity A2 – QPSO-WE

(g) Electricity A3 – QPSO-N (h) Electricity A3 – QPSO-WD (i) Electricity A3 – QPSO-WE

(j) Electricity A4 – QPSO-N (k) Electricity A4 – QPSO-WD (l) Electricity A4 – QPSO-WE

Figure A.35: Saturation, accuracy, and complexity performance trends of the QPSO classifiers

for the A1 – A4 Electricity problems

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix A. Performance trend graphs 276

(a) Electricity B1 – BP-N (b) Electricity B1 – BP-WD (c) Electricity B1 – BP-WE

(d) Electricity B2 – BP-N (e) Electricity B2 – BP-WD (f) Electricity B2 – BP-WE

(g) Electricity B3 – BP-N (h) Electricity B3 – BP-WD (i) Electricity B3 – BP-WE

(j) Electricity B4 – BP-N (k) Electricity B4 – BP-WD (l) Electricity B4 – BP-WE

Figure A.36: Saturation, accuracy, and complexity performance trends of the BP classifiers

for the B1 – B4 Electricity problems

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix A. Performance trend graphs 277

(a) Electricity B1 – QPSO-N (b) Electricity B1 – QPSO-WD (c) Electricity B1 – QPSO-WE

(d) Electricity B2 – QPSO-N (e) Electricity B2 – QPSO-WD (f) Electricity B2 – QPSO-WE

(g) Electricity B3 – QPSO-N (h) Electricity B3 – QPSO-WD (i) Electricity B3 – QPSO-WE

(j) Electricity B4 – QPSO-N (k) Electricity B4 – QPSO-WD (l) Electricity B4 – QPSO-WE

Figure A.37: Saturation, accuracy, and complexity performance trends of the QPSO classifiers

for the B1 – B4 Electricity problems

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix A. Performance trend graphs 278

(a) Electricity C1 – BP-N (b) Electricity C1 – BP-WD (c) Electricity C1 – BP-WE

(d) Electricity C2 – BP-N (e) Electricity C2 – BP-WD (f) Electricity C2 – BP-WE

(g) Electricity C3 – BP-N (h) Electricity C3 – BP-WD (i) Electricity C3 – BP-WE

(j) Electricity C4 – BP-N (k) Electricity C4 – BP-WD (l) Electricity C4 – BP-WE

Figure A.38: Saturation, accuracy, and complexity performance trends of the BP classifiers

for the C1 – C4 Electricity problems

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix A. Performance trend graphs 279

(a) Electricity C1 – QPSO-N (b) Electricity C1 – QPSO-WD (c) Electricity C1 – QPSO-WE

(d) Electricity C2 – QPSO-N (e) Electricity C2 – QPSO-WD (f) Electricity C2 – QPSO-WE

(g) Electricity C3 – QPSO-N (h) Electricity C3 – QPSO-WD (i) Electricity C3 – QPSO-WE

(j) Electricity C4 – QPSO-N (k) Electricity C4 – QPSO-WD (l) Electricity C4 – QPSO-WE

Figure A.39: Saturation, accuracy, and complexity performance trends of the QPSO classifiers

for the C1 – C4 Electricity problems

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix A. Performance trend graphs 280

(a) Electricity D1 – BP-N (b) Electricity D1 – BP-WD (c) Electricity D1 – BP-WE

(d) Electricity D2 – BP-N (e) Electricity D2 – BP-WD (f) Electricity D2 – BP-WE

(g) Electricity D3 – BP-N (h) Electricity D3 – BP-WD (i) Electricity D3 – BP-WE

(j) Electricity D4 – BP-N (k) Electricity D4 – BP-WD (l) Electricity D4 – BP-WE

Figure A.40: Saturation, accuracy, and complexity performance trends of the BP classifiers

for the D1 – D4 Electricity problems

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix A. Performance trend graphs 281

(a) Electricity D1 – QPSO-N (b) Electricity D1 – QPSO-WD (c) Electricity D1 – QPSO-WE

(d) Electricity D2 – QPSO-N (e) Electricity D2 – QPSO-WD (f) Electricity D2 – QPSO-WE

(g) Electricity D3 – QPSO-N (h) Electricity D3 – QPSO-WD (i) Electricity D3 – QPSO-WE

(j) Electricity D4 – QPSO-N (k) Electricity D4 – QPSO-WD (l) Electricity D4 – QPSO-WE

Figure A.41: Saturation, accuracy, and complexity performance trends of the QPSO classifiers

for the D1 – D4 Electricity problems

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B

Acronyms

A list of all the acronyms and their definitions are provided in this appendix.

