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“When I run after what I think I want, my days are a furnace of stress and anxiety; 

if I sit in my own place of patience, what I need flows to me, and without pain. 

From this I understand that what I want also wants me, is looking for me and 

attracting me. There is a great secret here for anyone who can grasp it.” 

-Rumi
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Abstract 

Reproductive wastage is of major economic importance and limits overall herd efficiency. 

Fertility traits are lowly heritable but are an essential component in selection programs for the 

genetic improvement of all livestock species. In order to gain a better understanding of the 

underlying genetic basis of these traits a GWAS was conducted to investigate fertility and maternal 

traits within the SA Bonsmara breed. Traits of interest were age at first calving (AFC), inter-calving 

period (ICP), scrotal circumference (SC) and weaning weight maternal (WWMAT). Estimated 

breeding values, pedigrees and genotypes for 3 291 SA Bonsmara animals were available for the 

study. Three different commercial arrays underwent quality control (QC), principal component 

analysis (PCA), with the amalgamation of the three arrays via imputation to a density of 128 793 

SNPs and finally an association analysis by single SNP regression. Gene annotation was done 

for significant SNPs (≤1x10-8), with four associated with ICP (BTA 4, BTA11, BTA17, BTA19), 

twenty with AFC (BTA1, BTA2, BTA4, BTA5, BTA7, BTA8, BTA9, BTA11, BTA12, BTA16, BTA20, 

BTA24, BTA27, BTA28, BTA29), twenty-two with SC (BTA1, BTA2, BTA3, BTA4, BTA5, BTA6, 

BTA8, BTA10, BTA11, BTA15, BTA16, BTA20, BTA22, BTA24, BTA26, BTA28) and forty-four 

with WWMAT on all chromosomes except BTA10, BTA13, BTA16, BTA17, BTA23, BTA24, BTA25 

and BTA26. The three SNPs significantly associated with AFC on BTA3 were all in gene regions. 

Of the six SNPs associated with WWMAT on BTA15, five were identified in four genes, with two 

SNPs annotating to the same gene (LRRC4C). Three genes for SC, eight genes for AFC and 

nineteen genes for WWMAT were identified. Genes associated with SC (PPP3CA), AFC (AKT3, 

GRM8, KIF1B, OVOS2) and WWMAT (BMP1, LRRC4C, MACROD1, RBM47, THSD7B) were 

reported for cattle in other studies. Genes associated with AFC (AKT3; BTA16) and SC (PPP3CA, 

TRPM6; BTA6, BTA8) where shown to share serine/threonine biological pathway processes. 

Chromosomes and SNPs that yielded novel associations with previously uncharacterised genes 

and previously not reported in literature may possibly be unique to the SA Bonsmara beef breed 

and will require further investigation.  
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Chapter 1 Introduction and Literature Review 

1.1 Introduction 

Reproductive wastage is of major economic importance and limits subsequent efficiency 

from conception to weaning due to its influence on herd productivity. The estimated calving 

percentage of South Africa’s beef commercial sector is approximately 62% (Grobler et al., 2014). 

Furthermore, total lifetime productivity is a primary factor that needs to be improved within beef 

cattle populations (Burns et al., 2010). As the beef industry primarily relies on reproductive 

efficiency, a reduction in unproductive periods during a female’s reproductive life would positively 

impact production costs and income.  

Improvement in fertility traits has typically been slow due to the low heritability, binomial 

nature of a short-controlled breeding season and/or the late expression of fertility traits, at least 

for traits such as inter-calving period (ICP) (Meyer et al., 1990; Cammack et al., 2009; Hawken et 

al., 2012). An understanding of the genetic basis of fertility traits is required to implement selection 

programs that may increase reproductive efficiency (Miar et al., 2015). The true underlying genetic 

architecture of most traits remains unknown; genomic tools have now opened opportunities for 

different approaches to improve our understanding (Meuwissen et al., 2001).  

South Africa formed a consortium consisting of breed societies, their respective industry 

service providers (SA Stud Book and Breedplan), research institutions (Agricultural Research 

Council) in collaboration with the University of Pretoria, as well as other universities, known as the 

SA Beef Genomics Program (BGP). This resulted in the collection of many biological samples 

from registered beef cattle that were participating in performance recording. Although the cost of 

genotyping has drastically decreased over the last few decades, it remains an expensive 

undertaking for SA breeders due to volatile exchange rates which can make the true cost and 

economic viability unpredictable.  

Lower-density panels have become more feasible, due to their low cost, and these 

genotypes may be imputed up to higher density (HD) panels. With the constant addition and 

consolidation of a HD reference population, this enables the same task at a reduced cost. 

Identification of the most important SNPs may aid in the decision-making of creating a minimal 

SNP density panel for industry that enables sufficient panel overlap and facilitates current 

imputation software. 

The South African (SA) Bonsmara, classified as a Sanga type, is a unique composite breed 

of 3/8 exotic (Milk Shorthorn, Hereford) and 5/8 Afrikaner (Bonsma, 1980). The SA Bonsmara was 
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established through a well-documented crossbreeding program which had the aim of founding a 

local composite well adapted to the challenges of a diverse SA climate.  

According to Stud Book SA, there were approximately 108 000 Bonsmara cattle participating 

in Logix Beef in 2019. Bonsmara make up 41,7% of the total number of recorded animals currently 

participating in Logix Beef (SA Stud Book, 2019).  

The SA Bonsmara was the first beef breed to implement genomically enhanced estimated 

breeding values (GEBVs; van der Westhuizen et al., 2017) in South Africa. These are now 

predicted using single-step genomic best linear unbiased prediction (ssGBLUP; Legarra et al., 

2014) and are used in selection programs to aid seedstock breeders. Currently, as of 1 January 

2020, there are approximately 4000 SA Bonsmara genotypes across three different genotyping 

platforms managed by SA Stud Book. 

Large regions of localised DNA that influence traits are referred to as quantitative trait loci 

(QTL). The effect of individual genes on most complex traits, is likely to be small and therefore a 

large number of markers must be used to identify QTL (Hayes & Goddard, 2010). Single 

Nucleotide Polymorphisms (SNPs) are bi-allelic single base pair mutations, where most are 

neutral to trait variation while others can be in linkage disequilibrium (LD) with causative mutations 

(Russel, 2010). SNPs on genotyping panels are evenly spread throughout the genome and are 

therefore more likely to be present in regulatory gene regions. Due to this distribution, SNPs can 

have significant associations with traits of low heritability or traits that are hard to measure as they 

may only be expressed later in life or are sex-limited traits (Hayes & Goddard, 2010). 

A genome-wide association study (GWAS) is used to coarsely identify the location of causal 

genes with the identification of SNP markers located near these QTL (Dekkers & Hospital, 2002). 

A GWAS evaluates molecular data alongside estimated breeding values (EBV) or phenotypic data 

of available genotyped animals. This may lead to the detection of significant associations between 

these SNP markers and observed trait variation (Stranger et al, 2011). The use of this has shed 

additional light on the mechanisms of complex traits (Sharma et al., 2015), as well as quantifying 

diversity among populations (Tellam et al., 2009). 

The majority of GWAS involving the use of SNPs in cattle species have been focussed on 

traits such as milk production (Saowaphak et al., 2017), growth (Snelling et al., 2009; Martínez et 

al., 2017) and carcass characteristics (Hay & Roberts, 2018). The main difference between these 

studies seems to be the definition of trait of interest. This is most probably due to differences 

between breeding goals, recording measures and species or breed differences. 
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Reviews by Hawken et al., (2012) and Fortes et al., (2013) highlight the need for a fertility 

genome reference and concluded that the X chromosome is associated with male and female 

reproductive traits. Regatieri et al., (2017) reported that SNPs on seven chromosomes were 

significantly associated with sexual precocity in Nellore heifers. Scrotal circumference was 

assessed alongside the expression of hormones released that affect its subsequent performance 

(Fortes et al., 2012). The numerous findings of similar genomic regions for different fertility traits 

indicates the complexity of reproduction and that further research is needed for a greater 

understanding. 

 

Aim of the study 

The SA Bonsmara breed produces weaners with favourable growth traits for feedlot 

conditions, which is evident due to their dominant position within the SA beef industry (SA Stud 

Book, 2019). The reputation of the SA Bonsmara is world renowned, with foreign herds occurring 

in Argentina, Brazil, Namibia, Zambia  and the USA (SA Stud Book, 2016). The number of 

pedigree recordings, accurate phenotypic information, correct implementation of EBVs across 

numerous herds and the number of genotyped animals make the SA Bonsmara breed a perfect 

candidate for GWAS.  

In this study the focus will be on fertility and maternal traits, as a reduction in non-pregnant 

periods in the female’s reproductive life would positively impact production. The traits to be studied 

include age at first calving (AFC), inter-calving period (ICP), weaning weight maternal (WWMAT) 

which is also known as “milk” to beef breeders and scrotal circumference (SC). ICP is known as 

the number of days between successive calvings. Berry et al., (2014b) states that ICP involves 

the ability of the animal to be able to resume oestrous as soon as possible post-calving, express 

oestrous sufficiently for detection, to conceive, establish pregnancy and maintain pregnancy in 

the required gestation length. AFC is recorded as it is genetically correlated with calving interval 

and SC. SC is a measure of bull fertility and is negatively correlated with AFC, indicating that sires 

with larger SC produce heifers that calve at a younger age.  

WWMAT indicates a cow’s ability to provide milk to the growing calf and reflects her ability to 

gain or lose weight during this physiologically demanding period. Animals that gain weight in this 

period are more sought after as this indicates that the cow had sufficient body reserves to supply 

adequate milk, as well as to gain body mass. This in turn results in the cow coming into oestrous 

cycling sooner, affecting the ICP as cows that need to replenish body reserves will return to 
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oestrous at a later period (Berry et al., 2014b). This increases the likelihood of non-pregnant years, 

reducing overall herd reproductive performance.  

The overall aim of this study was to conduct the first Genome-wide association study on the 

SA Bonsmara breed to investigate the underlying genetics of fertility and maternal traits. 

 

The following objectives were set in order to reach the aim of this study: 

1. Perform a GWAS to evaluate genetic markers significantly associated with fertility and     

maternal traits of interest. 

2. Annotation of biological processes and molecular functions of genes potentially 

associated with significant genetic markers. 

 
1.2  Literature Review 

1.2.1 Introduction 

Observable traits of economic importance are typically known to be affected by multiple 

genes, which contribute to the polygenic expression of these traits. The application of genomics, 

with regards to the accessibility and cost-factor of molecular analysis, has become a viable tool in 

the investigation of these polygenic traits. The true underlying genetic architecture of most traits 

remains unknown (Dekkers & Hospital, 2002; Stranger et al., 2011) and genomic tools have now 

opened opportunities for various approaches to improve our understanding (Meuwissen et al., 

2001), which may help explain any physiological or pathogenic conditions that remain 

unanswered. 

An understanding of the genetic basis of fertility traits is required to implement appropriate 

selection programs that may increase reproductive efficiency (Miar et al., 2015). The application 

of genomic selection (GS) in livestock breeding allows for the reduction of the generation interval 

by up to 2 years, which could likely result in a 60 to 120% increase in the rate of genetic gain 

(Hayes et al., 2013).  

In this chapter, a brief overview of the SA beef industry will be provided and a discussion of 

fertility and maternal traits of interest. This will be followed by a review of relevant literature 

regarding the current and potential applications of GWAS and the use and manipulation of 

available phenotypic data with regards to appropriate mixed model equations (MME).  

 
1.2.2 Overview of the South African beef industry 

Sub-Saharan Africa has been recognized as an important resource in terms of genetic 

diversity within the Bovidae species. There are over 180 cattle breeds present, of which 150 are 
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deemed indigenous, in Southern Africa. The introduction of major foreign Bos taurus beef and 

dual-purpose breeds in the first half of the 20th century to South Africa was aimed at trying to 

establish herds with known economically favourable carcass traits (van Marle, 1974). 

 The exotic breeds imported at the time proved to be poorly adapted to the more subtropical 

regions of SA (van Marle, 1974) and the need was recognised to develop a composite breed 

where the superior traits of the imported breeds could be combined with the local adapted types 

(Bonsma, 1980). This resulted in the creation of various SA composite breeds. 

The livestock industry contributes 34.1% to the total domestic agricultural production, 

contributing over R127 million to the Gross Domestic Product of SA between 2016-2017 (van 

Marle-Köster & Visser, 2018) and provides 36% of the population’s protein needs (Organisasie & 

RPO, 2017).  With an estimated per capita beef consumption of 19.2 kg/year (ARC, 2016), this 

amounts to 3 678 000 cattle being slaughtered annually (DAFF, 2017). More than 75% of beef 

cattle slaughtered in the formal sector are finished in feedlots (Organisasie & RPO, 2017), 

although primary beef cattle farming (the cow-calf production cycle) is mostly extensive in SA. The 

commercial sector mainly focuses on maximising the number of weaned calves for a given number 

of cows under the prevailing environmental and management conditions (Rust & Groeneveld, 

2001), that will be subsequently sold to the feedlot. The sire-dam complementarity derived from 

the seedstock sector allows growth and carcass traits to dominate the breeding objective and 

selection criteria within this sector. Thus, the combination of highly fertile and adaptable females 

with fast growing males produces a calf that is highly suitable to conditions in the SA feedlot 

industry. 

The common practice of crossbreeding indigenous and exotic breeds has resulted in 66,4% 

of herds in the emerging sector to be comprised of crossbred/non-descript cattle (Scholtz et al., 

2008). Table 1.1 summarises the cattle types and breeds used in beef production in South Africa. 

Composite breeds, Bonsmara and Beefmaster, have the highest head counts (SA Stud Book, 

2019), indicating the industry’s perception that these are superior adapted medium maturing type 

animals. The local Sanga types include the Nguni, Drakensberger, Tuli and Afrikaner breeds, 

which are known to be highly adaptable and resistant to harsh climate and high disease 

prevalence. The Drakensberger and Tuli breeds are early-maturing, medium-framed animals and 

are characterized to show good performance on a range of different grazing conditions. The Nguni 

is historically a multipurpose breed (Musemwa et al., 2008), used for its milk, meat and the hide. 

These Sanga cattle are present in both small holder (developing) and commercial sectors in SA. 
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Table 1.1 Summary of the number of active stud registered animals (SA Stud Book, 2019) and 

respective averages (SA Stud Book, 2016) for traits of interest in this study. 

*Includes animals not listed in this table 

 

Development of the SA Bonsmara 

An initial climatological study carried out at the Messina Research Station was tested on 

progeny of varying Bos taurus x Bos indicus compositions. The genesis of the Bonsmara breed 

commenced at the Mara research Station in 1940 (Bonsma, 1980). The Indicine proportion was 

decided to be allocated to the Afrikaner breed, a Sanga type that originates from Central Africa 

and shares an ancestral population with the Nguni breed, another Sanga type (Makina et al., 

2014). During the development of the Bonsmara, considerable emphasis was placed on the 

selection for adaptive ability (Bonsma, 1980). 

The two Taurine breeds selected were Dairy Shorthorn and Hereford. The Shorthorn was 

chosen for its good milk production, earlier maturing age and excels in sweet veld pasture 

utilization, while the Hereford was selected due to its good temperament as well as good utilization 

of natural sour veld pastures. These parental breeds were further selected according to the 

following characteristics; smooth coats and thick hides, outstanding beefiness in two of the 

Breed  Females Males Total 
Maturing 

Type 
AFC 

(Months) 
ICP 

(Days) 
WWMAT 

(kg) 
SC 

(mm) 

British Origin     
             

Angus SA 13 414 4 883 18 297 Early 31.3 408.6 541 344.4 

Hereford 3 752 1 498 5 250 Early 31.9 391.3 568 328.8 

Sussex 4 299 1 705 6 004 Early 32.4 408.3 585 318 
         

European Origin     
             

Braunvieh 581 171 752 Late 33.6 450.9 491 344.8 

Charolais 3 240 1 286 4 979 Late 33.7 422.4 596 347 

Pinzgauer 489 192 681 Late 36.2 467.1 503 341.9 
         

Sanga Types     
             

Drakensberger 9 496 3 892 13 388 Intermediate 34.1 424.1 507 327.1 

Nguni 16 037 5 269 21 306 Early 32.3 415.4 366 - 

Tuli 5 572 1 987 7 559 Early 34.9 423 429 - 
         

Composite 
Types 

    

             
Beefmaster 32 457 13 944 46 401 Intermediate 30.6 404.6 509 352.2 

Bonsmara 77 917 30 281 108 198 Intermediate 31.4 413.7 506 339.6 
         

Total* 201 108 69 305 270 413   32.1 417.3 500.1 337 
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parental breeds, cows with good milk-ability and bulls from highly fertile bulls that showed good 

temperament (Bonsma, 1980). The first-generation crosses were Afrikaner cows mated to Herford 

and Shorthorn bulls. These resultant F1 bulls were again mated to Afrikaner cows to obtain large 

numbers of 3/4 Afrikaner and 1/4 exotic. Mating’s 7 & 8 produced the original 5/8 Afrikaner and 

3/8 exotic breed. From mating’s 9, 10 and 11 onwards we speak of these progenies as Bonsmara, 

a composite breed in its own right (Bonsma, 1980).  

Currently one of the most prominent beef cattle breeds in SA, with over 108 000 registered 

cattle, the Bonsmara has had economically important traits positively selected as well as visual 

evaluation for selection in functional efficiency. This concept of “functional efficiency” is based on 

the hypothesis that strict selection of phenotypic traits may have an influence on an animal’s 

environmental adaptability and consequently improving the animal’s production and reproduction 

potential (Bonsma, 1980; Webb et al., 2017). To enable a greater understanding for the premise 

of adaptive traits in an animal’s own environment, knowledge of breed composition of specific 

cattle breed populations may be useful in the prediction of the degree of heterosis and in turn 

enabling long-term sustainability of genetic resources through proper management (Gorbach et 

al., 2010). It is notable that when Sanga cattle were originally brought to Southern Africa by the 

indigenous Khoi-San, the Nguni breed settled on the eastern side of SA and the Afrikaner breed 

on the western side respectively (Scholtz et al., 2011). However, the development of the SA 

Bonsmara breed occurred in the eastern region of SA, which was mainly populated by Nguni cattle 

at that time. This was illustrated by Makina et al., (2014) when comparing population structure of 

indigenous Sanga types, the Bonsmara shared a higher proportion of genetic links with the Nguni 

breed (3%) compared to the Afrikaner breed (0,5%), respectively.  
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1.2.3 Selection for fertility and maternal traits                                                       

The focus of this section will be an overview on maternal and fertility traits that are measured 

in beef cattle. Beef cattle traits are categorised into multiple groups, which can be mainly grouped 

into fertility, production, quality and disease traits (Kinghorn et al., 2014). Fertility traits differ, in 

terms of definition and method of measurement, on the breed type of cattle and/or regulations set 

out by specific breed societies.  

Fertility is a measure of reproductive success. Male fertility is the ability of the bull to produce 

semen that would result in a successful pregnancy (Foote, 2003; Nino-Soto & King, 2004). Female 

fertility can be defined as a cow’s ability to conceive successfully, calve down and provide 

sufficient milk to wean a suckling calf (Davis, 1993; Nino-Soto & King, 2004; Berry & Evans, 2014). 

Fertility traits can be classified into three broad categories, namely; interval traits, binary traits and 

count traits (Berry et al., 2014b). Binary traits are phenotypes that are controlled by quantitative 

genetic interactions with environmental effects determining the threshold for how the trait is 

expressed qualitatively. Non-return rate is the proportion of mated cows that do not return to 

oestrous within a certain timeframe and are determined to be pregnant. Thus, non-return rate is 

measured as pregnant (1) or not pregnant (0) and is therefore considered a binary trait. Count 

traits, such as number of services or inseminations to pregnancy, are used to determine the level 

of management needed per cow, with less labour-intensive cows being favoured and selected for. 

An example would be animals that conceive after only one service, which are more favourable 

than cows needing more than one service to achieve conception. Interval traits tend to have 

greater heritability estimates compared to count and binary traits (Berry et al., 2014b).  

Some fertility traits are easy to record and involve low cost managerial input from farmers 

(Rust & Groeneveld, 2001), while most fertility traits, like maternal weaning weight or new traits 

using ultrasound (Corbet et al., 2018), are quite difficult to consistently measure and weigh 

correctly. Accurate recording is essential for fertility traits as current genetic variation within herds 

aids in on-farm management (Berry et al., 2014b) and is used to decide the optimal breeding 

objective to maximise genetic gain on these lowly heritable traits. 

The role of measurement and animal recording in breeding programs depends on the 

degree of intensiveness of the livestock enterprise (James & Roberts, 1979; Holst, 1999). Highly 

intensive husbandry systems allow for greater opportunities for recording of animals to occur 

compared to more extensive systems. Traits that influence productivity influence the income and 

cost of a beef herd. The beef production industry mainly relies on reproductive efficiency, thus a 

reduction in unproductive periods in the female’s reproductive life would positively impact 
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production costs. This has typically been slow due to the low heritability among other previously 

mentioned shortfalls when it comes to improving fertility traits (Cammack et al., 2009; Granleese 

et al., 2015). Therefore, genomic association analyses of fertility traits may result in the 

identification of new or existing SNPs that iterate there may be an underlying gene or QTL action 

influencing their expression. Well defined traits are vital for accurate quantification of the 

heritability, possible correlations and any future genetic associations. 

Beef breeding covers two essential areas, these being genetic improvement of the weaning 

cow herd and the use of appropriate sires with the overall goal of achieving fertility targets to 

improve herd productivity (www.teagasc.ie). Genetic gains achieved within a breeding herd are 

cumulative and remain in the herd indefinitely. Every beef farmer needs to have a breeding 

objective to ensure that the next generation of seedstock is genetically and phenotypically superior 

to that of the previous generation. An ideal breeding objective includes selecting traits that will in 

future, be of the most influence towards the breeding goal (Garrick, 2011). This is essential in 

order for a farmer to maximise future return on investment (Ponzoni, 1986). 

The Logix national evaluation scheme has created a standardised method of trait recording 

for all participating herds across Southern Africa. This enables researchers to model specific 

population and genetic effects across multiple breeds in order to quantify breed and genetic 

diversity within the cattle genome (Makina et al., 2014, 2016; Zwane et al., 2016; Gororo et al., 

2018; Lashmar et al., 2018a; Pienaar et al., 2018). 

Predictor traits are traits that are highly genetically correlated with traits that are expressed 

later in life or are hard to measure. These are used to predict the future performance of an animal 

and enables early estimation of an animal’s phenotypic potential. Due to the low heritability of 

fertility traits and extended time periods it takes to measure them, and indicates that the use of 

predictor traits would be a benefit to selection accuracy (Berry & Evans, 2014). Actual recording 

of reproductive phenotypes is necessary to resolve any genetic or phenotypic antagonisms with 

other traits and enable breeders to achieve a higher accuracy of genetic selection.  

