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Abstract

Chapter 1. We review prerequisite material from universal algebra and
abstract algebraic logic, as well as the connections between ‘substructural
logics’ (defined in this chapter) and varieties of residuated lattices (defined
more precisely in the next chapter). In particular, we recall the definition
of the relevance logic Rt, which is algebraized by the variety DMM of De
Morgan monoids.

Chapter 2. We introduce the variety of (commutative) residuated lat-
tices, as well as its ‘involutive’ variant, and we explain the basic properties
of some notable subvarieties—namely, the residuated lattices whose monoid
operations are square-increasing, those that are idempotent, and De Mor-
gan monoids. A new structural characterization of the finitely subdirectly
irreducible De Morgan monoids is then established. In particular, each
of them consists of two chains of idempotent elements, between which a
not-necessarily-idempotent subalgebra is enclosed.

Chapter 3. The four-element De Morgan monoid C4 is totally ordered
and it is the only nontrivial 0-generated algebra onto which finitely subdi-
rectly irreducible De Morgan monoids can be mapped by non-injective ho-
momorphisms. The homomorphic pre-images of C4 within DMM (together
with the trivial De Morgan monoids) constitute a proper subquasivariety of
DMM, which is shown to have a largest subvariety U. We prove a represen-
tation theorem for the algebras in U. It exploits a construction of Slaney,
which we call a ‘skew reflection’.

Another representation theorem is then proved for those De Morgan
monoids A that are (i) semilinear, i.e., a subdirect product of totally or-
dered algebras, and (ii) negatively generated, i.e., generated by the set A−

of lower bounds of the neutral element of A. This set A− can be given the
structure of a Brouwerian algebra A− (even when A is merely a square-
increasing residuated lattice). Using our representation theorems, we prove
that the De Morgan monoids satisfying (i) and (ii) form a variety—in fact,
a locally finite variety.

Chapter 4. It is proved that there are just four minimal varieties—and
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ABSTRACT v

just 68 minimal quasivarieties—of De Morgan monoids. The join-irreducible
covers of the four atoms in the subvariety lattice of DMM are then inves-
tigated. One of the two atoms consisting of idempotent algebras has no
such cover; the other atom has just one. The remaining two atoms lack
nontrivial idempotent members. They are generated, respectively, by C4

and another 4-element De Morgan monoid D4. The covers of the variety
V(C4) within U are revealed. There are just ten of them (all finitely gener-
ated). In exactly six of these ten varieties, all nontrivial members have C4

as a retract. Beyond U, we identify infinitely many covers of V(C4) [and of
V(D4)] that are finitely generated, and some that are not.

These results illuminate the maximal and pre-maximal extensions of Rt.

Chapter 5. It is known that a quasivariety K of algebras has the joint
embedding property (JEP) iff it is generated by a single algebra A. It is
structurally complete iff the free ℵ0-generated algebra in K can serve as
A. A consequence of this demand, called ‘passive structural completeness’
(PSC), is that the nontrivial members of K all satisfy the same existential
positive sentences. We prove that if K is PSC then it still has the JEP, and
if it has the JEP and its nontrivial members lack trivial subalgebras, then
its relatively simple members all belong to the universal class generated by
one of them. Under these conditions, if K is relatively semisimple then it
is generated by one K-simple algebra. We also prove that a quasivariety
of finite type, with a finite nontrivial member, is PSC iff its nontrivial
members have a common retract. The theory is then applied to the variety
of De Morgan monoids, where we isolate the sub(quasi)varieties that are
PSC and those that have the JEP, while throwing fresh light on those that
are structurally complete. These results further illuminate the extension
lattice of Rt.

Chapter 6. It is proved that epimorphisms are surjective in a variety K of
square-increasing residuated lattices (with or without involution), provided
that each finitely subdirectly irreducible algebra A ∈ K has two properties:
(1) A is negatively generated, and (2) the poset of prime filters of A− has
finite depth. Neither (1) nor (2) may be dropped. The proof adapts to
the presence of bounds, and the result encompasses a range of interesting
varieties of De Morgan monoids.

The surjectivity of epimorphisms is then established for certain varieties
of semilinear algebras, not encompassed by the above theorem. In particu-
lar, epimorphisms are surjective in the variety of all semilinear idempotent
residuated lattices (where (1) fails in certain irreducible members). The
same applies to all varieties of negatively generated semilinear De Morgan
monoids (even those with irreducible members A for which the poset of

 
 
 



ABSTRACT vi

prime filters of A− has infinite depth).
These results, and those of the following chapter, settle natural questions

about Beth-style definability for a range of extensions of Rt.

Chapter 7. It is shown that there are 2ℵ0 varieties of Brouwerian algebras
that are not structurally complete. We also show that there is a continuum
of varieties of Brouwerian algebras in which epimorphisms fail to be surjec-
tive. Using these findings, we draw analogous conclusions for varieties of
De Morgan monoids.

Much of this material has been accepted for publication in the form of jour-
nal articles. Most of the results in Chapters 2–4 can be found in [103, 104].
The results of Chapter 5 [resp. the first part of Chapter 6] are contained
in [106] [resp. [107]], although both papers adopt a slightly more general
framework. With regard to Chapter 7, the uncountability results concerning
structural completeness are included in [106], while the material concern-
ing epimorphisms is adapted from [108]. The findings of Chapters 3 and 6
concerning semilinear algebras will be written up in [147].
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Introduction

De Morgan monoids are commutative monoids with a residuated distribu-
tive lattice order and a compatible antitone involution ¬, where a 6 a2 for
all elements a. They form a variety, DMM.

The explicit study of residuated lattices goes back to Ward and Dilworth
[148], but it has older antecedents in the ideal multiplication theory of
rings, and in the calculus of binary relations (see the citations in [20, 51,
65]). Much of the interest in De Morgan monoids stems, however, from
their connection with relevance logic, discovered by Dunn [36] (also see his
contributions to [1], as well as [101]). A key fact, for our purposes, is that the
axiomatic extensions of Anderson and Belnap’s logic Rt and the varieties
of De Morgan monoids form anti-isomorphic lattices, and the latter are
susceptible to the methods of universal algebra. In Chapter 1, preliminary
material regarding universal algebra and the abstract connection between
algebra and logic is recounted.

Relevance logic (a.k.a. relevant logic) was originally intended as a frame-
work in which the so-called paradoxes of material implication could be
avoided. These include the weakening axiom p → (q → p), which, when
interpreted intuitively, states that if p is true then q implies p. The para-
dox lies in the fact that q can be any statement, even something un-
related to p. Thus, relevance logic began as a rebellion against classi-
cal logic, but it subsequently gained multiple interpretations (see for in-
stance [126, 133, 139, 140, 142]), and it now fits under the ideology-free
umbrella of substructural logics [51]. In the last part of Chapter 1, a
number of substructural logics, including Rt, are introduced. Relative
to the other logics, Rt adds ∧,∨ distributivity and the contraction axiom
(p → (p → q)) → (p → q). This combination of additional axioms has in-
teresting meta-logical effects; for example, Rt was shown to be undecidable
by Urquhart in [141], whereas the substructural logics with only one of the
last-mentioned two axioms are decidable; see [22] and [100], respectively.

In 1996, Urquhart [142, p. 263] observed that “[t]he algebraic theory
of relevant logics is relatively unexplored, particularly by comparison with
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INTRODUCTION x

the field of algebraic modal logic.” Acquiescing in a paper of 2001, Dunn
and Restall [38, Sec. 3.5] wrote: “Not as much is known about the alge-
braic properties of De Morgan monoids as one would like.” These remarks
pre-date many recent papers on residuated lattices—see the bibliography of
[51], for instance. But the latter have concentrated mainly on varieties in-
comparable with DMM (e.g., Heyting and MV-algebras), larger than DMM
(e.g., full Lambek algebras) or smaller (e.g., Sugihara monoids). This thesis,
especially Chapters 2 and 3, contributes to filling that gap.

Contraction amounts to the square-increasing law (x 6 x2) of De Mor-
gan monoids. It has the effect that such an algebra is simple iff its neutral
element e has just one strict lower bound. Another effect is that two such
algebras with the same involution-less reduct must be equal [132]. Also,
finitely generated algebras of this kind are bounded (see [136, Prop. 5] and
Theorem 2.10). On the other hand, ∧,∨ distributivity—which amounts to
lattice-distributivity in the algebras—causes a De Morgan monoid to be
(finitely subdirectly) irreducible iff its neutral element e is join-prime. Ir-
reducible algebras are the building blocks of any variety, so knowledge of
their structural properties is valuable.

Together, contraction and distributivity give De Morgan monoids the
following special feature, not shared by more general residuated lattices: an
irreducible algebra A consists only of upper bounds of e and lower bounds
of ¬e, i.e., A = [e) ∪ (¬e]. And, when such an algebra is bounded, it is
rigorously compact, i.e., if ⊥ 6 x 6 > for all x, then > · x = >, unless
x = ⊥. (Bounded residuated lattices already satisfy ⊥ · x = ⊥ for all x.)

A De Morgan monoid A is said to be idempotent or anti-idempotent if
it satisfies x2 = x or x 6 (¬e)2, respectively. The idempotent De Mor-
gan monoids are the aforementioned Sugihara monoids, and their structure
is comparatively well understood. Anti-idempotence is equivalent to the
demand that no nontrivial idempotent algebra belongs to the variety gen-
erated by A (Corollary 2.14), hence the terminology.

The main result of Chapter 2 shows that any irreducible De Morgan
monoid A is either (i) a totally ordered Sugihara monoid or (ii) the union
of a nontrivial interval subalgebra [¬a, a] and two chains of idempotent
elements, (¬a] and [a), where a = (¬e)2. In the latter case, the anti-
idempotent subalgebra ([¬a, a]) is the e-class of a congruence θ such that
A/θ is a totally ordered Sugihara monoid in which ¬e = e, and all other
θ-classes are singletons. The elements in the idempotent chains behave,
with respect to the monoid operation ·, like the extrema of a rigorously
compact algebra. We therefore turn this characterization into a represen-
tation theorem (Theorem 2.57), involving so-called ‘rigorous extensions’ of
anti-idempotent De Morgan monoids.
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Slaney [129, 130] showed that the free 0-generated De Morgan monoid is
finite, and that there are only seven non-isomorphic irreducible 0-generated
De Morgan monoids (see Section 3.3). No similarly comprehensive classi-
fication is available in the 1-generated case, however, where the algebras
may already be infinite. Of the seven irreducible 0-generated De Morgan
monoids, three are simple, namely the two element Boolean algebra 2, and
two four-element algebras C4 and D4, where C4 is totally ordered (with
e < ¬e), while e and ¬e are incomparable in D4.

Slaney [130] proved that C4 is the only 0-generated nontrivial algebra
onto which irreducible De Morgan monoids may be mapped by non-injective
homomorphisms. We demonstrate in Chapter 3 that there is a largest
variety U of De Morgan monoids consisting of homomorphic pre-images of
C4 (along with trivial algebras), as well as a largest subvariety M of DMM
such that C4 is a retract of every nontrivial member of M. Thus, V(C4) ⊆
M ⊆ U. We furnish U and M with finite equational axiomatizations; each
has an undecidable equational theory and uncountably many subvarieties
(see Sections 3.1 and 3.4). We also provide representation theorems for the
members of U and M (Section 3.2), involving a ‘skew reflection’ construction
of Slaney [131]. This is a generalization of an older ‘reflection’ construction
of Meyer [97] (see Section 3.4).

In Section 3.5, these representations and the main result of Chapter 2
are combined to prove a further representation theorem for De Morgan
monoids that are semilinear (subdirect products of totally ordered algebras)
and negatively generated, i.e., generated by lower bounds of e. It follows
that these algebras form a finitely axiomatizable variety. We show that this
variety is locally finite.

Apart from understanding the algebraic structure of De Morgan monoids,
we aim to illuminate the structure of the subvariety lattice of DMM, be-
cause it mirrors the axiomatic extensions of Rt. In Chapter 4 we partially
describe the lower part of the subvariety lattice.

We prove that a variety of De Morgan monoids consists of Sugihara
monoids iff it omits C4 and D4 (Theorem 4.1). This implies that DMM has
just four minimal subvarieties (Theorem 4.2) all of which are finitely gener-
ated. They are the varieties generated by C4 and D4, and two idempotent
varieties: V(2), i.e., the class BA of all Boolean algebras, and V(S3)—where
S3 is the three-element Sugihara monoid.

The latter part of Chapter 4 (Sections 4.2–4.5) is primarily an investi-
gation of the covers of these four atoms within DMM. It suffices to consider
the join-irreducible covers, as the subvariety lattice of DMM is distributive.
We show that BA has no join-irreducible cover within DMM, and that V(S3)
has just one; the situation for V(C4) and V(D4) is much more complex (see
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Theorem 4.9).
With the help of the skew reflection representations from Chapter 3, we

identify all of the covers of V(C4) within U. There are just ten, of which
exactly six fall within M (Theorem 4.23, Corollary 4.24). All ten of these
varieties are finitely generated.

Within DMM, every cover of V(D4) is semisimple—provided that it
is join-irreducible. The same applies to the covers of V(C4) that are not
contained in U. In both cases, we identify infinitely many such covers that
are finitely generated, and some that are not even generated by their finite
members (see Sections 4.4 and 4.5).

In the literature of substructural logics, subvariety lattices are more
prominent than subquasivariety lattices, because they mirror the extensions
of a logic by new axioms, as opposed to new inference rules. Nevertheless,
some natural meta-logical problems call for a consideration of quasivarieties
if they are to be approached algebraically, e.g., the identification of the
structurally complete axiomatic extensions of Rt. Chapter 5 is devoted to
such problems, but already in Section 4.1 we describe the bottom of the
subquasivariety lattice of DMM. Each of the four minimal varieties of De
Morgan monoids is also minimal as a quasivariety, but they are not alone
in this. Indeed, we prove that DMM has just 68 minimal subquasivarieties
(Corollary 4.7, Remark 3.29).

Motivated by logical concerns, Chapter 5 focusses on connections be-
tween the subquasivariety and subvariety lattices of DMM. Most generally,
we ask when a (quasi)variety of De Morgan algebras is ‘singly generated’,
i.e., generated as a quasivariety by a single algebra. Equivalently, in logical
terms, we ask when the derivable rules of an extension of Rt are deter-
mined by a single set of ‘truth tables’. By the  Loś-Suszko Theorem 5.13,
that demand amounts to a more widely meaningful variant of the rele-
vance logician’s ‘variable-sharing principle’ (see Definition 5.12). Maltsev
[89] proved that a quasivariety K is singly generated iff it has the joint em-
bedding property (JEP), i.e., any two nontrivial members of K can both be
embedded into some third member.

