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Abstract

Jost-matrix analysis of nuclear scattering data

by

Paul Vaandrager

Supervisor: Professor S.A. Rakitianski

Degree: Philosophiae Doctor (Physics)

The analysis of scattering data is usually done by fitting the S-matrix at real exper-

imental energies. An analytic continuation to complex and negative energies must

then be performed to locate possible resonances and bound states, which corres-

pond to poles of the S-matrix. Difficulties in the analytic continuation arise since the

S-matrix is energy dependent via the momentum, k and the Sommerfeld parameter,

η , which makes it multi-valued. In order to circumvent these difficulties, in this

work, the S-matrix is written in a semi-analytic form in terms of the Jost matrices,

which can be given as a product of known functions dependent on k and η , and

unknown functions that are entire and singled-valued in energy. The unknown func-

tions are approximated by truncated Taylor series where the expansion coefficients

serve as the data-fitting parameters. The proper analytic structure of the S-matrix is

thus maintained. This method is successfully tested with data generated by a model

scattering potential. It is then applied to α12C scattering, where resonances of 16O in

the quantum states Jπ = 0+, 1−, 2+, 3−, and 4+ are located. The parameters of these

resonances are accurately determined, as well as the corresponding S-matrix residues

and Asymptotic Normalisation Coefficients, relevant to astrophysics. The method is

also applied to dα scattering to determine the bound and resonance state parameters,

corresponding S-matrix residues and Asymptotic Normalisation Coefficients of 6Li

in the 1+, 2+, 3+, 2−, and 3− states.
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Samevatting

Jost-matriks analise van atoomkern-botsingsdata

deur

Paul Vaandrager

Studieleier: Professor S.A. Rakitianski

Graad: Philosophiae Doctor (Fisika)

Die analise van botsingsdata vereis gewoonlik die passing van die S-matriks by reële

eksperimentiële energiewaardes. Om moontlike resonansies en gebonde toestande

te bepaal moet die analitiese voortsetting van die S-matriks dan na komplekse

en negatiewe energiewaardes uitgevoer word. Hierdie resonansies en gebonde

toestande stem ooreen met die pole van die S-matriks. Aangesien die S-matriks

via die momentum, k, en die Sommerfeld parameter, η , afhanklik is van die ener-

gie, is dit meerwaardig in energie. Probleme in die analitiese voortsetting kan dus

ontstaan. Om hierdie probleme te omseil, word die S-matriks in die huidige werk

in ’n semi-analitiese vorm in terme van die Jost matrikse geskryf. Die Jost matrikse

kan as die produkte van bekende funksies afhanklik van k en η , en onbekende, een-

duidige, eenwaardige funksies van energie gegee word. Die onbekende funksies

word benader deur eindige terme van Taylor reekse. Die uitbreidingskoëffisiënte

van hierdie reekse dien as die passingsparameters. Die korrekte analitiese struk-

tuur van die S-matriks bly dus behoue. Hierdie passingsmetode word suksesvol

getoets met data wat deur ’n modelpotensiaal gegenereer is. Dit word dan op α12C

botsingsdata toegepas en resonansies van 16O in die Jπ = 0+, 1−, 2+, 3−, en 4+

kwantum-toestande word bepaal. Die parameters van die resonansies word akkuraat

bereken, asook die ooreenstemmende S-matriksresidu waardes en Asimptotiese Nor-

malisasiekoëffisiënte, relevant tot astrofisika. Die metode word ook op dα botsings-

data toegepas om die parameters van die gebonde toestand en resonansies, ooreen-

stemmende S-matriksresidu waardes en Asimptotiese Normalisasiekoëffisiënte vir
6Li in die 1+, 2+, 3+, 2−, en 3− toestande te bepaal.
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Chapter 1

Introduction

Nuclear and atomic systems can be studied by extracting scattering parameters from

fitting experimental data. In such studies the scattering matrix, or S-matrix, is used

in the form of a phenomenological function depending on some free parameters.

These parameters are adjusted to fit the measured scattering cross-sections or phase-

shifts. When the S-matrix is found from the fitting, it is used to determine bound and

resonance state parameters.

Historically, one of the most widely-used methods of analysing scattering data to

determine resonance parameters in particular, is the Breit-Wigner parameterisation,

introduced in Ref. [1] in 1936. Resonance energies are complex, given by Er− iΓ/2,

where Er is the collision energy at which this state can be excited and Γ is the total

resonance width, related to the lifetime of the decaying resonance state. For a multi-

channel system, the total width is the sum of the partial channel widths, Γ = Γ1 +

Γ2 + · · · . The relative probability of decaying into the nth channel is given by Γn/Γ.

Within the Breit-Wigner method, the scattering cross-section is approximated in

terms of the resonance parameters themselves; Er, Γ, Γ1, Γ2 and so forth. These

parameters are treated as the fitting parameters and are the varied quantities in the

fitting procedure. Variations of this method are still in use [2, 3]. It is also the prime

example of a group of methods where the resonance parameters are the fitting para-

meters. In general, the methods of this group use some parametric expression for the
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Introduction

S-matrix, scattering amplitude or directly for the cross-section, where the resonance

singularities (or the zigzags of the cross-section) are embedded into the parametric

expression by hand [4]. The methods of this group only differ in the method of

parameterisation and in the approximations made in the derivation of the paramet-

ric expression. A limitation of these methods is the requirement that the number

of resonances are fixed in the fitting from the outset. It is also particularly difficult

to determine the parameters of wide, short-lived resonances. Furthermore, by the

nature of the fitting parameters, it is also impossible to directly determine bound

state energies from such fittings.

In a second distinct group of fitting methods, bound and resonance state parameters

are determined by finding the poles of the S-matrix in an appropriate domain of the

Riemann surface of energy. Bound states correspond to negative energy poles on

the physical sheet of the Riemann surface of energy and resonances correspond to

S-matrix poles at complex energies, Ei = Er− iΓ/2, on the unphysical sheet of the

energy Riemann surface.

For the methods in this second group, the S-matrix is written in a more general form

in terms of adjustable parameters that do not necessarily coincide with bound or res-

onance state parameters. The number of bound or resonance states is furthermore

unknown, if any exist at all. Such methods then allow unknown, difficult-to-find

states to be located. After fitting the data at real, experimental scattering energies

to construct the S-matrix, it is analytically continued onto the appropriate Riemann

sheet where its poles are located to determine bound and resonance state paramet-

ers. The Padé approximation of the S-matrix (see Ref. [2], for example) and the

Laurent-Pietarinen series expansion of the scattering amplitude (see Ref. [5]) are

typical examples of such methods [4]. The method used in this thesis, where the

S-matrix is written in terms of a semi-analytic expression for the Jost matrix, also

belongs to this second group.

The main idea of the proposed method of analysis was inspired by the effective-

range expansion fitting method [4, 6]. The effective-range expansion fitting method

also falls within the second group of fitting methods and is widely used in nuclear

2



Introduction

and atomic physics, often in conjunction with methods like the Padé approximation.

The effective-range parameters are an extension of scattering parameters from Clas-

sical Physics, which explains the historic significance of effective range methods.

With these methods, a certain function of the scattering phase-shift is expanded in

the power series of the collision energy. The power-series expansion coefficients are

used as the adjustable parameters to fit experimental data. The traditional effective-

range parameterisation is limited to low energies and is furthermore difficult to ap-

ply to multi-channel processes. Technically the scattering phase-shift is also only

defined for real, positive energies, which causes complications in the analytic con-

tinuation to locate bound and resonance states. Further complications also arise

when considering the scattering of charged particles.

As will be shown, these complications and limitations are all addressed by consid-

ering a more fundamental scattering quantity: the Jost matrix. While all texts on

scattering theory mention the Jost matrix, or Jost function for single-channel scatter-

ing (see [3], for example), it is usually not considered useful in practical calculations.

However, there is a convenient relationship between the Jost matrix and bound and

resonance states, as will be shown. The S-matrix can furthermore be defined as the

“ration” of the Jost matrices. If the Jost matrices can be determined from fitting

experimental data by using a suitable expansion, the corresponding expansion of

the S-matrix can be derived. This allows the phase-shift, scattering cross-section or

any other quantity of importance for any number of channels, as well as bound and

resonance state parameters, to be determined.

However, the Jost matrices are multi-valued, since they depend on energy via the

channel momenta, kn. This causes square-root branching in the energy Riemann

surface at each channel threshold energy. For the scattering of charged particles,

the Jost matrices also depend on the energy via the Sommerfeld parameter for each

scattering channel, ηn. As will be shown, this causes further logarithmic branching

of the Riemann surface at each channel threshold energy.

The Jost matrices must be analytically continued onto the correct sheet of the energy

Riemann surface in order to obtain correct bound and resonance state parameters. To

3
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ensure that the continuation is always onto the correct sheet, the fitted Jost matrices

are used in a semi-analytic form. In this form, the factors dependent on kn and

ηn are factorised explicitly. The remaining factors are entire and single-valued in

energy, and can then be approximated by truncated Taylor series. The expansion

coefficients then serve as the fitting parameters. Since the factors dependent on kn

and ηn are written explicitly, the appropriate sheet can always be chosen correctly

when the Jost matrices are analytically continued. The correct analytic structure of

the Jost matrices (and so also the S-matrix) will be maintained, irrespective of the

approximation used for the unknown functions.

In this thesis, this method using the Jost matrices will be implemented to extract

bound and resonance state parameters from experimental data of the scattering of

two charged particles. This method is tested for a non-physical, model scattering

system to show its reliability. It is then successfully applied to two nuclear scattering

problems: the scattering of the α-particle (4He) by the carbon-twelve nucleus (α12C

scattering) and the scattering of d, the deuteron (2H) by the α-particle (dα scatter-

ing). These two scattering problems are of particular importance in astrophysics.

In the remainder of this chapter, the Jost matrices will be defined for the multi-

channel scattering of neutral particles with zero spin. The properties of the Jost

matrices with respect to bound, resonance and scattering sates will be considered in

particular. In Chapter 2, the discussion will be extended to particles with charge as

well as the scattering of particles with non-zero spin.

Chapters 1 and 2 provide the required mathematical background to introduce the

method of extracting scattering parameters from experimental data of charged

particles, which will be discussed in Chapter 3. The method will further be tested

for the model system in Chapter 3, which is based on Ref. [4]. A small detour to

some of the introductory concepts of astrophysics follows in Chapter 4, where the

Asymptotic Normalisation Coefficients and their relation to the Jost matrices are of

particular importance. The Jost method of analysis is applied to α12C scattering data

in Chapter 5, which is based on Ref. [7]. In Chapter 6, based on Ref. [8], the method

is used to analyse dα scattering data. The thesis concludes with Chapter 7.

4



Introduction Two-body quantum scattering

1.1 Two-body quantum scattering

Numerous complicated scattering systems can be modelled by a two-body system.

Consider, for example, the 16O nucleus, the energy levels of which will be determ-

ined in Chapter 5. In its ground state it can be viewed as a bound state of the α-

particle and the 12C nucleus [9]. The α-particle has a binding energy of ∼ 28 MeV

and is the most tightly bound of the light nuclei. For energies below this binding

energy, the α-particle cluster should be present within the composite 16O nucleus.

For the non-relativistic energies under consideration, the 12C cluster should similarly

be present, as it has an even larger binding energy of ∼ 90 MeV. Even for excited

states of 16O, these two clusters would still be distinguishable within the 16O nuc-

leus. If two-body α12C scattering is considered, as is done in Chapter 5, the bound

and resonance state parameters of 16O can reliably be determined.

Mathematically, the two-body scattering problem is also well-understood, since it

reduces to an equivalent single-body scattering problem. Although much progress

has recently been made in extending the Jost method to a three-body problem (see

for example Ref [10]), it is beyond the scope of this thesis.

First consider a general quantum system in the Schrödinger picture, which is fully

described by a state vector, |ΨΨΨa (t)〉 at a time, t. It is determined by a full set of

conserving quantum numbers, a = {α1,α2, ...,αN ,}, which are the eigenvalues of a

set of Hermitian, commuting operators.

The state vector is also orthogonal and is normalised to unity:

〈ΨΨΨa (t) |ΨΨΨa′ (t)〉= δaa′, (1.1)

where δi j is the Kronecker Delta. The Schrödinger equation governs the time-

evolution of the state vector:

ih̄
d
dt
|ΨΨΨa (t)〉= Ĥ|ΨΨΨa (t)〉, (1.2)

where Ĥ is the Hamiltonian operator.

5



Introduction Two-body quantum scattering

Provided that the Hamiltonian is time-independent (which corresponds with a con-

servation of energy), the state vector can be written in terms of an exponential time-

evolution operator acting on a time-independent vector [11]:

|ΨΨΨa (t)〉= e−i(t−t0)Ĥ/h̄)|ΨΨΨa (t0)〉, (1.3)

where t0 is a reference time, usually chosen t0 = 0. The reduced Planck constant

is given by h̄. For most calculations in atomic and nuclear psychics, including

the calculations of this work, the units are chosen such that h̄ = c = 1. The time-

independent equation,

Ĥ|ψa〉= E|ψa〉, (1.4)

results from the fact that the eigenvalues of the Hamiltonian are the discrete set of

possible energies of the system, and |ΨΨΨa (t0)〉= |ψa〉.

The Hamiltonian is the sum of the kinetic energy operator (which corresponds to

the free-particle Hamiltonian, Ĥ0 of the two-body system) and the potential energy

operator, which includes the spatially dependent interaction potential, Û(r) as well

as the potential due to the internal dynamics of the particles in the moving system,

ĥ. For two particles with masses m1 and m2 and positions r1 and r2, relative to a

specific reference frame, the two-body Hamiltonian is given by [3]:

Ĥ = Ĥ0
1 + Ĥ0

2 +Û(r1− r2)+ ĥ (1.5)

with

Ĥ0
i =

p̂2
i

2mi
, i = 1,2, (1.6)

where p̂ is the momentum operator. Assuming that the centre-of-mass frame of

reference is stationary relative to the laboratory frame, an expression for the two-

body Hamiltonian identical to that of a single particle in a central potential can be

obtained [11]:

Ĥ =
p̂2

2µ
+Û(r)+ ĥ, (1.7)

6



Introduction The S-matrix

with the relative position and reduced mass given by:

r = r1− r2 (1.8)

µ =
m1m2

m1 +m2
(1.9)

The eigenvalues of the two-body Hamiltonian correspond to the bound state energy

spectrum of the two interacting particles. The Scattering matrix, or S-matrix, is

introduced in the next section and is related to the bound, resonance and scattering

states.

1.2 The S-matrix

In the scattering of particles, it is experimentally impossible to observe the evolution

of the state vector in the interaction region. This is because the size of this region is

in the order of 1-100 fm for nuclear scattering, which corresponds with an average

nuclear radius. For atomic scattering, the interaction region magnitude is in the order

of the average atomic radius of 0.1−10 nm.

In general, the incoming state can be prepared explicitly: the orientation, energy and

polarisation of an incoming beam of particles is known. Furthermore, experimentally

measurable quantities related to the outgoing state (the scattering cross-section, for

example) can be measured. The state vector will then be written in terms of these

incoming and outgoing states.

The state vector in terms of the time-evolution operator acting on a time-independent

state, is given by Eq. (1.3): |ΨΨΨa (t)〉 = e−itĤ/h̄|ψa〉, with t0 = 0 representing the

reference time when the interaction commences.

In a scattering experiment, at a time well before and well after the interaction, the

state vector behaves like a free particle, where the two-body Hamiltonian of Eq. (1.7)

7



Introduction The S-matrix

reduces to a simple free-body Hamiltonian:

Ĥ0 =
p̂2

2µ
. (1.10)

The incoming and outgoing states can then be given in terms of the incoming and

outgoing time-independent asymptotic states, represented by |ψ in
a 〉 and |ψout

a′ 〉:

|ΨΨΨa(t)〉= e−itĤ/h̄)|ψa〉 −−−−→
r→−∞

e−itĤ0/h̄|ψ in
a 〉, (1.11)

|ΨΨΨa′(t)〉= e−itĤ/h̄)|ψa′〉 −−−→
r→∞

e−itĤ0/h̄|ψout
a′ 〉. (1.12)

The set of quantum numbers describing the outgoing state may differ from the in-

coming state. They are therefore distinguished by a and a′. Equations (1.11) and

(1.12) represent the Asymptotic Condition [3], which can be proven for the nuclear,

short-ranged part of the interaction potentials under consideration in this work. As

discussed in Ref. [3], the following three conditions are applicable for such poten-

tials:

I |U(r)| ≤ c|r|−3−ε as r→ ∞ (for some ε > 0 and constant, c)

II |U(r)| ≤ c|r|−2+ε as r→ 0 (for some ε > 0 and constant, c)

III U(r) is continuous for 0 < r < ∞, except at a finite number of possible finite

discontinuities.

These conditions hold for nuclear, short-ranged potentials, but do not hold for the

Coulomb potential, which will be discussed in Chapter 2. Furthermore, while these

conditions are specifically applicable to spherically central potentials, the Asymptotic

Condition can also be proven for non-central potentials [3].

The time-independent state vectors before and after the collision can then be repres-

ented in terms of the asymptotic time-independent states:

|ψa〉 = Ω̂
(+)|ψ in

a 〉, (1.13)

|ψa′〉 = Ω̂
(−)|ψout

a′ 〉, (1.14)

8



Introduction Multi-channel scattering

with the Møller operators, Ω̂(±), defined as follows:

Ω̂
(±) ≡ lim

t→+∞
e∓it(Ĥ−Ĥ0)/h̄. (1.15)

It is mathematically important to indicate that equations (1.13), (1.14) and (1.13) are

to be understood within the strong operator topology, for the limits to have meaning

[12].

The probability that a initial state |ψa〉will evolve into a final state |ψa′〉 is then given

by:

〈ψa′|ψa〉=
〈

ψ
out
a′

∣∣∣∣(Ω̂
(−)
)†

Ω̂
(+)

∣∣∣∣ψ in
a

〉
= Ŝa′a, (1.16)

where Ŝ is the scattering operator. In the energy representation, this becomes the

S-matrix (see Ref. [3], for example).

Depending on the energy, E, the outgoing wave is in a bound, resonance or scattering

state. The S-matrix allows the energy of the outgoing state to be determined. Fur-

thermore, the S-matrix can be constructed in terms of the Jost matrices - in fact, the

S-matrix will be defined in terms of the Jost matrices. To define the Jost matrices, the

asymptotic behaviour of the regular solution to the radial Schrödinger equation must

be considered. The system of coupled radial equations for multi-channel scattering

will therefore be derived.

1.3 Multi-channel scattering

Return to the two-body Hamiltonian (1.7), which is a general result and is applicable

to single-channel and multi-channel scattering. But what is meant by channels? In

the two-body scattering of hypothetical particles A and B, depending on the available

energy, there could be numerous resulting reactions; the first of which being A+

B→ A+B. This is elastic scattering and is always the first available channel, with

threshold energy usually fixed by E1 = 0 as reference.

The threshold energies are the eigenvalues of the internal dynamics operator, ĥ, of

9



Introduction Multi-channel scattering

the particles in the system. Each internal state of a two-body system corresponds

with a different channel of the scattering process. Other channels may open at larger

threshold energies. For example, one might have A+B→ C+D or A+B→ E +

F . This would be the second and third channel, with threshold energies E2 and E3

determined relative to E1 and E1 < E2 < E3.

There are infinitely many possible internal states, which corresponds with an infinite

number of channels. All the eigenstates of ĥ are given by:

ĥ|n〉= En|n〉, n = 1,2,3, ...,∞. (1.17)

The operator ĥ can then be approximated by:

ĥ≈
N

∑
n=1
|n〉En〈n|, (1.18)

where an exact expression would be obtained if N → ∞. It is assumed the first N

states are most probable, hence the approximation.

Using p̂2 =−h̄2
∆r, the matrix representation of the Hamiltonian (1.7) is then given

by:

〈n|Ĥ|n′〉 = 〈n|Ĥ0|n′〉+ 〈n|Û(r)|n′〉+ 〈n|ĥ|n′〉

∴ Ĥnn′ = δnn′
〈n|p̂2|n′〉

2µn
+Unn′(r)+

N

∑
n=1
〈n||n〉En〈n||n′〉

∴ Ĥnn′ = −δnn′
h̄2

2µn
∆r +Unn′(r)+Enδnn′ , (1.19)

where µn is the reduced mass in the channel, n. Implementing this multi-channel

two-body Hamiltonian in the time-independent Schrödinger equation (1.4), results in

the following system of coupled differential equations in the position representation:

[
h̄2

2µn
∆r +(E−En)

]
ψn(E,r) =

N

∑
n′=1

Unn′(r)ψn′(E,r), (1.20)

10



Introduction Multi-channel scattering

where n is the channel number with n = 1,2, ...,N and ψn(E,r) is the time-

independent wave-function for the channel, n.

The scattering problem is then uniquely determined by the interaction potential,

Unn′(r), which is a N×N matrix. The full wave-function for such a multi-channel

scattering problem is the linear combination of all the channel wave-functions, which

can also be represented as a column matrix comprised of the channel wave-functions:

Ψa(E,r) =


ψ1(E,r)

ψ2(E,r)
...

ψn(E,r)

 . (1.21)

The channels are not only characterised by the threshold energies, but also by the

complete set of channel quantum numbers, a = {α1,α2, ...,αN ,}. This means that

states with different spin or angular momentum also become new channels. Any

states of a system that differ by at least one quantum number are then considered

as different channels, even if the threshold energies for these states are the same

[3]. Such channels with the same threshold energy will be referred to as degenerate

channels, as they are degenerate in energy.

In a multi-channel scattering experiment, the multi-channel mathematical formalism

describes all the channels in the scattering simultaneously. To explain the notation

used to distinguish between the scattering data for the various channels, n→ n′,

consider the following two-channel scattering problem:

A+B→

A+B

C+D
.

The first channel would be the elastic scattering: A+B→A+B, and will be indicated

by 1→ 1. The second channel also represents elastic scattering, but of the second

pair of particles: C+D→C+D. The first transition channel, indicated by 1→ 2,

represents the reaction: A+B→C+D. The second transition channel, indicated by

11
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2→ 1, then represents the reaction: C+D→ A+B.

The notation is similar for degenerate channels. For the scattering of particles where

only one threshold energy is open, but the quantum numbers of the scattered particles

differ, the value of the changing quantum number will typically replace n and n′ in

the expression for the channel, n→ n′. In Chapter 6, for example, the channels

are defined by `J . For channels defined by J = 1, the transition channel of an S-

wave (where `= 0) transforming into a D-wave (where `= 2), will be indicated by

S1→ D1.

In a scattering experiment, information on all the channels are often unavailable,

depending on the particles that are scattered. It is, however, possible to gain inform-

ation on the unknown channels from suitable fittings of the data from the known

channels. This will be discussed in detail, with a suitable example, in Chapter 3.

1.4 Multi-channel radial equation

For a system with zero spin, the two conserving quantum numbers for each channel

are the magnetic quantum number, m, with corresponding orbital angular momentum

quantum number, `. The quantity, ` appears explicitly in the radial Schrödinger

equation when a separation of polar configuration variables into a radial and polar-

angle part is performed [11].

They are related to the eigenvalues of the total angular momentum operator for the

two-body system, ˆ̀̀̀ = r̂× p̂, and the component of this operator, ˆ̀z, usually chosen

as the z-component in an arbitrary Cartesian coordinate system. The operators ˆ̀̀̀

and ˆ̀z do not commute. However, ˆ̀̀̀2
and ˆ̀z do commute, thus they share a set of

eigenvectors, |`m〉. The eigenvalues of these operators are:

ˆ̀̀̀2|`m〉 = `(`+1)h̄2|`m〉, (1.22)

ˆ̀z|`m〉 = mh̄|`m〉. (1.23)

12
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The eigenvectors that describe a specific space-configuration (the eigenvectors of the

position operator) are given, in polar coordinates, by:

|r〉= |r,θ ,ϕ〉. (1.24)

Projecting |`m〉 on the spherical-angle part of the configuration eigenvectors results

in the well-known Spherical Harmonics:

〈θ ,ϕ|`m〉= Y`m(θ ,ϕ), (1.25)

which can be written in terms of the Associated Legendre polynomials, P̀ m(z) [11]:

Y`m(θ ,ϕ) = (−1)m

√
(2`+1)(`−m)!
(4π)(`+m)!

P̀ m(cosθ)eimϕ . (1.26)

This then allows one to show that the spherical harmonics are orthonormal:

∫
Y ∗`mY`′m′dΩ =

∫ 2π

0

∫
π

0
Y ∗`mY`′m′ sinθ dθdϕ = δ``′δmm′. (1.27)

Consequently, the eigenvectors, |`m〉 form an orthonormal basis.

It can further be shown from Eq. (1.22), (1.23) and (1.25) that:

ˆ̀̀̀2
Y`m(θ ,ϕ) = `(`+1)Y`m(θ ,ϕ), (1.28)

ˆ̀zY`m(θ ,ϕ) = mY`m(θ ,ϕ). (1.29)

The time-independent channel wave-functions in configuration space, ψn(E,r), are

the set of projections of the time-independent wave-vector on the basis of configur-

ation vectors, |r〉:

〈r|ψn〉= ψn(E,r,θ ,ϕ) (1.30)

The channel wave-vectors are also eigenvectors of the operators ˆ̀̀̀2
and ˆ̀z and are

therefore distinguished by the quantum numbers ` and m for each channel. Expand-

13
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ing Eq. (1.30) over the orthonormal basis of eigenvectors, |`nmn〉, of each channel,

n, gives:

ψn(E,r) = ∑
`nmn

〈r,θ ,ϕ|`nmn〉〈`nmn|ψn〉

= ∑
`nmn

〈θ ,ϕ|`nmn〉〈r, `nmn|ψn〉

= ∑
`nmn

Y`nmn(θ ,ϕ)〈r, `nmn|ψn〉 (1.31)

Now the radial wave-function for each channel is defined by:

u`n(E,r)≡ r〈r, `nmn|ψn〉. (1.32)

Substituting this definition into Eq. (1.31) then gives the time-independent channel

wave-functions as the product of a radially dependent part and the angular dependent

spherical harmonics:

ψn(E,r,θ ,ϕ) = ∑
`nmn

un(E,r)
r

Y`nmn(θ ,ϕ). (1.33)

Without loss of generality, it can further be assumed that the relative motion in each

channel has a single value of `n and mn [13]. If there is a difference in the quantum

numbers of a specific energy channel, another degenerate channel (with the same

threshold energy but differing in quantum numbers) can be opened. In general, spe-

cific partial wave-functions distinguished by ` for each channel will be considered.

This simplifies the notation considerably, since it is no longer required to sum over

all possible values of `n and mn:

ψn(E,r,θ ,ϕ) =
un(E,r)

r
Y`nmn(θ ,ϕ). (1.34)

The Laplacian operator, ∆r in polar coordinates, is also given in terms of the orbital

14
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angular momentum operator, ˆ̀̀̀, by [11]:

∆r =
1
r2 ∂r

(
r2

∂r−
ˆ̀̀̀2

h̄2r2

)
. (1.35)

Keeping in mind that each radial wave-function is in a particular `n state, and using

Eq. (1.35) with (1.28) and the separation (1.34) in the time-independent Schrödinger

equation (1.20), the following is obtained:

[
∂

2
r + k2

n−
`n(`n +1)

r2

]
un(E,r)Y`nmn(θ ,ϕ)(E,r)

=
N

∑
n′=1

Unn′(r)un′Y`n′mn′
(θ ,ϕ)(E,r)

with the channel wave-momenta defined by:

k2
n ≡

2µn

h̄2 (E−En). (1.36)

Multiplying by Y ∗`nmn
(θ ,ϕ), integrating over the solid angle Ω and implementing the

orthonormal property of the spherical harmonics, Eq. (1.27), then gives the multi-

channel radial Schrödinger equation:

[
∂

2
r + k2

n−
`n(`n +1)

r2

]
un(E,r) =

N

∑
n′=1

Vnn′(r)un′(E,r), (1.37)

which is a system of N coupled second-order differential equations, with the coup-

ling due to the off-diagonal elements of the reduced potential matrix Vnn′ , given by:

Vnn′(r) =
2µn

h̄2

∫
Y ∗`nmn

(θ ,ϕ)Unn′(r)Y`n′mn′
(θ ,ϕ)dΩ. (1.38)

For single-channel scattering, n = 1 and the reduced potential simply becomes:

V (r) =
2µ

h̄2 U(r), (1.39)
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due to the spherical harmonics being orthonormal (Eq. (1.27)).

The radial equation (1.37) is applicable to a system where the particle interaction is

radially dependent only, in other words, a central potential. A similar expression can

be obtained for non-central potentials, but only central potentials will be considered

in this thesis. Also, the potential is still very general, as it can be short-ranged or

long-ranged.

Furthermore, the channel wave-functions of Eq. (1.34) that can be obtained by solv-

ing the system of radial equations, (1.37), are the same for bound, resonance and

scattering states. For systems with non-zero spin, the channel wave-function for

discrete states (bound states and resonances) must be distinguished from the wave-

function for scattering states.

1.5 Jost matrices and properties

1.5.1 Jost matrices

The boundary conditions for the radial equations are derived from the requirement

that any physical wave-function must be finite at r = 0. From the separation (1.34),

this implies that the channel radial wave-functions must have regular behaviour near

the origin [3]:

un(E,r)−−−→
r→∞

0, n = 1,2,3, ...,N (1.40)

At r→ ∞ the system can be in a bound, resonance or scattering state with boundary

conditions determined by the specific state. The system of N linear second-order

differential equations given in (1.37) has 2N linearly-independent column solutions,

only half of which are regular at the origin [13]. These regular solutions will be

denoted by φnn′(E,r), with

φnn′(E,r)−−−→r→∞
0 ∀n,n′. (1.41)
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The fundamental matrix of the regular solutions is constructed from these regular

solutions:

Φ(E,r) =


φ11(E,r) φ12(E,r) · · · φ1N(E,r)

φ21(E,r) φ22(E,r) · · · φ2N(E,r)
...

... . . . ...

φN1(E,r) φN2(E,r) · · · φNN(E,r)

 . (1.42)

Any physical solution for each channel of the system of radial equations, (1.37) must

be a linear combination of the columns of Eq. (1.42), since the matrix elements are

also solutions of Eq. (1.37) [13]:
u1

u2
...

uN

=C1


φ11

φ21
...

φN1

+C2


φ12

φ22
...

φN2

+ · · ·+CN


φ1N

φ2N
...

φNN

 .

Or, as a matrix equation,

U(E,r) = Φ(E,r)C (1.43)

with

C =


C1

C2
...

CN

 , (1.44)

and

U(E,r) =


u1(E,r)

u2(E,r)
...

uN(E,r)

 . (1.45)
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Equivalently, as a summation over the channels,

un =
N

∑
n′=1

φnn′Cn. (1.46)

This representation is sometimes preferred in derivations, as will be seen in the sec-

tions that follow. Correct behaviour of the physical solution when r → 0 is then

guaranteed and proper choice of the combination coefficients Cn results in correct

asymptotic behaviour when r→ ∞.

It is now assumed that the central interaction potential, Unn′(r) and hence the reduced

potential Vnn′(r) in equation (1.37) is short-ranged. To be more precise, it obeys the

three conditions given in Section 1.2.