 Related traits are recorded and evaluated in conjunction with the weaning of the calf and 

encompasses the overall productivity of the cowherd (du Plessis et al., 2006). Eler et al., (2008) 

states that cows that wean consistently light calves must be culled, indicating that direct weaning 

weight has a high repeatability. These traits allow us to identify females that are exceptionally 

good at cycling after calving as well as those that wean heavier calves compared to the breed 

average. 
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An unfavourable genetic correlation exists between birth weight (BW) and calving ease (CE), 

with higher BW of calves associated with higher incidences of dystocia (Cammack et al., 2009). 

Calving success (CS) is defined as the birth of a live calf without birthing difficulties (van der 

Westhuizen et al., 2001a). The recording of performance traits has been essential in the 

calculation of EBVs. Genetic conditions and disorders that affect the overall health of livestock 

animals have an unfavourable effect on animal welfare and decreases the potential profitability 

within the industry. The investigation via GWAS into genomic regions associated with these 

diseased conditions are underway, but mainly on European breeds (Visscher et al., 2017; 

Freebern et al., 2020), with the goal of eradicating affected individuals from the reproductive 

population. 

 In Tables 1.2a and b, genetic and phenotypic correlations for female fertility traits from 

several studies that included different breeds have been summarized. 

 
Table 1.2a Summary of genetic and phenotypic correlations between maternal and fertility traits 

Traits Genetic  Phenotypic Breed Reference 

AFC/Calving Date 0.09  Composite beef (van der Westhuizen et al., 2001b) 

 0.88 0.05 Pooled data (Corbet et al., 2006) 

AFC/ICP -0.03  Composite beef (van der Westhuizen et al., 2001b) 

 0.44 -0.28 Pooled data (Corbet et al., 2006) 

 -0.05  Brahman (Cavani et al., 2015) 

 0.22  Crossbred beef (Berry & Evans, 2014) 

AFC/WWMAT 0.35  Crossbred beef (Berry & Evans, 2014) 

AFC/Stayability -0.38  Brahman (Cavani et al., 2015) 

    
 

CS/Calving Date -0.95  Afrikaner (Beffa, 2005) 

CS/Stayability  0.14 Composite beef* (van der Westhuizen et al., 2001a) 

  0.04 Composite beef* (van der Westhuizen et al., 2001a) 

  0.2 Composite beef* (van der Westhuizen et al., 2001a) 

    
 

DAYTC/Pregnancy -0.99 -0.42 
Tropical  

Composites 
(Burrow, 2001) 

    
 

Direct     

Dystocia/AFC 0.28  Crossbred beef (Berry & Evans, 2014) 

Dystocia/ICP 0.18  Crossbred beef (Berry & Evans, 2014) 

Dystocia/Survival -0.06   Crossbred beef (Berry & Evans, 2014) 

*measured at 36, 60 and 84 months of age respectively 
DAYTC = Days to calving 
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Table 1.2b Summary of genetic and phenotypic correlations between maternal and fertility traits 

Traits Genetic  Phenotypic Breed Reference 

Maternal     

Dystocia/AFC -0.22  Crossbred beef (Berry & Evans, 2014) 

Dystocia/ICP 0.32  Crossbred beef (Berry & Evans, 2014) 

Dystocia/Survival -0.65  Crossbred beef (Berry & Evans, 2014) 

     

ICP/Calving Date 0.75  Composite beef (van der Westhuizen et al., 2001b) 

 0.01 -0.02 Pooled Data (Corbet et al., 2006) 

ICP/MWW -0.21  Crossbred beef (Berry & Evans, 2014) 

ICP/Survival -0.63  Crossbred beef (Berry & Evans, 2014) 

     

SC/Age at Puberty -0.41  Brahman# (Johnston et al., 2014b) 

 -0.15  Assorted (Martinez-Velazquez et al., 2003) 

SC/DAYTC -0.25  Hereford (Meyer et al., 1991) 

 -0.28  Angus (Meyer et al., 1991) 

 -0.41  Zebu crossbreds (Meyer et al., 1991) 

 0.32  Tropical Composites (Burrow, 2001) 

SC/AFC 0.15  Assorted (Martinez-Velazquez et al., 2003) 

SC/Pregnancy Rate 0.27  Brahman+ (Johnston et al., 2014b) 

 -0.12  Tropical Composites (Burrow, 2001) 

 -0.17  Tropical Composite+ (Johnston et al., 2014b) 

SC/Weaning Rate 0.4  Brahman+ (Johnston et al., 2014b) 

  0.35   Tropical Composite+ (Johnston et al., 2014b) 

*measured at 36, 60 and 84 months of age respectively 
+measured at 18 months of age 
#measured at 12 months of age 
DAYTC = Days to calving 

 

Residual variation is caused by both known and unknown environmental effects, with yet 

unexplained additive and non-additive genetic effects. The interaction effects between 

environmental and genetic effects (GyE) varies, due to genetic differences between breed and 

epigenetics. Epigenetics refers to all alterations in DNA function while no changes have been 

made in the DNA sequence and cause variation in trait expression. This is evident due to the 

threshold nature of pregnancy, with the commercial production need for high pregnancy rates 

exacerbating this interaction (Cammack et al., 2009). Environmental effects include temperature, 

exposure to radiation, level of nutrition, ecto-and-endoparasites, disease type and prevalence. 

These contribute and influence the expression and variability of all traits. 
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Female fertility traits for various different breeds are summarised in Tables 1.3a and b, with 

the respective heritability estimates. 

 

Table 1.3a Summary of heritability estimates for female fertility traits, according to breed  

Trait Breed Heritability  Reference 

Age at First Calving Afrikaner 0.27 (Meyer et al., 1990) 

 Bonsmara cross 0.13 (Corbet et al., 2006) 

 Brahman 0.1 (Cavani et al., 2015) 

 Composite beef 0.4 (van der Westhuizen et al., 2001b) 

 Assorted 0.16 (Martinez-Velazquez et al., 2003) 

 Crossbred beef 0.31 (Berry & Evans, 2014) 

 Drakensberger 0.3 (Meyer et al., 1990) 

 Nellore 0.09-0.28 (Costa et al., 2015) 

 Nellore 0.11 (Kluska et al., 2018) 

 Nellore 0.08 (Melo et al., 2018) 

  
 

 

Calving Date Bonsmara cross 0.02 (Corbet et al., 2006) 

 Composite beef 0.04 (van der Westhuizen et al., 2001b) 

  
  

Calving Interval Bonsmara cross 0.04 (Corbet et al., 2006) 

 Brahman 0.02 (Cavani et al., 2015) 

 Composite beef 0.01 (van der Westhuizen et al., 2001b) 

 Crossbred beef 0.02 (Berry & Evans, 2014) 

  
 

 

Calving Success Afrikaner 0.08 (Beffa, 2005) 

 Composite beef 0.03 (van der Westhuizen et al., 2001a) 

 Hereford 0.08 (Meyer et al., 1990) 

 SA Angus 0.02 (Meyer et al., 1990) 

 Zebu crosses 0.08 (Meyer et al., 1990) 

  
  

Calving Rate Hereford 0.07 (Meyer et al., 1990) 

 SA Angus 0.02 (Meyer et al., 1990) 

 Zebu crosses 0.17 (Meyer et al., 1990) 

  
  

Days to Calving Hereford 0.05 (Meyer et al., 1990) 

 SA Angus 0.08 (Meyer et al., 1990) 

 Tropical Composite 0.07 (Burrow, 2001) 

  
 

 

Dystocia Crossbred beef 0.25 (Berry & Evans, 2014) 
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Table 1.3b Summary of heritability estimates for female fertility traits, according to breed   

Trait Breed Heritability  Reference 
    

Lifetime Annual Calving Rate Brahman 0.16 (Johnston et al., 2014a) 

 Tropical Composite 0.04 (Johnston et al., 2014a) 

   
 

Lifetime Annual Weaning 
Rate Brahman 0.11 

(Johnston et al., 2014a) 

 Tropical Composite 0.07 (Johnston et al., 2014a) 

   
 

Longevity Composite beef 0.08 (van der Westhuizen et al., 2001a) 

   
 

Weaning Weight Maternal Afrikaner 0.21 (Beffa, 2005) 

 Belmont Red 0.14 (Corbet et al., 2006) 

 Bonsmara 0.19 (Corbet et al., 2006) 

 Nguni 0.16 (Norris et al., 2004) 

 SA Brangus 0.11 (Neser et al., 2012) 

  
 

 

Pregnancy Tropical Composite 0.04 (Burrow, 2001) 

Stayability Brahman 0.1 (Cavani et al., 2015) 

 Composite beef     0.03 - 0.11 (van der Westhuizen et al., 2001a) 

  Crossbred beef 0.02 (Berry & Evans, 2014) 

 

 

Male fertility traits include SC, libido and others. SC is a trait that is easy to measure and in 

Table 1.4, heritability estimates for SC that were previously reported in literature were 

summarized. 
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Table 1.4 Summary of heritability estimates for Scrotal Circumference (SC) 

Breed Heritability Reference 

Bonsmara 0.44 - 0.46 (SA Studbook, 2016) 

Tropical Composite* 0.41 (Burrow, 2001) 

Brahman* 0.75 (Corbet et al., 2013)  

Tropical Composite* 0.42 (Corbet et al., 2013)  

Assorted breeds 0.41 (Martinez-Velazquez et al., 2003) 

Brahman+ 0.75 (Melo et al., 2018) 

Nellore+ 0.41 (Melo et al., 2018) 

Hereford 0.29 (Meyer et al., 1991) 

Hereford 0.71 (Evans et al., 1999) 

SA Angus 0.47 (Meyer et al., 1991) 

Nellore# 0.48 (Kluska et al., 2018) 

Zebu crosses 0.28 (Meyer et al., 1991) 
*measured at 36, 60 and 84 months of age respectively 
+measured at 18 months of age 
#measured at 12 months of age 

 

1.2.3.1 Fertility traits 

Female traits 

It is well-known that Bos taurus females reach puberty at younger ages than Bos indicus 

females. Puberty is experienced earlier in composite and crossbred animals compared to their 

purebred counterparts with the same trend seen for early-maturing versus late-maturing beef 

breeds (Bourdon, 2000; Sartori et al., 2010). This trait has an overall effect on reproductive 

performance as the heifer will become productive at an earlier age. This late onset of puberty in 

all beef heifers is one of the main factors that increases production costs (Costa et al., 2015). A 

reduction in this would allow for earlier insemination and AFC, but negative correlations can result 

in an increased ICP due to a lower WWMAT and may result in reducing longevity. The continuous 

development of selection indices within the beef industry is ongoing as these indices 

simultaneously account for a multitude of different traits and consider both the biological impact 

and subsequent effect on production levels from an economic perspective (Parish et al., 2011; 

Kluska et al., 2018). As with most selection indexes, there is a need to fine-balance selection ing 

conjunction with genetic and phenotypic correlations in order to instil maximum genetic gains. 

Age at first calving is measured as the number of days from birth to first calving (Berry & 

Evans, 2014), and as this trait is easy to measure it is often included as a selection objective. 

Early-maturing breeds are known to experience higher levels of dystocia, as AFC is normally 

experienced at 85% mature body weight, with the beef breed industry aiming to calve heifers 
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between 23 to 25 months of age (Wathes et al., 2014). Corbet et al., (2006) analysed a pooled 

data set of beef cattle and observed a genetic correlation (rg) between AFC and ICP of 0.44. This 

indicates that animals with earlier AFC experience shorter ICPs. This is corroborated by Berry & 

Evans, (2014) observation of an rg of 0.22 in crossbred beef cattle. This is reported differently in 

other studies (van der Westhuizen et al., 2001b; Cavani et al., 2015), that report a slight negative 

rg between AFC and ICP. Inter-Calving Period (ICP) is known as the number of days between 

successive calvings and has an industry target of around 365 days. Maintaining this interval is 

vital to maximise the utilisation of lower-cost grazed grass, especially in SA where most beef cattle 

exist in natural pasture based extensive systems. Days to Calving (DAYTC) is the number of days 

between successful insemination or service and subsequent calving. This trait has been reported 

to have a low h2. Animals with shorter DAYTC will have subsequently shorter ICP’s, with a high 

favourable genetic correlation indicating this inference.  

Berry et al., (2014b) states that ICP involves the ability of the animal to resume normal 

cyclicity post-calving, to express oestrous sufficiently for detection, to conceive, establish and 

maintain pregnancy in the required gestation length. Inter-calving period is estimated to have a 

low heritability (Table 1.3a). Berry & Evans, (2014) found a low heritability for calving interval in 

beef cattle. Mkhize et al., (2019) indicated that the ICP of first-calf cows is generally longer than 

that of multiparous cows.  The postpartum period is essential for the re-establishment of ovarian 

activity with proper nutrition allowing the preparation of re-conception to be shortened (Mukasa-

Mugerwa, 1989). Seasonal breeding of herds is common practice in South Africa. This method 

allows for strict observation of cows that are reproducing and by ensuring a cow is in good body 

condition post-partum will reduce calf mortalities (Mkhize et al., 2019) and ensuring an appropriate 

ICP. ICP of older cows is known to be shorter compared to younger cows but this may be attributed 

to less productive cows being culled before reaching a certain age. Therefore, this shorter ICP 

may be due to the cows being measured being the superior reproductive animals. 

An interesting phenotypic correlation in heifers was observed (Bourdon, 2000), that those 

with a later AFC, have subsequently shorter ICPs in the following calvings. This indicates that the 

animal’s overall reproductive efficiency may increase through prolonging the initial breeding of late 

maturing heifers. The length of gestation is highly associated with ICP, with shorter gestation 

lengths associated with shorter ICP (Kirkpatrick, 2014). Therefore, we can assume that selecting 

animals for a shorter ICP may negatively affect AFC (Berry & Evans, 2014).  

Maternal weaning weight (WWMAT) indicates the cow’s ability to provide sufficient milk to the 

growing calf and her ability to gain or lose weight during this physiologically demanding period 
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(Meyer, 1997). In models used to determine heritability’s and correlations, it is included as a 

genetic component of the dam and permanent maternal environmental effect on her calf. Animals 

that gain weight in this period are more sought after as this indicates that the cow had sufficient 

body reserves to supply adequate milk. This in turn results in the cow coming into oestrous cycling 

sooner, affecting the ICP as cows that need to replenish body reserves will return to oestrous at 

a later period (Berry et al., 2014b). This is increasing the period of unproductivity and reduces 

overall herd reproductive performance. This trait affects cow-calf efficiency, which can be defined 

as kg calf weaned per Large Stock Unit (KgC/LSU) mated, with the Bonsmara breed showing a 

10.0% increase over a period of 33 years (Mokolobate et al., 2018) due to proper selection 

practices and management of breeding resources. Mokolobate et al., (2018) stated that cow 

productivity will be improved if the weaning weight of the cow can be increased in relation to the 

weight of the cow. 

Inter-calving period and WWMAT are negatively favourably correlated, with a rg of -0.21 being 

reported (Berry & Evans, 2014). This implies cows that experience a gain in WWMAT will experience 

a shorter ICP and will recycle sooner, allowing for earlier insemination for subsequent pregnancy. 

A loss in WWMAT will result in an unwanted extension of the ICP. Messine et al., (2004) noted that 

excessive suckling was a factor that contributed to longer ICPs, which correlates to the reasoning 

that a loss in WWMAT will cause an extended ICP. 

Correlations between AFC and WWMAT are limited to a few studies, but evidence suggests 

that animals that experience earlier AFC will have a decreased WWMAT (Berry & Evans, 2014). 

This will negatively affect the ensuing ICP, increasing unproductivity as a result of the cow needing 

to gain enough weight before recycling. This may be an indicator for the rg between AFC and ICP 

(Corbet et al., 2006; Berry & Evans, 2014), where a younger AFC results in a decreased WWMAT 

that unfavourably increases the ICP. Calving rate, defined as the number of calves born divided 

by the number of opportunities the cow has had to calf (Rust & Groeneveld, 2001) is a good 

indication of overall lifetime productivity. Calving Ease (CE), the component trait that indicates the 

level of dystocia, is mainly correlated with the size of the dam and the BW of the calf. Difficult 

calvings are known to increase the ICP in cows, thus high levels of dystocia will negatively affect 

the overall calving rate. Dystocia is selected against by selecting terminal sires with favourable 

EBVs for CE and BW as well as breeding of heifers at the appropriate age. 

Primiparous females can experience dystocia via feto-pelvic disproportion sometimes due 

to the high birthweight of the calf. Foetal malpresentation is the most common source of dystocia 

in mature, multiparous cows (Kirkpatrick, 2014). Medium and late-maturing beef breeds 
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experience lower rates of dystocia and thus are more highly favoured in high-throughput breeding 

programs. Gutiérrez et al., (2002) stated that a decreased lifetime performance is associated with 

a later AFC in a dual-purpose Taurus breed. As observed in Table 1.3a, AFC has the highest 

reported h2 estimate, but also has the largest range, indicating high genetic and environmental 

variability of AFC h2 estimates across various breeds. This trait is recorded as it is highly 

genetically correlated with calving interval and with age at subsequent calving’s.  

Body Condition Score (BCS) is a trait that describes the relative fatness of a cow. It is 

subjectively measured but guidelines do exist to aid recorders in determining the animals BCS. 

BCS ranges from 0 to 5, with 5 being overly fat and 2,5 being average (Nephawe et al., 2004). 

The genetic correlations between BCS and reproductive performance are favourable, with overly 

heavier animals becoming compromised (Rasby et al., 2014; Berry & Evans, 2014). Animals with 

poor BCS are also associated with poor reproductive performance as they may require a longer 

time to resume normal oestrous after calving, which will negatively affect the ICP (Berry et al., 

2014b; Rasby et al., 2014; Hlatshwayo, 2015). To maintain the desirable 365-day ICP, a cow must 

recycle back into oestrous and be serviced by day 83 after calving. This, in addition to the 282-

day average gestation length, will meet the profitable ICP. Average length of the postpartum 

interval for cows with poor BCS that calve is about 80 days, compared to 55 days for cows at the 

desirable BCS who express higher rebreeding rates (Rasby et al., 2014). Berry & Evans, (2014) 

state that the absence of genetic studies attempting to associate body fatness (BCS) with 

reproductive performance of beef cows’ points to a gap in vital knowledge. A few phenotypic 

studies (Selk et al., 1988; Berry & Evans, 2014) have shown some evidence that demonstrates 

an association between reproductive performance and change in BCS during parities which can 

be corroborated with the multiple studies on BCS in dairy cattle (Roche et al., 2009). A negative 

genetic correlation of -0.44 to -0.31 between ICP and carcass subcutaneous fat depth was 

observed (Berry & Evans, 2014), indicating that carcass traits and reproductive traits are 

antagonistically correlated. The genetic merit of ICP is primarily deteriorating due to aggressive 

selection for a larger mature body size, carcass conformation and carcass yield (Phocas, 2009; 

Berry et al., 2014b). 

Webb et al., (2017) concluded that production and reproductive efficiency of Bonsmara cows 

was affected by the production region (bioregion) that they were present in. This indicates a 

geographical influence on cow size and is corroborated by farmers who believe that there is a 

tendency for Bonsmara cows in the western regions of SA to be larger and more reproductively 

efficient than their eastern counterparts (Webb et al., 2017). WWMAT and WW direct have a 
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repeatability ranging from 0.7054 to 0.7182 (Silva et al., 2015), which one can deduce that the 

calf will be directly affected by the dams’ ability to supply adequate milk-ability while maintaining 

bodyweight. 

Pregnancy Rate (PR), a binary trait, is determined as either pregnant = 1(PREG); or not 

pregnant = 0. Burrow, (2001) defines pregnancy (PREG) as a threshold trait. This can allow the 

farmer to identify cows that don’t become pregnant after multiple conception attempts. These cows 

should be culled as animals with poor genetic merit for fertility must be eliminated from the 

breeding herd. Cows that become pregnant after one insemination or service are highly sought 

after. Lifetime PR is the total number of pregnancies a cow has had across all her possible mating 

years (Berry et al., 2014b). Pregnancy rates are highly genetically correlated with WWMAT, inferring 

that the condition of the dam post-weaning affects her ability to subsequently become pregnant 

again. A negative genetic correlation between pregnancy and scrotal circumference (SC) in 

Tropical Composite beef breeds (Burrow, 2001; Johnston et al., 2014b) in Table 1.2b indicates 

that sires with larger SC produce heifers with higher pregnancy rates. 

Lifetime annual weaning rate (LAWR) is the total number of calves weaned from all matings 

divided by the total number of mating’s experienced, for all cows in the herd (Johnston et al., 

2014a). Stayability is known as the probability of an animal surviving to a specific age, given every 

opportunity to reach that age (van der Westhuizen et al., 2001a). This trait is often construed with 

longevity of the animal, the total lifetime of production up to death. A few heritability estimates are 

given for both traits in Table 1.3b.  

These highly variable correlations across all traits illustrates the complexity of accurate 

record keeping, proper genetic and environmental characterisation as well as the evaluation of 

GyE interactions. The low number of records for certain breeds could lead to a biased 

interpretation (SA Stud Book, 2016), indicating that only better performing animals are actually a 

majority of the recording process. SA Bonsmara, with over 108 000 recorded animals, provide a 

more accurate estimation of population trait averages. The high number of recorded phenotypes 

provides a more accurate assessment of the variation amongst the Bonsmara breed (Makina et 

al., 2016). 
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Male traits 

Fertility measures for bulls are limited and mainly include testicular characteristics used 

primarily to determine sperm output as sperm production per unit testes volume is constant 

(Parkinson, 2004). The male measured traits associated with reproduction are moderately to 

highly correlated with each other, but these correlations are population dependant. Differences 

exist and can be attributed to many factors such as sampling variation and certain population 

specific characteristics like selection pressure (Berry et al., 2013). Certain genetic correlations 

may lack precision due to a combination of the lowly heritability of reproductive traits and an 

insufficient number of individuals with accurate phenotypes (Berry et al., 2014b) to constitute an 

acceptable population size.  

Bulls that produce daughters with incomplete records and length of exposure to a group of 

females have unreliable genetic estimates. The smaller the group of females, the more 

superficially increased these measures are, due to the effects of sampling bias and small sample 

sizes. Reproduction is a function of the underlying genetic forces that affect the endocrine system 

and physiological factors that may contribute towards the overall expression of these traits. 

Animals that fail to produce offspring every year are not profitable. An animal will only compensate 

the cost of its maintenance through either selling of the offspring it produces or selling of that 

animal itself.  

SC is the most used trait for male fertility. It is easily measured, either at 12, 18 or 24 months 

of age, using a standard measuring tape at the widest point of the scrotum. A SC of 28-30cm is 

associated with an onset of puberty in 52-97% of bulls (Parkinson, 2004). The quality and quantity 

of spermatozoa producing tissue directly contributes to a bulls’ overall fertility. Table 1.4 indicates 

that h2 estimates for SC are quite high.  

