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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.
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Abstract 

This paper presents the thermal performance of smooth and microfin tubes and the enhancement factors as they respond to 
inclination angle, mass flux and vapour quality in inclined tubes of 1.488 m long, 9.55 mm outer diameter during the convective 
condensation of R134a at the saturation temperature of 40oC. For the experiment, the quality was varied between 0.5 and 0.9, 
mass flux of 200 kg/m2s to 400 kg/m2s and inclination angle between -90o (vertically downward) and +90o (vertically upward) 
tube orientations. The result shows that inclination angle, mass flux and vapour quality significantly affect the heat transfer 
coefficient and enhancement factor. The enhancement factor varied between 0.98 and 2.0 depending on the operating variables. 
Higher enhancements were however obtained during the downward flow as compared with upward flow.  
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1. Introduction 

The scarcity of water, especially in the arid and remote areas, is encouraging the use of air-cooled A- and V-
industrial condensers in such environments. Inclined heat exchangers are applicable also in aerospace during 
landing, banking and take-off of aeroplanes and in automobiles during navigation uphill and downhill. It is also 
relevant in a situation where there is a need for space and reduction in size and weight. 
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Previous studies on condensation and evaporation have shown that microfin tubes enhanced heat transfer 
coefficient significantly. Most of the investigations have mainly addressed horizontal and vertical flows. Several 
comprehensive reviews have been done on heat transfer coefficients in smooth and microfin tubes [1-3]. To mention 
a few, Liebenberg and Meyer [4] in their study of the heat transfer coefficient and pressure drop in horizontal 
smooth and microfin tubes of an inner diameter of 8.9 mm obtained heat enhancement factor of two. Olivier et al. [5] 
compared the heat transfer coefficients in horizontal smooth, helical and herringbone microfin tubes for mass fluxes 
between 400 kg/m2s and 800 kg/m2s, inlet qualities between 0.85 and 0.95, outlet qualities between 0.05 and 0.15 at 
the saturation temperature of 40○C. They obtained, as compared with the smooth tube, a 70% higher thermal 
performance for the herringbone tube and a 40% higher for the helical microfin tube. Sapali and Patil [6] compared 
the heat transfer enhancements of R134a and R404a in horizontal smooth and microfin tubes and obtained 
enhancement factor of between 1.5 and 2.5 for R134a and between 1.3 and 2.0 for R404a.   

The study of the response of the heat transfer enhancement factor to inclination angle is scarce in the literature, 
and it is, therefore, the focus of this investigation.  

 
Nomenclature 

A heat transfer area (m2) 
d  diameter (m) 
EF enhancement factor 
k thermal conductivity (W/mK) 
L length of test section (m) 
Q heat transfer rate (W) 
T temperature (○C) 
x quality 
 
Greek letters 
α heat transfer coefficient (Wm-2K-1) 
 
Subscript 
w wall 
sat saturation 
Cu copper 
m mean 
i inner  

 

2. Experimental Facility and Methods 

Fig. 1 shows the sketch of the test facility which has been used and validated by various researchers for 
condensation studies among whom are Meyer et al. [7-9]. Details of the test section can be found in the above 
studies. 

The test condensers have the same length of 1.488 m, and inner diameters were 8.38 mm for smooth tube and 
8.71 mm for the microfin tube. The working fluid, R134a passed through the inner tube at the saturation temperature 
of 40 ○C and water was pumped through the annulus in a countercurrent arrangement providing heat flux of between 
230 W and 270 W. The energy balance was maintained below 3.0% throughout the test. The test section was 
inclined between -90○ (vertically downward) and +90○ (vertically upward) with the aid of a high-pressure hose 
connected to the two ends of the condenser and the inclination angle was measured with the aid of a digital 
inclinometer. The summary of the geometry of the inner tubes and the operating conditions are presented in Tables 1 
and 2.   
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Fig. 1: The schematic diagram of the experimental setup and microfin tube geometry. 

 
 
 
 
 
 
 
 
 
 

 

3. Data Reduction Strategy 

The heat transfer coefficient can be expressed as 
 

𝛼𝛼 = | 𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝐴𝐴(𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠−𝑇̅𝑇𝑤𝑤,𝑖𝑖)

|          (1) 

 
Where α is heat transfer coefficient, Qtest is heat transfer rate, Tsat saturation temperature, A is the heat transfer area 
and the average of the inner wall temperature can be expressed as, for microfin tube (Eq. 2a) and, for smooth tube 
(Eq. 2b) 
 

𝑇̅𝑇𝑤𝑤,𝑖𝑖 = 𝑇̅𝑇𝑤𝑤,𝑜𝑜 + |𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗
𝑙𝑙𝑙𝑙 (𝑑𝑑𝑜𝑜 𝑑𝑑𝑚𝑚⁄ )

2𝜋𝜋𝑘𝑘𝑐𝑐𝑐𝑐𝐿𝐿
⁄ |        (2a) 

𝑇̅𝑇𝑤𝑤,𝑖𝑖 = 𝑇̅𝑇𝑤𝑤,𝑜𝑜 + |𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗
𝑙𝑙𝑙𝑙 (𝑑𝑑𝑜𝑜 𝑑𝑑𝑖𝑖⁄ )

2𝜋𝜋𝑘𝑘𝑐𝑐𝑐𝑐𝐿𝐿
⁄ |        (2b) 

 
The enhancement factor is expressed in Eq (3). The ratio of the heat transfer area of the microfin to smooth tube was 
2.05. 