When investigating these properties for De Morgan monoids, we found
that some of our results generalized to quasivarieties whose nontrivial mem-
bers lack trivial subalgebras. We call these Kollár quasivarieties, after [77].
The first part of Chapter 5 therefore has a universal algebraic flavour. We
show that if a Kollár quasivariety K has the JEP, then its relatively simple
members all belong to the universal class generated by one of them (Theo-
rem 5.7). If, in addition, K is relatively semisimple, then it is generated (as
a quasivariety) by one K-simple algebra.

We characterize the subvarieties of DMM that have the JEP (Theo-
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rem 5.37), but only after investigating various strengthenings of the JEP
that have received attention in the literature. One such property is struc-
tural completeness. It has logical origins, but in algebraic terms, a quasi-
variety is structurally complete iff it is generated by its free ℵ0-generated
member. Moreover, a variety K is structurally complete iff each proper
subquasivariety of K generates a proper subvariety of K. A quasivariety
is said to be hereditarily structurally complete if each of its subquasivari-
eties is structurally complete. A weak variant of structural completeness,
called passive structural completeness (PSC) asks, in effect, that any two
nontrivial members of a quasivariety have the same existential positive the-
ory. This property still implies the JEP (Theorem 5.19). We prove that
a quasivariety of finite type with a finite nontrivial member is PSC iff its
nontrivial members have a common retract (Theorem 5.28).

Using this fact, we describe completely the (quasi)varieties of De Morgan
monoids that are PSC (Theorems 5.33 and 5.34) and conclude that, apart
from the idempotent and minimal varieties, the remaining structurally com-
plete varieties of De Morgan monoids all fall within M. We also show that,
in the varietal join J of the six covers of V(C4) within M, every finite irre-
ducible algebra is projective. It follows that every subquasivariety of J is a
variety, i.e., that J is hereditarily structurally complete. (See Theorems 5.42
and 5.43.)

In Chapter 6 we investigate another algebraic property that has logical
significance. In a variety of algebras, if a homomorphism is surjective, then
it is an epimorphism, but the converse need not hold. Indeed, rings and dis-
tributive lattices each form varieties in which non-surjective epimorphisms
arise. As it happens, this reflects the absence of unary terms defining multi-
plicative inverses in rings, and complements in distributive lattices, despite
the uniqueness of those entities when they exist.

Such constructs are said to be implicitly (and not explicitly) definable. In
a variety of logic, they embody implicitly definable propositional functions
that cannot be explicated in the corresponding logical syntax, and Beth-
style ‘definability properties’ preclude phenomena of this kind.

In particular, when a logic L is algebraized, in the sense of [17], by a
variety K of algebras, then the ES property for K—i.e., the demand that
all epimorphisms in K be surjective—amounts to the so-called infinite Beth
definability property for L. The most general version of this ‘bridge theorem’
was formulated and proved by Blok and Hoogland [13, Thms. 3.12, 3.17]
(also see [105, Thm. 7.6] and the antecedents cited in both papers). In
this situation, the subvarieties of K algebraize the axiomatic extensions of
L, but the ES property need not persist in subvarieties. It is therefore a
well-motivated task to determine which subvarieties of K have surjective
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epimorphisms.
Urquhart [143] showed that epimorphisms need not be surjective in the

variety of De Morgan monoids, but the goal of Chapter 6 is to locate subva-
rieties in which they are surjective. Interestingly, the results of this chapter
do not depend on distributivity, nor on the presence of an involution, and
they adapt to the presence of (distinguished) bounds. The context of Chap-
ter 6 is therefore (possibly involutive) square-increasing residuated lattices
(S[I]RLs). The negative cone of an S[I]RL A, which comprises the lower
bounds of e, may be given the structure of a Brouwerian or Heyting algebra
A−, to which the Esakia duality of [44] applies. In particular, the depth of
A may be defined as that of A−. In Sections 6.2–6.4 we review preliminary
material regarding epimorphisms and Esakia duality.

The first main result of this chapter (Theorem 6.22) shows that in a vari-
ety K of S[I]RLs, epimorphisms will be surjective if each irreducible member
of K is negatively generated and has finite depth. Neither hypothesis may
be dropped. The assumptions of Theorem 6.22 persist in subvarieties and
under varietal joins, so the result is labour-saving.

Beyond the scope of Theorem 6.22, a representation theorem from [59]
is exploited in Sections 6.6 and 6.7 to establish the ES property for several
varieties of semilinear residuated lattices. Success in the case of semilinear
idempotent residuated lattices (Theorem 6.33) is particularly noteworthy,
because it entails the strong amalgamation property for this variety. It
also shows that, in a variety of SRLs with surjective epimorphisms, the
irreducible algebras need not be negatively generated. On the other hand,
dropping idempotence, we prove that epimorphisms are surjective in all
varieties of negatively generated semilinear De Morgan monoids (even those
with algebras of infinite depth). Here, the demand for negative generation
cannot be dropped.

In Chapter 7, we supply two uncountability results. Brouwerian alge-
bras model the positive fragment of intuitionistic propositional logic. Citkin
determined the hereditarily structurally complete varieties of Brouwerian
algebras in [32]; there are denumerably many of them. We show (in The-
orem 7.4) that 2ℵ0 varieties of Brouwerian algebras are not structurally
complete. We then apply the reflection construction to show that a contin-
uum of subvarieties of M are structurally incomplete (Theorem 7.6). The
cardinality of the set of structurally complete varieties of Brouwerian alge-
bras (and of De Morgan monoids) is not known.

A result of Kreisel [78] shows (in effect) that every variety of Brouwerian
algebras has a weak form of the ES property, whereas Maksimova estab-
lished that only finitely many enjoy a certain strong form; see [49, 87, 88].
Uncountably many varieties of Brouwerian algebras have finite depth [79],
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and all of these have surjective epimorphisms; the latter claim was proved
recently in [11], using Esakia duality. (Our Theorem 6.22 is a generalization
of this fact.) In [11], one example of a variety K of Brouwerian algebras was
exhibited in which the ES property fails. That example confirmed Blok and
Hoogland’s conjecture in [13] that the weak ES property really is strictly
weaker than the ES property. Strengthening this finding, we show that, in
2ℵ0 varieties of Brouwerian algebras (containing K), not all epimorphisms
are surjective. We then apply the reflection construction again, and show
that a continuum of varieties of De Morgan monoids having the weak ES
property still lack the ES property. Moreover, these witnesses can be chosen
locally finite.

 
 
 



Chapter 1

Substructural logics and
universal algebra

As was mentioned in the introduction, the main impetus for the study of
De Morgan monoids came from their connection with the relevance logic
Rt. More generally, we shall study varieties of De Morgan monoids, which
correspond to axiomatic extensions of Rt. The algebraic properties that
we investigate are also motivated by the connection to logic, in that each
of them is equivalent to a significant meta-logical property for the corre-
sponding deductive system. The tools of universal algebra are well suited
to such an investigation, because they often allow one to connect formal or
syntactic notions with structural (purely algebraic) ones.

Another helpful feature of universal algebra is that its results often con-
cern global properties of a class of algebras, transcending the need to ref-
erence the specific operation symbols under consideration. This level of
generality will be useful, as we shall often need to consider algebras that
are closely related to De Morgan monoids, but which are either more gen-
eral, or have slightly different operations. All of these algebras fall under
the umbrella of residuated structures, so this thesis is a contribution to that
general field. It is therefore simultaneously a contribution to the study of
substructural logics, because the latter are the logics modeled by residuated
structures.

In the first section of this chapter we review the preliminary universal
algebraic notions and notation used throughout the thesis. We also de-
fine ‘Kollár quasivarieties’ and discuss ‘existential positive sentences’, which
might be less familiar to the reader.

The aim of the second section is to introduce the substructural logics
corresponding to the various classes of residuated structures under investi-
gation here, and to make this correspondence precise.

1

 
 
 



CHAPTER 1. SUBSTRUCTURAL LOGICS AND UA 2

1.1 Universal algebra preliminaries

We proceed to review the basic universal algebraic definitions and construc-
tions. Standard references on universal algebra include [7] and [24]. Our
brief overview is based on [120].

Algebraic constructions

An algebra A = 〈A;F 〉 comprises a non-empty set A (its universe) and an
indexed family F = {fA : f ∈ F} of finitary basic operations on A. The
set F is called the signature of A, and its elements are called operation
symbols. Each fA is a function from the cartesian power An to A, for some
non-negative integer n, called the arity of fA. By n-ary, we mean ‘with
arity n’. Constants, i.e., distinguished elements of A, are treated as nullary
(i.e., 0-ary) basic operations. The function sending each f ∈ F to the arity
of fA is called the type of A, and algebras with the same type are said to be
similar. A (similarity) type can be defined without reference to particular
algebras as any function from a set F into the set ω of non-negative integers.
When F is a finite [resp. countable] set, we say that A (as above) has finite
[resp. countable] type. We call A finite [resp. trivial ] if A is finite [resp.
|A| = 1].

A subuniverse of an algebra A is a subset of A, closed under the basic
operations of A. It becomes a subalgebra of A when equipped with the
appropriate restrictions of the operations, provided it is not empty, and A
is then called an extension of this subalgebra. Arbitrary intersections of
subuniverses are again subuniverses. Given a subset X of A, we denote by
SgAX the subuniverse of A generated by X, i.e., the smallest subuniverse
of A which contains X. Note that SgAX is empty only when X = ∅ and
A has no distinguished element. In all other cases we let SgAX denote the
subalgebra of A with universe SgAX, i.e., the subalgebra of A generated
by X. Thus, A is generated by X when SgAX = A. In this case, if
m is any cardinal ≥ |X|, we say that A is m-generated (so that ‘finitely
generated’ means ‘m-generated for some finite m’). Note that an algebra is
0-generated iff it has a distinguished element and no proper subalgebra. An
algebra with a distinguished element has a unique 0-generated subalgebra,
which is its smallest subalgebra.

Reducts of an algebra A arise by discarding basic operations, and sub-
reducts are subalgebras of indicated reducts. We call A an expansion of
each of its reducts.

The direct product
∏

i∈IAi of a family {Ai : i ∈ I} of similar algebras
is their cartesian product, on which the appropriate basic operations are

 
 
 



CHAPTER 1. SUBSTRUCTURAL LOGICS AND UA 3

defined in terms of those of the algebras Ai in the obvious co-ordinatewise
fashion. When the algebras are all the same, we may denote the resulting
direct power by AI . Products of empty families are understood to have
universe {∅}.

A homomorphism h : A→ B between similar algebras is a function that
preserves the basic operations fA of A, in the sense that

h(fA(~a)) = fB(h(a1), . . . , h(an)) for all ~a = a1, . . . , an ∈ A,

where n is the arity of fA. We call h an embedding if it is also injective,
and an isomorphism if it is bijective. The notation h : A ∼= B signifies that
h is an isomorphism, and h : A ↪→ B that h is an embedding. The target of
a surjective [resp. bijective] homomorphism is called a homomorphic [resp.
isomorphic] image of the domain. We sometimes indicate that h is surjec-
tive with the notation h : A� B. An endomorphism [resp. automorphism]
of A is a homomorphism [resp. isomorphism] h : A → A. If h : A → B is
a homomorphism, and C and D are subalgebras of A and B respectively,
then h[C] := {h(c) : c ∈ C} and h−1[D] := {a ∈ A : h(a) ∈ D} are
subuniverses of B and A, respectively. The corresponding subalgebras are
denoted by h[C] and h−1[D] (if h−1[D] 6= ∅). If X generates A, then h[X]
generates h[A].

Given a map h with domain X, the kernel of h is the set

kerh := {〈a, b〉 ∈ X2 : h(a) = h(b)}.

A congruence (relation) on an algebra A is the kernel of some homomor-
phism with domain A, i.e., it is an equivalence relation θ on A, compatible
with each basic operation fA of A in the sense that, whenever ak ≡θ bk
(i.e., 〈ak, bk〉 ∈ θ) for k = 1, . . . , n, then

fA(a1, . . . , an) ≡θ fA(b1, . . . , bn),

n being the arity of fA. This compatibility demand implies that the set
A/θ of equivalence classes a/θ (a ∈ A) becomes a factor algebra A/θ of
the same type as A, under the unambiguous natural definition of the basic
operations: fA/θ(a1/θ, . . . , an/θ) = fA(a1, . . . , an)/θ. Of course, the rule
a 7→ a/θ defines a surjective homomorphism A → A/θ. Moreover, this
leads to the first isomorphism theorem of universal algebra:

Homomorphism Theorem 1.1. If h : A→ B is a homomorphism, then
A/θ ∼= h[A], where θ is the kernel of h. The isomorphism identifies each
a/θ with h(a).

 
 
 



CHAPTER 1. SUBSTRUCTURAL LOGICS AND UA 4

For any set A and equivalence relation θ on A, the map a 7→ a/θ is
called the canonical surjection from A to A/θ.

Given a class K of similar algebras and an algebra A of the same type,
the set ConK(A) of K-congruences of A (a.k.a. relative congruences of A
when K is understood) consists of the congruences θ such that A/θ ∈ K.
The set of all congruences of an algebra A is denoted by Con(A) (i.e.,
Con(A) = ConK(A), where K is the class of all algebras similar to A).

Second Isomorphism Theorem 1.2. If θ and ϕ are congruences of
an algebra A, with θ ⊆ ϕ, then ϕ/θ := {〈a/θ, b/θ〉 : 〈a, b〉 ∈ ϕ} is a
congruence of A/θ and (A/θ)/(ϕ/θ) ∼= A/ϕ.

A subdirect product B of a family {Ai : i ∈ I} of similar algebras is a
subalgebra of their direct product, such that each of the natural projection
homomorphisms πj :

∏
i∈IAi → Aj (j ∈ I) restricts to a surjection from B

to Aj (so each Aj is a homomorphic image of B). An embedding h : A→∏
i∈IAi is called a subdirect embedding if h[A] is a subdirect product of
{Ai : i ∈ I}.