When the interacting particles are far apart, Vnn′(r→∞)→ 0 and Eq. (1.37) reduces

to N uncoupled second-order differential equations:

[
∂

2
r + k2

n−
`n(`n +1)

r2

]
un(E,r) = 0, r→ ∞. (1.47)

Two linearly-independent solutions for each of the N equation are the Riccati-Hankel

functions, h(±)` (kr), which physically corresponds with the incoming, h(−)` , and out-

going, h(+)
` , spherical wave. This is clear when one considers the asymptotic beha-

viour of the Riccati-Hankel functions [14]:

h(±)` (kr)−−−−→
|kr|→∞

(∓i)`+1e±ikr = e±i[kr−π/2(`+1)] (1.48)

Another possible pair of linearly-independent solutions are the Riccati-Bessel,

j`(kr), and Riccati-Neumann, n`(kr), functions, which are related to the standard

Bessel functions (see Ref. [14] for details) and can of course be written as a linear

combination of the Riccati-Hankel functions:

h(±)` (kr) = j`(kr)± i n`(kr) (1.49)

The Riccati-Bessel function, j`(kr) is of particular importance, as it is regular at the
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origin and has the following behaviour there:

j`(kr)−−→
r→0

(kr)`+1

(2`+1)!!
. (1.50)

Returning to Eq. (1.47), there are 2N linearly-independent column solutions to the

system of equations, which can be written as square, diagonal matrices where the

matrix elements are the Riccati-Hankel functions:

W (in) =


h(−)`1

(k1r) 0 · · · 0

0 h(−)`2
(k2r) · · · 0

...
... . . . ...

0 0 · · · h(−)`N
(kNr)

 (1.51)

W (out) =


h(+)
`1

(k1r) 0 · · · 0

0 h(+)
`2

(k2r) · · · 0
...

... . . . ...

0 0 · · · h(+)
`N

(kNr)

 (1.52)

Any particular column solution to Eq. (1.47) can be written as a linear combination

of the 2N columns of Eq. (1.51) and (1.52), since they form a basis in the space of

solutions of Eq. (1.47) [13].

At r → ∞, the columns of the fundamental matrix of the regular solutions (1.42)

have to be solutions of (1.47). Thus, at large r, (1.42) can be written as a linear

combination of (1.51) and (1.52) [13]:

Φ(E,r)−−−→
r→∞

W (in)(E,r) f (in)(E)+W (out)(E,r) f (out)(E). (1.53)

The energy dependent N×N matrices, f (in/out)(E), are defined as the Jost matrices.

By Eq. (1.43), the asymptotic behaviour of the physical radial wave-functions can
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also be given in terms of the Jost matrices:

U(E,r)−−−→
r→∞

W (in)(E,r) f (in)(E)C+W (out)(E,r) f (out)(E)C. (1.54)

For N = 1, these matrices reduce to the Jost functions and Eq. (1.53) becomes the

following:

φ(E,r)−−−→
r→∞

h(−)` (kr) f (in)` (E)+h(+)
` (kr) f (out)

` (E). (1.55)

The single-channel Jost functions can then be defined as the energy-dependent amp-

litudes of the incoming and outgoing spherical waves of the regular solution to the

radial wave-equation, with the Jost matrices being the multi-channel extension of

this principle. The matrix elements of the Jost matrices can also be thought of as

channel Jost functions.

In the single-channel case, the Jost functions have the following easily-proven sym-

metry relations [3]:

[
f (in)` (E)

]∗
= f (out)

` (E), E > 0 (1.56)

This is why, in numerous texts (see, for example, Ref. [3]), only one Jost function is

defined,

f (in)` (E) = f`(E), (1.57)

since the other can be written in terms of this function:

f (out)
` (E) = [ f`(E)]

∗ . (1.58)

The two Jost functions will continue to be distinguished, since the ‘in’ and ‘out’

notation links well with the definition and is easily extended to the multi-channel

case.

The Jost function was first introduced by Swiss physicist Res Jost in 1947 in Ref.

[15], and it has a number of useful and interesting properties. Most importantly, the
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S-matrix will be defined as the “ratio” of the Jost matrices:

S(E)≡ f (out)(E)
[

f (in)(E)
]−1

, (1.59)

which is equivalent to the definition given in Section 1.2 (see, for example, Ref. [3]).

The single-channel symmetry relation allows both the single-channel Jost functions

to be written in terms of the same quantity, δ`, which is real and positive:

f (in)` (E) =
∣∣∣ f (in)` (E)

∣∣∣e+iδ`(E), E > 0 (1.60)

f (out)
` (E) =

∣∣∣ f (in)` (E)
∣∣∣e−iδ`(E), E > 0 (1.61)

When these two expressions for the Jost functions are divided, the following is ob-

tained:
f (out)
` (E)

f (in)` (E)
= e2iδ`(E), (1.62)

which then implies that,

S`(E) = e2iδ`. (1.63)

The quantity δ` is, of course, the scattering phase-shift. It is usually defined only

for positive energies. While many texts on scattering theory introduce this quantity

differently (see, for example, Ref. [3]), the definitions are equivalent. There is, how-

ever, a problem: the phase-shift is not uniquely defined, since the same S-matrix can

be obtained by different phase-shifts, determined by j:

S`(E) = e2i(δ`+π j), j = 0,1,2, ... (1.64)

This becomes particularly evident in calculating the phase-shifts for a singular, re-

pulsive potential such as the Coulomb potential for like charges. A smooth set of

data is rarely obtained, and in certain energy ranges, π j for some j must be added or

subtracted to the phase-shifts to obtain a continuous curve.

This problem has been addressed in Ref. [16], where the phase-shift is uniquely
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defined for any spherical potential. The definition can also be extended to multi-

channel scattering.

Irrespective of the ambiguous term π j, the same S-matrix and hence the same scat-

tering cross-section will always be obtained. It is thus more convenient to work with

the scattering cross-section, which is typically the measured quantity in a scattering

experiment. For multi-channel scattering, it is particularly convenient to work with

the the scattering cross section rather than the phase shifts.

The Jost matrices allow the bound, resonance and scattering states of a system of

colliding particles to be determined simultaneously. Further details are given in the

sections that follow, but a method of determining the Jost matrices for a given poten-

tial will first be discussed.

Calculating the Jost matrices

Consider again the system of radial equations (1.37). The matrix elements of the

fundamental matrix of regular solutions are solutions to the radial equation, as has

been indicated. At large r, the matrix Φ(E,r) is then a linear combination of the

matrices W (out/in)(E,r); see Eq. (1.53). This suggests that Φ(E,r) should be written

in terms of these matrices for all r:

Φ(E,r)≡W (in)(E,r)F(in)(E,r)+W (out)(E,r)F(out)(E,r). (1.65)

where F(in/out)(E,r) are unknown matrix functions of both E and r. It is clear that

these matrices become the Jost matrices at large r:

f (in/out)(E) = lim
r→∞

F(in/out)(E,r). (1.66)

The matrix functions F(in/out)(E,r) cannot be independent of each other, and a suit-

able dependence, in this case the Lagrange condition, can be imposed:

W (in)(E,r)∂rF(in)(E,r)+W (out)(E,r)∂rF(out)(E,r) = 0 (1.67)
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Furthermore, using the Wronskian of the Riccati-Hankel functions h(±)` (kr) (see Ref.

[14], for example), it can be shown that:

W (in)
[
∂rW (out)

]
−
[
∂rW (in)

]
W (out) = 2iK, (1.68)

with:

K =


k1 0 · · · 0

0 k2 · · · 0
...

... . . . ...

0 0 · · · kN

 . (1.69)

Substituting Eq. (1.65) into the radial equation (1.37), implementing the condition

(1.67) and using Eq. (1.68) results in the following system of first-order differential

equations:

∂rF(in) = − 1
2i

K−1W (out)V
[
W (in)F(in)+W (out)F(out)

]
, (1.70)

∂rF(in) =
1
2i

K−1W (in)V
[
W (in)F(in)+W (out)F(out)

]
. (1.71)

The functional dependence has been suppressed to simplify the expression. For the

full derivation, see Refs. [13, 17] for example.

For a given spherically symmetric short-ranged potential, only the boundary condi-

tions are then necessary to calculate the Jost matrices. Provided that the choice does

not affect the behaviour of the fundamental matrix of regular solutions near the ori-

gin, these boundary conditions can be chosen arbitrarily [13, 17]. This is somewhat

counter-intuitive, but can be understood when considering the properties of the Jost

matrices. It will be shown that bound states and resonances correspond to discrete

energies, Ei such that det
[

f (in)(Ei)
]
= 0. The scaling of f (in)(E) is therefore irrelev-

ant in locating the bound and resonance states. By Eq. (1.66), f (in)(E) is determined

as the limit of F(in)(E,r), and the boundary condition at r = 0 can thus be chosen

arbitrarily.

Furthermore, all other properties of the Jost matrices are obtained via their relation
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to the S-matrix. If the boundary conditions of F(in/out)
` (E,r) are the same, the scaling

factors of the Jost matrices cancel out in the expression for the S-matrix. See Refs.

[13, 17] for further details.

The following boundary condition will be chosen:

F(in/out)(E,r→ 0) =
1
2

I (1.72)

where I is the N×N identity matrix.

If the matrix J, comprised of the Riccati-Bessel functions on the diagonal, is intro-

duced:

J(E,r) =


j`1(k1r) 0 · · · 0

0 j`2(k2r) · · · 0
...

... . . . ...

0 0 · · · j`N (kNr)

 , (1.73)

it is easy to show by Eq. (1.49) that:

J(E,r) =
1
2

W (in)+
1
2

W (out). (1.74)

Using this when implementing the boundary conditions (1.72) in Eq. (1.65) near the

origin results in the following regular behaviour of the fundamental matrix of regular

solutions:

Φ(E,r→ 0) = J(E,r)−−→
r→0



(k1r)`1+1

(2`1+1)!! 0 · · · 0

0 (k2r)`2+1

(2`2+1)!! · · · 0
...

... . . . ...

0 0 · · · (kNr)`N+1

(2`N+1)!!

 . (1.75)

The physical radial solutions are related to the regular solutions by Eq. (1.43), thus

by Eq. (1.65) the following is also obtained:

U(E,r) =W (in)(E,r)F(in)(E,r)C+W (out)(E,r)F(out)(E,r)C. (1.76)
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Equivalently, the channel radial solutions are given by:

un(E,r) =
N

∑
n′=1

[
h(−)`n

(knr)F(in)
nn′ (E,r)Cn +h(−)`n

(knr)F(out)
nn′ (E,r)Cn

]
, (1.77)

and by Eq. (1.33) the time-independent wave-function for each channel is given by:

ψn(E,r) =
1
r

N

∑
n′=1

∑
`nmn

[
h(−)`n

(knr)F(in)
nn′ (E,r)Cn+

h(+)
`n

(knr)F(out)
nn′ (E,r)Cn

]
Y`nmn(θ ,ϕ) (1.78)

It is very important that the physical wave-function is normalised correctly and that

is has the correct asymptotic behaviour. This will fix the constants, Cn. Determining

F(in/out)(E,r) with the coupled system of differential equations (1.70) and (1.71)

also allows the wave-functions for each channel to be determined with Eq. (1.78),

as well as determining the Jost matrices with Eq. (1.66).

This is of course only possible for a suitable short-ranged potential. The Jost

matrices can also be constructed with appropriate fittings of experimental data,

which is the focus of this thesis. The formalism will furthermore be expanded to in-

clude Coulomb interactions. The relationship between the Jost matrices and bound,

resonance and scattering states will first be discussed in detail.

1.5.2 Bound states

Bound states are, per definition, stable states where scattered particles cannot leave

the source of an attractive field [3]. In the case of two-body scattering, the two

particles that are scattered become ‘stuck’ together.

Such states are energy eigenstates of the Hamiltonian and the eigenvalues corres-

pond to the discrete bound state energies, as was mentioned in a previous section.

Furthermore, these energy eigenvalues are real and, for a particular channel, must

have energy smaller than the threshold energy of that channel [11]. The correspond-
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ing channel momentum, kn from Eq. (1.36) must then be purely imaginary and will

be written as follows:

kn =±
√

2µn

h̄2 (E−En) =±i|kn|, (1.79)

where the positive kn =+i|kn| is chosen for all n, which corresponds to the so-called

physical sheet of the energy Riemann surface. The negative choice of kn, which

corresponds with the unphysical sheet of the Riemann energy surface, results in a

different relationship with the Jost matrices for bound states. Riemann surfaces will

be discussed in detail in Chapter 3.

As previously mentioned, particles in a bound state are restricted so that they are

close to the source of the attractive field. In a two-body system, the probability of

finding one particle far away from the source of the attractive field, the other particle,

is zero. Thus the two-body time-independent wave-functions for each channel,

ψn(E,r,θ ,ϕ), must also be zero for large r. In turn, this implies that un(r→∞)→ 0,

from Eq. (1.34), and so the same is true for the matrix of solutions: U(E,r→∞)→ 0

.

By the asymptotic behaviour of the physical solutions, Eq. (1.54), the following

requirement is then obtained for bound states:

W (in)(Ei,r→ ∞) f (in)(Ei)C+W (out)(Ei,r→ ∞) f (out)(Ei)C → 0 (1.80)

When considering the asymptotic behaviour of the Riccati-Hankel functions given

in Eq. (1.48), and keeping in mind the channel momenta, kn are positive and purely

imaginary, it is clear that,

h(+)
`n

(i|kn|r) −−−→
r→∞

0,

h(−)`n
(i|kn|r) −−−→

r→∞
∞.

This, in turn, implies that W (out)(Ei,r→ ∞) = 0 and W (in)(Ei,r→ ∞) becomes an
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infinite diagonal matrix. For Eq. (1.80) to hold, it is then required that

f (in)(Ei)C = 0. (1.81)

For a single-channel problem, this simply means the single-channel Jost function is

zero at a bound state spectral energy, Ei:

f (in)` (Ei) = 0. (1.82)

For a non-trivial solution, the column matrix C is non-zero. For the multi-channel

case, Eq. (1.81) holds if and only if

det
[

f (in)(Ei)
]
= 0, (1.83)

on the physical sheet of the Riemann surface, by the positive choice of sign for kn.

This corresponds exactly with the well-known fact that the energy poles of the S-

matrix on the physical sheet correspond to the bound state spectral energies [3],

which is clear when considering the relationship between the S-matrix and the Jost

matrices, Eq. (1.59).

For a negative choice of kn, it is easy to show by a similar discussion, that bound

states also correspond to det
[

f (out)(Ei)
]
= 0 on the unphysical sheet of the Riemann

surface. This is also in line with the symmetry relations between f (in)(E) and

f (out)(E) (see Refs. [3, 13], for example).

The more prickly problem of resonance states will be considered next.

1.5.3 Resonance states

The concept of resonance occurs in numerous divers branches of physics and, of

course, the definition is similar in the various fields. In quantum scattering theory,

resonances physically represent extremely short-lived (∼ 10−20 s) excited states of

particles, that decay by the strong interaction [2]. These particles can be in the
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Figure 1.1: Intuitive representation of a resonance.

sub-nuclear, nuclear and atomic scale. In quantum few-body physics in particular,

nuclear and atomic resonances are the focus of research.

The resonance phenomenon is one of the most fascinating aspects of quantum mech-

anics and has been the subject of numerous studies [2]. Much progress has been

made to accurately describe quantum resonance states mathematically and numer-

ous techniques exist in nuclear, atomic and particle physics to determine resonance

parameters.

Resonance states are often called semi-bound or quasi-bound states, since they have

similar physical and mathematical properties to bound states. This is because they

behave exactly as bound states do, but for a limited time-interval until decay takes

place.

Intuitively, quantum resonances can be understood by considering a single particle in

a central potential. The kinetic energy of the particle may be such that its trajectory

around the source of the potential is closed. It will thus orbit the source of the central

potential indefinitely, which corresponds with a bound state. For a resonance state,

the kinetic energy is such that the particle trajectory is almost closed - the particle

will orbit the source of the central potential a number of times before dispersing, as

illustrated in Figure 1.1.

The concept of a trajectory is, of course, meaningless for quantum particles. A res-

onance is then more accurately thought of as a slowly dissipating, partially localised
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state. For discrete frequencies and corresponding discrete energies, accumulated

energy exists in small regions of space. This energy dissipates through a frequency-

window called the resonance width. A mathematical description of this principle fol-

lows. Firstly, resonances from simple, single-channel scattering will be considered.

Single-channel resonances

Unlike scattering states, resonance states are not governed by the initial state vector.

A scattering state has a definite in-asymptote, and a resonance state does not [3].

Consequently, for resonances energies, only the outgoing spherical wave exists far

from the interaction region, similar to bound states. From Eq. (1.54), this again

implies that

f (in)(Ei) = 0, (1.84)

but the spectral energies Ei are no longer necessarily real and negative, as for bound

states. The resonance spectral energies will then be written as follows:

Ei = Er + iEi, (1.85)

where Er and Ei are both real.

Since the rate of decay of an ensemble of resonance states is proportional to the

number of such states in the system at a specific time, the decay can be modelled by

the exponential decay law [3]:

N(t) = N0e−tΓ/h̄, (1.86)

where N(t) is the number of resonance or decaying states at time t, N0 is the number

of states at t = 0 and Γ/h̄ is the decay constant, which is real and positive. Γ is

known as the resonance width and has units of energy.

The decay law is the solution of the differential equation:

dN(t)
dt

=−Γ

h̄
N(t), (1.87)
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which is derived from the premise that the rate of decay of a system of particles is

proportional to the number of particles in the system [3].

The number of resonances at a specific time, N(t), is proportional to the probability

density of the outgoing wave-function, which describes the relative motion of the

outgoing particles in a decaying system:

ρ(t,r)∼ N0e−tΓ/h̄. (1.88)

The probability density is given in terms of the wave-function (in the position rep-

resentation) by [11, 22]:

ρ(t,r) = |ΨΨΨa(t,r)|2. (1.89)

Since Γ is real, the following proportionality is obtained:

ΨΨΨa(t,r)∼ N0e−tΓ/2h̄. (1.90)

The time-dependent resonance wave-function can be written in terms of the time-

independent wave-function and a time-dependent part at resonance energy Ei (see

Eq. (1.3)). The following proportionality of the time-dependent part must hold [3]:

e−iEit = e(−iEr+Ei)t ∼ e−tΓ/2. (1.91)

If the resonance energy is real, Ei = 0, and the time-dependent part would be oscillat-

ory, instead of decaying exponentially. Furthermore, if Ei > 0, exponential growth

instead of decay would occur. In conclusion, the imaginary part of the resonance

energy must be negative.

Resonances then correspond to complex spectral energies, Ei, which have a negative

imaginary part, with f in(Ei) = 0. Furthermore, they occur on the unphysical sheet of

the Riemann surface [3]. This will be covered in the next section for multi-channel

resonances.
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From the proportionality of Eq. (1.91),

Ei =−Γ/2, (1.92)

and so the resonance spectral energy is given in terms of the resonance width:

Ei = Er−
i
2

Γ. (1.93)

Furthermore, it is easy to show that the resonance width is related to the half-life of

the decaying state as follows:

T1/2 = h̄
ln2
Γ

. (1.94)

Even though resonance energies are complex, they have a physical impact on the

scattering cross-sections: typically, at the real part of the resonance energies, Er,

large variation, such as peaks and troughs, occur in the cross-section data.

This can be understood by considering the analytic properties of the Jost functions

[17]. Only single-channel Jost functions are still considered, yet the principle is

easily extended to multi-channel scattering. The Jost functions, f (in/out)
` (E), are

analytic functions of energy [3]. If the energy was to change from a resonance

spectral energy, where f (in)` (Er− iΓ/2) = 0, to a real energy, where f (in)` (Er) =C for

some value C, the transition from 0 to C would have to be smooth. If the resonance

width, Γ, is very small, the transition value C would also have to be small. By the

conservation of the probability current (see Ref. [11], for example), the change in

the function f (out)
` (E) would also be small for an energy change from Er− iΓ/2 to

Er.

By Eq. (1.59), the definition of the S-matrix, it will have a pole at the resonance

spectral energy Er− iΓ/2. Since, for small Γ, the difference in values of the Jost

functions at energy Er− iΓ/2 and at energy Er is small, the S-matrix must have very

large values at the energy Er. It cannot, however, have a pole at this energy. The

S-matrix is, in turn, related to the phase-shift and cross-section, which will also have

comparatively large values at the real part of the resonance energy, Er; hence the
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peaks and troughs in the data at these energy values.

A wide resonance has a large resonance width, Γ. Corresponding peaks in cross-

section data at resonance energies will thus be flatter and wider too, and will have

very short lifetimes, by Eq. (1.94).

For multi-channel scattering, the total cross-section is the sum of all the partial wave

cross-sections, where the effect of all the possible resonances add together. Thus,

all the peaks in the data do not necessarily represent resonances, and can arise from

channel overlap. Such overlap can even occur with resonances of the same partial

wave. If, however, the Jost matrices can accurately be constructed from the scattering

data, all spectral points can accurately be determined. This is the crux of this thesis.

Multi-channel resonances must first be discussed in more detail.

Multi-channel resonances

Consider the following hypothetical multi-channel scattering process which occurs

via the intermediate resonance state R:

A+B→ R→


A+B

C+D

etc.

.

After it is formed, the resonance state R may decay into any one of the open channels,

irrespective of how it is formed. This again implies that only the outgoing spherical

wave exists far from the interaction region. By Eq. (1.54), for resonance spectral

energies Ei,

det
[

f (in)(Ei)
]
= 0. (1.95)

Using identical arguments to the single-channel case, it can again be shown that

resonances correspond to spectral energies with:

Ei = Er−
i
2

Γ, (1.96)
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where Γ is now the total resonance width of the multi-channel resonance.

As with bound states, there are two possible choices of the sign for kn from Eq.

(1.36), since kn = ±
√

2µn
h̄2 (E−En). The positive choice for all n corresponds with

the physical sheet, and the negative choice with the unphysical sheet of the Riemann

surface. It must still be shown that the resonance energy, Ei, belongs to the unphys-

ical sheet. It has been mentioned that only the outgoing spherical waves for each

channel can exist for large r. The asymptotic behaviour of the radial wave-functions

at a resonance energy is then given by:

U(Ei,r) −−−→
r→∞

W (out)(Ei,r) f (out)(Ei)

−−−→
r→∞


−i`1+1eik1r 0 · · · 0

0 −i`2+1eik2r · · · 0
...

... . . . ...

0 0 · · · −i`N+1eikNr

 f (out)(Ei),

where kn = ±
√

2µn
h̄2 (Ei−En). If Im(kn) > 0, the wave-function will vanish at large

r, which is only possible for bound state solutions. Thus Im(kn) < 0, which corres-

ponds with a negative choice in the sign of kn, and resonances must be located on

the unphysical sheet of the Riemann surface. Similar to bound states, resonances

correspond to poles of the S-matrix, but these energy poles are complex with negat-

ive imaginary part and they are specifically on the unphysical sheet of the Riemann

surface.

There are further complications with multi-channel resonances. Consider the decay

for a multi-channel system of particles, which can occur via numerous channels.

This means that the multi-channel differential equation describing decay is given

by [2]:

dN(t)
dt

=−Γ1

h̄
N(t)− Γ2

h̄
N(t)− ...=−1

h̄
(Γ1 +Γ2 + ...)N(t) =−Γ

h̄
N(t). (1.97)

Each open channel then has a decay constant, and therefore also a channel resonance
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width, associated with it. The sum of the channel widths gives the total width:

Γ = Γ1 +Γ2 + ...ΓN , (1.98)

which can be seen from Eq. (1.97). The ratio of a particular channel partial width

and the total width, Γn/Γ, gives the probability that a resonance will decay through,

or can be excited from that particular channel [17].

There are different methods for determining the partial widths, but these methods

unfortunately do not always agree. The most common method approximates the

S-matrix elements near a resonance energy as follows [3]:

Snn′(E→Ei)≈ const

(
1−

i
√

ΓnΓ′n
E−Ei +

i
2Γ

)
, (1.99)

which is obtained from the Breit-Wigner parameterisation, given in Ref. [1]. From

this approximation it can be shown, for a two channel problem, that the ratio of the

two channel widths is given by:

Γ1

Γ2
= lim

E→Ei

∣∣∣∣S11(E)
S22(E)

∣∣∣∣ . (1.100)

At the spectral energy Ei, from Eq. (1.59), the matrix elements S11 and S22 have

singularities which arise from the factor 1/det
[

f (in)(Ei)
]
. This factor is the same

in both S11 and S22 and comes from the fact that the inverse matrix, f (in), can be

written in terms of the inverse of its determinant. In dividing these matrix elements,

the singular factors cancel out exactly, and it can be shown that,

Γ1

Γ2
=

∣∣∣∣∣ f (out)
11 f (in)22 − f (out)

12 f (in)21

f (out)
22 f (in)11 − f (out)

21 f (in)12

∣∣∣∣∣
E=Ei

. (1.101)

The elements of the Jost matrices therefore allow the partial widths for a two-channel

problem to be calculated. This particular method belongs to a group of methods

which relies on principles similar to the “Fermi Golden Rule” (see Ref. [18] for

example). In general, for the methods of this group, Eq. (1.98) holds very well for
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sharp, long-lived resonances, but not necessarily for wider, short-lived resonances.

In a second group of methods, partial widths are determined by considering the

asymptotic behaviour of the multi-channel resonance state vector:

|R〉 −−−−→
r→−∞


A1|ψ1〉

A2|ψ2〉
...

 , (1.102)

where ψn is the wave-vector associated with the channel, n. The amplitude, An,

gives the probability of finding the system in the channel n and is therefore related

to Γn. Such a method is discussed in great detail in Ref. [18], where the ratio of two

channel widths is shown to depend on the probability amplitudes as follows:

Γn

Γn′
=

µn′Re(kn)|An|2

µnRe(kn′)|An′|2
. (1.103)

These probability amplitudes are, in fact, the resonance state Asymptotic Normal-

isation Coefficients (ANC), which will be discussed in detail in Chapter 4. It will

also be shown that the ANC is related to the S-matrix residue by:

Res[Snn′,Ei] = i(−1)`n+1 h̄2kn

µn
A2

n, (1.104)

where Res[Snn′,Ei] is the S-matrix residue at resonance energy Ei, µn is the reduced

mass for the channel n and kn is the channel momentum given by Eq. (1.36).

Using this, the ratio of widths are then determined with:

Γn

Γn′
=

∣∣∣∣ Res[Snn]

Res[Sn′n′]
· kn′Re(kn)

knRe(kn′)

∣∣∣∣
E=Ei

. (1.105)

For a two-channel problem, the S-matrix residue, which is also a matrix, can be cal-

culated with the Jost matrices as follows (which will be derived in the next section):
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Res[S,E] = f (out)(E)

 f (in)22 (E) − f (in)12 (E)

− f (in)21 (E) f (in)11 (E)

 1
d

dE det
[

f (in)(E)
] . (1.106)

Implementing this, the ratio of partial widths for two channel scattering is given by:

Γ1

Γ2
=

∣∣∣∣∣ f (out)
11 f (in)22 − f (out)

12 f (in)21

f (out)
22 f (in)11 − f (out)

21 f (in)12

· k2Re(k1)

k1Re(k2)

∣∣∣∣∣
E=Ei

. (1.107)

For very sharp resonances, the total width Γ is very small. From Eq. (1.36), the

channel momentum at a resonance energy Ei = Er− (i/2)Γ has a small imaginary

part, thus kn ≈ Re(kn), and Eq. (1.107) reduces to (1.101), as expected. This prin-

ciple is applicable to multi-channel scattering with any number of channels, not just

two.

This kinematic factor, [kn′Re(kn)]/[knRe(kn′)], arises from the differences in the time

of flight of the decay in the different channels, as discussed in Ref. [18]. The approx-

imation, Eq. (1.99), requires a similar kinematic factor for greater accuracy.

The partial widths calculated for the two-channel scattering problems in Chapter 3

of this thesis are for sufficiently narrow resonances so that Eq. (1.101) may safely

be used.

Much more can be said about resonances in general, but the discussion so far is

almost sufficient for the purposes of this thesis. A few words on other possible

spectral points as well as the distribution of bound and resonance state spectral points

follows.

1.5.4 Other spectral points and distribution

Apart from the spectral points, Ei, such that det[ f (in)` (Ei)] = 0, which represent true

bound and resonances states that have a clear physical interpretation, there are other

spectral points that do not necessarily correspond to a physical realisable state. Con-

36



Introduction Jost matrices and properties

Figure 1.2: Typical distribution of the spectral points on the complex momentum plane, as published
in Ref. [19].

sider the spectral points located at real, negative energies on the unphysical sheet of

the energy Riemann surface. These are usually referred to as virtual states, but some

texts also use the term anti-bound states. They correspond to pure complex, negative

channel momenta:

kn =−i
√

2µn|En|/h̄2. (1.108)

As shown in Figure 1.2, they are on the negative imaginary axis of the complex plane.

Mathematically they are identical to resonances, but with zero width. They cannot

exist for physical energies, though. Bound states of course exist due to attractive

potentials between particles, but if the attraction is too weak, virtual states can be

obtained. These virtual states are bound states in potentia, as it were. If the attraction

is stronger, they can “move” up the imaginary k-axis to become proper bound states.

Apart from virtual states, bound states can also “transform” into resonances if the

attractive part of a potential is weakened.

Figure 1.2 also shows the typical distribution of the resonances. The resonances,

given by Ei = Er− i
2Γ, will usually appear in a type of trajectory or curve formed

by discrete points in the complex k-plane. Furthermore, there are technically infin-

itely many possible resonances [19], with the trajectory curving in such a way that
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corresponds with Er →−∞ and Γ→ ∞. Generally, resonances that occur at phys-

ical (positive) energies are the most important. Furthermore, wide resonances with

large Γ are so short-lived, they are often difficult to locate and of less importance in

a physical process.

Those resonances with Er < 0 are known as sub-threshold resonances, and are obvi-

ously physically unattainable. However, such resonance can have a marked impact

on the physical cross-sections at low, positive energies and can influence low-energy

scattering significantly. Virtual states are then specifically sub-threshold resonances

with zero width.

A third resonance spectral point with negative Re(k) arises due to the symmetries

of the Jost matrices. As shown in Figure 1.2, each of the true resonances (including

sub-threshold resonances) has a mirror resonance with negative Re(k) [19]. These

mirror resonances have no influence on the physical scattering process.

The Jost matrices provide a unified method to calculate all of these spectral points,

as well as the corresponding S-matrix residues. The relationship between the Jost

matrices and the S-matrix residue will be discussed in the next section, before mov-

ing on to scattering states.

1.5.5 The S-matrix residue

The S-matrix residue is a useful quantity in numerous respects. Most importantly,

it can be calculated with the Jost matrices, as will be shown in this section. For the

purpose of this thesis, its relationship with the ANC is used to determine these values

for the two physical systems of Chapters 5 and 6.

