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Structural shape optimisation is a field that has been studied since early on in the development of finite 

element methods. The sub-fields of shape and topology optimisation are continuously growing in 

industry and aim to leverage the benefits of technologies such as 3D printing and additive 

manufacturing. These fields are also being used to optimise designs to improve quality and reduce cost. 

Gradient-based optimisation is well understood as an efficient method of obtaining solutions. In order 

to implement gradient-based optimisation methods in the context of structural shape optimisation, 

sensitivities describing the change of the domain stiffness are required. To obtain the stiffness 

sensitivities, mesh deformation sensitivities are required. In this study, a mesh generating method is 

developed that provides mesh deformation sensitivities. 

For shape optimisation it is advantageous to employ an optimisation algorithm that allows for the 

manipulation of CAD geometry. This means that the CAD geometry is finalised upon completion of the 

optimisation process. This, however, necessitates the calculation of accurate sensitivities associated 

with non-linear geometries, such as NURBS (those present in CAD), by the mesher.  

The meshing method developed in this study is analogous to a linear truss system. The system is solved 

for static equilibrium through a geometrically non-linear finite element analysis using Newton’s 

method. Sensitivities are made available by Newton’s method for use in generating mesh sensitivities 

for the system. 

It is important for the mesher to be able to accurately describe the geometrical domain which 

approximates the geometry being modelled. To do so, nodes on the boundary may not depart from the 

boundary. Instead of prescribing all boundary nodes, this mesher frees the boundary nodes to move 
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along, but not away from the boundary. This is achieved using multipoint constraints since they allow 

for an analytical relationship between boundary node movement and the boundary. 

Two multipoint constraint (MPC) methods are investigated for boundary discretisation, namely, the 

Lagrangian and master-slave elimination methods (MSEM). The MSEM presents several difficulties in 

obtaining convergence on non-linear boundaries in general when compared to the Lagrangian method.  

The MSEM has reduced computational requirements for a single Newton step, especially when direct 

solvers are used. However, when indirect solvers are implemented the time difference between the 

two MPC methods reduces significantly. For a “medium” curvature geometry the Lagrangian 

implementation has only a 6% time penalty.  

The Lagrangian method is selected as the preferred MPC method for implementation in the mesher to 

avoid the convergence problems associated with the MSEM. This is justified on the basis of reliability 

outweighing the 6% time penalty for what is intended to be a tool in the shape optimisation process. 

Analytical sensitivities are obtained for the truss system in order to account for the MPC boundaries. 

The analytical mesh sensitivities are proven to be accurate through comparison with numerical 

sensitivities. The method is demonstrated to be able to accurately described the mesh deformation 

throughout the domain for both uniform and non-uniform meshes in the presence of non-linear 

boundaries. 
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DOF Degree of Freedom 

FEA Finite Element Analysis 

FEM Finite Element Method 

MSEM Master-Slave Elimination Method 

PDEs Partial Differential Equations 

 

VARIABLES 

𝐴 Symmetric invertible matrix 

𝐴𝑅 Aspect ratio 

𝐵 Full rank matrix 

𝐶 Constant 

ℂ(𝐱) Optimisation cost function 

𝑒 Natural number 

𝒆𝑖 𝑖𝑡ℎ unit vector 

𝑭 Force 

𝐹𝑠𝑐𝑎𝑙𝑒 Force scaling factor (used in DistMesh) 

𝐹𝑡𝑟𝑢𝑠𝑠 Force exerted by truss 

𝐹𝑖𝑛𝑡 Internal force contribution due to truss 

ℱ𝑖𝑛𝑡 Set of internal forces (ℱ𝑝
𝑖𝑛𝑡, ℱ𝑓

𝑖𝑛𝑡, ℱ𝑚
𝑖𝑛𝑡, ℱ𝑠

𝑖𝑛𝑡, ℱ𝑑Ω
𝑖𝑛𝑡) 

ℱ𝑒𝑥𝑡 Set of external forces (ℱ𝑝
𝑒𝑥𝑡, ℱ𝑓

𝑒𝑥𝑡, ℱ𝑚
𝑒𝑥𝑡, ℱ𝑠

𝑒𝑥𝑡, ℱ𝑑Ω
𝑒𝑥𝑡) 

𝑓𝑚𝑝𝑐 MPC function of boundary function in the form of (𝑓𝑚𝑝𝑐 = 0) 

𝑓𝑚𝑠 Master-slave MPC function  

𝑓∂Ω(𝑥) Boundary function 

𝐟 External forces associated with FEA 

𝐟𝑓 External loads on the free DOFs  

𝐟𝑝 External loads plus reactions on the prescribed DOFs (FEA) 

𝐠(𝐱) Optimisation constraint equations 

ℎ( ) Desired truss length function 

𝐼 Identity matrix 

𝐾 Consistent tangent contributions (𝐾𝑓𝑓 , 𝐾𝑓𝑚, 𝐾𝑚𝑓 , 𝐾𝑚𝑚) 

𝐊 Stiffness matrix of linear static FEA (𝐊𝐟𝐟, 𝐊𝐟𝐩, 𝐊𝐩𝐟, 𝐊𝒑𝒑) 

𝑘 Spring stiffness 

𝑘′𝑡𝑟𝑢𝑠𝑠 Truss stiffness factor 

𝑳𝑐 Current truss length 

𝑳𝑑𝑒𝑠 Desired truss length 

𝑳0 Initial seeding length of mesh 
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𝐿0 Initial length 

Δ𝐿 Difference length (Δ𝐿 = 𝐿𝑑𝑒𝑠 − 𝐿𝑐) 

𝐿𝑒
∗  Denominator length placeholder 

𝐿𝑙𝑜𝑛𝑔𝑒𝑠𝑡 Longest edge length 

𝐿𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 Shortest edge length 

𝑙, 𝑚, 𝑛 Unit vector components for a given truss 

ℒ Lagrangian functional 

𝑚, 𝑛 Highest integer in a set 

𝑷 Linearised coefficient matrix of the master-slave relationship 

𝑝 Node/coordinate 

𝑝 Node 

𝑝𝑚𝑖𝑑 Midpoint of truss 

𝑝𝑐𝑒𝑛𝑡 Centroid of simplex 

𝑹 Reaction forces (𝑹𝒑, 𝑹𝒇, 𝑹𝒎, 𝑹𝒔) 

ℛ Residual equation (ℛ𝑝, ℛ𝑓 , ℛ𝑚, ℛ𝑠, ℛ𝑑Ω) 

ℝn Set of real numbers 

𝑟𝑖𝑛𝑠𝑐𝑟𝑖𝑏𝑒𝑑 Inscribed radius of a simplex 

𝑟𝑐𝑖𝑟𝑐𝑢𝑚𝑠𝑐𝑟𝑖𝑏𝑒𝑑 Circumscribed radius of a simplex 

𝑆1 Truss exponential scaling factor 

𝑠, 𝑡 RHS contributions in saddle point problem 

𝑡 Time, or step size 

𝒖 Mesh nodal coordinate update 𝒖 = Δ𝓧 

𝐮 Nodal displacements (solution to FEA) 

𝐮𝑓 Nodal displacements associated with the free DOFs (solution to FEA) 

𝐮𝑝 Nodal displacements associated with the prescribed DOFs (FEA) 

𝑣,𝑤 Generic problem solution for saddle point problem 

𝑊 Preconditioner matrix for a saddle point solution 

𝓧 Mesh nodal coordinates 

𝓧𝑖  Mesh nodal coordinates, initial state 

𝓧𝑒 Mesh nodal coordinates, end state 𝓧𝑒 = 𝓧𝑖 + 𝒖 

𝒳′ Place holder for nodal coordinates and Lagrangian multipliers 

𝐱 Control parameter 

𝑥 Local coordinates (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5𝑥6)  

𝑋, 𝑌, 𝑍 Cartesian dimensions 

𝛾 Preconditioner scaling factor for saddle point preconditioner 

𝜖 Strain 

𝝀 Lagrange multiplier 

Π System potential energy 

Ω∗ Geometrical domain 

∂Ω Geometrical domain boundary 
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Ω Geometrical domain interior 

 

SUBSCRIPTS 

𝑐 Constraint 

𝑓 Free DOFs 

𝑚 Master DOFs 

𝑝 Prescribed DOFs 

𝑠 Slave DOFs 

 

SUPERSCRIPTS 

𝑓 Free DOFs 

𝑚 Master DOFs 

𝑝 Prescribed DOFs 

𝑠 Slave DOFs 

𝑇 Transpose 
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CHAPTER 1  

INVESTIGATION 

“Cost, Quality, Deadline: Pick one” – Someone knowledgeable, to a client 

1.1. Introduction 

Shape optimisation is an important and popular field of design that has been investigated for many 

years [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. With the ongoing development of technologies such as 3D printing 

and additive manufacturing, many constraints of traditional manufacturing methods are removed and 

new approaches to product development are allowed. Shape and topology optimisation are growing 

fields in industry that are aiming to leverage the benefits of these types of technologies, as well as 

provide tools to improve existing manufacturing/design methods [11, 12]. 

There are three general categories in the structural shape optimisation field [6]: 

1. Sizing optimisation – optimisation of a nominal dimension of a structure or component 

2. Topology optimisation – optimisation of the overall shape and topology of a structure 

3. Shape optimisation – optimisation of overall shape without changing topology, sometimes 

called boundary variation or boundary sensitivity optimisation 

Sizing, shape, and topology optimisation may be applied to complex geometries with correspondingly 

complex displacement, strain, and stress fields. Since the performance of structures is typically defined 

by criteria relating to the strain and stress, the Finite Element Method (FEM) is used to transfer the 

continuum into a linear algebraic form. To achieve this the domain is discretised using a mesh and the 

displacements, strains, and stresses corresponding to each element are then solved using linear 

algebra. This returns an approximation to the continuum solution. 

Sizing optimisation was the focus of the first two decades of structural shape optimisation. It required 

only the variation in the cross-section or thickness of a component which requires no change in the 

finite element model (FEM) discretisation when structural member elements are used, only variation 

in values [13]. 

Shape and topology optimisation deal with effects associated with the changes of the geometry and 

are quite closely linked. Topology optimisation aims to determine the optimal layout of material within 

an allowable space given certain boundary conditions. Methods such as level-set [2] use domain 

descriptors that allow for comparatively simple manipulation of the shape in the context of the finite 

element model. The level-set method approximates the geometry through the use of level sets which 

allows for the geometry to be analysed in discrete layers [2]. Hard-kill/soft-kill methods manipulate the 

topology of the FEM at the element level. This is performed in a fixed grid layout. Hard-kill methods set 
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an element’s stiffness to either 0 or 1 dictating its absence from or presence in the model, whereas 

soft-kill methods scale the stiffness of an element between 0 and 1 [8, 14]. Homogenising methods 

introduce microvoids into a material and the objective is to obtain mean compliance of the structure 

with a constraint typically applied on the volume fraction [15]. All of these methods are well suited to 

obtaining optimal topologies.  

Having obtained an optimal topology, the more traditional refinement of the geometry is done through 

shape optimisation or boundary variation methods. Boundary variation methods directly manipulate 

the geometric domain through design variables to meet certain criteria [5]. These methods rely on an 

accurate description of the boundary (often B-splines [5]) that is directly manipulated. Adaptive growth 

techniques aim to homogenise the stress state on the surface of the structure for their main loads. This 

is achieved through thermally loading a thin (low elastic modulus) boundary layer based on stress 

results from the previous analysis. The FEM geometry is then modified in accordance with the growth 

of this boundary layer [16]. Whilst the adaptive growth technique returns a refined shape, it does not 

lend itself to geometry manipulation using design variables.  

The discrete layers in level-set techniques are each defined by a closed-boundary function. These 

functions may, in turn, be parameterised to a set of design variables. The level-set functions are then 

optimised iteratively until a solution is found. The relative simplicity of manipulating a 3D geometry in 

2D layers gives the level-set method sufficient flexibility to be extended from the topology optimisation 

to the shape refinement stage [2]. 

To perform shape optimisation, the geometry needs to be parameterised with respect to a set of 

control variables. Ideally, this should be done at the level of the computer-aided design (CAD). However, 

it is important to note that some shape optimisation methods use simplified geometry descriptions to 

reduce complexity in parametrisation with respect to a set of design variables and manipulation of the 

geometrical domain, such as the use of a level-set function. To further complicate matters FEM mesh 

geometry only approximates the geometry [17]. It therefore follows that methods that manipulate the 

FEM geometry or simplified geometric descriptions do not feed directly back into the CAD environment. 

Isogeometric analysis employs a FEM geometry that is identical to the CAD geometry by using elements 

derived from NURBS [17]. Most FEM packages do not support the isogeometric descriptions. For shape 

optimisation methods to be practicable in industrial applications, this loop needs to be closed. 

Therefore, since boundary variation methods can be designed to parametrise the CAD, they are well 

suited to the shape refinement phase or design optimisation. 

Analysis in shape optimisation refers to the minimisation of the cost function given by the solution of a 

system of partial differential equations (PDEs) constructed with a parametrised geometrical domain [1, 

7]. The continuum associated with most problems is complex and not easily solved. Discretisation is a 

flexible and efficient method of reducing continuum problems to a simpler form requiring standard 

linear algebra. The main disadvantage meshes pose is that their accuracy is dependent on the quality 
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of the discretisation strategy employed. For boundary variation methods, the geometrical domain is 

described using a computational grid, the evolution of which is controlled in a straightforward manner 

using the control variables. 

The strategy employed to manage the continuum discretisation can be handled with several 

approaches: Fixed grid strategies as used with hard-kill/soft-kill, immersed boundary [10] and 

evolutionary methods [8, 14]; adaptive meshes that allow for geometrical changes without change in 

element connectivity; multiple mesh strategies where multiple fixed-grid domains are overlaid and 

coupled using methods such as Nitche equations [18] and remeshing strategies where the domain is 

remeshed to retain accuracy in the analysis. Generally, any of these discretisation strategies can be 

used to conduct shape optimisation. 

Discretisation or meshing of the domain contributes significantly to the overall cost of shape 

optimisation and this can make remeshing strategies prohibitively expensive. This can also introduce 

numerically induced local minima in the objective function [2]. The large expense associated with 

remeshing strategies can be offset by conducting local remeshing. Further improvements are realised 

when the strategy facilitates the provision of exact analytical gradients for use in gradient-based 

optimisation methods [7]. The introduction of local minima can be overcome using restart and h-

refinement strategies [7]. 

Several approaches are available for capturing boundary deformation in the FEM mesh. The averaging 

techniques move nodes through the domain by sweeping the boundary deformation effect into the 

domain in an iterative manner. These are comparatively simple to implement but can result in element 

distortion around the boundaries where large deformations have occurred [1], and many iterations may 

be required to reduce this effect. 

Function approximation approaches such as radial basis functions (RBFs) [19] or polynomial 

interpolation to describe the mesh deformation can be prohibitively expensive as they are dependent 

on the 𝑛 boundary nodes and exhibit 𝑂(𝑛3) computational cost/time complexity [20]. These methods 

have been successfully implemented in commercial packages such as Ansys for shape optimisation. 

Alternatively, methods that depend on an underlying physical principle to accomplish the mesh 

deformation (such as linear truss systems [7] or torsional springs [21]) allow for deformation 

throughout the domain with a potentially lower cost of implementation, especially where many design 

variables are present. 

To perform optimisation of the geometry, the geometry needs to be parametrised. This is accomplished 

with respect to a set of design/control variables in a manner such that meaningful manipulation of the 

geometry is permitted. These design variables are then the subject of the optimisation process where 

the cost function is minimised subject to design requirements. 
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A parametrised geometrical domain that can be meshed and analysed requires optimisation to be 

applied iteratively to find the best design due to the non-linear nature of the shape optimisation 

problem. Optimisation methods are well documented [22] and have varying benefits and difficulties 

associated with them. These come in three general categories: zero-order (nature-

inspired/evolutionary and gradient-free), first-order (steepest descent), and second-order (Newton’s,  

quasi-Newton’s, and conjugate gradient method) methods. 

Nature-based methods such as genetic algorithms and evolutionary strategies can optimise discrete 

problems and have an advantage in their global optimisation capability [22]. They can, however, be 

computationally very expensive. Evolutionary methods have been successfully employed by Xie et al. 

[9] in their fixed grid evolutionary strategy. 

Gradient-free methods have the advantage of only requiring evaluation of the cost function. This makes 

them well suited for general problems but with the disadvantage of being computationally expensive 

and having the tendency to provide inferior solutions for problems with a large number of design 

variables when compared to solutions obtained using gradient-based methods [22]. 

First and second-order gradient-based methods have the disadvantage of requiring additional 

sensitivity information. Strategies available for obtaining sensitivity information vary in complexity, 

accuracy and computational expense. Their main advantage is the computational efficiency to solve 

optimisation problems [7]. They are limited to obtaining the solution to the local minima and can 

converge to saddle points unless sensible restart strategies are employed [2, 7]. However, the objective 

of shape optimisation/refinement is to obtain the optimum overall shape, or the local minima, 

associated with a given topology. For this application, gradient-based methods are well suited [1, 7, 22]. 

The second-order gradient (Hessian) is typically not readily available but is rather approximated using 

the first-order gradient information, as with the Quasi-Newton methods [22].  

Structural design sensitivity analysis has been studied since at least the 1980s [23, 24] and has been 

effectively implemented in various strategies such as level-set [2], immersed boundary [25], and 

boundary variation [7, 26]. Obtaining the sensitivities for the design requires mesh sensitivities. This 

will be discussed in more detail in §1.2, §1.3, and Chapter 5. 

As has been demonstrated, structural shape optimisation is a broad field that includes various 

approaches. The various geometry descriptions and discretisation methods coupled with the 

optimisation methods ultimately determine the effectiveness of an algorithm in obtaining an optimised 

solution. 

As a whole, shape optimisation is a computationally demanding process and it is therefore important 

to make use of efficient techniques to improve solution times. This study is focussed on obtaining 

accurate mesh deformation sensitivities for use in gradient-based shape optimisation techniques. This 

is specifically an extension of the mesher, and analytical mesh sensitivities work of Wilke et al. [7] 
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which used piecewise linear boundaries to define the domain. Two other limiting factors associated 

with the Wilke et al. [7] method, was that the boundary nodes were prescribed along the piecewise 

linear boundary and that the method was restricted to two dimensions. 

This study’s focus is on creating a simple 2D and 3D automatic mesh generator for unstructured 

tetrahedral meshes that permits the use of unprescribed non-linear boundary descriptions such as 

NURBS (those present in CAD) that produces accurate mesh movement sensitivities for use with 

gradient-based shape optimisation methods. 

1.2. Overview of the shape optimisation process 

The shape optimisation process begins with defining the problem that needs to be solved. The 

boundary conditions associated with the problem as well as the state equations must be identified and 

the general working domain initialised as seen in Figure 1 (a). Following this, an initial general shape 

can be determined by making use of topology optimisation techniques as in Figure 1 (b) [1, 6]. 

The initial design is parameterised per (c) to allow shape change to be controlled programmatically. The 

geometry is then meshed and analysed per (d), subject to a set of conditions as in (a). Based on the 

results of the analysis, the parameters and shape are updated. This process is repeated using 

optimisation concepts until no change in the shape can be made that results in appreciable 

improvement of the results of the analysis. The resulting shape is then considered optimal for the set 

of conditions. This process is represented schematically in Figure 1. 
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Figure 1 Shape optimisation process 

When using gradient-based optimisation methods, the sensitivities need to accurately describe the 

effect a small change in the parameters has on the state of the system. For the process shown in Figure 

1, knowledge of the changes in the FEA results 𝐮 is required given a change in the parameters 𝐱 defining 

the geometry. It is seen that the mesh (discretisation) process lies between the parametrised geometry 

and the finite element analysis (FEA). This implies that prediction of the change in analysis results 𝐮 for 

a given change in geometry requires known sensitivities for the analysis results with respect to the 

mesh and the mesh with respect to the parameters. This is shown by the use of the Δ symbols in dashed 

boxes. The specifics of these relationships are detailed in §1.3 in the context of linear static FEM. 

(e) 
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1.2.1. Geometry domain parametrisation and discretisation 

The computational domain Ω∗ is subdivided into the interior Ω and boundary 𝜕Ω. This is shown in Figure 

2 (a) and given as:  

 Ω∗ = (Ω ∪ 𝜕Ω) (1) 

Domain boundary is defined by parameters 𝐱 (shown as green dots in (b)) varying in complexity from a 

parameter defining a thickness to the control point locations and weights of a set of Non-Uniform 

Rational Basis Splines (NURBS1). Exactly which aspects the parameters control is immaterial; what is 

required is an understanding of their effect on the domain boundary and correspondingly the interior 

and the mesh. 

 

Figure 2 Domain definition 

(a) Original domain (b) Discretised domain 

Figure 2 (b) shows the domain discretised using a mesh. It is important to note that the mesh is unable 

to exactly represent the boundary, however reducing the size of the discretisation will improve how 

well the domain is represented. The mesh is a function of the domain Ω∗ and therefore a function of 

the parameters 𝐱 as follows. The mesh representation of the geometry is therefore: 

 𝓧(𝛀∗(𝐱)) = 𝓧(𝐱) (2) 

 

 
1 NURBS are used to define geometry form in most CAE packages 

Ω 

Interior 

∂Ω 
 Boundary 

 Domain Ω∗ ∂Ω(𝐱) 

(a) (b) 

𝓧(𝐱) 
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1.3. Gradient-based shape optimisation in the context of linear static FEA 

1.3.1. Cost function and linear static FEA 

Given the set of control variables, 𝐱, the cost function describing the shape optimisation problem is 

stated as follows for the general inequality constrained problem: given the cost function ℂ(𝓧(𝐱)), find 

the minimum ℱ∗ such that a set of constraints 𝐠(𝓧(𝐱), 𝐱) ≤ 𝟎, 𝐠 ∈ ℝ𝑛 is satisfied:  

 
ℂ∗ = ℂ(𝓧(𝐱)) = min

𝐱𝜖ℝ𝑛
 {ℂ(𝓧(𝐱)) ∶ 𝐠(𝓧(𝐱), 𝐱) ≤ 𝟎}  (3) 

where ℝ𝑛 represents the n-dimensional space of real numbers.  

The cost function ℂ(𝓧(𝐱)) and the constraints g𝑗(𝓧(𝐱), 𝐱), for 𝑗 = 1,2, … ,𝑚 are scalar functions of 

the control variables 𝐱. For the sake of brevity, the cost and constraint functions will be denoted by 

ℂ(𝐱) and 𝐠(𝐱) respectively. The mesh 𝓧(𝐱) is a function of the geometrical domain Ω∗(𝐱) as shown in 

§1.2.1. The geometrical domain, Ω∗(𝐱), is selected as smooth and continuous between fixed points and 

is also a function of the control variables 𝐱. 

For simplicity’s sake, the shape optimisation problem will be considered subject to the solution of a 

linear static FEA on the domain. The cost function ℂ(𝐱) = ℂ (𝐮(𝓧(𝐱))) is, therefore, an explicit 

function of the nodal displacements, 𝐮 = 𝐮(𝓧(𝐱)), which are solved directly from the equilibrium 

equations for linear static finite element methods:  

 
𝐊𝐮 = 𝐟 (4) 

where 𝐊 is the stiffness matrix, 𝐮 are the nodal displacements and 𝐟 are the external forces. For analysis, 

the system is partitioned into the free 𝐮𝑓 and prescribed 𝐮𝑝 degrees of freedom (DOFs), such that (4) 

can be rewritten as: 

 
[
𝐊𝑓𝑓 𝐊𝑓𝑝
𝐊𝑝𝑓 𝐊𝑝𝑝

] {
𝐮𝑓
𝐮𝑝
} = {

𝐟𝑓
𝐟𝑝
} (5) 

Since the prescribed DOFs 𝐮𝑝 are known, (5) can be rewritten to solve for the unknown DOFs 𝐮𝑓: 

 𝐊𝑓𝑓𝐮𝑓 = 𝐟𝑓 − 𝐊𝑓𝑝𝐮p (6) 

 

1.3.2. Obtaining the sensitivities for the shape optimisation problem 

Since the cost function ℂ(𝐱) is an explicit function of the nodal displacements 𝐮, the structural response 

of 𝐮 with respect to the control variables 𝐱 is required to implement a gradient-based shape 
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optimisation method as in [7, 27]. Since the stiffness, force and the resulting displacement are all 

functions of the design variables 𝐱, (6) can be written as 𝐊𝑓𝑓(𝐱)𝐮𝑓(𝐱) = 𝐟𝑓(𝐱) − 𝐊𝑓𝑝(𝐱)𝐮p(𝐱) 

The analytical gradient 𝑑𝐮 𝑑𝐱⁄  is obtained by taking the derivative of (6) with respect to 𝐱: 

 𝐊𝑓𝑓  
𝑑𝐮𝑓

𝑑𝐱
=
𝑑𝐟𝑓

𝑑𝐱
−
𝑑𝐊𝑓𝑝

𝑑𝐱
𝐮p − 𝐊𝑓𝑝

𝑑𝐮p

𝑑𝐱
−
𝑑𝐊𝑓𝑓

𝑑𝐱
𝐮𝑓 (7) 

For a Dirichlet boundary condition, the external forces 𝐟 and the prescribed displacements 𝐮𝑝 are 

known constants (typically zero) and not part of the control variable set 𝐱, hence 𝑑𝐮p 𝑑𝐱 =⁄ 𝑑𝐟 𝑑𝐱⁄ =

𝟎. Selecting 𝐮𝑝 = 𝟎, (7) then reduces to: 

 
𝐊𝑓𝑓  

𝑑𝐮𝑓

𝑑𝐱
= −

𝑑𝐊𝑓𝑓

𝑑𝐱
𝐮𝑓  (8) 

To obtain the gradient 𝑑𝐮𝑓 𝑑𝐱⁄  the derivative term 
𝑑𝐊𝑓𝑓

𝑑𝐱
 is required. Since the stiffness matrix 𝐊 is a 

function of the nodal coordinate set 𝓧, which in turn is a function of the control variables 𝐱, 𝐊𝑓𝑓 =

𝐊𝑓𝑓(𝓧(𝐱)). Therefore, the derivative can be expanded using the chain rule and computed from: 

 𝑑𝐊𝑓𝑓

𝑑𝐱
=
𝑑𝐊𝑓𝑓

𝑑𝓧

𝑑𝓧

𝑑𝐱
 (9) 

The component 
𝑑𝐊𝑓𝑓

𝑑𝓧
 is obtained by analytical differentiation of the stiffness matrix with respect to the 

mesh nodal coordinates 𝓧. This action can be completed as detailed by Wilke et al. [7] or Olaf et al. 

[27]. The sensitivities of the domain nodal coordinates with respect to the control variables 𝑑𝓧 𝑑𝐱⁄  - 

also referred to as the mesh sensitivities - may be obtained analytically, numerically, or semi-

analytically. 

It is therefore clear that the accuracy of FEM displacement sensitivity 
𝑑𝐮𝑓

𝑑𝐱
 is dependent on the accuracy 

of the mesh sensitivities 
𝑑𝓧

𝑑𝐱
. It is thus imperative for an efficient shape optimisation method to have 

accurate mesh sensitivities available. Obtaining 
𝑑𝓧

𝑑𝐱
 will be detailed in Chapter 5. 

1.4. Mesh generation  

Discretisation of the domain, meshing, is required in FEM to transform the continuum problem into a 

set of PDEs that can then be solved using a linear algebra problem. This is an approximation whose 

accuracy is directly dependent on the quality of the mesh. 

 

1.4.1. What is a mesh 

A mesh is the representation of a surface, volume, or n-dimensional domain using such finite elements. 

It defines the connectivity between adjacent elements and completely describes the domain. 
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1.4.2. Mesh generation 

The meshing process is a time-consuming and error-prone process. This is particularly true for the 

practical sciences and engineering where arbitrary three-dimensional geometries of varying levels of 

complexity need to be meshed. Attempts have been made to create fully automatic mesh generators 

for complex bodies since the early 1970s [28]. These have since grown in complexity and efficiency. An 

example of a mesh, generated using Hypermesh™, is shown in Figure 3. 

 

Figure 3 3D mesh cross-section of nuclear reactor created using HyperMesh™ [29] 

Mesh generation for analysis must be differentiated from that required for shape optimisation. In 

analysis, the boundary is fixed, the initial mesh is generated and either retained as is or optimised by 

the user to meet specific requirements. A change in geometry requires remeshing. 

The boundary changes required by shape optimisation are accommodated using either mesh 

movement through a mapped mesh with initial connectivity essentially remaining as-is; or remeshing 

with the opportunity of optimising the mesh. 

Remeshing introduces non-smooth behaviour to the cost function while mesh movement is usually 

smooth. Optimisation benefits from smooth functions. 

1.4.3. Desirable mesh attributes 

Discretised analyses such as FEA and CFD benefit from the mesh having certain attributes. Meshes that 

are highly distorted cause numerical inaccuracies; meshes that are too coarse might cause information 

within the domain to be missed thereby giving poor or incorrect results; too fine a mesh and the system 

can become too cumbersome and numerically expensive to solve reasonably. 

The mathematics and programming developed for FEA uses a reference element or set thereof to 

perform the repeated calculations required to represent the domain. These reference elements are 

idealised versions of their given shape and are typically created as equal-sided and equiangular. These 
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idealisations are typically of unit or twice unit size [30, 31]and are located neatly around a local axis 

system for easy reference. 

The transformation of the actual element from/to the reference domain requires a mapping of 

information from the analysis domain to the reference domain and vice versa. This results in a distortion 

of information. Calculations are therefore performed in the reference domain for simplicity and the 

results are mapped back. This process requires numerical integration of irrational functions, which can 

only be approximately resolved using Gauss quadrature [31]. This introduces an integration error in 

addition to the already existing discretisation error resulting from utilizing a mesh. When the element 

in the analysis domain is geometrically similar2 to the element in the reference domain, the 

denominator reduces to a constant and the polynomial numerator can be exactly integrated using 

Gauss quadrature. 

1.4.3.1. Element quality 

Since it is highly unlikely that a geometry or domain can be meshed so that no element is distorted, 

these numerical inaccuracies are a reality. The effect of these mapping inaccuracies is not severe until 

large deviations from the reference shape or skewness occur. This property is often identified as 

element quality for which various metrics have been devised to quantify the mesh quality. 

The simplest measure is the ratio of two times the inscribed circle’s radius 𝑟𝑖𝑛𝑠𝑐𝑟𝑖𝑏𝑒𝑑 to the 

circumscribed circle’s radius 𝑟𝑐𝑖𝑟𝑐𝑢𝑚𝑠𝑐𝑟𝑖𝑏𝑒𝑑. For ideal elements, this gives a value of 1 and for a 

completely degenerated element a value of 0. the element quality is therefore given by: 

 
𝐸𝑙𝑒𝑚𝑒𝑛𝑡 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 =

2 × 𝑟𝑖𝑛𝑠𝑐𝑟𝑖𝑏𝑒𝑑
𝑟𝑐𝑖𝑟𝑐𝑢𝑚𝑠𝑐𝑟𝑖𝑏𝑒𝑑

 (10) 

1.4.3.2. Element aspect ratio 

The aspect ratio (AR) of elements can also affect mesh performance. This ratio is defined as the ratio of 

the longest edge to the shortest edge. The ideal aspect ratio is 1 and occurs when all edges are the 

same length. High aspect ratio elements do not always result in poor mapping but may instead fail to 

adequately capture the underlying field along the coarsely discretised directions.  

Poor aspect ratio elements may often be used in CFD boundary layers. This is because the change in 

state in the direction along the boundary is minimal compared to the variations in the perpendicular 

direction. The use of poor aspect ratio elements under such conditions allows for efficient use of 

elements in the domain space. Aspect ratio is given by: 

 
2 Geometry has the same angles and is only scaled in its dimensions 
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𝐴𝑅 =
𝐿𝑙𝑜𝑛𝑔𝑒𝑠𝑡

𝐿𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡
 (11) 

1.4.3.3. Mesh refinement  

Mesh refinement becomes a serious requirement in order to adequately capture the state of a given 

domain without making the problem so resource-intensive as to make solution times and/or hardware 

requirements completely impractical. If the underlying field over part of the spatial domain is constant, 

a single element could, in theory, be used to accurately capture and represent this state. However, if 

there are significant variations in the field over the spatial domain, elements that are large compared 

to these changes in the field or geometry will result in inaccurate representation and solution. See 

§1.5.2 for adaptive mesh refinement. 

1.4.3.4. Mesh smoothness 

The smoothness of a mesh is a measure of how rapidly element edge sizes vary relative to their 

neighbouring elements. The smoothness ratio is also referred to as element growth rate which permits 

a more intuitive understanding of the fact that a neighbouring element grows by at most the specified 

value. A ratio of 1.2 indicates that adjacent elements have sizes no more than 20% larger or smaller 

than their neighbouring elements. A balance is however required between mesh smoothness and 

refinement in order to optimise the mesh for performance and solution accuracy. Whilst having a very 

fine smoothness has positive benefits in terms of element quality and reduced distortion, it can create 

a situation where there is an unnecessarily high element density in regions where it is not required. 

This results in unnecessarily increased computational costs. 

1.5. Mesh generator requirements 

There are numerous means of obtaining a sufficient mesh and these are well documented in literature 

[28, 31, 32]. However, access to accurate mesh deformation sensitivity information is not readily 

available from most meshing methods. 

Obtaining accurate sensitivities requires that the entire mesh construction be dictated by an underlying 

smooth and continuous process of describing the mesh change when a fixed boundary with an initial 

mesh is proposed. The mesh boundary movement essentially updates the initial positions on the 

boundary by remeshing (non-smooth and discontinuous) or mesh mapping (smooth and continuous) 

that is then optimised or improved under a small change of the boundary. The process that improves 

the initial mesh is important from the sensitivity point of view. An example of a non-smooth process 

would be Laplacian smoothing [31] where nodes are moved in isolation as part of a mesh optimisation 

process. An example of a smooth process is treating the mesh as a truss structure where all nodes are 

optimised simultaneously. This was done in principle in DistMesh [33] (tension components were 
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ignored, causing some non-smooth behaviour) and extended to be completely smooth by Wilke et al. 

[7]. 

1.5.1. Meshing method: Structured vs unstructured meshing 

Two overarching approaches to meshing a domain exist; structured and unstructured. The difference 

between structured and unstructured meshes, or grids, is concisely described as follows by Vladimir 

Liseikin in his book Grid Generation Methods, Second Edition [32]:  

“There are two fundamental classes of grid popular in the numerical solution of boundary value 

problems in multidimensional regions: structured and un-structured. These classes differ in the way in 

which the mesh points are locally organized. In the most general sense, this means that if the local 

organization of the grid points and the form of the grid cells do not depend on their position but are 

defined by a general rule, the mesh is considered as structured. When the connection of the 

neighbouring grid nodes varies from point to point, the mesh is called unstructured. As a result, in the 

structured case the connectivity of the grid is implicitly taken into account, while the connectivity of 

unstructured grids must be explicitly described by an appropriate data structure procedure.” 

Structured meshes are created through the mapping of a reference (usually uniform) grid to the 

geometry. This is easily done for simple shapes with higher complexity domains causing problems 

during mesh generation. An example of mapping a uniform cubic grid to a section of a cylinder is shown 

in Figure 4. 

 

Figure 4 Cylindrical structured grid mapping [32] 

Due to the nature of structured meshing, it is not suitable for making local mesh refinement changes 

programmatically with minimal overall mesh disturbance. Rather, it requires remeshing with a set of 

new predefined conditions. 

Unstructured meshes are considered suitable for discretising domains with complicated shapes. They 

allow for a more natural approach to local mesh refinement and adaptation through the insertion and 

removal of local nodes. Furthermore, local element refinement of the mesh can be done by subdividing 

the elements without requiring reconsideration of any other part of the mesh. Overly refined sections 
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of the mesh can be altered through the deletion of local nodes and elements. Unstructured methods 

are therefore the most flexible approach for discretising complicated domains and geometries and in 

general, will mesh a complicated geometry faster than a structured approach. 

Unstructured meshing methods typically use simplexes (triangles3 for 2D, tetrahedra for 3D) due to the 

simplicity of discretising a domain with such element geometries. Irrespective of the nodal movement, 

these shapes can never become concave in their associated domains, which reduces the complexity of 

meshing. Figure 5 shows the difference between a structured and unstructured mesh on the nose cone 

cross-section of an aircraft. 

 

Figure 5 Structured vs unstructured mesh for the same geometry [34] 

For mesh movement strategies, the potential for element inversion occurs. This requires special 

treatment during mesh updates.  

Numerical analyses that require strict adherence of the mesh to the boundary (such as FEA or CFD) 

typically have the most complex numerical requirements and non-linearities. This, coupled with the 

mesh distortion at the boundary, reduces the numerical efficiencies and simulation accuracy. These can 

largely be overcome through mesh refinement, see. §1.4.3.3.  

1.5.2. Adaptive meshing based on results, geometry and error estimates 

Adaptive meshing is a meshing process that facilitates the description of a region with local mesh 

refinement. In iterative FEA the program can be designed to utilise local information from a previous 

solution to dictate mesh refinement and coarsening. This can be done based on either geometrical 

changes and/or numerical results such as local stress gradients or convergence requirements. 

Alternatively, user information specifying a region or face can be accommodated with the possibility of 

including a growth rate option to allow for better overall performance of the model. 

In FEA the changes in stress results between adjacent elements can be used to estimate the errors of 

the solution a posteriori and thereby identify areas in which mesh refinement or coarsening is required. 

 
3 For 2D domains, neighbouring triangles can be easily combined into quadrilaterals, for more efficient solving 
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Results indicating little to no change between adjacent elements can be used to identify regions where 

mesh coarsening will not affect the accuracy and large changes can indicate areas requiring refinement. 

Shape optimisation requires changes in the boundary. This can result in reduced element quality or in 

elements no longer being able to adequately capture the new geometrical state. Additionally, changes 

in shape have a direct impact on domain stress and stress gradients. An example of adaptive meshing 

around a “crack” is shown in Figure 6. In Figure 6 it is evident, that for this problem, a fine mesh is 

required only at the boundary and in the region around the crack. The remainder of the geometry may 

be meshed with courser elements, reducing the solution time for each iteration with no appreciable 

loss in accuracy. 

 

Figure 6 Adaptive mesh refinement around a crack tip [35] 

As mentioned in §1.5.1, unstructured meshing strategies are well suited to adaptive meshing through 

the insertion or removal of nodes locally without the need for remeshing the domain. Structured 

meshes are not suited to local mesh adaptation, but rather require portions of the domain to be 

completely remeshed to accommodate the new refinement requirements. 

1.5.3. Boundary deformation with boundary node and mesh adaptation 

In structured meshing strategies, the boundary analytically dictates the nodal positions. It follows that 

nodes are updated explicitly with boundary deformation. 

In the case of the unstructured meshing strategies, nodes on the boundary are placed in a regular 

fashion but do not move explicitly with a change in the boundary. The boundary nodes, therefore, need 

to either be explicitly defined by the user or they must be projected to the boundary after the change, 

which is a discrete process.  

It is preferable that the nodes should be allowed to move along, but not away from, the domain 

boundary. This allows the mesh to retain better uniformity during updates. This is illustrated in Figure 

7 showing a quadrilateral mesh on a 2D surface. The upper edge of the surface was defined using two 

distinct splines split by a control point, 𝒙. Surface (a) represents the undistorted domain with the 

control point 𝒙 located in the middle of the upper edge, effectively dividing the edge into two segments. 
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Each segment is seeded with 20 points at equal intervals. The change to the domain boundary of the 

domain was seen to be negligible for a fairly significant change in location, 𝛿𝒙, of the control point 𝒙.  

The effect of this change on the mesh is illustrated by (b) where nodes are still explicitly placed along 

the segments. This results in a highly distorted mesh, with reduced element quality. In contrast, if the 

nodes can move freely along the boundary as in (c), little to no mesh distortion occurs and the mesh 

remains of high quality. 

 

Figure 7 Effect of boundary modification on discretised boundary nodes 

(a) Original domain and mesh (b) Boundary update with seeding using explicit nodes relation to control points 

(c) Boundary update with free boundary node relation 

The further discretisation of an edge is easily achieved by subdividing the edge. The discretisation of a 

surface is a 2D problem in and of itself and is not as easy. It is therefore important that the mesh 

boundary be free to be optimised in conjunction with the interior mesh. 