Let K be a class of similar algebras, with A ∈ K. We say that A is
[finitely ] K-subdirectly irreducible if the following is true for every [finite
non-empty] set I and every family {Ai : i ∈ I} of members of K : whenever
an embedding h : A →

∏
IAi is subdirect, then πi ◦ h : A ∼= Ai for some

i ∈ I. The prefix ‘K-’ is often replaced by the word ‘relatively’ when K is
understood, and removed altogether when K is understood to be the class of
all algebras that are similar toA. We often abbreviate ‘[finitely] subdirectly
irreducible’ as [F]SI.

Birkhoff’s Subdirect Decomposition Theorem 1.3 ([24, Thm. 8.5]).
Every algebra is isomorphic to a subdirect product of SI homomorphic im-
ages of itself.

A filter U over a set I is a non-empty set of subsets of I, closed under
taking supersets and finite intersections. It is an ultrafilter over I if it
excludes ∅ and is not properly contained in any filter over I, except for the
filter of all subsets of I. In this case, for any J, J ′ ⊆ I, if J ∪ J ′ ∈ U , then
J ∈ U or J ′ ∈ U (in particular, just one of J, I \ J belongs to U). Note
that there is no ultrafilter over ∅. The ultrafilter U is principal if it equals
{J ⊆ I : x ∈ J} for some x ∈ I. Every non-principal ultrafilter over an
infinite set I contains the so-called Fréchet filter of co-finite subsets of I,
i.e., the sets X ⊆ I such that I \X is a finite set.

Given a non-empty family {Ai : i ∈ I} of similar algebras and a ∈∏
i∈I Ai, we often write a as 〈ai : i ∈ I〉, so that ai abbreviates πi(a). For

 
 
 



CHAPTER 1. SUBSTRUCTURAL LOGICS AND UA 5

an ultrafilter U over I, the relation θU identifies all pairs a, b ∈
∏

i∈I Ai for
which there exists J ∈ U such that

ai = bi for all i ∈ J.

It is a congruence of
∏

i∈IAi. The factor algebra
(∏

i∈IAi

)
/θU , abbrevi-

ated as
∏

i∈IAi/U , is called an ultraproduct of {Ai : i ∈ I}. We abbreviate
the equivalence class a/θU as a/U . We use the term ultrapower when the
algebras Ai are all the same. If U is principal, then

∏
i∈IAi/U ∼= Aj for

some j ∈ I. If B is an ultrapower AI/U of A, then A is called an ultraroot
of B. Any algebra can be embedded into each of its ultrapowers by the
obvious map a 7→ 〈a, a, a, . . . 〉/U .

Theorem 1.4 ([24, Thm. V.2.14]). Every algebra embeds into an ultraprod-
uct of finitely generated subalgebras of itself.

The class operator symbols

I, H, S, E, P, PS, PU and RU

stand for closure under isomorphic and homomorphic images, subalgebras,
extensions, direct and subdirect products, ultraproducts and ultraroots,
respectively. For each class operator O, we abbreviate O({A1, . . . ,An}) as
O(A1, . . . ,An).

We now turn to some of the syntactic aspects of universal algebra.

Syntactic aspects

Recall that any first order language L includes a denumerable set Var of
variables (which we fix throughout the thesis) and the following first order
logical connectives: ≈, ∀, ∃, =⇒ , & , t, and not (where ≈ is formal
equality and t denotes first order ‘disjunction’, and the other connectives
have their usual meanings). The language L furthermore includes a first
order signature, which is a pair 〈F ,R〉 of disjoint sets, whose elements
are each assigned a non-negative integer (its arity). The elements of F
[resp. R] are called operation [resp. relation] symbols, and relation symbols
have nonzero arity. Operation symbols with zero arity are called constant
symbols.

Let X be a set. The terms of L over X depend only on F and X, and
are defined recursively, as follows. Define T0 := X ∪ {f ∈ F : ρ(f) = 0},
where ρ(f) denotes the arity of f ∈ F , and for each n ∈ ω

Tn+1 := Tn ∪ {f(t1, . . . , tk) : f ∈ F , k = ρ(f) and t1, . . . , tk ∈ Tn}.

 
 
 



CHAPTER 1. SUBSTRUCTURAL LOGICS AND UA 6

(Here, f(t1, . . . , tk) is just a string of symbols.) Then Tρ(X) :=
⋃
n∈ω Tn

is the set of terms of L over X, and Tρ(Var) is the set of terms of L itself.
(We write T (X) for Tρ(X) when L is understood.)

The complexity #t of a term t ∈ Tρ(X) is the smallest n such that
t ∈ Tn.

An atomic formula of L is an equation s ≈ t (with s, t ∈ Tρ(Var)) or
an expression of the form r(t1, . . . , tk) where r is any relation symbol of L
with arity k and t1, . . . , tk ∈ Tρ(Var).

The first order formulas of L are then built up in the usual recursive
way from the atomic formulas using the first order logical connectives above.
Recall that a first order formula with no free variable is called a sentence.
For a concise account of first order logic, see [24, Sec. V.1].

Thus, algebras model first order languages in an algebraic signature, i.e.,
one with no relation symbol.

Let K be a class of similar algebras. For a set Σ of first order formulas
(over the signature of K), the notation K |= Σ means that the universal
closure ∀x̄Φ of each Φ ∈ Σ is true in every algebra belonging to K.

A quasi-equation has the form(
&
i<n

Φi

)
=⇒ Φn,

where n ∈ ω and Φ0, . . . ,Φn are formal equations.

Definition 1.5. A variety [resp. quasivariety ] is the model class of a set of
equations [resp. quasi-equations].

Let ρ : F → ω be a similarity type and X a set. The elements of
T := Tρ(X) are just formal strings of symbols. However, T is naturally
the universe of an algebra T = T ρ(X), the term algebra over X, whose
basic operations are the functions fT : 〈t1, . . . , tn〉 7→ f(t1, . . . , tn), f ∈ F .
Recall that nullary operation symbols of F are elements of T , so T exists
unless X = ∅ and F includes no nullary symbol.

For m ∈ ω and ~x = x1, . . . , xm ∈ X, the expression ‘t(~x) ∈ T ’ signifies
that t ∈ T and that the variables occurring in t are among x1, . . . , xm. Every
such expression gives rise, in each algebra A of type ρ, to an m-ary term
operation t(~x)A : Am → A (abbreviated as tA when ~x is understood), which
is defined recursively: if t is xi, then tA is the i-th projection πi : A

m → A;
if tAj : Am → A is defined for j = 1, . . . , n and t is f(t1, . . . , tn) ∈ T , where
f ∈ F , then tA(~a) := fA(tA1 (~a), . . . , tA(~a)) for all ~a ∈ Am. The expression
t(~x) is sometimes called an m-ary term, even if x1, . . . , xm don’t all occur
in t. Two algebras are termwise equivalent if they have the same universe
and the same term operations.
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The compatibility of congruences and homomorphisms with basic op-
erations extends inductively to term operations. In any algebra A, the
smallest subuniverse containing a subset B consists of all tA(~b) such that

tA is a term operation of A and ~b a tuple of elements of B, whose length is
the arity of tA.

There is an alternative way to view term algebras. Given a class K
of algebras similar to algebra A, we say that A is K-free over a set X if
X generates A and every function from X into an algebra B ∈ K can be
extended to a homomorphism fromA toB. (The extension is then unique.)
In this case, we call X a K-free generating set for A.

Provided that X 6= ∅ or that some nullary symbols are available, there
is a K-free algebra A over X, with A ∈ ISP(K). Any bijection from X to
a K-free generating set for another K-free algebra C ∈ HSP(K) extends to
a unique isomorphism from A to C. We therefore denote A by F K(X), or
by F K(m) if m = |X|.

Let Kρ denote the class of all algebras with similarity type ρ. Then
F Kρ(X) ∼= T ρ(X), for any set X, so we sometimes call T ρ(X) the absolutely
free algebra over X.

If we employ the elements of B ∈ K (or those of a generating set for
B) as free generators for a K-free algebra F ∈ ISP(K) and then map these
back to themselves, we obtain a surjective homomorphism F → B. This,
and the fact that [quasi]equations are preserved by I, S and P, yields the
following result.

Theorem 1.6. Let K be a [quasi]variety. Then every algebra in K is a
homomorphic image of a K-free algebra in K. In fact, for any cardinal m,
every m-generated algebra in K is a homomorphic image of F K(m), provided
that F K(m) exists.

A class of algebras is trivial if it contains only trivial algebras. For any
nontrivial class K of algebras of type ρ and any set X for which T = T ρ(X)
exists, we define

ΦK(X) := {ϕ ∈ Con(T ) : T /ϕ ∈ IS(K)} and θ = θK(X) :=
⋂

ΦK(X).

The map x → x̄ := x/θ (x ∈ X) is injective, as K is nontrivial. In fact,
we may identify F = F K(|X|) with T /θ, because T /θ can be shown K-free
over {x̄ : x ∈ X} and it belongs to ISP(K) (apply the Homomorphism Theo-
rem 1.1 to the map t 7→ 〈t/ϕ : ϕ ∈ ΦK(X)〉). Then, given t(x1, . . . , xm) ∈ T ,
we write t̄ for the element t/θ of F , i.e., t̄ = tF (x̄1, . . . , x̄m). For s, t ∈ T ,
we can show that

s̄ = t̄ iff (every algebra in) K satisfies the equation s ≈ t, (1.1)
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using the fact that F is K-free over {x̄ : x ∈ X}.
Theorem 1.6 and (1.1) lead to the first theorem of universal algebra not

predicted by classical algebra.

Birkhoff’s Theorem 1.7. A class of similar algebras is a variety iff it is
closed under homomorphic images, subalgebras and direct products.

There are analogues of Birkhoff’s Theorem for various classes of algebras
that model first order sentences more expressive than equations.

Let K be a class of similar algebras. Then K is a quasivariety iff it
is closed under I, S, P, and PU. The smallest variety [resp. quasivariety]
containing K is

V(K) := HSP(K) [resp. Q(K) := ISPPU(K)].

It is said to be generated by K.
By Theorem 1.6 and the fact that equations use only finitely many vari-

ables, every variety is generated as such by its free denumerably generated
algebra, i.e., K = V(F K(ℵ0)) if K is a variety.1 Two varieties K and L are
termwise equivalent if the algebras F K(Var) and F L(Var) are.

 Loś’ Theorem 1.8 ([24, Thm. V.2.9]). Let A =
∏

i∈IAi/U be an ultra-
product of similar algebras and Φ a first order sentence in the signature of
A. Then A |= Φ if and only if

{i ∈ I : Ai |= Φ} ∈ U .

In particular, if A is an ultrapower of B, then A satisfies exactly the same
first order sentences as B.

A class of similar algebras is elementary if it is the model class of a set
of first order sentences.

Theorem 1.9. A class of similar algebras is elementary iff it is closed
under isomorphisms, ultraproducts and ultraroots.

 Loś’ Theorem is related to the Compactness Theorem of first order logic,
which says the following (in the case of algebras):

1Note that when K is a quasivariety then K need not coincide with the quasivariety
Q(F K(ℵ0)). This distinction shall be a central theme in Chapter 5 (particularly Sec-
tion 5.3), where we investigate properties of quasivarieties that are generated by a single
algebra.
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Compactness Theorem 1.10 ([24, p. 212]). A set Σ of first order sen-
tences (in an algebraic signature with similarity type ρ) has a model in Kρ
provided that every finite subset of Σ does.

The following is another interesting result concerning ultraproducts. We
shall present an analogous result in the upcoming subsection concerning
‘existential positive sentences’.

The Keisler-Shelah Theorem 1.11 ([29, Thm. 6.1.15]). Two algebras
A and B satisfy the same first order sentences iff they have isomorphic
ultrapowers. In this case, there exists an ultrafilter U over a set I such that
AI/U ∼= BI/U .

If K is a finite set of finite algebras, then PU(K) ⊆ I(K).

An existential [resp. universal ] sentence (in an algebraic signature) is a
sentence of the form (∃x1) . . . (∃xn) Φ [resp. (∀x1) . . . (∀xn) Φ ], where Φ is
quantifier-free. Such sentences are called positive when Φ is a disjunction
of conjunctions of equations.

The origins of the following claims are discussed in [63, Ch. 2] and [24,
Sec. V.2], where proofs can also be found. Let K be a class of similar alge-
bras. We say that K is [positive] universal if it is the model class of a set of
[positive] universal first order sentences. This amounts to the demand that
K be closed under [H,] S, I and PU. The smallest universal [resp. positive
universal] class containing K is ISPU(K) [resp. HSPU(K)]. In fact, for any
algebra B, the class ISPU(B) is axiomatized by the universal theory of B,
i.e., the set of universal sentences satisfied by B.

Partial orders and lattices

We use this opportunity to fix some definitions and notation concerning
partial orders and lattices, before we introduce congruence lattices.

Recall that a structure 〈A;6〉 is a partially ordered set (briefly a poset)
when A is non-empty and6 is a partial order, i.e., it is a reflexive, transitive,
and anti-symmetric binary relation on A. Let a, b ∈ A. We define [a) :=
{c ∈ A : a 6 c}, i.e., the set of all upper bounds of a (including a itself),
and similarly denote by (a] the set of all lower bounds of a. We use [a, b]
to denote the set {c ∈ A : a 6 c 6 b}. An interval is a set I ⊆ A that
is convex, in the sense that, if c ∈ [p, q] for some p, q ∈ I, then c ∈ I. If
a < b and [a, b] = {a, b}, we say that b covers (or is a cover of) a, and a
is a sub-cover of b. An atom [resp. co-atom] is any cover [resp. sub-cover]
of the least [resp. greatest] element of A (if it exists). The (order) dual of
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〈A;6〉 is the poset 〈A;>〉, where > is {〈a, b〉 ∈ A2 : b 6 a}. A poset 〈A;6〉
is totally ordered (a.k.a. a chain) if a 6 b or b 6 a, for all a, b ∈ A.

In a poset 〈A;6〉, with X ⊆ A, an upper bound of X is an element a ∈ A
such that x 6 a for all x ∈ X, and supX denotes the least upper bound
of X in 〈A;6〉, if it exists. Lower bounds and inf X are defined dually.
Here, sup and inf abbreviate supremum and infimum, a.k.a. join and meet
(respectively).