Firstly, the S-matrix residue must be defined. The S-matrix elements are complex

functions of energy and can be expanded in the Laurent series as follows:

Snm(E) =
Rnm

E−Ei
+D(0)

nm +D(1)
nm(E−Ei)+D(2)

nm(E−Ei)
2 + · · · , (1.109)

where Ei represents a spectral point energy (either a bound state or a resonance). At
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the limit E→Ei, the first term dominates the expansion, so:

Snm(E)−−−→
E→Ei

Rnm

E−Ei
. (1.110)

The residue of each S-matrix element at a spectral point, Ei, is then defined as

Res [Snm,Ei] = Rnm, which can then be determined with:

Res [Snm,Ei] = lim
E→Ei

(E−Ei)Snm(E). (1.111)

Since the S-matrix is related to the Jost matrices, a direct relationship between the

S-matrix residue and the Jost matrices can be derived. First consider det
[

f (in)(E)
]
,

which is an energy dependent function. The analytic structure of the Jost matrices

will be discussed in a Chapter 3, but they are analytic in energy except, possibly, at

the threshold energies En. Thus the determinant of the Jost matrices must also be

entire in energy, and so det
[

f (in)(E)
]

can be expanded in the Taylor series around a

spectral energy Ei:

det
[

f (in)(E)
]
= det

[
f (in)(Ei)

]
+(E−Ei)

d
dE

det
[

f (in)(E)
]∣∣∣∣

Ei

+ · · · . (1.112)

At a spectral point, det
[

f (in)(Ei)
]
= 0. Also, if E → Ei, all higher-order terms may

be omitted. Thus:

lim
E→Ei

det
[

f (in)(E)
]
≈ (E−Ei)

d
dE

det
[

f (in)(E)
]∣∣∣∣

Ei

(1.113)

Now the inverse of a matrix can be written in terms of the determinant of said matrix

and its adjugate [20], thus the S-matrix can be written as follows:

S(E) = f (out)(E)
[

f (in)(E)
]−1

= f (out)(E) adj
[

f (in)(E)
] 1

det
[

f (in)(E)
] . (1.114)
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For an arbitrary 2×2 matrix, M, given by:

M =

 m11 m12

m21 m22

 , (1.115)

the adjugate, also called the classical adjoint or adjunct, is given by:

adj(M) =

 m22 −m12

−m21 m11

 . (1.116)

The adjugate for a N×N matrix is more complex, but it can easily be determined

with an appropriate algorithm. For further details, see Ref. [20].

Multiplying Eq. (1.114) by (E−Ei), taking the limit as E→Ei and substituting Eq.

(1.113) then gives:

lim
E→Ei

(E−Ei)S(E) = lim
E→Ei

f (out)(E) adj
[

f (in)(E)
] 1

d
dE det

[
f (in)(E)

]
Ei

. (1.117)

And so, using Eq. (1.111), the S-matrix residue is given by:

Res [S,Ei] = f (out)(Ei) adj
[

f (in)(Ei)
] 1

d
dE det

[
f (in)(E)

]
Ei

, (1.118)

which is exactly Eq. (1.106) used to determine partial resonance widths. For single-

channel scattering, this reduces to the following simple relation:

Res [S,Ei] =
f (out)(Ei)
.
f
(in)
` (Ei)

, (1.119)

where the dot indicates the energy derivative of the Jost function.

The derivative of the determinant (or for any function) can be determined numeric-

ally with:

d
dE

det
[

f (in)(E)
]
=

det
[

f (in)(E + ε)
]
−det

[
f (in)(E− ε)

]
2ε

. (1.120)
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A value of ε = 10−6 MeV is generally used in the calculations, resulting in an ac-

curacy of at least five digits.

So much on the S-matrix residue. In the next section on scattering states, the scatter-

ing cross-section will be discussed in particular.

1.5.6 Scattering states

An important distinguishing feature of scattering states in a specific channel is that

the initial incoming state of the channel, which will be defined by its channel mo-

mentum vector kn, with |kn| = kn, together with the outgoing state, determines the

scattering. Bound and resonances states, on the other hand, are not defined by the

incoming state vector. Furthermore, physical scattering occurs at positive energies

above the threshold energies. Also recall that the two-body scattering of particles is

effectively equivalent to the scattering of a single particle in a central potential.

Differential scattering cross-section

In the quantum ensemble picture, the scattering states do not describe the effective

interaction of a single particle, but of a flux of particles. The particle flux, or probab-

ility current of each channel, is given in terms of the time-independent wave function

by [11]:

jn =
h̄

2iµn
[ψ∗n (r)∇ψn(r)−ψn(r)∇ψ

∗
n (r)] . (1.121)

The scattering cross-section, σ , is a measure of the probability that scattering will

take place for an incoming beam of particles that interact with a target. It is determ-

ined from the differential cross-section with:

σ =
∫ dσ

dΩ
dΩ. (1.122)

The differential cross-section, in turn, is the number of particles scattered into the

element of solid angle, dΩ, in the direction of r, given by r̂ = (θ ,ϕ), per unit time
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and incident flux, jin:
dσ

dΩ
=

1
|jin|

dN
dΩ

, (1.123)

where N is the number of particles scattered in the direction r̂. The infinitesimal

number of particles, dN, scattered into an element of solid angle, dΩ, in the direc-

tion, r̂, and passing through the surface element, dA = r2dΩ per unit time, is given

by [11]:

dN = jscr2dΩ (1.124)

where jsc is the scattered flux in the direction r̂. The differential cross-section for

a specific channel n, is then related to the ratio of the outgoing radial flux and the

incoming flux for the relevant channel:

dσ =
jsc
n r2

|jin
n |

dΩ. (1.125)

All that remains is to determine the nature of the incoming and outgoing waves to

calculate the corresponding flux.

The incident beam consists of plane waves at r→−∞, well before interaction with

the target, the source of the central potential, takes place. After scattering, far from

the target and the interaction region, the physical wave consists of unscattered plane

waves as well as outgoing scattered spherical waves [11]. Refer to Figure 1.3, which

represents this process for a single channel. The channel wave-functions as r→ ∞

are then given by:

ψn(E,r)−−−→
r→∞

(2π)−3/2eikn·r +(2π)−3/2fn(r̂← k̂n)
eiknr

r
, (1.126)

where the first term is the incoming plane-wave part and will be denoted by,

ψ
(in)
n = (2π)−3/2eikn·r. (1.127)
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Figure 1.3: Incident and scattered waves.

The second term is the outgoing scattered radial wave, denoted by,

ψ
(sc)
n = (2π)−3/2fn(r̂← k̂n)

eiknr

r
. (1.128)

This can be seen by considering the asymptotic behaviour of the outgoing Riccati-

Hankel function, Eq. (1.48). The constant, (2π)−3/2, arises from the correct nor-

malisation of the wave-function [3]. The factor fn(r̂← k̂n) is called the scattering

amplitude for the channel n, and is a very important quantity in quantum scattering.

It will also be defined in terms of the Jost matrices in this work.

The corresponding flux magnitude for the incoming wave is then:

|jin
n |= (2π)−3 h̄kn

µn
, (1.129)

and the flux in the direction r̂ of the outgoing wave is:

jsc
n = (2π)−3 h̄kn

µnr2

∣∣fn(r̂← k̂n)
∣∣2 . (1.130)

Substituting these expressions into Eq. (1.125) gives the very important result for
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the channel differential cross-section:

dσ

dΩ
=
∣∣fn(r̂← k̂n)

∣∣2 . (1.131)

This result holds for all scattering processes, since it can be shown that the asymp-

totic behaviour of the time-independent wave-function for any scattering process can

be written in the form of Eq. (1.126). In the remainder of this introductory chapter,

it will be shown how this structure can be obtained for multi-channel scattering with

zero spin. The structure can also be obtained for the scattering of charged particles

and particles with with non-zero spin, which is the focus of Chapter 2.

The simplest possible scattering state, where there is no interaction potential, will

first be considered.

Free-particle scattering

The time-independent equation (1.20) for a free-particle (there is no interaction po-

tential; Unn′(r) = 0) reduces to the following:

[
h̄2

2µn
∆r +(E−En)

]
ψn(E,r) = 0,

with the solution of each channel given by [11]:

ψkn(r) = (2π)−3/2eikn·r, Unn′ = 0, (1.132)

where the channel states are defined by the incoming channel momentum vectors,

kn, with |kn|= kn.

These solutions are correctly normalised by:

∫
ψ
∗
k′(r)ψk(r)dr = δ (k′−k), (1.133)

which is obtained from Eq. (1.1), the normalisation requirement of the state vector.
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Notice that the plane wave-solution, Eq. (1.132), is not a physically realisable state

in itself, and the normalisation is not discrete [22].

The full wave-solution for an N-channel scattering problem is the column matrix

comprised of these channel plane waves:

Ψ(E,r) =


ψk1(E,r)

ψk2(E,r)
...

ψkN (E,r)

 . (1.134)

If the interaction potential is zero, the reduced potential Vnn′(r) = 0 and the radial

equation (1.37) has a solution similar to Eq. (1.54), with

f (in/out)(E) = F(in/out)(E) =
1
2

I,

by Eq. (1.70) and (1.71) as well as boundary conditions (1.72) on page 24. By Eq.

(1.76), the physical radial solutions are then given by:

U(E,r) =
1
2

W (in)(E,r)C+ 1
2

W (out)(E,r)C = J(E,r)C, V = 0, (1.135)

where Eq. (1.73) has also been used. The elements of the column-matrix of radial

solutions are then given by,

un(E,r) = j`n(knr)Cn, Vnn′ = 0. (1.136)

Using Eq. (1.34), the time-independent partial wave-solutions for each channel is

given by:

ψn(E,r) =
1
r

j`n(knr)CnY`nmn(θ ,ϕ), Vnn′ = 0. (1.137)

Recall that the summation over all partial waves is omitted, since a partial wave

defined by a specific `n and mn can be considered as another channel.

In general, however (see Ref. [21] for example), the channel plane wave in the partial
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wave expansion is given by:

ψkn(r) =
√

2
π

1
knr ∑

`nmn

i`n j`n(knrn)Y ∗`nmn
(k̂n)Y`nmn(r̂) (1.138)

where k̂n = (θkn,ϕkn) is the unit vector in the direction of kn. Similarly, r̂ = (θ ,ϕ) is

the unit vector in the direction of r.

The axes can be chosen so that the direction of the incoming channel vectors kn

correspond to the z-axis, then Y ∗`n,mn
(k̂n) reduces to a constant [11]. Furthermore,

a single partial wave defined by a specific `n and mn can be considered, thus the

summation can be omitted. The expression (1.138) then becomes identical to Eq.

(1.137), with specific values for the channel constants, Cn.

The expression (1.138) is then consistent with the preceding discussion, but it is

more general. Comparison with Eq. (1.132) then gives the following useful relation:

eikn·r =
4π

knr ∑
`nmn

i`n j`n(knr)Y ∗`nmn
(k̂n)Y`nmn(r̂) (1.139)

Further notice that Eq. (1.138) is a solution of the time-independent equation, (1.20),

and that it must be normalised by Eq. (1.133) on page 44. This can easily be shown,

since the Riccati-Bessel function has the following normalisation [14]:

∫
∞

0
j`(k′r) j`(kr)dr =

π

2
δ (k′− k), (1.140)

and the Spherical harmonics are orthonormal (see Eq. (1.27)). Now consider general

scattering where the interaction potential is non-zero.
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Scattering amplitude

From the structure of the plane wave-solution, Eq. (1.138), the following is proposed

for the general time-independent solution for a non-zero, short-ranged potential:

ψn(E,r) =
√

2
π

1
knr

N

∑
n′

∑
`nmn

i`n
[
h(−)`n

(knr)F(in)
nn′ (E,r)+

h(+)
`n

(knr)F(out)
nn′ (E,r)

] 1
2
[ f (in)(E,r)]−1

nn′Y
∗
`nmn

(k̂n)Y`nmn(r̂). (1.141)

As required, this expression has the same normalisation as the plane wave expres-

sion, Eq. (1.138). Furthermore, if a single partial wave is considered (instead of

summing over all possible partial waves), the proposed expression becomes exactly

Eq. (1.78) on page 25 for certain Cn. It can also be shown that Eq. (1.138) is a

solution of the time-independent Schrödinger equation (1.20). The inclusion of the

inverse Jost matrix factor, [ f (in)(E,r)]−1, ensures that, at the limit where r→ ∞, the

expression can be written in the form of Eq. (1.126), as will be shown. The pro-

posed solution is, therefore, entirely valid. Using Eq. (1.66) and the definition of the

S-matrix, Eq. (1.59), the following asymptotic behaviour of Eq. (1.141) is obtained:

ψn(E,r)−−−→
r→∞

1
2

√
2
π

1
knr

N

∑
n′

∑
`nmn

i`n
[
h(−)`n

(knr)+

h(+)
`n

(knr)Snn′(E)
]

Y ∗`nmn
(k̂n)Y`nmn(r̂). (1.142)

When adding and subtracting a term h(+)
`n

(knr) inside the bracket and using the fact

that 2 j`(kr) = h(−)` (kr)+h(+)
` (kr) from Eq. (1.49), the expression becomes:

ψn(E,r)−−−→
r→∞

1
2

√
2
π

1
knr

N

∑
n′

∑
`nmn

i`n [2 j`n(knr)+

h(+)
`n

(knr)(Snn′(E)−δnn′)
]

Y ∗`nmn
(k̂n)Y`nmn(r̂),

47



Introduction Jost matrices and properties

thus

ψn(E,r)−−−→
r→∞

√
2
π

1
knr ∑

`nmn

i`n j`n(knr)Y ∗`nmn
(k̂n)Y`nmn(r̂)

+

√
2
π

1
knr

N

∑
n′

∑
`nmn

i`n

2
h(+)
`n

(knr) [(Snn′(E)−δnn′)]Y
∗
`nmn

(k̂n)Y`nmn(r̂).

Recognising Eq. (1.139) in the first term and substituting the asymptotic behaviour

of the Riccati-Hankel function, Eq (1.48) in the second term, gives:

ψn(E,r)−−−→
r→∞

(2π)−3/2eikn·r+

(2π)−3/2 eikr

r ∑
N
n′∑`nmn 4π

1
2ikn

[(Snn′(E)−δnn′)]Y ∗`nmn
(k̂n)Y`nmn(r̂) .

Now the matrix elements of the partial wave amplitude are defined as follows:

fnm(E)≡
1

2ikn
[(Snm(E,r)−δnm)] , (1.143)

with the full scattering amplitude for a specific channel defined by:

fn(r̂← k̂n)≡ 4π

N

∑
n′=1

∑
`nmn

fnn′(E)Y
∗
`nmn

(k̂n)Y`nmn(r̂), (1.144)

which results in the required structure for the time-independent state wave-function

of each channel, identical to Eq. (1.126):

ψn(E,r)−−−→
r→∞

(2π)−3/2eikn·r +(2π)−3/2fn(r̂← k̂n)
eiknr

r
.

Scattering cross-section

The goal is now to find an expression for the scattering cross section from the ex-

pression for the partial wave scattering amplitude. Begin by considering the addition
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theorem of spherical harmonics, given by [21]:

P̀ (cosθ) =
4π

2`+1 ∑
`m

Y ∗`m(k̂)Y`m(r̂), (1.145)

where P̀ represent the ordinary Legendre polynomials. The channel scattering amp-

litude then becomes the following:

fn(r̂← k̂n) =
N

∑
n′=1

∑
`n

fnn′(E)(2`n +1)P̀ n(cosθ). (1.146)

Using Eq. (1.131) and taking the sum over all channels, the total differential cross-

section is then:

dσ

dΩ
=

N

∑
n=1

N

∑
n′=1

∑
`n

∑
`∗n

(2`n +1)(2`∗n +1) |fnn′(E)|2 P̀ n(cosθ)P̀ ∗
n
(cosθ)

Integrating over the Legendre polynomials give the following [11],

∫
π

0
P̀ (cosθ)P̀ ∗(cosθ)sinθdθ =

∫ 1

−1
P̀ (x)P̀ ∗(x)dx =

2
2`+1

δ``∗, (1.147)

and ∫ 2π

0
dϕ = 2π.

Using these expressions in Eq. (1.122) then results in the following total cross-

section:

σ =
N

∑
n=1

N

∑
n′=1

∑
`n

4(2`n +1) |fnn′(E)|2 . (1.148)

If only a single partial wave defined by `n for a specific channel n is considered, it is

no longer necessary to sum over all partial waves and the total cross-section can be

written in terms of the channel partial wave cross-sections, σnm:

σ =
N

∑
n=1

N

∑
n′=1

σnn′, (1.149)
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with the channel partial wave cross-sections given by:

σnm = 4(2`n +1) |fnm(E)|2 =
π

k2
n
(2`n +1) |Snm(E)−δnm|2 , (1.150)

where Eq. (1.143) has also been used.

In general, the partial wave channel cross-sections will be calculated rather than the

total cross-section. For the total cross-section, there is much overlap of the various

channels and resonance structures often disappear, while these usually appear clearly

in the partial wave channel cross-sections.

Eq. (1.150) is then the main result for this section. If the Jost matrices can be

determined, the corresponding S-matrix can be found and the partial wave channel

cross-sections at scattering energies can also be calculated.

While the derivations have been done for general multi-channel scattering, the

single-channel expressions can be obtained by letting the number of channels equal

one, N = 1. The single-channel partial wave cross-section, for example, is given by:

σ` = 4(2`+1) |f`(E)|2 =
π

k2 (2`+1) |S`(E)−1|2 . (1.151)

The Jost matrices therefore allows bound, resonance and scattering states to be

treated in a unified way. There are, however, complications that arise when con-

sidering the scattering of particles with non-zero spin, which will be covered in the

next chapter. These ideas will also be extend to the scattering of charged particles.
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Chapter 2

Scattering with charge and spin

The Jost matrices were introduced in the previous chapter and their relation to scat-

tering quantities such as the cross-section were shown. This was only done for short-

range interactions, or the scattering of particles with no charge (neutral particles).

The scattered particles also had zero spin. In this chapter, the formalism in terms of

the Jost matrices will be extended to include the scattering of charged particles. The

scattering of particles with spin will also be considered. The inclusion if spin influ-

ences the expression for the scattering cross-section in terms of the Jost matrices.

2.1 Scattering including Coulomb interactions

The derivations that follow are in the context of multi-channel scattering with zero

spin. The discussion is, however, very similar for the scattering of particles with non-

zero spin involving Coulomb interactions, which will not explicitly be considered in

this chapter.

The Coulomb potential describes the interaction between charged particles. The

simple charge dependent structure of the potential is obtained from Coulomb’s

inverse-square law, which was first published in 1785 by the French physicist,

Charles-Augustin de Coulomb. The attractive Coulomb interaction between pro-

tons in the nucleus of an atom and its orbiting electrons are responsible for atomic
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interactions that form molecular compounds, therefore governing all chemical reac-

tions. When considering the scattering of charged nuclei, the Coulomb interactions

as well as the short-ranged strong-force nuclear interactions must be taken into con-

sideration.

The Coulomb potential for the interaction between two particles of charge eZ1 and

eZ2 is given by:

Uc(r) =
e2Z1Z2

r
. (2.1)

The Sommerfeld parameter, η , is defined by:

η ≡ µe2Z1Z2

kh̄2 , (2.2)

which allows the reduced Coulomb potential for a single channel to be written as

follows, by Eq. (1.39) on page 15:

V c(r) =
2kη

r
. (2.3)

It is clear that the Coulomb potential is less singular than 1/r2 at the origin, but

it tends to zero slowly as r → ∞. Therefore it is long-ranged. The mathematical

implication is that, in the radial Schrödinger equation (1.37), the term `(`+ 1)/r2

would tend to zero faster than the Coulomb potential. This is problematic, as the

Jost matrices are defined at r→ ∞ where it is assumed the potential is zero, but the

term `(`+ 1)/r2 is still present. Some modification of the formalism is necessary.

The modification of the radial equation will first be considered.

2.1.1 Radial wave-equation for Coulomb scattering

For scattering involving short- and long-ranged interactions, the two-body Hamilto-

nian of Eq. (1.5) will be modified by including a Coulomb operator, Uc:

Ĥ = Ĥ0
1 + Ĥ0

2 +Û(r1− r2)+Ûc(r1− r2)+ ĥ, (2.4)
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with:

〈n|Ûc|n′〉=Uc
nn′ =

e2Z1Z2

r
δnn′. (2.5)

Proceeding in exactly the same way as Section 1.4, it can be shown that the N

coupled Schrödinger equations (1.20) for scattering involving Coulomb interaction

is given by:

[
h̄2

2µn
∆r +(E−En)−

e2Z1Z2

r

]
ψn(E,r) =

N

∑
n′=1

Unn′(r)ψn′(E,r). (2.6)

Following the same procedure of Section 1.3, but taking this extra potential term into

account, it can be shown that the N coupled radial Schrödinger equations (1.37) on

page 15 then becomes:

[
∂

2
r + k2

n−
`n(`n +1)

r2 − 2knηn

r

]
un(E,r) =

N

∑
n′=1

Vnn′(r)un′(E,r). (2.7)

where Vnn′ represents the short-ranged reduced potential matrix responsible for the

coupling. It is determined by Eq. (1.38) and its elements tend to zero faster than

1/r2. The extra term 2knηn/r is the reduced Coulomb potential for the channel n,

with the channel Sommerfeld parameters given by:

ηn ≡
µe2Z1Z2

knh̄2 . (2.8)

It is always the requirement that any physical wave-function must be finite at r = 0.

For this reason, the channel radial wave-functions must still have regular behaviour

near the origin [3], identical to Eq. (1.40):

un(E,r)−−−→
r→∞

0, n = 1,2,3, ...,N.

As before, there are 2N linearly-independent column solutions to Eq. (2.7), and only

half are regular at the origin. The regular columns are again combined to form the

square fundamental matrix of the regular solutions identical to Eq. (1.42). For non-
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Coulomb scattering and specific choices of the boundary conditions of the matrices

F(in/out), it was shown that, at the origin, this matrix specifically behaves like a

diagonal matrix with the Riccati-Bessel functions on the diagonal; Eq. (1.75). This

will now be used as condition for Φ(E,r), which, by Eq. (1.50) can then be written

in terms of the diagonal matrix L near the origin:

Φ(E,r)−−→
r→0

L−1


(k1r)`1+1 0 · · · 0

0 (k2r)`2+1 · · · 0
...

... . . . ...

0 0 · · · (kNr)`1+1

 ,

with L defined as follows:

L≡


(2`1 +1)!! 0 · · · 0

0 (2`2 +1)!! · · · 0
...

... . . . ...

0 0 · · · (2`N +1)!!

 . (2.9)

Since the only prerequisite is that the matrix elements are regular at the origin, this

condition for Φ(E,r) is perfectly acceptable. Also as before, any physical solution

is a linear combination of the columns of Φ(E,r), thus U(E,r) = Φ(E,r)C from Eq.

(1.43) and regular behaviour of the physical solution as r→ 0 is guaranteed. The

Jost matrices will be defined with the asymptotic behaviour of Φ(E,r), as before.

This behaviour for Coulomb scattering will be determined.

2.1.2 Pure Coulomb scattering

If there is no short-ranged interaction potential, Unn′ = 0 and Eq. (2.6) becomes an

uncoupled system of pure Coulomb Schrödinger equations:

[
h̄2

2µn
∆r +(E−En)−

e2Z1Z2

r

]
ψn(E,r) = 0. (2.10)
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The solutions are complicated Coulomb-modified plane-waves, with the requirement

that they become like plane waves for large r [22]. The boundary condition for the

solutions are then given by [3]:

ψ
(±)
kn

(r)−−−→
r→∞

e±ikn·r±iη ln(knr−kn·r). (2.11)

The N pure Coulomb radial equations are given by:

[
∂

2
r + k2

n−
`n(`n +1)

r2 − 2knηn

r

]
un(E,r) = 0, (2.12)

which is obtained by setting Vnn′ = 0 in Eq. (2.7).

Two possible linearly-independent solutions of the differential equation for each

channel are the so-called Regular and Irregular Coulomb functions, denoted by

F̀ (kr,η) and G`(kr,η) respectively. These functions are given in terms of the Con-

fluent Hypergeometric Function, which can in turn be written as a product of Gamma

functions [14]. This is typically how the Coulomb functions are determined numer-

ically.

The Coulomb functions have the following limiting forms:

F̀ (η ,kr) −−→
r→0

C`(η)(kr)`+1, (2.13)

G`(η ,kr) −−→
r→0

1
(2`+1)C`(η)(kr)`

, (2.14)

where C`(η) is the Coulomb barrier factor, defined by:

C`(η)≡ 2`e−πη/2

Γ(2`+1)
|Γ(`+1± iη)| . (2.15)

This shows that F̀ (η ,kr) is regular at the origin and G`(η ,kr) is irregular, as the
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names of the functions suggest. For large r:

F̀ (η ,kr) −−−→
r→∞

sin(kr−η ln(2kr)− 1
2
`π +δ

c
` ), (2.16)

G`(η ,kr) −−−→
r→∞

cos(kr−η ln(2kr)− 1
2
`π +δ

c
` ), (2.17)

where δ c
` is the Coulomb phase-shift, which is related to the Sommerfeld parameter

by [3]:

e2iδ c
` =

Γ(`+1+ iη)

Γ(`+1− iη)
. (2.18)

Furthermore, if there is no Coulomb interaction, η = 0 and the Regular and Irregular

functions become the Riccati-Bessel and Riccati-Neumann functions (with a sign

difference for the Irregular function):

F̀ (0,kr) = j`(kr), (2.19)

G`(0,kr) =−n`(kr). (2.20)

The full solution for each channel can be expanded over these partial wave-solutions,

and it can be shown that [22]:

ψkn(r) =
4π

knr ∑
`nmn

i`neiδ c
`n F̀ n(ηn,knr)Y ∗`nmn

(k̂n)Y ∗`nmn
(r̂), (2.21)

and so by the boundary condition, Eq. (2.11),

4π

knr ∑
`nmn

i`neiδ c
`n F̀ n(ηn,knr)Y ∗`nmn

(k̂n)Y ∗`nmn
(r̂)−−−→

r→∞
eikn·r+iη ln(knr−kn·r). (2.22)

This useful relation will be used when discussing the scattering cross-section for

nuclear (short-ranged) and Coulomb scattering.

Returning to the Regular and Irregular Coulomb functions, the following two linear
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combinations are introduced:

H(±)
` (η ,kr) = F̀ (η ,kr)∓ iG`(η ,kr), (2.23)

both of which are also then solutions to the differential equations of each channel in

Eq. (2.34). Their asymptotic behaviour is determined by Eq. (2.16) and (2.17):

H(±)
` (η ,kr)−−−→

r→∞
∓ie±i[kr−η ln(2kr)−`π/2+δ c

` ]. (2.24)

Using the asymptotic behaviour of the Riccati-Hankel functions (Eq. (1.48) on page

18), the asymptotic behaviour of H(±)
` (η ,kr) can also be written as follows:

H(±)
` (η ,kr)−−−→

r→∞
h(±)` (η ,kr)e∓iη ln(kr)e±iδ c

. (2.25)

Furthermore, H(±)
` (η ,kr) simply become the Riccati-Hankel functions for η = 0:

H(±)
` (0,kr) = h(±)` (kr). (2.26)

The two pairs of solutions for each channel are combined in the following diagonal

matrices:

F(E,r) =


F̀ 1(η1,k1r) 0 · · · 0

0 F̀ 2(η2,k2r) · · · 0
...

... . . . ...

0 0 · · · F̀ N (ηN ,kNr)

 , (2.27)

G(E,r) =


G`1(η1,k1r) 0 · · · 0

0 G`2(η2,k2r) · · · 0
...

... . . . ...

0 0 · · · G`N (ηN ,kNr)

 , (2.28)
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H(±)(E,r) =


H(±)
`1

(η1,k1r) 0 · · · 0

0 H(±)
`1

(η1,k1r) · · · 0
...

... . . . ...

0 0 · · · H(±)
`1

(η1,k1r)

 , (2.29)

with

H(±)(E,r) = F(E,r)∓ iG(E,r). (2.30)

If η = 0, H(∓) =W (in/out) by Eq. (1.51) and (1.52).

Furthermore, by Eq. (2.25), the asymptotic behaviour of the matrix H(±) can be

given in terms of the three diagonal matrices W (in/out), σ (±) and ϒ(±)(E,r):

H(±) −−−→
r→∞

W (out/in)(E,r)ϒ(±)(E,r)σ
(±), (2.31)

with

σ
(±) =


e±iδ c

`1 0 · · · 0

0 e±iδ c
`2 · · · 0

...
... . . . ...

0 0 · · · e±iδ c
`N

 , (2.32)

and

ϒ
(±)(E,r) =


e∓iη1 ln(2k1r) 0 · · · 0

0 e∓iη2 ln(2k2r) · · · 0
...

... . . . ...

0 0 · · · e∓iηN ln(2kNr)

 . (2.33)

These relations will soon come in useful.
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2.1.3 Regular solutions for Coulomb and nuclear scattering

Consider again the radial equations (2.7), where there are short-ranged nuclear in-

teractions as well as Coulomb interactions. As r → ∞, the short-ranged potential

disappears and the resulting system of differential equations is similar to the system

for pure Coulomb scattering:

[
∂

2
r + k2

n−
`n(`n +1)

r2 − 2knηn

r

]
un(E,r) = 0, r→ ∞. (2.34)

Two possible solutions for each channel are, again, the Regular and Irregular Cou-

lomb functions. Since the matrices F(E,r) and G(E,r) are then solutions of the

system of differential equations (2.34) at r→ ∞, solutions of Eq. (2.7) for all r can

be written as follows:

UM(E,r) = F(E,r)A(E,r)+G(E,r)B(E,r), (2.35)

where A(E,r) and B(E,r) are unknown matrix functions. The subscript M is used

to indicate the difference between the column matrix of correctly normalised phys-

ical solutions, U(E,r), and the N×N matrix of solutions, UM(E,r), which is not

necessarily normalised.

The Lagrange condition is also imposed:

F(E,r)∂rA(E,r)+G(E,r)∂rB(E,r) = 0. (2.36)

When the proposed matrix of radial solutions, Eq. (2.35), is then substituted into the

system of coupled radial Coulomb Schrödinger equation, (2.7), with the Lagrange

condition (2.36) used, the following differential equations for A(E,r) and B(E,r) are

obtained [6]:

∂rA = K−1GV (FA+GB) , (2.37)

∂rB = −K−1FV (FA+GB) , (2.38)
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where the functional dependence is suppressed to facilitate ease of reading. The

diagonal matrix K comprised of each channel momentum, kn, on the diagonals is

given by Eq. (1.69) on page 23.

To reflect physical behaviour, the matrix UM(E,r) is required to be regular at the

origin. To ensure that this is the case, the boundary conditions of (2.37) and (2.38)

are chosen as follows:

A(E,0) = I, B(E,0) = 0. (2.39)

The term containing the irregular matrix, G(E,r), in Eq. (2.35) is then killed off as

r→ 0.

A(E,0) can of course be any constant matrix, but the identity matrix is chosen for

simplicity. The physical wave-function can be normalised correctly at a later stage.

At the origin, UM(E,r) thus becomes:

UM(E,r) −−→
r→0

F(E,r) =


F̀ 1(η1,k1r) 0 · · · 0

0 F̀ 2(η2,k2r) · · · 0
...

... . . . ...

0 0 · · · F̀ N (ηN ,kNr)



−−→
r→0


C`1(η1)(k1r)`1+1 0 · · · 0

0 C`2(η2)(k2r)`2+1 · · · 0
...

... . . . ...

0 0 · · · C`N (ηN)(kNr)`N+1



∴UM(E,r)−−→
r→0

C


(k1r)`1+1 0 · · · 0

0 (k2r)`2+1 · · · 0
...

... . . . ...

0 0 · · · (kNr)`N+1

 , (2.40)
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with the matrix, C, defined in terms of the Coulomb barrier function by:

C ≡


C`1 0 · · · 0

0 C`2 · · · 0
...

... . . . ...