SC has been negatively genetically correlated with days to calving as indicated by Table 

1.2b. A highly negative genetic correlation between SC and age at puberty has been reported 

(Evans et al., 1999), with a high variability across experiments and breeds. This decreased days 

to puberty could potentially increase lifetime productivity rates of dams (Burrow, 2001). As SC is 

directly related to the reproductive performance of bulls and the sexual precocity of their female 

progeny (da Silva Romero et al., 2018), finding an optimum SC will increase production efficiency. 

The genetic correlation between SC and reproductive performance of female animals has been 

recorded to be weak (Martinez-Velazquez et al., 2003), which contradicts the aforementioned 

statements and indicates the variability of results in similar studies. 
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SC has been positively genetically correlated with certain growth traits, which are favourable 

in medium to late maturing beef breeds used in current feedlot conditions. Burrow, (2001) reported 

a genetic correlation of 0.37 - 0.40 between SC and mature BW. Meyer et al., (1991) noted that 

the genetic and phenotypic correlations between SC of sires and growth rates in their progeny 

ranged from 0.24 – 0.52 for Angus and Hereford breeds. It was discovered that Zebu type crosses 

had higher genetic correlation of 0.65 – 0.69. This indicates that sires with larger SC produce 

progeny with higher growth rates. 

Beef fertility tends to vary due to genetic and non-genetic factors, with reported per service 

calving rates of between 50-60%  (Cammack et al., 2009). Grobler et al., (2014) estimated the 

calving percentage of SAs beef commercial sector to be 62%. As discussed, there are many 

unfavourable genetic correlations between production and reproductive traits with production 

being highly selected for in previous generations, and reproduction being subsequently negatively 

affected. Correlation estimates differ between populations, mainly due to differences in trait 

definition, environment and the statistical model used (Berry & Evans, 2014).  

 

1.2.4 Estimated breeding values (EBVs) 

Bourdon, (2000) defines the breeding value as the value of an individual as a contributor of 

genes to the next generation. In other words, it can be described as the individual’s genotypic 

value or genetic merit that is due to independent additive genetic effects that are transmitted from 

parent to offspring.  

The calculation of EBVs at SA Stud Book makes use of Best Linear Unbiased Prediction 

(BLUP) and is a method of estimating random effects. There are multiple derivations of BLUP 

available, with (Robinson, 1991) describing a range of them. These being Hendersons 

Justification (Henderson, 1950), use of a Bayesian Derivation (Dempfle, 1977) or Goldbergers 

Derivation (Goldberger, 1962). The BLUP linear model, in context can be calculated as: 

 
𝑦 = 𝑋𝛽 + 𝑍𝜇 + 𝑒 

 
 
Where  

y is a vector of n observable random variables; 

β is a vector of p unknown parameters having fixed values (fixed effects); 

X and Z are known matrices; 

and μ and e are vectors of p and n, respectively (Robinson, 1991).  
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BLUP was originally developed for the ranking and selection of animals within breeding 

programs. As mentioned, BLUP comprises the use of fixed and random effects. Fixed effects 

model can be described as; 

 
𝑦 = 𝑋𝛽 +  𝜀 

 
Where  

y is a vector of N observations; 

X is a known matrix; 

β is a vector of p fixed, unknown constants (fixed effects) 

and ε is a vector of possible random effects.  

We take all elements of ε to be uncorrelated with one another with the same variance 𝜎𝜀
2, in 

doing so the variance-covariance matrix of ε is; 

 

𝑣𝑎𝑟(𝜀) =  𝜎𝜀
2𝐼𝑁,  

 

With IN the identity matrix of order N.  

The most common fixed effects in beef cattle analysis are herd, year and season. These are 

classed in order to create contemporary groups between animals of different ages and those that 

were raised in different environmental conditions. Other fixed effects include sex, age of dam, sire 

and parity number. Random effects are attributed to the yet unknown and unquantifiable 

environmental effect on the animals’ genotype. 

The interpretation of EBVs differs between traits and the direction of selection that is being 

placed on a specific trait. An EBV of 0 is the average trait expression within a population. A 

negative EBV for AFC and ICP is favoured as this indicates a reduction in the time of these traits 

and as previously discussed this would reduce the time of unproductivity. WWMAT and SC EBVs 

that show a positive score are selected as these would result in an increased weaning weight and 

daughters of sires with positive EBVs for SC would most likely have a shortened AFC. 

The premise for the initial calculation of deregressed breeding values was presented by 

Goddard (1985), to allow for the comparison of breeding values of dairy sires across multiple 

countries. Multiple across country evaluation (MACE) allows for the prediction of a bull’s EBV from 

his country of origin to predict his true EBV in another country. Implementation of this method was 

successful in both single trait (Jairath et al., 1998) and multiple trait (Schaeffer, 2001) models. 

Initially this method was developed for dairy sire evaluations, but Goddard (1985) proposed that 

it could equally be used for beef cattle and other livestock species.  
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The availability of genomic data has resulted in the development of efficient methods that 

allow for the estimation of thousands of marker effects simultaneously in order to increase the 

reliability of EBVs (VanRaden, 2008). These methods require high computing power to allow 

programs and algorithms to run appropriate analysis. The benefits of incorporating genotypic data 

may be equivalent to about 20 daughter progeny records with this level of information increasing 

as the genotypes of more relatives are added (VanRaden, 2008). 

As large datasets can cause excessive computational difficulties for the evaluation and 

calculation of EBVs, Strandén & Lidauer, (1999) proposed the use of  an iterative procedure based 

on preconditioned conjugate gradient (PCG) to aid in the solving of linear models. This allowed 

the assessment of multiple root finding methods, these being, bisection, secant and Broydens 

method in order to accelerate the implementation of deregression into existing model software for 

use in calculating EBVs (Strandén & Mäntysaari, 2010). These root finding methods are used in 

order to find the general mean, calculated from the mean EBVs for each trait respectively. 

Strandén & Mäntysaari, (2010) observed that the secant and Broyden methods had the lowest 

number of PCG calls, indicating these methods are more appropriate for analysis. The secant 

method is a one dimensional root-finding algorithm that uses a succession of roots of secant lines 

to better approximate a root of a function (Wang et al., 2018), and can be interpreted as a method 

in which the derivative is replaced by an approximation and is thus a quasi-Newton method. 

Genomically enhanced breeding values (GEBVs) are increasingly being used to calculate 

values for all animals in the pedigree using single step models (Legarra et al., 2014). ssGBLUP 

calculations require the input of available pedigree information and phenotypic records in 

conjunction with genomic information. In single step models, non-genotyped individuals are 

imputed implicitly. GEBVs are calculated using a genomic relationship matrix (GRM) in 

conjunction with mixed model equations (MME) (Taskinen et al., 2013). Koivula et al., (2016) 

observed that the inclusion of genotypic and phenotypic cow data within the reference population 

caused a persistent increase in validation reliability and that bias was minimised. Thomasen et 

al., (2014) established that annual genetic gain as well as the reliability of genomic predictions 

when more cows were included in the reference population proved to be slightly higher. 

Deregression is a non-linear problem (Strandén & Mäntysaari, 2010). Due to the presence 

of major genes, linear predictions may be less efficient on not normally distributed data allowing 

for the use of non-linear predictions (Henderson, 1963). As major genes may exist on some 

chromosomes, genetic variance may not be equal across markers or chromosomes (VanRaden, 

2008). The solving of deregressed EBVs requires fitting the general mean as an unknown fixed 
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effect within a mixed model equation. The definition of genetic groups affects the convergence of 

the general mean effects, with more genetic groups resulting in a faster convergence (Strandén 

& Mäntysaari, 2010). BLUPF90 (Aguilar et al., 2018) and MiX99 (Lidauer et al., 2017a) are 

routinely used for applying such models on large datasets. 

It should be noted that the reliability of an older animals’ breeding value is mainly determined 

by the information of its’ direct progeny (Erbe et al., 2018). This can be more accurately estimated 

if the information of direct descendants and other possible relatives that may contribute 

significantly towards the genotyped individual(s), are included. The reliability approximation 

program ApaX99 (Lidauer et al., 2017b), which expands on algorithms proposed by Harris & 

Johnson, (1998) allows for the estimation of effective record contributions (ERCs) for a pre-

selected subset of individuals. These ERCs are used as weights during the estimation of 

deregressed EBVs. Multiple recent studies (McGovern et al., 2019; Purfield et al., 2019a; Ring et 

al., 2019; Twomey et al., 2019) have used the deregressed EBV as a more independent variable 

in GWA studies, with various recent studies using MiX99 (Lidauer et al., 2017a) as the appropriate 

software program. 

 

1.2.5 Overview on the development of the Bovine genome   

The first Bos Taurus whole genome assembly, a female Hereford, was published just over 

10 years ago (Zimin et al., 2009). They were successfully able to construct an assembly with large-

scale continuity that covered around 91.5% of the bovines 30 chromosomes. This opened new 

and exciting avenues in animal science. Currently, along with the UMD 3.1 (Zimin et al., 2009), 

two other whole genome assemblies are available for reference, these being BTAU 4.2 (Partipilo 

et al., 2011) and BTAU 4.6 (Elsik et al., 2016).  

Single nucleotide polymorphisms are universal, as well as the most abundant form of genetic 

variation among individuals of the same species, even though they are less polymorphic than 

microsatellites due to their bi-allelic nature but easily compensate by being abundant, ubiquitous 

and highly amendable to automation. Due to being evenly spread across the genome, every 

100bp or so, SNPs are more likely to be present in regulatory regions. This allows for SNPs to be 

more likely to be located near a putative QTL or candidate gene. Single nucleotide polymorphisms 

are also highly favoured by industry as they have great repeatability across labs and are cheaper 

than microsatellites. 

 Single nucleotide polymorphisms evenly spread across the genome can be used to detect 

and map mutations that cause variation in the expression of traits of interest by means of a 
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genome-wide association (GWA) analysis (Bader, 2001; Visscher et al., 2012). This GWA 

approach can assess every SNP independently or simultaneously to determine a level of 

association against the trait of interest whilst minimising population stratification that may be a 

result of pedigree and/or breed composition discrepancies between animals. The assumption is 

that each SNPs variance is explained and relates to the effect size of the hidden causal 

polymorphism affecting the trait, the degree of association between the SNP and the 

polymorphism, and any experimental and/or residual error associated with measuring the trait of 

interest (Bader, 2001). This GWA approach requires a considerable number of SNPs to be 

genotyped in a large sample of individuals that enables any analysis to retain significant power in 

order to detect and identify true associations (Mapholi et al., 2016).  

Due to their high distribution, SNPs can have significant associations with traits of low 

heritability, such as fertility and adaptability traits that are hard to measure as they may only be 

expressed later in life or are sex-limited traits. Some traits linked to adaptability struggle to have 

an exact definition that is reproducible across herds. Use of SNPs would greatly increase the 

genetic gain through marker-assisted selection (MAS). Especially if the allele frequency of the 

favourable allele and level of heterozygosity in the population is low (Meuwissen et al., 2001). 

SNPs can be extremely informative with regards to local indigenous breeds in Southern Africa, 

with studies showing  their current application and future potential (Zwane et al., 2016; Makina et 

al., 2016; Lashmar et al., 2018a). The use of high density (HD) platforms, that genotype ~800,000 

SNPs, combined with WGS of high impact indigenous individuals may uncover an abundance of 

QTL, candidate genes, new polymorphisms. This may result in possible identification of causative 

mutations that may be included for GS (Fortes et al., 2013; van Marle-Köster et al., 2013). 

  

1.2.5.1 Linkage disequilibrium 

The knowledge of linkage disequilibrium (LD) between SNPs is essential to estimate the 

necessary number of SNPs for genomic selection (GS), accurate association studies and 

investigating variation between breeds (Pritchard & Przeworski, 2001; Marchini & Howie, 2010; 

van Marle-Köster et al., 2013; Zwane et al., 2016). Linkage occurs when two or more genetic 

markers are linked on a chromosome and not separated during recombination, resulting in LD 

(Nielsen & Slatkin, 2013). 

Linkage disequilibrium is defined as the non-random association between alleles at two or 

more loci and is influenced by historical population-wide evolution (Ardlie et al., 2002; Porto-Neto 
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et al., 2014). Therefore, regions with low recombination rates have a higher LD extent indicating 

that segments of DNA with a high LD are inherited as a unit.  

 D’ and r2 are two statistical properties most used to assess LD between diallelic markers 

like SNPs. D’ aids in understanding population specific long-range LD that can be used to 

represent historical recombination patterns (Gurgul et al., 2014). A disadvantage is that small 

sample sizes, the presence of rare alleles and/or low haplotype frequencies tend to inflate D’ 

(McRae et al., 2012; Nielsen & Slatkin, 2013). Long-range LD can’t be utilised across breeds as 

animals from different breeds do not share a recent common ancestor (Goddard & Hayes, 2009). 

r2 describes the correlation between haplotypes at two loci, and is useful in predicting the power 

of association mapping. Genome-wide average LD (r2) decreases with increasing genomic 

distance in all breeds, which is commonly referred to as LD decay (Porto-Neto et al., 2014). 

Increased ancestral recombination can lead to a loss in statistical power due to a reduced LD 

(Nielsen & Slatkin, 2013), across all genotyping platforms. 

 LD estimates depend on factors such as the history and structure of the population under 

investigation (Porto-Neto et al., 2014; Lashmar et al., 2018a). Other factors include marker type(s), 

the density and distribution of the markers, sample size of the population (Matukumalli et al., 2009; 

Judge et al., 2016), accurate method(s) used for haplotype inference and construction (Sargolzaei 

et al., 2014) and correct implementation of SNP filtering (Gurgul et al., 2014). Causal markers 

have proven to be difficult to recognise, and it has been an even more imposing task in confirming 

their functional causality (Dekkers, 2010; Sharma et al., 2015). 

SNPs found to be linked with causal variants between highly-related individuals, but are in 

linkage equilibrium (LE) with the majority of the population are not effective for use in GS (Goddard 

& Hayes, 2009; Dekkers, 2010). van Marle-Köster et al., (2013) reported that due to the limited 

use of AI by SA beef breeders, limited linkage across the entire population is expected. In contrast, 

SNPs confirmed to be in LD with known causal variants grant an alternative approach for the 

deployment of MAS in livestock populations. These may be discovered in GWAS by analysing 

genomic regions that have been significantly associated with economically important traits 

(Zalesky et al., 1984; Sharma et al., 2015; Lashmar et al., 2018a). The ability to discover these 

regions has been facilitated by the advances in genomic technologies (Meuwissen et al., 2001), 

including whole genome sequencing of most livestock species (McKay et al., 2007; Goddard & 

Hayes, 2009; Zimin et al., 2009).  

Multiplex SNP genotyping has allowed for high precision sequencing of hundreds of 

thousands of loci, at an effective cost that allows for sufficiently large-scale GWAS. The density 
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of SNPs required for an efficient GWA scan depends on the average length of chromosomal 

“blocks” possessing high levels of LD. What varies between species and amongst species-specific 

populations is the intermediate length of genomic segments to which the r2 between terminal loci 

achieves a precalculated value (Matukumalli et al., 2009). 

A haplotype is defined as any combination of alleles or SNP pairs that occur at a specific 

locus (Nielsen & Slatkin, 2013). Haplotype blocks are a combination of alleles found in a genomic 

region, where 5% or less of comparisons between informative SNP pairs showing strong evidence 

of historical recombination within a population (Gabriel et al., 2002). Haplotype block-based 

methods grant a greater level of information content compared with single SNP methods in GWAS 

(Kong et al., 2008; Qanbari et al., 2010; Sargolzaei et al., 2014). When LD is weak between marker 

loci (r2 <0.2), haplotype-block methods are then used in conjunction with scanning and sequencing 

of the whole genome. Identity by descent (IBD) at a given chromosomal location can be predicted 

with numerous markers spanned across that position (Meuwissen et al., 2001). 

 Observations of species-specific LD/haplotype blocks has resulted in the observation that 

cattle have on average, longer length blocks compared to that for humans. This may be due to 

population bottlenecks that happened during domestication and/or establishment of modern cattle 

breeds (McKay et al., 2007). An average block length of 100,000bp in Bos taurus appears to 

achieve an r2 of 0.25, with this LD block size being three times greater than those in human 

populations (Matukumalli et al., 2009). 

A consequence of this high level of LD in Bos taurus indicates that it is essential to only 

genotype a subgroup of polymorphic loci to capture most of the variation common in the genome 

(Berry et al., 2014a), ranging between 30 000 and 50 000 SNP) markers (McKay et al., 2007) in 

pure Bos taurus or Bos indicus breeds. Matukumalli et al., (2009) indicated in cattle, the goal is to 

develop an array that would exceed the minimal number of markers needed to span the bovine 

genome, achieves an average marker density of 100kb and attains an average minor allele 

frequency (MAF) of at least 0.15. Appropriate utilisation of LD information in differing populations 

requires significant population-wide disequilibrium between SNPs and a medium or large-effect 

QTL. In order to quantify enough marker allele diversity to predict any potentially significant QTLs, 

individuals need to be genotyped from across the entire population (Goddard & Hayes, 2009). 

SNPs that are in high LD suggest that they may all be associated with the same QTL. Other 

reasons for upward bias due to high levels of LD, may be the presence of more than one QTL in 

that genomic region (Allison et al., 2002). Earlier studies prove that LD is definitely population 

specific and can be heterogenous between populations depending on their respective histories 
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(Thévenon et al., 2007; McKay et al., 2007; Edea et al., 2014). Successful applications that rely 

on LD across populations depends on allele phase relationship preservation between SNPs and 

QTLs across these populations (Goddard & Hayes, 2009).  

Using SNP data of three different breeds, de Roos et al., (2008) demonstrated that when 

two populations separate and became more genetically divergent from one another, the allele 

phase relationships between them are less inclined to be preserved. McKay et al., (2007), using 

2 670 SNPs, assessed the extent of LD in genotyped populations across eight breeds of Bos 

taurus and Bos indicus cattle. This revealed moderate LD (r2 = 0.2) extended to 40-60kb in cattle 

and indicated that around 50 000 SNP markers could secure the majority of the LD information 

required for GWAS in the European Bos taurus breeds. Thévenon et al., (2007) evaluated the 

extent of LD in a Bos indicus x Bos taurus breed, n = 364, of Western African origin using 42 

microsatellite markers on BTA1, BTA4 and BTA7. These results illustrated that LD extended for 

shorter distances in African cattle compared to what had already been observed in European 

cattle breeds. Edea et al., (2014) assessed the extent of LD in indigenous Sanga and Zebu breeds 

of Ethiopia using a 50 000 SNP array (Matukumalli et al., 2009) and discovered that the degree 

of LD was lower in Sanga and Zebu breeds in comparison to that of European Bos taurus, and 

indicated that any potential GWAS of these hybrid breed would require genotyping platforms with 

75 000 to 300 000 SNPs. The reduced degree of LD observed in these breeds was attributed to 

the SNP ascertainment bias that was resultant from the original detection of SNPs in European 

Bos taurus breeds used in the design of this assay (Zimin et al., 2009).  

The extent of genome-wide LD in all SA cattle breeds has yet not been determined. The SA 

Sanga breeds (Afrikaner, Bonsmara, Drakensberger and Nguni) genetic diversity was previously 

described by Makina et al., (2014) and were proved to be genetically distinct from Angus and 

Holstein breeds. Lashmar et al., (2018a) reported low LD ranging from r2= 0.11 (BTA28) 

to r2= 0.17 (BTA14) for SNPs separated by ≤ 1Mb and r2= 0.20 extended only up to < 30 kb in SA 

Drakensberger breed. This means that well over 50 000 SNPs are needed to capture any 

significant LD relationships in local Sanga breeds. Sanga cattle are hypothesised to be a hybrid 

of Bos taurus and Bos indicus origin. This most likely transpired as Bos taurus Egyptian longhorn 

cattle migrated south from Egypt and the Sudan, and Bos indicus Lateral Horned Zebu cattle 

which originated from Arabia and India (Scholtz et al., 2011). The four Sanga breeds analysed 

(Makina et al., 2014) were shown to share some level of co-ancestry, but with clear distinguishable 

genetic relatedness. From the evidence given above, it has been deduced that the degree of LD 

and the persistence of allelic phase relationships be estimated specifically for populations in which 
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genomic studies and applications are to be implemented. This information is essential for the 

identification of the optimal array to apply regarding cost, potentially increasing the number of 

genotyped individuals and  development of low-density SNP panels that achieve a satisfactory 

level of inter-marker LD (Zalesky et al., 1984; Wang et al., 2012; Berry et al., 2014a). 

 

1.2.5.2 Prerequisites for genome-wide association studies (GWAS) 

The primary consideration of a GWAS should be its statistical power, the probability of 

detecting a variant assumed to be causal, which can only be assessed via simulation (Zalesky et 

al., 1984; Hayes et al., 2003; Spencer et al., 2009). To be included within genotyping platforms, 

SNPs must have conversion rates of higher than 50%. Other incorporation factors include having 

a call rate greater than 99%, must be accurately mapped to either sex chromosomes or autosomes 

and maintain Hardy-Weinberg equilibrium (HWE) with a pre-determined p-value for each species. 

In calculating power, data is simulated under the assumption that an allele is causal and then 

observed to see if any SNPs on the SNP array, within a large region flanking the causal allele, 

attain a high level of significance (Spencer et al., 2009; Zhou & Stephens, 2012). Increasing SNP 

density will increase the power of detecting QTLs and may increase the precision of genome 

mapping to a certain degree. Although, if LD is high over a specific chromosomal segment, an 

increased SNP density may still not allow for the accurate description of a QTLs position within 

this segment (Goddard & Hayes, 2009; Matukumalli et al., 2009). SNPs must be spaced no greater 

than 10kb apart to consistently show LD phase across breeds (Goddard & Hayes, 2009).  

SNP information is available from a wide variety of open source or public domains. These 

include HapMap and Interbreed to name a few. If the true causative SNP is not on the array, there 

may typically be a few flanking SNPs on the array that are associated with it due to their proximity. 

One or more of these SNPs will generate a signal of association and thus allow for the detection 

of new or existing causative loci (Hirschhorn & Daly, 2005; Wang et al., 2005; Spencer et al., 

2009; Stranger et al., 2011). As the whole genome sequences (WGS) of most domesticated 

animals is known, an extensive number of previously undiscovered SNPs were identified, as a 

result of sequencing and/or resequencing. Table 1.5 provides a summary of all the available SNP 

arrays currently available. These array sets differ in the way in which the SNPs are selected, and 

the total number of SNPs genotyped (Spencer et al., 2009; Matukumalli et al., 2009; Nicolazzi et 

al., 2015).  
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Table 1.5 Summary of the currently available genotyping arrays 

 

 

Polymorphic SNPs in many populations were primarily derived from WGS reads 

representing five taurine and one indicine breed to compare against the reference genome 

assembly from a slightly inbred Hereford cow (Zimin et al., 2009; Bovine HapMap Consortium et 

al., 2009). The majority use of WGS of taurine breeds indicates that ascertainment bias exists 

within most genotyping platforms as taurine breeds will have higher levels of informativeness and 

inclusion in comparison to the indicine breeds (Spencer et al., 2009; Matukumalli et al., 2009). 