A map h : 〈A;6A〉 → 〈B;6B〉 between posets is order-preserving (a.k.a.
isotone) if whenever a 6A a′ then h(a) 6B h(a′), while h is called order-
reversing (a.k.a. antitone) if whenever a 6A a′ then h(a′) 6B h(a). The
map h is called a poset embedding (a.k.a. an order embedding) if it is order-
preserving and order-reflecting (i.e., if h(a) 6B h(a′) then a 6A a′). If,
moreover, h is surjective it is called a poset isomorphism. Note that poset
embeddings are injective. Lastly, h is an anti-isomorphism if it is a poset
isomorphism from 〈A;6A〉 to the order dual of 〈B;6B〉.

Recall that an algebra A = 〈A;∧,∨〉 is called a lattice if ∧ and ∨ are
idempotent commutative associative binary operations on A and

a ∧ (a ∨ b) = a = a ∨ (a ∧ b) for all a, b ∈ A.

The subalgebras of A are called sublattices.
Let A = 〈A;∧,∨〉 be any lattice, and a, b ∈ A. We associate with A its

natural lattice order 6A (usually abbreviated 6), i.e., the partial order on
A defined by the rule

a 6A b iff a ∧ b = a.

Then a∧b = inf{a, b} and a∨b = sup{a, b}. Conversely, if 〈A;6〉 is a poset
such that inf{a, b} and sup{a, b} exist for every a, b ∈ A, then 〈A;∧,∨〉 is a
lattice, where a∧ b := inf{a, b} and a∨ b := sup{a, b} for all a, b ∈ A. For
X ⊆ A, we sometimes use the notation

∧
X := inf X and

∨
X := supX.

A latticeA is complete when inf X and supX exist for every X ⊆ A. An
element a ∈ A is called compact if for every X ⊆ A, whenever a 6 supX,
then there exists a finite Z ⊆ X, such that a 6 supZ. We say A is
algebraic if it is complete and each of its elements is the join of a set of
compact elements.

Any poset 〈A;6〉 for which inf X exists whenever X ⊆ A, forms a
complete lattice, where supX = inf{a ∈ A : a > b for all b ∈ X} for every
X ⊆ A.

An element a of a lattice A is called meet-irreducible provided that,
whenever a = b∧c for some b, c ∈ A, then a = b or a = c. Similarly, a is said
to be completely meet-irreducible if, whenever a = inf X for some X ⊆ A,
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then a ∈ X. Join-irreducible and completely join-irreducible elements are
defined dually.

Let K be a quasivariety with type ρ and let A ∈ K. Arbitrary inter-
sections of K-congruences of A are again K-congruences of A, so the set of
K-congruences of A becomes a complete lattice ConK(A), when ordered
by inclusion. The lattice Con(A) := ConKρ(A) is called the congruence
lattice of A. The greatest element of ConK(A) is the total relation A2, and
its least element is the identity relation idA := {〈a, a〉 : a ∈ A}.

Correspondence Theorem 1.12. For any congruence θ of an algebra A,
the sublattice of Con(A) with universe [θ, A2] is isomorphic to Con(A/θ)
under the map ϕ 7→ ϕ/θ.

The smallest K-congruence of A containing a set X ⊆ A2 is denoted by
ΘA

K X. We write ΘA
K (a, b) for the principal K-congruence ΘA

K {〈a, b〉}. (The
subscript K is dropped when K is understood to be Kρ.)

Lemma 1.13. Let A be an algebra in a quasivariety K. Every finitely
generated K-congruence

θ = ΘA
K {〈a1, b1〉, . . . , 〈an, bn〉}

of A is compact in ConK(A), i.e., whenever θ ⊆ ΘA
K X, then θ ⊆ ΘA

K Y
for some finite Y ⊆ X.

Conversely, it is easy to see that compact K-congruences are finitely gen-
erated, so it follows from Lemma 1.13 that ConK(A) is an algebraic lattice
(and hence so is Con(A)), for every algebra A. The following generaliza-
tion of (1.1) holds for quasi-equations.

Lemma 1.14. A quasivariety K satisfies a quasi-equation

(s1(~x) ≈ t1(~x) & · · · & sm(~x) ≈ tm(~x)) =⇒ s(~x) ≈ t(~x)

iff ΘF
K (s̄, t̄) ⊆ ΘF

K{〈s̄i, t̄i〉 : i = 1, . . . ,m}, where F = F K(X) is such that X
includes the variables ~x. In this case, for every A ∈ K and ~a ∈ A, we have

ΘA
K (sA(~a), tA(~a)) ⊆ ΘA

K {〈sAi (~a), tAi (~a)〉 : i = 1, . . . ,m}.

Simple algebras

Let K be a quasivariety. We say thatA is K-simple (a.k.a. relatively simple)
when A is a nontrivial member of K and every homomorphism from A
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onto a nontrivial member of K is an isomorphism, i.e., idA is a co-atom
of ConK(A), or equivalently, |ConK(A)| = 2. (So, A is simple if it is
nontrivial, and every homomorphism with domain A and a nonsingleton
image is injective, i.e., idA is a co-atom of Con(A).)

Every nontrivial quasivariety has a relatively simple member [63, Thm.
3.1.8]; for varieties, this was proved earlier by Magari [83]. On the other
hand, a finitely generated algebra need not have a simple homomorphic
image [73, p. 154]. Conditions that guarantee relatively simple homomor-
phic images are given in the next theorem, which adapts [73, pp. 153–4] to
quasivarieties.

Theorem 1.15. Let A be a nontrivial member of a quasivariety K.

(i) If the total relation A2 is compact in ConK(A), then A has a rela-
tively simple homomorphic image in K.

(ii) If A is finitely generated and of finite type, then A2 is compact in
ConK(A), so A has a relatively simple homomorphic image in K.

Proof. (i) If ⊥ is the least element of an algebraic lattice L and y ∈ L\{⊥}
and y is compact in L, then {x ∈ L : y 
 x} has a maximal element, by
Zorn’s Lemma. Setting L = ConK(A) and y = A2, we conclude that, under
the given assumptions, A has a maximal proper K-congruence θ, whence
A/θ ∈ K, so A/θ is K-simple (by the Correspondence Theorem 1.12 and
the Second Isomorphism Theorem 1.2).

(ii) Suppose A is generated by a finite subset X of A. Let Y be the
union of X and the set of all f(a1, . . . , an) such that n ∈ ω, f is a basic n-ary
operation of A and a1, . . . , an ∈ X. Then A2 = ΘA(Y 2) ⊆ ΘA

K (Y 2). If A
has finite type, then Y 2 is finite, so A2 = ΘA

K (Y 2) is compact in ConK(A),
and the last assertion follows from (i).

Definition 1.16. A quasivariety will be called a Kollár quasivariety if each
of its nontrivial members has no trivial subalgebra.

Clearly, a quasivariety K is a Kollár quasivariety if its signature includes
two constant symbols that take distinct values in every nontrivial member
of K. This situation is common in algebraic logic, e.g., every quasivariety
of Heyting algebras (see Definition 2.34) is a Kollár quasivariety. This will
also be the case for many of the varieties of De Morgan monoids that we
shall consider. The result below was proved first for varieties by Kollár [77],
hence our nomenclature. Further characterizations of Kollár quasivarieties
have been given by Campercholi and Vaggione [27, Prop. 2.3].
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Theorem 1.17 (Gorbunov [62], [63, Thm. 2.3.16]). A quasivariety K is a
Kollár quasivariety iff A2 is compact in ConK(A) for every A ∈ K.

Corollary 1.18. Every nontrivial member of a Kollár quasivariety has a
relatively simple homomorphic image (in the same quasivariety).

Proof. This follows from Theorems 1.17 and 1.15(i).

Although the following fact is obvious, it is useful to have a reference to
it when working with Kollár quasivarieties.

Fact 1.19. If h : A→ B is a homomorphism between members of a quasi-
variety, where A is relatively simple and B has no trivial subalgebra, then
h is an embedding.

Subdirectly irreducible algebras

Let K be a quasivariety. We denote by KRSI [resp. KRFSI; KRS] the class of
K-subdirectly irreducible [resp. finitely K-subdirectly irreducible; K-simple]
members of K. Thus, KRS ⊆ KRSI ⊆ KRFSI, and KRSI includes no trivial
algebra. An algebra A ∈ K belongs to the class KRFSI [resp. KRSI] iff the
identity relation idA is meet-irreducible [resp. completely meet-irreducible]
in ConK(A). If every K-subdirectly irreducible member of K is K-simple,
then K is said to be relatively semisimple. When K is a variety, we remove
the redundant ‘K-’ prefixes and ‘R’ in the subscripts of the classes above.

Birkhoff’s Subdirect Decomposition Theorem 1.3 implies that every va-
riety K is determined by its class of subdirectly irreducible members—in
fact K = IPS(KSI). Therefore, to confirm that a quasi-equation holds in all
members of a variety K, we need only confirm its validity in the members
of KSI.

An analogous result holds for every quasivariety K, i.e., K = IPS(KRSI)
[63, Thm. 3.1.1]. It follows that Q = IPSSPU, which implies that Q(L)RSI ⊆
IS(L) for any finite set L of finite algebras (in which case S(L) is again a
finite set of finite algebras). For varieties we can say more.

A [quasi]variety K is said to be finitely generated if K is generated as a
[quasi]variety by some finite set L of finite algebras. In this case, when K is
a variety, L can be chosen to comprise a single finite algebra, because K is
closed under P and H.

An algebra is said to be locally finite if its finitely generated subalgebras
are finite. A class K of algebras is locally finite if its members are. When
S(K) ⊆ K, it follows that K is locally finite if and only if its finitely generated
members are finite.
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For any algebra A and any set X 6= ∅, the algebra F V(A)(X) can be

embedded into A(|A||X|) [24, p. 77]. This, with Theorem 1.6, yields:

Theorem 1.20 ([24, Thm. II.10.16]). Every finitely generated variety is
locally finite.

The following fact is useful when working with locally finite varieties.
(A proof can be found in [116], for instance.)

Fact 1.21. A variety K of finite type is locally finite iff there is a function
p : ω → ω such that, for each n ∈ ω, every n-generated member of KSI has
at most p(n) elements.

Congruence distributive varieties

Recall that a lattice is said to be distributive or modular if it satisfies the
respective law (1.2) or (1.3) below.

x ∧ (y ∨ z) ≈ (x ∧ y) ∨ (x ∧ z) (1.2)

y 6 x =⇒ x ∧ (y ∨ z) ≈ y ∨ (x ∧ z) (1.3)

We make standard use of ‘Hasse diagrams’ when depicting posets and
lattices. Let N 5 and M 3 be the lattices with the following Hasse diagrams.

ss��
s
@
@s
�
�s@@
N 5

s��ss@@s
@@s��
M 3

Theorem 1.22 ([7, Thms. 2.8, 2.10]). Let A be a lattice.

(i) A is modular iff A has no sublattice isomorphic to N 5.

(ii) A is distributive iff A has no sublattice isomorphic to N 5 or to M 3.

An algebra A is called congruence distributive [modular ] if Con(A)
is a distributive [modular] lattice, and a variety is said to be congruence
distributive [modular ] when all of its members are. Every algebra with a
lattice reduct generates a congruence distributive variety [24, Thm. II.12.3].

Jónsson’s Theorem 1.23 ([72, 74]). For any subclass L of a congruence
distributive variety, V(L)FSI ⊆ HSPU(L). In particular, if L is a finite set
of finite algebras, then V(L)FSI ⊆ HS(L).
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Let K be a [quasi]variety. A sub[quasi]variety of K is a subclass of K
that is itself a [quasi]variety. The sub[quasi]varieties of K form a com-
plete lattice, when ordered by inclusion (where meets are intersections, in
both cases). This lattice always has at least one atom, unless K is trivial
(see [7, Prop. 7.61] for the proof in the case of subvarieties). Also, every
[quasi]variety of countable type has at most 2ℵ0 sub[quasi]varieties (because
its set of [quasi-]equations is denumerable).

It follows from Jónsson’s Theorem 1.23 that, for any two subvarieties K
and L of a congruence distributive variety,

V(K ∪ L)SI = KSI ∪ LSI and V(K ∪ L)FSI = KFSI ∪ LFSI. (1.4)

This can be used to show that the lattice of subvarieties of a congruence
distributive variety is itself distributive [72, Cor. 4.2].

A class K of similar algebras has the congruence extension property
(CEP) if every congruence on a subalgebra B of a member of K is the
restriction B2 ∩ θ of some congruence θ on the parent algebra.

Theorem 1.24. If K has the CEP, then HS(K) ⊆ SH(K) and any non-
trivial subalgebra of a simple member of K is simple.

A variety K is said to have equationally definable principal congruences
(EDPC) if there is a finite set Σ of pairs of 4-ary terms in its signature such
that, whenever A ∈ K and a, b, c, d ∈ A, then

〈c, d〉 ∈ ΘA(a, b) iff
(
ϕA(a, b, c, d) = ψA(a, b, c, d) for all 〈ϕ, ψ〉 ∈ Σ

)
.

Theorem 1.25 ([15]). If a variety K has EDPC, then K is congruence
distributive, and has the CEP, and its class of simple members is closed
under ultraproducts.

Theorem 1.26 ([15], [74, Thm. 6.6]). Let K be a variety of finite type, with
EDPC, and let A ∈ K be finite and subdirectly irreducible. Then there is a
largest subvariety of K that excludes A. It consists of all B ∈ K such that
A /∈ SH(B).

In Chapter 6, we shall make use of a theorem of Campercholi (see The-
orem 6.9), which allows one to focus on FSI algebras when determining
whether a variety has surjective epimorphisms. This theorem applies to
any variety that is ‘congruence permutable’ and has ‘equationally definable
principal meets’, so it is useful to define these conditions here.

A variety K is said to have equationally definable principal meets (EDPM)
if it has finitely many pairs 〈ui(x, y, z, w), vi(x, y, z, w)〉, i ∈ I, of 4-ary terms
such that for all A ∈ K and a, b, c, d ∈ A,

ΘA(a, b) ∩ΘA(c, d) = ΘA{〈uAi (a, b, c, d), vAi (a, b, c, d)〉 : i ∈ I}.
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Theorem 1.27 ([16, 34]). A variety K has EDPM iff K is congruence
distributive and KFSI is a universal class.