1.5.4. Requirements of mesh sensitivities for shape optimisation 

Since the accuracy of FEM is directly related to the quality, aspect ratios, and mesh refinement of the 

elements (see §1.4.3), maintaining these properties during a mesh update is very important. It 

therefore follows that for quality mesh sensitivities 
𝑑𝓧

𝑑𝐱
 the entire mesh needs to react to any changes 

on the boundary, and not in an ad-hoc or local manner. The mesh sensitivities must therefore describe 

this effect at every node in the domain [7]. 

As discussed in §1.5.1 structured meshes are defined through a mapping process between the 

reference domain and the geometric domain. This means that the internal nodal locations are defined 

by the boundary position. In unstructured meshing, the nodes are distributed randomly throughout the 

(a) 

(b) 

𝒙 

(c) 

𝒙 + 𝛿𝒙 𝒙 + 𝛿𝒙 
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domain. The nodes are therefore not defined relative to the boundary. Hence it follows that movement 

of the boundary in structured meshes will update the internal nodal positions accordingly, whereas in 

unstructured meshes boundary movement does not affect the internal nodes and their movement 

needs to be addressed programmatically. It is therefore seen that the internal nodes of structured 

meshes are functions of the boundary and naturally possess sensitivities.  

Structured meshing strategies are typically challenging to implement on complex geometries and the 

introduction of local refinement requires at least partial remeshing of the domain. Unstructured 

meshes are well suited to the discretisation of complex geometries, to the introduction of local 

refinement and to the accommodation of adaptive meshing as discussed in §1.5.2. 

For remeshing optimisation strategies, the domain is remeshed between iterations. This strategy is 

easier to implement as all local refinement may be readdressed as required while maintaining mesh 

quality. These strategies are however numerically expensive and the remeshing may introduce 

discontinuities in the objective/cost function [7]. Both structured and unstructured meshing are 

suitable for implementation with remeshing optimisation strategies. Remeshing optimisation easily 

accommodates significant changes to geometry and refinement. 

Mesh-movement optimisation strategies require updates to the mesh between iterations. As the name 

suggests, the mesh with its current connectivity is re-fitted to the updated geometry. Both structured 

and unstructured meshes can be used for mesh-movement strategies for large changes to boundary 

dimensions provided the overall shape is maintained. However, where local mesh refinements and 

changes in geometry occur, structured meshes are not well suited while unstructured meshes can 

accommodate some local refinement without alteration in element connectivity. 

Remeshing optimisation strategies are simpler to implement when compared to mesh-movement 

strategies. They are however numerically more expensive and tend to introduce discontinuities in the 

objective/cost function. Unstructured meshes are more flexible when compared to structured meshes 

in terms of their use in optimisation strategies. Complex geometries are easily discretised and such 

meshes improve the performance of mesh-movement strategies. 

Mesh-movement strategies with unstructured meshes may introduce problems with local mesh quality 

near altered geometry since the internal nodal coordinates are not a function of the boundary. One 

way of maintaining mesh quality in unstructured meshes is to use an averaging technique [1]. In these 

approaches, the movement of the boundary induces a movement in the mesh that is propagated into 

the mesh iteratively. Many iterations are required to ensure good uniformity is maintained. These 

methods come in varying degrees of sophistication, but at best the technique can only be used to obtain 

numerical sensitivities, which are generally computationally expensive [1]. 

Another option is to use an underlying principle that analytically describes the mesh movement 

throughout the domain. For unstructured tetrahedral meshes, Wilke et al. [7] demonstrated that 
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analogizing the unstructured mesh to a truss structure allowed for mesh deformation to be taken up 

evenly throughout the domain. They successfully obtained analytical mesh sensitivities for their 2D 

piecewise linear domains using this method. 

For local mesh changes in the domain, such as local mesh refinement based on error estimates, the 

local desired truss lengths can be altered. Since the truss mesh is driven by an underlying analytical 

relationship, the method allows the mesh to adapt, without remeshing, to the new domain 

requirements. 

The following attributes are therefore desirable for a mesher used in shape optimisation: 

• Unstructured mesher – this allows for the easy discretisation of complex geometries and 

execution of adaptive meshing 

• Mesh-movement optimisation strategies should be accommodated 

• An underlying principle should be used to facilitate access to accurate mesh sensitivities 

1.6. Examination and selection of base mesher platform 

Several free and open-source meshing programs are available. These have varying degrees of 

complexity and capability, but all allow for easy mesh creation and adaptation. Robert Schneiders 

maintains a useful list of both public-domain and commercially available mesh generators. At the date 

of writing, ninety-six public-domain applications were listed on his website [36]. A summary is provided 

by Steven Owen who surveyed eighty-one unstructured mesh generators for both the public-domain 

and commercial use [37]. 

More than 150 public domain mesh generators were reviewed from the above-mentioned references 

and none were found that made mesh sensitivities explicitly available for use in gradient-based shape 

optimisation. Only one mesher, STELLAR [38], indicated the presence of mesh sensitivities as part of 

the meshing process workflow. These sensitivities were associated with the dihedral angles of the 

tetrahedral elements and utilised the sensitivities for a mesh optimisation process. STELLAR does not 

make any mesh sensitivities available to the user. It is conceivable that these sensitivities could be 

combined to obtain a set of full-mesh sensitivities. 

Bischof et al. [39] showed a method for modifying the mesher CSCMDO [40] to output numerical mesh 

sensitivities for gradient-based optimisation applications. The mesher was modified to make numerical 

sensitivities available using the ADIC automatic differentiation tool. No mesher investigated indicated 

access to analytical sensitivities, outside of the mesher proposed by Wilke et al. [7]. 

Whilst other mesh generators may exist that are potentially faster, more robust, and create 

higher-quality meshes, the simplicity offered by DistMesh [33] makes it an easy-to-build-upon platform 

for use in this study. Wilke et al. used DistMesh as the foundation in the development of their 2D 

mesher [7]. DistMesh offers a convenient analogy between an unstructured tetrahedral mesh and a 
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compressed set of springs or trusses. This gives DistMesh an underlying physical principle that describes 

the mesh movement throughout the domain. DistMesh is an unstructured mesher that allows for 

adaptive meshing through altering the desired or free truss lengths. The underlying principles of 

DistMesh allow for mesh-movement strategies that can accommodate local changes such as mesh 

refinement. 

The DistMesh implementation was discrete through the use of a forward-Euler implementation and 

continuous but not smooth through truss stiffness formulation employed to solve equilibrium of the 

system. Wilke et al. utilised the truss concept to implement a Newton-method based solver for the 

mesh, which already contains the sensitivities required for obtaining the nodal coordinate sensitivities 
𝑑𝓧

𝑑𝐱
. 

1.7. Summary 

The shape optimisation problem requires the optimisation of an objective or cost function for a 

particular geometry subject to a set of constraints. The first step in the solution of a shape optimisation 

problem is the parametrisation of the geometry with respect to a set of control variables. The 

continuum is then reduced to a standard constrained finite-dimensional model. This reduction is 

normally accomplished through a discretisation strategy. In discretisation, the continuum PDEs for the 

domain are described by means of a discretised computational grid. 

Discretisation has the advantage of all resulting functions being solvable with standard linear algebra 

methods. It has the disadvantage of the accuracy of the final solution being dependant on the quality 

of the meshing strategy employed. Mesh adaptability is therefore a very important part of mesh 

generation in the shape optimisation environment. 

Discretisation methods must consider the construction of the mesh and the control of mesh 

deformation when the boundary of the geometry is displaced. Two methods for discretising a domain 

exist, namely structured and unstructured meshing. Structured meshing utilises a mapping method 

where a reference mesh is mapped to the geometry through a transformation function. Structured 

meshing methods are however not well suited to discretising complex geometries and require 

remeshing of the domain to facilitate mesh refinement. Unstructured meshes are defined by the 

location of the nodes distributed through the domain and easily discretise complex geometries. 

Furthermore, unstructured meshes are easily adjusted to facilitate mesh refinement through the 

insertion of nodes in the area of interest.  

Adaptive meshing can improve the accuracy with which boundary information is captured and reduce 

computational resources associated with unnecessary domain refinements. Adaptive meshing is most 

easily implemented using simplex unstructured meshing methods where nodes can simply be inserted 

and removed in the area of interest to vary local mesh refinement. For this study the benefits of using 
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an unstructured meshing strategy outweighed the increased numerical overhead costs and mesh 

management incurred compared to structured meshing approaches. 

The shape optimisation problem requires the geometrical domain discretisation to be updated with 

each iteration. Two approaches exist to accomplish this; remeshing and mesh-movement strategies. 

Remeshing strategies, as the name suggests, remesh the domain for every iteration. They are able to 

ensure good quality meshes regardless of the magnitude of the change in shape. They are however 

numerically expensive to implement. Since the process of remeshing is not smooth it can result in 

discontinuities in the sensitivities [7].  

Mesh-movement strategies update the mesh from one iteration to the next by refitting the mesh to 

the new domain. No changes in element connectivity occur, only the movement of the nodes to the 

new boundary. The process is smooth and does not introduce discontinuities into the sensitivities. This 

enables the effective use of gradient-based shape optimisation methods. Mesh-movement 

optimisation strategies are generally restricted to relatively small changes in geometry. 

The need for remeshing is reduced when mesh updates do not significantly distort elements. However, 

this is in general not the case, particularly when large shape changes are at play. The benefit lies in a 

combination of the two strategies. The mesh-movement approach can provide continuous sensitivities 

which in turn allows for the use of more efficient gradient-based optimisation methods. Remeshing is 

then performed when elements become too distorted or when significant changes in mesh refinement 

are required. 

The potentially large expense associated with remeshing strategies can be offset when the strategy 

facilitates the provision of exact analytical sensitivities. These sensitivities can be used in gradient-based 

optimisation methods which are known to provide superior solutions [1, 22]. 

It therefore follows that the requirements of a gradient-based shape optimisation focused mesher are: 

1. Simplex4 unstructured mesher: this is selected for the simplicity of discretising complex domains 

and the ease of implementing adaptive meshing strategies (§1.5.2). 

2. Able to discretise user-defined non-linear domains. 

3. Provide (semi)-analytical mesh sensitivities. These are sensitivities that analytically describe the 

mesh deformation in response to changes in design variables. Partial aspects of the sensitivities 

may be calculated numerically. 

4. Mesh optimisation methods must have a smooth underlying principle that allows access to 

smooth mesh sensitivities. Remeshing may occur during optimisation, but the mesh 

improvement strategy must be smooth and continuous towards the end to facilitate access to 

accurate mesh sensitivities. 

 
4 Simplexes are triangles in 2D and tetrahedra in 3D 
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5. Smooth mesh sensitivities: boundary changes, or local refinement, should subject the entire 

mesh to deformation in a smooth manner, not only locally (§1.5.4). 

6. Boundary mesh adaptability: the boundary nodes should be free to move along, but not away 

from the domain boundary (§1.5.3), in such a manner that this relationship forms part of the 

mesh analytical sensitivities. 

7. User friendly: the mesh generator should be simple to use and modify. 

DistMesh is an easy to modify and use unstructured simplex mesher that allows for mesh adaptivity 

through node insertion and an ideal truss length control function to determine the edge lengths over 

the geometrical domain. It can discretise non-linear geometrical domains defined by the user. It 

analogises a simplex mesh to a system of trusses or springs, basing the method in physical mathematics. 

This, in turn, permits the recovery of smooth sensitivities for the system. DistMesh does not require the 

prescription of the boundary nodes but allows the nodes to move freely along the boundary while also 

not being constrained to the boundary. DistMesh was used successfully by Wilke et al. [7] to implement 

their sensitivity based mesher for the 2D piecewise linear domains used to perform shape optimisation.  

This study will do three things: 

1. Become a workable extension of the Wilke et al. [7] mesher from 2D to 3D. 

2. Permit the discretisation of non-linear domains rather than piece-wise linear domains. 

3. Release the previously prescribed boundary nodes to move along but not away from the 

boundary. 

In order to produce accurate sensitivities for a non-linear domain, the boundary node movement must 

be incorporated into the sensitivities. Obtaining sensitivities that include the sliding boundary nodes 

will be the focus of this study. 
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CHAPTER 2  

TRUSS MESHER WITH FREE BOUNDARY NODES 

“Engineers ... are not superhuman. They make mistakes in their assumptions, in their calculations, in 

their conclusions. That they make mistakes is forgivable; that they catch them is imperative. Thus, it is 

the essence of modern engineering not only to be able to check one's own work but also to have one's 

work checked and to be able to check the work of others.” ― Henry Petroski 

2.1. Introduction 

This chapter discusses the selected base meshing program DistMesh. It describes the fundamentals of 

program operation with the basic functions used in §2.2. The conceptual changes to DistMesh and their 

implementations will follow in §2.3 to §2.6. 

The first alteration is to change the continuous but not smooth force function in DistMesh. This is 

discussed in §2.3 where the description of the continuous general truss-equilibrium system is 

presented. These will consider only a set of prescribed boundary nodes and hence represents the 

solution to the interior of the domain. This is done in the context of a geometrically non-linear FEA 

problem. 

As stated in the previous chapter, the focus of this study is to allow nodes to move freely along, but not 

away from the boundary. Potential approaches include smooth classical boundary contact and multi-

point constraint (MPC) methods discussed in §2.5 and §2.6 respectively. It will be shown that the 

analytical requirements for obtaining accurate mesh sensitivities including boundary nodes will be best 

met by the master-slave elimination (MSEM) and Lagrangian multi-point constraint (MPC) methods. 

The MSEM and Lagrangian methods will be presented in §2.6.2 and §2.6.3 respectively. For both 

methods, the system of truss equations will be extended to include the MPC boundary equations in 

§2.6.2.1 and §2.6.3.1. In §2.7 the numerical solution strategies for solving these systems of residual 

equations will be discussed. These equations will be developed directly in the context of the boundary 

constraint problem. 

2.2. Overview of DistMesh 

The simple meshing program DistMesh [33], developed by Per-Olof Persson and Gilbert Strang works 

on a very basic concept: the simplex mesh structure is analogous to that of a simple truss structure 

where the mesh nodes are the truss joints and the element edges are the trusses. The nodal coordinates 

of the mesh are determined by solving for the equilibrium of the system of trusses. The trusses are 

treated as being (on average) in compression. This ensures the propagation of the nodes to the 

boundary and discretisation of the entire domain. This method results in mesh improvement in a 
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smooth and continuous manner for smooth and continuous force functions. A brief overview of the 

main attributes of the mesher follows; for a more thorough explanation see [33]. 

DistMesh follows a few basic steps. These steps are shown in Figure 8, with the final resulting mesh 

depicted in Figure 9. Steps 1 through 6 are iterated through until the norm of the mesh updates is below 

a specific tolerance. 

1. Domain seeded with points based on some minimum expected length ℎ𝑚𝑖𝑛 (see Figure 8 (a)) 

2. Points outside the domain are rejected (see Figure 8 (b)) 

3. Points throughout the domain are kept/rejected based on a probability function, retaining node 

density in the areas corresponding to the length function ℎ(𝑝(𝓧)) (see Figure 8 (c)) (see §2.2.4)  

4. Delaunay triangulation is used to create the truss connectivity (see Figure 8 (d)) 

5. Nodes are propagated to the boundary using a forward-Euler step (see §2.2.2) in the directions 

calculated by the force function (see §2.2.3). The force function acts as if (on average) all truss 

members are compressed. (see Figure 8 (e)) 

6. Points outside of the boundary are either rejected (if outside of some tolerance) or returned to 

the boundary (see §2.2.5) (see Figure 8 (f)) 

7. The steps 4. through 6. are repeated until equilibrium at all the nodes in the domain is reached 

and the boundary is satisfied. Retriangulation is completed every 𝑛 iterations.  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 8 DistMesh process steps 

𝐹𝑡𝑜𝑡𝑎𝑙  
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(a) Seeding domain (b) Rejection of points outside the domain (c) Retention of points based on the probability function  

(d) Delaunay triangulation for truss connectivity (e) Propagation of nodes to the boundary (f) Handling of nodes moved 

outside the boundary 

 

Figure 9 Final mesh from DistMesh 

2.2.1. Domain boundary definition 

The geometrical domain is described using a signed distance function 𝑓∂Ω(𝒑), where the function 

evaluates a coordinate 𝑝. The function value is a magnitude giving the shortest distance to the boundary 

and is positive outside of the domain, negative inside of the domain and zero on the boundary ∂Ω. This 

allows for a combination of simple shapes to describe more complex domains in a simple manner. The 

geometrical domain is described by: 

 

𝑓∂Ω(𝑝) = {

𝑓𝑒𝑙𝑙𝑖𝑝(𝒑)

𝑓𝑟𝑒𝑐𝑡(𝒑)

𝑓𝑝𝑜𝑙𝑦(𝒑)

⋮

  (12) 

2.2.2. Node propagation and mesh solution 

The mesh nodal locations 𝓧 are solved using a forward Euler approach with an artificial time 

dependence 𝛥𝑡. This is, in fact, a fixed step size steepest descent method for the minimisation of the 

larger truss potential energy function. The update step is given by: 

 𝓧𝑛+1 = 𝓧𝑛 +  𝑭(𝑳𝑐, 𝑳𝑑𝑒𝑠) ∙ Δ𝑡 (13) 

where 𝓧𝑛+1 is the updated location, 𝓧𝑛 is the current location and 𝑭 is the truss force function defined 

in §2.2.3. 
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This is continued until the magnitude of subsequent nodal coordinate updates is below some tolerance 

𝑝𝑛+1 − 𝑝𝑛 < 𝑡𝑜𝑙. 

2.2.3. Force function definition 

The mesher is designed such that all the trusses of the system are always in compression (on average). 

Additionally, the force function is designed as continuous but not smooth, meaning that there is a truss 

reaction force under compression but a zero force under tension. Trusses can only push and cannot pull 

on nodes – assuming 𝑘 is positive. The truss force function 𝑭 is given by: 

 
𝑭(𝑳𝑐, 𝑳𝑑𝑒𝑠) =  {

𝑘(𝑳𝑑𝑒𝑠 − 𝑳𝑐) /𝑳𝑐   if 𝑳𝑐 < 𝑳𝑑𝑒𝑠
             0                    if 𝑳𝑐  ≥ 𝑳𝑑𝑒𝑠

  (14) 

where 𝑳𝑑𝑒𝑠 is the undeformed or desired length assigned to the truss, 𝑳𝑐 is the current length and 𝑘 is 

the spring stiffness of the truss. This, combined with the length function in (16), ensures the 

propagation of the nodes to the boundary. 

2.2.4. Length function definition 

DistMesh is designed as an adaptive mesher where the desired or uncompressed length of the trusses 

is given by the function 𝒉(𝒑). This generates a relative size value for the given locations, 𝒑, when 

supplied as a point for evaluation. The length function is supplied by the user and can be designed to 

use local feature sizes, pinch zones, curvature, or any other attribute the user wishes to program in. 

Since the objective of their mesher was simplicity, the values returned from the length function 𝒉(𝒑) 

are treated as a relative ideal element length. This avoids an implicit connection of the number of nodes 

to the size of the domain. 

The desired lengths utilised for the calculations are therefore given by: 

 

Scaling factor = 𝐹𝑠𝑐𝑎𝑙𝑒 (
Σ𝑳𝑐𝑖

2

Σ𝒉(𝒑𝑚𝑖𝑑(𝓧))
2)

1
𝑛𝐷

 (15) 

where 𝑛𝐷 is the number of dimensions of the domain and 𝐹𝑠𝑐𝑎𝑙𝑒 > 1 enforces a precompression of the 

trusses. The desired lengths 𝑳𝑑𝑒𝑠 is given by: 

 

𝑳𝑑𝑒𝑠 = 𝐹𝑠𝑐𝑎𝑙𝑒 (
∑ 𝑳𝑐𝑖

2
𝑖=1…𝑛

∑ 𝒉(𝒑𝑚𝑖𝑑(𝓧))𝑖=1…𝑛

)

1
𝑛𝐷

𝒉(𝒑𝑚𝑖𝑑(𝓧)) 
(16) 

2.2.5. Boundary node control 

When a node reaches the boundary of the domain it is tested to determine whether it should be 

rejected or retained. If the node has moved outside of some tolerance on the boundary, 𝑓𝑑𝛺(𝑥𝑛) > 𝑡𝑜𝑙, 

then that point is rejected. If it lies outside of the domain 0 ≤ 𝑓 ≤ 𝑡𝑜𝑙 but is still within the tolerance 

value, that node is forced back to the boundary along the local gradient direction to the boundary. In 
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this manner, the nodes are maintained on the boundary at the end of each iteration5. Equilibrium is 

obtained between the compressive driving forces in the trusses and the boundary acting as a rigid wall 

pressing the nodes back. 

2.3. Truss equilibrium equations 

As mentioned in §2.2.3 the force equilibrium equation in DistMesh is non-smooth. In order to create 

smoothness in the system, the trusses need to be able to act in tension as well as compression. The 

truss system can, therefore, be viewed as a geometrically non-linear FEM system. 

Discretisation of the weak form of the mixed boundary value problem of geometrically non-linear solids 

results in a system of non-linear nodal residual equations. The residuals are stated as the internal forces 

𝓕𝑖𝑛𝑡 minus the external 𝓕𝑒𝑥𝑡 forces at each node. These residuals can be viewed as the first derivative 

of the larger energy function of the system and therefore represent the required solution to the first-

order necessary condition: 

 𝓡 = 𝓕𝑖𝑛𝑡 −𝓕𝑒𝑥𝑡 = 𝟎 (17) 

The internal forces in the system 𝓕𝑖𝑛𝑡(𝓧) are a function of the nodal coordinates 𝓧.𝓕𝑒𝑥𝑡 is the set of 

scalar external forces. 

2.4. Freeing the boundary nodes 

To obtain sensitivities for the boundary nodes, the nodes on the boundary may not deviate from the 

boundary due to reaction forces. Two options are available to fulfill this requirement: regular fixing to 

the boundary, or permission to move along the boundary using constraint(s). 

Fixing the nodal co-ordinates along the boundary is quite simple in 2D where points can simply be 

placed along an edge at regular intervals. In 3D and higher-order dimensions, however, fixed node 

placement on the boundary presents significant programming challenges, especially where non-linear 

and/or irregular boundaries are present. The boundary problem then becomes an (𝑛 − 1)-dimensional 

problem. 

When only prescribed constraints are present, the system is typically split into the residuals at the free 

𝓡𝑓 and single DOF or prescribed constraints, 𝓡𝑝: 

 𝓡𝑓 = 𝓕𝑓
𝑖𝑛𝑡 −𝓕𝑓

𝑒𝑥𝑡 = 𝟎 

𝓡𝑝 = 𝓕𝑝
𝑖𝑛𝑡 −𝓕𝑝

𝑒𝑥𝑡 − 𝑹𝑝 = 𝟎 
(18) 

where 𝑹𝑝 is the reaction force at the prescribed DOFs. This is the system of non-linear equations that 

needs to be solved to obtain equilibrium in the truss system. 

 
5 This assumes that the value returned by the boundary distance function is the exact shortest distance from the boundary, 
otherwise the boundary is approximated 
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Since the truss system can be treated as a geometrically non-linear FEM problem the tools are already 

available to meet the requirements for movement along the boundary: Contact [41] and MPCs [42]. 

To address the boundary nodes the system of residual equations is partitioned into free 𝓡𝑓, prescribed 

𝓡𝑝 and boundary 𝓡𝑑Ω DOFs. The system of residuals is then given by: 

 𝓡𝑓 = 𝓕𝑓
𝑖𝑛𝑡 −𝓕𝑓

𝑒𝑥𝑡 = 𝟎 (19) 

 𝓡∂Ω = 𝓕∂Ω
𝑖𝑛𝑡 −𝓕∂Ω

𝑒𝑥𝑡 = 𝟎 (20) 

 𝓡𝑝 = 𝓕𝑝
𝑖𝑛𝑡 −𝓕𝑝

𝑒𝑥𝑡 − 𝑹𝑃 = 𝟎 (21) 

   
This system needs to be satisfied with the addition of the domain boundary constraint functions: 

 𝓡𝑐 = 𝒇∂Ω = 𝟎 (22) 

2.5. Classical contact 

Contact is a non-linear boundary condition used in FEA to describe the interaction between two bodies. 

The non-linear nature is due to a boundary constraint that is either active or inactive and the unknown 

and interdependent displacement and force values on the boundary [41]. This requires an iterative 

solution, either explicitly or implicitly, of the problem until equilibrium is found. 

The main disadvantage associated with contact in terms of this work is that the nature of contact 

between bodies is discrete: the constraint is either active or inactive. A small change in displacement 

results in a sudden increase in force from zero to a small reaction value, which in turn results in a force 

profile that is not smooth, hence a non-smooth objective function for solvers. Since it is numerically 

unstable to allow a force on the boundary to change in a piece-wise linear manner, contact boundaries 

are generally implemented using a form of the penalty method or a Lagrangian multiplier in an 

unconstrained optimisation approach [41]. 

Gradient-based root finders require the force profile at the constraint to be smooth and continuous. In 

classical contact, for some small distance away from the boundary, the force needs to be zero; and for 

contact to be stable the force needs to increase accordingly to maintain equilibrium on the boundary 

[41] resulting in a force profile that is non-smooth and continuous.  

Contact methods rely on the penetration of the contacting surfaces to enforce equilibrium. Penetration 

and resulting deviations from the domain boundary are somewhat overcome by using highly 

exponential penalty contact functions. However, for a mesh to be suitable for FEM the domain 

boundary needs to be accurately captured. Furthermore, in accordance with its intended design, 

classical contact only offers compression resistance at the boundary. This implies that the sensitivities 
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of the mesh in compression and tension may respond differently. This could therefore reduce the 

performance of the shape optimisation algorithm.  

Additionally, identification of contacting and non-contacting nodes is required at every iteration. This 

is computationally expensive, and convergence may be slowed by nodes making and breaking contact. 

These are elaborate models that allow for the inclusion of frictional effects and the resolution of 

tangential forces etc. that makes contact an inappropriate selection for obtaining analytical mesh 

sensitivities. 

2.6. Multi-point constraints (MPCs) 

Conventional FEA, with simple boundaries, can have “single-degree-of-freedom constraints” where a 

single degree of freedom (DOF) is subject to a prescribed displacement under conditions where the 

prescribed displacement is aligned with the global coordinate system in which the nodal displacements 

are expressed. Since FEA solves for the displacements, it means that the global stiffness equations, once 

assembled, are partitioned to remove these DOFs from the system. The exception is when they are 

subject to a non-zero displacement; in this case, their contribution is combined with the external forces 

to completely define the conditions for the unprescribed or free DOFs. Reaction forces for all 

constrained degrees of freedom are calculated a posteriori. 

However, realistic engineering problems seldom require boundary conditions that fit so neatly into the 

limitations of the single-degree-of-freedom constraint. Additional constraint formulations are 

therefore required to allow for the representation of complex boundaries. 

Multi-point constraints (MPCs), sometimes called multi-freedom constraints (MFCs) [43] or multi 

degree-of freedom-constraints are a subset of contact methods that allows for the analytical definition 

of relationships between the displacements for various DOFs during FEA. This allows for more complex 

boundary conditions to be modelled, which in turn allows for more accurate analyses to be performed, 

e.g. movement along an arbitrarily oriented plane as opposed to a plane aligned with the global 

coordinate axis. 

MPC relationships are defined by equations that describe the movement of DOFs relative to one 

another. These equations can also take the form of displacement DOFs equated to a prescribed value. 

The MPC relationship is given by: 

 𝒇𝑚𝑝𝑐(𝓧𝑚𝑝𝑐) = 𝟎 (23) 

In all MPC implementations, the stiffness equations are modified or amended to apply these additional 

constraint relationships together with a reaction force. Depending on the MPC’s implementation, the 

modification may: 
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• Reduce the number of stiffness equations to be solved, as with the master-slave elimination 

method (MSEM) 

• Keep the number of equations the same, as with the penalty method 

• Or increase the number of equations, as with the Lagrangian approach. 

For methods where the system of equations is reduced by removing displacement DOFs, the DOFs 

missing from the solution, as well as the constraint reaction forces, are recovered by evaluating the 

MPC relationships in (23). For the other types of implementations, the displacements of all DOFs are 

solved directly. 

2.6.1. Penalty method 

The penalty approach to MPCs does not add additional equations to the system, but rather treats the 

constraint relations as additional elements of stiffness. This method works by adding an element that 

is very stiff compared to the general element stiffnesses. 

When the constraint equations are given as 𝐀𝐮𝑚𝑝𝑐 = 𝐝, the general stiffness matrix takes the following 

form [43]: 

 (𝐊𝑚𝑝𝑐 + 𝐀
𝑇𝐖𝐀)𝐮𝑚𝑝𝑐 = 𝐟𝑚𝑝𝑐 + 𝐀

𝑇𝐖𝐝  (24) 

where 𝐖 is a diagonal matrix of the penalty weights 𝑤𝑖 for each constraint equation. The subscript 𝑚𝑝𝑐 

denotes the modified elements of the stiffness matrix 𝐊 associated with the 𝑚𝑝𝑐 DOFs. 

The penalty method is an aggregation of pros and cons. Except for selecting weight values for the 

constraints, the penalty method is easy to implement due to the simple augmentation of the stiffness 

matrix with additional element stiffnesses. It is unaffected by linear dependence between constraints 

(i.e. repeated constraints) since this merely results in additional stiffness between constraint DOFs. 

However, multiple penalty factors occurring in a single equation could, despite careful selection of 𝐖, 

result in poor matrix conditioning. The resulting system remains positive definite and can, therefore, 

be efficiently solved using a Cholesky 𝐋𝐋𝑇 decomposition [43]. 

The main disadvantage of the penalty method is that the solution is always slightly violated and there 

is difficulty in selecting appropriate penalty weight values 𝐖 that minimise errors without the need for 

considerable experimentation. A value that is too small results in a large violation of the boundary 

condition, whereas a value that exceeds a particular computer’s precision will result in the computer 

regarding the stiffness matrix as exactly singular. A compromise is therefore required to select a value 

of 𝑤𝑖 such that the absolute value of the constraint violation error is approximately equal to that of the 

solution error [43]. 

The calculation of sensitivities may run into numerical problems when using the penalty method if the 

stiffness and penalty weights are orders apart. Furthermore, since the penalty method is inexact and 
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has an error associated with its solution to the boundary function, it is deemed inappropriate and will 

therefore not be considered further for this study. The inability of it to exactly match the domain 

boundary results in a situation where the truss sensitivity may respond differently in compression 

compared to tension. This will especially be the case if numerical sensitivities are used. 

2.6.2. MSEM MPCs 

In the master-slave elimination method (MSEM), the MPC DOFs are separated into two groups: the 

masters and the slaves. The MPC equations are rearranged such that the slave DOF is a function of the 

master DOFs and prescribed displacement. Each MPC equation can only have one slave DOF with a 

resulting unknown reaction force. A slave DOF can, however, be described by multiple constraint 

equations, provided it does not become over-constrained or linearly dependent [43, 44, 45]. 

For the MSEM approach, the global system is modified by recognising that the system can be 

partitioned into free, prescribed, master, and slave DOFs. Since the slave-DOFs are a function of the 

master-DOFs, the DOFs to be solved are reduced to only the free-DOFs and the master-DOFs, hence the 

master-slave “elimination” method. 

To further complicate matters, it is not always obvious what is master and what is slave, and selection 

of the masters vs slaves can have consequences in terms of numerical stability if the constraint 

equations have coefficients whose orders of magnitude differ substantially. This makes the constraint 

more unstable and can cause deterioration in the condition of the resulting system. It is thus preferable 

to select master and slave DOFs such that the magnitude of the coefficients of the master DOFs is 

minimised. More complications arise when geometrically non-linear problems need to be solved since 

the curvature (second-order contribution of a non-linear constraint) will also affect the selection of the 

masters- and slaves-DOFs. 

These facts make the automation of MSEM’s difficult. The implication being that packages that support 

the MSEM typically require the user to specify the slave- and master-DOFs. 

One of the notable features of the MSEM is that the constraint is exactly satisfied at each iteration 

through the calculation of the updated slave positions using constraint equations. This, however, has 

the associated negative of potentially large displacement updates resulting in problems such as 

element inversion. 

The primary benefit of the MSEM lies in the reduction of system size by the number of slave DOFs, 

potentially allowing for improved solution times. However, manipulation of the stiffness matrix 𝐊 may 

result in increased bandwidth due to added terms that may increase the bandwidth, increasing the cost 

and difficulty of allocating memory. Furthermore, the system of equations is positive definite which 

allows for an efficient solution using a Cholesky 𝐋𝐋𝑇 decomposition in a 2D environment, or a 

preconditioned conjugate gradient method in higher dimensions [46, 47]. 
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Since the method analytically satisfies the boundary, it can be used to obtain accurate (semi)-analytical 

mesh sensitivities. This makes it a suitable choice for the control along the boundary surface and success 

will be dependent on ease and robustness of implementation. 

2.6.2.1. MSEM system of equations 

Considering a structure in its initial configuration 𝓧𝑖  that ends in the final configuration 𝓧𝑒 = 𝓧𝑖 + 𝒖, 

where 𝒖 = Δ𝓧, the relationship between the slave and master DOFs is obtained by rearranging (22) 

and has the general form: 

 𝒖𝑠 = 𝒇𝑚𝑠(𝒖𝑚) (25) 

where the displacements 𝒖𝑠 are the slave (dependant) DOFs and 𝒖𝑚 are the master (independent) 

DOFs. 

For non-linear problems, the system of residual equations in (19) to (22) is modified to account for the 

master-slave relationships expressed in (25). This is achieved by partitioning the system boundary 

constrained residual equations 𝓡𝑑Ω into the master 𝓡𝑚 and slave 𝓡𝑠 DOFs. It should be noted that the 

reaction forces 𝑹𝑚 and 𝑹𝑠, for the master and slave DOFs respectively, are also present in the residual 

system of equations: 

 𝓡𝑓 = 𝓕𝑓
𝑖𝑛𝑡 −𝓕𝑓

𝑒𝑥𝑡 = 𝟎 (26) 

 𝓡𝑚 = 𝓕𝑚
𝑖𝑛𝑡 −𝓕𝑚

𝑒𝑥𝑡 − 𝑹𝑚 = 𝟎 (27) 

 𝓡𝑠 = 𝓕𝑠
𝑖𝑛𝑡 −𝓕𝑠

𝑒𝑥𝑡 − 𝑹𝑠 = 𝟎 (28) 

 𝓡𝑝 = 𝓕𝑝
𝑖𝑛𝑡 −𝓕𝑝

𝑒𝑥𝑡 − 𝑹𝑝 = 𝟎 (29) 

   
The system of equations in (26)-(29) cannot be solved as the reaction forces 𝑹𝑝, 𝑹𝑚 and 𝑹𝑠 are 

unknowns. 𝑹𝑝 can however be recovered from (29) once the system is solved. 

Two solution methods in literature are symmetrising of the system to remove the slave DOFs [43] and 

an energy-based method that manipulates the system of equations utilising the fact that the boundary 

performs no work to remove the slave DOFs [45]. In the symmetrizing method, the reaction forces are 

not explicitly identified as part of the system, which implicitly enforces the requirement that zero work 

is done by the boundary. These methods are compared in APPENDIX A. 

This derivation follows that of Kok and Wilke [45]. Since the master-slave relationship is known  

𝒖𝑠 = 𝒇𝑚𝑠(𝒖𝑚), 𝑹𝒔 can be recovered from (28). However, to obtain a solution to the master-DOFs 𝒖𝑚, 

the relationship between 𝑹𝑠 and 𝑹𝑝is required. This relationship is derived by considering that the MPC 
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reaction forces conduct no work on the system. It follows, therefore, that during an increment Δ𝒖𝑚 

and corresponding Δ𝒖𝑠 (as it directly depends on Δ𝒖𝑚), no work may be done by the reaction forces: 

 
Δ𝒖𝑚

𝑇 𝑹𝑚 + Δ𝒖𝑠
𝑇𝑹𝑠 = 0 (30) 

A linear Taylor series expansion of the MPC constraint 𝒖𝑠 = 𝒇𝑚𝑠(𝒖𝑚) in (25) gives: 

 
Δ𝒖𝑠 =

𝑑𝒖𝑠
𝑑𝒖𝑚

Δ𝒖𝑚 = 𝑷Δ𝒖𝑚 (31) 

Note that 𝑷 = 𝑷(𝒖𝑚) = 𝑑𝒖𝑠 𝑑𝒖𝑚⁄  is only a function of 𝒖𝑚. Substituting (31) into (30) gives: 

 Δ𝒖𝑚
𝑇 𝑹𝑚 + (𝑷Δ𝒖𝑚)

𝑇𝑹𝑠 = 0 

Δ𝒖𝑚
𝑇(𝑹𝑚 + 𝑷

𝑇𝑹𝑠) = 0 
(32) 

For the nontrivial solution Δ𝒖𝑚 ≠ 𝟎 then 𝑹𝑚 is related to 𝑹𝑠 as: 

 
𝑹𝑚 = −𝑷𝑇𝑹𝑠 (33) 

Substituting (28) into (33) for 𝑹𝑠 and subsequently into (27) gives the reduced system of equations: 

 𝓡𝑓 = 𝓕𝑓
𝑖𝑛𝑡 −𝓕𝑓

𝑒𝑥𝑡 = 𝟎 (34) 

 𝓡𝑚𝑠 = 𝓕𝑚
𝑖𝑛𝑡 −𝓕𝑚

𝑒𝑥𝑡 +𝑷𝑇(𝓕𝑠
𝑖𝑛𝑡 −𝓕𝑠

𝑒𝑥𝑡)  = 𝟎 (35) 

 𝓡𝑝 = 𝓕𝑝
𝑖𝑛𝑡 −𝓕𝑝

𝑒𝑥𝑡 − 𝑹𝑃 = 𝟎 (36) 

 𝒖𝑠 = 𝒇𝑚𝑠(𝒖𝑚) (37) 

This system of equations can thus be solved since the number of unknowns and equations are now 

equal. Reaction forces 𝑹𝑚 and 𝑹𝑠 can be computed after (27) and (28) have been solved. 

2.6.3. Lagrangian MPCs 

For both linear and non-linear MPCs, the Lagrangian approach increases the size of the system by the 

number of constraint equations in addition to introducing an unknown Lagrange multiplier per 

constraint. This has the negative effect of potentially increased solution times. Furthermore, the 

addition of the constraint equations to the system results in increased bandwidth. It is also an indefinite 

system due to the introduction of zero elements on the diagonal. This was previously a great deterrent 

to the use of the Lagrangian approach. However, evolutions in linear algebra have resulted in improved 

computational efficiency [46, 47]. The system, therefore, cannot be solved using conventional 𝐋𝐔 or 

Cholesky 𝐋𝐋𝑇 decompositions, but rather requires the less efficient 𝐋𝐃𝐋𝑇 decomposition [46]. 
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The most significant advantage offered by the Lagrangian approach is its ease of implementation when 

compared to the MSEM. Since all equations are solved and no DOFs are eliminated, constraints that 

affect the same DOFs are handled without special treatment. This means that a complex selection 

algorithm is not required to determine the location of and specific manner in which a constrained DOF 

is handled. Even though the specification of constraints using the Lagrangian approach is easier than 

for the MSEM, care must still be taken to avoid matrix singularities resulting from linear dependency 

between constraints. 

For non-linear MPCs, the Lagrangian approach only satisfies the constraint equations when the solution 

process is complete. However, this satisfaction of the constraints is exact to within the tolerance 

specified by the user. This relaxation of the constraints means that it is less likely to fail to converge 

when compared with the MSEM approach. It also means that high curvature in a constraint does not 

require special attention as in the MSEM approach. 

Another feature worth noting is that the no-work requirement for MPCs is automatically satisfied using 

the Lagrangian approach. This is compared to the fact that this condition is explicitly imposed in the 

one formulation of the MSEM approach. The Lagrangian approach therefore presents itself as a good 

option to constrain boundary nodes to the boundary surface. The accurate consistent tangent will allow 

for obtaining accurate analytical sensitivities for the system. 