 
𝐸𝐸𝐸𝐸 = 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝛼𝛼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ
          (3) 

Table 1: Smooth and Microfin tube dimensions. 
Description Value  
 Microfin Smooth 
Outer diameter do [mm]

 
9.55  9.55 

Inner diameter di  [mm] 8.92 8.38 
Mean inner diameter dm [mm] 8.71  
Wall thickness [mm] 0.32 0.598 
Fin height e [mm] 0.21  
Fin pitch [mm] 0.445  
Circumferential Fin number, N  [-] 60  
Helix angle H  [°]  14  

Roughness (e/di) 0.0235  

 

Table 2: Test parameters and range. 
Parameter Range Band 
Tsat [°C]

 
40 ± 0.6 

G [kg/m2s] 200, 300, 400 ± 5  
xm [ - ] 0.5 – 0.9 (for G = 400 kg/m2s) 

0.5 (for G = 200 - 400 kg/m2s) 
± 0.01 

β [°] 0°, ±5°,  ±10°, ±15°, ±30°, ±60°, ±90°  ± 0.1 

QH2O [W] 230 - 270  ± 20 
ΔP [kPa] -2 to +12 ±0.05 
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4. Validation 

The validation study was conducted with our experimental data compared with well-established and trusted 
correlations for smooth and microfin tubes as shown in Fig. 2. For smooth tubes, among the correlations [10-13] 
considered, the model of Cavallini et al. [12] gave the best result within ±25%. For the microfin tube, the model of 
Akhavan-Behabadi et al. [14] was used to predict all the data while the others [15-17] predicted horizontal tube data. 
Within ±50%, the correlation of Cavallini et al. [17] gave the best result. 

 

 
Fig. 2: Comparison of experimental data with some predictive models for a) smooth tube, and, b) microfin tube. 
 

5. Results 

5.1. The response of heat transfer coefficient to inclination  

Fig. 3 represents the result for both smooth and microfin tubes at the saturation temperature of 40 ○C, for a) 
different vapour qualities for the mass flux of 400 kg/m2s, and, b) different mass fluxes for vapour quality of 50%. 
Results show that heat transfer coefficient is significantly higher for the microfin tube than for the smooth tube. The 
exception to this is that at an inclination angle of +60○, quality of 50% and mass flux of 400 kg/m2s the smooth tube 
has superior thermal performance.   

 

 
Fig. 3: Comparison between heat transfer coefficient in smooth and microfin tubes for a) different vapour qualities for G = 400 kg/m2s, b) 

different mass fluxes for xm = 50%. 
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5.2. The response of heat transfer enhancement factor to inclination  

The variation of the enhancement factor with inclination angle for a) different qualities for the mass flux of 400 
kg/m2s, and, b) different mass fluxes for vapour quality of 50% are presented in Fig. 4. The result shows that the 
enhancement factor increases with increasing vepour quality and varies between 0.98 and 2.0. In most of the cases 
the downward, horizontal or slightly upward inclined flow performed better due to the low liquid thickness coupled 
with the turbulence induced by the fins hence less thermal barrier. The flow patterns in these cases are annular, 
annular-wavy or stratified-wavy. The highest value of enhancement was recorded for quality of 90%, mass flux of 
400 kg/m2s and inclination of -15○ while the lowest was obtained for the quality of 50%, mass flux of 400 kg/m2s 
and inclination of +60○. For vapour quality of 50%, the microfin tube performed best for mass flux of 300 kg/m2s 
for most of the orientations. Fig. 5a shows that for a mass flux of 400 kg/m2s and vapour qualities of 75% and 90%, 
the best performance was obtained for downward flow of -15○; and for 50% quality during the upward flow of 15○. 
The worst performance was obtained for upward flow of +60○. In Fig. 5b, for vapour quality of 50%, the highest 
enhancement factors were obtained for inclination angle of 15○ for mass fluxes of 200 kg/m2s and 400 kg/m2s but it 
was obtained for inclination angle of -60○ for mass flux of 300 kg/m2s. The worse performance was obtained during 
the upward flow, +60○, for mass flux of 200 kg/m2s and 400 kg/m2s and +90○ for mass flux of 300 kg/m2s.  

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4: Variation of enhancement factor with inclination angle for different a) vapour qualities for mass flux of 400 kg/m2s, b) mass fluxes for 

vapour quality of 50%. 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 5: Variation of enhancement factor with a) mean vapour quality for mass flux of 400 kg/m2s, and, b) mass flux for quality of 50% for 

different inclination angles. 
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6. Conclusion 

This paper presents the effects of quality, mass flux and inclination angle on the heat transfer coefficient in 
smooth and helically grooved microfin tubes and heat enhancement factor for tubes with an outer diameter of 9.55 
mm and 1.488 m long. The vapour quality was varied between 50% and 90%, mass flux of 200 kg/m2s to 400 
kg/m2s, the inclination angle between -90○ (vertically downward) and +90○ (vertically upward) for a saturation 
temperature of 40○C. The heat enhancement factor was between 0.98 and 2.0 and increased with increasing vapour 
quality. The highest value was obtained for the inclination angle of -15○, quality of 90%, mass flux of 400 kg/m2s 
and the lowest for inclination angle of +60○, quality of 50% for the same mass flux. 
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