AI artificial intelligence

ANN artificial neural network

BP back propagation

CI computational intelligence

CNN convolutional neural network

CPSO charged particle swarm optimisation

CVFDT concept-adapting very fast decision tree

DNN deep neural network

ELM extreme learning machine

FFNN feed forward neural network

GA genetic algorithm

gBest global best

GD gradient descent

HPSO heterogeneous particle swarm optimisation

HTM hierarchical temporal memory

lBest local best

MLP multi-layer perceptron

MSE mean square error

MWU Mann-Whitney U

282

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B. Acronyms 283

NN neural network

OS-ELM online sequential extreme learning machine

PCC percentage correct classifications

PGC percentage good classifications

PSO particle swarm optimisation

QPSO quantum particle swarm optimisation

ReLU rectified linear unit

RNN recurrent neural network

ROC reciever operating characteristic

RT2McRVFLN recurrent type-2 random vector functional link network

RdNN random neural network

SDP streamed data problem

SDCP streamed data classification problem

SSE sum square error

VFDT very fast decision tree

WD weight decay

WE weight elimination

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix C

Symbols

This appendix provides an explanation for each of the symbols used throughout this

thesis. The symbols are arranged by the chapter in which they were defined.

C.1 Chapter 2

I The number of inputs for an approximation problem.

K The number of outputs for an approximation problem.

D An arbitrary dataset of patterns.

Dp The p-th pattern in dataset D

|D| The cardinality of the dataset D.

~z The inputs vector for a pattern.

~t The targets vector for a pattern.

C.2 Chapter 3

np The number of particles in a PSO swarm.

N An arbitrary number.

f(~x) A objective function that describe optimisation problem.

~x A PSO particle’s position vector.

284

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix C. Symbols 285

~v A PSO particle’s velocity vector.

~y A PSO particle’s personal best position vector.

~̂y A PSO particle’s neighbourhood best position vector.

xij The j-th element of the position vector of particle i in the swarm of a

PSO.

vij The j-th element of the velocity vector of particle i in the swarm of a

PSO.

yij The j-th element of the personal best position vector of particle i in the

swarm of a PSO.

ŷij The j-th element of the neighbourhood best position vector of particle

i in the swarm of a PSO.

ω The momentum term of a PSO’s particle.

c1 The cognitive component’s positive acceleration co-efficient.

c2 The social component’s positive acceleration co-efficient.

~r1 The cognitive component’s random uniformly sampled vector.

~r2 The social component’s random uniformly sampled vector.

t The current iteration for an optimisation algorithm.

D The diversity of a PSO’s swarm described by Equation (3.3).

x̄j The j-th element of the position vector of the PSO swarm’s spatial

centre.

~vmax The maximum velocity vector used by velocity clamping.

χ The constriction coefficient determined by Equation (3.4).

κ A constant in the Equation (3.4).

φ The sum of c1 and c2.

d The sampling distribution parameter of a QPSO.

r The sampling radius parameter of a QPSO.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix C. Symbols 286

C.3 Chapter 4

ε An arbitrary error value.

nn The total number of neurons in a ANN, including bias neurons.

ns The total number of synapses in a ANN, including synapses from bias

neurons.

nl The total number of layers in a ANN.

ni The number of input neurons, excluding bias neurons, in a FFNN.

nh The number of hidden neurons, excluding bias neurons, in the hidden

layer of a 3-layer FFNN.

nk The number of output neurons in a FFNN.

zi The value of the input neuron i.

hh The activation value of the hidden neuron h.

ok The activation value of the output neuron k.

wkh The weight of the synapse from hidden neuron h to output neuron k in

a 3-layer FFNN.

whi The weight of the synapse from input neuron i to hidden neuron h.

net The net input value of a neuron.

netin The net input signal for the incoming synapses.

nin The number of incoming synapses for a neuron.

win,j The weight of the j-th incoming synapse of a neuron.

vin,j The value of the source neuron of the j-th incoming synapse of a neuron.

netΣ The net input value of a summation unit neuron.

fSig(net) The sigmoid activation function.

λ The steepness factor of an activation function.

θ The shifting factor of an activation function.

fReL(net) The rectified linear activation function defined by Equation (4.4).

max(...) The maximum value function for a set of values.

fL(net) The linear activation function.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix C. Symbols 287

Eg The generalisation error of an ANN.

Ev The validation error of an ANN.

Et The training error of an ANN.

Dg The data set used to calculate Eg, know as the generalisation set.

Dv The data set used to calculate Ev, know as the validation set.