2.6.3.1. Lagrangian system of equations 

The system of residual equations in (19) to (22) are shown again in (38) to (41) for convenience for free 

𝓡𝑓, boundary 𝓡𝑐  and prescribed 𝓡𝑝 DOFs and the MPC constraint equations 𝒇𝑚𝑝𝑐(𝓧𝑐) = 𝟎. 

 𝓡𝑓 = 𝓕𝑓
𝑖𝑛𝑡 −𝓕𝑓

𝑒𝑥𝑡 = 𝟎 (38) 

 𝓡𝑐 = 𝓕𝑐
𝑖𝑛𝑡 −𝓕𝑐

𝑒𝑥𝑡 = 𝟎 (39) 

 𝓡𝑝 = 𝓕𝑝
𝑖𝑛𝑡 −𝓕𝑝

𝑒𝑥𝑡 − 𝑹𝑃 = 𝟎 (40) 

 𝝀𝑇𝒇𝑚𝑝𝑐 = 𝟎 (41) 

Here 𝒇𝑚𝑝𝑐 contributes additional equations to solve and are incorporated using the Lagrange 

multipliers 𝝀 in the form of 𝝀𝑇𝒇𝑚𝑝𝑐 = 𝟎. External forces associated with prescribed displacements are 

equal to zero, i.e. 𝓕𝑝
𝑒𝑥𝑡 =  𝟎 and are handled as reaction forces, 𝑹𝑃. 

The Lagrangian MPC method is well understood [42, 45] and is implemented here as presented by Kok 

and Wilke [45]. For the Lagrangian approach, the system potential energy is augmented with the MPC 

equations in (41). It is known that the potential energy for elastic media is given by the sum of the strain 

energy for the system or equivalently by work conducted by external forces. Consider a structure in its 
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initial configuration 𝓧𝑖  that ends in the final configuration 𝓧𝑒 = 𝓧𝑖 + 𝒖, where 𝒖 = Δ𝓧. The potential 

energy in its discretised and partitioned form is then given by: 

 
Π(𝒖𝑓 , 𝒖𝑐) = ∮ (𝓕𝑓

𝑖𝑛𝑡)
𝑇

𝓧𝑓
𝑒

𝓧𝑓
𝒊

𝑑𝒖𝑓 +∮ (𝓕𝑐
𝑖𝑛𝑡)

𝑇
𝓧𝑐
𝑒

𝓧𝑐
𝑖

𝑑𝒖𝑐

− (𝓕𝑓
𝑒𝑥𝑡)

𝑇
𝒖𝑓 − (𝓕𝑐

𝑒𝑥𝑡)𝑇𝒖𝑐 

(42) 

By augmenting (42) with the MPC equations in (41) the Lagrangian functional is given as: 

 
ℒ (𝒖𝑓 , 𝒖𝑐, 𝜆) = ∮ (𝓕𝑓

𝑖𝑛𝑡)
𝑇

𝓧𝑓
𝑒

𝓧𝑓
𝒊

𝑑𝒖𝑓 +∮ (𝓕𝑐
𝑖𝑛𝑡)

𝑇
𝓧𝑐
𝑒

𝓧𝑐
𝑖

𝑑𝒖𝑐

− (𝓕𝑓
𝑒𝑥𝑡)

𝑇
𝒖𝑓 − (𝓕𝑐

𝑒𝑥𝑡)𝑇𝒖𝑐 + 𝝀(𝒇𝑚𝑝𝑐(𝓧𝑐)) 

(43) 

The components of 𝓡𝑝 are ignored since the displacements are prescribed and the update 

displacement 𝒖𝑝 = 𝟎. It is noted that 𝝀 is related to a reaction force that enforces the constraint when 

compared to (𝓕𝑓
𝑒𝑥𝑡)

𝑇
𝒖𝑓 and (𝓕𝑐

𝑒𝑥𝑡)𝑇𝒖𝑐. Since (𝓕𝑐
𝑒𝑥𝑡)𝑇𝒖𝑐 = 0 the potential energy from (42) is not 

altered, i.e. no additional work is done nor energy dissipated from the system. 

Considering the first-order optimality condition, a stationary point is obtained for (43) as: 

 𝑑ℒ

𝑑𝒖𝑓
 = 𝓕𝑓

𝑖𝑛𝑡 −𝓕𝑓
𝑒𝑥𝑡 = 𝟎 (44) 

 𝑑ℒ

𝑑𝒖𝑐
= 𝓕𝑐

𝑖𝑛𝑡 −𝓕𝑐
𝑒𝑥𝑡 + (

d𝒇𝑚𝑝𝑐(𝓧𝑐)

𝑑𝒖𝑐
)

T

𝛌 = 𝟎 (45) 

 𝑑ℒ

𝑑𝝀
= 𝒇𝑚𝑝𝑐 = 𝟎 (46) 

   
The solution of (44)-(46) gives the equilibrium solution. 

The unknowns that must be solved for are therefore the prescribed reaction forces 𝑹𝑝, nodal 

displacements at the free 𝒖𝑓 and MPC 𝒖𝑐 dofs, and the Lagrange multipliers 𝝀 associated with the 

MPCs. 𝝀 is the total reaction force at the constraint and the components can be recovered from 𝒇𝑚𝑝𝑐 

and 𝝀. 

2.7. Selection of truss system solution method 

The solution to the truss equilibrium is, in fact, the minimisation of a higher-order energy problem Π(𝓧) 

of which the truss equilibrium equations 𝑭(𝓧) are the first-order derivatives. Many optimisation 

techniques are available for obtaining the solution to the minimum of Π(𝓧) [22] that include zero 

order, first order, and second-order methods. 
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There are two ways of obtaining the minimum. The first is to optimise based only on the cost function 

values. This is good for problems where sensitivities are inaccurate or unavailable [22]. The second is 

to optimise the based on the optimality conditions. For this scenario the optimality conditions are: 

 dΠ(𝓧)

𝑑𝓧
= 𝑭(𝓧) = 𝟎 (47) 

 ddΠ(𝓧)

𝑑𝑑𝓧
=
𝑑𝑭(𝓧)

𝑑𝓧
> 𝟎 (48) 

This states that the first-order gradient must be equal to zero and the second-order (curvature) of the 

system must be positive. This is a root-finding problem where the solution to 𝑭(𝓧) = 𝟎 is obtained. 

Many methods are available to find the roots of a set of equations [22]. A simple and effective option 

is Newton’s method, which utilises the sensitivities of the system to converge more quickly to the root. 

This method is generally used in non-linear FEA applications, as it efficiently obtains very accurate 

solutions to the non-linear problem. The Newton method utilizes the consistent tangent 
𝑑𝑭(𝓧)

𝑑𝓧
 of the 

truss equilibrium system 𝑭(𝓧) which in turn makes these sensitivities available to compute the mesh 

sensitivities 
𝑑𝓧

𝑑𝐱
. The Newton method will be used in the development of this mesher. This will be 

discussed in detail in §3.3. 

2.8. Summary 

DistMesh was discussed and shown to be a simple implementation of an unstructured meshing 

program. Given its truss structure implementation, it allows for easy modification to a gradient-based 

mesher that can offer analytical sensitivities of the mesh nodal coordinates 𝓧. 

In §2.5, the applicability of using contact methods to describe the movement of nodes along a boundary 

was considered. The non-linear nature of the boundary force relationship was found to mean that any 

attempt at obtaining sensitivities would require that the system be re-converged for each sensitivity 

evaluated. 

MPC methods were seen to exactly enforce constraints as opposed to approximately as with contact 

and penalty methods. MPC methods, therefore, allow the boundary nodes of the truss mesher to be 

constrained to the boundary analytically, thereby allowing for the boundary to be satisfied exactly. 

Given that the analytical relationship between the MPC nodes and the boundary geometry is known, 

the MPC contributions can be used in obtaining analytical or semi-analytical sensitivities for mesh 

deformation. This will allow the sensitivities of the mesh to include the movement of nodes along the 

boundaries as well as internally. The exact manner in which this is accomplished is discussed further in 

Chapter 5. 
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MSEM and Lagrangian MPCs are shown to be best suited to the intent of this study which is to produce 

sensitivities for further use in gradient-based solvers for shape optimisation. The systems required to 

be solved are for the Lagrangian method is: 

 𝑑ℒ

𝑑𝒖𝑓
 = 𝓕𝑓

𝑖𝑛𝑡 −𝓕𝑓
𝑒𝑥𝑡 = 𝟎  (49) 

 𝑑ℒ

𝑑𝒖𝑐
= 𝓕𝑐

𝑖𝑛𝑡 −𝓕𝑐
𝑒𝑥𝑡 + (

𝑑𝒇𝑚𝑝𝑐(𝒖𝑐)

𝑑𝒖𝑐
)

T

𝛌 = 𝟎 (50) 

 𝑑ℒ

𝑑𝒖𝜆
= 𝒇𝑚𝑝𝑐 = 𝟎 (51) 

   
and for the MSEM: 

 𝓡𝑓 = 𝓕𝑓
𝑖𝑛𝑡 −𝓕𝑓

𝑒𝑥𝑡 = 𝟎 (52) 

 𝓡𝑚𝑠 = 𝓕𝑚
𝑖𝑛𝑡 −𝓕𝑚

𝑒𝑥𝑡 +𝑷𝑇(𝓕𝑠
𝑖𝑛𝑡 −𝓕𝑠

𝑒𝑥𝑡)  = 𝟎 (53) 

 𝓡𝑝 = 𝓕𝑝
𝑖𝑛𝑡 −𝓕𝑝

𝑒𝑥𝑡 − 𝑹𝑃 = 𝟎 (54) 

   
In §2.7 Newton’s method was shown to be a suitable solution method for solving these types of 

problems. It also requires analytical sensitivities for the system in order to obtain convergence. As will 

be discussed in Chapter 5, these sensitivities are required to obtain accurate mesh sensitivities 𝑑𝓧 𝑑𝐱⁄ . 
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CHAPTER 3  

NEWTON TRUSS AND MPC IMPLEMENTATION 

“Engineering is the art of modelling materials we do not wholly understand, into shapes we cannot 

precisely analyse so as to withstand forces we cannot properly assess, in such a way that the public has 

no reason to suspect the extent of our ignorance.”― Dr. AR Dykes 

3.1. Introduction  

In this chapter implementation of Newton’s method to solve the truss equilibrium equations and the 

MPC equilibrium equations will be developed. The truss equilibrium equations in (17) (see §2.3) were 

first solved using the prescribed boundary approach given by (18). 

In §3.2 the truss member force equations are developed and the numerous options for the force 

function discussed. Force function selection is shown in §3.2.2 and the testing is discussed in APPENDIX 

C. The truss equilibrium with the Newton-Raphson method is shown in §3.3, followed in §3.4 by the 

proof of the correct implementation of sensitivities for the Newton-Raphson method by displaying 

quadratic convergence. 

Having proven the correct implementation of the truss formulations the implementation is expanded 

to include the MPC boundary nodes. The Newton-Raphson implementations for the Lagrangian and 

MSEM MPC methods are developed in §3.6 and §3.6.2 respectively. The proof of implementation for 

the two methods is demonstrated in §3.8. Evaluation of methods for solving the two resulting linear 

systems is then discussed in §3.7. 

3.2. Truss member force function 

The general truss force 𝐹𝑡𝑟𝑢𝑠𝑠, or spring force equation acting on a node is given by: 

 
−𝐹𝑖𝑛𝑡 = 𝐹𝑡𝑟𝑢𝑠𝑠 = 𝑘′𝑡𝑟𝑢𝑠𝑠

𝐿𝑑𝑒𝑠 − 𝐿𝑐
𝐿𝑒∗

= 𝑘′𝑡𝑟𝑢𝑠𝑠
Δ𝐿

𝐿𝑑𝑒𝑠
∗   (55) 

where 𝐹𝑖𝑛𝑡 is the systems internal load on the node at the end of the truss, 𝐿𝑑𝑒𝑠 is the desired or free 

equilibrium length of the truss, 𝐿𝑐 is the current length of the truss, 𝑘′𝑡𝑟𝑢𝑠𝑠 is the stiffness coefficient of 

the truss and 𝐿𝑒
∗  is a placeholder length. For real trusses or springs 𝐿𝑒

∗ = 𝐿𝑑𝑒𝑠. This is however not 

complete since this gives only the force of the truss and not the force components for each direction at 

either end. 
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3.2.1.1. Desired length function 

At this point the function for determining the desired truss length is relevant. The desired lengths for 

trusses, 𝐿𝑑𝑒𝑠, can be calculated via a function ℎ(𝑝𝑚𝑖𝑑) requiring the midpoint of the truss, 𝑝𝑚𝑖𝑑, as an 

input. See §2.2.4. This then returns a desired length value to the truss: 

 
𝐿𝑑𝑒𝑠 = ℎ(𝑝𝑚𝑖𝑑) (56) 

It is noted that (56) is the same in principle as given in the original implementation of DistMesh by 

Persson and Strang [33]. For this implementation, it can be given as an absolute desired length, which 

would allow for better user control and removes the discontinuity associated with the scaling factor as 

shown in (15). 

3.2.1.2. Truss system implementation 

Given local nodal coordinates 𝑥1, 𝑥2 and 𝑥3 at node 1 and 𝑥4, 𝑥5 and 𝑥6 at node 2 corresponding to the 

𝑋, 𝑌, and 𝑍 dimensions respectively, the current length 𝐿𝑐 of the truss member is calculated as: 

 𝐿𝑐 = √(Δ𝑋)2 + (Δ𝑌)2 + (ΔZ)2 (57) 

where: ΔX = 𝑥4 − 𝑥1 (58) 

 ΔY = 𝑥5 − 𝑥2 (59) 

 ΔZ = 𝑥6 − 𝑥3 (60) 

The unit vector components 𝑙, 𝑚, 𝑛 of the truss are given respectively for the 𝑋, 𝑌, and 𝑍 dimensions:  

 
𝑙 =

Δ𝑋

𝐿𝑐
=
𝑥4 − 𝑥1
𝐿𝑐

 (61) 

 
𝑚 =

Δ𝑌

𝐿𝑐
=
𝑥5 − 𝑥2
𝐿𝑐

 (62) 

 
𝑛 =

ΔZ

𝐿𝑐
=
𝑥6 − 𝑥3
𝐿𝑐

 (63) 

These unit vector components give the truss’s nodal force contributions as: 

 

𝐹𝑖𝑛𝑡(𝓧) =

{
 
 

 
 
−𝑙
−𝑚
−𝑛
𝑙
𝑚
𝑛 }
 
 

 
 

𝐹𝑡𝑟𝑢𝑠𝑠  (64) 
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where the components of the vector 𝐹𝑖𝑛𝑡 are force components acting on the nodes at either end of 

the truss. The top three components {−𝑙 −𝑚 −𝑛}𝑇 act on node 1 and the bottom three 

{𝑙 𝑚 𝑛}𝑇 act equally and opposite on node 2. This is similar to the standard truss FEM derivation 

method [30]. 

3.2.2. Truss member stiffness formulations 

Since the truss system of the mesh is not required to satisfy some real physical laws, the truss stiffness 

𝑘′𝑡𝑟𝑢𝑠𝑠 from (55) can be formulated as desired; several are considered here to facilitate comparison of 

truss stiffness variations. 

3.2.2.1. Linear delta over the desired length of the truss 

The simplest formulation considers a linear response with unit stiffness 𝑘𝑡𝑟𝑢𝑠𝑠
′ = 1. This is obtained if 

the truss length is allowed to be the desired or undeformed length of the truss, 𝐿𝑒
∗ = 𝐿𝑑𝑒𝑠. This selection 

ensures that the truss strain 𝜖 =
𝐿𝑑𝑒𝑠−𝐿𝑐

𝐿𝑑𝑒𝑠
 has the same magnitude as the truss force and is, therefore, 

the true description for the compressed bar. Since 𝐿𝑑𝑒𝑠 is a known constant, 𝐹𝑡𝑟𝑢𝑠𝑠 only depends on 𝐿𝑐 

in the numerator: 

 
𝐹𝑡𝑟𝑢𝑠𝑠 =

𝐿𝑑𝑒𝑠 − 𝐿𝑐
𝐿𝑑𝑒𝑠

 (65) 

3.2.2.2. Linear delta over the current length of the truss 

Alternatively, 𝐿𝑒
∗  is chosen to be the current length 𝐿𝑐 and 𝑘𝑡𝑟𝑢𝑠𝑠 = 1. The truss force equation becomes 

non-linear due to the function 𝐿𝑐(𝑢) in the denominator. The consequence of this is that the truss strain 

𝜖 =
𝐿𝑑𝑒𝑠−𝐿𝑐

𝐿𝑐
 is no longer the true strain. This is the formulation used in DistMesh. In DistMesh the use of 

the current length in the denominator results in larger forces in compressed trusses. This allows the 

forward-Euler implementation to progress more quickly to a solution when the system has high 

compression. The modified formulation of the force response is then given by: 

 
𝐹𝑡𝑟𝑢𝑠𝑠 =

𝐿𝑑𝑒𝑠 − 𝐿𝑐
𝐿𝑐

 (66) 

3.2.2.3. Exponential over the desired length of the truss 

Large discrepancies in truss length lead to numerical instability and the formation of sliver elements. 

To penalise such large discrepancies, exponentially non-linear response functions were created: 

Selecting 𝑘𝑡𝑟𝑢𝑠𝑠
′ = 𝑒

(𝑆1(
𝐿𝑑𝑒𝑠−𝐿𝑐
𝐿𝑑𝑒𝑠

)
2

)
 and 𝐿𝑒

∗ = 𝐿𝑑𝑒𝑠 as the desired length with 𝑆1 as the exponential scaling 

factor, the force response is given as: 
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As 𝑆1 → 0 the truss stiffness 𝑘′𝑡𝑟𝑢𝑠𝑠 → 1 and the formulation reduces to (65). This is evident in the 

response curves that follow in §3.2.2.5 for various values of 𝑆1. When 𝑆1 < 0 the impact of the 

exponential scaling is to create a softening stiffness in the truss. 

3.2.2.4. Exponential scaled over the current length of the truss 

Selecting 𝑘′𝑡𝑟𝑢𝑠𝑠 = 𝑒
(𝑆1(

𝐿𝑑𝑒𝑠−𝐿𝑐
𝐿𝑐

)
2
)
 and 𝐿𝑒

∗ = 𝐿𝑐 as the current length, the force response is given as: 

3.2.2.5. Comparison of the force response curves for the various functions 

Figure 10 shows the various force response curves given by the formulations discussed previously. 

These are plotted against the compression ratio of the truss 
𝐿𝑐

𝐿𝑑𝑒𝑠
. A value of 

𝐿𝑐

𝐿𝑑𝑒𝑠
< 1 represents a 

compressed truss, 
𝐿𝑐

𝐿𝑑𝑒𝑠
= 1 indicates equilibrium and 

𝐿𝑐

𝐿𝑑𝑒𝑠
> 1 signifies tension. The deviation from 1 

represents the deviation from the desired length. In Figure 10, all of the stiffness curves for the various 

truss stiffness formulae (65) through (68) are plotted. Several values for the exponential scaling factor 

𝑆1 are used. 

 

Figure 10 Truss force response for various truss stiffness formulae 

 

𝐹𝑡𝑟𝑢𝑠𝑠 =
𝐿𝑑𝑒𝑠 − 𝐿𝑐
𝐿𝑑𝑒𝑠

𝑒
(𝑆1(

𝐿𝑑𝑒𝑠−𝐿𝑐
𝐿𝑑𝑒𝑠

)
2
)
 (67) 

 

𝐹𝑡𝑟𝑢𝑠𝑠 =
𝐿𝑑𝑒𝑠 − 𝐿𝑐

𝐿𝑐
𝑒
(𝑆1(

𝐿𝑑𝑒𝑠−𝐿𝑐
𝐿𝑐

)
2
)
 (68) 

compression tension 
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It is evident from Figure 10 that trusses with the desired length 𝐿𝑑𝑒𝑠 as the denominator, (65) and (67), 

have force responses that are symmetric in compression and tension. In contrast, the formulations with 

the current length 𝐿𝑐 as the denominator, (66) and (68), have different force responses under 

compression to those under tension for a given deviation from the desired length. This results in the 

trusses being more difficult to compress than extend. 

For all exponential formulations where 𝑆1 > 0, the force response increases exponentially with greater 

deviations from the desired length resulting in an increased force magnitude compared to their linear 

counterparts. When 𝑆1 < 0 the force response is less affected by increasing deviations from the desired 

length and begins to depart from expected behaviour. In particular, as shown by the curve for 𝑆1 =

−10, the force response initially increases, as expected, with increasing deviation from the desired 

length. There is however a point beyond which further compression or tensioning results in a decreased 

force response. This results in a condition where the maximum force the truss can support is limited, 

beyond which increasing deviations from the desired length will result in snap-through. In the curve for 

𝑆1 = −10 the point of maximum force corresponds to values of 𝐿𝑐 𝐿𝑑𝑒𝑠⁄ ≈ 0.78 and 1.22. 

3.2.3. Selection of force function 

The simplest force function given in §3.2.2.1 is selected. This performed overall the best of the functions 

investigated. A full discussion of the comparison is given in APPENDIX C. The function on average 

produced the best convergence properties and gave comparably the best element qualities (as defined 

in §1.4.3). It is repeated here for clarity: 

 
𝐹𝑡𝑟𝑢𝑠𝑠 =

𝐿𝑑𝑒𝑠 − 𝐿𝑐
𝐿𝑑𝑒𝑠

 (69) 

3.3. Newton truss implementation 

The truss system will be solved by implementing Newton’s method, which is known to be quadratically 

convergent. This method requires the calculation of the consistent tangent matrix comprising the truss 

sensitivities. The availability of these sensitivities is important for obtaining the mesh sensitivities 

𝑑𝓧 𝑑𝐱⁄  required for gradient-based shape optimisation. This will be discussed in detail in Chapter 5. 

From the truss equilibrium system given in §2.3 (17) the internal forces 𝓕𝑖𝑛𝑡 for the truss system are 

given by 𝑭(𝓧) from (64). Since the truss members are not subject to any external forces 𝓕𝑒𝑥𝑡, the 

system in (18) reduces to: 

 𝓡 = 𝓕𝑖𝑛𝑡 = 𝑭(𝓧) = 𝟎 (70) 

This can then be solved iteratively using Newton’s method [22]. To determine the update for the nodal 

coordinate, 𝓧, required to reduce the residuals to zero, the Newton step is given by: 
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𝓧𝑘+1 = 𝓧𝑘 − (

𝑑𝑭

𝑑𝓧
)
𝑘

−1

 𝑭𝑘 

𝓧𝑘+1 = 𝓧𝑘 + 𝒖𝑘  

(71) 

where 
𝑑𝑭

𝑑𝓧
 and 𝑭𝑘 must be computed at every iteration. The system update 𝒖 = Δ𝓧 can therefore be 

solved as: 

 
(
𝑑𝑭

𝑑𝓧
)
𝑘
𝒖𝑘 = −𝑭𝑘 (72) 

The Newton iteration number subscript 𝑘 will be dropped going forward to simplify reading. The 

consistent tangent 
𝑑𝑭

𝑑𝓧
 is assembled for the system as: 

 

𝑑𝑭

𝑑𝓧
=

[
 
 
 
 
 
 
 
𝑑𝐹1
𝑑𝒳1

𝑑𝐹1
𝑑𝒳2

…
𝑑𝐹1
𝑑𝒳𝑛

𝑑𝐹2
𝑑𝒳1

𝑑𝐹2
𝑑𝒳2

…
𝑑𝐹2
𝑑𝒳𝑛

⋮ ⋮ ⋱ ⋮
𝑑𝐹𝑛
𝑑𝒳1

𝑑𝐹1
𝑑𝒳2

…
𝑑𝐹𝑛
𝑑𝒳𝑛]

 
 
 
 
 
 
 

 (73) 

 

3.3.1. Solution to internal nodes 

Since certain DOFs are prescribed the system can be partitioned and solved as in (18): 

 𝓡𝑓 = 𝑭𝑓
𝑖𝑛𝑡 = 𝟎 

𝓡𝑝 = 𝑭𝑝
𝑖𝑛𝑡 − 𝑹𝑝 = 𝟎 

(74) 

where the subscript 𝑓 denotes free DOFs and subscript 𝑝 denotes prescribed DOFs. 𝑹𝑝 is the reaction 

force associated with the prescribed displacements as discussed in §2.4. The Newton update step (72) 

is partitioned as: 

 

[
 
 
 
 
𝑑𝑭𝒇

𝑑𝓧𝒇

𝑑𝑭𝒇

𝑑𝓧𝒑

𝑑𝑭𝒑

𝑑𝓧𝒇

𝑑𝑭𝒑

𝑑𝓧𝒑]
 
 
 
 

{
𝒖𝒇
𝒖𝒑
} = − {

𝓡𝑓
𝓡𝑝
} (75) 

Since the prescribed DOFs are known, the free DOF updates are solved as: 

 𝑑𝑭𝑓

𝑑𝓧𝑓
𝒖𝑓 = −𝓡𝑓 −

𝑑𝑭𝑓

𝑑𝓧𝑝
𝒖𝑝 (76) 
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Since there is no movement at this stage, prescribed displacement updates 𝑢𝑝 are equal to zero, i.e. 

𝒖𝒑 = 𝟎, the system can be solved as: 

 𝑑𝑭𝑓

𝑑𝓧𝑓
𝒖𝑓 = −𝓡𝑓 (77) 

where the components  𝓡 𝑓 and 
𝑑𝑭𝑓

𝑑𝓧𝑓
 are first computed, followed by solution of 𝒖𝑓 and the nodal 

coordinates 𝓧 are updated. Every Newton iteration requires these computations to be completed due 

to the changing nodal coordinates. The reaction forces, 𝑹𝑝, can be recovered from (74), if required, 

after solution of the system. This is not compulsory and is hence ignored in this implementation. 

3.4. Internal node convergence investigation 

3.4.1. 2D internal node investigation 

An investigation was conducted to determine the effectiveness of the various truss formulations 

detailed in §3.2.2. and the Newton’s method implementation. For the linear system, the built-in 

MATLAB 2018b “backslash” function was used to obtain a solution. The following initial conditions were 

created: 

A circular distance function with unit radius was used to determine the distance of the point under 

consideration to the boundary: 

 
𝑓dΩ (𝒑𝑖) = ‖𝒑𝑖‖2 − 1 (78) 

For 2D the coordinates of the 𝑖𝑡ℎ point are extracted from the mesh nodal coordinate vector 𝓧 at the 

positions denoted in the subscripts as follows: 

 
𝒑𝒊 = {𝒳𝑖×2−1, 𝒳𝑖×2} (79) 

Similarly, for 3D the coordinates of the point coordinates are given by: 

 𝒑𝒊 = {𝒳𝑖×3−2, 𝒳𝑖×3−1, 𝒳𝑖×3} (80) 

The initial mesh was seeded using equilateral triangles with the initial uniform edge length size, 𝐿0: 

 𝐿0 = 0.05 (81) 

Here, the initial seeding length 𝐿0 should not be confused with the desired truss length 𝐿𝑑𝑒𝑠. 

As shown in Figure 11, all nodes located outside of a tolerance of −0.7𝐿0 interior to the boundary of 

the circle were removed and the boundary was seeded using fixed nodes. This forced the trusses to 

remain inside of the boundary. Nodes were placed along the circumference with a spacing equal to 𝐿0 

as shown by the * symbols in Figure 11. 
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Figure 11 Initial seed mesh for truss convergence study in 2D 

Having defined the initial seed mesh shown in Figure 11, the equilibrium for each of the considered 

truss formulations is solved. Several scaling factors for the deviation from desired truss length were 

analysed to allow for a good comparison between the formulations. The results of the study are 

discussed in §3.5 and see APPENDIX C for the full investigation. 

3.4.2. 3D internal node investigation 

To solve the linear system, the built-in MATLAB 2018b “backslash6” function was used to obtain a 

solution. This investigation was performed retrospectively once a high-quality surface mesh was 

obtained using the MPC implementation as depicted in Figure 12. These resulting surface nodes were 

then used to create the prescribed boundary nodes. An initial mesh was then created that was able to 

converge for both methods without the need for retriangulation. The desired length of 𝐿𝑑𝑒𝑠 = 0.2 was 

used for the study and the internal domain was seeded with an initial length, 𝐿0 = 0.2. 

 
6 The “backslash” function in MATLAB is a general solver for linear systems of the form 𝐴𝑥 = 𝑏 or 𝐴𝑥 = 𝐵 for 𝑥. The solver 
evaluates the system 𝐴 for its various properties, positive definiteness, rank, condition, etc. Based on these results it selects 
suitable methods for solving the system. The “backslash” function will solve least squares solutions for under or over 
determined systems. 
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Figure 12 Initial seed mesh for truss convergence study in 3D 

3.4.3. Verifying quadratic convergence of truss implementation 

Demonstration of quadratic convergence is essential since it proves the correct implementation of the 

consistent tangent. Any errors in the consistent tangent will carry through and result in unacceptable 

errors in the sensitivities. 

From Table 1 it is clear that both the 2D and 3D implementations of Newton’s method converge 

quadratically. This is demonstrated by subsequent iterations of the norm of the update squaring 

approximately as the sequence converges 
‖𝒖𝑓‖𝑘

‖𝒖𝑓‖𝑘−1
2 . A value between 0 and 1 shows the correct 

implementation of the method for the system of equations. At this point the consistent tangent is exact 

and since the boundary nodes are prescribed, the exact analytical sensitivities can be obtained for the 

internal mesh deformation [7]. 

Table 1 Convergence error norm results for Newton implementations for 2D and 3D 

Iteration 
2D 

‖𝒖𝒇‖ 

2D Convergence  

‖𝒖𝒇‖𝒌
‖𝒖𝒇‖𝒌−𝟏

𝟐
⁄   

3D 

‖𝒖𝒇‖ 

3D Convergence 

‖𝒖𝒇‖𝒌
‖𝒖𝒇‖𝒌−𝟏

𝟐
⁄   

1 4.59 × 10−1 - 6.28 × 10−1 - 

2 1.06 × 10−1 0.50 2.35 × 10−2 0.06 

3 4.85 × 10−3 0.43 1.25 × 10−3 2.26 

4 3.87 × 10−5 1.65 1.28 × 10−6 0.82 

5 7.74 × 10−10 0.52 8.98 × 10−13 0.55 
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3.5. Snap-through due to highly compressed systems  

During the development process, high compression systems showed instability and were prone to 

nodes snapping through. Figure 13 shows the effects of the highly compressed system. In (a), the effect 

of slight compression is shown where only one node had snapped through; this could generally be 

resolved through remeshing. In (b), a highly compressed system where the trusses were compressed 

to 77% of their free lengths demonstrates the tendency towards severe distortion in one Newton step. 

It is for this reason that update step size control methods for the system were investigated and are 

discussed in APPENDIX F.  

 

(a) 

 

(b) 

Figure 13 Examples of problems associated with highly compressed systems 

(a) Snap through of a single node due to high compression in the element (b) General mesh snap-through due to 

unstable update with average truss compressions of 23% 

Limiting the Newton update step size based on the largest single update was found to be able to control 

the system with reasonable effectiveness. The method employed by Persson and Strang in DistMesh 

[33] as described in §2.2.4 (15) proved to be insensitive to poor length scaling as expected. Additionally, 

this method benefitted from being able to propel the mesh to the boundary and corners. Its only 

drawback was that it introduced discrete length changes, even for uniform length systems, which 

impacts the Newton’s method convergence rate. Line searching to minimise the energy of the system 

was found to be ineffective due to the presence of many local minima, introduced by progressively 

more snapped through nodes. 

Since the method employed in DistMesh results in discrete changes to edge lengths, it encumbers the 

performance of Newton’s method. This may be mitigated by permitting the allocation of desired 

lengths only after a predefined number of iterations. For this implementation, the Newton update step 
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size limiting method was used to retain the quadratic convergence properties. For the MSEM, this 

became a function of the master update 𝒖𝑚. This is discussed further in §4.3.3. 

3.6. MPC Implementations for rolling boundary nodes 

Having proved the correct Newton’s method implementation for the internal nodes, the limitation of 

fixed boundary nodes is removed. This is accomplished through the use of the Lagrangian and MSEM 

MPC methods discussed in §2.6. These methods allow the nodes to move along but not away from the 

boundary. 

3.6.1. Implementation of Lagrangian MPC method 

The Lagrangian MPC method is implemented according to the approach described by Kok et al. [45]. 

The set of residual equations for the implicit solution is given in §2.6.3.1 (44)-(46). Since all residuals, 

𝓡, can be viewed as a function of the truss internal forces 𝑭𝑖𝑛𝑡(𝓧(𝒖)) and 
𝑑𝓧

𝑑𝒖
= 1, this system can be 

solved for the 𝑘th iteration using Newton’s method in the form of: 

 
[
 
 
 
 
 
 
 
𝑑𝑭𝑓

𝑖𝑛𝑡

𝑑𝓧𝑓

𝑑𝑭𝑓
𝑖𝑛𝑡

𝑑𝓧𝑐
𝟎

𝑑𝑭∂Ω
𝑖𝑛𝑡

𝑑𝓧𝑓

𝑑𝑭𝑐
𝑖𝑛𝑡

𝑑𝓧𝑐
+
𝑑2𝒇𝑚𝑝𝑐

𝑑𝓧𝑐
2 𝝀

𝑑𝒇𝑚𝑝𝑐

𝑑𝓧𝑐

𝑇

𝟎
𝑑𝒇𝑚𝑝𝑐

𝑑𝓧∂Ω
𝟎

]
 
 
 
 
 
 
 

𝑘

{
𝒖𝑓
𝒖𝑐
Δ𝝀
}

𝑘

= −

{
 
 

 
 

𝓡𝑓

𝓡𝑐 + (
𝑑𝒇𝑚𝑝𝑐(𝓧𝑐)

𝑑𝓧𝑐
)

𝑇

𝝀

𝒇𝑚𝑝𝑐(𝓧) }
 
 

 
 

𝑘

 

(82) 

where 𝓧𝑐 are the DOFs associated with the MPC constraints. For each iteration, the consistent tangent 

and force functions need to be computed followed by the solution to {𝒖𝑓 𝒖𝑐 Δ𝝀}. The system in 

(82) is solved repeatedly until no improvement of the nodal coordinates 𝓧 (to within some tolerance) 

can be made. This is done in the same manner discussed in §3.3 (71) and (72). 

Since the truss system is self-contained no external forces exist, 𝓕𝑒𝑥𝑡 = 0, therefore: 

 𝓡𝑓 = 𝓕𝑓
𝑖𝑛𝑡 = 𝑭𝑓

𝑖𝑛𝑡 (83) 

 
𝓡𝑐 = 𝓕𝑐

𝑖𝑛𝑡 = 𝑭𝒄
𝑖𝑛𝑡 (84) 

Or, in the simplified form where 𝓧′ = {𝓧𝑓 𝓧dΩ 𝝀}𝑇 and 𝒖′ = {𝒖𝑓 , 𝒖c, Δ𝝀} : 

 
𝑑2ℒ(𝓧′)

𝑑𝓧′2
𝑢′ = −

𝑑ℒ(𝓧′)

𝑑𝓧′
 (85) 
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This system is solved iteratively until no meaningful change in any of 𝓧𝑓, 𝓧𝑐 and 𝝀 is obtained. In this 

derivation the second-order contribution of the MPCs, 
𝑑2𝓡c

𝑚𝑝𝑐

𝑑𝓧c
2 𝝀, is introduced into the system. This is 

required to obtain the exact consistent tangent which is required for quadratic convergence using the 

Newton method. The resulting consistent tangent matrix is symmetric and is made indefinite due to 

the zero values present on the diagonal. 

3.6.2. Implementation of the MSEM MPC method 

The MSEM is implemented using the approach discussed in §2.6.2.1 following that of Kok et al. [45]. 

The constraint DOFs 𝓧𝑐 are now partitioned into the master 𝓧𝑚 and slave 𝓧𝑠 DOFs. The set of residual 

equations in (34) - (37) can be solved using Newton’s Method as follows:  

 

[

𝑑𝑭𝑓

𝑑𝓧𝑓

𝑑𝑭𝑓

𝑑𝓧𝒎

𝑑𝑭𝑓

𝑑𝓧𝒔

𝑲̃𝑚𝑓 𝑲̃𝑚𝑚 𝑲̃𝑚𝑠

] {

𝒖𝑓
𝒖𝑚
𝑷𝑻𝒖𝑚

} = − {
𝓡𝑓
𝓡𝑚𝑠

}

= {
𝓕𝑚
𝑖𝑛𝑡 −𝓕𝑚

𝑒𝑥𝑡

𝓕𝑚
𝑖𝑛𝑡 −𝓕𝑚

𝑒𝑥𝑡 + 𝑷𝑇(𝓕𝑠
𝑖𝑛𝑡 −𝓕𝑠

𝑒𝑥𝑡)
} 

(86) 

where: 

 𝑲̃𝑚𝑓 =
𝑑𝑭𝒎
𝑑𝓧𝑓

+𝑷𝑇
𝑑𝑭𝒔
𝑑𝓧𝑓

 (87) 

 𝑲̃𝑚𝑚 =
𝑑𝑭𝒎
𝑑𝓧𝑚

+
𝑑(𝑷𝑇𝑭𝑠)

𝑑𝓧𝑚
 (88) 

 𝑲̃𝑚𝑠 =
𝑑𝑭𝑚
𝑑𝓧𝒔

+ 𝑷𝑇
𝑑𝑭𝒔
𝑑𝓧𝑠

 (89) 

All parts of the system in (86) are computed and the system is solved for each Newton step as in §3.3 

(71) and (72). Since the system is self-contained, no external forces exist, 𝓕𝑒𝑥𝑡 = 𝟎, therefore: 

 𝓡𝑓 = 𝓕𝑓
𝑖𝑛𝑡 −𝓕𝑓

𝑒𝑥𝑡 = 𝑭𝑓
𝑖𝑛𝑡 (90) 

 𝓡𝑚𝑠 = 𝓕𝑚
𝑖𝑛𝑡 −𝓕𝑚

𝑒𝑥𝑡 + 𝑷𝑇(𝓕𝑠
𝑖𝑛𝑡 − 𝓕𝑠

𝑒𝑥𝑡)  = 𝑭𝑚
𝑖𝑛𝑡 +𝑷𝑇𝑭𝑠

𝑖𝑛𝑡 (91) 

The term 
𝑑(𝑷𝑇𝑭𝑠)

𝑑𝓧𝑚
 is a second-order derivative since 𝑷 = 𝑷(Δ𝓧𝒎) =  

𝑑Δ𝓧𝑠

𝑑Δ𝓧𝑚
= 𝒇𝑚𝑠

′ (Δ𝓧𝒎) of the MSEM 

MPC equation in (25). This is expanded as 
𝑑(𝑷𝑇𝑭𝑠)

𝑑𝓧𝑚
=

𝑑𝑷𝑇

𝑑𝓧𝑚
𝑭𝑠 + 𝑷

𝑇 𝑑𝑭𝑠

𝑑𝓧𝑚
. 

Grouping the terms then gives the system: 
 

[
𝑲𝑓𝑓 𝑲𝑓𝑚
𝑲𝑚𝑓 𝑲𝑚𝑚

] {
𝒖𝒇
𝒖𝒎
} = − {

𝑭𝑓
𝑭𝑚𝑠
′ } = − {

𝑭𝑓

𝑭𝑚
𝑖𝑛𝑡 + 𝑷𝑇𝑭𝑠

𝑖𝑛𝑡} 
(92) 

where: 
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𝑲𝑓𝑓 =

𝑑𝑭𝑓

𝑑𝓧𝑓
 

𝑲𝑓𝑚 =
𝑑𝑭𝑓

𝑑𝓧𝒎
+
𝑑𝑭𝑓

𝑑𝓧𝒔
𝑷 

𝑲𝑚𝑓 = 𝑲𝑓𝑚
𝑇 =

𝑑𝑭𝒎
𝑑𝓧𝑓

+ 𝑷𝑇
𝑑𝑭𝒔
𝑑𝓧𝑓

 

𝑲𝑚𝑚 =
𝑑𝑭𝒎
𝑑𝓧𝑚

+
𝑑𝑷𝑇

𝑑𝓧𝑚
𝑭𝑠 + 𝑷

𝑇
𝑑𝑭𝑠
𝑑𝓧𝑚

+
𝑑𝑭𝑚
𝑑𝓧𝒔

𝑷 + 𝑷𝑇
𝑑𝑭𝒔
𝑑𝓧𝑠

𝑷 

(93) 

The slave deformations are then recovered from the MPC equations: 

  𝒖𝑠 = 𝒇𝑚𝑠(𝒖𝑚) (94) 

This derivation of the MSEM method includes the second-order consistent tangent contribution 
𝑑𝑷𝑇

𝑑𝓧𝑚
𝑭𝑠 

in the term 𝑲𝑚𝑚required to make the consistent tangent exact. As discussed previously, the exact 

consistent tangent is required for quadratic convergence of the system under conditions involving non-

linear MPC constraints. The consistent tangent is symmetric and has the potential to be positive 

definite. It will be shown in §4.3.4 that the inclusion of the second order term 
𝑑𝑷𝑇

𝑑𝓧𝑚
𝑭𝑠 can render the 

linear system indefinite due to certain master and slave selections. 