0 0 · · · C`N (ηN)

 . (2.41)

Comparing Eq. (2.40) with Eq. (2.9) gives the following relationship, which must

hold for all r:

Φ(E,r) =C−1L−1UM(E,r). (2.42)

2.1.4 Jost matrices for Coulomb and nuclear scattering

Now the following linear combination of the unknown matrices A(E,r) and B(E,r)

are introduced:

F (in/out)(E,r) =
1
2
[A(E,r)∓ iB(E,r)] . (2.43)

Using Eq. (2.39), the behaviour at the origin is given by,

F (in/out)(E,0) =
1
2

I. (2.44)

By also implementing Eq. (2.30), it can easily be shown that the matrix UM of Eq.

(2.35) can also be written as follows:

UM(E,r) = H(−)(E,r)F (in)(E,r)+H(+)(E,r)F (out)(E,r). (2.45)

By Eq. (2.42), the fundamental matrix of regular solutions is then given by:

Φ(E,r) = H(−)(E,r)C−1L−1F (in)(E,r)+

H(+)(E,r)C−1L−1F (out)(E,r). (2.46)

Since H(±), C and L are diagonal, the order of the products of these three matrices
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can be changed. Using Eq. (2.31), the asymptotic behaviour is then given by:

Φ(E,r)−−−→
r→∞

W (in)(E,r)ϒ(−)(E,r)σ
(−) lim

r→∞
C−1L−1F (in)(E,r)+

W (out)(E,r)ϒ(+)(E,r)σ
(+) lim

r→∞
C−1L−1F (out)(E,r). (2.47)

For a single channel, this reduces to:

φ(E,r)−−−→
r→∞

h(−)` (kr)e+iη ln(2kr) lim
r→∞

e−iδ c
`

C`(2`+1)!!
F (in)
` (E,r)+

h(+)
` (kr)e−iη ln(2kr) lim

r→∞

eiδ c
`

C`(2`+1)!!
F (out)
` (E,r). (2.48)

For short-ranged single-channel scattering, the Jost functions are defined as the amp-

litudes of the outgoing and incoming spherical waves, given by the Riccati-Hankel

functions, h(±)` (kr), of the regular solution as r→ ∞: see Eq. (1.53) on page 19. For

scattering including Coulomb interactions, the spherical waves are now modified by

a radially dependent Coulomb factor, and are given by h(±)` (kr)e∓iη ln(2kr), as can be

seen from Eq. (2.48). If the Jost functions, f (in/out)
` , are then defined as the amp-

litudes of these Coulomb modified spherical waves, the asymptotic behaviour of the

regular solution is given by:

φ(E,r)−−−→
r→∞

h(−)` (kr)e+iη ln(2kr) f (in)` (E)

+h(+)
` (kr)e−iη ln(2kr) f (out)

` (E), (2.49)

which can also be written in following form, using Eq. (2.25). This corresponds

with the expression in Ref. [6]:

φ(E,r)−−−→
r→∞

H(−)
` (η ,kr)e+iδ c

f (in)` (E)+H(−)
` (η ,kr)e−iδ c

f (out)
` (E). (2.50)
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Comparing this with Eq. (2.48), the Jost functions are then given by:

f (in/out)
` (E) = lim

r→∞

e∓iδ c
`

C`(2`+1)!!
F (in/out)
` (E,r). (2.51)

Extending this principle to the multi-channel equation (2.47), the Jost matrices are

defined by:

Φ(E,r)−−−→
r→∞

W (in)(E,r)ϒ(−)(E,r) f (in)(E)

+W (out)(E,r)ϒ(+)(E,r) f (out)(E), (2.52)

which, by Eq. (2.31), can also be written in the form given in Ref. [6]:

Φ(E,r)−−−→
r→∞

H(−)(E,r)σ (+) f (in)(E)+H(+)(E,r)σ (−) f (out)(E). (2.53)

The Jost matrices are then given by,

f (in/out)(E) = lim
r→∞

C−1L−1
σ
(∓)F (in/out)(E,r). (2.54)

For the pure Coulomb case where there is no short-ranged interaction potential, the

differential equations (2.37) and (2.38) imply that A(E,r) and B(E,r) are constant

values determined by the chosen boundary conditions (2.39). This, in turn, implies

that f (in/out)(E,r) are also constant for all r. Using Eq. (2.54) with Eq. (2.44), the

Jost matrices for pure Coulomb scattering are given by:

f (in/out)(E) =
1
2

C−1L−1
σ
(∓). (2.55)

The S-matrix is still defined in terms of the Jost matrices by Eq. (1.59). For pure

Coulomb scattering, it is then given by:

Sc(E) = f (out)(E)
[

f (in)(E)
]−1

= [σ (+)]2, (2.56)
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which is a diagonal matrix with the matrix elements given by:

Sc
nm(E) = e2iδ c

`n δnm. (2.57)

For the single-channel case, Sc = e2iδ c
` . Comparison with (1.63) on page 21 implies

that, as expected, the phase-shift for pure Coulomb scattering is δ c
`n

, the Coulomb

phase-shift.

Since, by Eq. (1.43), the matrix of physical radial solutions is given by

U(E,r) = Φ(E,r)C, with C the column matrix comprised of entries C1,C2, ...,Cn,

the full physical wave-solution for each channel can be given by,

ψn(E,r) =
1
r

N

∑
n′=1

∑
`nmn

[
H(−)
`n

(knr)
1

C`n(2`n +1)!!
F (in)

nn′ (E,r)+

H(+)
`n

(knr)
1

C`n(2`n +1)!!
F (out)

nn′ (E,r)
]

1
2

CnY`nmn(r̂), (2.58)

where Eq. (1.33) on page 14 as well as Eq. (2.46) were used.

The Jost matrices have been defined for Coulomb and nuclear scattering, with a few

further results that will be useful in the sections that follow. It must, however, first be

confirmed that the properties of the Jost matrices hold when Coulomb interactions

are included. This will be covered in the next section.

2.1.5 Bound and resonance states for Coulomb and nuclear

scattering

Bound states with discrete energies Ei are defined in exactly the same way as be-

fore, therefore bound state channel momenta are purely imaginary and chosen on

the physical Riemann surface of energy. The momenta can be given by:

kn = i|kn|.

64



Scattering with charge and spin Scattering including Coulomb interactions

By Eq. (2.2), the product iηn must then be a real, positive quantity. Also as before, at

large r, the physical radial solutions must disappear: un(r→∞)→ 0. The asymptotic

behaviour of the fundamental matrix of regular solutions for Coulomb interactions,

Φ, is given by Eq. (2.53), and the column matrix of physical solutions can of course

be written in terms of Φ. An expression similar to Eq. (1.80) on page 26 is then

obtained:

H(−)(Ei,r→ ∞)σ (+) f (in)(Ei)C+H(+)(Ei,r→ ∞)σ (−) f (out)(Ei)C → 0. (2.59)

If kn is positive and purely imaginary and iηn is thus real and positive, for large r,

the exponent, e−ikr+iη ln(2kr)→ ∞ and eikr−iη ln(2kr)→ 0. The asymptotic behaviour

of the functions H(±)
` given in Eq. (2.24) is then:

H(+)
`n

(i|kn|r) −−−→
r→∞

0,

H(−)
`n

(i|kn|r) −−−→
r→∞

∞.

This, in turn, implies that the matrix, H(+)(Ei,r → ∞) = 0 and H(−)(Ei,r → ∞)

becomes an infinite diagonal matrix. For Eq. (2.59) to hold, it is then required that

f (in)(Ei)C = 0. (2.60)

Therefore, for a single-channel problem,

f (in)(Ei) = 0, (2.61)

and for a multi-channel problem:

det
[

f (in)(Ei)
]
= 0. (2.62)

which, as expected, corresponds exactly to the result for scattering where there are

no Coulomb interactions.
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Concerning resonances, the discussion in Sections 1.5.3 and 1.5.3 are exactly the

same for scattering involving Coulomb interactions. The only important difference

is in Eq. (1.104) on page 35, which has an extra factor a for Coulomb scattering.

This will be discussed in detail in Chapter 4. This factor simply cancels in the ratio

of two-channel partial widths, Eq. (1.105).

In the next section, scattering states for Coulomb and nuclear interactions will be

discussed.

2.1.6 Cross-section for Coulomb and nuclear scattering

By considering the structure of the time-independent wave-solution for pure Cou-

lomb scattering, Eq (2.21), the following time-independent wave-solution for each

channel is proposed for scattering involving Coulomb and nuclear interactions:

ψn(E,r) =
√

2
π

1
knr

N

∑
n′=1

∑
`nmn

i`n

[
H(−)
`n

(knr)
1

C`n(2`n +1)!!
F (in)

nn′ (E,r)+

H(+)
`n

(knr)
1

C`n(2`n +1)!!
F (out)

nn′ (E,r)
]

1
2
[ f (in)(E,r)]−1

nn′Y
∗
`nmn

(k̂n)Y`nmn(r̂).

(2.63)

It can be shown that it is a solution to the system of equations, (2.6), as required.

Furthermore, the factor,
[

f (in)(E)
]−1

nn′
is introduced so that the wave-function has

the correct behaviour of Eq. (1.126) at large r, which will be shown. Finally, this

proposed solution corresponds exactly to Eq. (2.58) for specific values of the com-

bination coefficients, Cn. Using Eq. (2.54) and implementing the definition of the

S-matrix, Eq. (1.59) when considering the asymptotic behaviour gives:

ψn(E,r)−−−→
r→∞

√
2
π

1
knr

N

∑
n′=1

∑
`nmn

i`n
[
H(−)
`n

(knr)e+iδ c
`n+

H(+)
`n

(knr)e−iδ c
`n Snn′(E,r)

] 1
2

Y ∗`nmn
(k̂n)Y`nmn(r̂). (2.64)
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When applying the same trick as Section 1.5.6 by adding and subtracting a function,

in this case H(+)
`n

e+iδ c
`n , and using Eq. (2.23) the following is obtained:

ψn(E,r)−−−→
r→∞

(2π)−3/2 4π

knr ∑
`nmn

i`neiδ c
`n F̀ n(knr)Y ∗`nmn

(k̂n)Y`nmn(r̂)+

1
2

H(+)
`n

(knr)
[
e−iδ c

`n Snn′(E,r)− eiδ c
`n

]
Y ∗`nmn

(k̂n)Y`nmn(r̂).

(2.65)

When using Eq. (2.24) and substituting the expression (2.22),

ψn(E,r)−−−→
r→∞

(2π)−3/2eikn·r+iη ln(knr−kn·r)+

(2π)−3/2 4π

2iknr
eikr−iη ln(2kr)

r

N

∑
n′

∑
`nmn

[
Snn′(E,r)− e2iδ c

`n

]
Y ∗`nmn

(k̂n)Y`nmn(r̂).

(2.66)

The Coulomb-nuclear partial amplitude for each channel is then defined by:

fcn
nm(E)≡

1
2ikn

[
Snn′(E,r)− e2iδ c

`n δnn′
]
, (2.67)

and the full Coulomb-nuclear amplitude for each channel by:

fcn
n (r̂← k̂n)≡ 4π

N

∑
n′=1

∑
`nmn

fcn
nn′(E)Y

∗
`nmn

(k̂n)Y`nmn(r̂).

The asymptotic behaviour of each partial wave for scattering involving Coulomb

interactions can then be written as follows:

ψn(E,r)−−−→
r→∞

(2π)−3/2eikn·r+iη ln(knr−kn·r)+(2π)−3/2fcn
n (r̂← k̂n)

eikr−iη ln(2kr)

r
,

(2.68)

which is very similar to Eq. (1.126) on page 42. As with the scattering of neutral

particles, the outgoing wave is again comprised of an unscattered plane wave part and
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an outgoing spherical part - see Figure 1.3. However, the spherical part is modified

by a Coulomb factor, and the outgoing scattered radial wave is given by:

ψ
(sc)
n = (2π)−3/2fcn

n (r̂← k̂n)
eiknr−iη ln2kr

r
. (2.69)

The outgoing channel flux then becomes:

jsc
n = (2π)−3 h̄

µnr2

(
kn−

ηn

r

)∣∣fcn
n (r̂← k̂n)

∣∣2 . (2.70)

For very large r,
(
kn− ηn

r

)
≈ kn, since kn is real and positive for scattering states.

Then:

jsc
n ≈ (2π)−3 h̄kn

µnr2

∣∣fcn
n (r̂← k̂n)

∣∣2 . (2.71)

The incoming channel plane wave and incoming channel flux remain the same, given

by Eq. (1.127) and (1.129):

ψ
(in)
n = (2π)−3/2eikn·r,

|jin
n | = (2π)−3 h̄kn

µn
.

The channel Coulomb-nuclear differential cross-section is then given by:

dσ cn

dΩ
=

jsc
n r2

|jin
n |

=
∣∣fcn

n (r̂← k̂n)
∣∣2 . (2.72)

This allows the calculation of the Coulomb-nuclear scattering cross-section in a

similar way to the method discussed in Section 1.5.6. The result for the channel

Coulomb-nuclear cross-section in a specific partial wave is:

σ
cn
nm =

π

k2
n
(2`n +1)e2iδ c

`n

∣∣∣Snm(E)e
−2iδ c

`n −δnm

∣∣∣2 . (2.73)

This reduces to the following partial Coulomb-nuclear cross-section for single-
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channel scattering:

σ
cn
` =

π

k2 (2`+1)e2iδ c
`

∣∣∣S(E)e−2iδ c
` −1

∣∣∣2 . (2.74)

The corresponding total phase-shift, in terms of the S-matrix, is given by Eq. (1.63):

S`(E) = e2iδ`. (2.75)

If the total phase-shift is written as the sum of the Coulomb-nuclear and pure

Coulomb phase-shift:

δ` = δ
cn
` +δ

c
` , (2.76)

the single-channel Coulomb-nuclear cross-section can then be written in terms of the

Coulomb-nuclear phase-shift:

σ
cn
` =

π

k2 (2`+1)e2iδ c
`

∣∣∣e2iδ cn
` −1

∣∣∣2 . (2.77)

In initial fittings of experimental results of the scattering of charged particles, like

R-matrix fittings, the Coulomb-nuclear phase-shift at corresponding energies are of-

ten obtained. However, it is clear that the Coulomb-nuclear partial amplitude of

Eq. (2.67) differs somewhat from the partial amplitude for neutral scattering, Eq.

(1.143), which results in a difference in the expression for the Coulomb-nuclear

cross-section as compared to Eq. (1.150) on page 50.

In order to correspond to the formalism for the scattering of neutral particles, the

quantity known as the full partial wave amplitude will rather be used, which will

allow the calculation of the full scattering cross-section. This includes the effect of

the Coulomb-nuclear interactions as well as the pure Coulomb interaction. For a full

discussion, see Ref. [3], where the concept of the cut-off radius is introduced.

Ref. [3] also gives the pure Coulomb partial wave amplitude for a specific channel,
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which can be defined as follows:

fc
nm(E)≡

1
2ikn

[Sc
nm(E,r)−δnm] =

1
2ikn

[
e2iδ c

n δnm−δnm

]
, (2.78)

where Sc
nm(E,r) are the matrix elements of the pure Coulomb S-matrix, given in

terms of the channel Coulomb phase-shifts by Eq. (2.57).

The full partial wave scattering amplitude is defined as the sum of the Coulomb-

nuclear partial amplitude and the pure Coulomb partial amplitude:

fnm(E)≡ fcn
nm(E)+ fc

nm(E) =
1

2ikn
[Snm(E,r)−δnm] , (2.79)

which corresponds exactly to the partial amplitude, Eq. (1.143) on page 48, for the

scattering of neutral particles. The full scattering amplitude for a specific channel is

then given by Eq. (1.144):

fn(r̂← k̂n)≡ 4π

N

∑
n′=1

∑
`nmn

fnn′(E)Y
∗
`nmn

(k̂n)Y`nmn(r̂),

and the full differential cross-section, as usual, by:

dσ

dΩ
=
∣∣fn(r̂← k̂)

∣∣2 .
It can then be shown that the full channel cross-section in a specific partial wave,

including the Coulomb-nuclear and Coulomb effects, is given by:

σnm =
π

k2
n
(2`n +1) |Snm(E)−δnm|2 ,

which corresponds exactly to Eq. (1.150). The full channel cross-section is the

preferred quantity for the calculations in this thesis, instead of the Coulomb-nuclear

cross-section or Coulomb-nuclear phase-shift. It is, however, easy to calculate the

full channel cross-section from the other quantities.

The scattering of particles with non-zero spin will now be considered.
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2.2 Scattering of particles with non-zero spin

The scattering of particles with zero spin as well as non-zero spin will be considered

in this thesis. In the previous chapter, the radial Schrödinger equation was derived for

the multi-channel scattering of two particles with zero spin and a central interaction

potential. The Jost matrices could then be defined and their properties explored. This

was done for the scattering of neutral particles in Chapter 1 and for the scattering of

charged particles in the previous sections of this chapter.

For the scattering of particles with non-zero spin, a similar radial equation is obtained

for discrete states (bound states and resonances), which implies that the Jost matrices

can be defined in the same way. Furthermore, the properties of the Jost matrices for

bound states and resonances are identical to the properties of the Jost matrices for

the scattering of particles with zero spin. However, for scattering states of particles

with non-zero spin, there are certain complications, and the expression for the cross-

section in terms of the S-matrix differs to incorporate the spin quantum number.

In the derivation that follows, only one energy channel will be considered, but with

different possible orbital angular momentum and spin states. This is elastic scattering

but, as has been mentioned, due to different possible orbital angular momentum and

spin, such scattering is also multi-channelled (but degenerate in energy).

The general result for multi-channel scattering with non-zero spin, where there are

different channels due to multiple energy thresholds as well as different angular mo-

mentum and spin states, is more complicated but very similar. It is not required for

the systems under consideration in this thesis, and will therefore not be discussed.

The derivations that follow are very similar to those in Chapter 1, but Hilbert space

vectors will mostly be used, instead of functions in the configuration space projec-

tion. The results apply to the scattering of charged particles too, but this will not be

shown explicitly.
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2.2.1 Angular momentum quantum numbers

Since two-body scattering is considered, the total orbital angular momentum oper-

ator, ˆ̀̀̀, as well as the total spin angular momentum operator, ŝss, are given as the sum

of the individual particle angular momenta:

ˆ̀̀̀ = ˆ̀̀̀1 + ˆ̀̀̀2, (2.80)

ŝss = ŝss1 + ŝss2.

Spin is an intrinsic property of a particle, but the properties of the spin operator are

identical to that of the orbital angular momentum operator [11]. The total angular

momentum operator for the scattering system, ĴJJ, is given by;

ĴJJ = ˆ̀̀̀ + ŝss, (2.81)

and is equivalent to

ĴJJ = ĴJJ1 + ĴJJ2. (2.82)

where ĴJJ1 and ĴJJ2 are the total angular momentum operators for particle 1 and 2 re-

spectively.

The angular momentum operators for the two particle system, ˆ̀̀̀, ŝss and ĴJJ, as well as

the operators for the individual particles (indicated with a subscript 1 or 2), all obey

the same commutator relations [11]. This leads to specific eigenvalues for the square

of the operators, ˆ̀̀̀2
, ŝss2 and ĴJJ

2
, which act on the vector spaces |`m〉, |sµ〉 and |JM〉

respectively:

ˆ̀̀̀2|`m〉 = `(`+1)h̄2|`m〉,

ŝss2|sµ〉 = s(s+1)h̄2|sµ〉,

ĴJJ
2|JM〉 = J(J+1)h̄2|JM〉, (2.83)
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with ` still representing the orbital angular momentum quantum number with corres-

ponding magnetic quantum number, m, and the spin quantum number is indicated by

s with corresponding spin-magnetic quantum number, µ , (not to be confused with

the reduced mass - the distinction should be clear by the context in which it is used).

For a system with non-zero spin, ` and m are no longer conserving. For such a

system, the total angular momentum quantum number, J, with corresponding total

magnetic quantum number, M, are the conserving quantities.

The quantum numbers m, µ and M are the eigenvalues of the projection op-

erators along an arbitrary Cartesian coordinate, usually chosen as z: ˆ̀z, ŝz and

Ĵz, which act on the same vector spaces |`m〉, |sµ〉 and |JM〉 respectively (since

[ ˆ̀̀̀
2
, ˆ̀z] = [ŝss2, ŝz] = [ĴJJ

2
, Ĵz] = 0):

ˆ̀z|`m〉 = mh̄|`m〉,

ŝz|sµ〉 = µ h̄|sµ〉,

Ĵz|JM〉 = Mh̄|JM〉. (2.84)

The quantum numbers can only take the following discrete values:

m ∈ {−`,−(`−1), ...,(`−1), `}, ` ∈ {0,1,2, ...}

µ ∈ {−s,−(s−1), ...,(s−1),s},

M ∈ {−J,−(J−1), ...,(J−1),J},

M = m+µ, J = |`+ s|. (2.85)

All of the above is also applicable to the individual particles labelled 1 and 2. Fur-

thermore, the operators for the individual particles act on different vector subspaces

and must therefore commute. Since the spin of the two particles in the incoming

channel are usually known, but the total spin is not, the basis of eigenvectors of total

spin for the two interacting particles is given in terms of the individual spin vector
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spaces:

|sµ〉= ∑
µ1µ2

Csµ

s1µ1,s2µ2|s1µ1,s2µ2〉. (2.86)

with the Clebsch-Gordan coefficients defined as follows [11]:

Ci j
i1 j1,i2 j2 ≡ 〈i1 j1i2 j2|(i1i2)i j〉, i, i1, i2, j ∈ Z. (2.87)

The quantum numbers that describe a two-body scattering system with non-zero spin

have now been established. The adjusted spherical harmonics for such systems will

now be considered.

2.2.2 Spin spherical harmonics

When the total orbital angular momentum eigenvectors, |`m〉, are combined with

total spin eigenvectors, |sµ〉, a set of eigenvectors common to the operators ˆ̀̀̀2
, ŝss2,

ĴJJ
2

and Ĵz are obtained:

|YJM
[`] 〉 ≡ |(`s)JM〉= ∑

mµ

|`m,sµ〉CJM
`msµ , (2.88)

with

[`]≡ {`,s}. (2.89)

Since the spherical harmonics are orthonormal (Eq. (1.27) on page 13), it can be

shown that the vector |YJM
[`] 〉 is also orthonormal:

〈YJM
[`] |Y

J′M′
[`′] 〉 =

∫
〈YJM

[`] |θ ,ϕ〉〈θ ,ϕ|Y
J′M′
[`′] 〉dΩ

= ∑
mµm′µ ′

CJM
`msµCJ′M′

`′m′s′µ ′〈sµ|s′µ ′〉〈`m|`′m′〉

= ∑
mµm′µ ′

CJM
`msµCJ′M′

`′m′s′µ ′δss′δµµ ′δ``′δmm′

= δ[`][`′]∑
mµ

CJM
`msµCJ′M′

`′m′s′µ ′ = δ[`][`′]δJJ′δMM′. (2.90)
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Projecting the spherical-angle part of configuration space vector, |r〉, on the com-

bined orbital angular momentum-spin vector, |YJM
[`] 〉, of Eq. (2.88) then gives the

following useful vector in spin-space:

|YJM
[`] (θ ,ϕ)〉 = 〈θ ,ϕ|YJM

[`] 〉 (2.91)

= ∑
mµ

CJM
`msµY`m(θ ,ϕ)|sµ〉 (2.92)

= ∑
µ

CJM
`,(M−µ),sµ

Y`,(M−µ)(θ ,ϕ)|sµ〉. (2.93)

Furthermore, projecting the spherical-angle part of |r〉 as well as the total spin ei-

genvector, |sµ〉, on the eigenvector |YJM
[`] 〉 gives a function that will be called the

spin spherical harmonics, which can conveniently be written in terms of the standard

spherical harmonics:

YJM
`sµ(θ ,ϕ) = 〈θ ,ϕ,sµ|YJM

[`] 〉

= ∑
m

CJM
`msµY`m(θ ,ϕ)

= CJM
`,(M−µ),sµ

Y`,(M−µ)(θ ,ϕ). (2.94)

The spin spherical harmonics allow the radial wave-equation to be determined.

2.2.3 Radial wave-equation for discrete states

Consider the discrete states, |ψEJM〉, which have definite values of energy, E = Ei,

and are further defined by quantum numbers J and M. These states are Hilbert vec-

tors in the tensor product of the configuration space vectors and spin-space vectors.

The basis can be constructed as the tensor product of the states with definite values

of the coordinate, |r〉, and the basis vectors of spin-space, |sµ〉. The wave-function

of a two-body scattering system is then the set of projections of the state |ψEJM〉 on
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these basis vectors:

〈r,sµ|ψEJM〉= ψEJM(r,s,µ). (2.95)

Consider only the configuration space projection (in spherical coordinates) on

|ψEJM〉, which is a vector in spin-space:

〈r|ψEJM〉= |ψEJM(r,θ ,ϕ)〉. (2.96)

This vector is expanded over the orthonormal basis of eigenvectors in Eq. (2.88):

|ψEJM(r,θ ,ϕ)〉 = ∑
[`]

〈r|YJM
[`] 〉〈Y

JM
[`] |ψEJM〉

= ∑
[`]

〈r,θ ,ϕ|YJM
[`] 〉〈(`s)JM|ψEJM〉

= ∑
[`]

〈θ ,ϕ|YJM
[`] 〉〈r,(`s)JM|ψEJM〉.

Implementing the definition of the projection (2.91) and defining the radial wave-

function by the following:

uJ
[`](E,r)≡ r〈r,(`s)JM|ψEJM〉, (2.97)

then gives,

|ψEJM(r)〉= ∑
[`]

|YJM
[`] (θ ,ϕ)〉

uJ
[`](E,r)

r
. (2.98)

Projecting the spin-space vector, |sµ〉, on the above and using Eq. (2.94) then results

in the following expression for the wave-function:

ψEJM(r,s,µ) = ∑
`

YJM
`sµ(θ ,ϕ)

uJ
[`](E,r)

r
. (2.99)

Now return to the time-independent Schrödinger equation (1.4) on page 6, which
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can be written as follows:

(Ĥ−E)|ψEJM〉= 0,

which is projected on the configuration space basis 〈r|:

〈r|(Ĥ−E)|ψEJM〉= 0. (2.100)

For scattering in a single energy-channel, the two-body Hamiltonian is given by:

Ĥ =
p̂2

2µ
+U(r).

The potential U(r) is once again assumed to be radially dependent. Using Eq. (2.98),

the following is obtained for the time-independent Schrödinger equation:

[
− h̄2

2µ
∆r +U(r)−E

]
∑
[`]

|YJM
[`] (θ ,ϕ)〉

uJ
[`](E,r)

r
= 0. (2.101)

It is assumed that the radial wave-solution, uJ
[`](E,r), is in a specific ` state. Since

|YJM
[`] (θ ,ϕ)〉 is an eigenstate of ˆ̀̀̀2

,

ˆ̀̀̀2|YJM
[`] (θ ,ϕ)〉= h̄2`(`+1)|YJM

[`] (θ ,ϕ)〉. (2.102)

The following is then obtained:

∑
[`]

[
∂

2
r + k2− `(`+1)

r2 − 2µ

h̄2 U(r)
]
|YJM

[`] (θ ,ϕ)〉u
J
[`](E,r) = 0, (2.103)

with the wave-momentum as usual given by:

k2 = 2µE/h̄2. (2.104)

Applying 〈YJM
[`] (θ ,ϕ)| and integrating over the spherical angles, θ and ϕ , yields

the following result, which is the radial Schrödinger equation for discrete states of
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elastic two-body scattering of particles with non-zero spin:

[
∂

2
r + k2− `(`+1)

r2

]
uJ
[`](E,r) = ∑

[`′]

V J
[`][`′](r)u

J
[`′](E,r), (2.105)

with the matrix elements of the reduced potential given by the following, in terms of

the interaction potential:

V J
[`][`′](r) =

2µ

h̄2

∫
〈YJM

[`] (θ ,ϕ)|U(r)|YJM
[`′] (θ ,ϕ)〉dΩ

=
2µ

h̄2 CJM
`msµCJM

`′m′s′µ ′

∫∫
Y ∗`m(θ ,ϕ)〈sµ|U(r)|s′µ ′〉Y`′m′(θ ,ϕ)sinθdθdϕ,

(2.106)

and with [`′] = {`′,s′}.

This radial equation is only applicable to discrete states. In the next section, a similar

result is also obtained for scattering states.

2.2.4 Radial wave-equation for scattering states

Consider an incoming plane-wave vector, |k,sµ〉, defined by its momentum vector,

k, and spin quantum numbers, s and µ . These incoming states are Hilbert vectors

in the tensor product of the momentum space vectors |k〉 = |k,θk,ϕk〉 (in spherical

coordinates) and spin-space vectors, |sµ〉 . They can be expanded over all possible

states defined by different ` and m:

|k,sµ〉= |k,θk,ϕk,sµ〉= ∑
`m
|k,θk,ϕk,sµ〉|`m〉〈`m|

= ∑
`m
|k, `m,sµ〉Y ∗`m(θk,ϕk), (2.107)

where the definition of the spherical harmonics, Eq. (1.25) is also implemented.

The result can further be written in terms of vectors defined by the total angular

momentum quantum numbers, M and J, by implementing an appropriate Clebsch-
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Gordan coefficient:

|k,sµ〉= ∑
`mJM
|k,(`s),JM〉CJM

`msµY ∗`m(θk,ϕk). (2.108)

When the Møller operator, Ω̂(+), of Eq. (1.15) on page 9 acts on this incoming

state, the state vector, |ψksµ〉 at t = 0 (the time of the interaction) is obtained. If

the scattering partial wave state with definite values of J and M is then defined as

follows,

|ψJM
k[`]〉 ≡ Ω̂

(+)|k,(`s),JM〉, (2.109)

the state vector |ψksµ〉 can be written as follows:

|ψksµ〉= Ω̂
(+)|k,sµ〉= ∑

`mJM
|ψJM

k[`]〉C
JM
`msµY ∗`m(θk,ϕk). (2.110)

If Eq. (2.94) is implemented, the following is obtained:

|ψksµ〉= ∑
JM`

|ψJM
k[`]〉Y

JM∗
`sµ (θk,ϕk) = ∑

JM[`]

|ψJM
k[`]〉〈Y

JM
[`] (θk,ϕk)|sµ〉. (2.111)

The wave-function is then the amplitude of the probability that the system is at a

coordinate, r in the spin state, |s′µ ′〉:

ψksµ(r,s′,µ ′) = 〈r,s′,µ ′|ψksµ〉. (2.112)

Expanding over the vectors, |r,(`′s′)JM〉, and using the definition of the spin spher-

ical harmonics, Eq. (2.88) then gives:

ψksµ(r,s′,µ ′) = ∑
JM[`′][`]

〈s′µ ′|YJM
[`′] (θ ,ϕ)〉〈r,(`

′s′)JM|ψJM
k[`]〉〈Y

JM
[`] (θk,ϕk)|sµ〉.