Dt The data set used to calculate Et, know as the training set.

pg The Dg’s splitting percentage.

pv The Dv’s splitting percentage.

pt The Dt’s splitting percentage.

|D| The number of data points in dataset D.

tp,k The k-th target of the target vector ~t of pattern p.

op,k The k-th output neuron’s value when processing pattern p with the

ANN.

yp The “goodness” value for pattern p when using percentage good classi-

fications (PGC).

~op The outputs vector of the ANN when processing pattern p.

nse The number of effective synapses in an ANN.

nne The number of effective neurons in an ANN.

wj The j-th weight in an ANN.

bw The width of a bin, i.e. interval, when binning.

Ēv The moving average of Ev.

σEv The standard deviation of Ēv.

mp The period of a moving average.

ρ(t) The generalisation factor at epoch t.

ϕρ(t) The generalisation factor constraint at epoch t

min(...) The minimum value function for a set of values.

ρ̄ The current moving average of ρ.

σρ The standard deviation of ρ̄.

fanin The Nis of the destination neuron of a synapse.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix C. Symbols 288

ne The number of epochs for which a learning algorithm learns an environ-

ment instance.

n∗e The maximum ne per environment instance.

Er The regularisation term.

E ′t The regularised error function.

λr The regularisation coefficient.

w0 The relevancy threshold constant, used by WE.

α The momentum term in BP.

η The learning rate term in BP.

wj The j-th weight in a ANN.

∆wj(t) The change, weight wj experiences at epoch t.

ϕbw The binning saturation measure, defined by Equation (4.20).

B The number of bins.

fb The frequency of bin b.

ḡ′b The average activation value, scaled to the range [−1, 1], for the activa-

tion value bin b.

C.4 Chapter 6

~bp The binned input vector of ~zp.

Ibw The set of environment instances extracted by algorithm 4 using bw.

Θbw The spatial severity of a SDCP, defined by Equation (6.1).

Ibw,e The set of binned patterns in environment instance e in Ibw .

Ibw,e,p The p-th pattern in Ibw,e.

∆Θ(Ibw,e,p) The spatial change for EIB,dp,e,p.

∆∗Θ The maximum euclidean distance by which a target vector can change.

τbw The temporal severity of a SDCP, defined by Equation (6.2).

Θ′bw The normalised spatial severity of a SDCP, defined by Equation (6.3).

S A arbitrary set of sequentially-ordered data stream datasets.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix C. Symbols 289

Sd The d-th sequentially-ordered data stream dataset in S.

τ ′bw The normalised temporal severity of a SDCP, defined by Equation (6.4).

Λbw The dynamic environment classification of a SDCP, defined by Equation

(6.5).

ζQ,bw The degree to which a SDCP’s environment is dominated by quasi-static

characteristics.

ζA,bw The degree to which a SDCP’s environment is dominated by abrupt

characteristics.

ζP,bw The degree to which a SDCP’s environment is dominated by progressive

characteristics.

ζC,bw The degree to which a SDCP’s environment is dominated by chaotic

characteristics.

ζbw The degree to which a SDCP’s environment is dominated by Λbw , defined

by Equation (6.10).

C.5 Chapter 7

∆wkh(t) The change, weight wkh experiences at epoch t.

f
′
ReL The partial derivative of fReL(netΣ) with respect to netΣ.

δok The error signal of output neuron k, and is defined by Equation (7.3).

J The number of hidden neurons, excluding bias neurons in the hidden

layer.

∆whi(t) The change, weight whi experiences at epoch t.

δhh The error signal of hidden neuron h, and is defined by Equation (7.5).

∆wki(t) The change, weight wki experiences at epoch t during BP.

nethh,p The net value of hidden neuron h, when the FFNN process pattern p

in dataset D.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix C. Symbols 290

C.6 Chapter 8

ai A co-efficient of the i-th hyperplane in the moving hyperplane problem

domain.

c A arbitrary user-selected constant.

y A arbitrary value.

θ A problem’s class threshold.

ci The i-th element of the hypersphere’s centre.

r2 The squared radius of a hypersphere.

r2
θ The squared radius of the threshold hypersphere.

f1 The first threshold line of sliding threshold problem domain.

f2 The second threshold line of sliding threshold problem domain.

θ1 The threshold of f1.