3.7. Selection of linear system solution methods 

Solver selection is dependent on the problem being solved. In the context of PDE problems, the 

essential rule is that a sparse direct method can be a good solver for a problem on a two-dimensional 

spatial domain, but is generally computationally infeasible for a three-dimensional problem [48]. The 

bandwidth (the largest distance of a non-zero value from the matrix diagonal) of the linear system is 

generally considerably narrower for 2D FEM problems when compared to 3D FEM. The bandwidth 

affects the “fill-in” associated with system decomposition methods [47]. Reordering schemes such as 

Minimum Degree [49] and Cuthill-Mckee [50] reduce the bandwidth of the linear system thereby 

reducing the fill-in of the decomposed system. This significantly improves the computational efficiency 

of sparse direct solvers [47]. Reordering schemes perform well on 2D FEM linear systems, resulting in 

a narrow bandwidth thereby making sparse direct solvers feasible for 2D FEM problems of very large 

sizes. 3D FEM linear systems cannot be reduced to as narrow-a-bandwidth, and therefore suffer from 

significant fill-in during decomposition of the system. Cuthill-McKee reordering was used to reorder the 

linear systems before solution using the sparse direct solvers. 

The Lagrangian MPC method creates a symmetric indefinite system of linear equations [45]. For direct 

solvers of an indefinite matrix, the 𝐋𝐃𝐋𝑇 and modified Cholesky solvers are good choices [46, 47, 51]. 
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Literature indicates that Krylov subspace methods, specifically MINRES, are the preferred choice for 

large sparse symmetric indefinite saddle point systems [48]. The specific nature of the Lagrangian MPC 

system is that it is a saddle point system of the form [48, 52]: 

 [𝑨 𝑩𝑇

𝑩 𝟎
] {
𝒗
𝒘
} = {

𝒔
𝒕
} (95) 

For solving these types of problems, Benzi et al. [52] gave extensive coverage of various methods that 

improve solution times. One of the methods discussed is an augmentation method of the form: 

 [𝑨 + 𝑩𝑇𝑾𝑩 𝑩𝑇

𝑩 𝟎
] {
𝒗
𝒘
} = {𝒔 + 𝑩

𝑇𝑾𝒕
𝒕

} (96) 

where 𝑾 = 𝛾𝑰 and the choice of 𝛾 =
||𝑨||

2

2

||𝑩||
2

2 has been shown to generally perform well in practice [52].  

For the symmetric positive definite matrices expected from the MSEM, Cholesky 𝐋𝐋𝑇 factorisation 

method is recommended for direct solvers [46, 47]. For iterative solvers, the preconditioned conjugate 

gradient is identified as the preferred method [48]. As will be discussed in Chapter 4, the system is not 

always positive definite. To this end, the GMRES solver with a sparse incomplete 𝐋̃𝐔̃ factorisation 

preconditioner will be used for the iterative solver and an 𝐋𝐃𝐋𝑇 decomposition for the direct solver 

[48]. 

The direct solvers that decompose the system, allow for efficient solving of multiple right-hand-sides 

(RHS) [7]. This makes them an excellent choice for obtaining the mesh sensitivities 
𝑑𝓧

𝑑𝐱
, since each 

parameter 𝐱 requires a solution to its associated RHS. The iterative solvers can also be utilised in this 

manner in so-called block Krylov space methods [53]. There are, however, inherent difficulties that 

render the implementation of block Krylov space methods and their application challenging: these 

include the possible linear dependence of the various residuals; the much larger memory requirements 

(versus iterative solvers for single RHSs); and the drastic increase of the size of certain small (“scalar”) 

auxiliary problems that must be solved in each step [53]. 

The systems were solved using the 𝐋𝐃𝐋𝑇 direct solver for both Lagrangian and MSEM MPC 

implementations. For the iterative solver, GMRES with incomplete 𝐋𝐔 preconditioner was used to solve 

the resulting MSEM linear system, and MINRES with an augmented system was used to solve the 

resulting Lagrangian system. The selection of these solvers was discussed in §3.7. 

The solvers were implemented using built-in MATLAB functions. For the direct solvers the Cuthill-

McKee reordering was implemented using symrcm, and the 𝐋𝐃𝐋𝑇decomposition using the ldl 

function followed by the use of mldivide to solve the back substitutions. For the iterative solvers, 

the functions minres and gmres built into MATLAB were used. The student license of MATLAB 

R2018b Update 2 was used [54]. 
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3.8. Verifying quadratic convergence of MPCs with second-order terms 

3.8.1. Experimental setup 

The MPC methods can be considered to be correctly implemented if quadratic convergence is obtained 

during the solution of the systems. To test this a circle and sphere with unit radius are used for 2D and 

3D respectively. This is done since the first and second-order derivatives for the boundary are simple 

to obtain. This ensures the function derivatives were correctly implemented. 

An initial mesh is created using the mapping discussed as part of the initial mesh setup in §3.4, with the 

exception that no nodes were seeded along the boundary. Instead, the external nodes on the initial 

mesh were selected as MPC nodes and displaced to the boundary along the shortest distance. Figure 

14 (a) shows the projection lines for the MPC points. This is seen clearly in the magnified section. This 

“boundary initialisation” step is essential to improve the stability of the MSEM. Without this, the MSEM 

is not robust. This is discussed later in §4.3. The initial mesh for the 3D system inside of its boundary 

sphere is shown in (b). 

Since the MPC boundary condition permits free movement of the nodes along the boundary, rigid body 

motion of the truss structure can occur and needs to be eliminated. Whilst the minimum norm solution 

can be obtained for the linear system, this can influence the convergence rate of the Newton’s method 

implementation. For this study, two nodes were fixed on the boundary for 2D, and three for 3D, to 

prevent rigid body motion given that the MPC boundary nodes were not constrained along the surface.  

  
(a) (b) 

Figure 14 Initial mesh for verification of quadratic convergence for MPC implementation 

(a) 2D circle radius 1 (b) 3D sphere radius 1 

Nodes coming too close to one another were allowed to merge if the edge length 𝐿𝑐 between those 

nodes is shorter than 2/3 of the desired edge length. The intent of this is to improve system stability 
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and avoid the negative consequences associated with excessive truss compression (see APPENDIX C 

and APPENDIX F). The systems were converged to a tolerance of ‖𝓡‖2 < 10−6. 

3.8.2. Verification of MPC implementations 

In Table 2, Table 3, and Figure 15 the convergence results for the implementation of the two MPC 

methods are shown. Table 2 shows the quadratic convergence for the 2D implementations. This is 

demonstrated by subsequent iterations of the norm of the update squaring approximately as the 

sequence converges 
‖𝒖𝒇‖𝒌

‖𝒖𝒇‖𝒌−𝟏
𝟐 . A value between 0 and 1 indicates that quadratic convergence was 

achieved on a given step. The results for the 3D Lagrangian and MSEM implementations are shown in 

Table 3. This shows that the Newton method can obtain quadratic convergence for both 2D and 3D, 

indicating that the MPC methods have been correctly implemented with their second order 

contributions. 

Table 2 Residual norm and ratio results for MPC implementations on the 2D unit circle 

MPC Method 

Iteration (k) 

Lagrangian (2D) 

‖𝒖𝒇‖ 

Lagrangian (2D) 

‖𝒖𝒇‖𝒌
‖𝒖𝒇‖𝒌−𝟏

𝟐
⁄  

MSEM (2D) 

‖𝒖𝒇‖ 

MSEM (2D) 

‖𝒖𝒇‖𝒌
‖𝒖𝒇‖𝒌−𝟏

𝟐
⁄  

1 4.59 × 10−1 - 5.59 × 10−1 - 

2 1.06 × 10−1 0.50 6.28 × 10−1 2.01 

3 4.85 × 10−3 0.43 2.35 × 10−2 0.06 

4 3.87 × 10−5 1.65 1.25 × 10−3 2.26 

5 7.74 × 10−10 0.52 1.28 × 10−6 0.82 

6 - - 8.98 × 10−13 0.55 

Table 3 Residual norm and ratio results for MPC implementations on the 3D unit sphere 

MPC Method 

Iteration (k) 

Lagrangian (3D) 

‖𝒖𝒇‖ 

Lagrangian (3D) 

‖𝒖𝒇‖𝒌
‖𝒖𝒇‖𝒌−𝟏

𝟐
⁄  

MSEM (3D) 

‖𝒖𝒇‖ 

MSEM (3D) 

‖𝒖𝒇‖𝒌
‖𝒖𝒇‖𝒌−𝟏

𝟐
⁄  

1 1.18 - 1.34 - 

2 5.21 × 10−1 0.37 5.51 × 10−1 0.31 

3 1.71 × 10−1 0.63 2.58 × 10−1 0.85 

4 3.33 × 10−3 0.11 5.86 × 10−2 0.88 

5 2.76 × 10−6 0.25 2.28 × 10−3 0.66 

6 1.37 × 10−11 1.80 6.48 × 10−6 1.24 

7 - - 7.35 × 10−11 1.75 
 

The quadratic shape of the curve in Figure 15 provides a clear visual indication of quadratic 

convergence. The Lagrangian implementation is seen in (a) to require one less iteration than the MSEM 

for the 2D implementation, while both methods are seen to be equivalent in (b) for the 3D 

implementation. The black dots along the residual norm plots show the iterations where the system 
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was remeshed. Since initial surface uniformity was not good for the 3D implementation, several 

remeshes were required to obtain a truss system that met the criteria. 

 

(a) 

 

(b) 

Figure 15 Norm updates for MPC method implementations 

(a) Convergence for 2D implementation on the unit circle (b) Convergence for 3D implementation on the unit sphere 

3.9. Non-uniform mesh update 

During the shape optimisation process, analyses are run repeatedly to evaluate the updated shape. If 

large errors in analysis results are anticipated, part of the domain may benefit from mesh refinement. 

Mesh refinement without the need for a complete remesh of the domain is achieved by either insertion 

of nodes, which is discrete, or mesh adaption, which maintains the smooth behaviour of the objective 

function. This was discussed in Chapter 1. 

To meet the new refinement requirements of the optimisation process, the truss mesh can be updated 

between optimisation iterations without remeshing the entire domain. Figure 16 (a) shows the uniform 

mesh used for the 𝑘𝑡ℎ optimisation step and (b) shows the same mesh updated with adaptive edge 

sizing for use in the (𝑘 + 1)𝑡ℎ optimisation step. It is important to note that allowing the boundary 

nodes to move along the boundary enables large movements in the mesh, whilst maintaining overall 

mesh quality. 

Tracer lines are given on the 𝑘𝑡ℎ mesh in (a) and are shown mapped to the (𝑘 + 1)𝑡ℎ mesh in (b). The 

undeformed tracer lines are shown as dotted lines in (b) to allow for direct comparison and show how 

the mesh has moved to accommodate the mesher’s refinement requirement. 
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(a) 

 

(b) 

Figure 16 Mesh updated from a uniform to non-uniform sizing 

(a) Uniform mesh at 𝒌th optimisation step (b) Updated non-uniform mesh at (𝒌 + 𝟏)th optimisation step 

3.10. Summary 

Several truss stiffness functions were discussed in §3.2, with 𝐹𝑡𝑟𝑢𝑠𝑠 =
𝐿𝑑𝑒𝑠−𝐿𝑐

𝐿𝑑𝑒𝑠
 being selected as the 

preferred implementation. This is discussed in detail in APPENDIX C.  

In §3.3 the Newton implementation for the truss system was derived with the Lagrangian and MSEM 

implementations following in §3.6 and §3.6.2 respectively. The implementation of Newton’s method 

for the trusses were shown to be correct in §3.4.3, and for the Lagrangian and MSEM implementations 

in §3.8. Both of the MPC methods obtained the expected quadratic convergence associated with 

Newton’s method, hence verifying that the sensitivities are correct. Verification of the correct 

sensitivities was important since they feature in the chain of sensitivities required for shape 

optimisation as discussed in §1.3.2. It is noted briefly that the MSEM required one iteration more for 

both the 2D and 3D implementations on systems designed for easy convergence. 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 3  NEWTON TRUSS AND MPC IMPLEMENTATION 
 

 

 

University of Pretoria   55 

Department of Mechanical and Aeronautical Engineering 

During development, high compression systems were seen to exhibit instability. Such systems tended 

node snap-through, resulting in inverted elements. In extreme cases, the entire mesh could be distorted 

beyond recovery. The effect of nodes snapping through was discussed in §3.5 with details of the 

investigation provided in APPENDIX F. Whilst the method employed by Persson and Strang showed the 

greatest insensitivity to system compression, it negated the quadratic convergence behaviour of the 

Newton solver. Consequently, the Newton update step size limit approach was selected for this mesher 

since it maintains quadratic convergence. 

For each iteration of the Newton method, the consistent tangent and residual need to be calculated 

and the resulting linear system solved. In §3.7 linear system solvers were discussed. 𝐋𝐃𝐋𝑇 was shown 

to be a good selection for the Lagrangian MPC system. For the MSEM 𝐋𝐃𝐋𝑇 was selected over 𝐋𝐋𝑇 due 

to the possibility of the system becoming indefinite due to high curvature (see §4.3.4). For the iterative 

solvers, an augmented MINRES method was selected for the Lagrangian implementation and a GMRES 

with sparse incomplete 𝐋̃𝐔̃ factorisation preconditioning is selected for the MSEM.
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CHAPTER 4  

MSEM AND LAGRANGIAN COMPARISON 

“Only two things are infinite, the universe and human stupidity, and I'm not sure about the former.” ―  

Albert Einstein 

4.1. Introduction 

In this chapter comparison between the Lagrangian and MSEM approaches will be discussed. In §4.2 

the challenges specific to the MSEM are demonstrated and discussed. This will discuss the occurrence 

of complex roots and the sensitivity to high boundary curvature. 

In §4.3 several methods used to improve the performance of the MSEM are investigated and shown. 

These methods were designed to combat the issues discussed in §4.2. 

In §4.4 the characteristics of the two MPC methods associated with scaling the problem in terms of the 

number of nodes is discussed. This is done in the context of this implementation for both the 

percentage nodes MPC present and the number of nodes in the system. 

4.2. Discussion of challenges associated with the MSEM 

Early investigations into the MSEM revealed that obtaining convergence would be difficult under 

certain circumstances because the constraint is required to be satisfied exactly at every Newton 

iteration. The challenges involved in obtaining convergence were investigated using an ellipsoid, 

thereby taking advantage of the simplified mathematics. 

The Lagrange multiplier method was seen to be robust with the only challenges limited to high 

compressions and tension values, discussed in §3.5. This section, therefore, focuses exclusively on the 

basic challenges associated with the MSEM. 

The ellipse and ellipsoid boundary definitions were chosen since they offer the simplest domain 

boundaries to resolve. They have smooth and continuous surfaces for nodes to move along and are 

easily manipulated to create high curvature regions. Furthermore, they force an interdependence 

between dimensions such that a single DOF does not have a solution in the real domain for all selections 

of the remaining DOFs. The nature of the convex shape is such that it removes complexities associated 

with concave domains for comparison between the methods. 

4.2.1. Departure from the boundary and the creation of complex roots 

The choice of an ellipse or ellipsoidal domain boundary meant that certain circumstances led to the 

calculation of an update of the master DOFs that prevented direct recovery of the associated slave DOF. 
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The presence of a complex component in the computed slave DOF implies that no solution exists that 

satisfies the master-slave relationship for the master updates. This is illustrated as follows. 

Consider a given boundary node 𝑋 = {1.9199 ,   0.0560} on an ellipse of the form: 

 

(
𝑥1
2
)
2

+ (
𝑥2
0.2
)
2

− 1 = 0 (97) 

For this investigation, the 𝑥1 component was designated as the master. The update to the master DOF 

was given as Δ𝑢1 = 0.1. It follows that the slave DOF update would then be given by: 

 

Δ𝑢2 = 0.2√1 − (
𝑋1 +  Δ𝑢1

2
)
2

− 𝑋2 (98) 

When the value of Δ𝑢1 is too large, it makes the term (
𝑋1+ Δ𝑢1

2
)
2

> 1 resulting in the value under the 

root sign becoming negative. This introduces the complex component to the slave update Δ𝑢2 due to 

the node leaving the constraint surface. When solved, the update to the slave DOF can be seen to 

contain an imaginary component:  

 Δ𝑢2 = −0.0560 − (0.0283)𝑖 (99) 

The presence of the complex component, therefore, indicates that the master update step size Δ𝑢1 is 

too large and some control must be implemented. It is evident that only the real component of the 

solution may be used in the update since there is no complex dimension present. The consequence of 

this is shown in Figure 17 where the master and slave update components are shown together with the 

total update step size. 
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Figure 17 MSEM update resulting in complex roots at high curvature boundary in 2D 

Such a scenario was found to be manageable and preferable to a solver exception error which 

prevented any further solution. The program was therefore modified to ignore the imaginary 

components of any update and is further modified to cut back the step size, see §4.3.3. 

4.2.2. Large MSEM updates resulting in points leaving the domain 

Only interior elements were kept where their centroids 𝑝𝑐𝑒𝑛𝑡 were inside of 10% of the local desired 

length from the boundary, 𝑝𝑐𝑒𝑛𝑡 < −0.1 × ℎ(𝑝𝑐𝑒𝑛𝑡). Any resulting nodes that were no longer part of 

the mesh were removed from the solution. The MSEM was seen to be prone to this “loss of nodes” due 

to updates that ignored imaginary components as described in §4.2.1. The presence of the complex 

update component indicates the nodes have left the constraint surface. This was common for regions 

of high curvature with accompanying increased truss energy which resulted in large master DOF 

updates followed by a complex root solution to the Slave DOF. The resulting node location was seen to 

be far outside of the domain as illustrated by Figure 18(b) and the resulting mesh in (d). The effect of 

the first update on the system employing Lagrangian MPCs (Figure 18 (a) and (c)) is also shown to 

highlight the extent of the challenge faced in using the MSEM compared to the Lagrangian 

implementation which allows for updates to be made that deviate from the constraint surface.  

This is illustrated for the first update in a 3D system in Figure 18 for an ellipsoid of dimensions 

𝑋 × 𝑌 × 𝑍 = 0.5 × 2 × 2. The initial mesh condition for both solutions was identical.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 18 3D MPC updates for Lagrangian and MSEM on high curvature 

(a) Update vectors for Lagrangian method on high curvature (b) Update vectors for MSEM on high curvature (c) mesh 

after update Lagrangian (d) Mesh after update MSEM 

4.3. Enhancements required for MSEM stability 

Two methods were considered to help stabilise the performance of the MSEM. The first was to snap 

the MPC nodes to the boundary and the second was to reduce the systems step size based on the 

largest master update size relative to the desired local edge size. This was done as detailed in APPENDIX 

F §F.1.1. 

4.3.1. Snapping points to the boundary using the shortest distance 

The first step taken to improve the solution of the MSEM involved snapping the points identified as 

being on the exterior of the initialised mesh, or near the constraint surface (within half of the local 
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desired length), to the constraint surface. This was done along the shortest distance to the boundary 

for each node. Figure 19 (a) shows the shortest distances to the boundary for the initial mesh and Figure 

19 (b) shows the new nodal positions after the remesh. It is evident that this simple step significantly 

improves the surface mesh quality and initial domain representation: 

 
(a) 

 
(b) 

Figure 19 Boundary snapping initial mesh on the sphere 

(a) Showing shortest distance vectors to boundary (b) Mesh after with “snapped” boundary node locations 

4.3.2. Results for improvement of MSEM using boundary snap update 

The effectiveness of the boundary snap was demonstrated through its implementation in the mesh 

generator keeping all other conditions the same as detailed in §3.8.1. Figure 20 shows the effect of 

snapping points to the boundary. For performance reasons, the snapping was done on mesh initialising 

for both methods and after each remesh step for the MSEM. Figure 20 shows the effect of boundary 

snapping on (a) a unit sphere and (b) a 0.5 × 2 × 2 ellipsoid. The residuals were converged to 1−6. 

 

(a) 

 

(b) 
Figure 20 Norm updates for 3D MPC methods including boundary snap 

(a) Unit sphere (b) 𝟎. 𝟓 × 𝟐 × 𝟐 ellipsoid 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 4  MSEM AND LAGRANGIAN COMPARISON 
 

 

 

University of Pretoria   61 

Department of Mechanical and Aeronautical Engineering 

The cost of the iteration in which the surface nodes are snapped to the boundary is 𝑂(𝑛𝑚𝑝𝑐) (assuming 

it is directly computable) compared to the cost for a Newton iteration which is 𝑂(𝑛2). The MSEM 

benefited significantly from the boundary snap step. For a unit sphere, the MSEM was able to converge 

in 10 iterations with the boundary snapping compared to 15 without. 

For the 0.5 × 2 × 2 ellipsoid, the MSEM initially did not converge, however, the inclusion of boundary 

snapping allowed the MSEM to obtain convergence in the same number of iterations as the Lagrangian 

method implemented without the boundary snap. 

On the sphere that has constant curvature, the Lagrangian method took an additional step due to the 

introduction of boundary snapping. On the 0.5 × 2 × 2 ellipsoid, significant improvement was 

demonstrated by reducing iterations from 11 down to 7. This equates to a 36% time saving for the 

system. It is evident that due to its simplicity and computational benefits, boundary snapping is included 

in the meshing program irrespective of the approach. 

4.3.3. Update step size limit 

Further stabilisation of the 3D implementation of the MSEM was accomplished by limiting the largest 

update step size for the master DOFs to the value 𝛼𝑐ℎ𝑎𝑛𝑔𝑒. This follows the same principle as discussed 

in detail in APPENDIX F §F.1.1 for the global update. All master DOF update values are evaluated against 

𝛼𝑐ℎ𝑎𝑛𝑔𝑒. If max(𝒖𝑚) > 𝛼𝑐ℎ𝑎𝑛𝑔𝑒 then all DOF updates 𝒖 are scaled down until max(𝒖𝑚) = 𝛼𝑐ℎ𝑎𝑛𝑔𝑒. In 

the event max(𝒖𝑚) < 𝛼𝑐ℎ𝑎𝑛𝑔𝑒, the full Newton step update 𝒖 will be used. 

In the initial consideration of the update step size limit, all DOFs were considered. For the 

implementation of the step size limit with respect to the MSEM, the updates on only the free and 

master DOFs are tested against the limit. The Slave DOFs are then calculated from the master positions. 

This ensures the points remain on the boundary. 

From Figure 21 (a) it is evident that the MPC update step size limit is easily implemented and is very 

effective in controlling the MSEM updates. The limiter value 𝛼𝑐ℎ𝑎𝑛𝑔𝑒 should be related to the curvature, 

however, the simplified approach was able to achieve the desired result. The additional complexities 

associated with using the curvature to determine local 𝛼𝑐ℎ𝑎𝑛𝑔𝑒 values were therefore avoided. In Figure 

21 (b), an update limit, 𝛼𝑐ℎ𝑎𝑛𝑔𝑒, equal to half of the local element edge size can be seen to limit the 

largest master updates, thereby scaling the entire system update. The initial truss system used was the 

same as that in §4.2.2. Comparing Figure 18 (b) and Figure 21 (b) shows the improvement in 

implementation using this method. 
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(a) 

 

(b) 

Figure 21 Update step size limit at high curvature boundary for MSEM 

(a) 2D ellipse (b) 3D ellipsoid 

For this study, no update limiter 𝛼𝑐ℎ𝑎𝑛𝑔𝑒 was used with the Lagrangian method, since no effect was 

demonstrable for these problems. The effect of the step size limit on the stability of the 3D system 

employing the MSEM was investigated using three-step size limiting factors 𝛼𝑐ℎ𝑎𝑛𝑔𝑒 = 1, 5 and 20. The 

snapping of surface nodes to the boundary was only used for the initial mesh. In Figure 22 (a) for a 

1 × 2 × 2 ellipsoid, it is clear a significant convergence improvement was shown in using the update 

step size limit. It must, however, be noted that the effect in improving convergence, was not universally 

effective and higher curvature problems had varying results. The update limiter value 𝛼𝑐ℎ𝑎𝑛𝑔𝑒 should 

be related to the local curvature for each constrained node, however, given the general effectiveness 

of the fixed size 𝛼𝑐ℎ𝑎𝑛𝑔𝑒, the curvature was not used. Figure 22 (b) shows the results of a 0.5 × 2 × 2 

ellipsoid. It is clear here that the step size limit had limited effect. 

 

(a) 

 

(b) 

Figure 22 Convergence for 3D MPC MSEM update control for various 𝜶𝒄𝒉𝒂𝒏𝒈𝒆 

(a) 𝟏 × 𝟐 × 𝟐 ellipsoid (b) 𝟎. 𝟓 × 𝟐 × 𝟐 ellipsoid 
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The MSEM derived significant benefit from the stability offered by the update step size limiter 𝛼𝑐ℎ𝑎𝑛𝑔𝑒 

and it was therefore included in the implementation of the MSEM with a value of 𝛼𝑐ℎ𝑎𝑛𝑔𝑒 = 1. This 

was in addition to the use of boundary snapping after remeshing. Since this problem did not exist for 

the Lagrangian method, the limiter was implemented with a value of 𝛼 = 10 to stop severe distortions 

of the mesh due to high compression in the trusses (see §3.5). 

4.3.4. Second-order contribution difficulties 

Theoretically, the MSEM retains positive definiteness of the system. It was found however, that slave 

selection could impact the results associated with the curvature. The contributions to the matrix 

diagonal for the first order and second-order components are shown in Figure 23 (a). It is clear that the 

first-order components of the diagonal are all positive, whilst the second-order oscillates around zero. 

This was based on the selection of the slave DOF minimising the first-order components of the system. 

As seen in Figure 23 (b), the system is largely unaffected by the inclusion of the second-order term. 

There are however a few notable spikes below zero indicating negative diagonal terms. Negative 

diagonal terms mean that the matrix is no longer positive definite which necessitates an 𝐋𝐃𝐋T 

decomposition as opposed to a Cholesky 𝐋𝐋T decomposition for the direct solver. 

 

(a) 

 

(b) 

Figure 23 System diagonal contribution of MSEM 

(a) First and second-order contributions (b) Complete system 

To demonstrate the effect of the negative values on the system diagonal, the 2 x 0.5 x 0.5 ellipsoid 

problem is used. Following the approach outlined in [43], the slave DOF is selected to minimise the 

magnitude of the first order contributions to the matrix 𝑷. The impact of slave DOF selection is 

demonstrated by using node number 3 444 with associated global DOFs 10 330, 10 331 and 10 332; and 

corresponding local DOFs 1, 2, and 3 (corresponding to the x, y and z displacements of node 3444). This 

node is selected since it presented a large negative second-order diagonal element for the consistent 

tangent as shown in Figure 23(a) and (b). This consistent tangent is selected as it caused the failure of 

the 𝐋𝐋𝑇 solver during investigation into the performance of the MSEM on the 2 × 0.5 × 0.5 ellipsoid. 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 4  MSEM AND LAGRANGIAN COMPARISON 
 

 

 

University of Pretoria   64 

Department of Mechanical and Aeronautical Engineering 

In Table 4 it is clear that choosing the slave local DOF as 3 yields the lowest average magnitude for the 

first order contributions 
𝑑𝑢𝑠

𝑑𝑢𝑚1
 and 

𝑑𝑢𝑠

𝑑𝑢𝑚2
 to the matrix 𝑷. However, looking at the associated diagonal 

components 
𝑑2𝑢𝑠

𝑑𝑢𝑚1𝑑𝑢𝑚1
 and 

𝑑2𝑢𝑠

𝑑𝑢𝑚2𝑑𝑢𝑚2
, it is seen they are both large negative values at this node. 

Choosing the slave local DOF as either 1 or 2 would have produced positive diagonal elements. It is 

noted that selecting the local DOF 1 as the slave would have resulted in the lowest magnitude 

contributions of 𝑷 while maintaining positive diagonal elements. It is therefore extremely important to 

select slave DOFs based on the curvature component for each node. This, however, requires the 

computation of all first and second-order derivatives for all DOFs selected as slaves, increasing the time 

costs for the implementation. Alternatively, having computed the first-order derivatives the diagonal 

second-order contributions 
𝑑2𝑢𝑠

𝑑𝑢𝑚1𝑑𝑢𝑚1
 and 

𝑑2𝑢𝑠

𝑑𝑢𝑚2𝑑𝑢𝑚2
 can be computed for each slave selection. This 

would be done from the slave selection with the lowest magnitude first-order contribution to the 

largest. 

It is also important to note that this is the result for a single DOF constraint, having two constraints 

per node would further complicate selection. 

Table 4 Example of effect of slave selection on curvature contributions 

Slave DOF (local) 1 2 3 

Master DOF1 (𝒎𝟏) 2 1 1 

Master DOF2 (𝒎𝟐) 3 3 2 

𝒅𝒔
𝒅𝒎𝟏
⁄  -1.27E-01 -7.85E+00 9.78E-01 

𝒅𝒔
𝒅𝒎𝟐
⁄  1.02E+00 8.03E+00 1.24E-01 

𝒅𝟐𝒖𝒔
𝒅𝒖𝒎𝟏

𝒅𝒖𝒎𝟏

⁄  (Diagonal 1) 9.90E+02 4.80E+05 -9.35E+02 

𝒅𝟐𝒖𝒔
𝒅𝒖𝒎𝟏

𝒅𝒖𝒎𝟐

⁄  -1.30E+00 -4.96E+03 -1.19E+00 

𝒅𝟐𝒖𝒔
𝒅𝒖𝒎𝟐

𝒅𝒖𝒎𝟏

⁄  -1.30E+00 -4.96E+03 -1.19E+00 

𝒅𝟐𝒖𝒔
𝒅𝒖𝒎𝟐

𝒅𝒖𝒎𝟐

⁄  (Diagonal 2) 1.00E+03 4.80E+05 -9.26E+02 

 

4.4. Comparison of Lagrange vs MSEM for scaled problems 

As discussed in §3.7 the solution of the linear systems time contributions resulting from 2D FEM 

problems is somewhat inconsequential [48]. The scaling studies discussed here will be limited to 3D 

problems which are the primary focus of this study. 
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For this study, three systems of varying sizes are compared. These are designated small medium and 

large. The large system of 70848 DOFs was limited by the memory requirements associated with this 

implementation. This was to ensure that no inefficient memory caching on the disk occurred. The 

systems without the MPC contributions had the baseline properties as shown in Table 5. 

For only the consistent tangent of a non-sparse matrix and 70848 DOFs results in 

70 848×70 848×8bytes=40.1GB memory requirements. This is the worst-case scenario since there are 

many zeros values present. Since this was a sparse implementation the size is reduced to the number 

of non-zeros present in the decomposed matrices 𝐋. This, however, varies based on system bandwidth, 

reordering scheme, and solving method. The study is conducted using an Intel Core i5 6600K @4.1GHz 

machine with 16GB DDR4-2400MHz RAM, running under Windows 10™ operating system. It must be 

noted that there was a 7.2GB memory overhead for the operating system, MATLAB, and ancillary 

programs. The memory requirements from this implementation peaked at 6.5GB in total. 

In Table 5 the small, medium, and large system properties are shown. This table shows the values 

without the inclusion of any MPC contributions since the MPCs modify the consistent tangent. The 

number of non-zeros shown in Table 5 are for the consistent tangent only. 

Table 5 Consistent tangent properties for scaling comparison 

 No. Nodes No. DOF No. truss 
members 

No. Non-zeros 
(excl. MPC) 

Small 4 110 12 330 28 148 389 293 

Medium 15 835 47 505 109 691 1 491 226 

Large 23 616 70 848 163 876 2 215 552 

 

The systems were then solved with 0, 20, 40, 60, 80, and 100% of nodes designated as MPC nodes. The 

100% MPC constraint case would be associated with thin features (one element through the thickness) 

or surfaces.  

In this set-up, the 100% MPC nodes problem was associated with a system that has very high curvature 

and the maximum curvature of the system was also dependant on the number of nodes in the system. 

This was due to constraining nodes to nested spheres in order to obtain the desired MPC %. 

The same solvers as outlined in §3.7 were used and all times represented are taken as the average of 

ten runs. It must be noted that the results that follow are representative of this implementation and 

are used for discussion purposes primarily in the context of this mesher. 

4.4.1. Comparison of system DOFs and non-zeros 

Figure 24 shows how the number of non-zeros increases as more nodes are constrained. It is clear that 

the MSEM benefits from the elimination of the slave DOFs. For a 3D system, the number of DOFs 

requiring solving can be reduced by 33% since each MPC constrained node eliminates one of the three 
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DOFs associated with it. The number of non-zeros reduces proportionally. For 2D this benefit is 

increased to 50%. Further irrespective of whether one or two constraint equations are applied to a 

given node, one DOF will be removed from the problem. 

For the Lagrangian approach, each constraint equation contributes an additional DOF requiring 

solution. This results in an increase of 33% DOFs to the system size for a single constraint applied to 

100% of nodes. Until this point only a single constraint equation per node has been considered, i.e. the 

node has been constrained to a single surface. In the event a node is constrained to two surfaces, two 

constraint equations may be present. If this is the case for all nodes the number of DOFs increases by 

66%. However, these two constraints can potentially be replaced by a single constraint to a line at the 

intersection of the two surfaces, if the user codes the constraints efficiently. The application of three 

constraints to a node can more efficiently be handled as a fixed node (in 3D). 

Whilst there is the potential for a large increase in the number of DOFs for a given problem, the number 

of non-zeros in the system only increases by ≈6.5% for 100% of nodes with one constraint and ≈13% 

for two constraints applied to each node. As mentioned, efficient programming from a user can result 

in 1 constraint equation per node. This is what will be represented here. 

  

Figure 24 Normalised number of non-zeros comparison 

Figure 25 shows the locations of non-zero values within the consistent tangent matrix. This is shown 

for the medium system and 80% of nodes constrained using MPCs. Figure 25 (a) shows the original truss 

system without the application of MPC constraints, (b) shows the system with the Lagrangian 

augmentation, and (c) shows the reduced system with the MSEM reduction. The system without MPCs 

(a) initially has 47 505 DOFs. The Lagrangian method adds an additional 12 668 DOFs to the system to 

a total of 60 173 DOFs and the MSEM reduces the system size by 12 668 to 34 837 DOFs.  
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Whilst the Lagrangian MPC implementation adds off-diagonal terms thereby increasing the bandwidth 

of the system (b) the MSEM reduces the system, and the bandwidth remains essentially unchanged (c). 

This is the case in this implementation since a nod’s slave DOF is only constrained to the other DOFs of 

the same node. All of the associated matrix locations are already populated from the truss equations, 

which means no additional non-zeros are added to the system of equations. In both cases, reordering 

schemes can be employed to improve bandwidth. 

 

(a) 

 

(b) 

 
(c) 

Figure 25 Matrix fill patterns for 80% MPC constraint 

(a) Original system (b) Lagrangian MPC (c) MSEM MPC 

For this truss system, it is clear that the MSEM MPC method significantly reduces the number of non-

zeros and solve DOFs proportionally to the number of constrained nodes. The Lagrangian method 

increased the number of non-zeros by three times the number of constraint equations and the number 

of solve DOFs by the number of constraint equations. The MSEM would therefore present an advantage 

over the Lagrangian method, based on the storage and solution requirement of the linear system. 

4.4.2. Time associated with truss assembly and MPC DOFs and non-zeros 

In order to assemble the system to be solved, the truss member contributions, as well as the MPC 

contributions, need to be computed and assembled. For this implementation assembly of the linear 

system was done using vectors and the vectors assembled into a sparse matrix in a single step. This was 

the recommended approach for efficient sparse assembly implementations in MATLAB 2018b [54]. 

Figure 26 shows the time to compute and assemble the consistent tangent for the small medium and 

large systems for both MPCs and truss components. Notably, the MSEM MPC assembly contributes two 

to three times the amount of assembly time compared with the Lagrangian method. The comparatively 

large times associated with the MSEM are due to the more complex derivatives that need to be 

computed (see APPENDIX B) and the sparse matrix calculations that need to be performed (see §3.6.2 

(92) and (93)) to obtain the final system of linear equations. For the 100% constrained scenario, the 

MSEM requires nearly the same amount of time to calculate and assemble the MPCs to the system as 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 4  MSEM AND LAGRANGIAN COMPARISON 
 

 

 

University of Pretoria   68 

Department of Mechanical and Aeronautical Engineering 

it did to assemble the entire truss system. This is comparing the 23616 constraint equations assembled 

to the 163876 trusses assembled. 

 

Figure 26 Truss and MPC computation and assembly times for small, medium and large systems 

For the 40% MPC nodes case, the Lagrangian method contributes 12% additional time to assemble the 

matrix, and the MSEM contributes 33% additional time. Therefore, the MSEM requires 2.8 times more 

time than the Lagrangian MPCs. The total system MSEM assembly takes 18% longer to be calculated 

than the Lagrangian system. These times are shown in Table 6. 

Table 6 Large system matrix assembly times 40% MPC constraint  

 Lagrangian MSEM Ratio MSEM to 
Lagrangian 

Truss assembly (s) 1.52 1.52 1 
MPC contribution (s) 0.22 0.50 2.8 
Total time for assembly (s) 1.71 2.03 1.2 
MPC times as % of truss 
assembly times 12% 33%  

 

For the 100% constrained case, the MSEM time increased to 88% of the truss assembly time compared 

to 24% for the Lagrangian time. The MSEM assembly time is 3.7 times that of the Lagrangian MPCs 

assembly time. These specific values are shown in Table 7. 
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Table 7 Large system matrix assembly times 100% MPC constraint  

 Lagrangian MSEM Ratio MSEM to 
Lagrangian 

Truss assembly (s) 1.52 1.52 1 

MPC contribution (s) 0.44 1.35 3.7 

Total time for assembly (s) 1.99 2.99 1.5 

MPC times as % of truss 
assembly times 

24% 89%  

4.4.3. Computational cost of iterative vs direct solvers for the linear system 

solution 

The resulting linear system was solved using direct and iterative solvers. This section shows the times 

associated with the solution to the linear system for a single Newton step. The selection of the direct 

and iterative solvers is discussed in §3.7. 

Figure 27 shows the times associated with the solution of the linear system using the direct solvers. It 

is clear that the reduced number of DOFs associated with the MSEM has a significant benefit on the 

solution time for a given Newton step. The Lagrangian method computational cost increased by 7 times 

(at 100% constrained nodes) compared to the MSEM. This is due to the matrix fill in associated with the 

off-diagonal terms during the matrix decomposition. A more suitable reordering scheme may be 

employed to improve this. 

 
Figure 27 Single Newton step solution times of linear system using direct solvers 
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Figure 28 shows the times when the system assembly contributions, as discussed in §4.4.2, are included 

as part of the time for solving the system for a single Newton step. The impact at 100% constrained 

nodes for the large system, is reduced from a ratio of 7 times (for solution time only in Figure 27) to 4.2 

times (assembly plus linear solution) for the Lagrangian vs MSEM times. 

 

Figure 28 Single Newton step time for linear system assembly and solution with direct solvers 

The iterative solver implementation used the completely assembled sparse matrix and was not 

implemented matrix-free for this study and a convergence tolerance of 10−8 was used. The iterative 

solvers presented significant savings for both MSEM and Lagrangian implementations. The method 

selected for the solution to the Lagrangian MPC saddle-point system was affected significantly by the 

introduction of the constraint equations. This was due to the introduction of quite high curvature 

contributions (compared to the truss contributions) into the problem. 