The relational product θ ◦ ϕ of binary relations θ and ϕ on the universe
of an algebra A is defined as follows. For a, b ∈ A,

a ≡θ◦ϕ b iff a ≡θ c and c ≡ϕ b for some c ∈ A.

If θ and ϕ are congruences, then θ ◦ ϕ is a reflexive subuniverse of A ×A
and the following conditions are equivalent:

θ ◦ ϕ = ϕ ◦ θ, θ ◦ ϕ ⊆ ϕ ◦ θ, θ ◦ ϕ = θ ∨ ϕ,

where θ ∨ ϕ is the join ΘA(θ ∪ ϕ) in the lattice Con(A). We say A is
congruence permutable if these conditions hold for all θ, ϕ ∈ Con(A). A
class of algebras is congruence permutable if its members are.

Fleischer’s Lemma 1.28 ([7, Thm. 6.2]). Let h : A → A1 × A2 be a
subdirect embedding, where A belongs to a congruence permutable variety.
Then there exist an algebra C and surjective homomorphisms hi : Ai → C
(i = 1, 2) such that

h[A] = {〈a1, a2〉 ∈ A1 × A2 : h1(a1) = h2(a2)}.

Existential Positive Sentences

Recall that, up to logical equivalence, an existential positive sentence in an
algebraic signature is a first order sentence of the form ∃x1 . . . ∃xn Φ, where
Φ is a (quantifier-free) disjunction of conjunctions of equations. These sen-
tences may be variable-free (and hence quantifier-free). They have a central
place in the model theory of ‘positive logic’ (see [114], for instance). For
present purposes, their main significance derives from Theorem 1.29, which
is in the spirit of the Keisler-Shelah Theorem 1.11.

Given an algebra A = 〈A;F 〉, with S ⊆ A, let AS = 〈A;F ∪S0〉, where
S0 consists of the elements of S, treated as new nullary operations on A.
Let Th(A) [resp. Diag(A)] denote the set of all first order sentences [resp.
all equations not containing a variable] that are true in AA. A subalgebra
B of A is called an elementary subalgebra (and A an elementary extension
of B) if AB |= Th(B). In this case A and B are elementarily equivalent,
i.e., they satisfy the same first order sentences. An embedding is elementary
if its image is an elementary subalgebra of its co-domain. Every algebra is
elementarily embeddable into each of its ultrapowers, by the map defined
before Theorem 1.4.
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The next result appears to be folklore. It can be inferred from [64,
Thm. 1.2] (also see [63, Thm. 2.3.11] and [134, Thm. 3.7]), but we provide a
direct proof below.

Theorem 1.29. Let A and B be similar algebras. Then B satisfies every
existential positive sentence that is true in A iff there is a homomorphism
from A into an ultrapower of B.

Proof. (⇒) Let Σ be a finite subset of Diag(A). By assumption, Σ∪Th(B)
has a model that is an expansion of BB by suitable interpretations in B of
the elements of A occurring (as constant symbols) in Σ. By the Compact-
ness Theorem 1.10, therefore, Diag(A) ∪ Th(B) has a model, C, say. Let
C− be the reduct of C in the signature of A,B. Now C− is isomorphic
to an elementary extension of B, because C is a model of Th(B). (In par-
ticular, the negated equations in Th(B) separate the elements of B.) As
C− and B have the same universal theory, C− embeds into an ultrapower
U of B. Also, there is a homomorphism from A into C−, because C is a
model of Diag(A), so there is a homomorphism from A into U .

(⇐) Clearly, existential positive sentences persist in homomorphic im-
ages, in extensions and in ultraroots.

Corollary 1.30. The model class of the set of existential positive sentences
satisfied by an algebra A is RUEH(A). (RU and E were defined after The-
orem 1.4 on page 5.)

Corollary 1.31. The following demands on a quasivariety K are equivalent.

(i) The nontrivial members of K all satisfy the same existential positive
sentences.

(ii) For any two nontrivial members of K, each can be mapped homomor-
phically into an ultrapower of the other.

1.2 Algebraic logic preliminaries

The standard references for abstract algebraic logic include [17], [33] and
[46]; also see [118] for a brief survey article. (The preliminaries that follow
are based on [117] and [118].) The standard text for residuated structures
and substructural logics is [51].

This section starts by making precise what it means for a logic to be
‘algebraizable’ (in the sense of Blok and Pigozzi [17]). We then introduce
the ‘substructural logics’ which motivate the algebraic structures that are
studied throughout the thesis.
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Algebraizable logics

A consequence relation on a set A is a binary relation ` from subsets of A to
elements of A satisfying the two postulates below, for all B ∪C ∪ {a} ⊆ A:

if a ∈ B then B ` a (reflexivity);

if C ` b for all b ∈ B and B ` a then C ` a (transitivity).

We say that ` is finitary if it satisfies the next postulate as well:

if B ` a then B′ ` a for some finite B′ ⊆ B.

If B,C ⊆ A then B ` C shall mean ‘B ` c for all c ∈ C’, while B a` C
stands for ‘B ` C and C ` B’. We shall also abbreviate {a1, . . . , an} ` a
as a1, . . . , an ` a (so that ∅ ` a is abbreviated as ` a).

Let F be the absolutely free algebra over (our fixed set of variables) Var
in a given algebraic signature. In logical contexts, operation symbols are
often called connectives, and the elements of F are called formulas instead
of terms. A substitution is an endomorphism of F .

A (sentential) deductive system in this language is a consequence relation
` on F that is substitution-invariant in the sense that for any Γ∪{α} ⊆ F ,

if Γ ` α then h[Γ] ` h(α) for all substitutions h.

In this context the elements of ` (i.e., the pairs 〈Γ, α〉 such that Γ ` α)
are often referred to as the derivable rules of `. The theorems of ` are the
formulas α such that ` α. In our informal remarks we shall use the terms
‘logic’ and ‘deductive system’ interchangeably.

A 2-dimensional deductive system (briefly, a 2-deductive system) is de-
fined as a substitution-invariant consequence relation on F ×F , where sub-
stitutions act coordinatewise, i.e., h(〈α, β〉) := 〈h(α), h(β)〉 for every en-
domorphism h of F and all α, β ∈ F .

Let K be a class of algebras in the signature under discussion. If we
identify pairs 〈α, β〉 ∈ F × F with formal equations then the equational
consequence relation |=K becomes a 2-deductive system in our language.
The meaning of Σ |=K α ≈ β is: for every A ∈ K and every assignment
~a ∈ A of values to the variables occurring in Σ ∪ {α ≈ β},

if µA(~a) = νA(~a) for all (µ ≈ ν) ∈ Σ, then αA(~a) = βA(~a).

If we replace K by ISP(K), this has no effect on the relation |=K. When Σ is
finite then Σ |=K α ≈ β has the same meaning as K |=

(
& Σ

)
=⇒ α ≈ β.
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Theorem 1.32 ([46]). Let K be a class of similar algebras that is closed
under I, S and P. Then the following conditions are equivalent.

(i) K is a quasivariety.

(ii) |=K is finitary.

(iii) K is closed under ultraproducts.

One can naturally generalize the notion of a 2-deductive system to that
of a k-deductive system, for any positive integer k [18]. A theory of a k-
deductive system ` is a subset T of F k such that whenever Γ ` ~α and
Γ ⊆ T then ~α ∈ T . The substitution-invariance of ` amounts to the fact
that whenever T is a theory of `, then so is h−1[T ], for every substitution
h. Intersections of theories are theories again. So, when ordered by set
inclusion, the set of all theories of ` becomes a complete lattice that is
closed under the unary operation h−1, for every substitution h. We view this
lattice with operators as an algebra representing `. It is therefore natural to
declare two deductive systems equivalent when their representative algebras
are isomorphic:

Definition 1.33 ([14]). Two deductive systems with the same language but
possibly different dimension are equivalent if there is a lattice isomorphism
Λ between their lattices of theories such that Λ(h−1[T ]) = h−1[Λ(T )] for
all theories T and substitutions h.

Definition 1.34. A deductive system is algebraizable if it is equivalent to
the equational consequence relation |=K of a class K of algebras.

It is elementarily algebraizable if it is equivalent to a finitary equational
consequence relation, i.e., if we can choose K to be a quasivariety.

An elementarily algebraizable system ` is equivalent to the equational
consequence relation of a unique quasivariety K, called its equivalent quasi-
variety [17]. In this case we say that K algebraizes `.

Let τ be a family {δi(x) ≈ εi(x) : i ∈ I} of unary equations. For any
set Γ ∪ {α} of formulas, we shall abbreviate

{δi(α) ≈ εi(α) : i ∈ I} as τ (α), and
⋃
γ∈Γτ (γ) as τ [Γ].

Similarly, when ρ is a family {∆j(x, y) : j ∈ J} of binary formulas, then
for any set Σ ∪ {α ≈ β} of equations, we shall abbreviate

{∆j(α, β) : j ∈ J} as ρ(α, β), and
⋃
µ≈ν ∈Σ ρ(µ, ν) as ρ[Σ].
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Theorem 1.35 ([17]; also see [14]). A (sentential) deductive system ` and
an equational consequence relation |=K are equivalent iff there exist a family
τ of unary equations, and a family ρ of binary formulas, such that for any
set of formulas Γ ∪ {α}, we have

Γ ` α iff τ [Γ] |=K τ (α); (1.5)

x ≈ y |=|=K τ [ρ(x, y)]. (1.6)

In this case, for any set of equations Σ ∪ {α ≈ β}, we also have

Σ |=K α ≈ β iff ρ[Σ] ` ρ(α, β); (1.7)

x a` ρ[τ (x)]. (1.8)

Moreover, the sets τ and ρ are unique up to interderivability in |=K and in
`, respectively [17, Thm. 2.15]. The set τ is called a set of defining equations
for `. The existence of τ , together with (1.5), captures what it means for
K to be an algebraic semantics for the system ` (cf. [21]). Conditions (1.5)
and (1.6) imply that ρ is a set of equivalence formulas for `, i.e., that it
satisfies the following conditions, for all variables x, y, x1, . . . , xn, y1, . . . , yn
and all n-ary formulas α (thus mimicking the behaviour of a biconditional):

` ρ(x, x)

{x} ∪ ρ(x, y) ` y
ρ(x1, y1) ∪ · · · ∪ ρ(xn, yn) ` ρ(α(~x), α(~y))

Theorem 1.36 ([14, Thms. 6.3, 6.2]). Suppose the equivalent conditions of
Theorem 1.35 hold for a deductive system ` and a class K of algebras.

(i) When ` is finitary then τ can be chosen finite. Dually:

(ii) When |=K is finitary (e.g., when K is a quasivariety) then ρ can be
chosen finite.

(iii) If |=K is finitary and τ can be chosen finite, then ` is finitary.

Corollary 1.37. An elementarily algebraizable deductive system is finitary
iff its algebraization is witnessed (as in Theorem 1.35) by some finite set of
defining equations.

It can happen that a deductive system ` is algebraized by a class K of
algebras, where ` is finitary but |=K is not [67] (and vice versa [117]), but
we shall focus only on finitary logics that are elementarily algebraizable.
(These were the original ‘algebraizable logics’ of Blok and Pigozzi [17].)
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A (sentential) formal system (a.k.a. a Hilbert system) in a given alge-
braic signature consists of a set of formulas (in the same language), called
axioms, and a set of inference rules of the form Γ/α, where Γ ∪ {α} is a
finite set of formulas. The elements of Γ are called the premises of Γ/α;
we call α the conclusion. A deductive system ` is finitary iff it can be
axiomatized by some formal system L [82]. The latter assertion means that
` is the deducibility relation of L, i.e., Γ ` α holds just when there is a
proof (a.k.a. a derivation) of α from Γ, i.e., a finite sequence of formulas
terminating with α, each item of which belongs to Γ or is a substitution
instance of an axiom of L or of the conclusion of an inference rule of L,
where in the last case, the same substitution turns the premises of the rule
into previous items in the proof.

To avoid notational clutter, we regularly attribute to a formal system L
the significant properties of its deducibility relation `L.

Given deductive systems `⊆`′ (in the same signature), we call `′ an
extension of `. It is an axiomatic extension of ` if there is a set ∆ of for-
mulas, closed under substitution, such that for any set Γ∪{α} of formulas,
we have

Γ `′ α iff Γ ∪∆ ` α.

If ` is finitary, then the finitary extensions of ` are produced by adjoining
new axioms or new inference rules to an axiomatization L of `, while the
axiomatic extensions of ` are produced by adjoining only new axioms to
L. Arbitrary intersections of extensions of ` are again extensions of `,
so the extensions of ` form a complete lattice when ordered by inclusion.
When two deductive systems `1 and `2 (with possibly different dimensions)
are equivalent, their extension lattices are isomorphic. In the case where
`1 is finitary and `2 is the equational consequence relation |=K of some
quasivariety K, then the isomorphism maps the finitary extensions of `1

onto those of |=K, and there is an obvious lattice anti-isomorphism between
the latter and the subquasivarieties of K. The composition of these maps
is given explicitly in the next theorem.

Theorem 1.38 ([17]). Let ` be a finitary deductive system algebraized by
quasivariety K, with a set τ of defining equations. Then the following are
mutually inverse lattice anti-isomorphisms between the lattice of finitary
extensions of ` and the subquasivariety lattice of K:

`′ 7→ {A ∈ K : τ [Γ] |=A τ (α) whenever Γ `′ α}
K′ 7→ {〈Γ, α〉 : τ [Γ] |=K′ τ (α)}
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If K is a variety, then these maps restrict to mutually inverse lattice anti-
isomorphisms between the lattice of axiomatic extensions of ` and the sub-
variety lattice of K.

The first map in Theorem 1.38 takes each finitary extension of ` to its
equivalent quasivariety [17, Cor. 4.9]. The algebraization of the extension
is witnessed by same defining equations and equivalence formulas. A de-
ductive system ` is consistent if its set of formulas is not exhausted by
its set of theorems, so ` is inconsistent if every formula of ` is a theorem
of ` (in which case all rules in the signature of ` are derivable in `). If
a quasivariety K algebraizes a finitary deductive system `, then the first
map in Theorem 1.38 sends the consistent extensions of ` to the nontrivial
subquasivarieties of K (and it sends the inconsistent extension of ` to the
trivial subquasivariety of K). The maps in Theorem 1.38 also preserve the
status of decision problems, for example:

Theorem 1.39. If a variety K algebraizes a finitary deductive system `,
then ` is decidable, i.e., its set of theorems is recursive, iff the equational
theory of K (i.e., the set of equations satisfied by every member of K) is
decidable.