θ2 The threshold of f2.

f3(~z) The dimension extracting function used by the sliding thresholds prob-

lem domain.

vs The linearly scaled value calculated by Equation (8.11).

vu The original value that needs to be linearly scaled.

vu,min The lower bound of range that vu exists in.

vu,max The upper bound of range that vu exists in.

vs,min The lower bound of range that vs exists in.

vs,max The upper bound of range that vs exists in.

nw The number of windows generated by the sliding windows technique.

nw is defined by Equation (8.12).

wm The the size of the windows created by the sliding windows technique.

wf The window repetition frequency used by the sliding windows technique.

ws The step size used by the sliding windows technique.

|wj| The magnitude of the j-th weight in an ANN.

w̄ The average weight magnitude of an ANN.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix C. Symbols 291

σw The standard deviation in weight magnitude of an ANN.

Ξw The frequency distribution of the weights in an ANN.

S(p) The output sensitivity matrix for pattern p.

S
(p)
k,j The output sensitivity of the j-th synapse for the j-th output, using the

pattern p.

N
(p)
j The output sensitivity norm for the j-th synapse, using pattern p.

N̄j The average sensitivity norm for the j-th synapse.

σ2
j The sample variance of the N

(p)
j .

Υj The sensitivity test statistic for the j-th synapse.

σ2
0 The maximum amount of variance that a synapse may display before

being considered relevant during Variance nullity testing.

H0 The null hypothesis for Variance nullity testing.

χ2 The Chi-squared distribution.

χ2
df,c is χ2 using df degrees of freedom and c confidence interval.

αv is the significance level for Variance nullity testing.

Υc The critical value for Variance nullity testing.

T The total number of epochs an FFNN learned for during learning.

ε(t) The error ε’s value, for the best model found at the end or start of epoch

t.

C̄ε The collective mean of error ε, calculated using Equation (8.13).

MSEg MSE based on Dg.

MSEv MSE based on Dv.

MSEt MSE based on Dt.

PCCg PCC based on Dg.

PCCv PCC based on Dv.

ϕ0.1,1 ϕ0.1 based on the activation value range [0, 1].

ϕ0.1,5 ϕ0.1 based on the activation value range [0, 5].

ϕ0.1,10 ϕ0.1 based on the activation value range [0, 10].

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix C. Symbols 292

ϕg The saturation measure based on the minimum of ϕ0.1,1, ϕ0.1,5 and

ϕ0.1,10, using Dg.

ϕv The saturation measure based on the minimum of ϕ0.1,1, ϕ0.1,5 and

ϕ0.1,10, using Dv.

OMSEv The boolean result of the overfitting constraint Equation (4.9).

Oρ The boolean result of the overfitting constraint Equation (4.10).

na The number of activated neurons in a FFNN.

nb The total number of bias neurons in a FFNN.

ΩFFNN The lower bound computational complexity of processing a pattern with

a 3-layer FFNN.

ΩFFNNe : Lower-bound complexity of processing a pattern with the effective

model of a FFNN, using σ2
0 = 0.0001 and αp = 0.01.

Ωr The effective reduction in lower-bound computational complexity as a

percentage, defined by Equation (8.20).

nhor The effective hidden neuron oversize ratio which was determined by

dividing bhe by the number of hidden neurons (including bias neurons)

in the optimal architecture for the particular problem domain.

nsor The effective synapse oversize ratio which was determined by dividing

nse by the number of synapses in the optimal architecture for the par-

ticular problem domain.

nc is the number of tunable control parameters of a classifier.

|Dc| is the number of control parameter configurations tested for a classifier.

Vi is the set of potential values for the i-th control parameter of a classifier.

ρx,y The Pearson correlation coefficient of the two arbitrary series x and y.

xi The i-th value in an arbitrary series x.

yi The i-th value in an arbitrary series y.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

	Contents
	List of Figures
	List of Algorithms
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Contributions
	1.4 Thesis Outline

	2 Computational intelligence problems
	2.1 Problem classes
	2.1.1 Optimisation
	2.1.2 Approximation

	2.2 Problem environments
	2.2.1 Static environments
	2.2.2 Dynamic environments

	2.3 Summary

	3 Particle swarm optimisation
	3.1 How particle swarm optimisation works
	3.1.1 Momentum component
	3.1.2 Cognitive and social components
	3.1.3 Swarm diversity
	3.1.4 Exploration-exploitation trade-off
	3.1.5 Controlling velocity
	3.1.6 Swarm size
	3.1.7 Neighbourhood topology
	3.1.8 Particle initialisation
	3.1.9 Iteration strategies
	3.1.10 Stopping conditions

	3.2 Particle swarm optimisation in dynamic environments
	3.2.1 Issues to consider for dynamic environments
	3.2.2 Dynamic particle swarm optimisation

	3.3 Summary

	4 Artificial neural networks
	4.1 How artificial neural networks work
	4.2 Architecture
	4.2.1 Feed forward neural networks
	4.2.2 Neuron unit types
	4.2.3 Activation functions