(2.113)

The radial wave-function is then defined similar to Eq. (2.99), but in this case it is a

matrix:

uJ
[`′][`](E,r)≡

r
N[`](k)

〈r,(`′s′)JM|ψJM
k[`]〉. (2.114)
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The energy dependent constant,

N[`](k) = i`/
√

2πk, (2.115)

is introduced to ensure the proper normalisation of the wave-function, as well as to

ensure the proper asymptotic behaviour at r→∞, so that it can be written in the form

of Eq. (1.126) on page 42. The state wave-function is then given by:

ψksµ(r,s′,µ ′) = ∑
JM

∑
[`′][`]

〈s′µ ′|YJM
[`′] (θ ,ϕ)〉

uJ
[`′][`](E,r)N[`](k)

r
〈YJM

[`] (θk,ϕk)|sµ〉.

(2.116)

Proceeding in exactly the same way as for discrete states, it can then be shown that

the radial equation for scattering states is given by:

[
∂

2
r + k2− `(`+1)

r2

]
uJ
[`][`′](E,r) = ∑

[`′′]

V J
[`][`′′](r)u

J
[`′′][`′](E,r). (2.117)

This radial equation is very similar to the one obtained for discrete states, Eq.

(2.105), as well as the radial equation obtained for the scattering of particles with

zero spin, Eq. (1.37).

2.2.5 Jost matrices for systems with non-zero spin

The discussion that follows is almost identical to Section 1.5 for the scattering of

particles with zero spin. The physical wave-function must still be finite at r = 0.

By Eq. (2.99) for discrete states and Eq. (2.116) for scattering states, this implies

that the radial wave-functions distinguished by different spin and angular momentum

states must tend to zero. Recall that only one energy channel will be considered for

the scattering of particles with non-zero spin. The following is then applicable for

discrete states:

uJ
[`](r→ 0) = 0, ∀ J, [`], (2.118)
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and for scattering states, the matrix:

uJ
[`],[`′](r→ 0) = 0, ∀ J, [`]. (2.119)

The superscript J indicates that the total angular momentum is the conserving quant-

ity in the scattering, and that different states will be distinguished by J in particular.

The fundamental matrix of regular solutions, Eq. (1.42), can be constructed in ex-

actly the same way as for a system with zero spin. In particular, the asymptotic

behaviour is given by:

Φ
J(E,r)−−−→

r→∞
W (in)(E,r) f (in)J(E)+W (out)(E,r) f (out)J(E), (2.120)

with the Jost matrices given by f (in/out)J(E). The S-matrix is again defined in terms

of the Jost matrices:

SJ(E)≡ f (out)J(E)
[

f (in)J(E)
]−1

. (2.121)

Similar to Eq. (1.46), the physical radial-wave for discrete states can then be written

as follows:

uJ
[`] = ∑

`′
φ

J
[`][`′]C

J
[`′], (2.122)

and the physical radial-wave for scattering states given by:

uJ
[`][`′] = ∑

`′′
φ

J
[`][`′′]C

J
[`′′][`′], (2.123)

where CJ
[`′] and CJ

[`′′][`′] once again represent combination coefficients, which are the

elements of a matrix CJ . For discrete states, CJ is a column-matrix. The matrix UJ

is then defined in a similar way, with the elements for discrete states given by uJ
[`]

(hence it is a column matrix) and the entries for scattering states given by uJ
[`][`′].

The asymptotic behaviour of the radial physical wave-functions for discrete and scat-
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tering states can then be written as follows:

UJ(E,r)−−−→
r→∞

W (in)(E,r) f (in)J(E)CJ +W (out)(E,r) f (out)J(E)CJ. (2.124)

This expression is identical to Eq. (1.54) on page 20, which was used to determine

the Jost matrix relation to bound and resonance states. Consequently, the discussions

in Sections 1.5.2 and 1.5.3 are also applicable here, and the properties of the Jost

matrices with respect to discrete states are the same. The scattering cross-section for

the scattering of particles with zero spin and nonzero spin is, however, not the same.

This will be addressed in the next section.

2.2.6 Cross-section for systems with non-zero spin

For the two-body scattering of particles with non-zero spin where there is only one

available energy channel, the channels are determined by the different angular mo-

mentum states, distinguished by the quantum number `.

Consider again the wave-function for scattering states with spin, Eq. (2.116) derived

in Section 2.2.4:

ψksµ(r,s′,µ ′) = ∑
JM

∑
[`′][`]

〈s′µ ′|YJM
[`′] (θ ,ϕ)〉

uJ
[`′][`](E,r)N[`](k)

r
〈YJM

[`] (θk,ϕk)|sµ〉.

To obtain the correct asymptotic form of this equation which corresponds with Eq.

(1.126) on page 42, choose CJ
[`′′][`′] = [ f (in)J(E)]−1 in Eq. (2.123) and substitute this

into Eq. (2.116). By taking the limit at large r and applying similar tricks as in

Sections 1.5.6 and 2.1.6 gives the following:

ψksµ(r,s′,µ ′)−−−→r→∞

1
(2π)3/2

[
eikr +

eikr

r
〈s′µ ′|f(r̂← k̂)|sµ〉

]
, (2.125)

where the total spin scattering amplitude is defined by:

f(r̂← k̂)≡ 4π ∑
JM
YJM(θ ,ϕ)fJ(E)YJM†(θk,ϕk), (2.126)
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which is an operator in spin-space. The partial wave scattering amplitude with spin

is, in turn, defined as follows:

fJ(E)≡ 1
2ik
I†[SJ(E)−1]I, (2.127)

with the matrix I given by:

I ≡


i`1 0 · · · 0

0 i`2 · · · 0
...

... . . . ...

0 0 · · · i`N

 . (2.128)

The probability-amplitude of colliding particles with incoming momentum k and the

initial spin state |sµ〉, and outgoing motion along r in the spin state |s′µ ′〉, is then

given by:

〈s′µ ′|f(r̂← k̂)|sµ〉= 4π ∑
JM`′`

YJM
`′s′µ ′(θ ,ϕ) fJ

[`′][`](E)
[
YJM
`sµ(θk,ϕk)

]∗
. (2.129)

Since the final and initial spin states are fixed, the summation is over ` and not [`]. As

for the scattering of particles with zero spin, the differential scattering cross-section

is the square of this amplitude:

(
dσ

dΩ

)
s′µ ′←sµ

=
∣∣〈s′µ ′|f(r̂← k̂)|sµ〉

∣∣2 . (2.130)

If the z-axis is then chosen along the collision line, the spherical angles of the in-

coming momentum, θk and ϕk, will be zero. Furthermore, for a free incoming wave,

m = 0, which implies M = µ from Eq. (2.85). Thus, from Eq. (2.94) and (1.26),

YJM
`sµ(θk,ϕk) =CJM

`0sµY`,0(0,0) =CJM
`0sµ

√
2`+1

4π
, k ‖ z (2.131)

and

CJM
`0sµ = δµMCJµ

`0sµ
. (2.132)
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Implementing these expressions in the differential cross-section of Eq. (2.130) with

the amplitude of Eq. (2.129) results in the following:

(
dσ

dΩ

)
s′µ ′←sµ

= (4π)2
∑

J1`
′
1`1

YJ1µ

`′1s′1µ ′(θ ,ϕ) fJ1
[`′1][`1]

(E)
[
YJ1µ

`1s1µ
(θk,ϕk)

]∗
× ∑

J2`
′
2`2

[
YJ2µ

`′2s′2µ ′(θ ,ϕ)
]∗

fJ2∗
[`′2][`2]

(E) YJ2µ

`2s2µ
(θk,ϕk)

= 4π ∑
J1`
′
1`1

∑
J2`
′
2`2

√
(2`1 +1)(2`2 +1)fJ1∗

[`′1][`1]
(E)fJ2

[`′2][`2]
(E)

×CJ1µ

`10sµ
CJ2µ

`20sµ

[
YJ1M
`′1s′µ ′(θ ,ϕ)

]∗
YJ2M
`′2s′µ ′(θ ,ϕ), (2.133)

where the subscripts 1 and 2 distinguish between the different summations, and no

longer the different values for the two-body system. Also, [`1] = {`1,s} and [`2] =

{`2,s}.

The differential cross-section is integrated over the spherical angles to obtain the

total cross-section:

σs′µ ′←sµ =
∫ (dσ

dΩ

)
s′µ ′←sµ

dΩ. (2.134)

If the expression for the differential cross-section, (2.133), is substituted into this

integral, the only quantities that depend on the spherical angles are the functions,

YJM
`sµ

(θ ,ϕ). Using Eq. (2.94) and the fact that the spherical harmonics are orthonor-

mal (Eq. (1.27)) the following integral is obtained:

∫ [
YJ1M
`′1s′µ ′(θ ,ϕ)

]∗
YJ2M
`′2s′µ ′(θ ,ϕ)dΩ = δ`′1`

′
2
CJ1µ

`′(µ−µ ′)s′µ ′C
J2µ

`′(µ−µ ′)s′µ ′, (2.135)

which results in the following expression for the total scattering cross-section:

σs′µ ′←sµ = 4π ∑
J1`1J2`2`′

√
(2`1 +1)(2`2 +1)fJ1∗

[`][`1]
fJ2
[`′][`2]

×CJ1µ

`′(µ−µ ′)s′µ ′C
J2µ

`′(µ−µ ′)s′µ ′C
J1µ

`10sµ
CJ2µ

`20sµ
. (2.136)
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The incident beam of particles is not, in general, polarised. All possible orientations

of spin then have equal probabilities. It is therefore necessary to average over the

states with different spin-magnetic quantum number, µ . Since this depends on s by

the relations in Eq. (2.85), the number of possible differing states in µ for a specific

spin, s is 2s+1. This is why, when averaging the cross-section over all µ , the total

cross-section is the sum of the cross-sections in different µ states, divided by this

factor:

σs′µ ′←s =
1

2s+1 ∑
µ

σs′µ ′←sµ . (2.137)

If the final spin orientation, µ ′ is not measured, the summation must be done over

these states as well:

σs′←s =
1

2s+1 ∑
µ ′µ

σs′µ ′←sµ , (2.138)

which results in the following:

σs′µ ′←sµ =
4π

2s+1 ∑
J1`1J2`2`′

√
(2`1 +1)(2`2 +1)fJ1∗

[`][`1]
fJ2
[`′][`2]

×∑
µ ′µ

CJ1µ

`′(µ−µ ′)s′µ ′C
J2µ

`′(µ−µ ′)s′µ ′C
J1µ

`10sµ
CJ2µ

`20sµ
. (2.139)

Using the definition of the Clebsch-Gordan coefficient, Eq (2.87), and expanding

over an appropriate vector basis, the following relation can be proven [22]:

∑
µ ′µ

CJ1µ

`′(µ−µ ′)s′µ ′C
J2µ

`′(µ−µ ′)s′µ ′C
J1µ

`10sµ
CJ2µ

`20sµ
= ∑

Mmµ ′µ

CJ1M
`′ms′µ ′C

J2M
`′ms′µ ′C

J1M
`10sµ

CJ2M
`20sµ

.

Furthermore,

∑
mµ ′

CJ1M
`′ms′µ ′C

J2M
`′ms′µ ′ = δJ1J2,

and

∑
Mµ

CJM
`10sµCJM

`20sµ =
2J+1
2`1 +1

δ`1`2.

Implementing these relations in Eq. (2.139) gives the final result for the total scat-
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tering cross-section for the elastic scattering of particles with spin:

σs←s′ =
4π

2s+1 ∑
J``′

(2J+1)
∣∣∣fJ
[`′][`]

∣∣∣2 , (2.140)

and for a specific partial wave, the channel cross-sections are then given by:

σ
J
s←s′ = 4π

2J+1
2s+1

∣∣∣fJ
[`′][`]

∣∣∣2 . (2.141)

Using Eq. (2.127) for the partial scattering amplitude with spin, the main result for

this section is obtained:

σ
J
s←s′(E) =

π

k2
2J+1
2s+1

∣∣SJ(E)− I
∣∣2 . (2.142)

If the spin of the system is zero, s = 0 and J = `, thus Eq. (1.150) is retrieved.

Furthermore, although it will not explicitly be shown, this result is also applicable

to the scattering of particles with non-zero spin involving charged particle (where

Coulomb interactions are present).

This concludes the introductory chapters. Most of the required building blocks to

analyse specific scattering problems have been discussed. However, the most im-

portant aspect of this thesis still needs to be covered: the analytic structure of the

Jost matrices. This will be discussed in the next chapter.
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The method of analysis

In this chapter, the new parameterisation of the multi-channel S-matrix, introduced

in Ref. [6], will be discussed. It is this parameterisation that will allow the accurate

fitting of experimental cross-sections for scattering involving Coulomb interactions

to obtain relevant scattering parameters.

The S-matrix is constructed in terms of the Jost matrices, which cannot directly be fit-

ted to experimental data, since they are energy dependent via the channel momenta,

kn, and the Sommerfeld parameter, ηn. This causes both square-root and logarithmic

branching of the Riemann surface at each threshold energy. The Jost matrix must

furthermore be analytically continued onto the complex plane to locate resonances.

It is well known in complex analysis that the procedure of analytic continuation is

“unforgiving”. Problems often arise if the properties of the starting information or

the method of continuation is somehow flawed (see, for example, Ref. [23]).

To overcome these challenges, it will be shown how the Jost matrices can be given in

a semi-analytic form where the quantities responsible for the branching, kn and ηn,

are factorised explicitly. The remaining factors in the semi-analytic form of the Jost

matrices are shown to be analytic and single-valued functions of energy and are then

expanded in Taylor series around an appropriate energy. The expansion coefficients

serve as the fitting parameters.

In Ref. [4], this parameterisation is tested on a two-channel model, using a set of
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artificially generated data points with typical error bars and a typical random noise

in the positions of the points. This chapter is mostly based on the results of this

article, which is the first of the three articles this thesis is based on.

3.1 Riemann surface

Even though complex energies have no direct physical meaning, an analysis of the

analytic properties of the Jost matrices at complex energies can reveal certain prop-

erties of the physical system and provide valuable information concerning the be-

haviour at physical energies, which are real. In particular, resonances correspond

to complex energy poles of the S-matrix and have a definite effect on the scattering

cross-section, as mentioned in Section 1.5.3.

Before discussing the analytic structure of the Jost matrices and the fitting of experi-

mental data, the Riemann surface concept, which appeared in the previous chapters,

must be understood. Consider the channel momenta, given by Eq. (1.36):

kn =±
√

2µn

h̄2 (E−En).

Each energy corresponds with two possible momentum values per channel. The Jost

matrices, f (in/out)(E), are energy dependent via kn, which implies that each of the

Jost matrix elements will have two possible values for a specific energy, except at

the threshold energies where E = En and kn = 0.

In complex analysis, multi-valued functions are treated as if they are single-valued,

but defined on a multi-layered surface consisting of several parallel planes. This

complex manifold is called the Riemann surface.

For a simple single-channel problem with no Coulomb interactions, square-root

branching occurs at the threshold E = 0 and thus there are two parallel momentum

sheets in the complex plane. Refer to Figure 3.1, which represents the Riemann sur-

face for this square-root branching. If a vertical line is drawn through the Riemann

surface for this scenario, the points where this line intersects each of the k-sheets
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Figure 3.1: Riemann surface for square-root branching at the thresholds E = 0.

correspond to the same value of the independent variable, E. For N channels, there

are 2N square-root branching points of the Riemann surface. As has been mentioned,

the sheet which corresponds with a positive choice for kn for all n is known as the

physical sheet, and a negative choice of kn for all n corresponds with the unphysical

sheet.

If Coulomb interactions are included, the situation becomes even more complicated.

As will be shown when the Jost matrices are written in the semi-analytic form, a

factor ln(kn) appears in the expressions for the Jost matrices, which implies log-

arithmic branching at E = 0. The Riemann surface for single-channel logarithmic

branching is shown in Figure 3.2, and forms a distinct spiral. If a line is drawn at

momentum k, not only two but infinitely many ln(k) sheets are intersected. If the

logarithm is written as follows:

ln(k) = ln
[
|k|ei[arg(k)+2πm]

]
= ln |k|+ iarg(k)+ i2πm, (3.1)

it is clear the different sheets correspond to different m. The branch which corres-

ponds with m = 0 is the principal branch and is the only relevant branch for practical

calculations [6].

For multi-channel scattering, logarithmic and square-root branching will occur at
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Figure 3.2: Riemann surface for logarithmic branching at E = 0.

each channel threshold and the complicated Riemann surface becomes impossible to

draw.

Fittings of experimental data are done at real, positive energies to construct the ap-

propriate function for extracting relevant scattering parameters. In this study, these

functions are the Jost matrices. However, bound states occur on the physical sheet

of the Riemann surface and resonances on the unphysical sheet. When analytic-

ally continuing the Jost matrices onto the complex plane to determine the spectral

points, which may correspond to bound and resonance states, it is imperative that the

continuation is done on the correct sheet of the Riemann surface.

Unless the factors responsible for the branching in the Jost matrices can be isol-

ated, there can never be certainty in the analytic continuation of the Jost matrices.

This is the reason for writing the Jost matrices in the semi-analytic form where the

parameters responsible for the branching are factorised.

90



The method of analysis Analytic structure of the Jost matrices

3.2 Analytic structure of the Jost matrices

3.2.1 Analytic structure of the Jost matrices for short-range

interactions

For a simple, single-channel problem with short-range interactions only, the mo-

mentum dependence of the Jost functions, which makes them double-valued, can

easily be isolated. See, for example, Ref. [24], where it is shown that the single-

channel Jost functions in a particular partial wave can be written as follows:

f (out/in)
` =

1
2

Â`(E)±
i
2

k2`+1B̂`(E), (3.2)

where Â`(E) and B̂`(E) are single-valued, entire functions of energy, defined on a

single complex energy plane. They can therefore be approximated by finite Taylor

series. Using these expressions for the Jost functions, the single-channel S-matrix

can be written as follows:

S`(E) =
Â`(E)+ ik2`+1B̂`(E)
Â`(E)− ik2`+1B̂`(E)

. (3.3)

If the functions Â`(E) and B̂`(E) are expanded around the energy E = 0, their ratio

gives the well-known effective range expansion:

Â`(E)
B̂`(E)

= k2`+1 cotδ`, (3.4)

which is frequently used in fitting experimental data, with the expansion coefficients

of Â`(E) and B̂`(E) serving as fitting parameters. Although expanding around E = 0

is the traditional choice, the functions Â`(E) and B̂`(E) can be expanded around any

arbitrary E. The choice will not affect the analytic structure given by Eq. (3.3). For

this reason, proper branching is always preserved.

Historically, much work was done to generalise the effective-range expansion (3.4)

for multi-channel scattering as well as to derive an expression for the multi-channel
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S-matrix similar to Eq. (3.3). Most authors (see, for example, Refs. [25, 26]) in-

volve the term cot(δ ) to maintain similarity with the single-channel effective-range

expansion. The approaches are consequently very complicated. Furthermore, they

are technically only applicable to real energies, since the scattering phase-shift, δ , is

only defined for real energies. However, by exploiting the analytic structure of the

Regular and Irregular Coulomb functions (as is done in this study), useful single-

channel effective range methods for the scattering of charged particles are developed

in Ref. [27]. These are particularly useful in determining bound state energies from

the fitting of scattering data (see Ref. [28], for example).

A two-channel equivalent to Eq. (3.3) has been developed in Ref. [29], known as the

Dalitz-Tuan representation. However, it becomes problematic to obtain the S-matrix

with correct branching at all the thresholds for more than two channels, with more

traditional approaches [6].

As can be seen from Eq. (3.3), which is applicable to the single-channel scattering

of neutral particles, the Jost functions do not have poles. The situation is similar

for the multi-channel scattering of neutral particles, but poles may occur at the en-

ergy thresholds, as will be shown. The analytic structure of the Jost matrices is

somewhat simpler than the corresponding S-matrix, consequently the Jost matrices

are preferred over the S-matrix. Also, other than expressions involving the channel

phase-shifts, the Jost matrices can be analytically continued to complex and negative

energies, where they are equally well-defined as for real energies. The S-matrix can,

of course, also be determined from the Jost matrices and the obtained expansion is

of the Padé type.

As shown in Ref. [24], for multi-channel scattering with short-range interactions

only, the Jost matrix elements are given by:

f (out/in)
nm =

k`m+1
m

2k`n+1
n

Ânm(E)± i
k`n

n k`m+1
m
2

B̂nm(E), (3.5)

where Â(E) and B̂(E) now become N×N matrices. Here there are possible poles

at threshold energies, but the structure is relatively simple. This representation was
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successfully used in Ref. [24] to fit two-channel scattering data at energies far away

from the thresholds and to determine the resonance parameters from the fitting.

For multi-channel scattering involving Coulomb interactions, the analytic structure

of the Jost matrices is somewhat more complicated. In the fitting of experimental

data and the analytic continuation to obtain resonances parameters, it is still math-

ematically more rigorous and computationally simpler to exploit the analytic struc-

ture of the Jost matrices rather than attempting fittings directly with the S-matrix or

with effective-range-like expressions.

The analytic structure of the Jost matrices for scattering including Coulomb interac-

tions will be derived next.

3.2.2 Analytic structure of the Jost matrices for Coulomb

interactions

The derivation of the analytic structure rests on the fact that the Regular and Irregular

Coulomb functions can be written as the product of k- and η-dependent functions,

and functions that are entire (analytic and single-valued) in energy, E. Such a fac-

torisation is done in Ref. [30] and is equivalent to the factorisation of Ref. [31] for

repulsive interaction. The single-channel Regular and Irregular Coulomb functions

are given by:

F̀ (η ,kr) = D`(η ,k)F̃̀ (E,r), (3.6)

G`(η ,kr)) = M(η)D`(η ,k)F̃̀ (E,r)+
k

D`(η ,k)
G̃`(E,r), (3.7)

where F̃̀ (E,r) and G̃`(E,r) are unknown, entire functions in E. The k- and η-

dependence is then explicitly isolated via the following:

D`(η ,k) =C`(η)k`+1, M(η) =
2ηh(η)

C2
0(η)

, (3.8)
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with:

h(η) =
1
2
[ψ(iη)+ψ(−iη)]− ln η̂ , ψ(z) =

Γ′(z)
Γ(z)

, η̂ =
µe2|Z1Z2|

kh̄2 . (3.9)

For multi-channel scattering, the following diagonal matrices are now constructed,

as done in Ref. [6]:

D =


C`1(η1)k

`1+1
1 0 · · · 0

0 C`2(η2)k
`2+1
2 · · · 0

...
... . . . ...

0 0 · · · C`N (ηN)k
`N+1
N

 , (3.10)

M =



2η1h(η1)

C2
0(η1)

0 · · · 0

0 2η2h(η2)

C2
0(η2)

· · · 0
...

... . . . ...

0 0 · · · 2ηNh(ηN)

C2
0(ηN)


. (3.11)

By the factorisation (3.6) and (3.7), the diagonal matrices comprised of the Regular

and Irregular function, given in Eq. (2.27) and (2.28) on page 57, can then be written

in terms of the matrices D and M as follows:

F(E,r) = DF̃(E,r), (3.12)

G(E,r) = MDF̃(E,r)+KD−1G̃(E,r), (3.13)

where F̃(E,r) and G̃(E,r) are unknown diagonal matrices comprised of functions

entire in E:

F̃(E,r) =


F̃̀ 1(E,r) 0 · · · 0

0 F̃̀ 2(E,r) · · · 0
...

... . . . ...

0 0 · · · F̃̀ N (E,r)

 , (3.14)
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G̃(E,r) =


G̃`1(E,r) 0 · · · 0

0 G̃`2(E,r) · · · 0
...

... . . . ...

0 0 · · · G̃`N (E,r)

 . (3.15)

If Eq. (3.12) and Eq. (3.13) are then substituted into Eq. (2.35), the matrix of

radial wave solutions, UM(E,r) given in terms of the matrices A(E,r) and B(E,r),

the following is obtained:

UM(E,r) =
[
F̃(E,r)

(
DA(E,r)D−1 +MDB(E,r)D−1)

+G̃(E,r)KD−1B(E,r)D−1]D. (3.16)

Recall that the matrices A(E,r) and B(E,r) can be determined by solving the system

of differential equations (2.37) and (2.38) on page 59 for a known potential. The

following matrices are now defined:

Ã(E,r) = DA(E,r)D−1 +MDB(E,r)D−1, (3.17)

B̃(E,r) = KD−1B(E,r)D−1. (3.18)

Re-arranging in terms of A(E,r) and B(E,r) gives:

A(E,r) = D−1Ã(E,r)D−MK−1DB̃(E,r)D, (3.19)

B(E,r) = K−1DB̃(E,r)D. (3.20)

It should be mentioned again that diagonal matrices commute, thus they can be re-

ordered as desired. However, A(E,r) and B(E,r) are not diagonal. In terms of the

newly defined matrices, UM(E,r) can then be written as follows:

UM(E,r) =
[
F̃(E,r)Ã(E,r)+ G̃(E,r)B̃(E,r)

]
D, (3.21)
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and the Lagrange condition (2.36) becomes:

[
F̃(E,r)∂rÃ(E,r)+ G̃(E,r)∂rB̃(E,r)

]
D = 0. (3.22)

By substituting these into the coupled radial Coulomb Schrödinger equation (2.7),

the following system of differential equations is then obtained:

∂rÃ(E,r) = G̃(E,r)V (r)
[
F̃(E,r)Ã(E,r)+ G̃(E,r)B̃(E,r)

]
(3.23)

∂rB̃(E,r) = −F̃(E,r)V (r)
[
F̃(E,r)Ã(E,r)+ G̃(E,r)B̃(E,r)

]
, (3.24)

where the factors responsible for the branching conveniently disappear. This system

of differential equations can also be obtained by substituting Eq. (3.14), (3.15),

(3.17) and (3.18) into the system of differential equations (2.37) and (2.38). From

(2.39) it can also be shown that:

Ã(E,0) = I , B̃(E,0) = 0. (3.25)

Therefore, since F̃̀ (E,r) and G̃`(E,r) are entire functions, it follows from the Poin-

caré theorem (see Ref. [32]) that the elements of the matrices Ã(E,r) and B̃(E,r) are

also entire functions of E for any finite r [6].

Recall that the matrices F (in/out)(E,r), which are related to the Jost matrices for

large r, are defined in terms of A(E,r) and B(E,r) with Eq. (2.43) on page 61.

Substituting Eq. (3.19) and (3.20) into this definition gives:

F (in/out)(E,r) =
1
2
[
D−1Ã(E,r)D− (M± i)K−1DB̃(E,r)D

]
. (3.26)

Taking the limit as r→ ∞ and using Eq. (2.54) gives:

f (in/out)(E) =C−1L−1
σ
(∓)1

2
lim
r→∞

[
D−1Ã(E,r)D− (M± i)K−1DB̃(E,r)D

]
. (3.27)
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The Jost matrix elements are then given explicitly by:

f (in/out)
mn (E) =

eπηm/2`m!
2Γ(`m +1± iηm)

{
C`n(ηn)k`n+1

n

C`m(ηm)k
`m+1
m
Amn(E) (3.28)

−
[

2ηmh(ηm))

C2
0(ηm)

± i
]

C`m(ηm)C`n(ηn)k`m
m k`n+1

n Bmn(E)
}
,

with

A(E) = lim
r→∞

Ã(E,r), (3.29)

B(E) = lim
r→∞

B̃(E,r). (3.30)

If m = n = 1, the single-channel results is obtained:

f (in/out)
` (E) =

eπη/2`!
Γ(`+1± iη)

{
A(E)−

[
2ηh(η)

C2
0(η)

± i
]

C2
` (η)k2`+1B(E)

}
, (3.31)

which can also be proven from first principles, as done in Ref [6].

These equations are the Coulomb equivalent of the equations (3.5) and (3.2) respect-

ively, which are retrieved when ηn = 0 with A(E) = Â(E) and B(E) = B̂(E).

Proceeding the same way as in Ref. [6], the matrices A(E) and B(E) are comprised

of entire functions in E and can therefore be expanded in Taylor series around an

arbitrary energy, E0, within the domain of analyticity. This domain is not the entire

complex plane, though, since A(E) and B(E) are defined when r→ ∞ for Ã(E,r)

and B̃(E,r), which are analytic for finite r only. The expansions are only accurate

within a circle around E0 in the complex plane.

The matrices A(E) and B(E) are approximated by a finite number of terms of the
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Taylor series:

A(E) ≈
M

∑
i=0

αi(E0)(E−E0)
i, (3.32)

B(E) ≈
M

∑
i=0

βi(E0)(E−E0)
i. (3.33)

For multi-channel scattering, αi and βi are N×N matrices. The elements of these

matrices are the adjustable parameters in the procedure for fitting experimental cross-

sections [4].

As indicated in Ref. [6], the expansion coefficients must be real for real E0. The

value, M determines the number of fitting parameters. For single-channel fittings,

if M = 2 for example, there will be six fitting parameters: three each for the expan-

sion of A(E) and B(E). If M = 2 for multi-channel scattering with the number of

channels N = 3, the fitting parameters will be six 3×3 matrices; there will then be

54 fitting parameters in total. In principle, the fittings can be done around complex

E0, but this would double the number of fitting parameters (since there is a real and

an imaginary part to each parameter), which becomes computationally expensive.

For all the fittings performed for this thesis, real E0 are chosen and the value M

for the fitting is indicated. In general, the number of fitting parameters is given by

2(M+1)N2.

When A(E) and B(E) are obtained from the appropriate fitting of data (which will

be covered in the next section), bound and resonance states can be determined from

the resulting Jost matrices. When locating spectral points of the S-matrix, it can be

determined whether these are on the physical or unphysical sheet of the Riemann

surface by explicitly controlling the sign of the channel momenta, kn. Correct bound

and resonance states will then be determined by ensuring that they are located on the

correct sheet of the Riemann surface.

It should also be mentioned that complications may arise for scattering involving

attractive Coulomb interactions, as indicated in Ref. [6]. Such problems typically
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arise in atomic physics, where the attractive interactions between protons and elec-

trons play a large part in bound and resonance states of molecular systems. Only

nuclear interactions, where the long-ranged Coulomb part is always repulsive, are

considered in this thesis. Therefore, such complications can safely be ignored.

3.3 Fitting procedure

Data may be available for all possible channels in a scattering problem, or only for

a limited number of channels. The channel data is typically given by the channel

cross-sections at specific energies:

σmn(Emn
i )±δ

mn
i , i = 1,2, ...,N(mn), (3.34)

where the number of available cross-sections for the different channels, N(mn), as

well as the corresponding energy values may differ. The experimental error for each

channel cross-section at an energy, Emn
i , is given by δ mn

i . The energy, E0, around

which the matrices A(E) and B(E) are expanded in Eq. (3.32) and (3.33), can be

chosen somewhere within the interval covered by these collision energies, where a

resonance is expected to be found. The optimal values of the fitting parameters are

found by minimising the following χ2 function:

χ
2 =

Nmn

∑
i

[
σmn(Emn

i )−σfit
mn(E

mn
i )

δ mn
i

]2

+
Nm′n′

∑
j

[
σmn(Em′n′

j )−σfit
m′n′(E

m′n′
j )

δ m′n′
j

]2

+ · · ·+ ∑
m>n,i

|Smn(Emn
i )−Smn(Emn

i )|2 , (3.35)

where the fitting cross-sections, σmn(E), are determined with Eq. (1.150):

σmn =
π

k2
m
(2`m +1) |Smn(E)−δmn|2 ,
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with S(E) = f (out)[ f (in)]−1 and the Jost matrices in the semi-analytic form of Eq.

(3.28). The scattering is clearly also limited to systems with zero spin. The matrices

A(E) and B(E) are expanded in Taylor series and the elements of αi(E) and βi(E)

are the fitting parameters, indicated before.