Zwane et al., (2016) indicated there is ascertainment bias in the BovineSNP50 towards the 

European breeds as the overall MAF in the indigenous SA breeds she studied was lower. The 

lower representation of the Bos indicus populations in the design of these platforms indicates a 

smaller proportion on indicine loci compared to the taurine loci (Chan et al., 2009; Espigolan et 

al., 2013; Edea et al., 2014). This poses a dilemma for the use of these SNP chips in local SA 

indigenous breeds. Most breeds are an admixture of both taurine and indicine descent, with the 

local Sanga breeds showing wide variation in genetic and breed composition.  

The availability of cost-effective HD SNP chips that can assay more than half a million loci 

offers a marker density that generates a high statistical power. Recent studies (Bolormaa et al., 

2015; Do Nascimento et al., 2018; Kluska et al., 2018; Lopes et al., 2018; Melo et al., 2018) have 

detailed the behaviour of LD using the set of 777 000 SNPs on the BovineHD platform (Illumina 

Company Name of Genotyping Array Number of SNPs 

   

Illumina Bovine3k BeadChip 2 900 
 BovineLD BeadChip 6 909 
 BovineLD .v2 BeadChip 7 931 
 BovineSNP50.v2 BeadChip 54 609 
 Bovine HD BeadChip 777 962 
 GeneSeek Dairy Ultra LD .v2 7 049 
 GGP LD .v3 26 151 
 GGP HD .v2 139 480 
   

   

Affymetrix Axiom Bovine BeadChip 648 875* 
   

 
  

Independent ICBF IDB v2 17 807 
 ICBF IDB v3 53 262 

*SNP probes  
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Inc, San Diego). A major advancement with regard to this HD array is that it allows for a more 

accurate estimation of LD over shorter chromosomal distances as it carries an increased number 

of marker pairs that are separated by 10 kb or less (Porto-Neto et al., 2014).  

In general, Affymetrix arrays have a higher level of redundancy compared to Illumina arrays, 

in that they contain a greater number of SNP sets that are more highly correlated with each other. 

This results in a lower coverage and power for the same number of SNPs, but this redundancy 

can be advantageous. The loss of specific SNPs to quality control (QC) thresholds may not be too 

costly as significant signals of association are likely to include more SNPs, which make them 

easier to differentiate from false-positive associations or any genotyping artefacts (Spencer et al., 

2009). 

Qwabe et al., (2013) reported that SA cattle breeds have a higher number of SNPs with low 

MAF (MAF<0.05) and thus have fewer polymorphic loci compared to European Angus and 

Holstein breeds. This lower number of polymorphic loci among SA cattle breeds can be associated 

to the ascertainment bias correlated with the creation of the BovineSNP50 BeadChip (Qwabe et 

al., 2013), as the SNPs used in the creation of this assay were detected in European Bos taurus 

breeds, resulting in the observation of low MAF in Bos indicus breeds. SNPs with low allelic 

frequencies contribute to the underestimation of r2 assessments of the LD between SNP markers. 

 

1.2.5.3 Imputation 

The rapid development of cost-effective genotyping platforms over the last few years, 

coupled with the ongoing discoveries of new SNPs, means that a wide range of HD and low-

density SNP arrays are now readily available (Table 1.5). Thus, a methodology to combine 

separate genotyped populations to create a larger training population for appropriate GWAS for 

trait analysis and use of GS was needed. The release of newer lower density arrays, 

complementary to pre-existing HD arrays (Judge et al., 2016), has resulted in most breeds having 

individuals genotyped on a range of different genotyping platforms. With the early establishment 

of a reference population on the GGP 150K array through the BGP, SA Stud Book have been 

marketing the use of two lower density panels, namely the GGP 80K and ICBF IDB v3 arrays, as 

a cost-effective way of including more animals in estimation of GEBVs (van der Westhuizen et al., 

2017). 

The benefits linked to increasing SNP density and/or from using available imputation 

methods are greatest for low MAF SNPs. A clear consequence is that an increased sample size 

is going to have a greater effect on power than an increased SNP density. Three MAF thresholds 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



31 
 

(0.05, 0.1, and 0.2) were outlined to investigate the effect of allele frequencies on LD extent 

(Anderson et al., 2008), and LD was observed to increase as the MAF increased across all breeds, 

notably for SNP pairs separated by distances shorter than 100kb in length. This was previously 

reported by Khatkar et al., (2008) in Australian Holstein-Friesian cattle. It was observed that the 

mean r2 was higher (0.70) for SNPs with a MAF ≥ 0.2 compared to the r2 0f 0.59 for SNPs with 

MAF ≥ 0.05 separated by lengths of 1–10 kb. This was accredited to the fact that as the MAF 

threshold increases, there is a corresponding increase in SNP pairs with comparable allele 

frequencies which results in an increase in r2 (Khatkar et al., 2008).  

Imputation is the prediction of missing genotypes which are estimated from a reference 

population (Scheet & Stephens, 2006) and is considered a zero-cost method of inferring SNPs 

between genotyping platforms (Anderson et al., 2008). This results in increasing the statistical 

power of any potential association studies. Halperin et al., (2005) states that the use of 

economically and computationally efficient low-density SNP marker panels is essential for 

quantifying breed specific trait variation. Thus, imputation is best used for increasing the size of 

the population under investigation. 

Imputation can be a powerful means of combining data sets genotyped with different arrays, 

provided sufficient overlap exists between the panels. This overlap consists of common SNPs 

between the SNP chips. How genotyping costs are reduced, is by way of breed societies tending 

to genotype young individuals with a cost-effective low-density panel. Low-density panels cover 

the genome uniformly, and are used in imputation, coupled with HD panel reference population 

information to infer the genotype of untyped loci (Weigel et al., 2010; Zhang & Druet, 2010; Berry 

& Kearney, 2011; Dassonneville et al., 2012; Wang et al., 2012; Berry et al., 2014a; Sargolzaei et 

al., 2014; Chud et al., 2015; Judge et al., 2016; Lashmar et al., 2018b). This reference population 

is normally derived from high-impact animals, mainly sires, that contribute significantly to the 

genetic variation within breeds. Imputing of SNP haplotype sequences uses the current patterns 

of genetic variation within this reference population as well as any relevant pedigree information 

that is available (Kong et al., 2008; Sargolzaei et al., 2014). Berry et al., (2014a) pointed out that 

superior imputation accuracies are achieved within breeds in comparison with between breeds.  

An effective imputation strategy involves capitalising on existing pedigree relationships 

between individuals and historical population-wide LD by seeking for shared haplotypes from 

longest to the shortest. This is the focal point of the method(s) used in FImpute v2.2 software 

(Sargolzaei et al., 2014). FImpute, described as a deterministic program, employs both family-

based and population-based methods. It utilises two separate methods, which are phasing and 
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the use of overlapping sliding windows (OSW). The current version (v2.2) of FImpute is able to 

correlate and complement homologous autosomes on multi-core Linux systems (Sargolzaei et al., 

2014). 

Phasing, a type of haplotype-block method, is the process of correctly aligning SNP pairs 

located on homologous chromosomes. Initially proposed by Kong et al., (2008), local phasing 

exploits the strong correlations between SNP alleles within LD blocks. The main limitation here 

being that SNPs that are far apart cannot be reliably phased due to weak LD correlations. The 

OSW approach, proposed by Sargolzaei et al., (2014), in a way presents a solution to the 

aforementioned limitation. The OSW approach utilises accurate pedigree records and by moving 

long windows over an autosome. As information from more distant relatives is factored in, the size 

of the OSW shrinks with each autosomal sweep. The first window is a maximum of 1000 SNPs, 

with each subsequent window being reduced by a factor between 0.1-0.2, with the minimum 

window size being 2 SNPs. Each window has a haplotype library reference, that is then used for 

phasing and eventual imputation within each window. 

The OSW method allocates haplotypes based on the number of crossover events that 

occurred since a most recent common ancestor. Closely related individuals will have fewer 

crossover events and thus will share longer haplotype blocks than individuals who are separated 

by multiple generations. The higher the number of recombination events between two individuals 

results in a decrease in the length of the haplotype block. As these windows consistently overlap, 

the accuracy of correctly identifying shorter-shared haplotypes between distantly related 

individuals is increased. Genealogy plays a significant role in phasing and imputation (Kong et al., 

2008) but as the panel density of the reference population increases, the importance of the family 

information decreases. Increasing panel density also increases the likelihood of correctly 

identifying shared segments, especially for shared haplotypes (Sargolzaei et al., 2014). 

Imputation accuracy (IA) is affected by many factors. These include the different SNP panels 

used, MAF, the imputation software utilised, population structure and level of relatedness between 

the reference and target populations (Howie et al., 2009; Chud et al., 2015; Pausch et al., 2017). 

Genomic regions with low IA may occur due to greater observed heterozygosity than expected, 

incorrect SNP genomic position, poor genotyping calling, or a recombination hotspot may occur 

nearby (Berry et al., 2014a). 

 Accuracy of correctly imputing genotypes from an individual is increased if one or both 

parents are included in the reference population. Any missing information is inferred when 

haplotypes of the parents are matched against progeny haplotypes. These detected matches 
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allow for crossover events to be identified and the chromosomal location they occurred. Non-

genotyped parents with sufficient progeny data may have their genotypes phased and imputed (Li 

et al., 2009). This was verified (Berry & Kearney, 2011), where a minimum of five offspring are 

needed for accurate imputation. These “in silico” genotypes can then be used as if the SNPs 

involved were directly genotyped. Intermittent missing genotypes may also be imputed which will 

improve the call rate of poorly genotyped SNPs (Moser et al., 2009; Marchini & Howie, 2010). 

In order to use imputed sequences in breed specific association studies, verification of 

FImpute is needed to ensure the highest accuracy possible (Lashmar et al., 2019). This involves 

the splitting of the reference population into two groups, a reference and target population. The 

target population has >80% of their genotype removed and is then imputed, with several statistics 

calculated. These are done by comparing the target animals imputed genotype with its original 

genotype (Berry & Kearney, 2011; Chud et al., 2015; Lashmar et al., 2018b). Concordance rate 

is the proportion of correctly imputed genotypes (GCR) or alleles (ACR) and the correlations 

between actual and imputed genotypes. 

Table 1.6 summarises the main imputation software currently available. BEAGLE and 

IMPUTE2 utilize hidden Markov models (HMM), while assuming individuals are unrelated. These 

calculate the posterior distribution of SNP haplotypes, and infer missing genotypes from that 

distribution. They have shown to produce consistent predictions but are mainly used in human 

population studies (Marchini & Howie, 2010; Browning & Browning, 2016) with a few done in 

livestock (Berry & Kearney, 2011; Dassonneville et al., 2012; Berry et al., 2014a). These programs 

are known to be computationally and time demanding. A recent review (Whalen et al., 2017), 

indicated that there is a possibility of improving HMM methods. 

 

Table 1.6 Summary of the available imputation software and the methodology used 

Imputation Software Methodology Reference 

   

BEAGLE v3.3.2 Hidden Markov Models (Browning & Browning, 2009, 2016) 

   

IMPUTE2 Hidden Markov Models (Marchini et al., 2007; Howie et al., 2009) 

   

FImpute Open Sliding Windows and (Sargolzaei et al., 2014) 

  Long Range-Phasing   

 

FImpute is not as computationally demanding as BEAGLE (Chud et al., 2015) and this, 

paired with the utilisation of Linux multi-core systems, is the reason as to why FImpute is now 
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widely used. This is evident as FImpute has been successfully applied across multiple species. 

These include sheep (Bolormaa et al., 2017), horses (Pereira et al., 2017), pigs (van Son et al., 

2017), beef and dairy cattle (Do et al., 2018; Iung et al., 2018; Lopes et al., 2018) and even salmon 

(Yoshida et al., 2017). 

Rare alleles present a challenge regarding accurate imputation. These variants may 

substantially contribute to what is being called “missing heritability” (Zuk et al., 2012). As MAF 

decreases, genotyping errors create sensitivity within association tests. Therefore, high accuracy 

of imputation for rare alleles is vital. As most rare variants tend to be recent mutations, they tend 

to be associated with longer haplotypes. The use of pedigree information should increase the 

imputation accuracy of these rare variants. Inaccurate pedigree records will result in the lowering 

of imputation accuracy. Sargolzaei et al., (2014) did mention that as the reference population 

becomes bigger, the accuracy of imputed genotypes for SNP with low MAF will increase. 

The importance of the bovine X-chromosome in GWAS and GS has been largely ignored, 

as males are heterogametic at the SNPs. The X-chromosome accounts for about 6% of the total 

physical genome (Zimin et al., 2009) and according to Ensembl carries 4.2% of protein encoding 

genes, thus its omission from GWAS studies is questionable.  

A study by Qanbari et al., (2010) reported that by minimizing SNP density by only including 

SNPs that were polymorphic (MAF > 0.1) for all breeds, the LD decay for Bovidae X-chromosome 

became more homogeneous across all breeds which didn’t differ much from the results the 

autosomes obtained. Due to the bottlenecks experienced by cattle populations since their 

domestication, during more recent breed formation and in part a result of the frequent and 

intensive use of AI, it is feasible to expect extensive LD on BTAX (Porto-Neto et al., 2014). Indicine 

cattle continued to have a lower LD when the distances between markers were large, in 

comparison to the other breeds under investigation, which implies that they originated from a 

larger ancestral population (Porto-Neto et al., 2014). Thus the inclusion of the X-chromosome in 

GWAS can be beneficial and may produce novel results. Mao et al., (2016) proposed a method 

of imputing X-chromosome in ungenotyped sires by treating the pseudo autosomal region as 

autosomal using FImpute v2.2 (Sargolzaei et al., 2014). The IA was further increased when 

including more females in the reference population. 

The use of FImpute has been shown to be successful in imputing from low-density to HD 

panels in composite beef cattle (Chud et al., 2015; Lopes et al., 2018). The benefits of dense 

marker panels for GWAS can be compromised when the IA is too low (Khatkar et al., 2012; Pausch 

et al., 2017). More recently, a study conducted at the University of Pretoria, provided verification 
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of the accuracy of FImpute on a local Sanga breed, the SA Drakensberger (Lashmar et al., 2018b) 

using the GGP HD (150k) bovine beadchip. Genotype and allele call rates of greater than 95% 

were observed (Lashmar et al., 2018b) This indicates that FImpute may be suitable for use in local 

Sanga breeds to increase the training population for use in GWAS. Milanesi et al., (2015) argued 

that IA is robust to updates to the cattle reference genome and the use of the UMD.3.1. (Zimin et 

al., 2009). 

With the advancement of Next-Generation Sequencing (NGS) (Behjati & Tarpey, 2013), the 

ability to capture WGS has become a possibility. This has occurred in Brown Swiss, Holstein, 

Jersey  breeds (Naderi et al., 2018). Recent studies using whole-genome sequences as a 

reference population for imputing a range of smaller SNP panels (Brøndum et al., 2014; 

Frischknecht et al., 2017; McGovern et al., 2019; Purfield et al., 2019a; Ring et al., 2019; Twomey 

et al., 2019) have occurred. The program used was Minimac2 (Fuchsberger et al., 2015), which 

used FImpute generated HD SNP chip data from individuals imputed up from 50k SNP chip data. 

There has been impressive innovation in creating computational statistical models that are 

effective in capturing breed specific patterns of LD (Scheet & Stephens, 2006; Marchini & Howie, 

2010; Sargolzaei et al., 2014). Dassonneville et al., (2012) stressed that the development of low-

density panels should be advanced to maximise imputation accuracy, with Berry et al., (2014a) 

investigating and reporting that they have been. This has aided in the apprehension of the 

confounding nature of correlations between SNPs that exist within increasingly larger genotyped 

populations. Large studies today are still underpowered, unable to detect most SNP effects. A 

combination of data across genotyping platforms will be essential to facilitate these meta-analytic 

approaches. Accurate imputation is key to ensuring that the benefits of a larger population with 

more common SNPs exceeds the imputation loss as gains from HD are small (VanRaden et al., 

2013). Lashmar et al., (2018b, 2019) stated that imputation of Sanga breeds is possible, with strict 

adherence to ensuring quality input data, proper implementation of QC and pedigree 

completeness. 

 

1.2.5.4 Application of genome wide association studies (GWAS) 

A GWAS involves the evaluation of molecular data alongside phenotypic data to detect any 

significant associations between genetic markers spread across the genome, and trait variation 

(Stranger et al., 2011). The use of this has shed additional light on the mechanisms of complex 

traits (Sharma et al., 2015), as well as quantifying diversity among local indigenous breeds 

populations (Makina et al., 2014, 2016; Sanarana et al., 2016; Lashmar et al., 2018a). Several 
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studies have been conducted on European and tropically adapted beef cattle breeds on traits of 

economic importance (Snelling et al., 2009; Bolormaa et al., 2011; Hawken et al., 2012; Berry et 

al., 2013; McDaneld et al., 2014; Costa et al., 2015; Regatieri et al., 2017; Melo et al., 2018).  

In literature, two perspectives are described with regards to GWAS. The first is to consider 

a GWAS as a self-contained experiment, with the statistical inference of a formal hypothesis test 

assuming a null hypothesis of no association. From this aspect, the end goal of a GWAS is to 

determine if SNPs are, or are not, associated with the phenotype or trait of interest (Meuwissen 

et al., 2001; Spencer et al., 2009). 

 Secondly, is to regard a GWAS as an experiment that highlights SNPs of interest, and then 

to include as many as possible in further replication studies. This increases the probability that at 

least one SNP will have a level of significance imposed by a predetermined threshold. According 

to Spencer et al., (2009) and Zhou & Stephens, (2012), it is recommended to keep the number of 

SNPs consistent in order to reduce the amount of false positive associations that could occur. The 

level of significance doesn’t affect the relative performance of the arrays, or the corresponding 

effect of the sample. For a SNP array, overall false positives rates will differ as they are dependent 

on the population in which the GWAS is being conducted, due to alternating patterns of LD 

between the SNPs on the chip (Matukumalli et al., 2009; Lashmar et al., 2018a). 

GWAS requires efficient and accurate tag SNP selection, proper interpretation of results 

generated by multiple comparisons and strategies to manipulate pairwise SNP-by-SNP 

interactions (Thomas, 2006; Anderson et al., 2010; Voorman et al., 2011). Quality control of data 

is one of the most important steps that minimizes error in a GWAS, especially those of false 

positive associations (Anderson et al., 2010; Sharma et al., 2015). Two steps for minimizing false 

positives include that the population must be genetically homogenous, have no population 

stratification, and all individuals in the sample must be independently drawn from the population. 

An alternate scenario is that related individuals may share both causal and non-causal alleles and 

the corresponding LD between these sites can leave artefacts (Nielsen & Slatkin, 2013). 

VanRaden et al., (2009) reported large gains in reliability occur from having large training 

populations and large numbers of SNPs because most traits are influenced by many genes with 

small effects. Most GWAS use mass-produced genotyping platforms to capture a given proportion 

of genetic variation genome wide.  

Most GWAS on the Bovidae species have focused on dairy breeds or European beef 

breeds. Recent identification of breed-informative SNPs within three local, indigenous breeds has 

occurred (Zwane et al., 2016), but there is a need to continue these studies into all breeds to 
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enable us to further understand the genetic architecture of these breeds. The Drakensberger 

breed has recently participated in a few genetic studies (Lashmar et al., 2018a; b). Major efforts 

were made to verify the Celtic allele as the causal allele for horned or polledness in two Sanga 

breeds (Grobler et al., 2018). This poses as a promise to reduce the need for dehorning and 

portrays the idea that genomic information will become invaluable for issues such as welfare and 

longevity. 

Mapping and confirmation of QTL in independent populations of cattle, increases the 

confidence of reported results (Fortes et al., 2013). Other studies have identified SNPs associated 

with traits that influence reproductive efficiency in Bos taurus cattle, which are mostly a variety of 

dairy breeds. Obvious candidates for fertility traits are genes that encode for a variety of 

reproductive hormones and genes with functional processes related with fertility. Traits such as 

days to first calving and calving interval, were associated with polymorphisms of Gonadotrophin 

Releasing Hormone Receptor (GnRHR) in dairy cattle (Derecka et al., 2010). McDaneld et al., 

(2014) commented that high-ranking SNP effects on dairy reproductive traits including daughter 

pregnancy rate, heifer conception rate, and cow conception rate were confirmed in 87 SNPs. 

These were distributed across 26 autosomes and the X chromosome.  

Casas et al., (2004) stated that on BTA29, a region was associated with their estimated age 

at puberty, testicular volume and weight. When a bull would achieve a SC of 28cm, their age at 

puberty was the predicted bulls age in days. An IGF1 polymorphism was associated with age at 

a SC of 28cm in Angus bulls (Lirón et al., 2012). Between these studies reported for various dairy 

breeds, similar regions of the genome harbour genetic variation that influence fertility and maternal 

traits and this warrants further assessment. That QTLs or any associated genes have been 

recognized in virtually all chromosomes, including a chromosomal anomaly that Y chromosomal 

segments present in female cattle are associated with decreased female fertility, confirms the 

complexity of reproductive traits (Hawken et al., 2012; Fortes et al., 2013). 

In order to identify polymorphisms that promote variation in complex traits (Bolormaa et al., 

2014; Melo et al., 2018), QTLs detected in a GWAS meta-analyses must be validated against 

evidence from independent studies of related traits. Studies investigating the underlying influences 

of genomic regions that affect WWMAT and ICP are scarce, while those on AFC and SC are more 

common. 

A GWAS performed on Nellore cattle (Bos indicus) identified 5 SNPs on five separate 

chromosomes were associated with sexual precocity in heifers (Nascimento et al., 2016).  Using 

the Ensembl database, 3 SNPs on BTA5, 10 and 22 were identified to be associated with genes 
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that encode for U6 spliceosomal RNA that forms part of the main spliceosomal complex within the 

nucleus. The evidence of different chromosomes affecting the same trait, as well as similar gene 

regions between the autosomes, verifies the idea that multiple QTLs each with a small effect 

contribute additively towards the quantitative expression of reproductive performance. 

There is a lack of GWA studies on the genetic characterisation of maternal traits in beef 

cattle. Studies on dairy cattle have been done, but as fertility traits are labour-intensive to measure, 

the lack of studies points to a lack of appropriate and accurate recordings for genomic statistical 

analyses.  

Frischknecht et al., (2017) analysed maternal gestation length (GLMAT) and maternal birth 

weight (BWMAT). No significant SNPs for BWMAT were found, but a large QTL located on BTA13 

was associated with GLMAT. GL is a large proportion of the ICP and an optimisation of this may 

result in a positive decrease of the ICP. This variant is located at 65.5 Mb, located in the CPNE1 

gene. This gene encodes for a calcium-dependant phospholipid binding protein. 