	4.3 Learning
	4.3.1 Learning strategy
	4.3.2 Model errors
	4.3.3 Performance measures
	4.3.4 Overfitting
	4.3.5 Underfitting
	4.3.6 Weight initialisation
	4.3.7 Stopping conditions
	4.3.8 Architecture selection
	4.3.9 Weight adjustment

	4.4 Training artificial neural networks using particle swarm optimisation
	4.4.1 Particle swarm optimisation training algorithms
	4.4.2 Saturation
	4.4.3 Measuring saturation

	4.5 Summary

	5 Stream data classification problems: A real-world concern
	5.1 Background
	5.2 Streamed data classifier requirements
	5.3 Literature review on streamed data classifiers and related works
	5.3.1 Online learning approaches
	5.3.2 Decision trees
	5.3.3 Ensembles
	5.3.4 Artificial Neural networks
	5.3.5 Conclusion

	5.4 Summary

	6 Quantifying the environment of a streamed data classification problem
	6.1 Issues with potential severity measures
	6.2 Identifying environment instances
	6.3 Spatial severity measure
	6.4 Temporal severity measure
	6.5 Normalising severity measures
	6.5.1 Normalising spatial severity
	6.5.2 Normalising temporal severity

	6.6 Dynamism of problem environments
	6.7 Summary

	7 Regularised feed forward neural networks as streamed data classifiers
	7.1 Proposed architecture
	7.2 Back propagation learning algorithms
	7.2.1 Back propagation weights adjustment algorithm
	7.2.2 Weight decay learning algorithm
	7.2.3 Weight elimination learning algorithm

	7.3 Quantum particle swarm optimisation learning algorithms
	7.3.1 Quantum particle swarm optimisation weights adjustment algorithm
	7.3.2 Weight decay learning algorithm
	7.3.3 Weight elimination learning algorithm

	7.4 Proposed streamed data classifiers
	7.5 Justification of proposed streamed data classifiers
	7.5.1 Saturation issue
	7.5.2 Local optimum trapping issue
	7.5.3 Bounded memory requirement
	7.5.4 Unbounded dataset requirement
	7.5.5 Concept drift requirement
	7.5.6 Random dynamics requirement
	7.5.7 Online learning requirement
	7.5.8 High speed data streams requirement
	7.5.9 One-pass requirement
	7.5.10 Limited number of tunable control parameters requirement
	7.5.11 Maintain low model complexity requirement
	7.5.12 Robustness requirement
	7.5.13 Fault tolerance requirement
	7.5.14 Conclusion

	7.6 Summary

	8 Empirical process
	8.1 Hypotheses about classifiers
	8.2 Baseline classifiers
	8.3 Benchmark streamed data classification problems
	8.3.1 Reasons for using the five problem domains
	8.3.2 Problem domains
	8.3.3 Data preparation
	8.3.4 Construction of benchmark problems
	8.3.5 Problem environment analysis
	8.3.6 Problem difficulty analysis

	8.4 Performance measurement
	8.4.1 Performance measuring methodology
	8.4.2 Saturation performance measures
	8.4.3 Accuracy performance measures
	8.4.4 Structural complexity performance measures
	8.4.5 Computational complexity performance measures
	8.4.6 Overfitting performance measures
	8.4.7 Control parameter impact on performance measures
	8.4.8 Weight distribution performance measures
	8.4.9 Swarm diversity performance measures

	8.5 Control parameter tuning process
	8.6 Benchmarking process
	8.7 Result analysis methodology
	8.7.1 Descriptive statistics
	8.7.2 Mann-Whitney-U-based ranking
	8.7.3 Performance trends

	8.8 Summary

	9 Empirical analysis
	9.1 Accuracy performance analysis
	9.2 Saturation analysis
	9.3 Complexity performance analysis
	9.4 Saturation, accuracy and complexity performance trends analysis
	9.5 Overfitting analysis
	9.6 Overall statistical rank analysis
	9.7 Control parameters analysis
	9.8 Weight distribution analysis
	9.9 Swarm diversity analysis
	9.10 Conclusion
	9.10.1 Remarks on the primary objective
	9.10.2 Remarks on the secondary objectives

	9.11 Summary

	10 Conclusions
	10.1 Summary of Conclusions
	10.2 Future Work

	Bibliography
	A Performance trend graphs
	B Acronyms
	C Symbols
	C.1 Chapter 2
	C.2 Chapter 3
	C.3 Chapter 4
	C.4 Chapter 6
	C.5 Chapter 7
	C.6 Chapter 8