We shall not focus on decidability, but we shall note when a variety of
algebras is locally finite (and therefore generated by its finite members).
This is of interest because a finitely axiomatized variety of finite type that
is generated by its finite members has a decidable equational theory (see
for example the remarks after [120, Thm. 7.7]).

Let ` be a deductive system, with algebraic signature F . For any
F ′ ⊆ F , the F ′-fragment of ` is the deductive system `′ with signature
F ′ such that

Γ `′ α iff Γ ` α,

for all sets Γ ∪ {α} of formulas that involve only connectives from F ′.2
A deductive system is said to be a conservative expansion of each of its
fragments.

Theorem 1.40 ([17, Cor. 2.12]). If a finitary deductive system ` is alge-
braizable, then so is any F ′-fragment of `, so long as F ′ contains all the
connectives that occur in the defining equations and equivalence formulas
witnessing the algebraization. If, moreover, ` is elementarily algebraized
by quasivariety K, then the F ′-fragment of ` is algebraized by the quasiva-
riety comprising the F ′-subreducts of members of K.

2It is easy to see that `′ is indeed a deductive system.
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Now that the notion of algebraizability has been made precise, one can
state general ‘bridge theorems’ that connect algebraic properties to equiv-
alent meta-logical properties.

A deductive system ` has a deduction-detachment theorem if there exists
some fixed finite family σ of binary formulas, such that the law

Γ, α ` β iff Γ ` σ(α, β)

holds for all sets of formulas Γ ∪ {α, β}.
The following is the prototypical example of a bridge theorem.

Theorem 1.41 ([19]). Let ` be a finitary deductive system, that is alge-
braized by a variety K. Then ` has a deduction-detachment theorem iff K
has EDPC (see page 15).

Substructural logics

The algebraic structures studied in this thesis all fall under the umbrella of
residuated structures. They will be lattices with a binary operation · that
is commutative and associative with identity e, and they have a definable
residual function → such that the law of residuation

z 6 x→ y iff x · z 6 y

holds (where 6 is the lattice order).
Roughly speaking, substructural logics are logics modeled by classes of

residuated structures (see [51]). The ones relevant to this thesis have a set
of defining equations τ = {e 6 x}, or more exactly τ = {e∧x ≈ e}.3 They
all have the form `K for some class of K of residuated structures, where

Γ `K α iff {e 6 γ : γ ∈ Γ} |=K e 6 α,

for any set Γ ∪ {α} of formulas in the signature of K (cf. condition (1.5)).
These logics are called ‘substructural’, because they may lack some of the

structural rules, namely exchange, contraction and weakening, from Gerhard
Gentzen’s axiomatization of intuitionistic logic [57] by means of sequent
calculi. We shall stick to an equivalent Hilbert system formulation of these
logics. The structural axioms corresponding to the structural rules are then

(p→ (q → r))→ (q → (p→ r)) (exchange),

(p→ (p→ q))→ (p→ q) (contraction),

p→ (q → p) (weakening)

3There is only one exception, namely the relevance logic R (defined below) in whose
models e is not definable.
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(where p, q, r ∈ Var).
In the residuated structures that model these logics, the structural ax-

ioms amount to the algebraic laws

x · y ≈ y · x (commutativity ≡ exchange),

x 6 x · x (the square-increasing law ≡ contraction),

x 6 e (integrality ≡ weakening).

Since we always assume commutativity, all the logics with which we are
concerned will have exchange. An example of a logic that adopts exchange
but rejects contraction and weakening is Girard’s linear logic [60, 138],
which is motivated in part by computer science. It treats the premises of an
implication as resources and is sensitive to the number of times that they are
used (explaining the rejection of contraction). The following formal system
axiomatizes the exponential-free fragment of linear logic with a classical
negation.

Definition 1.42. Let FLe be the following formal system with connectives
∧,∨, ·,→,¬, t. (It abbreviates ‘full Lambek calculus with exchange’; it is
denoted by InFLe in [51].)

Axioms of FLe:

A1 p→ p (identity)
A2 (p→ q)→ ((r → p)→ (r → q)) (prefixing)
A3 (p→ (q → r))→ (q → (p→ r)) (exchange)
A4 (p ∧ q)→ p
A5 (p ∧ q)→ q
A6 ((p→ q) ∧ (p→ r))→ (p→ (q ∧ r))
A7 p→ (p ∨ q)
A8 q → (p ∨ q)
A9 ((p→ r) ∧ (q → r))→ ((p ∨ q)→ r)
A10 t
A11 t→ (p→ p)
A12 p→ (q → (q · p))
A13 (p→ (q → r))→ ((q · p)→ r)
A14 (p→ ¬q)→ (q → ¬p) (contraposition)
A15 ¬¬p→ p (double negation)

Inference rules of FLe:

MP p, p→ q/q (modus ponens)
AD p, q/p ∧ q (adjunction)
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The logic FLe is algebraized by the variety of all involutive residuated
lattices, briefly IRLs (see Definition 2.1). The set of defining equations and
the set of equivalence formulas witnessing the algebraization are

τ := {e 6 x} and ρ := {x→ y, y → x},

respectively. We follow the convention that the constant symbol e is re-
placed with the symbol t in a logical context.

The logics relevant to this thesis can be obtained by amending the def-
inition of FLe. Consider the following axioms:

(p ∧ (q ∨ r))→ ((p ∧ q) ∨ (p ∧ r)) (distribution)

p→ (p→ p) (mingle)

Classical propositional logic CPL can be obtained by adding all the
remaining structural axioms, namely contraction and weakening, to FLe.
The logic obtained by adding only contraction to FLe shall be denoted by
FLec; it is called LRt in the relevance logic literature (and InFLec in [51]).

When we add distribution to LRt we get the relevance logic Rt. It is
the main logic of interest in this thesis, because it is algebraized by the
variety of De Morgan monoids. The monographs and survey articles on the
subject of relevance logic include [1, 2, 23, 38, 93, 94, 122, 123, 127].

If mingle is added to Rt, the resulting logic is denoted by RMt, and
called ‘R-mingle’.

Given a logic L in the signature of FLe, we denote its positive frag-
ment (i.e., its fragment without ¬) as L+. An axiomatization of FL+

e can
be obtained by deleting axioms A14 and A15 from Definition 1.42 and
removing ¬ from the signature (see [69] and its references). Positive intu-
itionistic propositional logic (denoted by IPL+), is obtained by adding the
structural axioms (weakening and contraction) to FL+

e . One can obtain
intuitionistic propositional logic IPL by expanding the signature of IPL+

with a constant symbol ⊥ and adding the axiom ⊥ → p. The axiomatic
extensions of IPL are called super-intuitionistic or intermediate logics.

Another fragment of interest is the fragment R of Rt that lacks the so-
called Ackermann constants (i.e., the t-free fragment of Rt), which can be
axiomatized like FLe in Definition 1.42, by deleting axioms A10 and A11
and adding contraction and distribution. Although the set τ = {e 6 x} of
defining equations for FLe contains the symbol t in the guise of e, it could
be replaced by the set τ = {x→ x 6 x}, so that Theorem 1.40 still applies
to systems like R.
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If we consider τ (α) for each the axioms α above, we get the following
correspondences (up to logical equivalence):

x ∧ (y ∨ z) ≈ (x ∨ y) ∧ (x ∨ z) (distributivity (1.2) ≡ distribution)

x · x 6 x (the square-decreasing law ≡ mingle)

Using Theorems 1.38 and 1.40, we have the following correspondences,
where the algebras mentioned will be defined in the next chapter (except
for relevant algebras, which will be defined in Chapter 5).

Logic Equivalent variety

FLe {all IRLs} Definition 2.1
FL+

e {all RLs} Definition 2.2
FLec {all SIRLs} Definition 2.8

Rt {all De Morgan monoids} Definition 2.18
RMt {all Sugihara monoids} Definition 2.20
CPL {all Boolean algebras} Definition 2.30
IPL+ {all Brouwerian algebras} Definition 2.32
IPL {all Heyting algebras} Definition 2.34

R {all relevant algebras} Definition 5.15

 
 
 



Chapter 2

The structure of De Morgan
monoids

This chapter is an algebraic analysis of various classes of residuated lattices.
We start, in Section 2.1, by presenting some basic properties of (involu-

tive) residuated lattices ([I]RLs), and progressively impose more restrictive
conditions in subsequent sections. This culminates, in Section 2.5, with a
new characterization of finitely subdirectly irreducible De Morgan monoids.

In Section 2.2 we discuss square-increasing [I]RLs (S[I]RLs). Whether
an SIRL has an idempotent monoid operation is completely determined by
properties of its neutral element e. This allows us to prove that an SIRL
A satisfies x 6 (¬e)2 iff no nontrivial idempotent algebra belongs to V(A)
(Corollary 2.14). We therefore say that such an SIRL is anti-idempotent.
Roughly speaking, the characterization in Section 2.5 breaks up an FSI De
Morgan monoid into two constructs—an anti-idempotent subalgebra and
an idempotent (totally ordered) homomorphic image.

Section 2.3 establishes the universal algebraic properties of various va-
rieties of residuated lattices. It includes well known characterizations of
simple, SI and FSI [I]RLs via restrictions on the elements below e. For
example, a De Morgan monoid is FSI iff the element e is join-prime.

Section 2.4 focusses on idempotent residuated lattices. The structure
of idempotent De Morgan monoids, a.k.a. Sugihara monoids, is relatively
well understood, in the sense that there is a transparent description of the
finitely generated SI Sugihara monoids. This description and other results
concerning Sugihara monoids are presented in Section 2.4.

We also take the opportunity in Section 2.4 to introduce integral SRLs
(a.k.a. Brouwerian algebras), as they too are idempotent. More gener-
ally, the negative elements (below the neutral element e) of an S[I]RL are
idempotent (and we shall see in Chapter 6 that they can be given the struc-

27
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ture of a Brouwerian algebra). We therefore introduce negatively generated
S[I]RLs, i.e., S[I]RLs that are generated by negative elements. We end Sec-
tion 2.4 with a proof that every totally ordered negatively generated SRL is
idempotent—a fact that facilitates our subsequent study of epimorphisms
(in Chapter 6).

2.1 Residuated lattices

Definition 2.1. An involutive (commutative) residuated lattice, or briefly,
an IRL, is an algebra A = 〈A; ·,∧,∨,¬, e〉 comprising a commutative
monoid 〈A; ·, e〉, a lattice 〈A;∧,∨〉 and a function ¬ : A → A, called an
involution, such that A satisfies the (first order) formulas ¬¬x ≈ x and

x · y 6 z ⇐⇒ ¬z · y 6 ¬x, (2.1)

cf. [51].1 Here, 6 denotes the lattice order (i.e., x 6 y abbreviates x∧y ≈ x)
and ¬ binds more strongly than any other operation; we refer to · as fusion.

Setting y = e in (2.1), we see that ¬ is antitone. In fact, De Morgan’s
laws for ¬,∧,∨ hold, so ¬ is an anti-automorphism of 〈A;∧,∨〉. If we define

x→ y := ¬(x · ¬y) and f := ¬e,

then, as is well known, every IRL satisfies

x · y 6 z ⇐⇒ y 6 x→ z (the law of residuation), (2.2)

¬x ≈ x→ f, hence x · ¬x 6 f, (2.3)

x→ y ≈ ¬y → ¬x and x · y ≈ ¬(x→ ¬y). (2.4)

Definition 2.2. A (commutative) residuated lattice—or an RL—is an al-
gebra A = 〈A; ·,→,∧,∨, e〉 comprising a commutative monoid 〈A; ·, e〉, a
lattice 〈A;∧,∨〉 and a binary operation →, called the residual of A, where
A satisfies (2.2).

Thus, up to term equivalence, every IRL has a reduct that is an RL.
Conversely, every RL can be embedded into (the RL-reduct of) an IRL; see
[54] and the antecedents cited there.

Let A be an RL and let a, b ∈ A. According to the law of residuation,
a → b can be characterized as the largest entity whose fusion with a falls

1 The signature in [51] is slightly different, but the definable terms are not affected.
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below b. The residual→ ofA can therefore be recovered from the 〈A;∧,∨, ·〉
reduct of A by the rule

a→ b = max{c ∈ A : a · c 6 b}. (2.5)

Every RL satisfies the following well known formulas. Here and subse-
quently, x↔ y abbreviates (x→ y) ∧ (y → x).

x · (x→ y) 6 y and x 6 (x→ y)→ y (2.6)

((x→ y)→ y)→ y ≈ x→ y (2.7)

x 6 y → z ⇐⇒ y 6 x→ z (2.8)

(x · y)→ z ≈ y → (x→ z) ≈ x→ (y → z) (2.9)

(x→ y) · (y → z) 6 x→ z (2.10)

x · (y ∨ z) ≈ (x · y) ∨ (x · z) (2.11)

x→ (y ∧ z) ≈ (x→ y) ∧ (x→ z) (2.12)

(x ∨ y)→ z ≈ (x→ z) ∧ (y → z) (2.13)

x 6 y =⇒

{
x · z 6 y · z and

z → x 6 z → y and y → z 6 x→ z
(2.14)

x 6 y ⇐⇒ e 6 x→ y (2.15)

x ≈ y ⇐⇒ e 6 x↔ y (2.16)

e 6 x→ x and e→ x ≈ x (2.17)

e 6 x ⇐⇒ x→ x 6 x. (2.18)

By (2.16), an RL A is nontrivial iff e is not its least element, iff e has
a strict lower bound. Another consequence of (2.16) is that a non-injective
homomorphism h between RLs must satisfy h(c) = e for some c < e.
(Choose c = e ∧ (a↔ b), where h(a) = h(b) but a 6= b.)

In an RL, we define x0 := e and xn+1 := xn · x for n ∈ ω.

Lemma 2.3. If a (possibly involutive) RL A has a least element ⊥, then
> := ⊥ → ⊥ is its greatest element and, for all a ∈ A,

a ·⊥ = ⊥ = > → ⊥ and ⊥ → a = > = a→ > = >2.

In particular, {⊥,>} is a subalgebra of the ·,→,∧,∨ (,¬) reduct of A.