This resulted in a 3.1 times increased cost for the 100% MPC constraint case for the large system for 

the Lagrangian implementation. The medium system fared better with a 1.9 times impact for the 100% 

constraint case. The MSEM implementation of GMRES for the linear system solve performed better 

with less of a time impact associated with the increasing percentage of MPC constrained nodes. This 

indicates that the solution method for the Lagrangian saddle point system would likely benefit from an 

improved preconditioning selection. These comparisons are shown in Figure 29. It is interesting to note 

that the Medium system solved in very similar times for all %MPC nodes. 
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Figure 29 Single Newton step solution times of linear system using iterative solvers 

However, incorporating the once-off system assembly time, shown in Figure 26, decreases the total 

time cost of the Lagrangian MPC implementation to approximately 2 times that of the MSEM for the 

100% MPC constraint scenario on the large system. This is demonstrated in Figure 30. 

 
Figure 30 Single Newton step time for linear system assembly and solution with iterative solvers  
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In Figure 31 the ratios of iterative to direct solver times 
𝑡𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑣𝑒

𝑡𝑑𝑖𝑟𝑒𝑐𝑡
 are shown. These ratios are for the 

times associated with the complete computation and assembly, with solution of the resulting linear 

system included. From Figure 31 it is clear to see that out of a total number of 36 systems solved, only 

5 solved faster using the direct solver. Of these, 4 were associated with the small system of equations, 

whilst 1 was for the large system of equations employing the MSEM. 

On average the iterative solvers exhibited better performance than the direct solvers, with the 

Lagrangian implementation benefitting the most. For the small systems, the solution times were 

sufficiently low on the direct solvers that inconsistencies were observed on relative performance.  

For the MSEM, as more DOFs were constrained, so the ratios of solution times increased. It was noted 

that the solution time ratio for the 100% MPC constraint on the large system for the MSEM solved 

faster with the direct versus the iterative solver. This was investigated since the ratios for the 0% to 

60% MPC constraint scenarios for the large system correspond to those of the medium system. This 

was found to be due to the introduction of several large curvature components into the system 

resulting in difficulty for the iterative solver to converge to a solution. 

The Lagrangian method with iterative solvers showed significant improvements in terms of a 40% time 

saving for the medium-sized system and approximately 55% time saving for the large system with 

higher percentages of constrained nodes. For the Lagrangian solutions, the % time saving increased 

with the system size for MPC constrained scenarios.  

 
Figure 31 Ratio of times 𝒕𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒗𝒆/𝒕𝒅𝒊𝒓𝒆𝒄𝒕 for a single Newton step linear system assembly and solution  
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Given that the iterative solvers demonstrated superior performance, Figure 32 shows the ratios for the 

total time associated with the Lagrangian iterative implementation solution times versus the 

corresponding MSEM solution times. For 0% MPCs, the Lagrangian iterative solver performed slightly 

better than the MSEM implementation. In general, the MSEM benefitted from the reduced system size 

and a reduced number of non-zeros associated with the system. From the graph in Figure 32, it is easy 

to see that the general time implication of using the Lagrangian method was between 1.8-2.5 times for 

the large % MPC nodes. 

The 60% constraint system demonstrates the largest time ratio on average. This is likely due to the 

significant decrease in system size favouring the MSEM and the fact that curvature is not sufficiently 

high so as to significantly reduce convergence in the MSEM solver. 

The average time ratios between the Lagrangian and MSEM were 1.77, 2.18, and 1.87 for the small, 

medium, and large linear systems respectively. The average for the medium and large systems 

combined was 2.03. For the higher %MPC problems, 40% through to 100%, the average time ratio was 

2.33. In conclusion, the MSEM exhibits superior performance per Newton iteration compared to the 

Lagrangian method. 

 

Figure 32 Ratio of times 𝒕𝑳𝒂𝒏𝒈𝒓𝒂𝒏𝒈𝒊𝒂𝒏 ⁄ 𝒕𝑴𝑺𝑬𝑴 for a single Newton step linear system assembly and solution  
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4.4.4. Total times for truss equilibrium 

It is clear from §4.3.3 that the MSEM presented significant challenges in obtaining truss equilibrium. 

This resulted in many more required iterations to obtain the equilibrium solution for the truss system. 

For the two investigations, this ranged from 1 iteration longer to obtain convergence to problems that 

did not converge. 

For the problem discussed in §4.3.3 (see Figure 22) for the moderate curvature 0.5 × 2 × 2 ellipsoid, 

the best performance achieved for the MSEM was 18 iterations and the worst performance was 24 

iterations. This is compared to 10 iterations for the Lagrangian implementation. This indicates a factor 

of 1.8 to 2.4 iteration impact for solving the MSEM over the Lagrangian. For higher curvature problems 

the MSEM solution was erratic and was often unable to resolve without significant “tuning” for the 

specific problem. These results are typical for the performance of the MSEM vs Lagrangian 

implementations. 

From §4.4.3, the average time cost of the Lagrangian vs MSEM iterative solutions was 2.03 for the 

medium and large systems. The average ratio between solve times was 2.33 for the 40% to 100% MPC 

scenarios for the medium and large systems. Considering the increased number of iterations required 

and the ratios for iterative solver times and extending these to obtain a total estimated performance 

gives the results in Table 8. Table 8 shows the potential time implications for the scenarios described. 

This was calculated as: 

 

𝑅𝑡𝑜𝑡.  𝐼𝑡𝑒𝑟.𝑡𝑖𝑚𝑒 (
𝐿𝑎𝑔

𝑀𝑆𝐸𝑀
) =

𝑡𝐿𝑎𝑔.  𝐼𝑡𝑒𝑟.
𝑡𝑀𝐸𝑆𝑀 𝑖𝑡𝑒𝑟.
⁄

𝐼𝑡𝑒𝑟𝑀𝑆𝐸𝑀
𝐼𝑡𝑒𝑟𝐿𝑎𝑔.
⁄

=
𝑡𝐿𝑎𝑔. × 𝐼𝑡𝑒𝑟𝐿𝑎𝑔.

𝑡𝑀𝐸𝑆𝑀 × 𝐼𝑡𝑒𝑟𝑀𝑆𝐸𝑀
  (100) 

It is clear from the table that for this implementation the overall performance of the Lagrangian method 

compared to the MSEM ranges from 15% less time to 30% more time to obtain the solution. On average 

6% additional time would be required to obtain the Lagrangian solution. 

Table 8 Comparison of solve times and iterations 

Ratio of 
single 

Newton 
iteration 

solution time 
 

𝒕𝑳𝒂𝒈𝒓𝒂𝒏𝒈𝒊𝒂𝒏

𝒕𝑴𝑬𝑺𝑴
 

 

Ratio of 
no. iterations 

 
𝑰𝒕𝒆𝒓𝑴𝑺𝑬𝑴

𝑰𝒕𝒆𝒓𝑳𝒂𝒈𝒓𝒂𝒏𝒈𝒊𝒂𝒏
 

 

Ratio of total time for 
solution 

 

𝑹𝒕𝒐𝒕.  𝒕𝒊𝒎𝒆  𝑰𝒕𝒆𝒓 (
𝑳𝒂𝒈

𝑴𝑺𝑬𝑴
) 

Lagrangian 
additional 

time 
compared to 

MSEM 

2.03 1.8 1.13 13% 

2.33 1.8 1.29 29% 

2.03 2.4 0.85 -15% 

2.33 2.4 0.97 -3% 

2.18 (avg.) 2.10 (avg.) 1.06 (avg.) 6% 
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4.4.5. Matrix-free implementations 

For a matrix-free implementation, the calculations associated with the total assembly times in §4.4.2 

are directly proportional to the time required to produce a single matrix multiplication in the direct 

process. For the 100% MPC nodes case, it is clear that significant, approximately 52%, additional time 

will be required for the MSEM for a given iteration of the matrix-free iterative solver. It therefore 

follows that the Lagrangian MPC method presents a potentially faster matrix-free implementation. 

Furthermore, the complexities associated with the removal of DOFs in the MSEM (see §3.6.2 (92) and 

(93)), introduce associated difficulty in terms of DOF management and calculation during the matrix-

free calculation. 

Assuming that the two iterative solvers for the MSEM and Lagrangian implementations are able to 

resolve a linear system in the same number of iterations, the percentage time difference between the 

two methods can be calculated as follows. Using the average 1.06 ratio 𝑅𝑡𝑜𝑡.  𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑣𝑒  obtained in §4.4.4 

for the Lagrangian vs MSEM for iterative solver implementation and considering the relative time cost 

of assembly 
𝑡𝑎𝑠𝑠𝑒𝑚 𝑀𝑆𝐸𝑀

𝑡𝑎𝑠𝑠𝑒𝑚 𝐿𝑎𝑔.
 from §4.4.2 the expected difference for a matrix-free implementation is given 

as: 

 

𝑅𝑀𝑎𝑡.  𝐹𝑟𝑒𝑒 (
𝐿𝑎𝑔

𝑀𝑆𝐸𝑀
) =

𝑡𝑚𝑎𝑡𝑟𝑖𝑥 𝑓𝑟𝑒𝑒 𝐿𝑎𝑔.

𝑡𝑚𝑎𝑡𝑟𝑖𝑥 𝑓𝑟𝑒𝑒 𝑀𝑆𝐸𝑀
=
𝑅𝑡𝑜𝑡.  𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑣𝑒 (

𝐿𝑎𝑔
𝑀𝑆𝐸𝑀)

𝑡𝑎𝑠𝑠𝑒𝑚 𝑀𝑆𝐸𝑀
𝑡𝑎𝑠𝑠𝑒𝑚 𝐿𝑎𝑔.⁄

 (101) 

This suggests that the Lagrangian implementation of a matrix-free solver may be as much as 30% more 

efficient than the MSEM matrix-free solver when 100% MPC constraints are present. This implies that 

the Lagrangian method is a better selection for matrix-free implementations. 

Table 9 Comparison of solve times and iterations 

Ratio of 
single 

Newton 
iteration 
solution 

time 
 

𝐭𝐋𝐚𝐠𝐫𝐚𝐧𝐠𝐢𝐚𝐧

𝐭𝐌𝐄𝐒𝐌
 

 

Ratio of total time for 
solution 

 

𝐑𝐭𝐨𝐭.  𝐈𝐭𝐞𝐫𝐚𝐭𝐢𝐯𝐞 (
𝐋𝐚𝐠

𝐌𝐒𝐄𝐌
)  

Ratio of total time for linear 
system assembly 

 
𝐭𝐚𝐬𝐬𝐞𝐦 𝐌𝐒𝐄𝐌

𝐭𝐚𝐬𝐬𝐞𝐦 𝐋𝐚𝐠.⁄   

Ratio of total time for 
linear system 

assembly 
 

𝐑𝐌𝐚𝐭.  𝐅𝐫𝐞𝐞 (
𝐋𝐚𝐠

𝐌𝐒𝐄𝐌
)  

20 1.06 1.10 0.97 

40 1.06 1.19 0.89 

60 1.06 1.27 0.84 

80 1.06 1.39 0.76 

100 1.06 1.52 0.70 
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4.5. Early termination for mesh generation based on mesh criterion 

An advantage of the MSEM having the boundary criterion exactly satisfied at each iteration is that it 

invites the use of a convergence criterion based on mesh statistics rather than a system equilibrium 

tolerance. A statistics-based criterion has the potential to achieve convergence at fewer Newton steps 

due to the option of solution termination at the end of any iteration since the constraint equations 𝑓𝑚𝑝𝑐 

are satisfied at the end of every step. This also means that no unnecessary boundary element distortion 

would result if the process is terminated early. 

In the Lagrangian approach, the boundary is only satisfied upon solution of mesh equilibrium. This 

means that at early termination nodes may not be on the constraint surface and will not necessarily 

return until the solution has converged. This implies that early termination would result in a poorly 

approximated boundary for the system.  

The MSEM advantage of termination at any iteration could be achieved with the Lagrangian method by 

including a boundary snap at the end of each iteration and evaluating the resulting system accordingly. 

This, however, would result in distorted boundary elements and would also introduce a discrete step 

into the Lagrangian solution process that will affect the convergence rate since the sensitivities are no 

longer continuous. This problem is easily resolved by determining whether the mesh criterion would 

be met “if” the nodes were snapped to the boundary and only snapping if this is the case. 

For both systems, it is noted that early termination implies that static equilibrium for the truss system 

has not been obtained. Static equilibrium of the truss system is critical for the acquisition of accurate 

mesh sensitivities. This is because the mesh sensitivities should be a function of only control parameters 

and not of residual potential energy in the system. 

For the MSEM the truss system sensitivities would still be exact for the mesh state at early termination, 

but there would still be an error associated with obtaining the mesh sensitivities 
𝒅𝓧

𝒅𝐱
. However, for the 

boundary snapped mesh resulting from the early termination of the Lagrangian method, the 

sensitivities of the mesh would no longer be valid, and the computation of sensitivities would hence be 

inaccurate. 

4.6. Summary 

As discussed in §4.2, several challenges were seen to be unique to the MSEM, particularly when solution 

of the system resulted in large nodal position updates. In §4.3 two methods for minimising the impact 

of large updates on the MSEM implementation were investigated and shown to considerably improve 

the solution stability. 

In the first method, nodes identified on the surface of the mesh were snapped to the boundary of the 

domain along the shortest distance. This reduced the likelihood of nodes leaving the domain in the first 

update and resulted in a smooth surface mesh with a more accurate representation of the boundary. 
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Additional implementation of MSEM update control (limiter) was found to permit the solution of 

systems that had previously failed to achieve convergence due to large updates. This significantly 

improved the stability and reliability of the method. The relative instability of the MSEM is associated 

with the fact that all constraints must be exactly satisfied for each iteration. As discussed in §4.1, the 

updates can, in turn, result in complex components in the slave-update. 

The Lagrangian method was found to be the most stable and was largely unaffected by the non- 

linearities associated with regions of high curvature. This is because the boundary condition is only 

satisfied once equilibrium of the entire system has been found. This corresponds to the results obtained 

by Kok et al. [45] 

In §4.5 the potential for early termination when using the MESM and Lagrangian methods was 

discussed. The MSEM could be terminated early with the only consequence being the reduced accuracy 

of mesh sensitivities 
𝑑𝓧

𝑑𝐱
 associated with the truss system no longer being in equilibrium. For the 

Lagrangian method, the nodes would have to be discretely forced to the boundary thereby creating 

discontinuous sensitivities that would invalidate the computed mesh sensitivities. 

The time comparisons done in §4.4 showed that for large percentages of MPC constrained nodes the 

MSEM presented a distinct advantage with respect to the linear system solution time associated with 

a single Newton step. This was especially noticeable for the direct solvers discussed in §4.4.3. where 

the Lagrangian linear system took 7.2 times longer to solve versus the MSEM system for the large 

system with 100% nodes constrained. The use of iterative solvers was however shown to reduce this 

discrepancy to twice the computational time cost for the Lagrangian method versus the MSEM. 

For problems with moderate curvature, the MSEM requires significantly more iterations to obtain 

convergence. This was shown in §4.3.3. The MSEM required significant assistance to reduce the impact 

of curvature on the solution to the system. For the 0.5 × 0.5 × 2 ellipsoid (moderate curvature) 

problem in §4.3.3 the update step size limiting methods were shown to reduce the number of Newton 

iterations to just under twice that of the Lagrangian implementation. 

Total truss equilibrium solution time discussed in §4.4.4 for the implementation of the Lagrangian 

method was shown to require between 0.85 to 1.3 times that of the MSEM implementation. The 

Lagrangian method is expected to, on average, take 6% longer to obtain truss equilibrium for large 

percentages of MPCs and large systems of equations. 

Matrix free implementations, discussed in §4.4.5, are typically associated with very large linear systems. 

To implement a matrix-free solver each iteration of the solver, for the linear system, requires 

recalculation for the assembly of the system. Given that the MSEM was up to 52% computationally 

more expensive in terms of assembly costs, there is the potential for the Lagrangian implementation to 

be as much as 30% faster. 
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Table 10 Comparison of pros and cons associated with MPC implementations 

 Lagrangian MSEM 

Ease of implementation Best Worst 

Robustness in obtaining solution Best, no Lagrangian specific 
problems found 

Worst 
Solution not guaranteed 

Requires significant heuristic 
control to converge 
Generally unstable 

Nodes leaving constraint 
surface 

Newton steps to obtain solution Best Worst (1.8 times best-case 
scenario for moderate 

curvature system) 

No of non-zeros  
(memory requirement) 

Worst (up to 40% more) Best 

System assembly time Best Worst (up to 88% longer) 

Direct solver solution time  
(single newton step) 

Worst (up to 7 times as long) Best 

Iterative solver time  
(single newton step) 

Worst (up to 2 times as long) Best 

Overall iterative solver times  Similar 
(0.85 to 1.3 ave. 1.06 ) 

Similar 

Matrix free implementation 
(extrapolated from given results) 

Best Worse (up to 1.3 times longer) 

 

Table 10 summarises all the features of the two methods. Overall, the implementation of the 

Lagrangian MPC method was considerably easier than the MSEM. The MSEM was however shown to 

result in faster solve times for the linear system, except for the results extrapolated for the matrix-free 

implementation where it was predicted to perform worse. 

Since the use of a mesher in shape optimisation is not the primary focus of the optimisation process, 

but rather a tool, it is essential that the mesher be simple and robust. The Lagrangian approach proved 

easier to implement and did not require sophisticated heuristics to obtain convergence. For the 

problems studied, the Lagrangian MPC method only experienced a 6% time penalty when using an 

iterative solver and could potentially be as much as 30% faster for a matrix-free implementation. The 

Lagrangian MPC method is therefore selected for implementation in the final mesher.
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CHAPTER 5  

SENSITIVITIES IMPLEMENTATION FOR MPCs 

“Engineering problems are under-defined, there are many solutions, good, bad, and indifferent. The art 

is to arrive at a good solution. This is a creative activity, involving imagination, intuition, and deliberate 

choice.” ― Ove Arup 

5.1. Introduction 

At this point, it is important to distinguish for the reader that there are two FEAs in discussion. The first 

is the FEA of the truss system that is done to resolve the mesh nodal coordinates 𝓧. This FEA was 

geometrically non-linear and iterative. The second is the FEA used to analyse the structural shape used 

to compute the performance in the cost/objective and constraint functions of the shape optimisation 

problem and is given as 𝐊𝐮 = 𝐟 for linear elastic analysis. The cost function is given as ℂ (𝓧(Ω∗(𝐱))), 

where 𝐱 is the set of control variables for the parametrised geometric domain and Ω∗(𝐱) represents 

the computational domain which is split into the interior Ω and boundary 𝜕Ω. 

As discussed in §1.3.2, gradient-based shape optimisation using linear-static FEA requires stiffness 

matrix sensitivities 
𝑑𝐊

𝑑𝐱
 . Since the linear static system is partitioned into free 𝑓 and prescribed 𝑝 degrees 

of freedom and selecting 𝐮𝑝 = 𝟎, only the 
𝑑𝐊𝑓𝑓

𝑑𝐱
 component is required. The final form required for the 

optimisation process is repeated here for easy reference: 

 
𝐊𝑓𝑓  

𝑑𝐮𝑓

𝑑𝐱
= −

𝑑𝐊𝑓𝑓

𝑑𝐱
𝐮𝑓  (102) 

Additionally, the 
𝑑𝐊𝑓𝑓

𝑑𝐱
 components are not directly computable since the domain Ω∗(𝐱) is discretised 

using a mesh. The stiffness matrix is related to the parameters 𝐱 through the mesh 𝓧 as 𝐊(𝓧(𝐱)). It 

therefore requires the use of the chain rule to obtain the derivative: 

 
 

𝑑𝐊𝑓𝑓

𝑑𝐱
=
𝑑𝐊𝑓𝑓

𝑑𝓧

𝑑𝓧

𝑑𝐱
 (103) 

Obtaining the mesh sensitivity 
𝑑𝓧

𝑑𝐱
 will be the focus of this chapter. This will first be done numerically in 

§5.2.2 by resolving the mesh equilibrium, with free boundary nodes, for a given perturbed parameter 

and using a forward finite difference method to calculate the sensitivity. This will be followed in §5.2.3, 

which is the focus of this study; obtaining analytical mesh sensitivities with free boundary nodes. 

In §5.3 through §5.5 comparison of the numerical mesh sensitivities for 2D and 3D are discussed. To 

ease visualisation, the focus will be on 2D mesh sensitivities, while 3D mesh sensitivities will be 

visualised as 2D as far as possible. 
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5.2. Mesh nodal coordinate sensitivities 

5.2.1. Output of the sensitivities 

Sensitivities are calculated as partial derivatives at each of the 𝑖 = 1…𝑛 control variables x𝑖. These 

partial derivatives, from the individual perturbations on the control variables, are assembled into the 

𝑚 × 𝑛 (where 𝑚 is the number of nodal coordinates) sensitivity matrix 
𝑑𝓧

𝑑𝐱
: 

 𝑑𝓧

𝑑𝐱
= [

𝑑𝓧

𝑑x𝑖=1

𝑑𝓧

𝑑x𝑖=2
⋯

𝑑𝓧

𝑑x𝑖=𝑛
] (104) 

The sensitivity associated with the 𝑖𝑡ℎ control variable 
𝑑𝓧

𝑑x𝒊
 is calculated by perturbing only one variable 

x𝑖  at a time. Sensitivities can be computed either numerically or analytically as discussed in §5.2.2 and 

§5.2.3 respectively. 

5.2.2. Numerical sensitivities 

After an adjustment of the domain boundary by a small value of Δx𝑖, the mesh is resolved for 

equilibrium iteratively for each of the x𝑖  control variables. Numerical sensitivities are determined using 

a forward finite difference step. Although this method is simple to implement, computational effort is 

high for large meshes and many control variables, since the full equilibrium of the system needs to be 

resolved for each variable. 

The forward finite difference method is used to calculate the system sensitivities is as follows: 

 𝑑𝓧

𝑑x𝑖
=
𝓧(𝐱 + Δx𝑖 × 𝒆𝑖  ) − 𝓧(𝐱)

Δx𝑖
 (105) 

where 𝒆𝑖 is the unit vector for the 𝑖𝑡ℎ component. Numerical sensitivities are easier to implement than 

the analytical sensitivities, but the analytical sensitivities are much faster to compute. The numerical 

sensitivities will be used to verify the correct implementation of the analytical sensitivities. 

5.2.3. Analytical sensitivities 

Since this study solves a geometrically non-linear truss problem using Newton’s method and given the 

dependency of the mesh 𝓧 on the control variables 𝐱 for the shape optimisation problem, the residual 

force functions 𝑭(𝓧) can be rewritten. The mesh nodal coordinates 𝓧(𝐱) are also split into the nodes 

associated with the interior of domain Ω and those with the domain boundary 𝜕Ω: 

 
𝑭 (𝓧Ω(𝐱),𝓧∂Ω(𝐱)) = 𝟎 (106) 

The forces 𝑭 can be partitioned into the nodes associated with the interior of domain Ω and those with 

the domain boundary 𝜕Ω giving: 
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𝑭 (𝓧Ω(𝐱),𝓧∂Ω(𝐱)) = {
𝑭Ω (𝓧

Ω(𝐱),𝓧∂Ω(𝐱))

𝑭∂Ω (𝓧
Ω(𝐱),𝓧∂Ω(𝐱))

} = 𝟎 (107) 

Similarly, the mesh sensitivities are split into the sensitivity of the interior nodes 
𝑑𝓧Ω

𝑑𝐱
 and sensitivity of 

the boundary nodes 
𝑑𝓧∂Ω

𝑑𝐱
: 

 

𝑑𝓧

𝑑𝐱
=

[
 
 
 
𝑑𝓧Ω

𝑑𝐱
𝑑𝓧𝜕Ω

𝑑𝐱 ]
 
 
 

 (108) 

To obtain the relationship between the nodal coordinates 𝓧 and control variables 𝐱, the derivative of 

𝑭(𝓧Ω(𝐱),𝓧∂Ω(𝐱)) in (107) is taken with respect to 𝐱. The derivative of the system is taken of the truss 

system in equilibrium 𝑭 = 𝟎 therefore giving 
𝑑𝑭

𝑑𝒙
= 𝟎. This gives the partitioned derivatives as: 

 
𝑑𝑭Ω
𝑑𝐱

=
𝜕𝑭Ω
𝜕𝓧Ω

𝑑𝓧Ω

𝑑𝐱
+
𝜕𝑭Ω
𝜕𝓧𝜕Ω

𝑑𝓧𝜕Ω

𝑑𝐱
= 𝟎 (109) 

 
𝑑𝑭∂Ω
𝑑𝐱

=
𝜕𝑭∂Ω
𝜕𝓧Ω

𝑑𝓧Ω

𝑑𝐱
+
𝜕𝑭∂Ω
𝜕𝓧𝜕Ω

𝑑𝓧𝜕Ω

𝑑𝐱
= 𝟎 (110) 

with the solution to the exterior and interior domains obtained from the system of equations in (109) 

and (110). If the location of the boundary nodes is a function of only the control variables 𝐱, then 
𝜕𝑭∂Ω

𝜕𝓧Ω =

𝜕𝑭∂Ω

𝜕𝓧𝜕Ω = 𝟎 and 
𝑑𝓧𝜕Ω

𝑑𝐱
 is known, 

𝑑𝓧Ω

𝑑𝐱
 can then be solved from the reduced linear system: 

 
𝜕𝑭𝛀
𝜕𝓧Ω

𝑑𝓧Ω

𝑑𝐱
= −

𝜕𝑭Ω

𝜕𝓧𝜕Ω

𝑑𝓧𝜕Ω

𝑑𝐱
 (111) 

The decomposition of 
𝜕𝑭Ω

𝜕𝓧Ω only needs to be computed once to solve the multiple RHS associated with 

𝐱. This is the method implemented by Wilke et al. [7] since their boundary nodes were prescribed on 

the piece-wise linear boundary as a function of the full system. 𝜕𝑭Ω 𝜕𝓧Ω⁄  is obtained from the last 

Newton step of the constrained boundary problem. 

Since the MPC components reside on the boundary 𝜕Ω and are influenced by both the control variables 

𝐱 and the internal nodes Ω, the system in (109) and (110) needs to be resolved as a system of equations. 

Therefore, the nodal coordinates 𝓧 and force equilibrium equations 𝑭 are split into the interior of 

domain Ω , the MPC 𝜕Ωc and prescribed 𝜕Ωp DOF. This is done the same as in way as (106) to (108) to 

give the equilibrium system as: 
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𝑭(𝓧Ω(𝐱),𝓧∂Ωc(𝐱),𝓧∂Ωp(𝐱)) = {

𝑭Ω(𝓧
Ω(𝐱),𝓧∂Ωc(𝐱),𝓧∂Ωp(𝐱))

𝑭𝜕Ω𝑐(𝓧
Ω(𝐱),𝓧∂Ωc(𝐱),𝓧∂Ωp(𝐱))

𝑭𝜕Ωp(𝓧
Ω(𝐱),𝓧∂Ωc(𝐱),𝓧∂Ωp(𝐱))

} = 𝟎 (112) 

Taking the derivatives of (112) around the equilibrium point 𝑭 = 𝟎 (∴
𝑑𝑭

𝑑𝐱
= 𝟎) as done in (109)-(110) 

and assembling the resulting components into matrix form gives: 

 

{
  
 

  
 
𝑑𝑭Ω
𝑑𝐱

𝑑𝑭∂Ω𝑐
𝑑𝐱

𝑑𝑭∂Ω𝑝
𝑑𝐱 }

  
 

  
 

=

[
 
 
 
 
 
 
𝜕𝑭Ω
𝜕𝓧Ω

𝜕𝑭Ω
𝜕𝓧𝜕Ω𝑐

𝜕𝑭Ω

𝜕𝓧𝜕Ω𝑝

𝜕𝑭∂Ω𝑐
𝜕𝓧Ω

𝜕𝑭∂Ω𝑐
𝜕𝓧𝜕Ω𝑐

𝜕𝑭∂Ω𝑐
𝜕𝓧𝜕Ω𝑝

𝜕𝑭∂Ω𝑝

𝜕𝓧Ω

𝜕𝑭∂Ω𝑝

𝜕𝓧𝜕Ωc

𝜕𝑭∂Ω𝑝

𝜕𝓧𝜕Ω𝑝]
 
 
 
 
 
 

{
  
 

  
 
𝑑𝓧Ω

𝑑𝐱

𝑑𝓧𝜕Ω𝑐

𝑑𝐱

𝑑𝓧𝜕Ω𝑝

𝑑𝐱 }
  
 

  
 

= {
𝟎
𝟎
𝟎
} (113) 

Since 
𝑑𝓧𝜕Ω𝑝

𝑑𝐱
 is non-zero and constant, the derivatives 

𝜕𝑭∂Ω𝑝

𝜕𝓧Ω =
𝜕𝑭∂Ω𝑝

𝜕𝓧𝜕Ω𝑐
=

𝜕𝑭∂Ω𝑝

𝜕𝓧𝜕Ω𝑝
= 0. The linear system 

can, therefore, be rearranged to solve for the unknowns 
𝑑𝓧Ω

𝑑𝐱
 and 

𝑑𝓧𝜕Ωc

𝑑𝐱
 to form: 

 

[
 
 
 
 
𝜕𝑭Ω
𝜕𝓧Ω

𝜕𝑭Ω
𝜕𝓧𝜕Ω𝑐

𝜕𝑭∂Ω𝑐
𝜕𝓧Ω

𝜕𝑭∂Ω𝑐
𝜕𝓧𝜕Ω𝑐]

 
 
 
 

{
 
 

 
 𝑑𝓧Ω

𝑑𝐱

𝑑𝓧𝜕Ωc

𝑑𝐱 }
 
 

 
 

= −

[
 
 
 
 
𝜕𝑭Ω

𝜕𝓧𝜕Ω𝑝

𝜕𝑭∂Ω𝑐
𝜕𝓧𝜕Ω𝑝]

 
 
 
 
𝑑𝓧𝜕Ω𝑝

𝑑𝐱
 (114) 

Whilst the system in (114) now distinguishes the MPC nodes, the MPC constraint contributions have 

not yet been included. The matrix on the LHS comprises the consistent tangent components available 

from the last Newton step. The LHS of the system may exist in the 𝐋𝐃𝐋𝑇 decomposed state provided a 

sparse direct solver is used. The efficient computation of the sensitivities is enhanced by reusing the 

last step of the Newton solution, although this may not be practical for very large matrices. 

5.2.3.1. Lagrangian approach to the boundary sensitivities problem 

Considering that the constraint equations 𝒇𝑚𝑝𝑐 are a function of both the constrained boundary nodes 

𝓧𝜕Ω𝑐  and control variables 𝐱 in the form of 𝒇𝑚𝑝𝑐(𝓧
𝜕Ω𝑐 , 𝐱) and considering that 

𝑑𝓧𝜕Ω𝑐

𝑑𝒖𝒄
= 1 and 

𝑑𝓧Ω

𝑑𝒖𝒇
=

1, (44) to (46) can be rewritten as: 

 𝑑ℒ

𝑑𝓧Ω
 = 𝓕Ω

𝑖𝑛𝑡 −𝓕Ω
𝑒𝑥𝑡 = 𝟎 (115) 

 𝑑ℒ

𝑑𝓧𝜕Ω𝑐
= 𝓕𝜕Ω𝑐

𝑖𝑛𝑡 −𝓕𝜕Ω𝑐
𝑒𝑥𝑡 + (

𝜕𝒇𝑚𝑝𝑐(𝓧
𝜕Ω𝑐 , 𝐱)

𝜕𝓧𝜕Ω𝑐
)

T

𝛌 = 𝟎 (116) 

 𝑑ℒ

𝑑𝝀
= 𝒇𝑚𝑝𝑐(𝓧

𝜕Ω𝑐 , 𝐱) = 𝟎 (117) 
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Since the set of prescribed displacements 𝓧∂Ωp(𝐱) is a function of the control variables these can be 

incorporated into the system following the same method described in §2.6.3.1 and considering 
𝑑𝓧𝜕Ω𝑝

𝑑𝒖𝑝
=

1 giving: 

 𝑑ℒ

𝑑𝓧𝜕Ω𝑝
= 𝓕∂Ω𝑝

𝑖𝑛𝑡 −𝓕∂Ω𝑝
𝑒𝑥𝑡 + 𝑹∂Ω𝑝  (118) 

Considering the internal forces are a function of the trusses then 𝓕Ω
𝑖𝑛𝑡 = 𝑭Ω, 𝓕𝜕Ω𝑐

𝑖𝑛𝑡 = 𝑭𝜕Ω𝑐  and 𝓕𝜕Ω𝑝
𝑖𝑛𝑡 =

𝑭𝜕Ω𝑝, and external forces 𝓕Ω
𝑒𝑥𝑡 = 𝓕𝜕Ω𝑐

𝑒𝑥𝑡 = 𝓕𝜕Ω𝑝
𝑒𝑥𝑡 = 0. Taking the derivative of (115) to (118) with 

respect to the control variables 𝐱 and noting 
𝑑𝓧𝜕Ω𝑝

𝑑𝐱
 is known, then following the logic of (112) to (114) 

it can be shown: 

 

[
 
 
 
 
 
 
𝜕𝑭Ω
𝜕𝓧Ω

𝜕𝑭Ω
𝜕𝓧𝜕Ω𝑐

𝟎

𝜕𝑭∂Ω𝑐
𝜕𝓧Ω

𝜕𝑭∂Ω𝑐
𝜕𝓧𝜕Ω𝑐

+
𝜕2𝒇𝑚𝑝𝑐

𝜕𝓧𝜕Ω𝑐
2 𝝀

𝜕𝒇𝑚𝑝𝑐

𝜕𝓧𝜕Ω𝑐

𝑇

𝟎
𝜕𝒇𝑚𝑝𝑐

𝜕𝓧𝜕Ω𝑐
𝟎 ]

 
 
 
 
 
 

{
  
 

  
 
𝑑𝓧Ω

𝑑𝐱

𝑑𝓧𝜕Ω𝑐

𝑑𝐱

𝑑𝝀 

𝑑𝐱 }
  
 

  
 

= −

{
 
 

 
 

𝟎

(
𝜕2𝒇𝑚𝑝𝑐

𝜕𝓧𝜕Ω𝑐𝜕𝐱
)

𝑇

𝝀

𝜕𝒇𝑚𝑝𝑐

𝜕𝐱 }
 
 

 
 

−

{
  
 

  
 
𝜕𝑭Ω

𝜕𝓧𝜕Ω𝑝

𝜕𝑭∂Ω𝑐
𝜕𝓧𝜕Ω𝑝

𝟎 }
  
 

  
 

𝑑𝓧𝜕Ω𝑝

𝑑𝐱
 

(119) 

where 𝝀 is included and treated as it would be for any Newton step update since it is required to 

maintain equilibrium of the system. The prescribed components of the consistent tangent 
𝜕𝑭Ω

𝜕𝓧𝜕Ω𝑝
 are 

retained since 
𝑑𝓧𝜕Ω𝑝

𝑑𝐱
 is a non-zero and its contribution to the RHS of the system is required. All 

contributions of the equilibrium matrix on the LHS are available from the consistent tangent calculated 

during the last Newton step. The RHS terms (
𝜕2𝒇𝑚𝑝𝑐

𝜕𝓧𝜕Ωc𝜕𝐱
)
𝑇

𝝀,
𝜕𝒇𝑚𝑝𝑐

𝜕𝐱
 and 

𝑑𝓧𝜕Ωp

𝑑𝐱
 need to be recomputed for 

each partial derivative of the control variables 𝐱. The components 
𝜕𝑭Ω

𝜕𝓧𝜕Ωp
 and 

𝜕𝑭∂Ωc

𝜕𝓧𝜕Ωp
 only need to be 

computed at initialisation of the sensitivity calculation. Again, this implies that a single decomposition 

of the LHS is leveraged to solve multiple RHSs, one RHS for each control variable (x𝑖) perturbed, to allow 

us to compute direct sensitivities. 
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5.3. Verification of the implementation in 2D 

For the Lagrangian analytical sensitivities, the RHS terms (
𝜕2𝒇𝑚𝑝𝑐

𝜕𝓧𝜕Ω𝑐𝜕𝐱
)
𝑇

, 
𝜕𝒇𝑚𝑝𝑐

𝜕𝐱
 and 

𝑑𝓧𝜕Ωp

𝑑𝐱
 for the analytical 

sensitivities were calculated numerically using a finite-difference step. This makes the resulting 

sensitivities selectively semi-analytical, as opposed to more traditional semi-analytical sensitivities 

where the entire residual in (115) to (117) would be recomputed for the finite difference step. This 

removed the complexity associated with obtaining these components to allow verification of the 

analytical sensitivity derivation. These sensitivities will be referred to as analytical further. 

To verify the analytical sensitivities the results are compared to the numerically computed sensitivity. 

For the comparisons that follow the same Δx𝑖 perturbation sizes were used for both the selective 

analytical and numerical sensitivities. The numerical sensitivities for the system were solved to a 

residual norm of ‖𝓡‖2 < 10−10. 

The control parameters of the ellipse used in these studies are shown in Figure 33. The ellipse was 

chosen as it is a simple boundary that can easily be intuitively interpreted for the sensitivities. It allows 

large changes in parameter sensitivity and curvature through manipulation of only a few variables. This 

allows for easier discussion around the effectiveness of the method by removing unnecessary 

complexities associated with complex boundaries. 

Parameters x1 and x2 control the semi-axes of the ellipse. The height is governed by and x1 and the 

width by x2. An interior control point is also shown located by x3 and x4. The interior control point is 

used to demonstrate the effect of direct local manipulation of the mesh 𝓧. The ellipse without the 

interior control point is denoted 𝑓𝑒𝑙𝑙𝑖𝑝(x1, x2) whereas the ellipse with the interior control point is 

denoted 𝑓𝑒𝑙𝑙𝑖𝑝(x1, x2, x3, x4). 
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Figure 33 Ellipse parameterisation 

For 𝑓𝑒𝑙𝑙𝑖𝑝(x1, x2) the errors between the sensitivities obtained for each DOF in the system were 

compared for aspect ratios 1: 2, 1: 4, 1: 8, 1: 16, and 1: 32 while the area was kept constant for the 

initialised ellipses. For each of these aspect ratios, the sensitivities were evaluated and compared for 

perturbations Δx𝑖 = 10
−3, 10−4, 10−5, 10−6, 10−7, 10−8 and 10−9. The same perturbations were 

used for both the analytical and numerical sensitivities for the comparisons. 

The absolute errors between the numerical and analytical sensitivities at each 𝑗𝑡ℎ nodal coordinate 𝑑𝒳j 

was calculated as: 

 
𝐸𝑅𝑅𝑂𝑅𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑒𝑠 = |

𝑑𝒳j

𝑑xi
 𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 −

𝑑𝒳j

𝑑xi
 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙| (120) 

and the norm of the sensitivity error as: 

 
‖{
𝑑𝓧

𝑑xi
 }
𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙

− {
𝑑𝓧

𝑑xi
 }
𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙

‖

2

 (121) 

Figure 34 (a) and (b) show the norm of the sensitivity errors (121) in the x- and y- directions. The legend 

shows the various ellipse aspect ratios x1: x2. The sensitivities associated with x2 are shown respectively 

for the x- and y- DOFs in (c) and (d). As the ellipse flattens out (x1: x2 → 1: 32) the sensitivity error 

increases in Figure 34 (a), (b) and (c). In Figure 34 (a) and (b) this is due to the curvature becoming more 

and more sensitive to the height change x1. Since forward finite difference sensitivities can only exactly 

capture linear changes, the increase in curvature reduces the method’s accuracy. 

For all four sets of sensitivities, the error between the methods decreases linearly with the perturbation 

size from 10−2 down to 10−6. Furthermore, the errors are of the same order of magnitude as the 

x3 

x2 

x1 

x4 

y 

x 
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perturbation. This indicates that the MPC analytical sensitivity method is returning the correct 

sensitivities. Below a perturbation of 10−6 the errors start to deviate from the expected errors as the 

numerical roundoff limits are reached. The round-off errors affect the numerical sensitivities calculation 

causing the errors to deviate from the expected. 