The summations of the χ2 function represent the fitting of the data of each available

channel. The last term is somewhat different, though. It ensures the symmetry of

the S-matrix in accordance with the detailed balance theorem, which arises from

the time-reversal invariance [24]. This does not, however, hold for the scattering of

particles with non-zero spin, and will thus be omitted in the fittings performed in

Chapter 6.

The minimisation is done using the MINUIT code [33] in Fortran, due to its capacity

for handling large amounts of data speedily. A random initial set of values for the

fitting parameters are generated, and the minimisation is performed. The parameters

obtained from the minimisation are stored, together with the value obtained for χ2.

A new set of random initial values for the fitting parameters are generated, and the

minimisation is repeated. If a better minimum for χ2 is obtained, the corresponding

parameters replace the previous values. This process is repeated many thousands of

times to obtain the best possible fitting.

When a suitable fitting is obtained, the spectral points are determined by finding

the energy values Ei such that det
[

f (in)(Ei)
]
= 0, on the appropriate sheet of the

Riemann surface for bound and resonance states. The Runga-Kutta method, among

other methods, is mostly used to determine these zeros numerically. The fittings

are then repeated for different E0 and M and the spectral points for these fitting are

determined. If the spectral points do not appear for fittings around different E0 that

are near each other, they are not true spectral points and are discarded.
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3.4 Fitting example

The model potential

In order to demonstrate the efficiency of the proposed method, a model two-channel

problem is considered, where the parameters of the resonances can be determined

exactly. This model is used in Ref. [4], where artificial data points with a typical

distribution of errors are generated. In addition to the error-bar for each pseudo-data

point, a random shift (up or down) from the exact cross-section for each energy is

introduced. This is how a typical value for experimental “noise” is simulated. Using

these points, fittings are performed and resonance parameters are determined. These

are compared with the exact values.

The artificial data points are generated using the following two-channel reduced po-

tential, which includes Coulomb interactions:

V (r) =

 −1.0 −7.5

−7.5 +7.5

r2e−r +

 1 0

0 1

 1
r
. (3.36)

The short-range term in this potential is the same as in the well-known Noro–Taylor

model [34]. The units are chosen such that µ1 = µ2 = 1 with h̄c = 1 and `1 = `2 = 0.

The channel threshold energies are E1 = 0, as usual, and E2 = 0.1. The Coulomb

term is clearly repulsive, with 2knηn = 1. This potential does not represent a physical

system, but is chosen due to its richness in sharp, well-defined resonances.

Theses resonances and the channel cross-sections can be determined exactly by cal-

culating the matrices A(E,r) and B(E,r) from the system of differential equations

(2.37) and (2.38), with boundary conditions (2.39) on page 60. The method of com-

plex rotation is also implemented when determining A(E,r) and B(E,r), which is

discussed in detail in Ref. [17]. The matrices F (in/out)(E,r) can then be determined

with Eq. (2.43), thus the Jost matrices can be determined with Eq. (2.54). The exact

Jost matrices then allow the exact resonance parameters and cross-sections to be de-

termined. The first six of these resonances for the potential (3.36) are given in Table
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Resonance Er Γ Γ1 Γ2
1 6.278042551 0.036866729 0.006898807 0.029967922
2 8.038507867 2.563111275 0.617710684 1.945400591
3 8.861433400 7.883809113 1.949506410 5.934302704
4 9.020824224 14.07907263 3.591961102 10.48711153
5 8.566130944 20.75266055 5.414178669 15.33848188
6 7.548492959 27.69926473 7.328979882 20.37028485

Table 3.1: The exact resonance energies and widths generated by the potential (3.36) [4].

3.1, including the partial widths calculated with Eq. (1.101) on page 34.

The data and results

For the elastic channels (1→ 1) and (2→ 2), 30 data points in the energy interval,

6< E < 11, are generated. These data points are exact. In any scattering experiment,

it is impossible to obtain exact scattering cross-sections. In order to make these

cross-section values more like experimental values, they are shifted around the exact

values by using a Gaussian distribution. To be precise, the exact values, σmn(Emn
i ),

are replaced as follows:

σmn(Emn
i )→ Gi σmn(Emn

i ), (3.37)

where Gi is a number from a normal distribution with a mean of 1 and a standard

deviation of ∆. Smaller values of ∆ therefore simulates smaller experimental noise

and larger values result in greater experimental noise. To test the stability of the

fitting method, three values of ∆ are used: 0.01, 0.05 and 0.10. As well as the

simulated noise, typical values for the experimental error for the generated data are

also introduced.

The center of expansion is chosen to be E0 = 8 for all the fittings. In the case of low

experimental noise (∆ = 0.01), a value of M = 5 is chosen in the expansions (3.32)

and (3.33). For this two-channel scattering problem, there are 48 fitting parameters.

For greater experimental noise (∆ = 0.05 and ∆ = 0.10), a value of M = 3 is chosen
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and then there are 32 fitting parameters. The reason for the different choice in M is

that, for large M, the fitting curve tries to pass through almost all the data points and

so does noisy zigzags, which result in a loss of overall accuracy [4].

Figures 3.3 and 3.4 show the two-channel fittings of the artificially generated data

with ∆ = 0.01 of the elastic channels, (1→ 1) and (2→ 2), respectively. Figures 3.5

and 3.6 show the fittings for ∆ = 0.05 and Figures 3.7 and 3.8 show the fittings for

∆ = 0.10.

All matrix elements of the Jost matrices are involved in the two-channel fitting of the

data points in the elastic channels (1→ 1) and (2→ 2). The corresponding diagonal

elements of the S-matrix, which are related to the elastic channels, will be accurate

for a good fitting. Yet the off-diagonal elements of the S-matrix should also be close

to the correct values. This implies that, even if no data points for the inelastic chan-

nels (1→ 2) and (2→ 1) are available, reasonably accurate cross-sections, σ21(E)

and σ12(E) should be obtained. Figure 3.9 shows the exact cross-section for the

inelastic channel (1→ 2) and the predicted curves obtained for ∆ = 0.01,0.05, and

0.10. Of course, as one would expect, the greater the accuracy of the experimental

data, the more accurate the prediction for the cross-section in the channel where no

data points are available.

When adequate fittings are obtained, the corresponding fitting parameters are used

to construct the Jost matrices. Roots of det
[

f (in)(Ei)
]

on the unphysical sheet of

the Riemann surface of the energy are then determined. For this sheet, the signs

in kn = ±
√

2µn(E−En)/h̄2 are chosen such that both channel momenta k1 and

k2 have negative imaginary parts. These roots are then resonance spectral points,

and are given in Table 3.2 for the fittings with experimental noise simulated by

∆ = 0.01,0.05, and 0.10.
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3.5 Remarks

As expected, with less “noise”, the resonance parameters obtained from the fitting

correspond considerably better to the exact values. Yet even with very high experi-

mental noise (∆= 0.10), the first, narrow resonance is still obtained with a reasonable

accuracy. Not only are the energy and total width reproduced, but the partial widths

as well. For a wide resonance (the second resonance), reasonable parameters are

still obtained where there is high experimental noise. Even for an extremely wide

resonance (the third), the energy obtained is not far from the exact value.

One of the advantages of the proposed method is that the fitting procedure involves

all matrix elements of the Jost matrices and therefore all elements of the S-matrix,

even if experimental data for only some of the channels are available. The S-matrix

resulting from the fitting should therefore be correct in all channels. In principle, this

means that by fitting accurately measured data in one or two channels, a reasonable

estimate for the cross-sections in the other channels, where the measurements are

difficult or impossible, could be obtained.

These results, which are the principal findings from Ref. [4], show that the model

based on the semi-analytic structure of the Jost matrices is accurate and robust for

fittings of experimental data, even if the data has a great amount of experimental

noise. A more detailed discussion follows in the final chapter, but this fitting method

will first be applied to real experimental data in Chapters 5 and 6. The method has

also effectively been applied to locate two-channel resonances in the nuclei 5He [35]

and 8B [36].

Before considering the physical systems in Chapters 5 and 6, which are applicable

in astrophysics, some introductory concepts in astrophysics will be discussed in the

next chapter.

104



The method of analysis Remarks

Resonance ∆ Er Γ Γ1 Γ2

1

exact 6.278042552 0.036866729 0.006898807 0.029967922
0.01 6.277997424 0.036731019 0.006721542 0.030009477
0.05 6.278563562 0.035568397 0.006497720 0.029070677
0.10 6.278669302 0.036236713 0.006638945 0.029597768

2

exact 8.038507867 2.563111275 0.617710684 1.945400591
0.01 7.998939904 2.096675299 0.623726003 1.472949296
0.05 7.676616089 2.502856671 0.792088450 1.710768220
0.10 7.968634195 1.662113407 0.231505793 1.430607614

3

exact 8.861433400 7.883809114 1.949506410 5.934302704
0.01 11.21325906 3.204531546 0.031776330 3.172755216
0.05 9.188805831 2.549030291 0.364986606 2.184043685
0.10 9.259323135 2.226793463 1.232709401 0.994084062

Table 3.2: The resonance parameters obtained from fitting the model data with different degrees of
experimental noise [4].

Figure 3.3: The data points for the elastic channel, (1→ 1) together with the curves showing the
exact and fitted cross-sections. The experimental noise for the points has the normal distribution
with the standard deviation ∆ = 0.01 [4].
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Figure 3.4: The data points for the elastic channel, (2→ 2) together with the curves showing the
exact and fitted cross-sections. The experimental noise for the points has the normal distribution
with the standard deviation ∆ = 0.01 [4].

Figure 3.5: The data points for the elastic channel, (1→ 1) together with the curves showing the
exact and fitted cross-sections. The experimental noise for the points has the normal distribution
with the standard deviation ∆ = 0.05 [4].
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Figure 3.6: The data points for the elastic channel, (2→ 2) together with the curves showing the
exact and fitted cross-sections. The experimental noise for the points has the normal distribution
with the standard deviation ∆ = 0.05 [4].

Figure 3.7: The data points for the elastic channel, (1→ 1) together with the curves showing the
exact and fitted cross-sections. The experimental noise for the points has the normal distribution
with the standard deviation ∆ = 0.10 [4].
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Figure 3.8: The data points for the elastic channel, (2→ 2) together with the curves showing the
exact and fitted cross-sections. The experimental noise for the points has the normal distribution
with the standard deviation ∆ = 0.10 [4].

Figure 3.9: Exact inelastic cross-section (thin curve) for the inelastic transition channel, (1→ 2) and
the approximate curves obtained after fitting the data in the elastic channels with the experimental
noise determined by the standard deviations ∆ = 0.01, 0.05, and 0.10 [4].
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Chapter 4

Astrophysics and the ANC

This chapter introduces some concepts and models in astrophysics. In particular,

the Asymptotic Normalisation Coefficient (ANC) for bound and resonance states is

defined, which is related to the astrophysical S-factor of radiative capture reactions.

The S-factor, in turn, allows reaction rates in stars, star lifetimes and isotope abund-

ances to be determined, among other things. It is beyond the scope of this thesis to

use calculated ANC values to determine star lifetimes, for example, but the general

theory will be outlined. The goal is to illustrate the practical use and importance of

the ANC.

The relationship between the S-matrix residue and the ANC will be derived expli-

citly. This does form a cardinal part of this thesis, since such a derivation for scat-

tering involving Coulomb interactions does not readily appear in the literature. This

relationship is used in Chapter 5 in the Jost function analysis of α12C scattering data,

where the ANC values for the resonances of 16O in the reaction, 12C(α,γ)16O, are

obtained. In Chapter 6, ANC values for the bound and resonance states of 6Li in the

reaction α(d,γ)6Li are obtained from a Jost matrix analysis.

Both reactions, 12C(α,γ)16O and α(d,γ)6Li, occur in stars. A brief introduction to

the current understanding of the evolution of the universe and a discussion on nuclear

fusion reactions in stars follows.
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4.1 Evolution of the Universe

In recent years there has been a renewed interest in certain nuclear processes, such

as the reactions 12C(α,γ)16O and α(d,γ)6Li, due to their relevance in astrophysics.

While many of these processes have been studied since the golden years of nuclear

physics in the 1950s and 1960s, certain scattering parameters for these reactions

(such as the ANC) have not been determined to satisfaction. There has also been

considerable improvement in the models used for analysing experimental data, not

to mention the advances in computing power to perform fittings of said data.

Of particular interest are the nuclear fusion reactions in stars that are responsible for

the creation of the heavier elements. Due to the limited nature of the data available

from stars, namely measurements of radiation, many aspects of heavy-element syn-

thesis remain a mystery. In fact, one of the eleven most important physics questions

in our century is:

“How and where are the heavy elements produced?” [37].

To begin answering this question, the origin of matter and in particular the origin

of the lighter atomic isotopes, will be considered in the context of the origin of the

universe.

The most commonly accepted model for the origin of the universe is, of course, the

Big Bang Theory. According to this model, soon after the Big Bang, the universe

cooled over time in such a way that its temperature can be approximated by T ≈
15×109
√

t K, which is equivalent to a thermal energy of E ≈ 1.3√
t MeV [37].

The available thermal energy determines the nature of matter during this time-

evolution: see Figure 4.1.

For very early times; t < 1 µs, the universe consisted of a deconfined soup of quarks

and gluons; the quark-gluon plasma. The phase diagram for this plasma is the focus

of many modern studies in particle physics, since the specifics of how the plasma

forms baryons, in particular the proton, is not yet well-understood.

For times; 1 µs < t < 1 s, protons and neutrons did exist, but the available en-
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Figure 4.1: Evolution of the universe from the Big Bang.

ergy was still larger than the difference in rest masses of the neutron and proton:

(mn−mp)c2 = 1.24 MeV. Enough radiative energy was therefore available for the

conversion of protons to neutrons and neutrons to protons via the weak interaction.

Spontaneous pairs of electron-positron pairs were also formed [37].

Only for t > 1 s were neutrons and protons really stable enough to bind to form light

nuclei. The period: 0.01 s < t < 3 min, where this cosmic nuclear fusion took place,

is known as the Era of Nucleosynthesis [37]. Most of the hydrogen and helium iso-

topes currently in existence were formed in this period. It was thought that most of

the lithium isotopes currently in existence were also formed in this period, but there

is a significant discrepancy with the theoretical predictions and the observed abund-

ance of lithium [38]: this is the so-called Lithium Discrepancy, which is an important

problem in nuclear astrophysics. The results from the study of 6Li resonances, which

is the focus of Chapter 6, can assist in solving this problem.

Returning to the evolution of the universe: after the Era of Nucleosynthesis, in the

period; 3 min < t < 380000 years, the light nuclei (mostly protons) combined with

free electrons to form hydrogen and helium atoms. This is known as the recombin-

ation period. The recombination had an important repercussion: thermal radiation

could no longer be scattered from these neutral atoms (as opposed to the charged
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nuclei and electrons), which meant that these photons started to move freely though

the universe. The photons existed mostly in the order of microwaves and can still be

detected as radio-waves today (the grey-noise between radio stations, for example):

this is some of the best evidence for the Big Bang Theory.

After recombination, photons were no longer backscattered and stars had not yet

formed: the universe was completely dark. This period, 380000 years < t < 200

million years, is appropriately named the Dark Ages.

For reasons that are still unknown (although many models have been proposed), 200

million years after the Big Bang, massive concentrations of hydrogen and helium

atoms were formed, assisted by gravity, resulting in the spontaneous fusion of the

nuclei of these atoms. These were the first stars.

The fusion of the hydrogen and helium isotopes provide sufficient energy for the

fusion of their products, as well as preventing the implosion of stars due to gravity.

The “ashes” from the initial reactions provide the fuel for higher-order fusion reac-

tions. It is thus within stars that most of the heavier elements are formed, at least up

to iron, which has the most tightly bound nucleus of all elements.

When a massive star collapses, a so-called supernova ensues. The shock-wave from

this explosion results in a drastic increase in the temperature of the star, which

provides the energy for the formation of elements heavier than iron.

The universe, in its current state, is then comprised of first- and second generation

stars (which came to be because of the implosion of first generation stars). These

stars are grouped in numerous galaxies, which, like the stars, only formed late in the

evolution of the universe. How the universe will continue to evolve is still somewhat

uncertain. While numerous likely models exist, certain important parameters, such

as dark matter and dark energy, remain illusive. This, however, is not important for

this thesis and is merely mentioned to give a broader perspective.

This section is just a short summary of the current understanding of the evolution of

the universe. It is important, though, since the application of the results of this thesis

are then better understood within the context of particle physics, astrophysics and
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cosmology. One of the cardinal reactions in stars, radiative capture, is the focus of

the next section.

4.2 Stellar nucleosynthesis and radiative capture

The Hydrogen isotope comprised of a single proton is the most abundant element

in the universe [37]. The proton is then the main fuel-source of stars. Apart from

the Helium produced during the Era of Nucleosynthesis, it is further produced in

stars in a sequence of nuclear reactions involving the fusion of protons, which result

in the formation of 4He (the α-particle) in particular. This occurs either via the

proton-proton chain in smaller stars (smaller than 1.3 times the mass of the sun) or

via the CNO cycle in larger stars (larger than 1.3 times the mass of the sun) [39].

Both reaction chains can occur in all stars, but the proton-proton chain is much more

prominent in smaller stars. The CNO cycle, which is an abbreviation for the carbon-

nitrogen-oxygen cycle, occurs at greater energies and requires the presence of the
12C isotope, which acts as a catalyst.

Various factors influence the production of the heavier elements, most particularly

the available thermal energy in a star. Other reaction chains govern this production,

for example the triple-helium process, which results in the production of 12C from

the reaction of three alpha particles [37]. This process occurs later in a star’s lifetime,

when its hydrogen has been depleted. This causes a rise in temperature in the core,

which provides sufficient energy for the triple-helium process to commence. A by-

product of this process is the reaction of the produced 12C with excess alpha particles

to form 16O. It is this reaction which is considered in Chapter 5.

The available thermal energy in even the hottest star is of the order E ≈ 10MeV.

Furthermore, when supernovae occur for massive stars, the temperature (and thermal

energy) will not increase more than 50%. All nuclear reactions that occur in stars

and supernovae can therefore be considered non-relativistically, and the derivations

of the previous chapters are applicable to nuclear reactions that occur via scattering
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processes in stars.

Many of these reactions in stars and supernovae explosions occur through sub-

threshold bound states or low-energy resonance states. This is the main mode of

element production in stars and supernovae, since the Coulomb barrier in the scat-

tering of nuclei suppresses the direct reaction near the threshold energy [40]. This

type of reaction, known as radiative capture, is then responsible for much of the

radiation from stars and supernovae.

Radiative capture can be described as the two-body scattering of nucleus A by nuc-

leus B which results in an excited state of the product nucleus C, which then enters

the ground state by ejecting a photon: A+B→ C∗ → C + γ [37]. Although this

is clearly two-channel scattering, such radiative capture reactions can be studied by

considering elastic A+B scattering, which can result in bound and resonance states

of C.

Experimental data of the elastic A+B→ A+B scattering can then be analysed with

the method outlined in Chapter 3, which is exactly what is done in Chapters 5 for

α12C scattering and for dα scattering in Chapter 6.

4.3 The S-factor

One of the main goals of astrophysicists in general is to determine the reaction rates

of radiative capture reactions, which can be used to determine stellar energy produc-

tion, time-scales of the nuclear burning process (and so stellar lifetimes) as well as

the abundance of heavier elements (beyond hydrogen and helium). The astrophys-

ical S-factor for radiative capture at low energies, can be used to determine these

quantities. The S-factor is defined as follows:

S(E) = Ee2πη
σγ(E), (4.1)

where σγ(E) is the radiative capture cross-section. The S-factor is effectively a re-

scaling of this scattering cross-section to limit the strong energy dependence, which
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Figure 4.2: Dependence of cross-section and S-factor on energy, for the reaction 3He(4He,γ)7Be
[37].

is mainly due to the repulsive Coulomb interaction at lower energies; hence the ex-

ponential factor containing the Sommerfeld parameter, η . The Coulomb interaction

will always be repulsive for nuclear reactions in stars, since all nuclei are positive.

Due to the re-scaling, for certain energy ranges, the S-factor is well-approximated by

a constant and is the preferred quantity in astrophysics (rather than scattering cross-

section or phase-shift). See, for example, Figure 4.2, obtained from Ref. [37], which

shows the total scattering cross-section and corresponding S-factor for the radiat-

ive capture reaction, 3He(4He,γ)7Be in the energy range 0 MeV < Ecm < 1.5 MeV.

There is a rapid decrease in cross-section at energies lower than the Coulomb barrier

energy, which is not reflected in the S-factor, which is almost constant. The S-factor

can often be used to extrapolate to lower energies where physical measurements are

impossible. Furthermore, there is a direct dependence of the S-factor on the reaction

rate, as will be shown.

For the two-body scattering of particle 1 by particle 2, the average reaction rate per
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particle pair, r12, is given by [37],

r12 =
1

1+δ12
n1n2〈σv〉, (4.2)

with

〈σv〉=
∫

∞

0
σ(E)φ(v)dv. (4.3)

The number densities for the particles are represented by n1 and n2. The distribu-

tion of relative velocities in the plasma, φ(v), is given by the Maxwell-Boltzmann

distribution at non-relativistic energies for a system at thermal equilibrium. This is a

reasonable approximation for most stellar systems, as indicated before.

This average reaction rate is directly related to timescales of nuclear burning pro-

cesses in stars, approximations for star lifetimes, stellar energy production as well as

models for determining particle abundance: see Ref. [37] for further details. It can

be shown that the average reaction rate is related to the S-factor by the following:

〈σv〉=

√
8

πµ(kBT )3

∫
∞

0
S(E) e

(
− E

kBT−
√

EG
E

)
dE, (4.4)

with

EG = 4π
2
η

2E. (4.5)

The exponent in the above expression is known as the Gamow distribution, which

has a peak at:

Ep =

(
1
4

EGk2
BT 2

) 1
3

, (4.6)

which is known as the effective burning energy and is typically very small - much

smaller than experimentally measurable energies. Often the S-factor is approxim-

ately constant and the integral can easily be approximated. Even if the S-factor

varies significantly around the Gamow peak, it can be expanded in a Taylor series

around E = 0 to obtain an effective S-factor.

The S-factor for radiative capture at low energies then needs to be determined. This

is often impossible to do directly from the cross-section by Eq. (4.1) since radiative
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capture cross-sections cannot accurately be measured at low energies, nor are extra-

polations of these cross-sections reliable. The S-factor at low energies can, however,

be approximated from relevant ANC values.

4.4 The Asymptotic Normalisation Coefficient

The Asymptotic Normalisation Coefficient (ANC) for a bound or resonance state

physical radial wave-function in a specific channel is the amplitude of the corres-

ponding outgoing spherical wave. In numerous texts, this outgoing wave is repres-

ented by the Whittaker function, W−ηn,`n+
1
2
(−2iknr). Ref. [37] defines the ANC with

the following, for example:

un(Ei,r)−−−→
r→∞

AnW−iηn,`n+
1
2
(−2iknr), (4.7)

where un(Ei) is the bound or resonance state wave-function at spectral energy Ei.

The ANC for the channel n, is given byAn. Recall that the channel may be uniquely

determined by its threshold energy, En, as well as the quantum numbers `, s and J.

For the single-channel scattering of particles with zero spin, the ANC is just given

by A`, since it is uniquely defined by the angular momentum quantum number, `.

The Whittaker functions and H(±)
` (η ,kr), given as a linear combination of the Reg-

ular and Irregular Coulomb functions in Eq. (2.23) with asymptotic behaviour given

by Eq. (2.24), differ by an energy dependent factor as follows [14]:

H(±)
` (η ,kr) = (∓i)`+1eπη/2e±iδ c

` W∓iηn,`n+
1
2
(∓2iknr). (4.8)

Eq. (4.7) can then be written as follows:

un(Ei,r) −−−→
r→∞

Ani`n+1e−πηn/2e−iδ c
`n H(+)

`n
(ηn,knr)

−−−→
r→∞

e−πηn/2Aneiknr−iηn ln(2knr). (4.9)
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Figure 4.3: Diagram illustrating transfer reaction, A+B→ D+F .

This definition agrees with articles such as Ref. [41]. However, certain authors use

relations for the ANC which is equivalent to a definition where the factor e−πηn/2

is omitted. For this reason, the ANC will be defined by the following asymptotic

behaviour of the physical channel radial wave-functions:

un(Ei,r)−−−→
r→∞

aAneiknr−iηn ln2knr, (4.10)

where the factor a is chosen to be e−πη/2 or 1. Depending on the strength of the

Coulomb interaction, this choice has a small impact on the calculated ANC values.

This definition is applicable to bound states as well as resonances.

It should be noted that this is the single-particle ANC for the bound or resonance

states obtained from the scattering of two particles: the scattering of A and B to form

C via radiative capture. Eq. (4.10) represents the wave-function of particle C, either

in the ground state or in an excited state.

Another important nuclear reaction is the transfer reaction, A+B→ D+F , where

A and F are composite particles with a common constituent, b: A = D+a and F =

B+ a. The particle b is then transferred from one nucleus to the other, hence the

name. The transfer reaction is illustrated in Figure 4.3.

An identical expression to 4.10 is used to define the ANC for the overlap wave-

function of A and B: see Ref [41], for example. This wave-function and its ANC is

related to the transfer reaction. There is a useful relation between the overlap wave-

function ANC and the single particle ANC, which allows one value to be calculated

if the other is known: see Refs. [37] or [41] for details. As an example given by

Ref. [37], calculation of the ANC for the overlap function in the transfer reaction
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48Ca(d, p)49Ca has lead to considerable insight into the radiative-capture reaction,
48Ca(n,γ)49Ca, which is difficult to analyse directly due to experimental limitations.

The single-particle ANC values for radiative capture reactions will be determined in

this thesis, but these values are relevant to certain transfer reactions as well.

To summarise, the ANC describes the strength of the exponential tail of the bound

state and resonance wave-functions. Therefore, radiative capture reactions as well as

transfer reactions at low physical energies directly depend on the ANC values [37]. A

review and summary of various definitions of the ANC can be found in Refs. [41,42].

As mentioned in the previous section, the radiative capture reaction given by

A(B,γ)C is a two-channel reaction, where the transition channel A+B→C+ γ is of

particular interest. It is the cross-section and corresponding S-factor of this channel

which is of particular interest to astrophysicists, since stellar reaction rates depend

on the S-factor of this channel.

An expression for the S-factor at low energies for the inelastic channel of the

A(B,γ)C reaction for a sub-threshold bound state of particle C, is given in terms

of the corresponding ANC in Ref. [41], Eq. (38). This expression is only applicable

to the scattering of particles with zero spin. A similar expression can be obtained for

particles with non-zero spin. Furthermore, similar expressions also exist for reson-

ances.

If the ANC values for bound and resonance states of radiative capture reactions can

then be determined, the S-factor can be determined, which allows the average reac-

tion rate of radiative capture to be calculated. This will be left to the astrophysicists.

Accurately determining the ANC values is the concern of this thesis.

The next section shows how the ANC for a bound or resonance state is related to the

corresponding S-matrix residue. The S-matrix residues can, in turn, be determined

with the Jost matrices.
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4.5 ANC and S-matrix residue

The single-channel relation between the ANC and the S-matrix residue for bound

states is well known for the scattering of neutral particles, where there are no Cou-

lomb interactions. It is given by [42]:

Res [S`,k] = i(−1)`+1A2
` . (4.11)

Refs. [41, 42] also give the bound state expression for the scattering of charged

particles, where there are short-range and Coulomb interactions. The correspond-

ing relation for resonances was further suggested in Refs. [43, 44].

In this section, an alternative derivation for bound and resonance states is given, from

the Appendix of Ref. [7]. For simplicity, the derivation of the relationship between

the ANC and the S-matrix residue at spectral energies is done for single-channel

scattering only, as only the single-channel relation is necessary for this thesis. The

result can be extended to multi-channel scattering.

Firstly, the so-called Jost solutions, χ
(±)
` (E,r), of the single-channel radial

Schrödinger equation (1.37) are introduced. For the scattering of neutral particles,

they are usually defined by the following boundary conditions at infinity [3]:

χ
(±)
` (E,r) −→

r→∞
h(±)` (kr) −→

r→∞
(∓i)`+1e±ikr , η = 0 . (4.12)

For the scattering of charged particles, they are solutions of a single channel of Eq.

(2.7) and the definition is generalised as follows:

χ
(±)
` (E,r) −→

r→∞
H(±)
` (η ,kr)e∓iδ c

` −→
r→∞

(∓i)`+1e±i[kr−η ln(2kr)] . (4.13)

The single-channel Jost functions for the scattering of charged particles are defined

by the regular solution Eq. (2.49), or equivalently, (2.50):

φ(E,r)−−−→
r→∞

H(−)
` (η ,kr)e+iδ c

f (in)` (E)+H(−)
` (η ,kr)e−iδ c

f (out)
` (E),
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which can then be written in terms of the Jost solution:

φ(E,r)−−−→
r→∞

χ
(−)
` (E,r) f (in)` (E)+χ

(+)
` (E,r) f (out)

` (E). (4.14)

The Wronskian of any two solutions for a single-channel of the radial Schrödinger

equation (2.7) is independent of r, thus it can be determined at any r, in particular

where r→ ∞. The Jost functions can then be given in terms of the Wronskian as

follows:

f (in/out)
` (E) =± i

2k
W
[
χ
(±)
` ,φ`

]
, (4.15)

where W [ f ,g] = f g′− f ′g is the Wronskian of two functions. Using the Wronskian

of the Regular and Irregular Coulomb functions (see Ref. [14]) and Eq. (2.23), the

definition of H(±)
` (η ,kr), the following Wronskian can be obtained:

W [H(−)
` (η ,kr),H(+)

` (η ,kr)] = 2ik .

To simplify the notation, the energy derivative of a function will be denoted by the

dot over the function, as before. The energy derivative of Eq. (4.15) for the incoming

Jost function then gives:

.
f
(in)
` (E) =

i
2k

[
W (χ

(+)
` ,

.
φ `)+W (

.
χ
(+)
` ,φ`)

]
+W (χ

(+)
` ,φ`)

d
dE

(
i

2k

)
. (4.16)

At a resonance or a bound state energy Ei, it is known that f (in)` (Ei) = 0. Using Eq.

(4.14) this implies:

φ(Ei,r)−−−→
r→∞

χ
(+)
` (Ei,r) f (out)

` (Ei), (4.17)

and so

W (χ
(+)
` (Ei,r),φ`(Ei,r)) =W (φ`(Ei,r),χ

(+)
` (Ei,r)) = 0. (4.18)

At a spectral energy, Eq. (4.16) then becomes:

.
f
(in)
` (Ei) =

i
2k

{
W
[
χ
(+)
` (Ei,r),

.
φ `(Ei,r)

]
+W

[ .
χ
(+)
` (Ei,r),φ`(Ei,r)

]}
. (4.19)
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Let V(r) represent the sum of the short-ranged (V (r)) and Coulomb reduced poten-

tials:

V(r) =V (r)+
2kη

r
. (4.20)

Then the radial Schrödinger equations for the functions φ` and χ
(+)
` at two different

energies, E and Ẽ, read as follows:

[
d2

dr2 + k2− `(`+1)
r2 −V(r)

]
φ`(E,r) = 0 ,[

d2

dr2 + k̃2− `(`+1)
r2 −V(r)

]
χ
(+)
` (Ẽ,r) = 0 .