Costa et al., (2015) reported 19 SNPs to be linked with AFC, which explained 6,42% of the 

trait’s phenotypic variance in Nellore heifers. A GWAS on weaning weight for both direct and 

maternal effects in Colombian Brahman associated 5 chromosomes with 15 QTLs to the 

expression of WW direct and WWMAT (Martínez et al., 2017). It was also indicated that the reason 

these studies may not have discovered any significant SNPs on BTA 14 (DGAT or PLAG) is due 

to the genetic differences that exist between Bos taurus and Bos indicus types. 

Hawken et al., (2012) determined that in Tropical Composite and Brahman female cattle’s 

age of puberty was linked to 20 SNPs on 12 different chromosomes. Two SNPs are located on 

BTA 14, with one SNP being at 61,9Mb which is 0.1 Mb from the QTL identified for SC in Brahman 

cattle (Fortes et al., 2012b). 

The use of this trait, SC, as an indicator trait for AFC in daughter heifers is used extensively 

across the beef breeding world. Extensive genome analysis on SC by McClure et al., (2010) using 

390 microsatellite markers identified 39 SNPs on 22 different chromosomes. The 19th 

chromosome had 4 regions between 11.8 Mb and 59.4Mb. This indicates that there may be a 

large QTL here that contributes to the additive variance in the expression of SC. With the decrease 

in cost of SNP genotyping platforms, the use of SNPs to identify causal gene regions has now 

replaced the use of microsatellites.  

Fortes et al., (2012b) identified a region on the X-chromosome at 62-96 MB associated with 

SC at 12 months in Brahman cattle. Age at puberty, which is highly correlated to SC, was found 

to be associated with QTLs on both the 14th and X chromosome by Fortes et al., (2012a) 
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respectively. The X-chromosome QTL is located at 86Mb, which is in the same region as the QTL 

for SC, indicating these two traits may be influenced by the same QTL. 

Melo et al., (2018) identified 108 significant SNPs on 19 BTA using a multi-trait meta-

analysis method. The two relevant traits analysed were AFC and SC in Brahman and Nellore 

cattle. The overall finding was these SNPs were located around QTLs or gene regions associated 

with physiological mechanisms that control the expression of sexual precocity in composite cattle. 

da Silva Romero et al., (2018) identified 4 regions associated with SC in Canchim bulls. 39 

QTLs were observed to be in these regions using CattleQTLdb database, while 37 were observed 

when referring to the Ensembl database. Two candidate genes were located on BTA21 and one 

on BTA12. As previously stated, these genes affect the physiological membranes that control 

expression of reproductive traits. 

 

1.2.6 Conclusion 

Fertility traits are essential in selection programs for the genetic improvement of all livestock 

species and respective breed types. The discovery of SNP markers and the rapid development of 

high throughput sequencing technology resultant in analyses on WGS, has led to a multitude of 

various GWA studies to gain a better understanding of the true underlying genetic mechanisms 

that affect traits of interest. Most studies have focussed on growth and production traits, with only 

more recently the investigation of fertility traits has been given major attention. A similar 

examination of genomic regions affecting reproductive traits, as explored in this literature review 

and to my knowledge, has not yet been done in our indigenous SA Bonsmara cattle.  
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Chapter 2 Materials and Methods 

2.1 Introduction 

This study involved the analyses of a dataset provided by the SA Stud Book and Animal 

Improvement Association in conjunction with Bonsmara SA. Animal recording is compulsory for 

the breeders of SA Bonsmara and a number of fertility and growth traits are recorded. The data 

available for the study consisted of a pedigree file, estimated breeding values (EBVs) of four 

different traits and the genotypes of the animals with estimated breeding values. The four fertility 

traits included were, age at first calving, inter-calving period, weaning weight maternal and scrotal 

circumference with 4 171 animals having EBVs for all four traits. Genotypes have been generated 

within the Bovine Genomics Project (BGP), aimed at building a reference population for the 

implementation of genomic selection. Individual breeders have also submitted biological samples 

for genotyping. Genotypes on 3 291 animals were available, genotyped using one of three 

genotype arrays, namely, the GGP 150K, GGP 80K and the ICBF IDB platforms. 

Consent was provided by the Bonsmara breeders society, for use of the phenotypic and 

genotypic data and ethical approval was granted from the Research/Ethics Committee (EC-

180000127), Faculty of Natural and Agricultural Sciences at the University of Pretoria for the use 

of external data.  

 

2.2 Materials 

The number of animals with pedigree data, estimated breeding values and genotypes is 

summarized in Table 2.1, with pedigree records collected over a 70-year period (06/01/1949 to 

18/08/2019). 

 

Table 2.1 Summary of animals with pedigrees, estimated breeding values (EBVs) and genotypes 

for the SA Bonsmara breed available for this study 

Number of Animals With Pedigrees Genotyped EBVs 

Male 917 322 1 522 2 098 
Female 1 102 926 1 769 2 073 

    
Total 2 020 248 3 291 4 171 

      
 

In Table 2.2 the genotypic data originating from three separate arrays are shown. The 

number of SNPs, animals and mean call rate per genotyping array is included as well as the 

respective laboratories where genotyping was performed. 
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Table 2.2 Summary of genotypic data provided for the analyses 

          

      
Genotyping panel SNPs Animals  Mean Call Rate Laboratory 

           

GeneSeek GGP 150K 140 113 1 949  0.977258 ARC BTP (South Africa) 

      
GeneSeek GGP 80K 76 883 597  0.990379 GeneSeek (USA) 

      
ICBF IDB V3 55 445 745  0.979629 Weatherbys (Ireland) 

      
      

2.3 Methods 

2.3.1 Initial data editing 

Data was provided in two separate files containing the pedigrees, trait EBVs and 

associated accuracy values. RStudio (RStudio Team. RStudio., 2019) was used to separate the 

traits individually and appropriately format them for further downstream analysis. The pedigree file 

was edited into block code format required for use in MiX99 (Lidauer et al., 2017b) and the given 

accuracies were converted into reliabilities in RStudio (RStudio Team. RStudio, 2019). 

Genotypic data was received in PLINK-format input files (MAP and PED files) for the 

respective genotyping arrays. Duplicate animals across or within SNP arrays were identified and 

removed using RStudio (RStudio Team. RStudio, 2019) and animal IDs and sexes were updated 

in PLINK (v1.9) (Purcell et al., 2007). SNPConvert (Nicolazzi et al., 2016) was used to update the 

genotype files with a revised file downloaded from SNPChiMP (Nicolazzi et al., 2015) using the 

UMD 3.1.1 build (GCF_000003055.6; Zimin et al., 2009), to accommodate any changes in SNP 

names and/or base pair positions. The ICBF and GGP 80K genotyping platforms underwent the 

same protocol followed as above for the HD chip. 

 All data analysis was undertaken using the Linux Ubuntu software platform (Free Software 

Foundation, 2018) and a multitude of other software applications or platforms.  

 

2.3.2 Deregression of estimated breeding values 

Estimated breeding values for the fertility traits (AFC, ICPs 1, 2 and 3, WWMAT and SC) were 

deregressed to remove any potential bias that may have occurred during the calculation of EBVs. 

The use of MiX99 (Strandén & Lidauer, 1999) requires multiple input files and is a command line 

software package requiring the use of the terminal in Unix systems. The use of APaX99 (Lidauer 

et al., 2017a) requires a complete block code pedigree, a reliability file and an executable file. As 
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previously mentioned, the pedigree and reliability file were constructed in RStudio (RStudio Team. 

RStudio, 2019).  

  The effective record contributions (ERCs) were generated using the reversed reliability 

approximation method in APaX99 (Lidauer et al., 2017b). Relevant ERCs were extracted using a 

Perl (Wall et al., 2000) script to be used as a weighting factor in the deregression of the EBVs. 

The deregression step was done using the Secant method (Strandén & Mäntysaari, 2010) which 

requires the creation of a MIX.99.DIR file using the combination of the MiX99 pre-processor 

(Lidauer et al., 2017b) and a .CLIM file (Lidauer et al., 2017c). This involves the use of a block 

code pedigree including phantom parent groups, which, in the present study consisted of 60 

separate pedigree clusters that grouped unknown parents from sire-sire, sire-dam and dam-dam 

lines and those from specific decades. SA Stud Book provided these genetic groups and phantom 

parent groups were appropriately allocated. 

 The data file contained the block code ID of an animal, a column of ones for each animal 

with an EBV and its respective ERC. Only animals with an ERCs of at least 0.5 were retained and 

the deregression was repeated. Table 2.3 indicates the data filtering that occurred with the initial 

number of animals with EBVs being 4 171 and the total number of animals with EBVs and an ERC 

>= 0.5 that underwent deregression. 

 

Table 2.3 Summary statistics of the traits and animals with EBVs included in the deregression 

process 

Trait Heritability Animals with ERC ≥ 0.5 Median ERC  ERC Range 

AFC 0.22 3 230 1.3971 0.5033 - 58.056 

ICP 1 0.13 3 259 2.478 0.5054 - 34.1130 

ICP 2 0.09 3 221 3.6619 0.5026 - 45.6430 

ICP 3 0.03 3 255 10.674 0.5146 - 258.97 

MWW 0.15 3 385 4.3913 0.5016 - 114.85 

SC 0.37 2 939 1.3752 0.5003 - 32.663 

 

 Lastly, the solve.deregression line of code using the MiX99 solver generates a Solani file 

containing the newly deregressed proofs. Animals with both deregressed EBVs (dEBVs) and post 

quality control genotypes were extracted from the Solani file using an appropriate Perl (Wall et al., 

2000) script. Plots generated in RStudio (RStudio Team. RStudio, 2019) indicate ERCs against 

reliabilities and EBVs against dEBVs. 
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2.3.3 Quality Control 

A preliminary analysis and quality control (QC) of the 150K population was performed prior 

to the imputation of the lower density platforms using PLINK v1.9 (Purcell et al., 2007). The given 

datasets were firstly transformed into binary files for easier manipulation and pruning of the 

genotype files. The following threshold parameters were applied. 1) Only autosomal SNPs were 

retained. 2) Any SNP with an unknown position was removed. 3) Only animals with a call rate 

greater than or equal to 0.9 were retained. 4) Only SNPs with a call rate of greater than or equal 

to 0.9 were retained. The filtered datasets were then recoded into PLINK format (MAP and PED) 

files for further downstream analysis. Genotyping rates as well as the number of remaining 

animals and SNPs were recorded after each QC step.   

Due to the process of imputation, SNPs that occur on the lower density platforms must be 

present on the reference panel (Lashmar et al., 2019). These are referred to as the common SNPs 

(Sargolzaei et al., 2014). Thus, the high-density platform must first undergo pre-imputation QC 

before establishing the final list of SNPs that are common across all three genotyping arrays. 

Table 2.4 summarizes the number of SNPs on the genotyping platform, the loss of SNPs at each 

step, the number of animals in the dataset and the resultant change in mean GCR as QC 

proceeds.  

 

Table 2.4 Summary of the quality control undertaken on the GGP 150 HD data frame using PLINK 

(Purcell et al., 2007) 

150 HD Dataset 
Number of 

SNPs 
Loss of 
SNPs 

Number of 
Animals 

Mean 
GCR 

     

Original 140113 - 1949 0.977258 

Common SNPs* 138898 1215 - 0.982249 

Autosomal SNPs** 132294 6604 - 0.982448 

Post-PCA  132294  1944 0.982445 

Unknown/Duplicate BP 132236 58  0.98264 

90% Individual Call Rate 132236 - 1932 0.983222 

90% SNP Call Rate 128793† 3443 - 0.988047 

     

Total Change   11320 17 0.010789 
*SNPs that are on genotyping platform v1 and updated v2  
**Removal of the X-Y sex chromosomes 
†Final number of SNPs used for imputation using FImpute (v3) (Sargolzaei et al., 2014) 
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Analysis and QC of the populations on the two lower density platforms occurred after the 

QC of the population genotyped with the Geneseek GGP 150K platform. The Geneseek GGP 

150K array will be referred to as the reference panel from here on as it is the highest density that 

imputation will occur up to in this study. 

The common SNPs among the three genotyping platforms were identified. Initial SNP 

densities, number of animals per platform and genotyping rates were recorded for a later 

comparison with the final dataset post-QC. QC of the respective platforms was completed using 

PLINK (v1.9) (Purcell et al., 2007).  

Eight and thirteen duplicate animals originating from the Geneseek GGP 80K panel and the 

ICBF IDB v.3 array respectively, were removed using the --remove [file.txt] command in PLINK 

(v1.9) (Purcell et al., 2007). 

 Table 2.5 below indicates the number of SNPs retained and final number of animals 

genotyped on the Geneseek GGP 80K HD platform. 

 

Table 2.5 Summary of the quality control undertaken on the GGP 80 HD data frame using PLINK 

(Purcell et al., 2007) 

80 HD Dataset 
Number of 

SNPs 
Loss of 
SNPs 

Number of 
Animals 

Mean 
GCR 

     

Original 76883 - 597 0.990379 

Duplicate Animals - - 589 0.988035 

Common SNPs* 69430 7453 - 0.993053 

90% SNP Call Rate 68865 565 - 0.994818 

     

Total Change   8018 8 0.004439 
*SNPs that are present on the reference panel 

 

Table 2.6 indicates the final number of animals genotyped and number of SNPs remaining on the 

ICBF IDB v3 array. 
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Table 2.6 Summary of the quality control undertaken on the ICBF IDB v.3 data frame using PLINK 

(Purcell et al., 2007) 

ICBF IDB v3 Dataset 
Number of 

SNPs 
Loss of 
SNPs 

Number of 
Animals 

Mean 
GCR 

     

Original 52445 - 745 0.979629 

Duplicate Animals - - 732 0.979681 

Common SNPs* 36629 15816 - 0.98713 

90% SNP Call Rate 35706 923 - 0.991721 

     

Total Change   16739 13 0.012092 
*SNPs that are present on the reference panel 

 

Genotyping rates as well as the number of remaining animals and SNPs were recorded after 

each QC step. 

 

2.3.4 Principal component analysis (PCA) 

The main goal of principal component analysis (PCA) is to minimize the confounding of 

genotypes through population stratification or cryptic relatedness and exclude random outliers. 

The software GCTA (Yang et al., 2011) was used to calculate eigenvectors and eigenvalues. This 

involved the use of binary files generated in PLINK (Purcell et al., 2007), these being .bin, .fam 

and .bam files respectively. These serve to generate a genomic relationship matrix (GRM), which 

is then used to calculate the principal components. RStudio (RStudio Team. RStudio, 2019) was 

used to produce both 2D and 3D plots using the (rgl) package in order to visualize the degree of 

genetic relatedness between the individuals genotyped for the three respective platforms.  

The identification and removal of five animals on the 150K GGP HD SNP chip of Namibian 

origin occurred as they lay -0.3 eigenvectors away from the average of the population. A new PCA 

plot was created after a rerun of the aforementioned QC with the initial unfiltered dataset was re-

run as the resultant allele frequencies would change. A plot was also generated for the total 

combined population pre- and post-imputation. 
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2.3.5 Imputation 

Table 2.7 below indicates the number of common SNPs between the different SNP arrays, 

respectively.   

 

Table 2.7 Summary of the number of common SNPs across different arrays 

Genotyping Platform Number of common SNPs with Geneseek GGP 150K 

Geneseek GGP 150K 128 793 

Geneseek GGP 80K 69 417 

ICBF IDB v3 36 606 

All Three Platforms 23 646 

 

The use of FImpute (v3) (Sargolzaei et al., 2014) requires four different input files 

(Sargolzaei et al., 2014), which include a .ped file with the pedigree for the Bonsmara breed, a 

.snp_info_file that designates SNP IDs, their respective bp position on the chromosome as well 

as whether the SNP is on the LD platform. SNPs absent on the LD platforms are designated a 0 

indicating it must be imputed, otherwise it is given the number it has on the SNP chip. The .geno 

file assigns an animal ID with its respective genotype in the 0, 1, 2 or 5 formats. The .ctr_file 

contains the executable information necessary for FImpute (v3) to run. All necessary file creation 

or manipulation was completed using Unix (Free Software Foundation, 2018), Perl (Wall et al., 

2000) or RStudio (RStudio Team. RStudio, 2019) respectively. 

The imputation of 1 321 animals, being 677 males and 644 females, from the lower density 

SNP platforms was done using FImpute v.3 with a reference population comprising of 1 932 

animals, being 818 males and 1 114 females. Table 2.8 below indicates the squared correlation 

between allele frequencies among chips for all SNPs. 

 

Table 2.8 Squared correlation between allele frequencies on the three various platforms. 

Array 150 GGP 80 GGP ICBF IDB v3 

150 GGP 1   

80 GGP 0.999 1  

ICBF IDB v3 0.997 0.997 1 

 

Overall time for the completion of imputation was fourteen minutes and forty seconds. 
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2.3.6 Genome-wide association studies (GWAS) 

Deregressed EBVs are the dependent variables used as phenotypes in this study. The 

source of available information allows for the weighting of these phenotypes by the following 

equation described in Garrick et al., (2009); 

 

𝑤𝑖 =  
1 −  ℎ2

[𝑐 +
1 − 𝑟𝑖

2

𝑟𝑖
2 ]ℎ2

 

 

Where  

  w is the weighting factor of the ith animal with a deregressed EBV;  

h2 is the heritability estimate for the respective traits;  

r2 is the reliability of the ith animal for a specific trait 

and c is the proportion of genetic variance not accounted by the SNPs with a value of 0.9   

being used for all weighting factors between all the traits under analysis.  

 

These weightings were calculated in RStudio (RStudio Team. RStudio, 2019) and will be 

used in conjunction with the dEBVs in further downstream analysis.  

Inter-calving period consists of three sequential traits, which are known to be highly 

genetically correlated and therefore ICPs 1, 2 and 3 were weighted equally and merged into one 

trait. Only animals with EBVs across all three ICP traits remained for analysis.  

A GRM was constructed among all animals for each trait respectively using the VanRaden 

method 1 (VanRaden, 2008). A GRM for each trait analysed was created as the number of 

genotyped animals per trait differs due to the aforementioned steps taken to arrive at this point.  

Table 2.9 indicates the number of animals in the four GRMs for each trait created using 

HGInv program (Strandén, 2014) within the MiX99 software package. 

 

Table 2.9 Summary of number of animals in genomic relationship matrix (GRM) creation 

Trait Number of Animals in GRM 

AFC 2 620 

ICP 2 245 

WWMAT 2 730 

SC 2 318 
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WOMBAT (Meyer, 2007), in conjunction with linear mixed models, was used for single 

SNP regression association analyses in order to calculate the SNP effects of the subset of animals 

being investigated within each trait. The model fitted for each SNP analysis was: 

 

Deregressed EBV = μ + SNP + a + e, 

 

Where 

the deregressed EBV is the weighted dependant variable; 

μ is the fixed effect of the population mean; 

SNP is the fixed effect of allele dosage for each SNP (coded as 0, 1 or 2); 

a is the random effect of the animal, where a ~ (0,𝑮𝜎a
2), with 𝜎a

2 representing the additive 

genetic variance of the animal; 

G is the genomic relationship matrix among animals, part of a; 

e represents the residual, where e ~ N(0,I 𝜎𝑒
2),  

with  𝜎𝑒
2 representing the residual variance  

and I the identity matrix.  

 

The dependant variable, the deregressed EBV, was weighted using the weightings 

calculated previously. The GWAS feature in WOMBAT was invoked using the --snap run time 

option (Meyer & Tier, 2012). t-test distribution statistics for all SNPs were obtained and SNPs with 

a P ≤ 5 x 10-8 were considered to be genome-wide significant. 

The various t-distributions were modelled in various Manhattan plots using a range of R 

packages.  These include; readr, plotly and qqman. Output files for WOMBAT were assessed and 

appropriate results were displayed. Putative genes could be identified from any peaks that are 

indicative of suggestive (P ≤ 1 x 10-5) and/or significant (P ≤ 1 x 10-8) SNPs. 

Figure 2.1 is a flow diagram that illustrates the number of individual steps taken with 

regards to the phenotypic and genotypic data that was analysed in this study. 
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Figure 2.1 Flow diagram that indicates the approach conducted for this GWAS study 

 

2.3.7 Identification of putative genes 

SNPs with a P ≤ 1 x 10-5 were considered suggestive while a P ≤ 1 x 10-8 was treated as 

significant. SNPs that were deemed to be suggestive and/or significant were identified in RStudio 

(RStudio Team. RStudio., 2019) and any genes located within 5000bp boundary up and 

downstream from the associated SNP position. When originally updating with SNPCHiMP 

(Nicolazzi et al., 2015), the UMD_3.1.1 (GCF_000003055.6) was used to align the SNPs and is 

subsequently corroborated on NCBI (‘National Center for Biotechnology Information’, 2020) to 

identify any significant SNPs from this study. Panther (Mi et al., 2017) was used to list biological 

and metabolic functions and/or processes involved with genes identified near any significant 

SNPs.  
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Chapter 3 Results 

Results are presented for all steps involved in data preparation for performing genome-wide 

association (GWA) analysis on the four different traits. The first step involved deregression of 

estimated breeding values (EBVs) followed by a principal component analysis, calculation of 

weightings for deregressed EBVs (dEBVs) and finally the association analysis. 

 

3.1 Deregression of estimated breeding values (EBVs) 

The calculation of effective record contributions (ERC) involved the reliabilities of 2 020 248 

animals in a pedigree file dating back to 1949. Figure 3.1 illustrate the relationship between the 

reliability an animal has, and the ERC calculated in the reversed reliability approximation step 

using APaX99 (Lidauer et al., 2017a) for AFC. Additional plots for the other traits of interest are in 

the Addendum A as Supplementary Figures A1-A3.  

 

Figure 3.1 Plot of effective record contributions (ERC) against reliabilities for age at first calving 

 

A threshold of only including animals with ERCs ≥ 0.5 was applied to the datasets. Figure 

3.2 reveals the relationship between the EBVs and the dEBVs for AFC. All figures for the other 

traits of interest with ERC ≥ 0.5 are in Addendum A as Supplementary Figures A4-A8. 
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Figure 3.2 Plot of estimated breeding values against deregressed estimated breeding values for 

age at first calving 

 

3.2 Principal component analysis (PCA) 

Results for principal component analysis (PCA) are split into four categories. The first three 

categories are related to each genotyping platform individually, with the fourth category being all 

the animals in this study, pre- and post-imputation. The first three categories have Supplementary 

Figures as well as a PCA of all the imputed genotypes in the Addenda and are summarized below. 

A high proportion of the reference population was shown to be tightly clustered together 

(Supplementary Figure B1), irrespective of country of origin. The left half of the plot indicated five 

male Namibian animals, -0.4 eigenvectors on PCA 2 away from the general cluster, which proved 

to be outliers. After the removal of these five outliers, the process of creating a GRM was repeated. 