In §4.3.4 the contribution of the second-order term to the sensitivity was shown and discussed. The 

second-order term is included here in the computation of sensitivities, and it is noted that as the 

curvature increases so does the magnitudes of the contributions to the consistent tangent. These 

increasing magnitudes affect the numerical accuracy for smaller perturbations. This is caused by round 

off errors associated during the numerical sensitivity’s computation. This is most noticeable in Figure 

34 (c) and (d) for the 1:32 ratio ellipse where the error begins to increase below perturbations of 10−4. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 34 Numerical vs analytical sensitivity errors for various aspect ratio ellipse 

(a) 𝐱𝟏, x- direction. (b) 𝐱𝟏, y- direction (c) 𝐱𝟐, x-direction (d) 𝐱𝟐, y-direction 

For an ellipse with an aspect ratio of 1: 4 (x1: x2) the average errors (calculated as the average of the 

errors in (120)) and error norms (121) are shown in Figure 35 (a) and (b) respectively for various mesh 

densities denoted by various desired truss lengths for the same domain. The parameter and direction 
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combination with the largest deviations in error is shown; this was for x2 in the x-direction. It is clear 

from Figure 35 (a) and (b) that the decrease in the desired length has little effect on the errors between 

the numerical and analytical sensitivities. Again, computational limits associated with numerical round-

off cause perturbations below 10−6 to reduce the accuracy of the sensitivities. For this problem using 

a value between 10−3 and 10−6 yields the best results for the numerical sensitivities. Errors associated 

with the analytical sensitivity implementation only became noticeable below perturbations of 10−9. 

For the numerical sensitivities, it is likely that the selection of the perturbation value will be problem 

dependant. Whereas the analytical sensitivities are more robust and a perturbation of between 10−8 

and 10−6 would be a good selection. 

 
(a) 

 
(b) 

Figure 35 Mesh sensitivity errors for 𝐱𝟐 (x-direction) of ellipse 𝐱𝟏 = 𝟏 and 𝐱𝟐 = 𝟒, for various 𝑳𝒅𝒆𝒔 

(a) x-DOF average error (b) y-DOF error norm 

Figure 36 shows the sensitivity errors for the parameters x1 and x2 in each of the x- and y-DOFs. This is 

shown for an ellipse with a 1: 4 aspect ratio and perturbations of 10−6 for both numerical and 

analytical. From the plots, it is seen that the errors are not constant throughout the domain. The 

parameter x1 is shown to have the greatest effect on the errors between the numerical and analytical 

sensitivities due to the curvature being more sensitive to x1 when compared to x2. It is interesting to 

note that the largest errors in the sensitivities lie on the portion of the boundary with lower curvature. 

Again, the effect of a small change in x1 has a large percentage effect on the portion of the boundary 

with lower curvature in those regions. This indicates the rate-of-change of the curvature, in response 

to the perturbations, are the most non-linear in those regions. These studies demonstrate where the 

first-order Taylor series expansion for the sensitivities is the least accurate. It must be noted that only 

the top centre point was fixed in this study. This is most noticeable in the x1 y-DOF image (top, right). 
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Figure 36 Errors between Lagrangian numerical and analytical sensitivities 

(ellipse 1:4 and perturbations 𝟏𝟎−𝟔) 

 

5.4. Mesh response for 2D 

In Figure 37 the sensitivity magnitudes for an ellipse 𝑓𝑒𝑙𝑙𝑖𝑝(x1, x2) are shown. This demonstrates the 

smooth sensitivities throughout the domain in response to the parameter x1 and x2. 

 
 

Figure 37 Sensitivity magnitude visualisation for 1:2 ellipse with no interior fixed node 

In Figure 38 the sensitivities magnitudes for an ellipse with an interior fixed node 𝑓𝑒𝑙𝑙𝑖𝑝(x1, x2, x3, x4) 

are shown (as described in Figure 33, the location is shown with the red arrow). Again, it is clear from 
the smooth gradient throughout the domain, that the sensitivities do describe the effect throughout 

the domain as desired. The 
𝑑𝓧

𝑑x3
 and 

𝑑𝓧

𝑑x4
 plots show that perturbing even a single node causes a smooth 

sensitivity response throughout the domain. This is desirable from a shape optimisation point of view 
as stated in §1.5.4. 
 
 

𝑑𝓧

𝑑x1
 

𝑑𝓧

𝑑x2
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Figure 38 Sensitivity magnitude visualisation for 1:2 ellipse with interior fixed node  

In Figure 39, for 𝑓𝑒𝑙𝑙𝑖𝑝(x1, x2), a non-uniform mesh of varying element sizes is depicted; the mesh 

sensitivities are again smooth. It is interesting to note that the refined mesh areas (A), having shorter 

edge lengths and in turn higher stiffnesses, affect the sensitivity gradient in those regions. This is seen 

by the variation shown at (B). This can be compared with the symmetrical sensitivities for the uniform 

mesh shown in Figure 37. 

 

Figure 39 Sensitivity magnitude visualisation for ellipse 1:2 for non-uniform mesh 

An alternative way to visualise sensitivities is to plot finite mesh updates when an internal or boundary 

node is displaced. In Figure 40 the internal node of 𝑓𝑒𝑙𝑙𝑖𝑝(x1, x2, x3, x4) is displaced from (−1,−0.5) to 

(-0.9,-0.5) by a value of Δx3 = 0.1. This perturbation shows the effect throughout the domain of the 

ellipse. The freeing of the boundary nodes, through the use of MPCs, allows the nodes to move 

smoothly along the boundary in response to the parameter update. This allows the mesh to maintain 

higher-quality elements in the update step. This is shown clearly in the magnified area by the movement 

of a node from (1) to (2). Figure 40 shows the new mesh estimation from only the sensitivity 

update 𝓧𝒏+𝟏 = 𝓧𝒏 +
𝑑𝓧𝒏

𝑑x𝟑
Δ𝐱3. 

𝑑𝓧

𝑑x3
 

𝑑𝓧

𝑑x1
 

𝑑𝓧

𝑑x4
 

𝑑𝓧

𝑑x2
 

𝑑𝓧

𝑑x1
 

𝑑𝓧

𝑑x2
 

(A) 
 

(A) 
(B) 

(A) 
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Figure 40 Mesh due to update of interior fixed node by parameter 𝐱𝟑 

For the ellipse without the internal node 𝑓𝑒𝑙𝑙𝑖𝑝(x1, x2), an update of the mesh for a change of +20% in 

x1 and -10% in x2 is shown in Figure 41. The mesh update shown is again an estimation of the updated 

mesh, based only on the prediction offered by the sensitivities 𝓧𝒏+𝟏 = 𝓧𝒏 + [
𝑑𝓧𝒏

𝑑𝐱
] {
Δ𝐱1
Δ𝐱2

}. 

 

(1) 

(2) 
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Figure 41 Non-uniform mesh deformation due to 20% height and 10% width adjustment 

For an update of a non-uniform mesh, Figure 42 shows that even for a large update of +20% in x1 and 

-10% in x2, the mesh deforms evenly throughout the domain and the relative mesh sizing is retained. 

The update in x1 at the top of the ellipse is more than 10 times larger than the average local element 

size and the mesh responds smoothly to the change. 

The lower right magnification of Figure 42 shows the estimated mesh has deviated from the new 

expected boundary. This is due to the deformation in the boundary being non-linear and the update is 

based on the first order mesh sensitivities. 
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Figure 42 Non-uniform mesh deformation due to 20% height and 10% width adjustment 

5.5. Verification of the implementation in 3D 

Verification of correct implementation was obtained in the same manner as discussed in §5.3. The 

ellipsoid was defined using three parameters x1, x2 and x3, corresponding to the three semi-axes and 

x4 corresponding to the set of 3 nodes on the top surface of the sphere. The parameter x4 is used to 

show the effect of direct local manipulation of the mesh. 

Accuracy of the analytical implementation was verified by comparison with the numerical sensitivities 

obtained for ellipsoid configurations with aspect ratios equal to 1:1:1, 1:4:4 and 1:16:16 and 

perturbations of 10−3 and 10−5 were used for both the numerical and analytical methods. Table 11 

shows the average of the sensitivity errors (120) between numerical and analytical implementations 

for the Lagrangian MPC approach for the various curvature problems: 
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Table 11 3D Lagrangian analytical sensitivity errors for ellipsoids 1:1:1, 1:4:4 and 1:16:16 

 

From Table 11 it is evident that the analytical implementation is returning accurate sensitivities. The 

analytical method shows average errors in the region of the perturbation value. Generally, the average 

sensitivity error is lower than the perturbation. This indicates that the method has been correctly 

implemented. As the curvature increases, it is noted that the sensitivity error associated with the x1 

parameter increases slightly above the perturbation magnitude. This is due to the same principle 

discussed in §5.3. The curvature does not change as rapidly in response to x2 and x3 (since their 

magnitude is 4 times and 16 times larger than x1 for the 1:1:4 and 1:16:16 ellipsoids respectively), hence 

the error between methods decreases more than expected. 

In Figure 43 a sphere was deformed by +20%, -20% and -10% in the three parametric directions x1, x2 

and x3 respectively. Deformation from the original mesh shows the mesh is updated as expected 

throughout the domain. 

 

Figure 43 Ellipsoid with update estimation using Lagrangian analytical sensitivities 

The sensitivities throughout the domain are shown for each parameter in Figure 44. The front quarter 

of the sphere has been removed to show the sensitivities in the interior of the domain. As was seen for 

the 2D mesh sensitivities, the 3D mesh sensitivities are smooth throughout the domain and the whole 

domain is shown to be influenced by a given boundary change. Figure 44 (a) through (c) shown the 

semi-axis sensitivities for x1, x2 and x3 respectively. Figure 44 (d) shows the sensitivities for a set of 

three points on the upper surface controlled by the parameter x4. 

𝒅𝒆𝒑𝒔 . 𝟏𝟎−𝟑 𝟏𝟎−𝟓 

Parameter 𝐱1 𝐱2 𝐱3 𝐱1 𝐱2 𝐱3 

1:1:1 1.40 × 10−4 1.38 × 10−4 1.34 × 10−4 1.41 × 10−6 1.38 × 10−6 1.34 × 10−6 

1:4:4 7.95 × 10−4 2.65 × 10−5 2.73 × 10−5 8.64 × 10−6 3.89 × 10−6 3.90 × 10−6 

1:16:16 3.59 × 10−3 3.95 × 10−6 3.98 × 10−6 3.60 × 10−5 5.30 × 10−8 5.31 × 10−8 
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(a) 

 
(b) 

 

(c) 
 

(d) 

Figure 44 Mesh sensitivity responses for 3D sphere with front quarter removed 

(a) 
𝒅𝓧

𝒅𝐱𝟏
    (b) 

𝒅𝓧

𝒅𝐱𝟐
    (c) 

𝒅𝓧

𝒅𝐱𝟑
    (d) 

𝒅𝓧

𝒅𝐱𝟒
 

In Figure 45 a movement in x4 = 0.075 is shown. The magnified portion of the image shows the three 

nodes on a line that were controlled by x4. Figure 45 shows the displacement of three nodes along the 

surface from the initial position at (A) to the prescribed location (B). It is clear that the nodes can slide 

along the boundary to maintain the overall properties of the domain and report accurate sensitivities. 
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Figure 45 3D mesh update for 𝓧+
𝒅𝓧

𝒅𝐱𝟒
× 𝟎. 𝟎𝟕𝟓 

Figure 46 shows the magnitude of the movement of the surface nodes corresponding to the mesh 

movement in Figure 45 (a). It is clear that the node movement scales between 0 and 0.075 as is 

expected given the sensitivity profile in Figure 44. In (b) the resulting deviation from the surface of the 

geometry is shown. It is clear that the deviation from the surface is significantly less than the update 

magnitude of 0.075. The largest deviation is at the perturbed nodes where they deviate from the 

surface by 0.0028. 

(A) 

(B) 
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(a) 

 
(b) 

Figure 46 Movement of surface nodes for 𝐱𝟒 = 𝟎. 𝟎𝟕𝟓 mesh estimation 

(a) Update magnitude of surface nodes (b) Magnitude of deviation of nodes from the surface 

5.6. Demonstration on concavity and non-linearity  

Whilst the simplistic ellipse and ellipsoid have been used for discussion below demonstrates the 

methods effectiveness on a high curvature, convex and domain. The domain boundary has the closed 

form solution of: 

 
𝑓𝜕Ω = −x4𝒙

′2 − x5𝒚
′𝟐 − x6𝒛

′𝟐 + x7𝒙
′𝟒 + x8𝒙

′𝟒 + x9𝒙
′𝟒 + 1000 (122) 

Where: 

 𝒙′ =
𝒙 − x1
x10

 (123) 

 𝒚′ =
𝒚 − x2
x11

 (124) 

 𝒛′ =
𝒛 − x3
x12

 (125) 

The initial domain has the variables Δ𝐱 = {0, 0, 0, 50, 50, 50, 1, 1, 1, 1, 1, 1}𝑇. An update to the domain 

of Δ𝐱 = {20, 5, 5, 3, 0, −4,−0.1, 0.1 ,0 ,0.1 ,1 ,0}𝑇 is applied and the system resolved. This is shown in 

Figure 47. Since the domain is highly non-linear and the sensitivities are linear, there is some 

discrepancy when changes of 10% are made to the domain. The translation components x1 through x3 

give the exact result as expected. The predicted boundary is not exact since the remaining parameters 

are non-linearly related to the dimensions 𝑥, 𝑦 and 𝑧. 
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Figure 47 Predicted and resolved boundary for non-linear domain 

5.7. Summary 

In this chapter, the method for obtaining analytical sensitivities, that account for free movement of 

boundary nodes, was developed. It was shown to obtain the correct results when compared to 

numerical sensitivities. The numerical sensitivities were successfully implemented using a forward finite 

difference step to allow for comparison with analytical sensitivities. 

The analytical sensitivities were successfully implemented using the Lagrangian MPC method. This 

allowed the nodes to move freely along the boundary as well as relaxing surface nodes from predefined 

positions. This reduces the need for remeshing between iterations as discussed by Wilke et al. [7]. 

Comparison of the numerical and analytical sensitivities for 2D and 3D showed that the errors between 

the two methods were on the same order of magnitude as the perturbation used to obtain the 

sensitivity. This was limited (for these problems) to perturbations of greater than 10−6 since numerical 

precision limited the accuracy of the finite-difference sensitivities, causing errors between the methods 

to increase. 

The largest curvature cases had the largest effect on errors between the two methods. The parameter 

controlling the short dimension in both verifications produced an increased error with increased 

curvature. This was due to the relative change in the value of the parameter increasing. The increase in 
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the number of points (reduced edge length) was shown to not affect the accuracy of the system 

sensitivities appreciably. 

The analytical sensitivities were demonstrated to act over the entire domain as desired for shape 

sensitivities. As a result, these sensitivities were able to predict large geometry changes of 20%. This 

was successfully demonstrated for both 2D and 3D. Further, the ability of the sensitivities to update 

along the boundary nodes for small perturbations was demonstrated and quantified for both 2D and 

3D.
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CHAPTER 6  

CONCLUSION 

“First rule of engineering; beware prototypes. Along with, avoid anything made by an engineer who 

doesn't have all his own fingers.” ― Simon R. Green 

6.1. Discussion 

In this study, a prototype mesher that outputs global mesh sensitivities was developed. The mesher 

was based on a non-linear finite element truss system that was solved iteratively using Newton’s 

method to obtain static equilibrium of the system. The mesh sensitivities for the system were obtained 

using an analytical method. The accuracy of these sensitivities was demonstrated for 2D and 3D using 

smooth and continuous ellipse and ellipsoid geometries respectively. 

The importance of accurate mesh sensitivities for obtaining accurate shape sensitivities for the 

gradient-based optimisation was highlighted and the preference of these sensitivities to describe mesh 

deformation throughout the domain was also discussed. The meshing method described herein was 

developed in this context and based on the forward-Euler truss based mesher DistMesh [33]. The 

conversion to a non-linear FEM based truss mesher was successfully completed and shown to obtain 

quadratic convergence. 

The mesher was initially designed to utilise prescribed boundary nodes. From the outset, it was noted 

that having only prescribed boundary nodes was a limitation and that allowing the nodes to follow the 

boundary freely was important. This was especially true for the 3D implementation where prescribing 

boundary nodes over non-linear surfaces quickly presented significant difficulties. 

To overcome the limitations associated with prescribing boundary nodes, traditional contact methods, 

and multipoint constraint methods (MPC) were investigated. Since the geometrical domain boundary 

needs to be “exactly” satisfied by the discretisation algorithm, of the methods investigated two 

methods were selected that satisfied this criterion. These were the Lagrangian and MSEM MPC 

methods. Both methods were successfully implemented for both 2D and 3D meshing platforms and 

shown to obtain the quadratic convergence associated with the correct implementation of Newton’s 

method. 

Examination of the two MPC methods revealed differences in the robustness and computational 

resources required to solve the truss system. The MSEM exhibited significant challenges in obtaining a 

converged solution, particularly for geometries with medium-to-high curvature. These problems, such 

as the introduction of complex roots during recovery of the slave DOF; impacted the convergence 

capabilities of the MSEM. Means of controlling these difficulties were developed and associated 
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improvement in convergence rates was shown. The Lagrangian method was shown to be far more 

robust than the MSEM. 

The MSEM showed significant benefits in solution time in comparison with the Lagrangian method per 

Newton iteration. For the direct solver implementations, the Lagrangian method took up to 3.1 times 

longer to solve a single Newton iteration. For the iterative solver, the difference was reduced to a 

maximum of ~2.5 times with 100% of nodes constrained as MPCs. This was due to the reduction of 

DOFs from the solved linear system in the MSEM. In contrast, the Lagrangian method augmented the 

linear system and increased the number of DOFs. The higher the percentage of MPC nodes constrained, 

the greater the discrepancy between the two methods. The associated increase in solution time was 

particularly prevalent for the direct solver of up to 3.1 times to solve the Lagrangian system for a single 

Newton iteration. The time impact associated with the additional DOFs of the Lagrangian method was 

significantly reduced by employing indirect solvers. The discrepancy was bought down to an average of 

2.3 for large systems where 40% or more nodes participate in the MPCs. 

The largest difference in resulting system size arises from the case where 100% of nodes in the system 

are MPC constrained. When coupled with the results from the iterative solver times and the additional 

Newton iterations required by the MSEM, the Lagrangian method required ~6% longer solution times 

to resolve truss equilibrium. It was noted that the MSEM was often unable to converge or could require 

a substantial number more iterations to obtain convergence for medium to high curvature geometries. 

The time associated with computing and assembling the MPC linear system for one Newton step was 

as much as 60% longer for the MSEM. In a matrix-free iterative solver, these calculations are performed 

for every iteration of the solver and the time associated with these calculations dominates the time 

associated with each iteration of the solver and, correspondingly, the time to solve one Newton 

Iteration. Based on the information obtained during this study, this implies that the Lagrangian MPC 

method will likely prove a faster implementation for matrix-free iterative solver implementations. 

Calculations showed the improved performance of the Lagrangian could be as much as 30% more 

efficient for matrix-free implementations under conditions where 100% of MPC nodes are constrained 

and 3% where 20% nodes are constrained. The Lagrangian method was selected as the preferred 

method for the boundary node control. 

The method for obtaining the mesh sensitivities was then developed for the Lagrangian method. These 

were shown to be correct through comparison with numerical sensitivities produced using the forward 

finite difference method. The sensitivities were shown to allow for boundary node movement and to 

be able to describe mesh movement throughout the domain. The ability of the sensitivities to describe 

the behaviour of non-uniform meshes was also demonstrated to be accurate, as well as the ability of 

the mesh to adapt to large deformations in geometry. 
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Overall the mesher was shown to accomplish the objectives of this study. The main objectives were the 

ability to discretise non-linear domains and to produce reliable mesh sensitivities for use in gradient-

based shape optimisation. 

6.2. Suggestions for future work 

Future development of this mesher could include: 

1. In the current implementation, the length control functions discretely assign truss lengths to the 

system. For a non-uniform mesh, investigate the possibility of incorporating the gradients of the 

truss length assignment functions, to improve convergence in the regions of local mesh 

refinements. This would require alteration of the Newton truss implementation in §3.3 to 

incorporate the effect of 𝑳𝑑𝑒𝑠 as the function 𝑳𝑑𝑒𝑠(𝓧). This could potentially utilise RBF fields 

since they are smooth and continuous with analytical sensitivities easily computable. This will, 

however, require an efficient differentiation of RBF functions. This could then potentially also 

be used in the implementation of the sensitivities. 

2. Implement a curvature-based adaptive refinement strategy to facilitate accurate domain 

discretisation with minimal input from the user. 

3. Implement an adaptive meshing strategy that uses the error estimate fields to dictate 

refinement. 

4. Implement the mesher rather as a sensitivities “wrapper” that can utilise standard NURBS 

geometry descriptions and a pre-meshed domain. Thereafter use this implementation to return 

an optimised mesh and mesh sensitivities. In this application, the MSEM may be robust enough. 

The acquisition of the MSEM sensitivities is developed in APPENDIX L to facilitate this. 

5. Improve edge addition and removal to not require full retriangulation of the mesh for local mesh 

refinement. 

6. Include faux “cross struts” in simplexes to reduce the likelihood of degenerating elements 

during updates. These could potentially use non-linear truss functions to retain a “minimum”. 

7. Include a “quality” enforcement strategy through altering the truss stiffness coefficient 𝑘𝑡𝑟𝑢𝑠𝑠 

throughout the domain.  

 

Alternatives: 

1. Use the MPC boundary method with the stiffness matrix obtained from the system FEA to 

obtain internal nodal coordinate sensitivities.
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APPENDIX A COMPARISON OF THE MSEM IMPLEMENTATIONS 

In literature, there are two distinct approaches to the derivation of the MSEM. The first approach 

highlighted uses a transformation to generate the system of equations to be solved (see [43]). The 

second uses an energy method that identifies that no work may be done by the constraint (see [44]). 

For this discussion, linear FEM will be considered to facilitate comparison between the two MSEM 

approaches.  

The standard form of the linear FEM is 𝐊𝐮 = 𝐟. This can be partitioned into the free 𝐮𝑓, master 𝐮𝑚, 

slave 𝐮𝑠 and prescribed 𝐮𝑝 DOFs. The vector 𝐟 represents external forces applied at the nodes and 𝑹 

represents boundary reaction forces at the master, slave, and prescribed DOFs: 

 

[
 
 
 
 
𝐊𝑓𝑓 𝐊𝑓𝑚 𝐊𝑓𝑠 𝐊𝑓𝑝
𝐊𝑚𝑓 𝐊𝑚𝑚 𝐊𝑚𝑠 𝐊𝑚𝑝
𝐊𝑠𝑓 𝐊𝑠𝑚 𝐊𝑠𝑠 𝐊𝑠𝑝
𝐊𝑝𝑓 𝐊𝑝𝑚 𝐊𝑝𝑠 𝐊𝑝𝑝 ]

 
 
 
 

{

𝐮𝑓
𝐮𝑚
𝐮𝑠
𝐮𝑝

} =

{
 

 
𝐟𝑓

𝐟 + 𝑹𝑚
𝐟𝑠 + 𝑹𝑠
𝑹𝑝 }

 

 
 (126) 

Since the prescribed DOFs are known, the system can be modified to require solution to only the 

unknown DOFs 𝐮𝑓,𝐮𝑚 and 𝐮𝑠 and the unknown reaction forces 𝑹𝑚 and 𝑹𝑠 on the RHS of the above 

equation. The reaction forces 𝑹𝑝 are recovered from (126) after the reduced system is solved. 

In the implementation of the transformation method, the reaction forces 𝑹𝑚 and 𝑹𝑠 are notably 

missing from the initial formulation. Though ignored in these implementations they will be carried 

through and highlighted grey. The system can be rearranged to show only the unprescribed DOFs as: 

 

[

𝐊𝑓𝑓 𝐊𝑓𝑚 𝐊𝑓𝑠
𝐊𝑚𝑓 𝐊𝑚𝑚 𝐊𝑚𝑠
𝐊𝑠𝑓 𝐊𝑠𝑚 𝐊𝑠𝑠

] {

𝐮𝑓
𝐮𝑚
𝐮𝑠
} = {

𝐅𝑓
𝐅𝑚 + 𝑹𝑚
𝐅𝑠 + 𝑹𝑠

}  (127) 

where: 

 𝐅𝑓 = 𝐟𝑠 − 𝐊𝑓𝑝𝐮𝑝
𝐅𝑚 = 𝐟𝑚 − 𝐊𝑚𝑝𝐮𝑝
𝐅𝑠 = 𝐟𝑠 − 𝐊𝑠𝑝𝐮𝑝

 (128) 

 

Symmetrizing or transformation method 

For the transformation approach given in [43], all unprescribed DOFs 𝐮𝑓𝑚𝑠 (free, slave and master) are 

equated to the reduced DOF vector 𝐮̂ of the free and master DOFs by a transformation matrix 𝑻 as 

follows:  

 

𝐮 = 𝑻𝐮̂ + 𝒅̂ (129) 

or in the element-based form: 
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{

{𝐮𝑓}

{𝐮𝑚}

{𝐮𝑠}

} = [

[𝑰] 𝟎
𝟎 [𝑰]

𝟎 [𝑷]
] {
{𝐮𝑓}

{𝐮𝑚}
} + {

𝟎
𝟎
𝒅
} (130) 

Given the standard form of the linear FEA problem 𝐊𝐮 = 𝐟, the system then becomes: 

 
𝐊𝑓𝑚𝑠{𝑻𝐮̂ + 𝒅̂} = 𝐟 (131) 

The system is fully ranked at this point, but not symmetric. It was well understood in the development 

of FEM and the MSEM approach that the mathematical systems associated with material physics must 

be symmetric. Symmetry of the MSEM system was therefore enforced by pre-multiplying the equation 

by the transpose of the transformation matrix 𝑻𝑇 yielding the modified system: 

 

𝐊̂𝐮̂ = 𝐟 (132) 

where: 

 𝐊̂ = 𝑻𝑇𝐊T  

𝐟 = 𝑻𝑇{𝐟 − 𝐊𝒅} 
(133) 

The transformation matrix 𝑻 was essentially created in such a way that when the system is transformed, 

the displacements associated with the slave DOFs are removed. This implies that they are “prescribed” 

in the transformed domain. This symmetrizing step retains congruency of the system. After solving the 

modified system in (132), the solution to the original problem is recovered using (129). 

Multiplying (132) out gives the system: 

 

𝐊̂ = 𝑻𝑇𝐊𝑻 = [

𝐊𝑓𝑓 (𝐊𝑓𝑚 + 𝐊𝑓𝑠𝑷)

(𝐊𝑚𝑓 + 𝑃
𝑇𝐊𝑠𝑓) (

𝐊𝑚𝑚 + 𝐊𝑚𝑠𝑷

+𝑷𝑇𝐊𝑠𝑚 + 𝑷
𝑇𝐊𝑠𝑠𝑷

)
] (134) 

and: 

 

𝐟 = [
[𝑰] 𝟎 𝟎

𝟎 [𝑰] 𝑷𝑇
] {

𝐅𝑓 − 𝐊𝑓𝑠𝒅

𝐅𝑚 + 𝑹𝑚 −𝐊𝑚𝑠𝒅
𝐅𝑠 + 𝑹𝑠 − 𝐊𝑠𝑠𝒅

}

= {
𝐅𝑓 − 𝐊𝑓𝑠𝒅

𝐅𝑚 + 𝑷
𝑇𝑭𝑠 − 𝐊𝑚𝑠𝒅 − 𝑷

𝑇𝐊𝑠𝑠𝒅 + (𝑹𝑚 + 𝑷
𝑇𝑹𝑠) 

} 

(135) 

It is clear that an accurate description of the system requires inclusion and resolution of the MPC 

reaction forces (𝑹𝑚 and 𝑹𝑠) at the constraints. However, the transformation method implementations 

reviewed make it clear that the reaction forces 𝑹𝑚 and 𝑹𝑠 are not included as unknowns in the initial 
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system in (126). The RHS is given by external forces 𝐟 only, thereby implying that the reaction forces 

are equal to zero (𝑹𝑚 = 𝟎 and 𝑹𝑠 = 𝟎). 

However, when the reaction forces are included and carried through (as is physically correct), the term 

𝑹𝑚 + 𝑷
𝑇𝑹𝑠 is found in the RHS of the system. Fortuitously, the inadvertent selection of 𝑹𝑚 = 𝟎 and 

𝑹𝑠 = 𝟎 makes the term zero, leaving the only unknowns as 𝐮 = {
𝐮𝑓
𝐮𝑚
}.  

The term 𝑹𝑚 + 𝑷
𝑇𝑹𝑠 can indeed be demonstrated to be zero with a non-trivial solution (𝑹𝑚  ≠  𝟎 and 

𝑹𝑠 ≠  𝟎), this, however, requires an understanding of the fact that the constraint boundary does no 

work on the system other than that done by the prescribed displacement portion 𝒅. Such an 

understanding is absent in the transformation approach. 

Energy method 

Since the finite element methods are a form of energy methods, it has been identified (see [44] and 

[45]) that for the MSEM MPC boundary conditions to be correctly derived no work can be done by the 

constraint, except by that which is associated with the prescribed displacement. The system therefore 

contains the DOF unknowns 𝐮𝑓, 𝐮𝑚, 𝐮𝑠 and the unknown reactions 𝑹𝑚 and 𝑹𝑝. The reaction force 𝑹𝑝 

is recovered at the solution of the system. 

Substituting (25) into (128) and manipulating gives: 

 
[
𝐊𝑓𝑓 (𝐊𝑓𝑚 + 𝐊𝑓𝑠𝑷)

𝐊𝑚𝑓 (𝐊𝑚𝑚 + 𝐊𝑚𝑠𝑷)
] {
𝐮𝑓
𝐮𝑚
} = {

𝐅𝑓 − 𝐊𝑓𝑠𝒅

𝐅𝑚 + 𝑹𝑚 − 𝐊𝑚𝑠𝒅
} (136) 

𝑹𝑚 is however still an unknown present in the RHS. By identifying that the constraint boundary should 

produce no work except for that associated with the non-zero prescribed displacement, the following 

equation is given: 

 
𝐮𝑚

𝑇𝑹𝑚 + 𝐮𝑠
𝑇𝑹𝑠 = 𝒅𝑹𝑠 (137) 

Substituting the MPC equations in (25) for 𝐮𝑠
𝑇: 

 
𝐮𝑚

𝑇𝑹𝑚 + (𝑷𝐮𝑚 + 𝒅)
𝑇𝑹𝑠 = 𝒅

𝑇𝑹𝑠 (138) 

The equation can be rearranged for the variable 𝒖𝑚 as: 

 
𝐮𝑚

𝑇(𝑹𝑚 + 𝑷
𝑇𝑹𝑠) = 𝟎 (139) 

For this to hold true for the non-trivial solution (𝐮𝑚 ≠ 𝟎, 𝑹𝑚 ≠ 𝟎 and 𝑹𝑠 ≠ 𝟎): 
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𝑹𝑚 = −𝑷𝑇𝑹𝑠 (140) 

The reaction force 𝑹𝑠 can be solved from the last equation in (127). It can be shown that substituting 

the solution to 𝑹𝑠 into (140) and also into (136) followed by grouping the displacement terms 𝐮𝑚 and 

𝐮𝑓 gives: 

 

[

𝐊𝑓𝑓 (𝐊𝑓𝑚 + 𝐊𝑓𝑠𝑷)

(𝐊𝑚𝑓 + 𝑷
𝑇𝐊𝑠𝑓) (

𝐊𝑚𝑚 + 𝐊𝑚𝑠𝑷

+𝑷𝑇𝐊𝑠𝑚 + 𝑷
𝑇𝐊𝑠𝑠𝑷

)
] {
𝐮𝑓
𝐮𝑚
}

= {
𝐅𝑓 − 𝐊𝑓𝑠𝒅

𝐅𝑚 + 𝑷
𝑇𝐅𝑠 − 𝐊𝑚𝑠𝒅 − 𝑷

𝑇𝐊𝑠𝑠𝒅 
} 

(141) 

This equation in (141) is seen to be the same resulting system of equations as in (132) - (135), with the 

notable exception that the reaction force term 𝑹𝑚 + 𝑷
𝑇𝑹𝑠 is not present in the final system in (141). 

To summarise, in the transformation method, symmetry of the system was enforced through a 

pre-multiplication that resulted in symmetry. This was done since it was understood that the system 

“should” be symmetric. This however never properly handles the presence of the reaction forces at the 

MPC boundaries. In contrast, the energy method approach uses direct algebraic manipulation and the 

requirement that no work is done at the constraint other than that done by the prescribed 

displacement, to recover a solvable system of equations. The system of equations is inherently 

symmetric as a result of the manipulations as opposed to simply enforced. It is, however, important to 

note the comparative ease of implementing the transformation method compared to the energy 

method: there are far fewer elements to manage and less rearranging of the resulting system is 

required.
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APPENDIX B DEVELOPMENT OF DERIVATIVES FOR AN ELLIPSE 

B.1. Development of derivatives 

An ellipse was used to describe the domain boundary for the development of the first and second-order 

derivatives. This was chosen since the ellipse is simple to define as well as smooth and continuous to 

the second order. A domain described by an ellipsoid also facilitates modification to enable further 

investigation into problems with high curvature or high aspect ratios. The equation for an ellipsoid in 

three dimensions is given as: 

 

 𝑓∂𝛀(𝒖) = (
𝑥𝑖,1

𝑎
)
2

+ (
𝑥𝑖,1

𝑏
)
2

+ (
𝑥𝑖,3

𝑐
)
2

− 1 = 0 (142) 

B.2. First-order partial derivative (Lagrangian) 

The first-order partial derivative is used in the Lagrangian approach: 

 
𝑑𝑓∂𝛀
𝑑𝒙

= {2
𝑥𝑖,1
𝑎2

2
𝑥𝑖,2
𝑏2

2
𝑥𝑖,3
𝑏2
}
𝑇

 (143) 

B.3. Second-order partial derivatives (Lagrangian) 

The second-order partial derivative is used in the Lagrangian approach: 

 

𝑑2𝑓𝛀
𝑑𝒙2

=

[
 
 
 
 
2
𝑎2⁄ 0 0

0 2
𝑏2⁄ 0

0 0 2
𝑐2⁄ ]
 
 
 
 

 (144) 

B.4. First-order derivative (MSEM) 

In the equation below, the master DOFs are represented by𝑥𝑖,𝑚1 and 𝑥𝑖,𝑚2 with corresponding 

constants given by 𝑐𝑚1 and 𝑐𝑚2 respectively. The slave DOF is represented by 𝑥𝑖,𝑠 and constant 𝑐𝑠: 

 
𝑑𝒙𝑠
𝑑𝒙𝑚

= {−
𝑐𝑠 
2  𝑥𝑖,𝑚1

𝑐𝑚1
2  𝑥𝑖,𝑠

−
𝑐𝑠 
2𝑥𝑖,𝑚2

𝑐𝑚2
2  𝑥𝑖,𝑠

}

𝑇

 (145) 

B.5. Second-order derivative (MSEM) 

In the equation below, the master DOFs are represented by 𝑥𝑖,𝑚1 and 𝑥𝑖,𝑚2 with corresponding 

constants given by 𝑐𝑚1 and 𝑐𝑚2 respectively. The slave DOF is represented by 𝑥𝑖,𝑠 and constant 𝑐𝑠: 
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𝑑2𝒙𝑠
𝑑𝒙𝒎2

=

[
 
 
 
 
 
−
(𝑐𝑠

4(𝑐𝑚2
2  −  𝑥𝑖,𝑚2

2 ))

𝑐𝑚1
2 𝑐𝑚2

2 𝑥𝑖,𝑠
3 −

𝑐𝑠
4𝑥𝑖,𝑚2𝑥𝑖,𝑚1

𝑐𝑚2
2 𝑐𝑚1

2 𝑥𝑖,𝑠
3

−
𝑐𝑠
4𝑥𝑖,𝑚1𝑥𝑖,𝑚2

𝑐𝑚1
2 𝑐𝑚2

2 𝑥𝑖,𝑠
3 −

(𝑐𝑠
4(𝑐𝑚1

2  −  𝑥𝑖,𝑚1
2 ))

𝑐𝑚1
2 𝑐𝑚2

2 𝑥𝑖,𝑠
3

]
 
 
 
 
 

 (146) 
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APPENDIX C TRUSS EFFECTIVENESS 

C.1. Truss effectiveness and resilience of the formulations to scaling 𝑳𝒄/𝑳𝒅𝒆𝒔 in 2D 

An investigation was conducted to determine the effectiveness of the various truss formulations 

detailed in §3.2.2. and the Newton’s method implementation. The following initial conditions were 

created: 

A circular distance function with unit radius was used to determine the distance of the point under 

consideration to the boundary: 

 
𝑓𝑑Ω(𝒑𝑖) = ‖𝒑𝑖‖2 − 1 (147) 

For 2D the coordinates of the point are given by: 

 
𝒑𝒊 = {𝒳𝑖×2 −1, 𝒳𝑖×2} (148) 

For 3D the coordinates of the point are given by: 

 𝒑𝒊 = {𝒳𝑖×3−2, 𝒳𝑖×3−1, 𝒳𝑖×3} (149) 

The initial mesh was seeded using equilateral triangles with the initial uniform edge length size 𝐿0: 

 𝐿0 = 0.05 (150) 

Here, the initial seeding length 𝐿0 should not be confused with the desired truss length 𝐿𝑑𝑒𝑠. 

As shown in Figure C-1, all nodes located outside of a tolerance of −0.7𝐿0 interior to the boundary of 

the circle were removed and the boundary was seeded using fixed nodes which forced the triangles to 

remain inside of the boundary. Nodes were placed along the circumference with a spacing equal to 𝐿𝑑𝑒𝑠 

as shown by the * in Figure C-1. 
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Figure C-1 Initial seed mesh for truss convergence study in 2D 

Having defined the initial seed mesh shown in Figure C-1, equilibrium for each of the considered truss 

formulations is solved. Several scaling factors for the deviation from desired truss length were analysed 

to allow for a good comparison between the formulations. The desired length 𝐿𝑑𝑒𝑠 was scaled to obtain 

a certain compression ratio 𝑅𝑐𝑜𝑚𝑝 =
𝐿𝑐

𝐿𝑑𝑒𝑠
 as shown in Figure 10 of §3.2.2.5: 

 

𝐿𝑑𝑒𝑠 =
𝐿0

𝑅𝑐𝑜𝑚𝑝
 (151) 

Remeshing was permitted for any iteration where a node was found to have moved a distance of more 

than 10% of the local desired truss length, 𝐿𝑑𝑒𝑠, from its previous position. The norm of the error 

squared was used as the solution criterion for this study with the convergence tolerance given as: 

 
‖𝒖‖2  < 1 × 10

−8 (152) 

 

C.2. Truss effectiveness and resilience of the formulations to scaling 𝑳𝒄/𝑳𝒅𝒆𝒔 in 3D 

This investigation was performed retrospectively once a high-quality surface mesh was obtained using 

aspects of the MPC implementation as depicted in Figure C-2. The surface nodes were then fixed on 

the boundary. An initial mesh was then created that was able to converge for both methods without 
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the need for retriangulation. The mesh was verified by confirming that quadratic convergence was 

obtained for all truss formulations when 
𝐿𝑐

𝐿𝑑𝑒𝑠
= 1. 

 

Figure C-2 Initial seed mesh for truss convergence study in 3D 

Results are provided for scaling factors 
𝐿𝑐

𝐿𝑑𝑒𝑠
 of 0.8, 1, 1.2, and 2 as a means of highlighting the similarities 

in convergence response for the 2D and 3D truss formulations. 