Proof. See [112, Prop. 5.1], for instance. (We infer > = >2 from (2.14), as
e 6 >. The lattice anti-automorphism ¬, if present, clearly switches ⊥ and
>.)
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If we say that ⊥,> are extrema of an RL A, we mean that ⊥ 6 a 6 >
for all a ∈ A. An RL with extrema is said to be bounded . In that case, its
extrema need not be distinguished elements, so they are not always retained
in subalgebras. The next lemma is a straightforward consequence of (2.2).

Lemma 2.4. The following conditions on a bounded IRL A, with extrema
⊥,>, are equivalent.

(i) > · a = > whenever ⊥ 6= a ∈ A.

(ii) a→ ⊥ = ⊥ whenever ⊥ 6= a ∈ A.

(iii) > → b = ⊥ whenever > 6= b ∈ A.

Definition 2.5. Following Meyer [99], we say that an IRL is rigorously com-
pact if it is bounded and satisfies the equivalent conditions of Lemma 2.4.

Lemma 2.6. Let A be a rigorously compact IRL, with extrema ⊥,>, and
let h : A→ B be a homomorphism that is not a constant function. Then

(i) h−1[{h(⊥)}] = {⊥} and h−1[{h(>)}] = {>}.

(ii) If h(⊥) is meet-irreducible in B, then ⊥ is meet-irreducible in A.
Likewise, > is join-irreducible if h(>) is.

(iii) If B is totally ordered (as a lattice), then ⊥ is meet-irreducible and
> join-irreducible in A.

Proof. (i) If ⊥ < a ∈ A, with h(a) = h(⊥), then > · a = >, by rigorous
compactness, so h(>) = h(>) · h(a) = h(>) · h(⊥) = h(> · ⊥) = h(⊥).
Similarly, if > > b ∈ A, with h(b) = h(>), then h(>) = h(⊥), because
> → b = ⊥. As h is isotone, we conclude in both cases that |h[A]| = 1,
contradicting the fact that h is not constant.

(ii) follows easily from (i), and (iii) from (ii).

Lemma 2.7. Let A be an IRL, with a ∈ A. Then

e 6 a = a2 iff a · ¬a = ¬a iff a = a→ a.

Proof. The second and third conditions are equivalent, by the definition of
→ and involution properties. Also, a2 6 a and a · ¬a 6 ¬a are equivalent,
by (2.1). From e 6 a and (2.14) we infer ¬a = e · ¬a 6 a · ¬a. Conversely,
a→ a 6 a and (2.17) yield e 6 a, and therefore a 6 a2.

The class of all RLs and that of all IRLs are finitely axiomatizable
varieties [51, Thm. 2.7].
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2.2 Square-increasing IRLs

Definition 2.8. An [I]RL is said to be square-increasing, briefly an S[I]RL,2

if it satisfies
x 6 x2 (the square-increasing law). (2.19)

Every square-increasing RL can be embedded into a square-increasing
IRL; see [97] and Section 3.4 on ‘reflections’, below. Moreover, Slaney [132]
has shown that if two square-increasing IRLs have the same RL-reduct, then
they are equal. The following formulas are valid in all square-increasing
IRLs (and not in all IRLs):

x ∧ y 6 x · y (2.20)

(x 6 e & y 6 e) =⇒ x · y ≈ x ∧ y (2.21)

x→ (x→ y) 6 x→ y (2.22)

e 6 x ∨ ¬x. (2.23)

The lemma below generalizes another result of Slaney [129, T36, p. 491]
(where only the case a = f was discussed, and A satisfied an extra postu-
late).

Lemma 2.9. Let A be a square-increasing IRL, with f 6 a ∈ A. Then
a3 = a2. In particular, f 3 = f 2.

Proof. As f 6 a, we have ¬a = a→ f 6 a→ a, by (2.3) and (2.14), so

a→ ¬a 6 a→ (a→ a) = a2 → a, (2.24)

by (2.14) and (2.9). By the square-increasing law, (2.24), (2.14) and (2.10),

a→ ¬a 6 (a→ ¬a)2 6 (a2 → a) · (a→ ¬a) 6 a2 → ¬a.

Thus, ¬(a2 → ¬a) 6 ¬(a → ¬a), i.e., a2 · a 6 a · a (see (2.4)), i.e.,
a3 6 a2. The reverse inequality follows from the square-increasing law and
(2.14).

The first assertion of the next theorem has unpublished antecedents
in the work of relevance logicians. A corresponding result for ‘relevant
algebras’ is reported in [136, Prop. 5], but the claim and proof below are
simpler.

2In [107] the acronym ‘S[I]RL’ stands for ‘subidempotent [involutive] residuated lat-
tice’. It refers to residuated lattices that satisfy the subidempotent law (x 6 e =⇒ x ≈
x2). Notice that square-increasing [I]RLs are subidempotent, owing to (2.21).
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Theorem 2.10. Every finitely generated square-increasing IRLA is bounded.
More precisely, let {a1, . . . , an} be a finite set of generators for A, with

c = e ∨ f ∨
∨
i≤n

(ai ∨ ¬ai), and b = c2.

Then ¬b 6 a 6 b for all a ∈ A.

Proof. By De Morgan’s laws, every element ofA has the form ϕA(a1, . . . , an)
for some term ϕ(x1, . . . , xn) in the language ·,∧,¬, e. The proof of the
present theorem is by induction on the complexity #ϕ of ϕ. We shall write
~x and ~a for the respective sequences x1, . . . , xn and a1, . . . , an.

For the case #ϕ ≤ 1, note that e, a1, . . . , an 6 c 6 b, by the square-
increasing law. Likewise, f,¬a1, . . . ,¬an 6 c 6 b, so by involution proper-
ties, ¬b 6 e, a1, . . . , an. Now suppose #ϕ > 1 and that ¬b 6 ψA(~a) 6 b for
all terms ψ with #ψ < #ϕ. The desired result, viz.

¬b 6 ϕA(~a) 6 b,

follows from the induction hypothesis and basic properties of IRLs if ϕ
has the form ¬ψ(~x) or ψ1(~x) ∧ ψ2(~x). We may therefore assume that ϕ is
ψ1(~x) · ψ2(~x) for some less complex terms ψ1(~x), ψ2(~x).

By the induction hypothesis and (2.14), (¬b)2 6 ϕA(~a) 6 b2. As ¬b 6 e,
we have (¬b)2 = ¬b, by (2.21). And since f 6 c, Lemma 2.9 gives c3 = c2,
so b2 = c4 = c2 = b. Therefore, ¬b 6 ϕA(~a) 6 b, as required.

In a square-increasing IRL, the smallest (i.e., the 0-generated) subalge-
bra B has top element (e∨f)2 = f 2∨e (by Theorem 2.10 and (2.11)). This
is a lower bound of f → f 2 (by (2.2) and Lemma 2.9), so f 2 ∨ e = f → f 2.
That the extrema of B can be expressed without using ∧,∨ is implicit in
[99, p. 309]. Note also that e↔ f = f ∧ ¬(f 2) is the least element of B.

An element a of an [I]RL A is said to be idempotent if a2 = a. We
say that A is idempotent if all of its elements are. In the next result, the
key implication is (ii)⇒ (iii). A logical analogue of (ii) ⇐⇒ (iii) is stated
without proof in [99, p. 309].

Theorem 2.11. In a square-increasing IRL A, the following are equivalent.

(i) f 2 = f .

(ii) f 6 e.

(iii) A is idempotent.

Consequently, a square-increasing non-idempotent IRL has no idempotent
subalgebra (and in particular, no trivial subalgebra).

 
 
 



CHAPTER 2. THE STRUCTURE OF DE MORGAN MONOIDS 33

Proof. In any IRL, (i)⇒ (ii) instantiates (2.1) (as ¬f = e), and (iii)⇒ (i)
is trivial.

(ii)⇒ (iii): Suppose f 6 e, and let a ∈ A. It suffices to show that a2 6 a,
or equivalently (by (2.1)), that a · ¬a 6 ¬a. Now, by the square-increasing
law, (2.14), the associativity of fusion, (2.3) and (2.6),

a · ¬a 6 a · (¬a)2 = (a · (a→ f)) · ¬a 6 f · ¬a 6 e · ¬a = ¬a.

By (i)⇒ (iii), f 2 6= f in each non-idempotent SIRLA, so the 0-generated
subalgebra of A is non-idempotent (and in particular nontrivial).

Let A be an [I]RL. By a filter of A, we mean a filter of the lattice
〈A;∧,∨〉, i.e., a non-empty subset G of A that is upward closed and closed
under the binary operation ∧. A deductive filter of A is a filter G of
〈A;∧,∨〉 that is also a submonoid of 〈A; ·, e〉, i.e., e ∈ G and a · b ∈ G
whenever a, b ∈ G. Thus, [e) is the smallest deductive filter of A, and
whenever b ∈ A and a, a → b ∈ G, then b ∈ G (as a · (a → b) 6 b, by
(2.2)). The lattice Fil(A) of deductive filters of A and the congruence
lattice Con(A) of A are isomorphic. The isomorphism and its inverse are
given by

G 7→ ΩAG := {〈a, b〉 ∈ A2 : a→ b, b→ a ∈ G};
θ 7→ {a ∈ A : 〈a ∧ e, e〉 ∈ θ}.

For a deductive filter G of A and a, b ∈ A, we often abbreviate A/ΩAG as
A/G, and a/ΩAG as a/G, noting that

a→ b ∈ G iff a/G 6 b/G in A/G. (2.25)

Whenever B is a subalgebra of an [I]RL A, and F is a deductive filter
of A, then B ∩ F is a deductive filter of B and

ΩB(B ∩ F ) = (ΩAF )|B. (2.26)

For any subset X of A, the smallest deductive filter of A containing X
is denoted by FgAX. When A is square-increasing, the deductive filters of
A are just the lattice filters of 〈A;∧,∨〉 that contain e, by (2.20). In this
case FgAX consists of all a ∈ A such that

a > x1 ∧ . . . ∧xn for some x1, . . . , xn ∈ X ∪{e}, where 0 < n ∈ ω. (2.27)

This yields the following lemma.

Lemma 2.12. In a square-increasing IRL A,
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(i) if e > b ∈ A, then FgA{b} = [b) ( := {a ∈ A : b 6 a}). In particular,

(ii) [¬(f 2)) is a deductive filter of A.

Here, (ii) follows from (i), because e > ¬(f 2) follows from f 6 f 2.

Theorem 2.13. Let G be a deductive filter of a square-increasing IRL
A. Then A/G is idempotent iff ¬(f 2) ∈ G. In particular, A/[¬(f 2)) is
idempotent.

Proof. A/G is idempotent iff f/G 6 e/G (by Theorem 2.11), iff f → e ∈ G
(by (2.25)), iff ¬(f 2) ∈ G (as ¬(f 2) = ¬(f · ¬e) = f → e).

We say that an IRL is anti-idempotent if it is square-increasing and
satisfies x 6 f 2 (or equivalently, ¬(f 2) 6 x). This terminology is justified
by the corollary below.

Corollary 2.14. Let K be a variety of square-increasing IRLs. Then K has
no nontrivial idempotent member iff it satisfies x 6 f 2.

Proof. (⇒): As K is homomorphically closed but lacks nontrivial idempo-
tent members, Theorem 2.13 shows that the deductive filter [¬(f 2)) of any
A ∈ K coincides with A, i.e., K satisfies ¬(f 2) 6 x.

(⇐): If A ∈ K is idempotent, then f 2 = f 6 e = ¬f = ¬(f 2), by
Theorem 2.11, so by assumption, A is trivial.

Recall from Definition 1.16 that when none of the nontrivial members
of a variety K has a trivial subalgebra, then K is called a Kollár variety.

Corollary 2.15. Every variety of anti-idempotent IRLs is a Kollár variety.

Proof. This follows immediately from Corollary 2.14 and Theorem 2.11.

2.3 Universal algebraic properties

Recall that an algebra A is subdirectly irreducible (SI) iff its identity rela-
tion idA is completely meet-irreducible in its congruence lattice. Also, A is
finitely subdirectly irreducible (FSI) iff idA is meet-irreducible in Con(A),
whereas A is simple iff |Con(A)| = 2.

Since every variety is determined by its SI members, we need to under-
stand these algebras in the present context. The following result is well
known; see [52, Cor. 14] and [112, Thm. 2.4], for instance. Here and sub-
sequently, an RL A is said to be distributive [resp. modular ] if its reduct
〈A;∧,∨〉 is a distributive [resp. modular] lattice.
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Lemma 2.16. Let A be a (possibly involutive) RL.

(i) A is FSI iff e is join-irreducible in 〈A;∧,∨〉. Therefore, subalgebras
and ultraproducts of FSI [I]RLs are FSI.

(ii) When A is distributive, it is FSI iff e is join-prime (i.e., whenever
a, b ∈ A with e 6 a ∨ b, then e 6 a or e 6 b).

(iii) If there is a largest element strictly below e, thenA is SI. The converse
holds if A is square-increasing.

(iv) If e has just one strict lower bound, then A is simple. The converse
holds when A is square-increasing.

All varieties of [I]RLs are congruence distributive, since [I]RLs have
lattice reducts. This implies that Jónsson’s Theorem 1.23 will always be
available.

Since the join-irreducibility of e in condition (i) is expressible as a uni-
versal first order sentence, every variety of [I]RLs has equationally definable
principal meets (EDPM), by Theorem 1.27.

Furthermore, all varieties of [I]RLs are congruence permutable and have
the congruence extension property (CEP). These facts can be found, for
instance, in [51, Sections 2.2 and 3.6].

From the CEP, it follows that HS(L) = SH(L) for any class L of [I]RLs;
see Theorem 1.24. The CEP can easily be verified, using (2.26) and the
fact that, when A is an [I]RL and B is a subalgebra of A, the deductive
filters of B are just the sets B ∩ F such that F is a deductive filter of A.

Furthermore, every variety of square-increasing [I]RLs has equationally
definable principal congruences (EDPC), as defined after Theorem 1.24 (see
[51, Thm. 3.55]). In fact, in any S[I]RL A, for all a, b, c, d ∈ A,

〈c, d〉 ∈ ΘA(a, b) iff (a↔ b) ∧ e 6 c↔ d.

Corollary 2.17. Let K be any class of simple square-increasing [I]RLs.
Then the variety V(K) is semisimple. In fact, V(K)FSI = ISPU(K), which
consists of simple (or trivial) algebras.