Multiplying the first equation by by χ
(+)
` (Ẽ,r), the second by φ`(E,r) and subtract-

ing the second from the first, the following is obtained:

φ
′′
` (E,r)χ

(+)
` (Ẽ,r)−φ`(E,r)χ

′′(+)
` (Ẽ,r)+(k2− k̃2)φ`(E,r)χ

(+)
` (Ẽ,r) = 0 ,

which is equivalent to

d
dr

W
[
χ
(+)
` (Ẽ,r),φ`(E,r)

]
= (k̃2− k2)φ`(E,r)χ

(+)
` (Ẽ,r) . (4.21)

Taking the derivative over E, the following is obtained:

d
dr

W
[
χ
(+)
` (Ẽ,r),

.
φ `(E,r)

]
=

− 2µ

h̄2 φ`(E,r)χ
(+)
` (Ẽ,r)+(k̃2− k2)

.
φ `(E,r)χ

(+)
` (Ẽ,r) .

Substituting E = Ẽ = Ei, which gives k2− k̃2 = 0, then results in the following:

d
dr

W
[
χ
(+)
` (Ei,r),

.
φ `(Ei,r)

]
=−2µ

h̄2 φ`(Ei,r)χ
(+)
` (Ei,r) . (4.22)

Similarly, by differentiating Eq. (4.21) over Ẽ and substituting E = Ẽ = Ei, the radial
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derivative of the second term in Eq. (4.19) is obtained:

d
dr

W
[ .
χ
(+)
` (Ei,r),φ`(Ei,r)

]
=

2µ

h̄2 φ`(Ei,r)χ
(+)
` (Ei,r) . (4.23)

Notice that the sum of Eq. (4.22) and Eq. (4.23) is zero, as expected when consider-

ing the derivative over r of Eq. (4.19).

Integrating Eq. (4.22) from 0 to r and Eq. (4.23) from r to ∞, the following is

obtained:

W
[
χ
(+)
` (Ei,r),

.
φ `(Ei,r)

]
−W

[
χ
(+)
` (Ei,0),

.
φ `(Ei,0)

]
=−2µ

h̄2

∫ r

0
φ`(Ei,r′)χ

(+)
` (Ei,r′)dr′ , (4.24)

W
[ .
χ
(+)
` (Ei,∞),φ`(Ei,∞)

]
−W

[ .
χ
(+)
` (Ei,r),φ`(Ei,r)

]
=

2µ

h̄2

∫
∞

r
φ`(Ei,r′)χ

(+)
` (Ei,r′)dr′ . (4.25)

It can be shown that, at a spectral point, the following terms in these equations van-

ish:

W
[
χ
(+)
` (Ei,0),

.
φ `(Ei,0)

]
= 0 , (4.26)

W
[ .
χ
(+)
` (Ei,∞),φ`(Ei,∞)

]
= 0 . (4.27)

Indeed, at a spectral point the functions φ` and χ
(+)
` at large distances only differ

by an energy-dependent normalisation coefficient, as can be seen from Eq. (4.17).

Since the Schrödinger equation is homogeneous, this implies that φ` and χ
(+)
` are

linearly-dependent. Therefore, also at short distances they can only differ by an

energy-dependent coefficient, while the r- dependence, namely, ∼ r`+1, is the same.

When φ` is differentiated with respect to E near the point r = 0, the r-dependence

is not affected. In other words, χ
(+)
` (Ei,r) and

.
φ `(Ei,r) are also linearly-dependent

when r→ 0, which implies Eq. (4.26).
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Concerning Eq. (4.27), notice that for a bound state, φ`(Ei,∞) = 0, due to its expo-

nential dependence on ikr and the fact that k = i|k|. The Jost solution χ
(+)
` (Ei,r) also

has this exponential dependence on ikr. After its differentiation over the energy, this

exponential factor is also present in
.
χ
(+)
` (Ei,r), and so at large r, Eq. (4.27) holds

for a bound state.

As far as a resonance is concerned, consider the corresponding wave-function along

a complex radius r = |r|exp(iθ), with a rotation angle θ such that Im(kr)> 0. With

such a complex rotation of the coordinate, it is possible to uniquely normalise a res-

onance wave-function [45]. Furthermore, without a reasonable and clearly defined

recipe for the normalisation, it would be meaningless to consider the ANC for res-

onance states. Therefore, when r→ ∞ along a complex path, a resonance can be

treated in exactly the same way as a bound state and the reasoning for bound states

becomes applicable.

Now proceed by substituting Eq. (4.24) and Eq. (4.25) into Eq. (4.19), to obtain the

following:

.
f
(in)
` (Ei) =

µ

ih̄2k

∫
∞

0
φ`(Ei,r)χ

(+)
` (Ei,r)dr

=
µ

ih̄2k
f (out)
` (Ei)

∫
∞

0

[
χ
(+)
` (Ei,r)

]2
dr , (4.28)

where the last equality follows from Eq. (4.17). The integral can now be expressed

in terms of the ANC. In order to do this, consider the properly normalised wave-

function, u`(Ei,r), of the discrete state: a function that is proportional to χ
(+)
` (Ei,r)

and obeys the condition: ∫
∞

0
[u`(Ei,r)]

2 dr = 1 . (4.29)

When dealing with a resonance, the integration should naturally be done along a

complex path. For both bound or resonance states, the norm can be defined as the

integral of the square of the wave-function. Indeed, a bound state wave-function can

always be made real and therefore |u`|2 = u2
` . For a resonance state, the norm is

also introduced via integration of the square of the wave-function (see, for example,
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Refs. [46, 47]).

Comparing Eq. (4.10), by which the ANC is defined, with Eq. (4.13), the following

is obtained:

u`(Ei,r) = i`+1aA` χ
(+)
` (Ei,r) . (4.30)

Substituting χ
(+)
` (Ei,r) from this equation to the integral in (4.28) and taking into

account the normalisation condition (4.29), the following is obtained:

Res [S`,E] =
f (out)
` (Ei)
.
f
(in)
` (Ei)

= i(−1)`+1 h̄2k
µ

a2A2
` , (4.31)

where the relation between the S-matrix residue and the Jost functions, Eq. (1.119)

is also used.

The residues of the S-matrix residues over the variables k and E are easily related.

The derivative in Eq. (1.119) is simply replaced with,

d
dE

=
dk
dE

d
dk

=
µ

h̄2k
d
dk

, (4.32)

which gives:

Res [S`(E),E] =
h̄2k
µ

Res [S`(k),k] . (4.33)

This then results in:

Res [S`,k] = i(−1)`+1a2A2
` . (4.34)

If a = e−πη/2 is chosen, this equations corresponds exactly to Eq. (12) in [41] for

bound states. If a= 1 is chosen, the expression corresponds exactly to the expression

for the scattering of neutral particles, Eq. (4.11) (see, for example, the Appendix of

Refs. [48] or [42]). For this reason, it is the preferred choice. It then also corresponds

exactly to Eq. (1.104) on page 35 of Chapter 1.

Furthermore, for a = 1, the relation becomes equivalent to the expressions used in

Refs. [40, 49]. For a = e−πη/2, the relation becomes equivalent to the expressions

used in Ref. [50]. This will be shown explicitly in the next section. The equivalence
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with the expression in these references in particular are highlighted, since the results

of Chapters 5 and 6 will be compared with the results of these references.

4.6 Equivalence with other expressions

Rather than using the S-matrix residue, many texts introduce the renormalised

Coulomb-nuclear partial amplitude. It is the Coulomb-nuclear partial amplitude

of Eq. (2.67) for a singe channel, which can be written in terms of the phase-shift as

follows:

fcn
` =

e2iδ c
` (e2iδ`−1)

2ik
,

which is then adjusted by a Coulomb correction factor:

(`!)2eπη

[Γ(`+1+ iη)]2
.

It is given by Refs. [40, 49, 50] as follows:

f̃cn
` =

e2iδ c
` (e2iδ`−1)

2ik
(`!)2eπη

[Γ(`+1+ iη)]2
. (4.35)

Recall that the single-channel scattering S-matrix can be given in terms of the phase-

sifts by Eq. (2.75) and (2.76):

S`(k) = e2iδ c
` e2iδ` (4.36)

Using this relation, multiplying equation (4.35) with (k− ks) and taking the limit as

k→ ks on both sides, gives the following relationship between the single-channel

S-matrix residue and the renormalised Coulomb-nuclear partial amplitude residue at

momentum pole ks:

Res
[
f̃N
` (k),ks

]
=

Res [S`(k),ks] (`!)2eπηs

2iks[Γ(`+1+ iηs)]2
, (4.37)
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where the momentum pole ks corresponds with a spectral energy Ei, so that ks =√
2µEi/h̄2.

The Nuclear Vertex Constant (NVC or G̃`) is defined in terms of the renormalised

Coulomb-nuclear partial amplitude residue. There are, however, differences in the

definition. It can be written as follows:

Res
[
f̃N
` (k),ks

]
=−b2 µ2

2πks
G̃2
` . (4.38)

with b = 1 in Refs. [40, 49] and b = i` in Ref. [50].

The NVC, in turn, is related to the Asymptotic Normalisation Coefficient. Again,

there are differences in the relation used. It is given by:

A` =
b
a

i−`e−πη/2 µ√
π

Γ(`+1+ iηs)

`!
G̃`, (4.39)

with a = 1 in Refs. [40, 49]. In Ref. [50], a = e−πη/2. Thus it can be shown that the

relationship between the ANC and S-matrix residue at momentum pole ks is given

by the following:

Res [S`(k),ks] = a2i(−1)`+1A2
` . (4.40)

This expression corresponds exactly with Eq. (4.34). With the appropriate choice of

the arbitrary factor a, the results of this thesis can be compared with those of other

studies.

The renormalised Coulomb-nuclear partial amplitude is used by numerous authors

in fitting data, since its analytic structure is well-understood and it relates directly

to the effective-range expansion and the NVC and ANC. For methods based on

the effective range expansions, however, there are (as mentioned) complications for

multi-channel scattering. For this reason, the fitting method given in Chapter 3 is

preferable.

The necessary background in scattering theory has been discussed in Chapters 1 and

2 and the Jost matrix method of analysis has been introduced in Chapter 3. This

chapter has outlined the importance of certain nuclear processes in stars and shown
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how the ANC values can give much-needed insight into problems in astrophysics.

The means of calculating the ANC from the Jost matrices have also been determined.

Experimental nuclear scattering data is analysed with the outlined method in the next

chapters.
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Chapter 5

Analysis of α12C scattering data

This chapter gives the results of Ref. [7], which is the second of the three articles

that this thesis is based on. The fitting method described in Chapter 3 is used to

analyse elastic, single-channel α12C cross-sections, which are calculated from the

phase-shifts obtained from the available R-matrix analysis of raw experimental data.

The Jost functions are constructed from the fittings and the resonance parameters for

the states Jπ = 0+, 1−, 2+, 3−, and 4+ are determined. The corresponding S-matrix

residues for these resonances are determined, which allows the calculation of the

ANC values.

5.1 Purpose of the study

The isotope, 16O, is one of three stable isotopes of oxygen (with 17O and 18O) and

is by far the most abundant of these isotopes in nature (∼ 99.76%). It is, of course,

very important in biological systems, specifically in respiration and photosynthesis.

It is also important in nuclear astrophysics, as mentioned in the previous chapter. It is

produced mostly by reactions involving the α-particle, which is produced in stars as

the result of hydrogen burning. These α-particles are further burned (mainly in red

giants, where the enegy is sufficient) via the formation of α-clustered nuclei [51].

Firstly, triple-α collisions form the carbon isotope 12C: this is the triple-helium pro-
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cess referred to in the previous chapter. The α-particles and 12C are then consumed

via the radiative capture process, 12C(α,γ)16O. It is this reaction that determines the

carbon-oxygen abundance in the universe [51].

This radiative transition occurs via a sequence of α12C resonances, the spectrum of

which is rich and well-studied [9]. However, the Asymptotic Normalisation Coeffi-

cients for these resonances, which are important parameters in the radiative capture
12C(α,γ)16O reaction, are still not firmly established. For more information, see, for

example, Ref. [52].

This 12C(α,γ)16O reaction at the energies relevant to astrophysics (which are small)

can be studied by analysing the single-channel α12C scattering process, since the

other channels, namely, 11C+5He and 13C+3He open at much higher threshold en-

ergies. Also recall from the discussion of Section 1.1 that the 16O nucleus, even in

an excited state, can be considered as a two-body system comprised of the 12C and
4He clusters.

Furthermore, adequate experimental data for single-channel α12C scattering is

available, so that a reliable Jost-function analysis can be performed. Using this

analysis, resonance parameters for states defined by the quantum numbers Jπ =

0+,1−,2+,3−,4+ are determined, as well as the corresponding S-matrix residues

and the ANC values for these resonance states.

The quantum number, J, represents the total angular momentum quantum number,

as usual. Since both the α-particle and 12C have zero spin, J = ` for this scattering

problem. The π refers to the parity quantum number, which is a measure of the

spacial symmetry of the wave-function in a scattering experiment. It can be sym-

metrical (π = +1) or anti-symmetrical (π = −1). In atomic and nuclear systems, it

is determined by the quantum number ` [11], with

π = (−1)`. (5.1)

Previous studies using different fitting methods will briefly be discussed in the next

section.
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5.2 Previous studies and data

In Refs. [53–55], the R-matrix analysis of α12C scattering data in the energy range

from E ∼ 2 MeV to E ∼ 5 MeV was used to determine the partial wave scattering

phase-shifts and α12C resonance parameters.

The phase-shifts from Refs. [54, 55] were also analysed in Refs. [40, 49], where

various methods, including the S-matrix pole method (SMP, also used in Ref [56])

were employed to determine the resonance parameters for the 0+, 1−, 2+, and 3−

states. As far as the authors of Ref. [7] are aware, Ref. [49] is the only other article

where the ANC values for several α12C resonances are reported. The results of

Ref. [7] will specifically be compared with Ref. [49].

Such a comparison of ANC values is complicated by the fact that, when it comes

to the collision of charged particles, there is no generally accepted definition of the

ANC. As indicated in Chapter 4, there is no general convention of a in Eq. (4.10),

given by the following for single-channel scattering:

u(Ei,r)−−−→
r→∞

aA`eikr−iη ln2kr. (5.2)

However, in all cases,A` is related to the residue of the S-matrix at the corresponding

pole: see Eq. (4.31). Since the residue is defined uniquely, it is preferable to report

the main results of this analysis in terms of the residues rather than the ANC. Yet for

the purpose of comparison with the few ANC values available in Ref. [49], the ANC

values calculated for a = 1 in Eq. (5.2) are presented. It was shown in Chapter 4 how

the relevant formulae in Ref. [49] are equivalent to Eq. (4.31) for such a choice of a,

which is then given by:

Res [S`,E] = i(−1)`+1 h̄2k
µ
A2

` . (5.3)

The derivation of this relation in other articles is usually done for a bound state pole

(see, for example, Ref. [41]). Despite this, it is assumed that the same relation should

also be valid for a resonance pole. This logic relies on the fact that the bound and res-
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onance states transform into each other when the depth of the attractive part of the

potential is gradually changing, which was briefly mentioned in Chapter 1. Since

everything should change continuously, it would be peculiar if the relation between

the residue and the asymptotic behaviour of the wave-function was changing ab-

ruptly.

Before the ANC values are calculated, the resonance parameters need to be de-

termined from the fitting of data. The Jost-function analysis of the same data from

Refs. [54, 55] will be used here. The novelty of the Jost method arises from exploit-

ing the analytic structure of the Jost functions to parameterise the available scattering

data and then to analytically continue the appropriate Jost function to complex ener-

gies in search of resonances, as indicated in Chapter 3.

In principle, the Jost fitting method of Chapter 3 can be used to fit raw experimental

data. However, such a procedure would require dealing with too many free fitting

parameters. The available R-matrix fits of Refs. [54, 55] give phase-shifts for each

partial wave, which can be fitted separately. This reduces the number of fitting para-

meters considerably.

R-matrix fittings are often used as an initial fitting of experimental data, since the

number of fitting parameters are manageable and accurate phase-shifts in the partial

wave decomposition can be obtained at experimental energies. The analytic con-

tinuation to complex energies can, however, lead to inaccuracies, hence the need for

methods such as the Jost function analysis.

A brief summary of the basic principle of the R-matrix theory from Ref. [57] follows.

The configuration space in the R-matrix method is divided into two arbitrary regions,

with the division occurring at a point known as the channel radius, rc. In the external

region, r > rc, far from the source of the interaction potential, scattering properties

can be satisfied. In the internal region, r < rc, near the source of the interaction

potential, the wave-function is approximated by a square-integrable basis. This basis

is chosen to be energy independent, which results in a simple R-matrix structure with

real energy-independent fitting parameters. The R-matrix is, in turn, related to the
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S-matrix and so also to the partial wave phase-shifts.

For example, for the single-channel scattering of charged particles with zero spin,

the partial wave R-matrix is given by the following:

R`(E) = ∑
i=1

γ2
`i

E`i−E
, (5.4)

where γ`i is known as the reduced width and E`i are energy poles corresponding

to bound and resonance states. In general, only a limited number of these poles

influence low-energy phase-shifts. The number of relevant poles then determines

the number of terms in the summation. The Coulomb-nuclear phase-shift can then

be determined with:

tanδ
cn
` =− F̀ (η ,krc)− krc R`(E)∂rF̀ (η ,krc)

G`(η ,krc)− krc R`(E)∂rG`(η ,krc)
. (5.5)

The reduced width, γ`i, then serves as the fitting parameter. Various complications

with this fitting procedure can arise, especially with overlapping resonances. It is

beyond the scope of this thesis to perform R-matrix fittings and the results of the

analysis performed in Refs. [54, 55] will be used in the Jost-function fittings.

Although the Jost-functions can be fitted to the Coulomb-nuclear phase-shifts of

[54, 55] directly, it is preferable to perform the fittings with the scattering cross-

sections. The Coulomb-nuclear partial-width phase-shifts of Ref. [54, 55] allow the

calculation of the S-matrix by Eq. (2.75) and (2.76): S`(E) = e2iδ cn
` +2iδ c

` , thus the

“experimental” partial wave cross-sections can be determined with Eq. (1.151) on

page 50:

σ
exp
` =

π

k2 (2`+1)
∣∣∣e2i(δ`+δ c

` )−1
∣∣∣2 . (5.6)

The fitting of these cross-sections are then performed in the way described in Chapter

3. The main points will be summarised for single-channel scattering in the next

section.
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5.3 Fitting procedure and calculations

The Jost functions (and therefore the S-matrix) are not single-valued functions of the

energy variable, E. They are defined on a Riemann surface with an infinite number

of sheets, where E = 0 is the square-root as well as the logarithmic branching point.

Since the fitting of data occurs at real, positive E, there is a danger of incorrect ana-

lytic continuation to complex energies to determine resonance states, if a simplified

formula (without the correct branching) is used in the fitting.

In order to safeguard the analytic continuation, the representations of the single-

channel Jost functions are used in the form of Eq. (3.31) on page 97:

f (in/out)
` (E) =

eπη/2`!
Γ(`+1± iη)

{
A`(E)−

[
2ηh(η)

C2
0(η)

± i
]

C2
` (η)k2`+1B`(E)

}
,

where A`(E) and B`(E) are analytic and single-valued functions of E. If they are

approximated by finite Taylor series, the analytic structure of the Jost functions is

not affected, i.e. the correct branching properties are kept intact.

The functions A(E) and B(E) are approximated by Eq. (3.32) and (3.33). To indic-

ate the dependence of the expansions on ` for a specific partial wave, these equations

will be given explicitly for a single-channel fitting as follows:

A`(E)≈
M

∑
i=0

αi(`,E0)(E−E0)
i , (5.7)

B`(E)≈
M

∑
i=0

βi(`,E0)(E−E0)
i . (5.8)

The fitting parameters are the unknown expansion coefficients αi and βi. The cor-

responding values of σfit
` (Ei) are determined with Eq. (1.151), which is written as

follows when using the expression for the S-matrix in terms of the Jost functions:

σ` =
π

k2 (2`+1)

∣∣∣∣∣ f (out)
` (E)

f (in)` (E)
−1

∣∣∣∣∣
2

. (5.9)
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The following function is then minimised using the MINUIT program developed in

CERN [33]:

χ
2 =

N

∑
i=1

[
σ

exp
` (Ei)−σ

fit
` (Ei)

]2
, (5.10)

where N is the number of the data points at the collision energies Ei. The experi-

mental errors are assumed to be the same for all the data points (this is why they do

not appear in the denominator of the χ2-function).

The energies E0 around which the expansions in Eq. (5.7) and (5.8) are done, are

chosen near peaks in the data. As before, the larger the number of parameters in

the expansions, M, the larger the circle in the complex plane around E0 where the

expansion is reliable. The number M should be chosen large enough so that the

resonance energy falls within this circle. Values between M = 5 and M = 9 are

chosen for the fittings in this study. If E0 is chosen near a resonance energy, fewer

terms are sufficient.

The accuracy of the analysis can be estimated by locating the same resonance with

different values of E0. The average values of the resonance parameters determined

with different choices of E0 and the corresponding standard deviations are calcu-

lated, which serve as the error estimate. It should be emphasised that these standard

deviations have nothing to do with the experimental errors: they simply show the

stability of the calculations and give the corresponding reliability intervals.

After fitting the data, the Jost functions of Eq. (3.31) are determined and are used

to locate resonances. These correspond to complex energies, Ei = Er +
i
2Γ, on the

unphysical sheet of the Riemann surface such that f (in)` (Ei) = 0. It is easy to choose

the correct sheet by taking the sign of k such that Im(k)< 0 and taking the value of

the principal branch for the logarithmic term, ln(k).

The corresponding residues of the S-matrix for each Ei can then be determined using

Eq. (1.119) on page 40:

Res [S,Ei] =
f (out)(Ei)
.
f
(in)
` (Ei)

.

In principle, the derivative in the denominator can be found analytically. It is, how-
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ever, simpler to calculate it numerically using the central-difference approximation,

.
f
(in)
` (E)≈

f (in)` (E + ε)− f (in)` (E− ε)

2ε
, (5.11)

since the equation (3.31) has a complicated E dependence. A value of ε = 10−6

MeV is used in the numerical calculations, which gives an accuracy of at least 5

digits.

When the residues are determined, the ANC values are calculated with Eq. (5.3). It

should be noted that, since the phase of the wave-function can be chosen arbitrarily,

the value of the ANC can always be made real. This means that it is sufficient to

know its absolute value, |A`|, which is reported here.

It is further noted that in other works (see, for example, Ref. [41]) the poles and

the residues of the S-matrix are usually found on the k-plane rather than on the E-

surface. There is an obvious advantage in such a choice, since the S-matrix is a

single-valued function of k (if for ln(k) the principal branch is taken). However,

the use of the wave number is only convenient in a single-channel problem. When

the number of channels is greater than one, there is no single momentum, but the

energy variable, E, remains common for all the channels. Since the method used in

this thesis is designed for an arbitrary number of channels, it is preferable to work

with the variable E even in the single-channel case. Moreover, the representations

(3.31) are constructed in such a way that the unknown functions A`(E) and B`(E)

depend on E. Actually, the power-series expansions of these functions generalise

the well-known effective-range expansion (which is done with E0 = 0 and over the

even powers of k, i.e. over the powers of E). The relation between the residues of

the S-matrix over the variables k and E is given by Eq. (4.33) .

5.4 Results

The α12C system is considered in the following five partial waves: 0+, 1−, 2+, 3−,

and 4+. For each, N ∼ 100 data points were fitted with eight to twelve different E0.
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For every choice of E0, the resonance parameters were determined. Ideally, these

parameters should not depend on E0. Such a dependence does exist, however, due to

the approximations (5.7) and (5.8). Therefore, the average values (over different E0)

of the resonance parameters and the corresponding standard deviations are presented

as the final results. These standard deviations are calculated under the assumption

that the values obtained with different E0 are statistically independent. Such standard

deviations can only characterise the accuracy of these calculations and have nothing

to do with experimental errors.

The calculations were done with the parameters for the model (N, M, E0) listed in

Table 5.1. For each fitting, the number of terms, M in the expansions, (5.7) and

(5.8), were increased until the results with at least five stable digits were obtained.

An example of such a convergence is shown in Table 5.2 for the 4+ resonances. For

m = 0, only the second resonances could be found in this fitting.

The final results are given in Table 5.3. For the purpose of comparison, the corres-

ponding values reported in other studies are also shown, where available. The values

from Ref. [49] are the average values obtained from the various methods applied in

that work, where the error is the standard deviation.

Two resonances were located in the 2+ state, as well as in the 4+ state. Each of the

other states has only one resonance in the considered energy range.

The quality of the fitting of the data points can be seen from the examples shown in

Figures 5.1-5.5. The plots only show the fittings around the resonance structures, but

the entire energy range of available data points, 1.9−5.0 MeV, were fitted for all `.

As seen from the plots, the fitted curves correctly reflect all the patterns in the dis-

tributions of the data points. However, at some instances the curves deviate from

the data. A possible reason for these deviations is the fact that the α12C system is

treated as a two-body one. The representations (3.31) of the Jost functions have the

correct two-body structure. On the other hand, the experimental data correspond to

actual many-body collisions.

The resonance energies, Er, and corresponding widths, Γ, for the located resonances
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are in a good agreement with the accepted values. In addition to these two paramet-

ers, which characterises a resonance, the residues of the S-matrix at the resonance

poles were also determined. These residues are needed for calculating the ANC

values for the resonance wave-functions, which in turn are needed in various calcu-

lations related to nuclear astrophysics, as described in Chapter 4. In the few instances

where the ANC values were previously determined, the calculations of Ref. [7] given

in this chapter, produce compatible results. This is an assurance that all the results

are sufficiently reliable.

5.5 Remarks

Despite its simplified two-body character, the advantage of the Jost method lies in

using the special representations of the Jost functions with the correct analytic struc-

ture. This allows a reliable analytic continuation of the Jost functions to complex

energies. They are continued from the real axis, where the fittings are performed, to

the complex domain where resonances are located.

The focus of the present work is to obtain the low-energy resonances generated in

the α12C collision. Apart from the resonances, there are sub-threshold bound states

that also play an important role in astrophysical processes involving these nuclei.

These lie just below the corresponding threshold energy.

In principle, the method used here can also be applied for extracting the character-

istics of these bound states. However, since the lowest collision energy (1.9 MeV)

at which the data is available is quite far from the threshold, the direct application

of this method would not be sufficiently accurate. There are various options to ad-

dress this: to wait for new measurements at lower energies, for example, or to use

a more complicated multi-step procedure for the analytic continuation. This will be

based on the methods described, for example, in Ref. [2]. Such a study will not be

considered in this thesis. Other avenues will also be discussed in Chapter 7.
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Jπ N M E0 [MeV]

0+ 154 9 4.4, 4.5, 4.6, 4.8,
4.9, 5.2, 5.3

1− 354 9
0.1, 2.0, 2.1,
2.2, 2.3, 2.5,
2.6, 2.7, 2.8

2+ 354 9
2.3, 2.4, 2.5,
2.6, 2.7, 2.8,
2.9, 3.0, 3.1

3− 354 9
3.7, 3.8, 3.9,
4.0, 4.1, 4.2,
4.3, 4.4, 4.5

4+ 120 5
3.4, 3.5, 3.6,
3.7, 3.8, 3.9,
4.0, 4.1, 4.2

Table 5.1: Each of the found resonances was located using N data points, M terms in the expansions
(5.7, 5.8), and with a set of the central points E0 over which the statistical averaging was done [7].

4+ First resonance Second resonance

M Er [MeV] Γ [keV] Res[S`,Er− i
2Γ]

[keV]
Er [MeV] Γ [keV] Res[S`,Er− i

2Γ]
[keV]

0 - - - 3.911 6.639 −6.257− i2.173
1 3.220 2.1 −1.4− i1.6 3.940 0.775 −0.737− i0.239
2 3.192 33.5 −19.3− i26.6 3.940 0.579 −0.558− i0.155
3 3.203 16.9 −11.5− i12.1 3.940 0.785 −0.745− i0.246
4 3.199 21.2 −14.2− i15.4 3.940 0.619 −0.595− i0.172
5 3.197 24.5 −16.0− i18.3 3.940 0.604 −0.581− i0.165
6 3.197 23.6 −15.6− i17.3 3.940 0.606 −0.583− i0.166

Table 5.2: Convergence of the parameters of the two 4+ resonances with an increasing number of
terms M and with fixed E0 = 3.8 MeV [7].
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Jπ Er [MeV] Γ [keV]
Res

[
S`,Er− i

2 Γ
]

[keV]

|A`|×103

[fm−1/2]
Ref.

0+
4.892±0.001 1.382±0.096

(−1.357±0.095)
−i(0.261±0.021)

10.87±0.38 this work and [7]

4.887±0.002 2.4±1.1 14.0±3.5 [49]
4.887±0.002 1.5±0.5 [9]

1−
2.362±0.009 361.9±4.9

(271±20)
+i(96±16)

188.1±4.8 this work and [7]

2.317±0.071 333±17 179.8±3.6 [49]
2.423±0.011 420±20 [9]

2+
2.685±0.001 0.842±0.015

(−0.656±0.013)
+i(0.527±0.009)

9.862±0.090 this work and [7]

2.61±0.16 0.65±0.11 8.68±0.75 [49]
2.6826±0.5 0.625±0.100 [9]

2+
4.348±0.003 76.8±2.3

(26.8±8.9)
+i(69.9±5.4)

82.7±1.3 this work and [7]

4.369±0.017 77.8±2.8 83.3±1.6 [49]
4.358±0.004 71±3 [9]

3−
4.241±0.011 796±20

(−160±47)
+i(539±43)

227.4±8.2 this work and [7]

4.275±0.052 811±15 236.0±4.3 [49]
4.44±0.20 800±100 [9]

4+
3.197±0.001 23.6±1.9

(−15.7±1.1)
−i(17.3±1.7)

49.7±2.0 this work and [7]

3.195 25.9 [54, 55]
3.194±3 26±3 [9]

4+
3.940±0.001 0.607±0.012

(−0.584±0.011)
−i(0.166±0.006)

7.61±0.08 this work and [7]

3.936 0.42 [54, 55]
3.9348±0.0016 0.28±0.05 [9]

Table 5.3: Parameters of the seven resonances that were found in the α12C system and the available
values of the corresponding parameters from Refs. [9,49,54,55].
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Figure 5.1: Fit of the data points for the 0+ partial cross-section with E0 = 4.6MeV and M = 9 in
the expansions (5.7, 5.8) [7].
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Figure 5.2: Fit of the data points for the 1− partial cross-section with E0 = 2.5MeV and M = 9 in
the expansions (5.7, 5.8) [7].
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Figure 5.3: Fit of the data points for the 2+ partial cross-section with E0 = 3.1MeV and M = 9 in
the expansions (5.7, 5.8) [7].
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Figure 5.4: Fit of the data points for the 3− partial cross-section with E0 = 3.9MeV and M = 9 in
the expansions (5.7, 5.8) [7].
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Figure 5.5: Fit of the data points for the 4+ partial cross-section with E0 = 3.4MeV and M = 5 in
the expansions (5.7, 5.8) [7].
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Chapter 6

Analysis of dα scattering data

In this chapter, the same Jost matrix fitting method described in Chapter 3 is used

to fit dα scattering data. The results are from Ref. [8], which is the third and final

article this thesis is based on.