C.3. Newton implementation results for 2D and various truss formulations 

Investigations were performed for 
𝐿𝑐

𝐿𝑑𝑒𝑠
= 0.7 , 0.8 ,1.0 , 1.2 and 2. Table C-1 details results for 

𝐿𝑐

𝐿𝑑𝑒𝑠
= 1, 

see APPENDIX D for results corresponding to the other ratios. Figure C-3 provides a visual 

representation of the quadratic convergence achieved for each ratio.  
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Table C-1 2D truss formulation convergence comparison results for 𝑳𝒄/𝑳𝒅𝒆𝒔 = 1 

𝑭𝒕𝒓𝒖𝒔𝒔 = 
𝚫𝑳

𝑳𝒅𝒆𝒔
 

𝚫𝑳

𝑳𝒄
 𝚫𝑳

𝑳𝒅𝒆𝒔
𝒆
𝑺𝟏 [

𝚫𝑳
𝑳𝒅𝒆𝒔

]
𝟐

 
𝚫𝑳

𝑳𝒄
𝒆
𝑺𝟏 [

𝚫𝑳
𝑳𝒄
]
𝟐

 

𝑺𝟏 - - 0.5 1 2 -0.5 1 

Iterations 5 8 5 5 6 5 8 

Avg final 
𝑳𝒄

𝑳𝒅𝒆𝒔
 1.013 1.013 1.013 1.013 1.013 1.013 1.013 

Min-quality 0.671 0.675 0.675 0.679 0.687 0.667 0.685 

Remeshes 2 5 3 3 3 3 5 

Norm updates 
Iteration No. 0 0 0 0 0 0 0 

1 3.90E-01 4.47E-01 3.41E-01 3.03E-01 2.48E-01 4.55E-01 4.12E-01 

2 3.00E-02 7.18E-02 7.54E-02 1.08E-01 1.42E-01 4.65E-02 4.45E-02 

3 4.22E-04 4.24E-02 2.76E-03 8.97E-03 3.21E-02 1.30E-03 4.20E-02 

4 2.58E-07 2.30E-02 5.80E-06 6.93E-05 1.57E-03 1.20E-06 2.34E-02 

5 3.38E-13 3.85E-03 8.66E-11 9.22E-09 5.37E-06 1.96E-12 3.84E-03 

6 - 8.15E-05 - - 1.07E-10 - 1.04E-04 

7 - 6.64E-08 - - - - 1.17E-07 

8 - 8.73E-14 - - - - 3.93E-13 

 

Figure C-3 shows the effect of the compression ratio 
𝐿𝑐

𝐿𝑑𝑒𝑠
= 1, 0.7 , 0.8 , 1.2 and 2 on system 

convergence. From these graphs, it is clear that the formulation 𝐹𝑡𝑟𝑢𝑠𝑠 =
Δ𝐿

𝐿𝑑𝑒𝑠
 has the best overall 

performance with either the fastest or near fastest convergence rates. It is also clear that the 

compressed state 
𝐿𝑐

𝐿𝑑𝑒𝑠
< 1 has greater difficulty in converging when compared to tension systems with 

𝐿𝑐

𝐿𝑑𝑒𝑠
> 1. It is noted that the high tension system 

𝐿𝑐

𝐿𝑑𝑒𝑠
= 2 improved the convergence rate for the 

formulation 𝐹𝑡𝑟𝑢𝑠𝑠 =
Δ𝐿

𝐿𝑑𝑒𝑠
 by one iteration. 
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(a) 

 

(b) 

 

(c) 

 

 (d) 

 

(e) 

Figure C-3 Truss formulation convergence in 2D for various scaling factors 𝑳𝒄 𝑳𝒅𝒆𝒔⁄   
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C.4. Newton implementation results for 3D 

Figure C-4 shows the 3D convergence response for 
𝐿𝑐

𝐿𝑑𝑒𝑠
= 1, 0.8 and 2 in (a) (b) and (c) respectively. It 

is clear that for 
𝐿𝑐

𝐿𝑑𝑒𝑠
= 1 all truss results converge quadratically with roughly the same effectiveness. 

For the compressed state, 
𝐿𝑐

𝐿𝑑𝑒𝑠
= 0.8 and for the tension state the formulation 𝐹𝑡𝑟𝑢𝑠𝑠 =

Δ𝐿

𝐿𝑑𝑒𝑠
 were seen 

to result in the best performance. The formulation 𝐹𝑡𝑟𝑢𝑠𝑠 =
Δ𝐿

𝐿𝑐
 was shown to be susceptible to negative 

effects associated with compression. 

  

(a) 

 

(b) 

 

(c) 

Figure C-4 Truss formulation convergence in 3D for various scaling factors 𝑳𝒄 𝑳𝒅𝒆𝒔⁄  

C.5. Evaluation of truss method implementation 

§C.3 and §C.4 show that quadratic convergence was achieved by all truss formulations considered as 

indicated by the reduction in error by a factor of at least 10−2 in subsequent steps. Newton’s method 

and the truss formulations were therefore verified as correctly implemented. The number of iterations 
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required to obtain a solution are presented in Table C-2 for easy comparison. The minimum triangle 

(element) quality is given in Table C-3. 

Table C-2 Truss formulation in 2D: comparison of number of required iterations 

𝑭𝒕𝒓𝒖𝒔𝒔 = 
Scale 

𝑳𝒄/𝑳𝒅𝒆𝒔 

𝚫𝑳

𝑳𝒅𝒆𝒔
 

𝚫𝑳

𝑳𝒄
 𝚫𝑳

𝑳𝒅𝒆𝒔
𝒆
𝑺𝟏 [

𝚫𝑳
𝑳𝒅𝒆𝒔

]
𝟐

 
𝚫𝑳

𝑳𝒄
𝒆
𝑺𝟏 [

𝚫𝑳
𝑳𝒄
]
𝟐

 

𝑺𝟏 - - - 0.5 1 2 -0.5 1 

R
eq

u
ir

ed
 It

e
ra

ti
o

n
s 

(c
o

n
ve

rg
en

ce
 f

ai
le

d
) 

0.7 (2) (3) (2) (4) (3) (2) (3) 

0.8 9 (6) 11 10 9 (6) (5) 

0.9 5 7 6 6 6 5 9 

1 5 8 5 5 6 5 8 

1.1 5 6 5 6 7 5 5 

1.2 5 6 5 6 7 6 5 

1.5 4 5 6 7 9 (2) 5 

2 4 5 7 9 14 (3) 5 
 

Table C-3 Truss formulation in 2D: comparison of minimum triangle quality 

𝑭𝒕𝒓𝒖𝒔𝒔 = 
Scale 

𝑳𝒄/𝑳𝒅𝒆𝒔 

𝚫𝑳

𝑳𝒅𝒆𝒔
 

𝚫𝑳

𝑳𝒄
 𝚫𝑳

𝑳𝒅𝒆𝒔
𝒆
𝑺𝟏 [

𝚫𝑳
𝑳𝒅𝒆𝒔

]
𝟐

 
𝚫𝑳

𝑳𝒄
𝒆
𝑺𝟏 [

𝚫𝑳
𝑳𝒄
]
𝟐

 

𝑺𝟏 - - - 0.5 1 2 -0.5 1 

A
vg

 Q
u

al
it

y 
 

(c
o

n
ve

rg
en

ce
 f

ai
le

d
) 

0.7 (NaN) (2.00E-08) (8.04E-09) (1.56E-06) (5.51E-07) (1.02E-06) (4.63E-09) 

0.8 0.736 (1.98E-08) 0.731 0.730 0.720 (2.60E-06) (5.69E-06) 

0.9 0.682 0.702 0.681 0.681 0.680 0.682 0.697 

1 0.671 0.675 0.675 0.679 0.687 0.667 0.685 

1.1 0.662 0.673 0.668 0.674 0.685 0.654 0.652 

1.2 0.654 0.658 0.663 0.669 0.679 0.663 0.649 

1.5 0.641 0.621 0.653 0.656 0.654 (1.85E-07) 0.635 

2 0.625 0.607 0.645 0.641 0.626 (1.59E-06) 0.607 

 

The relative convergence rates for all truss formulations considered for 3D are shown in Figure C-4 (a) 

through (c). The number of iterations required to obtain a solution are presented in Table C-4 for easy 

comparison. The minimum tetrahedral (element) quality is given in Table C-5. 
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Table C-4 Truss formulation in 3D: comparison of number of required iterations 

𝑭𝒕𝒓𝒖𝒔𝒔 = 
Scale 

𝑳𝒄/𝑳𝒅𝒆𝒔 

𝚫𝑳

𝑳𝒅𝒆𝒔
 

𝚫𝑳

𝑳𝒄
 𝚫𝑳

𝑳𝒅𝒆𝒔
𝒆
𝑺𝟏 [

𝚫𝑳
𝑳𝒅𝒆𝒔

]
𝟐

 
𝚫𝑳

𝑳𝒄
𝒆
𝑺𝟏 [

𝚫𝑳
𝑳𝒄
]
𝟐

 

𝑺𝟏 - - - 0.5 1 2 -0.5 1 

Required 
Iterations 
(convergence 
failed) 

0.8 12 20 13 13 14 (12) 20 

1 12 12 12 12 12 12 12 

1.2 5 5 5 5 8 5 4 

2 4 4 6 7 11 (25) 4 

 

Table C-5 Truss formulation in 3D: comparison of average tetrahedral quality 

𝑭𝒕𝒓𝒖𝒔𝒔 = 
Scale 

𝑳𝒄/𝑳𝒅𝒆𝒔 

𝚫𝑳

𝑳𝒅𝒆𝒔
 

𝚫𝑳

𝑳𝒄
 𝚫𝑳

𝑳𝒅𝒆𝒔
𝒆
𝑺𝟏 [

𝚫𝑳
𝑳𝒅𝒆𝒔

]
𝟐

 
𝚫𝑳

𝑳𝒄
𝒆
𝑺𝟏 [

𝚫𝑳
𝑳𝒄
]
𝟐

 

𝑺𝟏 - - - 0.5 1 2 -0.5 1 

Avg Quality 
(convergence 
failed) 

0.8 0.567 0.593 0.500 0.567 0.601 (0.442) 0.686 

1 0.871 0.873 0.872 0.872 0.871 0.871 0.873 

1.2 0.875 0.875 0.875 0.875 0.874 0.875 0.875 

2 0.877 0.877 0.875 0.872 0.866 NaN 0.877 

 

Table C-2 through Table C-5 show that, for a convergence tolerance of 10−8, the truss formulation 

𝐹𝑡𝑟𝑢𝑠𝑠 =
Δ𝐿

𝐿𝑑𝑒𝑠
 converges either on par with, or better than, any of the other formulations. This is not 

unexpected since the formulation 𝐹𝑡𝑟𝑢𝑠𝑠 =
Δ𝐿

𝐿𝑑𝑒𝑠
 is derived directly from Hooke’s law without 

modification and represents a linear spring.  

This has significant implications: since each iteration in the Newton’s method calculation has the same 

computational time cost for a given number of degrees of freedom, the fewer the number of iterations 

required to achieve convergence the less computational time is required. It is therefore concluded that 

the 𝐹𝑡𝑟𝑢𝑠𝑠 =
Δ𝐿

𝐿𝑑𝑒𝑠
 formulation represents the most efficient option due to its best performance overall. 

On average, the results for the quality of triangles (2D) or tetrahedra (3D) were relatively consistent 

across all methods. For the 2D mesher, results corresponding to elements of the lowest quality were 

shown. Low element quality was due to circumstances where snap-through had occurred and points 

departed from the domain. For the 3D mesher and the scaling factor 
𝐿𝑐

𝐿𝑑𝑒𝑠
= 0.8, all average element 

qualities were similar and considerably lower than for other values of 
𝐿𝑐

𝐿𝑑𝑒𝑠
. This is due to snap through 

in some cases and the development of sliver elements in other cases. 

Trusses in a compressed state given by 
𝐿𝑐

𝐿𝑑𝑒𝑠
< 1 showed high levels of instability. This was evidenced by 

the increased number of iterations required to obtain a solution. However, where convergence was 
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obtained, as in the 2D mesher for 
𝐿𝑐

𝐿𝑑𝑒𝑠
= 0.8, the best element quality results were obtained. In 

contrast, high levels of tension only resulted in convergence problems for 
𝐿𝑐

𝐿𝑑𝑒𝑠
≥ 1.5 and then only on 

the truss formulations that demonstrated snap-through as a characteristic of the force reaction curve. 

This shows that the truss system is more resilient under conditions of high tension than it is to 

compression. 

When the scaling factor 
𝐿𝑐

𝐿𝑑𝑒𝑠
= 1 was used as the scaling factor, the average triangle or tetrahedral 

quality was very similar for both 2D and 3D across all formulations. This is because all formulations have 

similar responses if only a small deviation from 
𝐿𝑐

𝐿𝑑𝑒𝑠
= 1 occurs. 

It is evident that the force response formulation derived directly from Hooke’s law produces the best 

results in terms of efficiency and element quality. The poorest results were attributed to the 

exponential equations, particularly and not unsurprisingly, when a tendency towards snap-through was 

evident in the force reaction curve.

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



APPENDIX D  2D TRUSS STIFFNESS TABLES 
 

 

 

University of Pretoria   122 

Department of Mechanical and Aeronautical Engineering 

APPENDIX D 2D TRUSS STIFFNESS TABLES 

Table D-6 2D truss formulation convergence comparison results for 𝑳𝒄/𝑳𝒅𝒆𝒔 = 0.7 

𝑭𝒕𝒓𝒖𝒔𝒔 = 
𝚫𝑳

𝑳𝒅𝒆𝒔
 

𝚫𝑳

𝑳𝒄
 𝚫𝑳

𝑳𝒅𝒆𝒔
𝒆
𝑺𝟏 [

𝚫𝑳
𝑳𝒅𝒆𝒔

]
𝟐

 
𝚫𝑳

𝑳𝒄
𝒆
𝑺𝟏 [

𝚫𝑳
𝑳𝒄
]
𝟐

 

𝑺𝟏 - - 0.5 1 2 -0.5 1 

Iterations 2 3 2 4 3 2 3 

Avg final 
𝑳𝒄

𝑳𝒅𝒆𝒔
 NaN 1.548 1.125 0.777 0.789 0.822 NaN 

Min-quality NaN 2.00E-08 8.04E-09 1.56E-06 5.51E-07 1.02E-06 4.63E-09 

Remeshes 2 3 2 4 3 2 3 

Norm updates 
Iteration No.        

1 7.46E+00 9.47E-01 2.90E+00 2.08E+00 5.08E-01 7.80E+00 9.34E-01 

2 NaN 5.07E+00 NaN 1.21E+01 4.80E+00 NaN 2.84E+00 

3 - NaN - 4.17E+01 NaN - NaN 

4 - - - NaN - - - 

Table D-7 2D truss formulation convergence comparison results for 𝑳𝒄/𝑳𝒅𝒆𝒔 = 0.8 

𝑭𝒕𝒓𝒖𝒔𝒔 = 
𝚫𝑳

𝑳𝒅𝒆𝒔
 

𝚫𝑳

𝑳𝒄
 𝚫𝑳

𝑳𝒅𝒆𝒔
𝒆
𝑺𝟏 [

𝚫𝑳
𝑳𝒅𝒆𝒔

]
𝟐

 
𝚫𝑳

𝑳𝒄
𝒆
𝑺𝟏 [

𝚫𝑳
𝑳𝒄
]
𝟐

 

𝑺𝟏 - - 0.5 1 2 -0.5 1 

Iterations 9 6 11 10 9 6 5 

Avg final 
𝑳𝒄

𝑳𝒅𝒆𝒔
 0.811 1.212 0.811 0.811 0.811 1.022 0.985417638 

Min-quality 0.736 1.98E-08 0.731 0.730 0.720 2.60E-06 5.69E-06 

Remeshes 6 6 8 8 6 6 5 

Norm updates 
Iteration No.        

1 3.83E-01 4.86E-01 3.68E-01 3.55E-01 3.36E-01 4.02E-01 4.21E-01 

2 9.67E-02 6.23E-01 6.89E-02 7.67E-02 1.04E-01 1.47E-01 5.84E-01 

3 7.04E-02 8.35E-01 8.26E-02 7.79E-02 6.88E-02 6.50E-02 6.72E-01 

4 7.12E-02 2.37E+00 5.33E-02 4.51E-02 1.00E-01 1.19E+00 3.88E+00 

5 2.73E-02 7.88E+00 2.65E-02 2.50E-02 4.63E-02 2.38E+00 NaN 

6 8.93E-03 NaN 3.23E-02 3.44E-02 8.54E-03 NaN - 

7 1.24E-03 - 1.50E-02 1.12E-02 3.72E-04 - - 

8 2.85E-05 - 2.31E-03 1.03E-03 2.01E-06 - - 

9 9.27E-09 - 1.20E-04 1.79E-05 4.56E-11 - - 

10 - - 3.45E-07 7.46E-09 - - - 

11 - - 2.38E-12 - - - - 
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Table D-8 2D truss formulation convergence comparison results for 𝑳𝒄/𝑳𝒅𝒆𝒔 = 1.2 

𝑭𝒕𝒓𝒖𝒔𝒔 = 
𝚫𝑳

𝑳𝒅𝒆𝒔
 

𝚫𝑳

𝑳𝒄
 𝚫𝑳

𝑳𝒅𝒆𝒔
𝒆
𝑺𝟏 [

𝚫𝑳
𝑳𝒅𝒆𝒔

]
𝟐

 
𝚫𝑳

𝑳𝒄
𝒆
𝑺𝟏 [

𝚫𝑳
𝑳𝒄
]
𝟐

 

𝑺𝟏 - - 0.5 1 2 -0.5 1 

Iterations 5 6 5 6 7 6 5 

Avg final 
𝑳𝒄

𝑳𝒅𝒆𝒔
 1.216 1.215 1.216 1.216 1.216 1.215 1.216 

Min-quality 0.654 0.658 0.663 0.669 0.679 0.663 0.649 

Remeshes 2 3 3 3 4 3 2 

Norm updates 
Iteration No.        

1 4.01E-01 4.58E-01 3.14E-01 2.60E-01 1.93E-01 5.63E-01 4.23E-01 

2 2.34E-02 7.84E-02 1.12E-01 1.51E-01 1.61E-01 1.72E-01 2.65E-02 

3 1.70E-04 5.51E-03 9.27E-03 3.53E-02 8.89E-02 1.48E-02 4.30E-04 

4 2.27E-08 6.50E-05 6.31E-05 1.65E-03 2.44E-02 2.03E-04 2.83E-07 

5 2.00E-15 1.61E-08 4.24E-09 4.24E-06 1.77E-03 3.03E-08 2.08E-13 

6 - 3.02E-15 - 4.16E-11 1.06E-05 2.31E-15 - 

7 - - - - 5.38E-10 - - 
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Table D-9 Truss formulation convergence comparison results for 𝑳𝒄/𝑳𝒅𝒆𝒔 = 2 

𝑭𝒕𝒓𝒖𝒔𝒔 = 
𝚫𝑳

𝑳𝒅𝒆𝒔
 

𝚫𝑳

𝑳𝒄
 𝚫𝑳

𝑳𝒅𝒆𝒔
𝒆
𝑺𝟏 [

𝚫𝑳
𝑳𝒅𝒆𝒔

]
𝟐

 
𝚫𝑳

𝑳𝒄
𝒆
𝑺𝟏 [

𝚫𝑳
𝑳𝒄
]
𝟐

 

𝑺𝟏 - - 0.5 1 2 -0.5 1 

Iterations 4 5 7 9 14 3 5 

Avg final 
𝑳𝒄

𝑳𝒅𝒆𝒔
 2.025 2.025 2.026 2.026 2.026 2.547 2.025 

Min-quality 0.625 0.607 0.645 0.641 0.626 1.59E-06 0.607 

Remeshes 2 3 4 6 6 3.00E+00 2 

Norm updates 
Iteration No.        

1 4.24E-01 5.18E-01 2.01E-01 1.31E-01 7.55E-02 6.33E-01 4.68E-01 

2 1.36E-02 9.65E-02 1.70E-01 1.32E-01 8.11E-02 2.19E+01 4.00E-02 

3 2.68E-05 7.31E-03 9.63E-02 1.16E-01 8.06E-02 NaN 3.32E-04 

4 1.96E-10 4.28E-05 2.73E-02 8.71E-02 7.83E-02 - 3.24E-08 

5 - 3.36E-09 2.09E-03 5.04E-02 7.37E-02 - 1.31E-15 

6 - - 1.35E-05 1.80E-02 6.54E-02 - - 

7 - - 6.86E-10 2.14E-03 5.34E-02 - - 

8 - - - 3.09E-05 4.18E-02 - - 

9 - - - 8.07E-09 2.98E-02 - - 

10 - - - - 1.52E-02 - - 

11 - - - - 3.54E-03 - - 

12 - - - - 1.83E-04 - - 

13 - - - - 5.31E-07 - - 

14 - - - - 4.97E-12 - - 
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APPENDIX E 3D TRUSS STIFFNESS TABLES 

Table E-10 3D truss formulation convergence comparison results for 𝑳𝒄/𝑳𝒅𝒆𝒔 = 0.8 

𝑭𝒕𝒓𝒖𝒔𝒔 = 
𝚫𝑳

𝑳𝒅𝒆𝒔
 

𝚫𝑳

𝑳𝒄
 𝚫𝑳

𝑳𝒅𝒆𝒔
𝒆
𝑺𝟏 [

𝚫𝑳
𝑳𝒅𝒆𝒔

]
𝟐

 
𝚫𝑳

𝑳𝒄
𝒆
𝑺𝟏 [

𝚫𝑳
𝑳𝒄
]
𝟐

 

𝑺𝟏 - - 0.5 1 2 -0.5 1 

Iterations 12 20 13 13 14 14 15 

Avg final 
𝑳𝒄

𝑳𝒅𝒆𝒔
 0.963 0.911 0.953 0.944 0.954 0.941 0.950 

Min-quality 0.567 0.593 0.500 0.567 0.601 0.442 0.686 

Remeshes 2 3 2.00E+00 2 2.00E+00 3.00E+00 3 

Norm updates 
Iteration No. 0 0 0 0 0 0 0 

1 9.72E+01 3.87E+01 8.61E+01 2.11E+01 9.92E+00 2.33E+01 4.40E+00 

2 8.92E-01 1.24E+00 7.22E-01 6.83E-01 5.33E-01 3.55E+00 2.18E+00 

3 1.09E-01 8.83E-01 2.46E-01 2.42E-01 2.83E-01 1.78E+00 5.24E-01 

4 3.47E-03 6.27E-01 2.48E-02 4.63E-02 1.17E-01 1.52E+01 8.05E-02 

5 8.30E-06 2.34E-01 2.27E-04 2.56E-03 2.13E-02 2.66E+01 3.54E-03 

6 6.06E-11 1.26E-01 2.95E-08 7.22E-06 6.54E-04 1.71E+37 1.77E-05 

7 - 1.56E-02 1.38E-15 6.26E-11 7.08E-07 - 1.03E-09 

8 - 3.53E-04 - - 1.04E-12 - - 

9 - 3.82E-07 - - - - - 

10 - 5.09E-13 - - - - - 
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Table E-11 3D truss formulation convergence comparison results for 𝑳𝒄/𝑳𝒅𝒆𝒔 = 1 

𝑭𝒕𝒓𝒖𝒔𝒔 = 
𝚫𝑳

𝑳𝒅𝒆𝒔
 

𝚫𝑳

𝑳𝒄
 𝚫𝑳

𝑳𝒅𝒆𝒔
𝒆
𝑺𝟏 [

𝚫𝑳
𝑳𝒅𝒆𝒔

]
𝟐

 
𝚫𝑳

𝑳𝒄
𝒆
𝑺𝟏 [

𝚫𝑳
𝑳𝒄
]
𝟐

 

𝑺𝟏 - - 0.5 1 2 -0.5 1 

Iterations 12 12 12 12 12 12 12 

Avg final 
𝑳𝒄

𝑳𝒅𝒆𝒔
 1.001 1.001 1.001 1.001 1.001 1.001 1.001 

Ave-Quality 0.871 0.873 0.872 0.872 0.871 0.871 0.873 

Remeshes 2 2 2 2 2 2 2 

Norm updates 
Iteration No. 0 0 0 0 0 0 0 

1 9.44E-01 9.53E-01 9.11E-01 8.81E-01 8.28E-01 9.81E-01 9.16E-01 

2 3.17E-01 3.36E-01 3.12E-01 3.04E-01 3.01E-01 3.36E-01 3.25E-01 

3 3.37E-01 3.19E-01 3.22E-01 3.22E-01 3.09E-01 3.30E-01 3.05E-01 

4 2.47E-02 2.11E-02 3.27E-02 4.31E-02 6.33E-02 2.02E-02 2.03E-02 

5 1.78E-04 2.26E-04 3.64E-04 7.91E-04 2.63E-03 2.01E-04 2.70E-04 

6 1.88E-08 4.02E-08 9.46E-08 4.46E-07 4.98E-06 3.31E-08 1.77E-07 

7 8.74E-16 2.74E-15 9.06E-15 2.09E-13 2.48E-11 1.53E-15 1.18E-13 

Table E-12 3D truss formulation convergence comparison results for 𝑳𝒄/𝑳𝒅𝒆𝒔 = 1.2 

𝑭𝒕𝒓𝒖𝒔𝒔 = 
𝚫𝑳

𝑳𝒅𝒆𝒔
 

𝚫𝑳

𝑳𝒄
 𝚫𝑳

𝑳𝒅𝒆𝒔
𝒆
𝑺𝟏 [

𝚫𝑳
𝑳𝒅𝒆𝒔

]
𝟐

 
𝚫𝑳

𝑳𝒄
𝒆
𝑺𝟏 [

𝚫𝑳
𝑳𝒄
]
𝟐

 

𝑺𝟏 - - 0.5 1 2 -0.5 1 

Iterations - - - - 8 - 4 

Avg final 
𝑳𝒄

𝑳𝒅𝒆𝒔
 1.205 1.205 1.205 1.205 1.197 1.205 1.205 

Ave-Quality 0.875 0.875 0.875 0.875 0.874 0.875 0.875 

Remeshes 0 0 0 0 1 0 0 

Norm updates 
Iteration No. 0 0 0 0 0 0 0 

1 8.98E-01 9.03E-01 8.53E-01 8.14E-01 7.48E-01 9.53E-01 8.91E-01 

2 4.71E-02 5.45E-02 1.01E-01 1.57E-01 2.41E-01 7.41E-02 3.64E-02 

3 2.45E-04 3.55E-04 2.28E-03 8.30E-03 1.45E-01 6.19E-04 1.79E-04 

4 1.48E-08 3.08E-08 1.21E-06 2.30E-05 1.59E-02 1.01E-07 8.30E-09 

5 7.18E-16 9.93E-16 4.93E-13 2.24E-10 2.50E-04 4.84E-15 - 

6 - - - - 1.14E-07 - - 

7 - - - - 3.94E-14 - - 
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Table E-13 3D truss formulation convergence comparison results for 𝑳𝒄/𝑳𝒅𝒆𝒔 = 2 

𝑭𝒕𝒓𝒖𝒔𝒔 = 
𝚫𝑳

𝑳𝒅𝒆𝒔
 

𝚫𝑳

𝑳𝒄
 𝚫𝑳

𝑳𝒅𝒆𝒔
𝒆
𝑺𝟏 [

𝚫𝑳
𝑳𝒅𝒆𝒔

]
𝟐

 
𝚫𝑳

𝑳𝒄
𝒆
𝑺𝟏 [

𝚫𝑳
𝑳𝒄
]
𝟐

 

𝑺𝟏 - - 0.5 1 2 -0.5 1 

Iterations 4 4 6 7 11 25 4 

Avg final 
𝑳𝒄

𝑳𝒅𝒆𝒔
 2.009 2.009 1.994 1.995 1.998 1.266 2.009 

Ave-Quality 0.877 0.877 0.875 0.872 0.866 NaN 0.877 

Remeshes 0 0 0 0 0 2.00E+00 0 

Norm updates 
Iteration No. 0 0 0 0 0 0 0 

1 8.77E-01 8.71E-01 7.56E-01 6.49E-01 4.86E-01 2.33E+00 8.79E-01 

2 2.00E-02 4.06E-02 2.42E-01 3.48E-01 3.92E-01 3.87E+00 1.91E-02 

3 2.42E-05 2.00E-04 3.79E-02 1.34E-01 2.60E-01 NaN 9.05E-06 

4 7.65E-11 9.54E-09 9.05E-04 3.06E-02 1.40E-01 - 3.75E-12 

5 - - 5.82E-07 1.94E-03 7.97E-02 - - 

6 - - 2.85E-13 1.15E-05 4.20E-02 - - 

7 - - - 6.95E-10 1.55E-02 - - 

8 - - - - 2.20E-03 - - 

9 - - - - 4.53E-05 - - 

10 - - - - 2.18E-08 - - 

11 - - - - 5.37E-15 - - 
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APPENDIX F STUDY OF TRUSS STEP SIZE LIMIT METHODS 

When an update step becomes too large, the possibility exists that the accompanying mesh distortion 

can push nodes outside of the boundary resulting in severe mesh distortion rather than improving mesh 

quality. This effect was seen after the third iteration for a truss formulation with the scaling factor 

𝐿𝑐/𝐿𝑑𝑒𝑠 = 0.77 implemented without an update step size limit in Figure F-5. 

To assuage the effects of 𝐿𝑐/𝐿𝑑𝑒𝑠 scaling factors associated with high compression and tension 

(discussed in APPENDIX C), update step size limits are required to reduce the negative effects of large 

updates. The effects of poor scaling factors include the impaired performance of the mesh generator, 

snap-through, and the resultant severe mesh distortion shown in Figure F-5. 

 
Figure F-5 Mesh distortion due to large update with 𝑳𝒄/𝑳𝒅𝒆𝒔 = 0.77  

F.1. Update step size limit methods 

F.1.1. Newton step 𝜶 update fixed size limiter 

During the implementation of Newton’s method, conditions were found where the Newton update 

step size, Δ𝑢, could be too large depending on the 𝐿𝑐 𝐿𝑑𝑒𝑠⁄  scaling factor. A method of reducing the 

size of the update is therefore required. 

Given the expected update Δ𝓧, and the expected change in length that any one truss would experience 

during a given step Δ𝐿, the relative change in length for each truss is obtained by normalising the change 

in length: 

 
𝛿𝐿 = |

Δ𝐿𝑏𝑎𝑟
𝐿𝑐

| (153) 
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This relative change in length, 𝛿𝐿, for each truss is evaluated against the maximum allowable change, 

𝛿𝑙𝑖𝑚𝑖𝑡. The allowable update proportion 𝛼 is then calculated as the smaller of the ratio of 𝛿𝑙𝑖𝑚𝑖𝑡 over 

the maximum relative change in length for the entire truss system, max(𝛿𝑳), and 1: 

 
𝛼 = min (

𝛿𝑙𝑖𝑚𝑖𝑡
max(𝛿𝑳)

 , 1) (154) 

This implies that, until max(𝛿𝑳) < 𝛿𝑙𝑖𝑚𝑖𝑡, the Newton step size will be limited to the fraction 𝛼. 

However, once the criterion is met the full Newton step size as given in (71) will apply. The modified 

form of the Newton update step is therefore given as: 

 𝓧𝑘+1 = 𝓧𝒌 + 𝛼Δ𝓧 (155) 

The intent of the modified Newton step is to restrict the change in truss length, based on the largest 

change in length, to prevent the negative effects associated with potentially large update sizes. 

F.1.2. Newton step size: Line search method 

It is recognised that the mesh generator is a form of optimisation problem. A more suitable step size 

could therefore be determined using a line search method, see [22]. The line search function for an 

allowable change in truss length, 𝛼 is given by: 

 Φ(𝛼) = min(𝛱(𝓧𝒌  + 𝛼Δ𝓧)) (156) 

where Π is the total system energy function that needs to be minimised and 𝓧𝒌 and Δ𝓧 are constants. 

(156) can be solved for a value of 𝛼 that minimises the total energy of the system. The new system state 

is then solved from (155). 

F.1.3. Length normalisation (energy normalisation) 

In DistMesh, desired truss lengths were generated as relative lengths rather than absolute lengths. This 

had the benefit of ensuring that the trusses would not, on average, be highly compressed or highly 

tensioned; a condition that results in high system potential energy and introduces instability. This was 

tested for suitability in the Newton implementation, where the relative desired truss length is then 

given by: 

 𝐿𝑑𝑒𝑠 = 𝐹𝑠𝑐𝑎𝑙𝑒 (
Σ𝐿𝑖

2

Σℎ(𝒳𝑖)
)

1
𝑛𝐷

ℎ(𝓧) (157) 

A disadvantage of this method is that 𝐿𝑑𝑒𝑠 has a discrete change whenever desired lengths are 

recalculated. This can influence the convergence rate of a solver; however, the effect can be mitigated 

by only updating the desired lengths every few iterations. 

F.2. Convergence step size limit variants investigation 
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Three experiments were run to determine the effectiveness of a particular method for controlling the 

update step size, namely: fixed alpha update value; line search method and length normalisation. The 

results of these investigations are detailed in APPENDIX G, APPENDIX I, and APPENDIX H for the three 

methods respectively. Conclusions are presented in §F.3. 

F.2.1. Newton update step: Fixed size 𝜶 update control experiment 

Convergence comparisons were done for control of the update step size using the update limiter 

method discussed in §F.1.1. Applicable values considered for the allowable change in truss length were 

𝛼 = 20, 5, 1, 0.5, 0.1, 0.05, 0.01 for scaling factors 𝐿𝑐/𝐿𝑑𝑒𝑠 = 0.77, 0.79, 0.8, 1, 10. Initial conditions 

pertaining to the 2D truss effectiveness investigation detailed in APPENDIX C were used. 

F.2.2. Newton update step: Line search method 

Convergence comparisons were done for the line search method discussed in §F.1.2. Applicable values 

for the initial allowable change in truss length were 𝛼0 = 1 and 0.1 for scaling factors 𝐿𝑐/𝐿𝑑𝑒𝑠 = 0.5,

0.6, 0.7, 0.8, 1, 2, 5, 10. Initial conditions pertaining to the 2D truss effectiveness investigation detailed 

in §APPENDIX C were used. 

F.2.3. Length normalisation (energy normalisation) experiment on uniform mesh 

Convergence comparisons were done for the length normalisation (energy normalisation) method 

discussed in §F.1.3. Applicable values for the scaling factor were 𝐹𝑠𝑐𝑎𝑙𝑒 = 0.1, 0.8, 0.9, 1, 1.1, 1.2, 1.5 for 

ratios 𝐿𝑐/𝐿𝑑𝑒𝑠 = 0.1  and 10. Only extreme ratios were compared due to the resilience of this method 

to poorly scaled trusses. Initial conditions pertaining to the 2D truss effectiveness investigation detailed 

in APPENDIX C were used. 

F.3. Conclusion on update step size limit 

The tendency of trusses under high compression to experience snap-through was revealed in §3.2.2.5 

through the plotting and comparison of force curves for various force response formulae. Under these 

conditions, increased loading results in increased force up to a point, with further loading resulting in a 

decreased force response due to snap through. 

The investigation conducted in §3.5 showed that the more compressed a system was (𝐿𝑐/𝐿𝑑𝑒𝑠 ≤ 0.8), 

the more likely the mesher was to fail to achieve convergence or to require a large number of iterations 

to solve in the cases where convergence was obtained. This held true for both the 2D and the 3D 

meshers. 

In §3.6 the possibility of using an update step size limit to counteract the negative effects of highly 

compressed systems was introduced. The investigation conducted in this section highlighted the 

difficulties in managing compressed systems due to the many local minima present at various update 

step sizes. The system given by 𝐿𝑐/𝐿𝑑𝑒𝑠 = 0.5 was shown to be inherently unstable due to high 
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compression and therefore the most difficult to manage. The size of the update step required to solve 

the system was shown to have a significant effect on system stability, thereby leading to the conclusion 

that it should be carefully calculated. 

It is worth noting that highly tensioned systems did not display convergence problems to the same 

extent. This does not, however, mean that tension should be favoured over compression. In this 

investigation, the systems under compression were shown to produce meshes with the highest values 

for element quality. Further, compressed systems play an important role in driving interior nodes to 

the boundary. This was the approach used by Persson and Strang. 

Three approaches to calculating an update step size for improved stability in systems under 

compression were investigated: Fixed update size limiter, the line search method, and the length 

(system energy) normalisation method. The fixed update size method simply limits the maximum 

allowable step size to some multiple of the length of the truss. This was shown to facilitate convergence 

on systems that had previously failed but did not result in significant improvement over the unmodified 

Newton’s method in terms of convergence rate. 

The line search method was able to improve the stability of the compressed systems by preventing 

severe degeneration. This method was, however, unable to stabilise the very compressed systems 

enough to achieve convergence.  

The energy normalisation method was found to produce the best results in terms of convergence and 

element quality. It was shown to be impervious to both severe compression and tension since the 

energy in each truss is normalised across the system energy. In terms of element quality, slight 

compression was shown to be desirable with the particular value 𝐹𝑠𝑐𝑎𝑙𝑒 = 1.2 giving the best results. 

This happened to correlate to Person and Strang’s recommended value. For best convergence and 

acceptable element quality, the systems given by the range 0.8 ≤ 𝐹𝑠𝑐𝑎𝑙𝑒 ≤ 1.1 were shown to meet 

these requirements. 
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APPENDIX G RESULTS OF FIXED-SIZE UPDATE LIMITER 

Table G-14 Fixed 𝜶 update: convergence comparison results for 𝑳𝒄/𝑳𝒅𝒆𝒔 = 0.79 

𝑭𝒕𝒓𝒖𝒔𝒔 = 
𝚫𝑳

𝑳𝒅𝒆𝒔
 

𝜶 20 5 1 0.5 0.1 0.05 0.01 

Iterations 6 45 14 11 16 36 51 

Avg 𝑳𝒄/𝑳𝒅𝒆𝒔 NaN 0.865 0.801 0.801 0.801 0.801 0.801 

Minimum 
Quality NaN 0.000 0.740 0.741 0.742 0.721 0.600 

Remeshes 6 45 11 8 8 12 1 

Norm updates 
Iteration No. 0 0 0 0 0 0 0 

1 3.87E-01 3.87E-01 3.87E-01 3.87E-01 3.87E-01 3.87E-01 3.87E-01 

2 1.83E-01 1.83E-01 1.83E-01 2.12E-01 3.67E-01 3.74E-01 3.84E-01 

3 1.01E+00 1.01E+00 7.51E-02 1.09E-01 3.33E-01 3.82E-01 3.82E-01 

4 3.21E+00 4.73E-01 1.62E-01 1.12E-01 2.73E-01 3.47E-01 3.79E-01 

5 4.46E+00 3.42E+00 1.52E-01 5.43E-02 2.12E-01 3.18E-01 3.78E-01 

6 NaN 1.05E+01 6.34E-02 5.12E-02 1.55E-01 2.88E-01 3.76E-01 

7 - 1.40E+01 1.20E-01 1.92E-02 1.30E-01 2.58E-01 3.76E-01 

8 - 3.37E+00 7.86E-02 1.43E-02 9.39E-02 2.28E-01 3.77E-01 

9 - 6.41E+00 4.10E-02 8.73E-04 7.21E-02 1.98E-01 3.80E-01 

10 - 4.45E+00 1.96E-02 7.74E-06 7.93E-02 1.70E-01 3.87E-01 

11 - 7.22E+00 2.93E-03 1.83E-09 4.71E-02 1.56E-01 4.07E-01 

12 - 8.70E+00 2.29E-04 - 2.63E-02 1.39E-01 4.82E-01 

13 - 1.02E+01 1.74E-06 - 3.10E-03 1.19E-01 1.66E+00 

14 - 2.44E+00 5.77E-11 - 1.21E-04 9.91E-02 5.52E-01 

15 - 8.03E+00 - - 4.42E-07 8.67E-02 1.37E+00 

16 - 7.96E+00 - - 5.00E-12 7.01E-02 5.76E-01 

        

34 - 1.08E+02 - - - 2.29E-04 1.31E+00 

35 - 5.23E+00 - - - 1.62E-06 5.93E-01 

36 - 4.72E+00 - - - 8.79E-11 1.61E+00 

        

44 - 4.72E+00 - - - - 2.29E+01 

45 - 2.11E+02 - - - - 5.07E-01 

46 - - - - - - 9.78E+00 

47 - - - - - - 4.77E-01 

48 - - - - - - 3.99E+00 

49 - - - - - - 4.90E-01 

50 - - - - - - 2.53E+00 
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Figure G-6 Legend for following graphs, for reference 

 
Figure G-7 Fixed 𝜶 update convergence plot: 𝑳𝒄/𝑳𝒅𝒆𝒔 = 𝟎. 𝟕𝟕 
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Figure G-8 Fixed 𝜶 update convergence plot: 𝑳𝒄/𝑳𝒅𝒆𝒔 = 𝟎. 𝟕𝟗 

 
Figure G-9 Fixed 𝜶 update convergence plot: 𝑳𝒄/𝑳𝒅𝒆𝒔 = 𝟎. 𝟖 
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Figure G-10 Fixed 𝜶 update convergence plot: 𝑳𝒄/𝑳𝒅𝒆𝒔 = 𝟏 

 
Figure G-11 Fixed 𝜶 update convergence plot: 𝑳𝒄/𝑳𝒅𝒆𝒔 = 𝟏𝟎 
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G.1. Evaluation of fixed-size update limiter 

Table G-15 Fixed 𝜶 update: comparison of number of required iterations 

𝑭𝒕𝒓𝒖𝒔𝒔 = 
Scale 

𝑳𝒄/𝑳𝒅𝒆𝒔 

𝚫𝑳

𝑳𝒅𝒆𝒔
 

𝜶 - 20 5 1 0.5 0.1 0.05 0.01 

Required Iterations 
(convergence 
failed) 
[Exceeded max 
iterations]  

0.77 (9) [51] [51] [51] (25) [51] [51] 

0.79 (6) (45) 14 11 16 36 [51] 

0.8 9 9 9 7 19 33 [101] 

1 5 5 5 5 8 13 56 

10 4 4 4 4 8 13 58 
 

Table G-16 Fixed 𝜶 update: comparison of minimum triangle quality 

𝑭𝒕𝒓𝒖𝒔𝒔 = 
Scale 

𝑳𝒄/𝑳𝒅𝒆𝒔 

𝚫𝑳

𝑳𝒅𝒆𝒔
 

𝜶 - 20 5 1 0.5 0.1 0.05 0.01 

Minimum quality 
(convergence 
failed) 
[Exceeded 
iterations]  

0.77 NaN [3.24E-09] [0.069] [0.432] (0.623) [0.638] [0.601] 

0.79 NaN (8.73E-06) 0.740 0.741 0.742 0.721 [0.600] 

0.8 0.736 0.736 0.736 0.721 0.736 0.736 [0.709] 

1 0.671 0.671 0.671 0.671 0.671 0.671 0.671 

10 0.587 0.587 0.587 0.587 0.587 0.587 0.587 

 

From Figure G-6 through Figure G-11 and corresponding data presented in Table G-14 and Table G-15, 

it is evident that the introduction of the update step size limit improves the stability of the algorithms, 

especially for the highly compressed systems given by 𝐿𝑐/𝐿𝑑𝑒𝑠 = 0.77 and 0.79. Using small values of 

𝛼 < 1 assisted in achieving convergence of systems that had previously failed. This achievement is 

however offset by the increased number of iterations required. 