Eigenvectors were generated and a new PCA plot was created (Figure 3.3). This indicated a few 

SA male animals as outliers, with the majority of the population clustered sufficiently close 

together. This was the final group of animals used as the reference population on the HD array 

for the imputation following technical QC. All SA female animals were clustered with the SA male 

animals respectively. The PC 1 and PC 2 plot for the above scenario is in Addendum B as 

Supplementary Figure B2. 
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Figure 3.3 Genetic relationships between 1932 Bonsmara animals and 128 793 SNPs genotyped 

on the GGP 150K HD array for the first and third principal components (PC 1 and PC 3) 

 

Figures 3.4 and 3.5 are the PCA plots for animals that are genotyped on the GGP 80K HD 

SNPChip. This PCA was done post technical QC. The clustering of individuals is desirable within 

this population with few if any outliers present.  
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Figure 3.4 Genetic relationships between 589 Bonsmara animals and 69 417 SNPs genotyped 

on the GGP 80K array for the first and second principal components (PC 1 and PC 2) 

 

 

Figure 3.5 Genetic relationships between 589 Bonsmara animals and 69 417 SNPs genotyped 

on the GGP 80K array for the first and third principal components (PC 1 and PC 3) 
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Figures 3.6 and 3.7 are the principal component plots for animals that are genotyped on the 

IDB ICBF v3 SNPChip. These plots indicated one large cluster and two smaller ones. It was 

assumed due to the low number of SNPs that not all the genetic variation present in the Bonsmara 

population was captured and the GRM presented slightly biased results.  

 

Figure 3.6 Genetic relationships between 732 Bonsmara animals and 36 605 SNPs for the first 

and second principal components (PC 1 and PC 2) 

Figure 3.7 Genetic relationships between 732 Bonsmara animals and 36 605 SNPs for the first 

and third principal components (PC 1 and PC 3) 
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Thus, to ensure minimal population stratification, a PCA on all the animals on the common 

SNPs between the three different arrays was run, involving 23 646 markers. Figure 3.8 indicates 

the first and second PC for 3 253 animals originating from five countries and 216 different herds. 

All animals are divided into their respective country of birth and the South African population is 

split on sex in order to differentiate the large population of SA animals.  

 

 

Figure 3.8 Genetic relationships between 3 253 Bonsmara animals originating from different 

countries on 23 646 SNPs for the first and second principal components (PC 1 and PC 2) 

 

A PCA analysis of the population was run post-imputation where the genetic relationships 

between 3 253 Bonsmara animals, each with a genomic profile of 128 793 SNPs and is in 

Addendum B (Supplementary Figure B3). 
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3.3 Genome wide association studies (GWAS) 

Calculation of Weightings 

The weightings that were applied to the dependant variable, the dEBV, are summarized 

below in Table 3.1.  

 

Table 3.1 Summary statistics of the weightings calculated by the method described in Garrick et 

al. (2009) for the respective traits of interest 
    

Trait Heritability Median Weight  Weight Range 

    
AFC 0.22 1.7724 0.4655 - 3.8525 

ICP 1 0.13 1.8586 0.4733 - 6.1051 

ICP 2 0.09 2.7618 0.4811 - 9.0155 

ICP 3  0.03 10.468 1.299 - 33.582 

WWMAT 0.15 4.085 1.280 - 6.157 

SC 0.37 1.103 0.4547 - 1.8502 

    
 

Within-breed genome-wide association 

Several Manhattan plots were generated (Figures 3.9; 3.10; 3.12 and 3.13) showing the 

association between each SNP and dEBV for the four different fertility traits. Tables 3.3, 3.4, 3.5a, 

3.5b, 3.6a and 3.6b show the number of significant SNPs identified, their respective p-value, the 

favourable allele as well its frequency. The UMD 3.1 (Zimin et al., 2009) build was used to identify 

relevant reference SNP cluster ID (rs ID) of significant SNPs. Panther (Mi et al., 2017) indicates 

whether these SNPs were in gene regions and gives the annotation of the SNP in relation to 

nearby genes. 

Figure 3.9, below, is the Manhattan plot for inter-calving period with a significance level of 

p-value < 1 x 10-8 being the red line and the blue line indicates those SNPs which are suggestive 

with a p-value < 1 x 10-5. A total of 2 245 animals were used in the association analysis of ICP.
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Figure 3.9 Manhattan plot for inter calving period (ICP, 2 245 animals) indicating SNPs with 

significant p-values above the red line (≤ 1x10-8) 

 

Four SNPs were identified as being significantly associated with inter calving period. These 

are located on BTA 4, 11, 17 and 19 with Table 3.2 indicating that none of them are annotated 

near or within any known genes. 

 

Table 3.2 Chromosome (BTA), position, favourable allele (FA), frequency (f) of the favourable 

allele, the rs ID and annotation of SNP for the 4 single nucleotide polymorphisms associated with 

inter calving period (ICP) 

 

BTA Position SNP P-value FA f(FA) rs ID Annotation 

4 3676858 BovineHD0400000926 2.39x10-8 A 0.86 rs137550857 intergenic 

11 91069652 BovineHD1100026403 1.17x10-8 B 0.77 rs109882606 intergenic 

17 74103298 BovineHD1700021677 3.34x10-8 B 0.6 rs109444356 intergenic 

19 15107270 ARS-BFGL-NGS-40104 4.40x10-8 A 0.75 rs109300492 intergenic 
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The Manhattan plot as Figure 3.10 indicates twenty SNPs associated with age at first calving 

at the genome wide threshold p-value of 1 x 10-8. 

 

Figure 3.10 Manhattan plot for age at first calving (AFC, 2 620 animals) indicating SNPs with 

significant p-values above the red line (≤ 1x10-8) 

 

A total of eight different genes were found across five different autosomes (BTA 4, 5, 7, 12 

and 16) with the frequency of the favourable alleles being between 0.13 and 0.40 respectively. 

Three of these SNPs were identified on BTA 5 (Figure 3.11) and each being in the region of its 

own gene (RDH16, OVOS2 and A2M) with each SNP either being upstream of the gene, in an 

intron or within the 5’-untranslated region (UTR) of the gene.   
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Figure 3.11 Manhattan plot of BTA 5 for age at first calving (AFC, 2 620 animals) indicating SNPs 

with significant p-values above the red line (≤ 1x10-8) 

 

BTA 16 had two SNPs, rs134860307 (p-value = 7.94x10-9, f(FA) = 0.71) and rs41579702 

(p-value = 2.21x10-9, f(FA) = 0.6) that were in the intron region of the genes, AKT3 and KIF1B. 

Three autosomes (BTA 4, 7 and 12) had one SNP each occurring in genes (GRM8, FER and 

UBAC2). The four most significant SNPs, with p-value > 2.3x10-10 were all found to be intergenic 

(Table 3.3). 
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Table 3.3 Chromosome (BTA), position, favourable allele (FA), frequency (f) of the favourable 

allele, the rs ID, annotation of SNP and possible genes of the 20 single nucleotide polymorphisms 

associated with age at first calving (AFC) 

*SNPs highlighted bold were found in gene regions 

 

An association analyses of SC resulted in twenty-two SNPs having significant p-values 

across 16 autosomes (BTA 1, 2, 3, 4, 5, 6, 8, 10, 11, 15, 16, 20, 22, 24, 26 and 28) as shown in 

Figure 3.12. 

 

 

BTA Position SNP P-value FA f(FA) rs ID Annotation Gene 

         
1 111917015 BovineHD0100031651 2.82x10-10 A 0.73 rs137537403 intergenic - 

2 34955867 BovineHD0200010311 2.88x10-8 A 0.99 rs133156474 intergenic - 

2 35004695 ARS-BFGL-NGS-100791 3.21x10-8 A 0.53 rs109816434 intergenic - 

4 92201419 BTB-00201722 1.13x10-9 B 0.84 rs43415362 intron GRM8 

5 56862044 BovineHD0500016118 3.98x10-8 B 0.71 rs110633639 upstream gene RDH16 

   5 101162000 BovineHD0500028941 5.13x10-8 B 0.8 rs135781979 intron OVOS2 

5 101298140 BovineHD0500028996 2.84x10-9 B 0.87 rs135044484 5-UTR A2M 

7 110620779 BovineHD0700032252 2.05x10-8 B 0.86 rs43027016 intron FER 

8 56151592 ARS-BFGL-NGS-118192 3.39x10-8 B 0.53 rs110050395 intergenic - 

9 4141659 BovineHD0900000806 1.56x10-8 B 0.54 rs136309097 intergenic - 

11 91868770 BovineHD1100026672 4.51x10-8 A 0.97 rs110939063 intergenic - 

12 73981915 ARS-BFGL-NGS-34730 4.85x10-8 A 0.67 rs109026379 intron UBAC2 

16 34310513 BovineHD1600009813 7.94x10-9 B 0.71 rs134860307 intron AKT3 

16 44223723 Hapmap39326-BTA-38925 2.21x10-9 B 0.6 rs41579702 intron KIF1B 

20 4373876 BovineHD2000001407 2.65x10-10 B 0.86 rs110185739 intergenic - 

24 54578972 BovineHD2400015563 2.31x10-10 B 0.53 rs109536476 intergenic - 

27 14901236 Hapmap57076-ss46526296 4.29x10-12 B 0.83 rs41255435 intergenic - 

28 6606376 BovineHD2800001980 2.52x10-8 B 0.81 rs43684018 intergenic - 

28 7516559 BovineHD2800002256 1.14x10-9 A 0.54 rs42132791 intergenic - 

29 1310025 BovineHD2900000229 3.81x10-8 A 0.66 rs42153312 intergenic - 
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Figure 3.12 Manhattan plot for scrotal circumference (SC, 2 318 animals) indicating SNPs with 

significant p-values above the red line (≤ 1x10-8) 

 

For SC, three of the SNPs were within intron regions of BTA 6 (p-value = 6.58 x 10-9, f(FA) 

= 0.55), BTA 8 (p-value = 1.58 x 10-8, f(FA) = 0.53) and BTA 11 (p-value = 3.07 x 10-8, f(FA) = 

0.75) respectively. The most significant SNP, BovineHD0100022236 (p-value = 1.18 x 10-15, f(FA) 

= 0.65) was on BTA 1 and was found to be intergenic. Table 3.4 below, summarizes SNPs 

associated with SC. 
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Table 3.4 Chromosome (BTA), position, favourable allele (FA), frequency (f) of the favourable 

allele, the rs ID, annotation of SNP and possible genes of the 22 single nucleotide polymorphisms 

associated with scrotal circumference (SC) 

BTA Position SNP P-value FA f(FA) rs ID Annotation Gene 

         
1 77175969 BovineHD0100022236 1.18x10-15 B 0.65 rs137056215 intergenic - 

2 68483026 BovineHD0200019795 1.02x10-8 A 0.59 rs43763538 intergenic - 

3 108353435 BovineHD0300031128 2.15x10-8 A 0.5 rs135183004 intergenic - 

4 69143072 BovineHD0400019016 1.55x10-10 A 0.89 rs135196244 intergenic - 

5 10363213 BovineHD0500002967 2.11x10-10 B 0.65 rs43434439 intergenic - 

5 48521028 BovineHD0500014005 1.8x10-8 B 0.55 rs135351569 intergenic - 

5 118456584 BovineHD0500034431 2.76x10-9 B 0.56 rs135354351 intergenic - 

6 24885679 BovineHD0600006847 6.58x10-9 B 0.55 rs42547321 intron PPP3CA 

6 25127396 6_25127396 9.3x10-9 B 0.99 - - - 

8 51227380 Hapmap51395-BTA-113897 1.58x10-8 A 0.53 rs41573073 intron TRPM6 

10 88909135 BovineHD1000025336 3.20x10-8 B 0.61 rs42342728 intergenic - 

10 90164914 BovineHD1000025763 2.29x10-9 A 0.57 rs135646907 intergenic - 

11 61772774 BovineHD1100017519 3.07x10-8 A 0.75 rs134599584 intron WDPCP 

15 787417 BovineHD1500000208 2.46x10-9 A 0.7 rs110874670 intergenic - 

15 4998555 BovineHD1500001208 1.87x10-9 A 0.52 rs137457807 intergenic - 

16 11816910 BovineHD1600003156 3.98x10-8 A 0.55 rs137316280 intergenic - 

20 23201811 BovineHD2000006992 2.92x10-9 B 0.51 rs110125425 intergenic - 

22 52138159 BovineHD2200014828 6.20x10-9 B 0.71 rs110310571 intergenic - 

24 27636658 BovineHD2400007539 1.62x10-9 B 0.78 rs43074384 intergenic - 

24 27637509 BovineHD2400007540 1.98x10-9 B 0.7 rs133851661 intergenic - 

26 51324600 BovineHD2600014822 4.58x10-8 A 0.55 rs42415608 intergenic - 

28 6314273 BovineHD2800001887 7.95x10-9 A 0.61 rs132650071 intergenic - 

*SNPs highlighted bold were found in gene regions 

 

Weaning weight maternal (WWMAT) was the trait that had the most significant SNPs as well 

as having the most SNPs in gene regions between all the traits of interest in this study. A total of 

forty-four SNPs were identified with a p-value < 1 x 10-8, spread across twenty-one autosomes 

(BTA 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 14, 15, 18, 19, 20, 21, 22, 27, 28 and 29). None of the fourteen 

SNPs observed on BTA 1, 3, 4, 7, 11, 12, 20, 21, 27 and 28 were based near or within a gene 

region. Of the thirty remaining SNPs on eleven autosomes, twenty were found to be in nineteen 
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different gene regions. The Manhattan plot for WWMAT is below as Figure 3.13 where a total of 

128 793 SNPs across 29 autosomes were analysed in this study. 

Figure 3.13 Manhattan plot for weaning weight maternal (WWMAT, 2 730 animals) indicating SNPs 

with significant p-values above the red line (≤ 1x10-8) 

 
The most significant SNP (p-value = 2.11x10-18, f(FA) = 0.77) was located on BTA 9 with the 

corresponding ID, rs110877106, being in an intron of the FILIP1 gene. BTA 15 (Figure 3.14) had 

the most significant SNPs (six) across all the autosomes, with three SNPs (rs41614029, 

rs135994818, rs134654371) all within the intron of a different gene (LOC101902845, CEP164, 

DSCAML1). The two SNPs, rs134510261 (p-value = 3.67x10-8, f(FA) = 0.69) and rs41576433 (p-

value = 6.17x10-9, f(FA) = 0.95) are in introns within the same gene, LRRC4C. 
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Figure 3.14 Manhattan plot of BTA 15 for weaning weight maternal (WWMAT, 2 730 animals) 

indicating SNPs with significant p-values above the red line (≤ 1x10-8) 

 

 rs110633222 (p-value = 1.97x10-8, f(FA) = 0.67) on BTA 14 was based in the protein coding 

region of the PKHD1L1 gene and is associated with the synonymous mutation from the codon 

GTG to GTA, which both encode for the amino acid (AA) valine. All three SNPs on BTA 19 (p-

value < 2.49 x 10-9) were in gene regions (LOC528282, RBM47, RTN4RL1) with a range of 0.29 

- 0.46 for the minor allele frequency (MAF) within this population. BTA 9, 22 and 29 have two 

SNPs each located within six different gene regions (9: FILIP1, UBE2J1; 22: NUP210, MGLL; 29: 

NLM, MACROD1). The remaining five SNPs on BTA 2, 5, 6, 8, and 18 were all in intron regions 

of their respective genes. Tables 3.5a and b summarizes the relevant information for all the 

significant SNPs associated with WWMAT. 
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Table 3.5a Chromosome (BTA), position, favourable allele (FA), frequency (f) of the favourable 

allele, the rs ID, annotation of SNP and possible genes of the 44 single nucleotide polymorphisms 

associated with weaning weight maternal (WWMAT) 

BTA Position SNP p-value FA f(FA) rs ID Annotation Gene 

         
1 2023687 BovineHD0100000619 2.8x10-9 A 0.85 rs109876482 intergenic - 

1 61009968 BovineHD0100017256 1.53x10-8 B 0.68 rs132713619 intergenic - 

2 60434373 BovineHD0200017259 8.76x10-9 B 0.77 rs43057522 intron THSD7B 

2 105666691 ARS-BFGL-NGS-100821 1.7x10-9 A 0.7 rs110274393 intergenic - 

3 64097592 BTB-00131847 8.30x10-10 A 0.55 rs43344079 intergenic - 

4 78976354 ARS-BFGL-NGS-11194 2.75x10-9 B 0.96 rs110432448 intergenic - 

5 44228389 BovineHD0500012658 4.13x10-8 B 0.76 rs43439350 intron FRS2 

5 61848831 BovineHD0500017333 2.27x10-8 B 0.8 rs41624983 intergenic - 

6 14179168 ARS-BFGL-NGS-113393 6.87x10-12 A 0.85 rs43448385 intron ZGRF1 

6 77611218 BovineHD0600021534 4.62x10-8 B 0.57 rs109874421 intergenic - 

7 23194080 BovineHD0700006354 1.44x10-8 B 0.93 rs132854838 intergenic - 

8 17685712 BovineHD0800005543 2.68x10-8 A 0.82 rs133608204 intergenic - 

8 70005148 BovineHD0800021069 4.31x10-9 A 0.65 rs136017680 intron BMP1 

8 88738557 BTB-00365129 2.23x10-9 A 0.69 rs43566673 intergenic - 

8 89061216 BTB-01579150 9.18x10-9 A 0.77 rs42693255 intergenic - 

9 15312685 Hapmap27634-BTA-158717 2.11x10-18 B 0.77 rs110877106 intron FILIP1 

9 61759178 BovineHD0900016976 2.08x10-8 A 0.79 rs110019124 intron UBE2J1 

11 21887840 Hapmap38359-BTA-87537 1.53x10-8 B 0.87 rs41660929 intergenic - 

11 30568083 BovineHD1100009120 8.55x10-9 B 0.93 rs134116765 intergenic - 

12 8617041 BovineHD1200002389 2.15x10-10 B 0.87 rs109564431 intergenic - 

12 32395753 BTA-19643-no-rs 4.35x10-10 A 0.97 rs41577829 intergenic - 

14 25812326 BovineHD1400007459 3.12x10-9 B 0.93 rs43770972 intergenic - 

14 40316657 BovineHD1400011561 1.64x10-8 B 0.85 rs134784743 intergenic - 

14 57178588 ARS-BFGL-NGS-67086 1.97x10-8 B 0.67 rs110633222 synonymous PKHD1L1 

15 8180827 Hapmap46909-BTA-103259 1.01x10-8 A 0.69 rs41614029 intron LOC101902845 

15 24563671 ARS-BFGL-NGS-106449 2.77x10-8 A 0.57 rs110637595 intergenic - 

15 28442203 BovineHD1500007623 3.9x10-8 A 0.82 rs135994818 intron CEP164 

15 28590540 BovineHD1500007663 4.19x10-9 A 0.91 rs134654371 intron DSCAML1 

15 71363838 BovineHD1500020594 3.67x10-8 B 0.69 rs134510261 intron LRRC4C 

15 71406547 Hapmap47274-BTA-37477 6.17x10-9 B 0.95 rs41576433 intron LRRC4C 

18 5441355 BovineHD1800001736 9.95x10-9 B 0.82 rs110414980 intron WWOX 

18 63896972 BovineHD1800018524 2.32x10-8 A 0.8 rs137006362 intergenic - 

*SNPs highlighted bold were found in gene regions 
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Table 3.5b Chromosome (BTA), position, favourable allele (FA), frequency (f) of the favourable 

allele, the rs ID, annotation of SNP and possible genes of the 44 single nucleotide polymorphisms 

associated with weaning weight maternal (WWMAT) 

BTA Position SNP p-value FA f(FA) rs ID Annotation Gene 

         
19 6632246 BovineHD1900001710 2.50x10-9 B 0.71 rs132903182 intron LOC528282 

19 16779459 ARS-BFGL-NGS-6298 2.96x10-8 A 0.54 rs109567043 intron RBM47 

19 23605621 ARS-BFGL-NGS-106886 3.46x10-8 B 0.68 rs41904179 intron RTN4RL1 

20 60255461 BovineHD2000016910 4.11x10-11 B 0.78 rs134749828 intergenic - 

21 37181339 BovineHD2100010919 3.21x10-8 A 0.68 rs134033628 intergenic - 

22 59201628 BovineHD2200017188 4.03x10-8 B 0.57 rs110831540 intron NUP210 

22 60421134 BovineHD2200017578 3.43x10-8 B 0.86 rs109624265 intron MGLL 

27 30798670 BovineHD2700008558 5.83x10-9 B 0.77 rs110130281 intergenic - 

28 18888651 BovineHD2800005152 2.73x10-8 A 0.5 rs109305830 intergenic - 

28 30741301 BovineHD2800008123 2.20x10-10 B 0.72 rs136982395 intergenic - 

29 35232674 ARS-BFGL-NGS-85977 1.51x10-9 B 0.65 rs109693172 intron NTM 

29 42903278 BovineHD2900015547 7.95x10-9 B 0.95 rs134545156 intron MACROD1 

*SNPs highlighted bold were found in gene regions 
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3.4 Gene Ontology 

The protein identification (ID), molecular functions and biological processes for the 

respective genes were described using Panther (Mi et al., 2017). Tables 3.6a, 3.6b, 3.7 and 3.8a 

to c summarize this information for the three traits that were found to be associated with genes, 

these being age at first calving, scrotal circumference and maternal weaning weight.  

A total of eight genes were associated with AFC and Tables 3.6a and b show the functions 

and processes of these genes. 

 

Table 3.6a Summary of relevant function of genes identified for age at first calving 

 

Gene Protein ID Molecular Function Biological Process 

    

GRM8 A0A3Q1JN2 • Glutamate receptor activity; 
• Glutamate receptor signalling 

pathway; 

  • Amino acid binding; 
• Synaptic transmission, 

glutamatergic; 

  

• G protein-coupled receptor 
activity; 

• G protein-coupled receptor 
signalling pathway; 

  • Adenylate cyclase activity; 
• Regulation of synaptic 

transmission, glutamergic; 

    

RDH16 Q0V8D0 • Oxidoreductase activity;  

    

OVOS2 F1MB90 
• Endopeptidase inhibitor 

activity;  

    

A2M Q7SIH1 
• Endopeptidase inhibitor 

activity; • Protease binding; 

  • Protease binding;  

  

• Serine-type endopeptidase 
inhibitor activity;  

    

AKT3 F1MYJ4 • ATP binding; • Brain morphogenesis; 

  

• Protein serine/threonine 
kinase activity; 

• Homeostasis of number cells 
within a tissue; 

   • Intracellular signal transduction; 

   • Peptidyl-serine phosphorylation; 

   

• Positive regulation of 
angiogenesis; 

   

• Positive regulation of artery 
morphogenesis; 

   • Positive regulation of cell size; 

     

• Positive regulation of TOR 
signaling; 
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Table 3.6b Summary of relevant function of genes identified for age at first calving  

Gene Protein ID Molecular Function Biological Process 

    

UBAC2 A0A3Q1LNA4  

• Negative regulation of canonical 
Wnt signaling pathway 

   

• Negative regulation of retrograde 
protein transport, ER to cytosol 

   

• Protein localization to endoplasmic 
reticulum 

    

FER E1BNE0 • Regulation of exocytosis • ATP binding 

  

• Leukocyte mediated 
immunity 

• Epidermal growth factor receptor 
binding 

  • Lysosome localisation • Lipid binding 

  

• Regulation of leukocyte 
activation 

• Non-membrane spanning protein 
tyrosine kinase activity 

  

• Positive regulation of 
immune system process • Protein phosphate 1 binding 

  • Chemotaxis • Signaling receptor binding 

  

• Regulation of cell 
population proliferation  

  

• Regulation of immune 
response  

  • Intracellular transport  

  • Cell differentiation  

  • Cell population proliferation  

  

• Vesicle fusion to plasma 
membrane  

  • Cell adhesion  

  

• Establishment of organelle 
localization  

  • Regulated exocytosis  

  

• Peptidyl-tyrosine 
phosphorylation  

  

• Transmembrane receptor  
protein tyrosine kinase  
signalling pathway 

  

• Regulation of cellular 
localization  

  

• Leukocyte activation involved 
 in immune response 

    

KIF1B A0A3Q1MPX6 • ATP binding • Microtubule-based movement 

  • Microtubule binding • Vesicle-mediated transport 

    • Microtubule motor activity 
• Cytoskeleton-dependent 

intracellular transport 
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In Figure 3.15(a), the molecular functions listed in Tables 3.6a and b were grouped into 

binding (13%), catalytic activity (9%), immune system process (19%), inhibitor activity (9%), 

metabolic process (6%), receptor activity (6%). 