To determine the parameters of the bound and resonance states of the 6Li nuclear

system with quantum numbers 1+, 2+, 3+, 2−, and 3−, two different sets of data

for dα scattering are analysed using the Jost matrices. The dα cross-sections are

fitted by both a single-channel and a two-channel S-matrix, written in terms of the

semi-analytic Jost matrices given in Chapter 3.

The Jost matrices obtained from the fitting are used at complex energies to locate

resonances and the bound state, as well as to determine the corresponding S-matrix

residues and ANC values. The scattering parameters determined in this analysis,

which is based on an S-matrix with the correct analytic structure, correspond well

with parameters determined by other authors.

6.1 The 6Li isotope

The 6Li isotope is one of the lighter nuclei and consequently has a relatively simple

spectrum, consisting of less than a dozen well distinguished levels [58]. The abund-

ance of this isotope is very small (∼ 7.6%) as compared to that of 7Li (∼ 92.4%),

144



Analysis of dα scattering data The 6Li isotope

but its importance in thermonuclear dt-fusion motivated numerous experimental and

theoretical studies of 6Li.

In dt-fusion, the deuterium nucleus (2H or d) and tritium nucleus (3H or t) undergo

fusion, which produces energy as well as a neutron (n) and 4He, the α-particle. This

fusion process, d + t → n+α + energy, takes place when boosted-fission nuclear

weapons are detonated. It was also seen as a practically viable source of energy -

there are even some modern fusion reactors in development that make use of dt-

fusion. Tritium is unstable, however, with a half-life of 12.32 years. Consequently,

natural tritium is very rare, and is mostly produced in the atmosphere by the interac-

tion of atmospheric gasses with cosmic rays. An example of such a reaction is the

interaction of 3He with a fast (sufficiently energetic) neutron: 3He+n→ 1H+ t.

A means of producing tritium for dt-fusion is therefore required. The neut-

ron“ignition” of 6Li, given by n+ 6Li→ t +α , is one of the few practically viable

options. The 6Li nucleus then serves as a stable source of tritium for dt-fusion. The

production of tritium for military purposes has drastically declined since the end of

the Cold War.

The nucleus 6Li is also of importance in astrophysics, especially in connection with

the puzzle associated with its abundance. This is the Lithium Discrepancy referred

to in Chapter 4. It is believed that the synthesis of 6Li via the radiative capture reac-

tion α(d,γ)6Li was the main process by which the isotope was produced during the

primordial nucleosynthesis as well as subsequently in stars [59]. Therefore, further

studies of 6Li are important.

Many collision processes, and in particular the radiative capture α(d,γ)6Li, may go

via the intermediate formation of resonances. For this reason, accurate knowledge

of these resonances parameters are essential. Among the parameters of interest are,

of course, the ANC values, which determine the behaviour of the resonance wave-

functions at large distances. This is where the radiative capture mainly happens,

due to the Coulomb repulsion between the colliding nuclei at close distances. Thus

far, the ANC values for several among many known excited states of 6Li have been
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calculated (see, for example, Ref. [50]). One of the goals of this study is to determine

the ANC values for several more states of 6Li and to confirm the values of previous

studies, or to improve the accuracy of the known parameters.

In its ground state the nucleus 6Li can be viewed as a bound state of the α-particle

and deuteron [60]. The α-particle is the most tightly bound of any nuclear complex

and has a binding energy of ∼ 28 MeV. A configuration of the nucleus of 6Li where

the α-particle cluster is present should then exist for excitation energies at least up to

∼ 20 MeV. The deuteron cluster, in contrast, “dissolves” and becomes the pn pair at

much lower energies. This implies that, in a theoretical consideration of the excited

states of 6Li, one has to deal with the three-body system, α pn, at least.

When analysing experimental scattering data, however, only the initial and final

channels need to be considered. The constituents of the intermediate collision com-

plex are something of a “black box”. If an S-matrix that correctly describes the

observed transitions among the channels can be constructed, it does not matter what

kind of configurations are formed in that “black box”. The poles of such an S-matrix

should be at the correct (complex) resonance energies. Such an S-matrix will of

course not reproduce all possible resonances, but only those that are reachable from

the channels taken into account.

The analysis of elastic, two-body dα scattering is performed in this study. Since the

isospins of both d and α are zero, only resonances of 6Li with total isospin, T = 0

can be found. Yet in the spectrum of 6Li, states with T = 1 do exist [58]. Most of

the low-lying levels of 6Li have zero isospin and decay into the dα channel, though.

This makes the analysis of Ref. [8], reported here, reasonable and substantiated.

6.2 Fittings of channel data

The channels consider here may only differ by the orbital angular momentum

quantum number, `. All channels then have the same threshold and are thus de-

generate in the energy. The states are defined by total angular momentum, J, and the
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Jπ coupled dα-channels
0− P0
1+ S1−D1
1− P1
2+ D2
2− P2−F2
3+ D3−G3
3− F3
4− F4−H4

Table 6.1: Coupled partial waves in the dα-collision for several lowest values of the total angular
momentum J [8].

parity, π . The spins of the deuteron and the α-particle are 1 and 0, respectively. The

total spin of the dα system is then s = 1. Since π is conserving, the maximum num-

ber of coupled partial waves for a given J is two. The channels under consideration

are given in Table 6.1.

For each state with definite Jπ , the S-matrix at the energy E is, as usual, written in

terms of the Jost matrices by Eq. (2.121) on page 81:

S(E) = f (out)(E)
[

f (in)(E)
]−1

.

The symbols J and π can be included to distinguish between the S-matrix for the

different states, but to simplify the notation they are omitted. The exact semi-analytic

expressions for the Jost matrices, given by Eq. (3.28) in Chapter 3, are written as

follows:

f (in/out)
`′` (E) =

eπη/2`′!
Γ(`′+1± iη)

{
C`(η)k`−`

′

C`′(η)
A`′`(E) (6.1)

−
[

2ηh(η)

C2
0(η)

± i
]

C`′(η)C`(η)k`
′+`+1B`′`(E)

}
.

The channels are here distinguished by `, therefore the matrix elements are specific-

ally indicated by ` and `′. For a single channel, ` = `′. The wave momentum, k,

is common for all the channels, since they have the same thresholds and the same
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reduced mass, µ . It is given by: k = ±
√

2µE/h̄2. Similarly, the Sommerfeld para-

meter is the same for all channels: η = µe2Z1Z2
kh̄2 . As usual, the matrices A``′ and

B``′ in Eq. (6.1) are unknown and are determined by the dynamics of the physical

system [8]. They are again approximated by several terms of their Taylor expansions

around E0, with the expansion coefficients serving as fitting parameters:

A``′(E)≈ α
(0)
``′ +α

(1)
``′ (E−E0)+α

(2)
``′ (E−E0)

2 + · · ·+α
(M)
``′ (E−E0)

M , (6.2)

B``′(E)≈ β
(0)
``′ +β

(1)
``′ (E−E0)+β

(2)
``′ (E−E0)

2 + · · ·+β
(M)
``′ (E−E0)

M . (6.3)

For each experimental data point, σ
exp
``′ (E), the corresponding fitting cross-section

from Eq. (2.142) of Chapter 2 is calculated, given by:

σ
fit
``′(E) =

π

k2
2J+1
2s+1

|S``′(E)−1|2 , (6.4)

since the scattered particles for this system have non-zero spin. As will be discussed

in the next section, experimental values for the transition cross-sections are not avail-

able. The following function is then minimised:

χ
2 =

N1

∑
i=1

[
σ

exp
`1

(Ei)−σ
fit
`1
(Ei)

]2
+

N2

∑
i=1

[
σ

exp
`2

(Ei)−σ
fit
`2
(Ei)

]2
, (6.5)

where the first sum takes the deviations of the fitted points from the experimental

ones in the first channel into account, and the second sum runs over the data points

in the second channel (if it exists for a given J, as shown in Table 6.1). The values N1

and N2 are the numbers of data points in the fitting, in the first and the second chan-

nels, respectively. The minimisation was again done using the MINUIT code [33].

It should be highlighted that the diagonal matrix element, S``, obtained from (6.1),

depends on all the elements of the matrices f (in/out) (diagonal and off-diagonal).

This means it depends on all the elements of the matrices α(n) and β (n), hence the

coupling of the channels is always present in the fitting procedure used here and

it is correctly taken into account. When performing a two-channel fitting of data
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from only some available channels, all the fitting parameters are involved in such a

fit. The resulting S-matrix should therefore correctly describe the other channels as

well. This was previously demonstrated in the model scattering problem of Chapter

3, as well as in Ref. [6].

When the Jost matrices are obtained from the fitting, the bound and resonance state

energies, Ei, can be determined with det[ f (in/out)(Ei)] = 0 on the appropriate sheets

of the Riemann surface. The S-matrix residues at these spectral energies, as well

as the ANC values for the corresponding bound and resonance states, can then be

determined.

Only the ANC values of the elastic channels will be determined, so the single-

channel Eq. (4.31) on page 125 with a = e−πη/2 can be used:

Res [S``,Ei] = i(−1)`+1 h̄2k
µ

e−πηA2
` . (6.6)

This choice of a is used since the calculations of this chapter (and of Ref. [8]) then

correspond to the relevant equations of Ref. [50], as shown in Chapter 4.

6.3 Experimental data

The dα data used for these fitting are the combined data of two different sets of

scattering cross-sections, denoted further as the sets A and B. They cover adjacent

intervals of the collision energy and therefore complement each other.

Data set A consists of the dα cross-sections obtained from the corresponding phase-

shifts of Ref. [61], where an energy independent analysis of 3900 raw experimental

data points was done, with channel coupling included. These phase-shifts cover the

centre-of-mass (C.M.) energy range from 4 MeV to 30 MeV. There are roughly 20

data points available for each of the partial waves with `= 0,1,2,3,4,5.

Data set B comprises the dα cross-sections which were derived from the Padé
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approximation of the S-matrix, obtained in Ref. [62] by fitting energy-dependent

single-channel experimental data in the C.M. energy interval from 0.5 MeV to

3.5 MeV. Channel coupling was not taken into account by the authors of Ref. [62].

Since the S-matrix of [62] is given in an explicit form, a sequence of data points con-

venient for this analysis can be generated from it, even outside the original energy-

interval. Using this freedom, 40 points in each channel were generated. This evenly

covers the C.M. energies from 0.4 MeV to 4.0 MeV. Due to the existence of certain

resonance structures at higher energies, generated points with E > 4.0 MeV may

deviate from actual experimental values. The data set A covers the higher energy

range more accurately.

Therefore, combining the sets A and B, 40 points between 0.4 MeV and 4 MeV, and

20 points between 4 MeV and 30 MeV for each channel are obtained. The sets A and

B match smoothly around 4 MeV and are thus consistent.

The same data sets were used in Ref. [50], where a method similar to the effective-

range expansion, was applied for extracting the information about the discrete states

of the dα-system. The authors of Ref. [50] analysed the data sets A and B separately,

though. Following the suggestion of Ref. [62], the two sets are combined and treated

as a single one here.

A brief description of how the phase-shifts of set B are obtained from the Padé

parameters of Ref. [62] will follow. The Padé approximations are polynomials given

by the following, where ai and b j are the fitting parameters:

PN(E) =
N

∑
i=0

aiE i, QM(E) = 1+
M

∑
j=1

b jE j. (6.7)

The Coulomb-nuclear phase-shifts, δ cn
` , are then determined from the following ap-

proximation [62]:

PN(E)
QM(E)

≈ k2`+1C̃2
`

[
cot(δ N

` )− i+
2ηH(η)

C̃2
0

]
, (6.8)
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with

C̃2
0 =C2

0 = 2πη/(e2πη −1), C̃2
` = C̃2

`−1(1+η
2/`2), (6.9)

and

H(η) = ψ(iη)+
1

2iη
− ln [−iη sgn(−Z1Z2)] , (6.10)

with ψ(z) representing the digamma function, as before.

The nuclear phase-shifts for each channel are then combined with the nuclear phase-

shifts from Data set A. The points from Data set B are smoother than those from

Data set A, but this is of course because they are generated from Padé fittings.

The total experimental scattering cross-sections to be fitted, σ
exp
``′ (E), are then ob-

tained with Eq. (6.4) via the S-matrix. Only the elastic scattering phase-shifts are

available. The S-matrix main diagonal elements are then determined by Eq. (2.75)

on 69:

S``(E) = e2i(δ N
` +δ c

` ). (6.11)

Before giving the results from the fitting of the data generated in this way, the Padé-

expansions (6.7), will be compared with the expansions of the Jost functions.

6.4 The Padé and Jost methods

The discussion will be limited to single-channel scattering. The semi-analytic rep-

resentation for the S-matrix (where functions of the energy-branching variables k

and η are factorised) is given in Ref. [6] by (6.1), where the S-matrix is again the

“ratio” of Jost functions. For single-channel scattering, it can be written as follows:

S`(E) = e2iδ c
`

A(E)− [2ηh(η)

C2
0
− i]C2

` k2`+1B(E)

A(E)− [2ηh(η)

C2
0

+ i]C2
` k2`+1B(E)

. (6.12)

The single-channel S-matrix for scattering involving Coulomb interactions in terms

of the Padé functions PN(E) and QM(E) given in Ref. [62] can be derived from the
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S-matrix in terms of the phase-shift, Eq. (6.11) and Eq. (6.8):

S`(E) = e2iδ c
`

PN(E)− k2`+1C̃2
`

[
2ηH̃(η)

C̃2
0
−2i

]
QM(E)

PN(E)− k2`+1C̃2
`

2ηH̃(η)

C̃2
0

QM(E)
. (6.13)

The following relations between the various functions of k and η from Refs. [6]

and [62] hold, which can be shown from Eq. (2.15), (3.9), (6.9) and (6.10):

C̃`(η) =
(2`+1)!

2``!
C`(η), (6.14)

H(η) = h(η)+ iπ
(

1
e2πη −1

)
. (6.15)

Eq. (6.13) then becomes the following:

S`(E) = e2iδ c
`

L̃2PN(E)−
[

2ηh(η)

C2
0
− i
]

C2
` k2`+1QM(E)

L̃2PN(E)−
[

2ηh(η)

C2
0

+ i
]

C2
` k2`+1QM(E)

, (6.16)

with

L̃ =
2``!

(2`+1)!
(6.17)

This is of a similar form to (6.12), apart from the factor L̃2. The Padé functions

PN(E) and QM(E) are therefore similar to the single-channel form of the functions

expanded in the Taylor series, A(E) and B(E) (given in Eq. (6.2) and (6.3)), but the

factor L2 is encapsulated in the coefficients a j of Eq. (6.7).

The Padé functions PN(E) and QM(E) are, in fact, Taylor expansions around E0 = 0,

with some of the parameters (like b0 = 1) already fixed, and a fixed, differing number

of terms for each of the functions which are expanded (N 6= M).

The advantage of using the Padé expansions, PN(E) and QM(E), for an initial single-

channel fitting is in the small number of fitting parameters and the fact that extrapol-

ation of data to higher and lower energies is stable. The Taylor expansion can be

unstable at the endpoints for a small number of data points to be fitted.
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The benefit of using the Taylor expansions of A(E) and B(E) in the Jost method

lies in the reliable analytic continuation to complex energies, since the expansions

can be done around any E0 with an arbitrary number of terms in the expansion.

Furthermore, the analytic properties of the S-matrix in the Jost method for a multi-

channel fitting are also rigorously derived, which means the Jost method can reliably

be implemented in a multi-channel fitting, as is done in this study.

6.5 Results

When fitting the data, several different central points, E0 and different numbers, M,

in the expansions, (6.2 and 6.3), were used. The choice of these parameters is de-

termined by the choice of the energy domain where a resonance may be found. It is

obvious that the closer E0 is to a resonance, the more accurately it can be located.

By repeating the calculations for the same resonance with different E0 or M, the ac-

curacy achieved can be checked, similar to what was done in the previous chapter. In

this chapter, the averages of these fittings around different E0 will not be determined,

however.

Ideally, the resonance parameters should not depend on such a choice of E0 or M.

Therefore all the digits in their values that remain the same with different E0, can be

considered as accurate.

Consider the coupled S1 and D1 partial waves in the state 1+. The results of

the analysis of these states is given in Table 6.2. For the corresponding fitting,

E0 = −1.45 MeV and M = 1. The quality of the fit is clear in Figures 6.1 and 6.2.

The bound state energy from these calculations agrees well with the value that is con-

sidered as accepted in the compilation, Ref. [58]. The ANC determined here for the

S1 partial wave is somewhat larger than the values from Ref. [50], though. The ANC

from the D1 partial wave agrees with one of the two values reported in Ref. [50],

where it was supposed that the S1−D1 coupling was weak, since the D1-ANC was

small compared to S1-ANC. However, the comparison of these values is not a decis-
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Er

[MeV]
Γ

[MeV]
Res[S00,E]
[MeV]

Res[S22,E]
[MeV]

|A0|
[fm1/2]

|A2|
[fm1/2]

Ref.

−1.4691
29.588

+i42.904
0.00603

−i0.00079
2.3330 0.0252 this work and [8]

1.960 0.093 [50] (v. 1)
1.900 0.025 [50] (v. 2)

−1.4743 [58] (accepted)

3.8858 2.6324
0.00196

+i0.00087
−1.7743
−i1.0906

0.0153 0.4768 this work and [8]

3.900 2.347 0.028 0.455 [50] (v. 1)
3.872 1.860 0.018 0.392 [50] (v. 2)
4.18±0.05 1.5±0.2 [58] (accepted)

Table 6.2: Parameters of the bound and resonance states of 6Li with Jπ = 1+, obtained from a
two-channel fit of the elastic cross-sections for the S1 and D1 partial waves of the d-α scattering [8].
The corresponding parameters from Refs. [50,58] are given here for the purpose of comparison.

ive argument for such a conclusion. A reasonable judgement on the strength of the

coupling between any two channels can be made, if the cross-section of the trans-

ition between them is considered. As mentioned before, the method of analysis used

here has an advantage that the same fitting parameters describe all the elastic and

inelastic processes. Thus, after fitting the S1 and D1 channels, the correct transition

cross-section is automatically obtained, which is shown in Figure 6.3. The values

are three orders of magnitude smaller than both the elastic cross sections, given in

Figures 6.1 and 6.2. This implies that the S1−D1 coupling is indeed weak.

Now consider the 1+ resonance in the coupled S1−D1 channels. The weak coup-

ling between the two partial waves results in the absence of any visible irregularities

around the resonance energy, E ∼ 3.9 MeV, in the S1 cross-section. The 1+ reson-

ance at this energy is thus completely dominated by the D1 wave. The results from

the Jost matrix analysis agree well with those from Ref. [50]. This can be said not

only about the resonance energy and width, but also about the ANC values. However,

the width is somewhat larger than the value accepted in the compilation, Ref. [58].

A possible explanation can be that a potential barrier is needed to sustain this reson-

ance, and in the state with ` = 2 there exists a centrifugal barrier for that purpose.

After this resonance is formed in the D1 wave, it can decay back to the same wave,
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Jπ `J
Er

[MeV]
Γ

[MeV]
Res[S`,Er− i

2 Γ]
[MeV]

|A`|
[fm1/2]

Ref.

2+ D2 2.8448 1.3229 −1.0387− i0.7135 0.4262 this work and [8]
2.960 0.995 0.349 [50] (set A fit)
2.802 1.178 0.384 [50] (set B fit)
2.838±0.022 1.30±0.1 [58] (accepted)

3+ D3 0.7135 0.0219 0.0141− i0.0166 0.1124 this work and [8]
0.690 0.024 0.119 [50] (set A fit)
0.704 0.025 0.121 [50] (set B fit)
0.712±0.002 0.024±0.002 [58] (accepted)

3+ D3 9.1632 8.2023 0.7411− i1.1532 0.2793 this work and [8]
14.326 17.8 [61]

2− F2 20.906 29.034 −20.743− i0.8508 0.8043 this work and [8]
25.526 22 [61] (Sol. A)
19.526 30 [61] (Sol. C)

3− F3 10.305 16.724 −7.3697+ i4.7254 0.5403 this work and [8]
22.526 16 [61]

Table 6.3: Parameters of 6Li resonances in the states with 2+, 3+, 2−, and 3− obtained from fittings
of the corresponding cross-sections of dα scattering [8]. The available values of the corresponding
parameters from Refs. [50,58,61] are given for comparison.

or to the S1 wave. However, because of the weak coupling between them, the prob-

ability of decaying into the S1 wave is very small. Nonetheless, it is nonzero and

contributes something to the total width. This is why the total width determined

here is a bit bigger than the value of Ref. [50], where the coupling was completely

ignored.

The next state considered here is the partial wave D2 (Jπ = 2+), which is not coupled

to any other waves. The data points for this state and the corresponding cross-section

from the fitting with E0 = 2.6 MeV and M = 3, are shown in Figure 6.4. In this chan-

nel, one resonance at the energy E = (2.8448− i
2

1.3229)MeV was found, which

practically coincides with the value accepted in the compilation, Ref. [58]. The S-

matrix residue and the corresponding ANC are given in Table 6.3.

Next are two quantum states 2−(P2−F2) and 3+(D3−G3), which are both mixtures

of two partial waves. However, similar to the (S1−D1) case, the cross-sections

for the transitions P2 ↔ F2 and D3 ↔ G3 were calculated to be several orders of

magnitude smaller than the corresponding elastic cross-sections. This implies that
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the couplings in these pairs of partial waves are extremely weak and therefore the

resonances (if any) are dominated by a single wave in both states.

Both two-channel fittings for the pairs (P2−F2), (D3−G3) and single-channel fit-

tings for each of the waves P2, F2, D3, and G3 were attempted separately. The single-

channel fits reveal resonances only in the waves F2 and D3. The two-channel fittings

give the 2− and 3+ resonances with the same parameters obtained via the single-

channel fittings. In this way, one resonance in the state 2− is found and two reson-

ances in the state 3+ are found. Their parameters are given in Table 6.3, where only

the dominant partial waves are shown. The corresponding fittings of the cross sec-

tions are shown in Figures 6.5 and 6.6. These fittings were done with E0 = 1.0 MeV

and M = 5 for D3 and with E0 = 30 MeV and M = 2 for F2.

The last resonance that was found is in the state 3−(F3), which involves only one

partial wave. Its parameters are also shown in Table 6.3. The cross-section for this

state, together with the fitted curve (E0 = 15 MeV, M = 2), are shown in Figure 6.7.

6.6 Remarks

It should be noted that the resonances found in the partial waves F2, F3, and the

second resonance in D3, were not included in the accepted list of Ref. [58]. They are

very wide and are therefore difficult to find with any method. The only work where

the resonances in these states were reported, was the older work, Ref. [61]. As is seen

from Table 6.3, the findings of this chapter (and Ref. [8]) only roughly corresponds

with the findings of Ref. [61]. This means that an independent confirmation is needed

before these resonances can be considered as firmly established. It is seen from

Figures 6.5 and 6.7 that there is much experimental uncertainty in the available data

for the partial waves F2 and F3 and therefore deducing reliable resonance parameters

for these channels is difficult.

In the initial fitting attempts, where the data sets A and B were considered separately,

vastly different results were obtained. This indicates the importance of using a larger

156



Analysis of dα scattering data Remarks

Figure 6.1: Fit of the data points in the partial wave S1 [8].

energy range in performing fittings to obtain parameters for wide resonances.

Lastly, it should be mentioned that no resonances were found, as was expected, in

the other states listed in Table 6.1.
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Figure 6.2: Fit of the data points in the partial wave D1 [8].

Figure 6.3: Cross-section for the transition between the partial waves S1 and D1 [8].
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Figure 6.4: Fit of the data points in the partial wave D2 [8].

Figure 6.5: Fit of the data points in the partial wave F2 [8].
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Figure 6.6: Fit of the data points in the partial wave D3 [8].

Figure 6.7: Fit of the data points in the partial wave F3 [8].
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Chapter 7

Conclusion

In this chapter, the advantages of using the Jost matrix method of analysis are high-

lighted. The main results of the study are then summarised and possible future work

using the Jost matrix method is discussed.

7.1 Discussion

The Jost matrix method allows bound and resonance states to be located from the

same fitting. Methods like the Breit-Wigner parameterisation, however, are limited

to determining resonance parameters, and usually only for sharp resonances. Due to

the exact relationship between the S-matrix residue and the Jost matrices, scattering

parameters such as the ANC can also be determined.

Methods based on the effective-range expansion, which contributed to the devel-

opment of the Jost method, also allows bound and resonance state parameters, as

well as the corresponding ANC values, to be determined. In fact, the results from

Ref. [49] for α12C scattering in Chapter 5 as well as the results for dα scattering in

Ref. [50], given in Chapter 6, depend directly on parameterising data with effective-

range-like functions. The results from the calculations of this thesis (as well as the

articles it is based on) are compared with the results from these articles.

Effective-range methods are, however, generally only accurate for small energy-
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values. Multi-channel effective range methods are also complicated and cumber-

some, as discussed in Chapter 3. Using the Jost method, the extension to multi-

channel scattering simply requires certain quantities to become matrices. In fact,

while only two-channel problems were considered in the calculations for this thesis,

the theory is applicable to scattering in any number of channels. The Jost matrices

can furthermore be expanded around any complex energy, which means the Jost

method is accurate at large energies as well as low energies, depending on the choice

of E0.

If the Jost matrices can be determined from fitting experimental data by using a

suitable expansion, the corresponding S-matrix, phase-shift, scattering cross-section

or any other quantity of importance can be determined. However, the Jost matrices

cannot be expanded in a Taylor series (or any other expansion) directly, nor can other

quantities describing quantum scattering processes, such as the scattering amplitude

and S-matrix. These quantities are not analytic and single-valued function of E, but

multi-valued functions defined on a complicated Riemann surface of the energy with

the number of branch points equal to the number of channels, as discussed in Chapter

3.

This difficulty is addressed by using the semi-analytic expression for the multi-

channel Jost matrices derived in Ref. [6], where all the factors responsible for the

branching of the Riemann surface are given explicitly. The remaining, unknown

functions are analytic and single-valued, defined on a simple energy plane, which

makes them considerably easier to approximate with an expansion. Since the factors

responsible for the branching of the Riemann surface are isolated and can be manip-

ulated directly, the analytic continuation of the Jost matrices onto any sheet of the

Riemann surface can be performed with certainty. This semi-analytic expression for

the Jost matrices also explicitly includes Coulomb interactions.

A similar semi-analytic expression has been used for the fitting of scattering data

for neutral particles in Ref. [24]. This expression, pertaining to the scattering of

particles with short-range interactions only, is recovered if the Coulomb interaction

is “switched off” by setting ηn = 0. Similar to the simple effective-range theory,
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the presence of the Coulomb potential makes the explicit factors in the semi-analytic

expression for the Jost matrix very complicated. Yet the remaining functions of E are

still smooth and can be approximated by just a few terms of the Taylor series. This

is demonstrated for a model two-channel scattering problem in Ref. [4], reported in

Chapter 3, where the proposed method is shown to be accurate and stable.

It is shown that the energy, total width as well as the partial widths for narrow reson-

ances can be calculated, even for experimental data with considerable experimental

noise. For such data points with large deviations from the exact values, the energy

and total width of wider resonances could accurately be reproduced and for very

wide resonances, at the very least the resonance energy was determined.

It is also shown in Chapter 3 that a multi-channel fitting of experimental data from a

limited number of channels can be used to accurately generate cross-sections for the

unknown channels. Cross-sections for transition channels, which are often unknown,

can be obtained in particular. The strength of the coupling determines the relative

magnitude of the transition cross-sections. In Chapter 6, the transition cross-sections

for the coupled channels of dα are determined to show that the relevant coupling is

weak.

In general, the calculations of Chapter 6 (and Ref. [8]) reasonably reproduce, or con-

firm, the parameters of the bound state of 6Li as well as the parameters of all the res-

onances with isospin zero, given in Ref. [58]. Some of the resonances not included

in the compilation [58], but found in Ref. [61] are also approximately confirmed. It

can then be claimed that the parameters published in Ref. [8] given in Chapter 6 are

reliable, as much as the data from which they were deduced is accurate. The same is

true for the results of Ref. [7], reported in Chapter 5. Here the resonances of 12O are

confirmed, given in Ref. [9].

Furthermore, the Asymptotic Normalisation Coefficients are determined for the loc-

ated discrete states of both nuclear scattering systems. These values are relevant to

the study of the radiative capture reactions α(d,γ)6Li and 12C(α,γ)16O in astro-

physics, as discussed in Chapter 4.
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7.2 Future work

As mentioned in Chapter 3, the Jost method of analysis has successfully been used

in locating two-channel resonances in the nuclei 5He [35] and 8B [36]. The applic-

ation of this method has certainly not been exhausted, though. Almost 80 years of

non-relativistic experimental scattering data is available for analysis. In many in-

stances, scattering parameters already determined from the available data must be

verified. Other parameters, such as the ANC, has not yet been determined for nu-

merous scattering experiments relevant to astrophysics. The multi-channel analysis

of single-channel data from certain strongly coupled systems will also be attemp-

ted to gain insight into the channels for which no data is available. This would be

impossible using most other methods. The method can also be applied to simulated

data, similar to what is done in Chapter 3. Such fittings would be used to gain insight

into the potentials that generated the data.

The analysis of the α12C data is also by no means complete. As mentioned in

Chapter 5, certain subthreshold bound states exist for such a scattering process.

Values for the corresponding ANC values have been determined in Ref. [28] and

Ref. [40] using effective-range-like and other functions, but there is still disagree-

ment on these results. Due to the insufficient data at low energies, two avenues, other

than the ones mentioned in Chapter 5, will be pursued to locate these subthreshold

bound states and to determine the corresponding ANC values from the fitting of the

data. Firstly, the unknown functions in the semi-analytic Jost matrices are usually

expanded in Taylor series. This can lead to fitted functions with large fluctuations at

the endpoints, especially if the experimental data points are few. Other, more stable

expansions will be attempted. The second avenue requires a two-channel analysis of

the α12C system, where the data for the second channel is generated from a suitable

potential, if no experimental data is available. I am optimistic that both avenues may

yield promising results.

There are also numerous new non-relativistic experiments being conducted, that re-

quire theoretical support. Much work must be done to extend the theory further,
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so that it is generally applicable to a broader spectrum of scattering problems. In

particular, the relation with R-matrix methods of Ref. [57] will be explored.

It should be stressed that the Jost matrix method used in this thesis is nonrelativ-

istic. It cannot, therefore, be used directly in analysing high-energy physics scatter-

ing data, although such an analysis is possible. There are, however, a wide range

of further problems in atomic and low-energy nuclear physics, where it could find

applications.

In principle, one can attempt the same parameterisation for high energies if the re-

lativistic relation between the energy and momentum, E =
√

h̄2k2c2 +µ2c4, is used

in all the formulae. Such an inclusion of relativistic kinematics into nonrelativ-

istic operators is common for various initial parameterisations of scattering data in

particle physics. Mathematical rigour and substantiation is, however, lost.

In conclusion: the Jost matrix method is a robust and accurate way to determine scat-

tering parameters from analysing scattering data. It is mathematically rigorous, easy

to conceptualise and relatively simple to implement. It can give insight into numer-

ous nuclear and atomic systems. Devoting more time to the study of Jost matrices

in scattering theory, in particular in fitting experimental data, would certainly be

worthwhile.
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