From Table G-16 it is evident that the quality of the mesh was not affected in any meaningful manner. 

This demonstrates the fact that the 𝛼 update step size limit affects convergence only. 
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APPENDIX H RESULTS OF LINE SEARCH 

Table H-17 Line search: convergence comparison results for various 𝑳𝒄/𝑳𝒅𝒆𝒔 and 𝜶𝟎 = 𝟏 

𝑭𝒕𝒓𝒖𝒔𝒔 = 
𝚫𝑳

𝑳𝒅𝒆𝒔
 

𝑳𝒄/𝑳𝒅𝒆𝒔 0.5 0.6 0.7 0.8 1 2 5 

Iterations 6 11 26 9 5 4 5 

Avg 𝑳𝒄/𝑳𝒅𝒆𝒔 NaN NaN 0.745 0.811 1.013 2.025 5.063 

Minimum 
Quality NaN NaN 0.242 0.736 0.671 0.625 0.595 

Remeshes 6 11 26 6 2 2 2 

Norm updates 
Iteration No. 0 0 0 0 0 0 0 

1 1.45E+00 3.33E-01 1.88E-01 4.07E-01 4.12E-01 4.36E-01 4.50E-01 

2 2.39E+00 5.40E-01 2.28E-01 4.97E-02 1.52E-02 3.84E-03 1.23E-03 

3 1.70E+00 9.41E-01 1.59E-01 3.41E-02 2.10E-04 6.41E-06 2.43E-07 

4 2.00E+00 8.62E-01 1.71E-01 3.41E-02 2.77E-08 5.15E-09 1.28E-08 

5 1.18E+00 9.82E-01 1.80E-01 3.83E-02 5.69E-15 - 1.29E-15 

6 NaN 1.20E+00 2.52E-01 9.89E-03 - - - 

7 - 6.75E-01 2.79E-01 1.78E-04 - - - 

8 - 1.03E+00 2.39E-01 1.75E-07 - - - 

9 - 9.32E-01 1.53E-01 2.27E-09 - - - 

10 - 1.06E+00 1.90E-01 - - - - 

11 - NaN 1.87E-01 - - - - 

12 - - 2.09E-01 - - - - 

18 - - 1.33E-01 - - - - 
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Table H-18 Line search: convergence comparison results for various 𝑳𝒄/𝑳𝒅𝒆𝒔 and 𝜶𝟎 = 𝟎. 𝟏 

𝑭𝒕𝒓𝒖𝒔𝒔 = 
𝚫𝑳

𝑳𝒅𝒆𝒔
 

𝑳𝒄/𝑳𝒅𝒆𝒔 0.5 0.6 0.7 0.8 1 2 5 

Iterations 6 26 26 14 5 4 12 

Avg 𝑳𝒄/𝑳𝒅𝒆𝒔 NaN 0.718 0.745 0.811 1.013 2.025 5.063 

Minimum 
Quality NaN 0.000 0.272 0.736 0.671 0.625 0.595 

Remeshes 6 26 25 6 2 2 2 

Norm updates 
Iteration No. 0 0 0 0 0 0 0 

1 1.45E+00 3.33E-01 1.88E-01 4.07E-01 4.12E-01 4.36E-01 4.50E-01 

2 2.38E+00 5.37E-01 2.19E-01 4.97E-02 1.52E-02 3.84E-03 1.24E-03 

3 2.43E+00 7.72E-01 2.40E-01 3.41E-02 2.10E-04 6.48E-06 2.56E-08 

4 1.47E+00 7.30E-01 2.06E-01 3.41E-02 2.70E-08 1.05E-10 2.42E-08 

5 2.41E+00 8.87E-01 2.33E-01 3.83E-02 4.11E-11 - 2.17E-08 

6 NaN 1.06E+00 1.66E-01 9.89E-03 - - 1.85E-08 

12 - 5.26E-01 8.38E-02 1.14E-08 - - 9.61E-09 

13 - 8.40E-01 1.60E-01 1.08E-08 - - - 

14 - 8.74E-01 1.57E-01 9.20E-09 - - - 

15 - 9.44E-01 2.09E-01 - - - - 

18 - 1.16E+00 1.24E-01 - - - - 

 

 

 
Figure H-12 Line search comparison for various 𝑳𝒄 𝑳𝒅𝒆𝒔⁄  and initial step size = 1 
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Figure H-13 Line search comparison for various 𝑳𝒄 𝑳𝒅𝒆𝒔⁄  and initial step size = 0.1 

H.1. Evaluation of line search update 

Figure H-12 and Figure H-13 with corresponding data presented in Table H-17 and Table H-18, it is 

evident that the update step size limit calculated using a line search improves system stability. The line-

search is known to be a fundamental component of many optimisation algorithms. It is therefore 

unsurprising that its implementation as a means of determining the optimum update size results in 

improved system stability. It was however found that whilst stability was improved for systems under 

high compression, in that they did not drastically diverge, convergence was no better than that of the 

standard Newton’s method for slight compressions and in tension. This lack of improvement in terms 

of convergence is due to the existence of several local minima caused by the lower energy states of 

snapped-through truss locations as depicted in Figure H-14. 
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Figure H-14 Highly compressed system showing multiple local minima due to snap through 

Under conditions of high compression given by 𝐿𝑐/𝐿𝑑𝑒𝑠 = 0.5, no local minima associated with snap-

through were noted. Snap through was indicated by slight inflection points on the line search curve. 

Figure H-15 shows an inflection point for the magnified approximate update step size limit of 𝛼 =

0.044. A straight line is plotted next to the energy curve to highlight the inflection. Since this system 

energy function does not manifest the energy reduction associated with snap-through as distinct 

minima, the algorithm was unable to achieve convergence to the expected result. The result of the first 

update can be seen in Figure H-16. 

 
Figure H-15 System energy local minima first iteration 𝑳𝒄/𝑳𝒅𝒆𝒔 = 𝟎. 𝟓 

A 
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Figure H-16 First mesh update for 𝑳𝒄/𝑳𝒅𝒆𝒔 = 𝟎. 𝟓 and 𝜶 = 𝟎. 𝟎𝟔𝟐𝟖 
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APPENDIX I RESULTS OF LENGTH (SYSTEM ENERGY) NORMALISATION 

Table I-19 Length (system energy) normalisation: convergence results for 𝑳𝒄/𝑳𝒅𝒆𝒔 = 0.1 

𝑭𝒕𝒓𝒖𝒔𝒔 = 𝑭𝒔𝒄𝒂𝒍𝒆
𝚫𝑳

𝑳𝒔𝒄𝒂𝒍𝒆
 

𝑭𝒔𝒄𝒂𝒍𝒆 0.1 0.8 0.9 1 1.1 1.2 1.5 

Iterations 4 5 5 5 5 8 9 

Avg 𝑳𝒄/𝑳𝒅𝒆𝒔 0.101 0.101 0.101 0.101 0.101 0.101 NaN 

Minimum 
Quality 0.587 0.652 0.662 0.672 0.682 0.720 NaN 

Remeshes 2 2 2 2 2 5 9 

Norm updates 
Iteration No.        

1 4.51E-01 4.02E-01 3.95E-01 3.89E-01 3.84E-01 3.81E-01 2.41E+00 

2 2.80E-03 2.30E-02 2.66E-02 3.11E-02 3.78E-02 5.49E-02 5.24E+01 

3 1.98E-07 1.57E-04 2.65E-04 4.70E-04 9.70E-04 3.88E-02 7.66E+01 

4 2.43E-13 3.27E-08 9.38E-08 3.53E-07 2.22E-06 1.27E-02 1.55E+02 

5 - 1.75E-11 5.89E-11 1.42E-10 1.06E-09 1.85E-03 3.64E+01 

6 - - - - - 5.93E-05 6.50E+01 

7 - - - - - 1.25E-07 3.21E+01 

8 - - - - - 1.34E-09 1.28E+02 

9 - - - - - - NaN 
 

Table I-20 Length (system energy) normalisation: convergence results for 𝑳𝒄/𝑳𝒅𝒆𝒔 = 10 

𝑭𝒕𝒓𝒖𝒔𝒔 = 𝑭𝒔𝒄𝒂𝒍𝒆
𝚫𝑳

𝑳𝒔𝒄𝒂𝒍𝒆
 

𝑭𝒔𝒄𝒂𝒍𝒆 0.1 0.8 0.9 1 1.1 1.2 1.5 

Iterations 4 5 5 5 5 8 8 

Avg 𝑳𝒄/𝑳𝒅𝒆𝒔 10.125 10.129 10.130 10.132 10.135 10.139 NaN 

Minimum 
Quality 0.587 0.652 0.662 0.672 0.682 0.720 NaN 

Remeshes 2 2 2 2 2 5 8 

Norm updates 
Iteration No.        

1 4.51E-01 4.02E-01 3.95E-01 3.89E-01 3.84E-01 3.81E-01 2.41E+00 

2 2.80E-03 2.30E-02 2.66E-02 3.11E-02 3.78E-02 5.49E-02 5.24E+01 

3 1.98E-07 1.57E-04 2.65E-04 4.70E-04 9.70E-04 3.88E-02 7.66E+01 

4 2.43E-13 3.27E-08 9.38E-08 3.53E-07 2.22E-06 1.27E-02 1.55E+02 

5 - 1.75E-11 5.89E-11 1.42E-10 1.06E-09 1.85E-03 3.62E+01 

6 - - - - - 5.93E-05 1.21E+02 

7 - - - - - 1.25E-07 1.94E+01 

8 - - - - - 1.34E-09 NaN 
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Figure I-17 Length (system energy) normalisation convergence plot: 𝑳𝒄/𝑳𝒅𝒆𝒔 = 𝟎. 𝟏 

 
Figure I-18 Length (system energy) normalisation convergence plot: 𝑳𝒄/𝑳𝒅𝒆𝒔 = 𝟏𝟎 
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Figure I-19 Highly compressed state showing snap though and failure of mesh 

I.1. Evaluation of length (system energy) normalisation 

Figure I-17 and Figure I-18 with corresponding data presented in Table I-19 and Table I-20, it is evident 

that the length (system energy) normalisation method is extremely successful at improving system 

stability. It was for this reason that results used to demonstrate its effectiveness were given only for 

the system under compression given by 𝐿𝑐 𝐿𝑑𝑒𝑠⁄ = 0.1 and the system under tension given by 

𝐿𝑐 𝐿𝑑𝑒𝑠⁄ = 10. 

The mathematic associated with this method indicated that convergence results could be expected to 

be independent of the scaling factor. Comparison of the results presented in Table I-19 and Table I-20 

for corresponding values of 𝐹𝑠𝑐𝑎𝑙𝑒 show that that the scaling factor has nearly no effect, thereby 

confirming correct implementation of the length normalisation method. 

For values of 𝐹𝑠𝑐𝑎𝑙𝑒 < 1.2 this method results in excellent convergence characteristics. For higher values 

of 𝐹𝑠𝑐𝑎𝑙𝑒, the system becomes unstable as would be expected due to increased compression. 

Figure I-19 is interesting since it shows the effect of snap-through due to a system with high 

compression. The mesh is considered to have failed due to multiple points having moved outside of the 

boundary. This is one of the negative effects associated with large updates that an update step size 

limit successfully addresses.
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APPENDIX J 2D UPDATE STEP SIZE LIMIT TABLES – FIXED UPDATE 𝜶 CONTROL 

Table J-21 𝜶 update: truss formulation convergence results for 𝑳𝒄/𝑳𝒅𝒆𝒔 = 0.77 

𝑭𝒕𝒓𝒖𝒔𝒔 = 
𝚫𝑳

𝑳𝒅𝒆𝒔
 

𝜶 20 5 1 0.5 0.1 0.05 0.01 

Iterations 9 51 51 51 25 51 51 

Ave 𝑳𝒄/𝑳𝒅𝒆𝒔 NaN 0.843 0.797 0.786 0.782 0.781 0.781 

Minimum 
Quality NaN 0.000 0.069 0.432 0.623 0.638 0.601 

Remeshes 9 51 51 51 7 6 2 

Norm updates 
Iteration No. 0 0 0 0 0 0 0 

1 6.00E-01 6.00E-01 6.00E-01 6.00E-01 6.00E-01 6.00E-01 6.00E-01 

2 2.98E+00 2.18E+00 3.52E-01 3.67E-01 3.94E-01 4.06E-01 4.77E-01 

3 3.84E+01 1.01E+00 2.92E+01 3.91E-01 3.85E-01 3.90E-01 4.39E-01 

4 2.94E+01 6.50E+00 1.13E+00 3.06E-01 3.48E-01 3.81E-01 4.21E-01 

5 1.11E+01 2.84E+01 5.31E-01 4.61E-01 3.33E-01 4.09E-01 4.11E-01 

6 1.97E+01 1.94E+00 6.24E-01 5.24E-01 3.33E-01 3.78E-01 4.05E-01 

7 7.07E+00 3.46E+01 3.23E+00 4.36E-01 3.12E-01 3.80E-01 4.00E-01 

8 1.31E+01 3.31E+01 5.28E+00 2.19E-01 4.03E-01 4.87E-01 3.97E-01 

9 NaN 4.62E+00 3.61E+00 3.64E-01 5.24E-01 3.64E-01 3.93E-01 

10 - 9.81E+00 3.21E+00 5.56E+01 2.71E-01 4.61E+00 3.91E-01 

24 - 5.15E+00 1.77E+01 9.78E-01 9.18E-01 3.42E-01 9.61E-01 

25 - 1.59E+01 1.46E+02 1.72E+00 4.25E+02 8.59E-01 8.49E-01 

26 - 9.58E+00 6.23E+00 7.08E-01 NaN 1.29E+00 8.89E-01 

27 - 1.57E+01 6.06E+00 5.26E+00 - 3.09E-01 9.32E-01 

28 - 3.45E+01 1.51E+01 3.02E+00 - 3.15E+00 8.30E-01 

29 - 4.13E+01 1.54E+00 1.16E+00 - 5.16E-01 1.04E+00 

        

48 - 1.86E+01 5.42E+00 1.24E+00 - 3.17E-01 5.26E-01 

49 - 8.02E+01 2.41E+00 1.78E+01 - 4.16E-01 5.42E+00 

50 - 1.03E+01 9.92E+00 3.52E+00 - 5.52E-01 5.43E-01 
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Table J-22 𝜶 update: truss formulation convergence results for 𝑳𝒄/𝑳𝒅𝒆𝒔 = 0.79 

𝑭𝒕𝒓𝒖𝒔𝒔 = 
𝚫𝑳

𝑳𝒅𝒆𝒔
 

𝜶 20 5 1 0.5 0.1 0.05 0.01 

Iterations 6 45 14 11 16 36 51 

Ave 𝑳𝒄/𝑳𝒅𝒆𝒔 NaN 0.865 0.801 0.801 0.801 0.801 0.801 

Minimum 
Quality NaN 0.000 0.740 0.741 0.742 0.721 0.600 

Remeshes 6 45 11 8 8 12 1 

Norm updates 
Iteration No. 0 0 0 0 0 0 0 

1 3.87E-01 3.87E-01 3.87E-01 3.87E-01 3.87E-01 3.87E-01 3.87E-01 

2 1.83E-01 1.83E-01 1.83E-01 2.12E-01 3.67E-01 3.74E-01 3.84E-01 

3 1.01E+00 1.01E+00 7.51E-02 1.09E-01 3.33E-01 3.82E-01 3.82E-01 

4 3.21E+00 4.73E-01 1.62E-01 1.12E-01 2.73E-01 3.47E-01 3.79E-01 

5 4.46E+00 3.42E+00 1.52E-01 5.43E-02 2.12E-01 3.18E-01 3.78E-01 

6 NaN 1.05E+01 6.34E-02 5.12E-02 1.55E-01 2.88E-01 3.76E-01 

7 - 1.40E+01 1.20E-01 1.92E-02 1.30E-01 2.58E-01 3.76E-01 

8 - 3.37E+00 7.86E-02 1.43E-02 9.39E-02 2.28E-01 3.77E-01 

9 - 6.41E+00 4.10E-02 8.73E-04 7.21E-02 1.98E-01 3.80E-01 

10 - 4.45E+00 1.96E-02 7.74E-06 7.93E-02 1.70E-01 3.87E-01 

11 - 7.22E+00 2.93E-03 1.83E-09 4.71E-02 1.56E-01 4.07E-01 

12 - 8.70E+00 2.29E-04 - 2.63E-02 1.39E-01 4.82E-01 

13 - 1.02E+01 1.74E-06 - 3.10E-03 1.19E-01 1.66E+00 

14 - 2.44E+00 5.77E-11 - 1.21E-04 9.91E-02 5.52E-01 

15 - 8.03E+00 - - 4.42E-07 8.67E-02 1.37E+00 

16 - 7.96E+00 - - 5.00E-12 7.01E-02 5.76E-01 

        

34 - 1.08E+02 - - - 2.29E-04 1.31E+00 

35 - 5.23E+00 - - - 1.62E-06 5.93E-01 

36 - 4.72E+00 - - - 8.79E-11 1.61E+00 

        

44 - 4.72E+00 - - - - 2.29E+01 

45 - 2.11E+02 - - - - 5.07E-01 

46 - - - - - - 9.78E+00 

47 - - - - - - 4.77E-01 

48 - - - - - - 3.99E+00 

49 - - - - - - 4.90E-01 

50 - - - - - - 2.53E+00 
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Table J-23 𝜶 update: truss formulation convergence results for 𝑳𝒄/𝑳𝒅𝒆𝒔 = 0.8 

𝑭𝒕𝒓𝒖𝒔𝒔 = 
𝚫𝑳

𝑳𝒅𝒆𝒔
 

𝜶 20 5 1 0.5 0.1 0.05 0.01 

Iterations 9 9 9 7 19 33 101 

Ave 𝑳𝒄/𝑳𝒅𝒆𝒔 0.811 0.811 0.811 0.811 0.811 0.811 0.811 

Minimum 
Quality 0.736 0.736 0.736 0.721 0.736 0.736 0.709 

Remeshes 6 6 6 3 10 12 9 

Norm updates 
Iteration No.        

1 3.83E-01 3.83E-01 3.83E-01 3.83E-01 3.83E-01 3.83E-01 3.83E-01 

2 9.67E-02 9.67E-02 9.67E-02 9.67E-02 3.13E-01 3.49E-01 3.76E-01 

3 7.04E-02 7.04E-02 5.45E-02 3.75E-02 2.49E-01 3.15E-01 3.69E-01 

4 7.12E-02 7.12E-02 7.65E-02 3.64E-03 1.89E-01 2.82E-01 3.62E-01 

5 2.73E-02 2.73E-02 2.95E-02 5.17E-05 1.31E-01 2.51E-01 3.56E-01 

6 8.93E-03 8.93E-03 9.11E-03 2.50E-08 8.43E-02 2.21E-01 3.49E-01 

7 1.24E-03 1.24E-03 1.25E-03 1.13E-14 6.60E-02 1.91E-01 3.43E-01 

8 2.85E-05 2.85E-05 2.72E-05 - 4.85E-02 1.62E-01 3.36E-01 

9 9.27E-09 9.27E-09 7.88E-09 - 3.35E-02 1.33E-01 3.30E-01 

10 - - - - 4.66E-02 1.10E-01 3.22E-01 

        

16 - - - - 1.71E-02 5.20E-02 2.83E-01 

17 - - - - 9.76E-04 3.72E-02 2.77E-01 

18 - - - - 4.06E-06 2.64E-02 2.71E-01 

19 - - - - 1.95E-10 5.30E-02 2.65E-01 

        

29 - - - - - 1.57E-02 2.05E-01 

30 - - - - - 7.89E-03 1.99E-01 

31 - - - - - 1.69E-04 1.93E-01 

32 - - - - - 8.72E-08 1.87E-01 

33 - - - - - 7.74E-14 1.81E-01 

        

108 - - - - - - 8.15E-02 

109 - - - - - - 7.49E-02 

110 - - - - - - 6.92E-02 

111 - - - - - - 6.40E-02 

112 - - - - - - 5.94E-02 
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Table J-24 𝜶 update: truss formulation convergence results for 𝑳𝒄/𝑳𝒅𝒆𝒔 = 1 

𝑭𝒕𝒓𝒖𝒔𝒔 = 
𝚫𝑳

𝑳𝒅𝒆𝒔
 

𝜶 20 5 1 0.5 0.1 0.05 0.01 

Iterations 5 5 5 5 8 13 56 

Ave 𝑳𝒄/𝑳𝒅𝒆𝒔 1.013 1.013 1.013 1.013 1.013 1.013 1.013 

Minimum 
Quality 0.671 0.671 0.671 0.671 0.671 0.671 0.671 

Remeshes 2 2 2 2 5 5 6 

Norm updates 
Iteration No.        

1 3.90E-01 3.90E-01 3.90E-01 3.90E-01 3.90E-01 3.90E-01 3.90E-01 

2 3.00E-02 3.00E-02 3.00E-02 3.00E-02 3.04E-01 3.47E-01 3.81E-01 

3 4.22E-04 4.22E-04 4.22E-04 4.22E-04 2.26E-01 3.06E-01 3.73E-01 

4 2.58E-07 2.58E-07 2.58E-07 2.58E-07 1.52E-01 2.67E-01 3.64E-01 

5 3.38E-13 3.38E-13 3.38E-13 3.38E-13 8.20E-02 2.29E-01 3.56E-01 

6 - - - - 1.32E-02 1.92E-01 3.48E-01 

7 - - - - 6.06E-05 1.56E-01 3.40E-01 

8 - - - - 2.71E-09 1.21E-01 3.32E-01 

9 - - - - - 8.59E-02 3.24E-01 

10 - - - - - 5.12E-02 3.16E-01 

11 - - - - - 1.75E-02 3.08E-01 

12 - - - - - 9.84E-05 3.00E-01 

13 - - - - - 6.09E-09 2.92E-01 

        

37 - - - - - - 1.17E-01 

38 - - - - - - 1.10E-01 

39 - - - - - - 1.03E-01 

40 - - - - - - 9.57E-02 

41 - - - - - - 8.87E-02 

42 - - - - - - 8.17E-02 

        

50 - - - - - - 2.78E-02 

51 - - - - - - 2.13E-02 

52 - - - - - - 1.48E-02 

53 - - - - - - 8.41E-03 

54 - - - - - - 2.04E-03 

55 - - - - - - 1.33E-06 

56 - - - - - - 1.07E-12 
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Table J-25 𝜶 update: truss formulation alpha update convergence results for 𝑳𝒄/𝑳𝒅𝒆𝒔 = 10 

𝑭𝒕𝒓𝒖𝒔𝒔 = 
𝚫𝑳

𝑳𝒅𝒆𝒔
 

𝜶 20 5 1 0.5 0.1 0.05 0.01 

Iterations 4 4 4 4 8 13 58 

Ave 𝑳𝒄/𝑳𝒅𝒆𝒔 10.124 10.125 10.125 10.125 10.125 10.125 10.125 

Minimum 
Quality 0.587 0.587 0.587 0.587 0.587 0.587 0.587 

Remeshes 2 2 2 2 6 5 6 

Norm updates 
Iteration No.        

1 4.51E-01 4.51E-01 4.51E-01 4.51E-01 4.51E-01 4.51E-01 4.51E-01 

2 2.73E-03 2.73E-03 2.73E-03 2.73E-03 3.51E-01 4.01E-01 4.41E-01 

3 1.84E-07 1.84E-07 1.84E-07 1.84E-07 2.55E-01 3.52E-01 4.31E-01 

4 1.99E-15 1.99E-15 1.99E-15 1.99E-15 1.68E-01 3.04E-01 4.21E-01 

5 - - - - 9.00E-02 2.59E-01 4.12E-01 

6 - - - - 1.93E-02 2.15E-01 4.02E-01 

7 - - - - 7.75E-06 1.73E-01 3.92E-01 

8 - - - - 1.58E-12 1.34E-01 3.82E-01 

9 - - - - - 9.66E-02 3.72E-01 

10 - - - - - 6.09E-02 3.63E-01 

11 - - - - - 2.70E-02 3.53E-01 

12 - - - - - 1.51E-05 3.44E-01 

13 - - - - - 5.97E-12 3.34E-01 

14 - - - - - - 3.25E-01 

15 - - - - - - 3.15E-01 

16 - - - - - - 3.06E-01 

        

50 - - - - - - 3.94E-02 

51 - - - - - - 3.28E-02 

52 - - - - - - 2.63E-02 

53 - - - - - - 1.99E-02 

54 - - - - - - 1.35E-02 

55 - - - - - - 7.20E-03 

56 - - - - - - 9.50E-04 

57 - - - - - - 1.92E-08 

58 - - - - - - 1.23E-15 
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APPENDIX K UPDATE STEP SIZE LIMIT TABLES - LENGTH CONTROL 

Table K-26 Length control: truss formulation convergence results for 𝑳𝒄/𝑳𝒅𝒆𝒔 = 0.1 

𝑭𝒕𝒓𝒖𝒔𝒔 = 
𝚫𝑳

𝑳𝒅𝒆𝒔
 

𝑭𝒔𝒄𝒂𝒍𝒆 0.1 0.8 0.9 1 1.1 1.2 1.5 

Iterations 4 5 5 5 5 8 9 

Ave 𝑳𝒄/𝑳𝒅𝒆𝒔 0.101 0.101 0.101 0.101 0.101 0.101 NaN 

Minimum 
Quality 0.587 0.652 0.662 0.672 0.682 0.720 NaN 

Remeshes 2 2 2 2 2 5 9 

Norm updates 
Iteration No.        

1 4.51E-01 4.02E-01 3.95E-01 3.89E-01 3.84E-01 3.81E-01 2.41E+00 

2 2.80E-03 2.30E-02 2.66E-02 3.11E-02 3.78E-02 5.49E-02 5.24E+01 

3 1.98E-07 1.57E-04 2.65E-04 4.70E-04 9.70E-04 3.88E-02 7.66E+01 

4 2.43E-13 3.27E-08 9.38E-08 3.53E-07 2.22E-06 1.27E-02 1.55E+02 

5 - 1.75E-11 5.89E-11 1.42E-10 1.06E-09 1.85E-03 3.64E+01 

6 - - - - - 5.93E-05 6.50E+01 

7 - - - - - 1.25E-07 3.21E+01 

8 - - - - - 1.34E-09 1.28E+02 

9 - - - - - - NaN 

Table K-27 Length control: truss formulation convergence results for 𝑳𝒄/𝑳𝒅𝒆𝒔 = 10 

𝑭𝒕𝒓𝒖𝒔𝒔 = 
𝚫𝑳

𝑳𝒅𝒆𝒔
 

𝑭𝒔𝒄𝒂𝒍𝒆 0.1 0.8 0.9 1 1.1 1.2 1.5 

Iterations 4 5 5 5 5 8 8 

Ave 𝑳𝒄/𝑳𝒅𝒆𝒔 10.125 10.129 10.130 10.132 10.135 10.139 NaN 

Minimum 
Quality 0.587 0.652 0.662 0.672 0.682 0.720 NaN 

Remeshes 2 2 2 2 2 5 8 

Norm updates 
Iteration No.        

1 4.51E-01 4.02E-01 3.95E-01 3.89E-01 3.84E-01 3.81E-01 2.41E+00 

2 2.80E-03 2.30E-02 2.66E-02 3.11E-02 3.78E-02 5.49E-02 5.24E+01 

3 1.98E-07 1.57E-04 2.65E-04 4.70E-04 9.70E-04 3.88E-02 7.66E+01 

4 2.43E-13 3.27E-08 9.38E-08 3.53E-07 2.22E-06 1.27E-02 1.55E+02 

5 - 1.75E-11 5.89E-11 1.42E-10 1.06E-09 1.85E-03 3.62E+01 

6 - - - - - 5.93E-05 1.21E+02 

7 - - - - - 1.25E-07 1.94E+01 

8 - - - - - 1.34E-09 NaN 
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APPENDIX L MSEM APPROACH TO THE BOUNDARY SENSITIVITIES PROBLEM 

For the MSEM approach, the constraint ∂𝛀c in (114) is partitioned to into the master ∂𝛀𝑚 and slave 

∂𝛀𝑠 components.  

 𝑭(𝓧Ω(𝐱),𝓧∂Ωm(𝐱),𝓧∂Ω𝑠(𝐱),𝓧∂Ωp(𝐱))

= {

𝑭Ω(𝓧
Ω(𝐱),𝓧∂Ωm(𝐱),𝓧∂Ω𝑠(𝐱),𝓧∂Ωp(𝐱))

𝑭𝜕Ω𝑚(𝓧
Ω(𝐱),𝓧∂Ωm(𝐱),𝓧∂Ω𝑠(𝐱),𝓧∂Ωp(𝐱))

𝑭𝜕Ωp(𝓧
Ω(𝐱),𝓧∂Ωm(𝐱),𝓧∂Ω𝑠(𝐱),𝓧∂Ωp(𝐱))

} = 𝟎 
(158) 

The set of residual equations for the MSEM that need to be satisfied are given in (34) through (37) and 

restated here: 

 𝓡𝑓 = 𝓕𝑓
𝑖𝑛𝑡 −𝓕𝑓

𝑒𝑥𝑡 = 𝟎 (159) 

 𝓡𝑚𝑠 = 𝓕𝑚
𝑖𝑛𝑡 −𝓕𝑚

𝑒𝑥𝑡 +𝑷𝑇(𝓕𝑠
𝑖𝑛𝑡 −𝓕𝑠

𝑒𝑥𝑡)  = 𝟎 (160) 

 𝓡𝑝 = 𝓕𝑝
𝑖𝑛𝑡 −𝓕𝑝

𝑒𝑥𝑡 − 𝑹𝑃 = 𝟎 (161) 

 𝒖𝑠 = 𝒇𝑚𝑠(𝒖𝑚) (162) 

 

As was done in §5.2.3, taking the derivatives of (158) in (159)though (161), around the equilibrium point 

𝑭 = 𝟎 (∴
𝑑𝑭

𝑑𝐱
= 𝟎) as done in (109)-(110) and assembling the resulting components into matrix form 

gives: 

 

[
 
 
 
𝜕𝑭Ω
𝜕𝓧Ω

𝜕𝑭Ω
𝜕𝓧𝜕Ω𝑚

𝜕𝑭Ω
𝜕𝓧𝜕Ω𝑠

𝜕𝑭Ω

𝜕𝓧𝜕Ω𝑝

𝑲∂Ωm
𝜕𝓧Ω

𝑲∂Ωm
𝜕𝓧∂Ωm

𝑲∂Ωm
𝜕𝓧∂Ω𝑠

𝑲∂Ωm
𝜕𝓧∂Ω𝑝]

 
 
 

{
 
 
 
 

 
 
 
 

𝑑𝓧
Ω

𝑑𝐱

𝑑𝓧
𝜕Ω𝑚

𝑑𝐱

𝑑𝓧
𝜕Ω𝑠

𝑑𝐱

𝑑𝓧
𝜕Ω𝑝

𝑑𝐱 }
 
 
 
 

 
 
 
 

= {

𝟎

𝟎

𝟎

𝟎

} (163) 

Where: 

 𝑲∂Ωm
𝜕𝓧Ω

=
𝜕𝑭∂Ωm
𝜕𝓧Ω

+
𝜕(𝑃𝑇𝑭∂Ωs)

𝜕𝓧Ω
 (164) 

 𝑲∂Ωm
𝜕𝓧∂Ωm

=
𝜕𝑭∂Ωm
𝜕𝓧𝜕Ω𝑚

+
𝜕(𝑃𝑇𝑭∂Ωs)

𝜕𝓧𝜕Ω𝑚
 (165) 
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 𝑲∂Ωm
𝜕𝓧∂Ω𝑠

=
𝜕𝑭∂Ωm
𝜕𝓧𝜕Ω𝑠

+
𝜕(𝑃𝑇𝑭∂Ω𝑠)

𝜕𝓧𝜕Ω𝑠
 (166) 

 𝑲∂Ωm
𝜕𝓧∂Ω𝑝

=
𝜕𝑭∂Ωm
𝜕𝓧𝜕Ω𝑝

+ 𝑃𝑇
𝜕𝑭∂Ωs
𝜕𝓧𝜕Ω𝑝

 (167) 

Allowing that the boundary function as a function of the master DOFs 𝓧𝜕Ω𝑚(𝐱) and the offset 𝑫(𝐱) 

such that: 

 𝓧𝜕Ω𝑠(𝐱) = 𝑓𝑚𝑠(𝓧
𝜕Ω𝑚(𝐱),𝓧𝜕Ω𝑝(𝐱),𝑫(𝐱)) (168) 

Taking the derivative of (168) with respect to 𝐱 and knowing 
𝜕𝑓𝑚𝑠

𝑑𝓧𝜕Ω𝑚
= 𝑷  yields: 

 𝑑𝓧𝜕Ω𝑠

𝑑𝐱
= 𝑷

𝑑𝓧𝜕Ω𝑚

𝑑𝐱
+
𝜕𝑓𝑚𝑠
𝜕𝑫

𝑑𝑫

𝑑𝐱
 (169) 

Substituting (169) into (163) yields the system: 

 

[
 
 
 
𝜕𝑭Ω
𝜕𝓧Ω

𝜕𝑭Ω
𝜕𝓧𝜕Ω𝑚

+
𝜕𝑭Ω
𝜕𝓧𝜕Ω𝑠

𝑷
𝜕𝑭Ω
𝜕𝓧𝜕Ω𝑠

𝜕𝑭Ω

𝜕𝓧𝜕Ω𝑝

𝑲∂Ωm
𝜕𝓧Ω

𝑲∂Ωm
𝜕𝓧∂Ωm

+
𝑲∂Ωm
𝜕𝓧∂Ω𝑠

𝑷
𝑲∂Ωm
𝜕𝓧∂Ω𝑠

𝑲∂Ωm
𝜕𝓧∂Ω𝑝]

 
 
 

{
 
 
 
 

 
 
 
 

𝑑𝓧
Ω

𝑑𝐱

𝑑𝓧
𝜕Ω𝑚

𝑑𝐱

𝜕𝑓
𝑚𝑠

𝜕𝑫

𝑑𝑫

𝑑𝐱

𝑑𝓧
𝜕Ω𝑝

𝑑𝐱 }
 
 
 
 

 
 
 
 

= {

𝟎

𝟎

𝟎

𝟎

} (170) 

Since 
𝜕𝑓𝑚𝑠

𝜕𝑫

𝑑𝑫

𝑑𝐱
 and 

𝑑𝓧𝜕Ω𝑝

𝑑𝐱
 are knowns and noting the 𝑷 = 𝑷(𝓧𝜕Ω𝑝), the system can be rearranged to 

give: 

 

[
 
 
 

𝜕𝑭Ω
𝜕𝓧Ω

𝜕𝑭Ω
𝜕𝓧𝜕Ω𝑚

+
𝜕𝑭Ω
𝜕𝓧𝜕Ω𝑠

𝑷

𝜕𝑭∂Ωm
𝜕𝓧𝜕Ω𝑝

+ 𝑷𝑇
𝜕𝑭∂Ωs
𝜕𝓧𝜕Ω𝑝

𝜕𝑭′𝑚
𝜕𝓧𝜕Ω𝑚 ]

 
 
 

{
 
 

 
 𝑑𝓧

Ω

𝑑𝐱

𝑑𝓧
𝜕Ω𝑚

𝑑𝐱 }
 
 

 
 

= −

[
 
 
 
𝜕𝑭Ω

𝜕𝓧𝜕Ω𝑠

𝜕𝑭Ω

𝜕𝓧𝜕Ω𝑝

𝜕𝑭′∂Ωm
𝜕𝓧∂Ω𝑠

𝜕𝑭′∂Ωm
𝜕𝓧∂Ω𝑝 ]

 
 
 

{
 

 
𝜕𝑓

𝑚𝑠

𝜕𝑫

𝑑𝑫

𝑑𝐱

𝑑𝓧
𝜕Ω𝑝

𝑑𝐱 }
 

 

 

(171) 

Where: 

 𝑲∂Ωm
𝜕𝓧Ω

=
𝜕𝑭∂Ωm
𝜕𝓧Ω

+
𝜕(𝑃𝑇𝑭∂Ωs)

𝜕𝓧Ω
 (172) 
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 𝜕𝑭′𝑚
𝜕𝓧𝜕Ω𝑚

=
𝜕𝑭∂Ωm
𝜕𝓧𝜕Ω𝑚

+ 𝑷𝑇
𝜕𝑭∂Ωs
𝜕𝓧𝜕Ω𝑚

+
𝜕𝑷𝑇

𝜕𝓧𝜕Ω𝑚
𝑭∂Ωs +

𝜕𝑭∂Ωm
𝜕𝓧𝜕Ω𝑠

𝑷

+ 𝑷𝑇
𝜕(𝑭∂Ω𝑠)

𝜕𝓧𝜕Ω𝑠
𝑷 

(173) 

 𝜕𝑭′∂Ωm
𝜕𝓧∂Ω𝑠

=
𝜕𝑭∂Ωm
𝜕𝓧𝜕Ω𝑠

+𝑷𝑇
𝜕𝑭∂Ω𝑠
𝜕𝓧𝜕Ω𝑠

 (174) 

 𝜕𝑭∂Ωm
′

𝜕𝓧∂Ω𝑝
=
𝜕𝑭∂Ωm
𝜕𝓧𝜕Ω𝑝

+ 𝑷𝑇
𝜕𝑭∂Ωs
𝜕𝓧𝜕Ω𝑝

 (175) 

If the system is in a natural state of static equilibrium, then 𝑭∂Ωs = 𝟎 and the term 
𝜕𝑷𝑇

𝜕𝓧𝜕Ω𝑚
𝑭∂Ωs = 𝟎. 

This means the consistent tangent of (171) reduces to match the linear static implementation of the 

MSE method as discussed in APPENDIX A  (141). Again, the RHS terms 
𝜕𝑓𝑚𝑠

𝜕𝑫

𝑑𝑫

𝑑𝐱
 and 

𝑑𝓧𝜕Ω𝑝

𝑑𝐱
 can be 

computed using a finite difference method. 
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