Figure 3.15(b) illustrates the distribution of biological processes. This amounts to a total of 

25 functions which are grouped five different ways, these being binding (24%), catalytic activity 

(8%), embryonic development (4%), receptor pathways (20%) and cellular processes (44%).  

 
(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) 

Figure 3.15 Distribution of the (a) molecular functions and (b) biological processes for age at first 

calving 
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The cellular grouping was again the largest and mainly consisted of positive and negative 

regulation of cellular component organization and metabolism. 

A total of three genes (PPP3CA, TRPM6 and WDPCP) were identified for significant SNPs 

associated with scrotal circumference. Table 3.7 summarizes the molecular functions and 

biological processes of the respective genes identified for SC. 

 

Table 3.7 Summary of relevant function of genes identified for scrotal circumference 

                                                                                                                                                     

The gene WDPCP, WD repeat containing planar cell polarity effector, was only found to 

have a total of fifteen biological processes but no molecular functions. TRPM6 was only linked 

with two molecular functions. PPP3CA was related to both molecular and biological roles.  

Gene  Protein ID Molecular Function Biological Process 

    

PPP3CA P48452 
• Protein serine/threonine 

phosphatase activity 
• Inositol phosphate-mediated 

signaling 

  • Calmodulin binding • Calcium-mediated signaling 

    
TRPM6 F1MWK1 • Cation channel activity  

  

• Protein serine/threonine kinase 
activity  

    

WDPCP E1B8R8  

• Auditory receptor cell 
morphogenesis 

   

• Cardiovascular system 
development 

   • Cilium assembly 

   • Digestive system development 

   

• Embryonic digit 
morphogenesis 

   

• Establishment of protein 
localization 

   

• Glomerular visceral epithelial 
cell migration 

   • Kidney development 

   

• Regulation of establishment of 
cell polarity 

   

• Regulation of fibroblast 
migration 

   

• Regulation of focal adhesion 
assembly 

   • Regulation of ruffle assembly 

   

• Respiratory system 
development 

   • Roof of mouth development 

     • Smoothened signaling pathway 
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Figure 3.16(a and b) depicts the frequencies of the biological and molecular roles linked to 

SC and listed in Table 3.7. A total of four molecular processes were identified with one linked to 

binding (25%) while the remaining three were involved with catalytic activity (75%). Seventeen 

biological processes were allocated into five groupings for SC. These are cellular processes 

(35%), embryonic development (41%), localization (6%) and receptor signaling pathways (18%). 

 

(a) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
(b) 

Figure 3.16 Percentage frequencies of the (a) molecular functions and (b) biological processes 

for scrotal circumference 
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Nineteen genes were identified for significant SNPs associated with WWMAT. Tables 3.8a, b 

and c below, outline all the processes and functions identified for the nineteen genes associated 

with WWMAT. 

 

Table 3.8a Summary of relevant function of genes identified for weaning weight maternal 

Gene  Protein ID Molecular Function Biological Process 

    

THSD7B F1MF39  

• Actin cytoskeleton 
reorganization; 

    

CEP164    

FRS2 E1B7I9 

 

• Fibroblast growth 
factor receptor binding; • Activation of MAPK activity; 

  

• Neurotrophin TRKA 
receptor binding; 

• Anterior/posterior axis 
specification, embryo; 

   • Forebrain development; 

   

• Gastrulation with mouth forming 
second; 

   • Lens fiber development; 

   

• Negative regulation of cardiac 
muscle cell differentiation; 

   • Neuroblast proliferation; 

   

• Optic placode formation involved 
in camera-type eye formation; 

   • Organ induction; 

   

• Prostate epithelial cord 
arborization involved in prostrate 
glandular acinus morphogenesis; 

   • Regulation of apoptic process; 

   

• Regulation of epithelial cell 
proliferation; 

   

• Regulation of ERK1 and ERK2 
cascade; 

   • Ventrical septum development; 

    

ZGRF1 E1BPG1 • Zinc ion binding; • Double-strand break repair; 

LOC101902845    

FILIP1      
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Table 3.8b Summary of relevant function of genes identified for weaning weight maternal  

Gene  Protein ID Molecular Function Biological Process 

    

BMP1 E1BEV7 • Calcium ion bonding; 
• Positive regulation of cartilage 

development; 

  • Identical protein binding;  

  

• Metalloendopeptidase 
activity;  

  • Zinc ion binding;  

    

UBE2J1 F1MBQ2 
• Ubiquitin-protein 

transferase activity; 
• Negative regulation of retrograde 

protein transport, ER to cytosol; 

  

• Ubiquitin-protein ligase 
binding; 

• Protein N-linked glycosylation vias 
asparagine; 

  

• Ubiquitin conjugating 
enzyme activity; 

• Regulation of tumor necrosis factor 
biosynthetic process; 

   • Spermatid development; 

   • Ubiquitin-dependent ERAD pathway; 

    

PKHD1L1 A0A3Q1MGJ7  • Axon guidance; 

  

• Transmembrane signaling 
receptor activity; • Cell adhesion; 

   • Regulation of cell migration; 

   • Regulation of cell migration; 

   • Positive regulation of axonogenesis; 

   • Cell migration; 

   • Regulation of cell shape; 

   • Regulation of GTPase activity; 

   

• Cell surface receptor signaling 
pathway; 

   • Negative regulation of cell adhesion; 

    

LOC528282    

    

NUP210 F1MPW7   

    

DSCAML1 F1N4K6  • Axon guidance; 

  

• Cell-cell adhesion 
mediator activity; 

• Central nervous system 
development; 

   • Dendrite self-avoidance; 

     

• Homophilic cell adhesion via plasma 
membrane adhesion molecules; 
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Table 3.8c Summary of relevant function of genes identified for weaning weight maternal 

Gene  Protein ID Molecular Function Biological Process 

    

LRRC4C F1MXH5 
• Cell adhesion molecule 

binding; 
• Modulation of chemical synaptic 

transmission; 

  

• Cell-cell adhesion 
mediator activity; • Regulation of axonogenesis; 

   • Synaptic membrane adhesion; 

    

WWOX A0A3Q1LVN4 • Enzyme binding; 
• Cellular response to transforming 

growth factor beta stimulus; 

  

• Transcription coactivator 
activity; • Extrinsic apoptic signaling pathway; 

   

• Intrinsic apoptic signaling pathway 
by p53 class mediator; 

   

• Negative regulation of Wnt signaling 
pathway; 

   • Osteoblast differentiation; 

   

• Positive regulation of extrinsic 
signaling pathway in absence of 
ligand; 

   

• Positive regulation transcription by 
RNA polymerase II; 

   • Skeletal system morphogenesis; 

    

RBM47 F6RYN2 • mRNA binding; • Cytidine to uridine editing; 

  • RNA binding; 
• Hematopoietic progenitor cell 

differentiation; 

    

RTN4RL1 E1BEI7 
• Chondroitin sulfate 

binding; • Axon guidance; 

  • Heparin binding; • Corpus callosum development; 

  • Roundabout binding; • Negative chemotaxis; 

  

• Signaling receptor 
activity; 

• Negative regulation of axon 
regeneration; 

    

MGLL A0A3Q1LUK0 • Lipase activity;  

    

NTM Q58DA5  • Cell adhesion; 

    

MACROD1 Q2KHU5 
• ADP-ribosylglutamate 

hydrolase activity; 
• Cellular response to DNA damage 

stimulus; 

  

• Hydrolase activity, acting 
on glycosyl bonds; 

• Peptidyl-glutamate ADP-
deribosylation; 

     • Protein de-ADP-ribosylation; 
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Four genes identified (LOC101902845, CEP164, NUP210 and FILIP1) have no record of a 

molecular or biological role within the Bos taurus genome on Panther (Mi et al., 2017). Two genes, 

NTM and THSD7B, were found to only be associated with one biological process. MGLL was only 

linked to a single molecular function. The remaining twelve genes were all designated as having 

both molecular functions as well as biological processes. 

Figure 3.17a illustrates the variation in the types of molecular functions, listed in Tables 3.8a, 

b and c, that are abundantly associated with the genes identified for WWMAT. Receptor activity and 

metabolic processes had the smallest percentage (4%), followed by catalytic processes and lastly 

binding activity (55%). 

 

 
 

Figure 3.17a Pie chart representation of the respective molecular functions for weaning weight 

maternal 

 

A total of fifty-four biological processes, Figure 3.17b, were connected to genes, listed in 

Tables 3.8a, b and c, significantly associated with WWMAT. These consist of six small groups and 

two larger groups. The largest groups, cellular (41%) and embryonic development (31%) 
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accounted for 72% of the biological roles. The next largest was receptor signaling pathways (11%) 

with remaining functions having a frequency of less than 7%. 

 

Figure 3.17b Pie chart representation of the respective biological processes for weaning weight 

maternal 
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Chapter 4 Discussion 

4.1 Introduction 

In this study, the core aim was to perform a genome wide association study (GWAS) on 

fertility and maternal traits in SA Bonsmara cattle. A GWAS requires evaluating phenotypic data 

in conjunction with molecular data in order to detect any significant coupling between traits and 

possible underlying genetic mechanisms that may be associated with phenotypic variation 

(Stranger et al., 2011). Observable traits of economic importance are known to be affected by 

multiple genes, which contribute to the polygenic expression of these traits. The application of 

genomics has become a viable tool in the investigation of these polygenic traits. The true 

underlying genetic architecture of most traits remains unknown (Dekkers & Hospital, 2002; 

Stranger et al., 2011) with a multitude of studies over the last two decades improving our genetic 

understanding of these complex traits  (Sharma et al., 2015; Mateescu, 2020). Preliminary 

genomic studies among local indigenous breeds (Makina et al., 2014, 2015, 2016; Sanarana et 

al., 2016; Lashmar et al., 2018a) have indicated that there are potential genetic forces that may 

require further investigation.  

The female traits of interest, these being age at first calving (AFC), inter-calving period (ICP) 

and weaning weight maternal (WWMAT) have low heritabilities (0.03 - 0.22), with scrotal 

circumference (SC, heritability = 0.37) being the sole male trait of interest. SC is measured once 

in a Bonsmara bulls’ life, around 270 days of age, and is included in this study due to its high 

phenotypic correlation with AFC. Phenotypic progress of these traits in most cattle populations 

has been slow due to these low heritabilities (Meyer et al., 1990; Cammack et al., 2009; Hawken 

et al., 2012). The cow/calf operation on a beef cattle farm incurs the largest proportion of profits 

and costs within the herd. The times a cow is not pregnant or has a suckling calf are known as 

periods of unproductivity and can occur due to difficult births, poor body condition during 

pregnancy and/or the feeding of the calf. These incidences may lead to a cow not being able to 

conceive within the next breeding season and can negatively influence herd productivity. The 

estimated calving percentage of South Africa’s beef commercial sector is approximately 62% 

(Grobler et al., 2014). Reproductive wastage is of major economic importance and has a 

significant effect on efficiency from conception to weaning. An understanding of the genetic basis 

of fertility traits is required to implement selection programs that may increase reproductive 

efficiency (Miar et al., 2015).  
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Avoiding periods of unproductivity within a cattle’s life would drastically reduce maintenance 

costs and increase overall profit. The implementation of genetic analysis of beef cattle is still 

gaining traction in SA among breeds with small numbers while breeds with larger population sizes 

have been keenly embracing genomic technology (Bosman et al., 2017). This has generated large 

data sets enabling potential for association analyses, especially within the SA Bonsmara breed 

which has a sufficiently genotyped population that allowed for the implementation of genome-

enhanced estimated breeding values (GEBVs; van der Westhuizen et al., 2017) to conduct these 

studies. Visser et al., (2020) states that modern genetic improvement in livestock species is inter-

dependant on the accurate phenotypic recording of traits and the availability of genomic data of 

suitably measured animals. The SA Bonsmara breed society has implemented strict guidelines in 

that the recording of specific traits, i.e. weaning weight, is mandatory for the registration of animals 

within this population. As a result of this, a large proportion of this population have phenotypes for 

the traits of interest in this study.  A recent study on genetic diversity among nine South African 

cattle breeds using micro-satellite markers (van der Westhuizen et al., 2020) indicated that the SA 

Bonsmara breed had the highest level of heterozygosity (Hz = 0.741). The high level of genetic 

variability within this composite breed, coupled with the strict selection of animals with high 

reliabilities being included in the genomic population (Bosman et al., 2017) and accurate 

phenotypes, makes the SA Bonsmara breed highly suitable for GWAS protocol.  

 

4.2 Genome wide association analysis 

In order to investigate fertility and maternal traits at a genomic level, an association analysis 

between the genotypes and the respectively weighted dEBVs was performed. The amount of 

available genomic technology and progress made in mixed model analysis software allows for a 

multitude of ways in which these underlying genetic mechanisms can be studied and identified 

(Fernando & Garrick, 2008; Meyer & Tier, 2012; Lidauer et al., 2017a; Aguilar et al., 2018). The 

number of animals analysed for each trait differs depending on the EBVs and reliabilities available 

as well as a few filter parameters. This study utilized single SNP regression association analysis 

using WOMBAT (Meyer, 2007) as discussed in Chapter 2. 

 

Inter-calving period (ICP) 

The association analysis of inter-calving period yielded only four SNPs with a significant 

association, on BTA 4, 11, 17 and 19, with none of these being located near or within a gene 

region. The analysis of this trait required the blending of ICP 1, 2 and 3 on an equal weighting. As 
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the trait with the lowest heritability, the lack of linked genes may be attributed to the fact that 

management of this trait in a prevailing environment is more important than any gene that affects 

the phenotypic expression of ICP. The lack of previous GWA studies on this trait may point to the 

limitations encountered when analyzing this trait. 

A study on gestation length using whole genome sequences (WGS) of beef cattle identified 

a few QTLs that overlapped those previously reported in literature (Purfield et al., 2019b). As 

gestation length is a component of inter-calving period, these findings could have been inferred 

but as no significant SNPs were in any QTL region for ICP in this study, thus no comparison was 

possible.  

 

Weaning weight maternal (WWMAT) 

A limited number of studies have investigated the potential genetic effects of weaning weight 

maternal. Saatchi et al., (2014) identified significant SNPs on BTA 1, 2, 3, 4, 6, 9, 11, 12, 14, 15, 

17, 18, 19, 21, 22, 24, 25 and 29 for weaning weight maternal across ten different crossbred US 

beef cattle. Significant SNPs on BTA 7, 8, 9, 20 and 28 were linked to the maternal effect on 

weaning weight in Brahman cattle (Martínez et al., 2017), while Hay & Roberts, (2019) identified 

a region on BTA24 that contributed significantly to the genetic variance of maternal weaning 

weight. This study had similar findings with significant SNPs identified on BTA 1, 2, 3, 4, 6, 7, 8, 

9, 11, 12, 14, 15, 18, 19, 20, 21, 22, 28 and 29. The remaining SNPs located on BTA 5 and 27 

were not previously reported to be associated with the maternal effect on weaning weight. The 

multitude of autosomes highlights the polygenic nature of this trait. The moderate to high 

frequency of most of the SNPs with associated genes observed in this study indicates that some 

form of indirect selection has been occurring at a genetic level. 

Weaning weight maternal had the highest number of associated genes relating to important 

molecular and biological roles. Four different classes of molecular functions were identified with 

55% of them being binding related. These binding processes are at both a cellular and DNA level. 

Catalytic processes (37%) are second numerous followed by metabolic processes and receptor 

activity both on 4%. 

Cellular processes (41%) were the most numerous amongst the biological processes, 

followed by embryonic development (31%) and then signaling pathways (11%). The variety in 

biological classes for WWMAT could be indicative of the polygenic expression of this trait. Other 

processes such as developmental processes, DNA repair and responses to stimuli were 

represented but in small numbers. 
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The genes that will now be discussed are grouped according to either binding related 

functions (BMP1, FRS2, LRRC4C, MACROD1, RTN4RL1, UBE2J1, WWOX and ZGRF1) or 

cellular processes (DSCAML1, MGLL, NTM, PKHD1L1, RBM47 and THSD7B). A few of these 

genes, such as LRRC4C, could be linked to either grouping but for discussion purposes they were 

grouped according to what was identified as relevant to this study according to literature. Genes 

with unknown functions and processes (CEP164, FILIP1, LOC101902845 and NUP210) are 

briefly discussed at the end of this section. 

THSD7B has been linked to actin cytoskeleton reorganization and is classed as a cell 

adhesion molecule, but its true biological role remains unknown (Wang et al., 2011). Fernández 

et al., (2019) recently associated this gene when analysing the underlying genetic mechanism that 

affect AFC in a Colombian composite beef breed. A study investigating SNPs associated with 

phenotypic variation in serum IGF-1 concentration (Gobikrushanth et al., 2018) coupled with 

reproductive performance in dairy heifers linked the THSD7B gene. IGF-1 plays a key role in the 

control of postnatal growth, mammary gland development, lactation, and fertility. This is an 

interesting find as each of these physiological processes has a marked effect on WWMAT. This 

component trait is comprised of a cow’s ability to provide enough milk to the growing calf which is 

dependent on pre-pubertal growth (Sejrsen et al., 1982; Sejrsen & Purup, 1997) in conjunction 

with correct nutrition during this developmental stage. 

LRRC4C is a gene that is involved in mediating cell adhesion molecule binding and is 

involved in the regulative function of neural progenitor cell differentiation (Zhang et al., 2013b). A 

study on transcriptome signatures in beef cattle associated this gene with bovine uterine 

receptivity during early gestation (Binelli et al., 2015). This affects subsequent development of the 

foetus during gestation. A GWAS in crossbred Holstein cattle (Saowaphak et al., 2017), 

associated this gene with 305-days milk yield. This indicates that development of thalamocortical 

axons (TCA) and subsequent axonal signalling pathways may influence the production of milk 

through hormonal cascades. 

The E2 Ubiquitin-conjugating enzyme (UBE2J1) has transferase and ligase binding activity. 

This enzyme is localised in the endoplasmic reticulum (ER), is a known substrate of MAPK 

signalling pathway and is vital for transient ER stress cell recovery (Elangovan et al., 2017). No 

GWA study on cattle identified this gene but one on pigs (Do et al., 2014) associated it with 

residual feed intake as well as backfat and weight gain. 

PKHD1L1 is mainly involved in cellular biological processes and has transmembrane 

signalling receptor activity. Erdman et al., (2017) characterised this gene in a human population 
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and the results indicate people that are more likely to reach a desirable age of longevity are those 

whose genotype is upregulated for this gene. A study in mice (Wu et al., 2019) identified PKHD1L1 

as a component of the surface coat of hair cells in the cochlea and down regulation of this gene 

leads to progressive hearing loss. 

WWOX is involved in enzymatic binding and transcription cellular activities. It is involved in 

the negative regulation of Wnt and apoptic signalling pathways. WWOX has shown capabilities of 

interacting with androgen and oestrogen, and it has been suggested that WWOX may act as an 

alternative receptor for these sex steroid hormones (Chang et al., 2005; Su et al., 2012). No 

studies in cattle breeds have associated this gene with fertility traits. Recent literature has 

demonstrated that WWOX is a candidate tumour suppressor gene in human breast tumours 

(Abdeen et al., 2011). A preliminary study in mice (Ludes-Meyers et al., 2007), where the WWOX 

gene was knocked-out, indicated reduced fertility in affected males through atrophic development 

of seminiferous tubules. Female knockout mice showed reduced lifespans and increased B-cell 

lymphomas in mammary tissue which could subsequently affect milk production. 

FRS2 has been reported to be linked to receptor binding as well as activity on a variety of 

organs during embryonic development. It is referred to as the fibroblast growth factor receptor 

substrate 3 but has not been identified in beef cattle according to available literature. Biochemical 

studies (Hoch & Soriano, 2006; Zhang et al., 2013a) have discussed how fibroblast growth factor 

receptor (FGFR1) specific substrates, FRS2 and FRS3 are the underlying mediators of FGFR1 

signal transduction to the PI3K and MAPK pathways. The FGF receptor family belongs to a large 

group of protein tyrosine kinases that play an essential role in controlling cell growth, 

differentiation, survival and many other functions (Ong et al., 2000). 

ZGRF1, observed for WWMAT in this study, has a zinc ion binding function and is involved in 

the process of double-strand DNA repair. No other GWA study on cattle has identified this gene 

with any traits of interest. Choudhury et al., (2019) states that ZGRF1 belongs to the family of zinc-

finger GRF-type and UPF1-like RNA helicases. 

Bone morphogenic protein (BMP) 1 is linked to ion channelling as well as 

metalloendopeptidase activity. It is highly involved in regulating morphogenesis by transforming 

enzymatic precursors and mature functional extracellular matrix (ECM) proteins and several 

growth factors including GFD8 and transforming growth factor (TGF-β) family members (Grgurevic 

et al., 2011). Asharani et al., (2012) tested the functions of attenuated BMP1 function and identified 

that it led to compromised osteogenesis and resulted in bone fragility in humans and zebrafish. 

An investigation in Chinese Holsteins (Li et al., 2016) identified BMP1 as one of ten novel genes 
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affecting milk protein concentration. This was done using pair-end RNA sequencing of mammary 

tissue associated with cows that had low or high values for milk protein percentage. 

A few of the genes discussed above were also responsible for mineral binding. BMP1 is 

involved in the positive regulation of cartilage development and has metalloendopeptidase activity. 

It also has calcium and zinc ion binding activity, while the ZGRF1 gene also has zinc ion binding 

activity. 

RNA Binding Motif Protein 47 (RBM47) is heavily involved in translational processes in the 

form of mRNA and RNA binding as well as the conversion of cytidine to uridine. Weikard et al., 

(2012) analysed tissue-specific mRNA expression patterns in crossbred cows. He concluded that 

the transcriptional gene expression levels in the mammary gland, skeletal muscle and liver of 

cows postpartum are modulated due to the genetic and phenotypic background that affects 

performance of milk ability. An analysis of milk production traits in a Chinese Holstein population 

linked this gene (Hu et al., 2010). Further studies are required in order to understand this genes’ 

potential role in milk production. 

 RTN4RL1 is involved in CNS regulation and has signalling receptor activity. It is involved in 

heparin and chondroitin sulfate binding. Heparin is an anti-coagulant while chondroitin sulphate is 

involved in the prevention of cartilage degeneration and aid in stabilizing neuronal structures 

(Dickendesher et al., 2012). No literature was identified to have linked this gene with previous 

studies of fertility traits in beef cattle. This gene has been included in a prognostic test as a 

biomarker for breast cancer in humans (Marchionni et al., 2013) and is linked to minimal lymphoma 

development. 

Neurotrimin (NTM) is a protein coding gene associated with cellular adhesion through 

homophilic mechanisms and control the assimilation of various nitrogen sources (Jeter et al., 

1984). A GWA study on Holstein cattle (Freebern et al., 2020) associated NTM with a displaced 

abomasum, which would subsequently affect milk production but has been rarely described in 

suckling beef cattle (Oman et al., 2016). Another study, (De León et al., 2019), associated this 

gene with AFC in Columbian beef cattle. The result of knocking NTM out in mice was a deficit in 

the learning of emotionally challenging tasks mainly involved with that of active avoidance 

(Mazitov et al., 2017). These behaviours are linked with natural defensive response to aversive 

stimuli. 

MACROD1 is involved with protein de-ADP-ribosylation and has been linked to hydrolase 

activity (Agnew et al., 2018). A GWAS using genotyping-by-sequencing methodology identified 

MACROD1 as a novel candidate gene that influences cow milk traits (Ibeagha-Awemu et al., 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



83 
 

2016), especially fat percentage of bovine milk. Three fatty acids, these being caproic, caprylic 

and tridecylic, were all linked to MACROD1 gene region. These medium length carbon saturated 

fatty acids, or constituents of them, are all found in bovine milk; thus, this gene may influence the 

concentration of these acids. This gene was also associated with %KPH within the Simmental 

beef breed (Hieber et al., 2018). %KPH refers to the percentage of total fat, specifically 

in the regions of the kidneys, pelvis, and heart, of a carcass. 

MGLL, or monoglyceride lipase, is associated with the serine hydrolase superfamily, has 

lipase activity and a possible role in the fat digestion intracellularly (Senior & Isselbacher, 1963). 

This superfamily is linked to the conversion of monoacylglycerides into glycerol and their 

associated free fatty acids. These substrates are essential in ATP generation as well as the 

glycerol for either gluconeogenesis or hepatic lipogenesis processes. High MGLL activity is linked 

to the mobilization of lipid reserves (Viscarra & Ortiz, 2013) and may have a resultant cascading 

effect on the fat components in milk. 

DSCAML1 mediates cell-cell adhesion activity, especially for homophilic cells, and is 

essential in neurological system development and maintenance (Fuerst et al., 2009). The absence 

of this gene in previous discoveries in any cattle breed indicates that this may be a novel 

association within this study. Indel variants of down syndrome cell adhesion molecule 1 have been 

associated with poor sperm morphology in goats (Wang et al., 2020), with Kosova et al., (2014) 

also associating this gene in humans. 

The large number of genes identified for WWMAT in this study that are linked to the 

development of the mammary gland in conjunction with the production of milk, milk fat and protein 

concentrations and mobilization of body lipids is favourable. This once again illustrates our current 

understanding that lowly heritable traits are influenced by many genes with small polygenic 

effects. Studies (Buchanan et al., 2003; Rasby et al., 2014) have indicated that cows with the 

ability to better utilize available body reserves are able to produce amounts of milk suitable to 

enable a weaner calf to reach its maximum growth potential. 

Both genes, FILIP1 and Nucleoporin gp210 (NUP210) lack identified molecular functions 

and biological processes within the Bos taurus genome. According to research on human genes 

(Militello et al., 2018), FILIP1 is important during myogenesis and if silenced this inhibits the 

differentiation of myoblasts into myotubes. NUP210 expression is critical for neuro-progenitor cell 

and myoblast differentiation (D’Angelo et al., 2012) and up-regulates the expression of key 

differentiation genes. 
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LOC101902845, LOC528282, NUP210 and CEP164 have no identified biological or 

molecular role in the Bovidae family. 

 

Age at first calving (AFC) 

In this study, twenty significant (p < 1x10-8) SNPs were associated with age at first calving 

and was expected as AFC is known to be a polygenic trait. Most studies on heifer fertility revolve 

around biological signals, like age at first corpus luteam, pregnant or not pregnant at 18 months 

of age as well as various ultrasound observations. 

Significant SNPs associated with AFC were previously reported on BTA 4, 5, 6, 10, 13, 14, 

22 and 23 in literature (Costa et al., 2015; Nascimento et al., 2016; Melo et al., 2018; Fernández 

et al., 2019) in Bos indicus and crossbred beef cattle. The results from this study found significant 

SNPs on BTA 4 and BTA 5. Additional SNPs that were identified in this study have not been 

previously reported in literature and may be unique to the SA Bonsmara composite breed or 

spurious associations that could be deemed false positives. 

A total of eight genes were linked to significant SNPs associated with AFC. Cellular 

processes, with regards to organelle and compartment organization and/or cell biogenesis, occurs 

as the most common function at 45%. This could be linked to AFC, as it considers the heifers’ 

ability to reach sexual maturity at an early age, become pregnant and maintain pregnancy for the 

first time. Immune system functions were the next primary functional group followed by binding, 

especially ATP binding which was associated with three different genes. Inhibitor activity only 

makes up 9% of identified functions but were all endopeptidase related. For biological processes, 

cellular processes once again make up most of the allocated processes. This may be related to 

the ability of the uterine tract to develop and prepare sufficiently for successful conception. Binding 

activity was the second most numerous process, relating to protein and lipid binding. Signalling 

pathways are the third most common process and may be linked to the onset of puberty and the 

cascade of gonadotrophin hormones activated at the onset of puberty.  

AKT3 is involved in ATP binding, is essential in protein serine/threonine kinase activity and 

is a key regulator in the chemical signalling of the PI3K-AKT-mTOR pathway (Lee et al., 2012). 

This signalling influences many critical cell functions, including the synthesis of new proteins, cell 

growth, cell proliferation and the longevity of cells (Cohen, 2013). This gene was one of four genes 

identified to be linked to the autosomal recessive disease known as familial partial lipodystrophy 

(Garg, 2011). Lipodystrophy is described as an abnormal distribution of fat in the body and can 

refer to both the abnormal accumulation and/or the loss of fat tissue. Marete et al., (2018) identified 
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AKT3 as a candidate gene for the development of tissues associated with udder morphology in 

three French dairy breeds. 

Metabotropic glutamate receptor 8 (GRM8) has various neurotransmitter receptor and 

signalling pathways, especially with regards to glutamate activity (Scherer et al., 1997). A 

comprehensive study using whole-genome analysis associated this gene with body size in 

Brahman cattle (Chen et al., 2020). It is known that heifers who reach an earlier AFC compared 

to their similar age counterparts have larger body sizes. This may have been resultant of indirect 

selection through incidences of dystocia, with larger heifers experiencing a lower rate of 

problematic births at their first calving.  A study in humans linked this gene to endometriosis-

related infertility (Galarneau et al., 2018). 

RDH16 is associated with oxidoreductase activity (Deng et al., 2010) and has the highest 

activity in liver cells. No studies related to fertility traits have associated this gene in beef cattle. A 

recent study on mice identified the function of RDH16 to be significantly linked as a tumour-

suppressing gene, especially in hepatocellular membranes (Zhu et al., 2020). 

OVOS2, a gene similar to ovostatin has only one identified biological process in beef cattle, 

that being endopeptidase inhibitor activity involved in innate immune responses (Jacob et al., 

2009). A study performed by Makina et al., (2015) in SA Bonsmara and other local Sanga breeds 

identified OVOS2 as a selection signature related to reproductive performance, which AFC is a 

component of. González-Ruiz et al., (2019) linked this gene to tuberculosis resistance in Mexican 

Holsteins. 

A2M is involved in serine-type endopeptidase inhibitor activity and protease binding. This 

gene has been linked to up-regulation in bovine host tissues in response to pathogens and 

resulting inflammation responses (Ferreira et al., 2013). A study in mice where this gene was 

knocked-out (Umans et al., 1995) indicated that this gene has the highest level of expression 

around the partum period. 

FER is a member of the FPS family of non-transmembrane receptor tyrosine kinases 

involved in several cellular processes including cell proliferation, differentiation and localization 

(Fan, 2020). Biological processes include ATP and lipid binding activities. A similar gene, FER1L6, 

belonging to the same family as FER was associated with AFC in Nellore cattle (Mota et al., 2017). 

Ubiquitin like modifier activating enzyme 2 (UBAC2) is involved in protein localization and 

regulation in the ER and is linked to the Wnt signalling pathway (Park et al., 2012). No study has 

associated this gene to cattle with any traits of interest. This gene has been linked with Bechet’s 
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disease (BD) in humans (Fei et al., 2009) characterised by blood vessel inflammation throughout 

the entire body. 

KIF1B has been described as having ATP and microtubule binding activities. It belongs to 

the kinesin family of proteins and is essential for the transport of mitochondria and other substrates 

intracellularly. This gene has frequently been identified as a strong selective sweep in multiple 

dairy breeds (Randhawa et al., 2016). This is indicative of selective forces operating on the 

genetics that control the anatomical structure and physiological function of mammary glands, thus 

affecting the quantity and quality of milk constituents. Zhao et al., (2001) identified muscle 

weakness and impaired transport of synaptic vesicle precursors in mice that were heterozygous 

for the KIF1B gene. 

 

Scrotal circumference (SC) 

A review of relevant literature indicated that most researchers, with regards to bull fertility, 

study the biological processes associated with sperm quality, motility and scrotal volume (Fortes 

et al., 2012b; Lirón et al., 2012; Taylor et al., 2018) at a SNP marker or WGS level. More recent 

association studies that scrutinize male fertility revolve around sexual precocity, especially in 

tropical cattle (Fortes et al., 2013; Buzanskas et al., 2017; da Silva Romero et al., 2018; Sweett 

et al., 2018; de Melo et al., 2020; Stafuzza et al., 2020) located in Central and Southern America. 

These researchers analyzed the age an animal becomes sexually active. Buzanskas et al., (2017) 

identified significant SNPs on BTA 5, 14, 20, and 28, with Sweett et al., (2018) obtaining an 

association with BTA 16. None of these aforementioned results correlated with the results from 

this study. Four SNPs identified in this study have not been identified in literature and can be 

attributed to most studies being done on Taurine or Indicine breeds.  

Three genes were identified for SC. Catalytic activity (75%), especially with regards to the 

serine/threonine protein pathway, dominated the list of molecular functions for SC with the 

remaining 25% being annotated as having a binding function. Metabolic processes were grouped 

into four sets with embryonic development (41%) and cellular processes (35%) contributing the 

most. The WDPCP gene accounts for 15 of the 17 biological processes, with most being 

embryological. These processes may indicate that the potential SC of a bull calf may be 

determined before birth.  

WD repeat-containing planar cell polarity effector (WDPCP) has been attributed to 

embryological and developmental processes, as well as regulation of cell biogenesis. WDPCP 

regulates cell alignment required for collective cell movement during embryonic development (Cui 
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et al., 2013). The signalling pathway governs collective cell movements and proteins in the 

Wnt/PCP pathway control the morphogenesis of multiciliate epithelial cells during vertebrate 

embryogenesis (Ma et al., 2017). Afonso et al., (2019) described the WDPCP gene referring to its 

role in encoding a protein that inhibits Wnt activity, with the pathway involved in muscle 

regeneration. 

PPP3CA belongs to the serine/threonine-protein phosphatase catalytic subunit gene family. 

PPP3CA has a calmodulin binding function, in that it helps mediate the transfer of calcium and 

has highest levels of gene expression during adipogenesis (López-Victorio et al., 2013). This gene 

has been identified to have a significant effect on sexual precocity in Nellore cattle (Dias et al., 

2015) and then was further verified in five other cattle breeds (Dias et al., 2017). A study on 

selection signatures in African cattle (Taye et al., 2017), associated PPP3CA with thermotolerance 

which is an important trait with regards to maintaining the scrotum for optimal sperm production. 

SanGiovanni & Lee, (2013) associated this gene with metabolic signalling via MAPK. It has been 

reported by Miyata et al., (2015) that infertility in male rats can be induced by the blocking of this 

gene’s action.  

TRPM6 is involved in protein serine/threonine kinase activity, similar to other genes 

identified in this study. It is primarily responsible for cation channel activity. Rondón et al., (2008) 

investigated TRMP6 expression in the kidney and large intestinal tissues of mice where TRMP6 

was identified as the initial component that becomes directly involved in active kidney and 

intestinal epithelial Mg2+ absorption as well as reabsorption when circulating blood Mg2+ levels 

were low. A review on the link between magnesium homeostasis in cattle and TRMP6 (Martens 

et al., 2018), states that the binding of Mg2+ with an enzyme or substrate is essential for enzymic 

reactions.  

An interesting connection occurs between AFC and SC in this study, as they share molecular 

functions and biological processes between the different genes that were associated. Two genes, 

AKT3 and TRPM6, both have protein serine/threonine kinase activity and another gene, PPP3CA, 

has protein serine/threonine phosphatase activity. Other genes, OVOS2 and A2M, associated 

with AFC have endopeptidase inhibitor activity as well as serine-type endopeptidase inhibitor 

activity. Upon studying sexual hormone secretion patterns, one can conclude that the mechanisms 

that initiate puberty in both sexes are controlled by the same mechanisms. 

In conclusion this study demonstrated the potential of uncovering the hidden genetic 

mechanism that contribute to the expression of fertility traits. This GWAS provided the first insight 

of these underlying forces in a local indigenous SA cattle breed. 
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Chapter 5 General conclusion and recommendations 

The aim of this study was to conduct a genome-wide association study to investigate the 

underlying genetics of fertility and maternal traits within the SA Bonsmara breed. The traits of 

interest for this study were age at first calving (AFC), inter-calving period (ICP), scrotal 

circumference (SC) and weaning weight maternal (WWMAT). Fertility traits are lowly heritable but 

are an essential component in selection programs for the genetic improvement of all livestock 

species. In order to gain a better understanding of the genetic basis of these traits and in turn in 

improve reproductive efficiency, a GWAS study as described in this project was required. 

Phenotypic data, given as estimated breeding values of 4 171 animals, in conjunction with a 

pedigree containing 2 020 248 animals dating back to 1949 was provided by SA Stud Book on 

behalf of the SA Bonsmara Breeders Society. 

An original dataset of 3 291 SA Bonsmara animals, genotyped across three different 

commercial arrays underwent quality control (QC), an assessment of population stratification 

through principal component analysis (PCA), amalgamation of the three arrays via imputation to 

the highest density possible and finally a genome-wide association analysis using single SNP 

regression using the --snap runtime option (Meyer & Tier, 2012) in WOMBAT (Meyer, 2007). Each 

trait was statistically analysed with 128 793 SNP markers across all Bovine autosomes with 2 620 

animals for AFC, 2 245 for ICP, 2 318 for SC and 2 730 for WWMAT respectively. This above fulfilled 

the first objective set in Chapter 1 of this study. 

The second objective was that of a detailed annotation of the biological processes and/or 

molecular functions associated with associated genes and was done using Panther (Mi et al., 

2017). This gene ontology identified no genes associated with ICP, three genes for SC, eight 

genes for AFC and a total of nineteen genes for WWMAT. Genes could be grouped according into 

four main categories, these being cellular processes, embryological development processes, 

receptor binding and signalling pathways as well as catalytic functions.  

In conclusion, the findings in this study improve our current understanding of the genetic 

mechanism affecting fertility and maternal traits. Chromosomes and SNPs that yielded novel 

associations with previously uncharacterised genes or that have never been previously reported 

in literature may possibly be unique to the SA Bonsmara beef breed and will require further 

investigation.  
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5.1 Challenges and limitations 

Use of different models 

The development of high throughput sequencing technology (Visscher et al., 2012, 2017) 

has been coupled with the necessary development of mixed model equation (MME) methods. The 

appropriate models and software needed to process and identify significant associations through 

GWAS are still up for debate with multiple options available ranging from Bayesian analysis 

(Habier et al., 2011), to pre-conjugated linear gradient (Lidauer et al., 1999) and/or regression 

analysis (Meyer, 2007; Garrick et al., 2009). Prior to model inclusion, the appropriate calculation 

and weightings of phenotypes and/or estimated breeding values must be considered for the input 

data be as linearly independent as possible and maximise blocking of dependant variables. Each 

is to their own and may be relevant for single trait or multi-trait analysis. The inclusion of 

dominance and epistatic genetic effects still needs to come to the forefront of this field, with some 

researchers (Bolormaa et al., 2015; Dos Santos et al., 2016) showing that these effects must not 

be discarded. WOMBAT was utilised as a plethora of recent literature (McGovern et al., 2019; 

Ring et al., 2019; Twomey et al., 2019; Purfield et al., 2019b) has shown favourable and sensical 

results.  

Preliminary GWA studies utilized available lower-density platforms (Visscher et al., 2012; 

Sharma et al., 2015) and basic MME software (Meuwissen et al., 2001), with advances made with 

regards to appropriate statistical approaches (Meyer, 2007; Habier et al., 2011). The lightning 

speed progress of genomic technology has led to the use of whole-genome sequences (WGS) of 

thousands of animals across a wide range of livestock species (Bolormaa et al., 2017; Pereira et 

al., 2017; van Son et al., 2017; Yoshida et al., 2017; Do et al., 2018). The use of WGS in 

conjunction with GWAS has allowed for the validation of previous studies on the same traits within 

populations and the comprehensive analyses of the underlying genetic architecture that affect 

traits of interest. 

 

Chip bias, SA Studbook Chip in conjunction with Illumina  

The development of the original bovine reference genome (Zimin et al., 2009), and 

subsequent development of most commercially available genotyping platforms utilised the genetic 

variability of four taurine breeds and one indicus breed. This excluded the genetic variation present 

within local indigenous Sanga and composite breeds (Matukumalli et al., 2009). This has caused 

ascertainment bias in that some SNPs are either not present or show low levels of segregation 

when used on Bos taurus africanus. This is detrimental as it may not capture the full amount of 
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variation in the population and leads to lower levels of genetic informativeness. This may lead to 

bias as the imputation software available (Sargolzaei et al., 2014; Browning & Browning, 2016) 

relies on the genetic variation present within the reference population on the highest density array. 

This limitation translates to a scenario where younger animals that may be genotyped on lower 

density chips, for cost-saving reasons, may have genetic variation that is not present in the 

reference population. This variation may not be captured and thus is not able to be analysed in a 

GWAS study. This reiterates the need to consistently update a reference population with animals 

from newer generations in order to accurately describe the genetic variability present. This points 

to a need to develop a genotyping array that is more suitable for our Sanga breeds.  

 

5.2  Recommendations 

This study was the first GWA study performed in Bonsmara cattle and the first investigation 

of fertility in any indigenous SA beef breed using GWAS methodology. Although this is the largest 

breed in SA with the most phenotypic and genotypic data, certain limitations were experienced 

which could be addressed in future studies. 

The number of animals that were excluded from the final analysis for this study, in my 

opinion, was too high. This was due to the threshold of requiring an ERC value of ≥ 0.5. This is 

dependent on the reliability the animal had for a specific trait of interest as well as the animals’ 

number of descendants present within the population pedigree (Lidauer et al., 2017b). This mainly 

affected younger animals or animals that were genotyped but were not used as breeding stock. 

With time, as these animals proceed to have progeny with accurate phenotypes it will conjunctively 

raise their reliability estimates and may allow them to reach the threshold for inclusion in future 

association analyses. A comparison of this analysis with different MME approaches, for instance 

Bayesian inference through GenSel (Fernando & Garrick, 2008) may indicate the repeatability or 

may yield different results. 

A better methodology with regards to the blending of the first, second and third interval 

periods that will be more representative and result in a better reflection of the phenotypic variance 

within the population may need to be identified. This may result in the association of more 

significant SNPs and/or the identification of SNPs in gene regions. Reviews on fertility traits 

(Hawken et al., 2012; Fortes et al., 2013) indicated the need to compile a reference for fertility 

genes identified in other GWAS which is still lacking. 

The high amount of noise observed in the Manhattan plot for weaning weight maternal 

indicates that an inclusion of a fixed effect in the WOMBAT analysis may be necessary. The 
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studies on bioregion for Bonsmara animals (Nephawe et al., 2004; Webb et al., 2017) indicate the 

need to account for bioregion in the model for EBV prediction, which SA Stud Book does account 

for. A further inclusion of this fixed effect may be necessary in the final step of GWAS in order to 

consolidate the statistical model and minimise false positives and unwanted bias. The use of 

whole genome sequences (WGS) will allow for the more conclusive identification of causal genes 

as it will be more accurate compared to the use of the 130 000 SNP markers used in this study. 
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Addenda 

Addendum A: Deregression of estimated breeding values (EBVs) 

 

 

 

Figure A1 Plot of effective record contributions (ERC) against reliabilities for inter calving period 
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Figure A2 Plot of effective record contributions (ERCs) against reliabilities for weaning weight 

maternal 
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Figure A3 Plot of effective record contributions (ERCs) against reliabilities for scrotal 

circumference  
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Figure A4 Plot of estimated breeding values against deregressed estimated breeding values for 

first inter calving period 

 

Figure A5 Plot of estimated breeding values against deregressed estimated breeding values for 

second inter calving period 
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Figure A6 Plot of estimated breeding values against deregressed estimated breeding values for 

third inter calving period 

 

Figure A7 Plot of estimated breeding values against deregressed estimated breeding values for 

weaning weight maternal 
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Figure A8 Plot of estimated breeding values against deregressed estimated breeding values for 

scrotal circumference 
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Addendum B: Principal component analysis (PCA) 

 

Figure B1 Genetic relationships among 1 937 Bonsmara animals and 128 793 SNPs genotyped 

on the GGP 150K HD array for the first and second principal components (PC 1 and PC 2) 

 

Figure B2 Genetic relationships between 1932 Bonsmara animals and 128 793 SNPs genotyped 

on the GGP 150K HD array for the first and second principal components (PC 1 and PC 2) 
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Figure B3 Genetic relationships between 3 253 Bonsmara animals and 128 793 SNPs genotyped 

on the GGP 150K HD array for the first and second principal components (PC 1 and PC 2) post-

imputation 
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