Proof. By Jónsson’s Theorem 1.23, the FSI members of V(K) belong to
HSPU(K), but the criterion for simplicity in Lemma 2.16(iv) is first order-
definable and therefore persists in ultraproducts (by  Los’ Theorem 1.8),
while the CEP ensures that nontrivial subalgebras of simple algebras are
simple (Theorem 1.24).
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Definition 2.18. A De Morgan monoid is a distributive square-increasing
IRL. The variety of De Morgan monoids shall be denoted by DMM.

Therefore, all the items of Lemma 2.16 hold for De Morgan monoids
(in particular the converses of items (iii) and (iv)). In the relevance logic
literature, a De Morgan monoid is said to be prime if it is FSI. The reason
is Lemma 2.16(ii), but we continue to use ‘FSI’ here, as it makes sense for
arbitrary algebras.

Corollary 2.19. In a simple anti-idempotent IRL A, if e < a ∈ A, then
a · f = f 2.

Proof. Let e < a ∈ A. By (2.14), f = e · f 6 a · f , but by (2.1),
a · f 
 f (since a · e 
 e), so f < a · f . As A is simple and square-
increasing, Lemma 2.16(iv) and involution properties show that f has just
one strict upper bound inA, which must be f 2, by anti-idempotence. Thus,
a · f = f 2.

2.4 Idempotent varieties

The characterization of FSI De Morgan monoids that we are heading to-
wards in the next section sorts FSI De Morgan monoids into those that are
idempotent, and those are not. In this section, we focus on De Morgan
monoids of the first kind (Sugihara monoids).

Sugihara monoids

Definition 2.20. A Sugihara monoid is an idempotent De Morgan monoid,
i.e., an idempotent distributive IRL.

The variety SM of Sugihara monoids is more transparent than DMM,
largely because of Dunn’s contributions to [1]; see [37] also. It is locally
finite, but not finitely generated. In fact, SM is the smallest variety con-
taining the Sugihara monoid

Z∗ = 〈{a : 0 6= a ∈ Z}; ·,∧,∨,−, 1〉

on the set of all nonzero integers such that the lattice order is the usual
total order, the involution − is the usual additive inversion, and the monoid
operation is defined by

a·b =

{
the element of {a, b} with the greater absolute value, if |a| 6= |b| ;
a ∧ b if |a| = |b|
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(where |a| is the natural absolute value function). In this algebra, the
residual operation → is given by

a→ b =

{
(−a) ∨ b if a 6 b;

(−a) ∧ b if a 66 b.

Note that e = 1 and f = −1 in Z∗.

Definition 2.21. An [I]RL is semilinear if it is isomorphic to a subdirect
product of totally ordered algebras.

Total order is expressible by the universal positive sentence

(∀x)(∀y)((x 6 y) t (y 6 x)),

which persists under H, S, and PU. So, because RLs are congruence dis-
tributive, Jónsson’s Theorem 1.23 has the following consequence: whenever
L consists of totally ordered [I]RLs, then so does V(L)FSI, whence V(L)
consists of semilinear algebras.

Lemma 2.22. A semilinear [I]RL A is FSI iff it is totally ordered.

Proof. (⇒): AsA is semilinear,A ∈ IPS(L) for some set L of totally ordered
[I]RLs. Since A is FSI, A ∈ V(L)FSI, whence A is totally ordered, as above,
by Jónsson’s Theorem 1.23.

(⇐): When A is totally ordered, each of its elements is join-irreducible.
In particular, e is join-irreducible in A, so A is FSI by Lemma 2.16(i).

The fact that Z∗ is totally ordered and generates SM yields:

Lemma 2.23. Every FSI Sugihara monoid is totally ordered. In particular,
Sugihara monoids are semilinear.

It is shown in [66] that an [I]RL A is semilinear iff it is distributive and
satisfies

e 6 (x→ y) ∨ (y → x), (2.28)

whence the semilinear [I]RLs form a variety. The substructural logics that
are algebraized by semilinear varieties of [I]RLs therefore satisfy the Gödel-
Dummet axiom: (p→ q) ∨ (q → p).

Definition 2.24. An IRL A is said to be odd if f = e in A.

Theorem 2.25. Every odd De Morgan monoid is a Sugihara monoid.

Proof. By Theorem 2.11, every odd SIRL is idempotent.
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In the Sugihara monoid Z = 〈Z; ·,∧,∨,−, 0〉 on the set of all integers,
the operations are defined like those of Z∗, except that 0 takes over from
1 as the neutral element for ·. Both e and f are 0 in Z, so Z is odd. It
follows from Theorem 2.25 and Dunn’s results in [1, 37] that the variety of
all odd Sugihara monoids, OSM, is the smallest quasivariety containing Z,
and that SM is the smallest quasivariety containing both Z∗ and Z.

For each positive integer n, let S2n denote the subalgebra of Z∗ with
universe {−n, . . . ,−1, 1, . . . , n} and, for n ∈ ω, let S2n+1 be the subalgebra
of Z with universe {−n, . . . ,−1, 0, 1, . . . , n}. The results cited above yield:

Theorem 2.26. Up to isomorphism, the algebras Sn (1 < n ∈ ω) are
precisely the finitely generated SI Sugihara monoids, whence the algebras
S2n+1 (0 < n ∈ ω) are just the finitely generated SI odd Sugihara monoids.

Consequently, for each m ∈ ω, a totally ordered m-generated Sugihara
monoid has at most 2m+ 2 elements. The bound reduces to 2m+ 1 in the
odd case.

We cannot embed Z (nor even S2n+1) into Z∗, owing to the involution.
Nevertheless, Z is a homomorphic image ofZ∗, and S2n+1 is a homomorphic
image of S2n+2, for all n ∈ ω. In each case, the kernel of the homomorphism
identifies −1 with 1; it identifies no other pair of distinct elements. Also,
S2n−1 is a homomorphic image of S2n+1 if n > 0; in this case the kernel
collapses −1, 0, 1 to a point, while isolating all other elements. Thus, S3 is
a homomorphic image of Sn for all n ≥ 3. In particular, every nontrivial
variety of Sugihara monoids includes S2 or S3.

Corollary 2.27. The lattice of varieties of odd Sugihara monoids is the
following chain of order type ω + 1 :

V(S1) ( V(S3) ( V(S5) ( . . . ( V(S2n+1) ( . . . ( V(Z).

Proof. See [1, Sec. 29.4] or [55, Fact 7.6].

Theorem 2.28 ([55, Thm. 7.3]). Every quasivariety of odd Sugihara monoids
is a variety.

The subvariety lattice of SM is fully described in [92].

Corollary 2.29. A quasivariety K of De Morgan monoids is a Kollár qua-
sivariety (see Definition 1.16) iff it excludes S3.

Proof. Clearly, if K includes S3, then it is not Kollár, because S3 is a
nontrivial algebra with a trivial subalgebra.
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Conversely, if A ∈ K is nontrivial with a trivial subalgebra, then A is
odd. Thus A is an odd Sugihara monoid, by Theorem 2.25. Notice that
Q(A) is a nontrivial variety of odd Sugihara monoids, by Theorem 2.28.
So, S3 ∈ Q(A), by Corollary 2.27. Therefore, S3 ∈ Q(A) ⊆ K, since K is a
quasivariety.

Integral and negatively generated [I]RLs

A bounded lattice 〈A;∧,∨, 0, 1〉 is the expansion of a lattice 〈A;∧,∨〉 by
distinguished elements 0, 1 ∈ A, where 0 6 a 6 1 for all a ∈ A. It is said to
be complemented if, for each a ∈ A, there exists a′ ∈ A such that a∧ a′ = 0
and a ∨ a′ = 1. The element a′ is uniquely determined (and called the
complement of a) if 〈A;∧,∨〉 is distributive.

Definition 2.30. A Boolean algebra A = 〈A;∧,∨,′ , 1, 0〉 comprises a com-
plemented distributive lattice 〈A;∧,∨〉 with extrema 0 < 1, where a′ is the
complement of a, for each a ∈ A.

An [I]RL is integral if e is its greatest element, in which case it satisfies
e ≈ x → x ≈ x → e, by (2.17) and (2.15). By (2.21), a square-increasing
[I]RL is integral iff its operations · and ∧ coincide. Furthermore, integral
S[I]RLs are distributive by (2.11). The following lemma is well known.

Lemma 2.31. An SIRL is integral iff it is a Boolean algebra (in which the
operation ∧ is duplicated by fusion, and the least element is definable as
¬e).3

Proof. Sufficiency is clear. Conversely, as we have just seen, the fusionless
reduct of an integral SIRL is a distributive lattice. Its greatest element is e,
by integrality, and its least element is ¬e (= f), since ¬ is antitone. Also,
it is complemented, by (2.23) and De Morgan’s laws.

Integral S[I]RLs are idempotent, since ∧ is idempotent. In fact, the
Sugihara monoid S2 is the two-element Boolean algebra. It is well known
that the variety BA of all Boolean algebras coincides with V(S2) ( = Q(S2))
[24, Cor. 1.14]. In the non-involutive case, integrality is less restrictive.

Definition 2.32. A Brouwerian algebra is an integral SRLA; it is normally
identified with its reduct 〈A;∧,∨,→, e〉.

3 Lemma 2.31 reflects the fact that classical propositional logic is the extension of
Rt by the weakening axiom (see Section 1.2).

 
 
 



CHAPTER 2. THE STRUCTURE OF DE MORGAN MONOIDS 40

A Brouwerian algebra is idempotent and distributive (by the remarks
before and after Lemma 2.31) although it need not be bounded. The law
of residuation becomes

x ∧ y 6 z ⇐⇒ y 6 x→ y. (2.29)

It follows that every Brouwerian algebra is determined by its lattice reduct,
and that every complete (in particular, every finite) distributive lattice is the
lattice reduct of a unique Brouwerian algebra. The class of all Brouwerian
algebras is a variety denoted by BRA.

Definition 2.33. The variety RSA of relative Stone algebras comprises the
semilinear Brouwerian algebras; it is generated by the Brouwerian algebra
on the chain of non-positive integers.

Definition 2.34. An algebra A = 〈A;∧,∨,→, e,⊥〉 is a Heyting algebra
when its ⊥-free reduct is a Brouwerian algebra and it satisfies ⊥ 6 x.

Thus, ⊥ belongs to every subalgebra of a Heyting algebra, and homo-
morphisms between Heyting algebras preserve ⊥.

We shall undertake a more in-depth study of Brouwerian algebras in
Chapter 6, where we explain a categorical duality between the variety of
Brouwerian algebras and a certain class of ordered topological spaces.

An element a of an [I]RL A will be called negative if a 6 e, and positive
if e 6 a. We denote the set of negative elements of A by

A− := {a ∈ A : a 6 e}.

The deductive filters of an [I]RL A are determined by their negative ele-
ments, in the sense that, for all deductive filters F,G ∈ Fil(A),

if F ∩ A− = G ∩ A− then F = G. (2.30)

Indeed, in this case, if a ∈ F then a∧e ∈ F∩A− = G∩A−, so a ∈ G, because
G is upward closed. We shall see in Chapter 6 that the set of negative
elements A− of an S[I]RL A can be given the structure of a Brouwerian
algebra, called its negative cone (see Definition 6.11).

We say that an [I]RLA is negatively generated when it is generated by its
negative elements, i.e., A = SgA(A−). As surjective homomorphisms always
map generating sets onto generating sets, the following lemma applies.

Lemma 2.35. If h : A→ B is a surjective homomorphism of S[I]RLs and
A is negatively generated then so is B.
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The Sugihara monoid Z∗ satisfies the equation

x ≈ (x ∧ e) · ¬(¬x ∧ f), (2.31)

because, by De Morgan’s laws, ¬(¬x ∧ f) ≈ x ∨ e, and since every element
of Z∗ is comparable with e. As SM = V(Z∗), every Sugihara monoid A
satisfies (2.31), and is therefore negatively generated, because a∧e 6 e and
¬a ∧ f 6 ¬a ∧ e 6 e for all a ∈ A (by Theorem 2.11).

Semilinear idempotent RLs

The following abbreviations are useful when working with idempotent RLs:

x∗ := x→ e and |x| := x→ x.

In the Sugihara monoid Z∗ (defined on page 36), the term operation |x|
coincides with the natural absolute value operation. By (2.6), (2.7) and
(2.17), every [I]RL satisfies

x 6 x∗∗ and x∗∗∗ ≈ x∗ and e 6 |x|. (2.32)

If an RL is idempotent, then it also satisfies

x 6 |x|, (2.33)

x ≈ |x| ⇐⇒ e 6 x, (2.34)

x∗ ≈ |x| ⇐⇒ x 6 e, (2.35)

x ≈ x∗ ⇐⇒ x ≈ e. (2.36)

The following theorem shows that the fusion of a totally ordered idempo-
tent RL A resembles that of a Sugihara monoid, and that A is determined
by its reduct 〈A;∧,∨, ∗〉, and also by its reduct 〈A;∧,∨, | - |〉.

Theorem 2.36 ([116, Thms. 12, 14]). Let A be a totally ordered idempotent
RL. Then A satisfies

x · y =


x if |y| < |x|
y if |x| < |y|
x ∧ y if |x| = |y|

and x→ y =

{
x∗ ∨ y if x 6 y

x∗ ∧ y if x > y
. (2.37)

The structure of totally ordered idempotent RLs is described in [59] (and
earlier in [116]) using a representation that will be introduced in Section 6.6
(Theorem 6.28).

 
 
 



CHAPTER 2. THE STRUCTURE OF DE MORGAN MONOIDS 42

Definition 2.37. The variety GSM of generalized Sugihara monoids con-
sists of the semilinear idempotent RLs that satisfy

(x ∨ e)∗∗ ≈ x ∨ e, (2.38)

or equivalently, e 6 x =⇒ x∗∗ ≈ x.

The main significance of GSM lies in the next theorem.

Theorem 2.38 ([56, Cor. 3.5]). A semilinear idempotent RL is a general-
ized Sugihara monoid iff it is negatively generated.

In the proof of this theorem, one uses the fact that all generalized Sug-
ihara monoids satisfy

x ≈ (x ∧ e) · (x∗ ∧ e)∗. (2.39)

A representation of totally ordered generalized Sugihara monoids is given
in Corollary 6.29.

Definition 2.39. A Dunn monoid is a square-increasing distributive RL.

Dunn monoids originate in [36] and acquired their name in [96].

Theorem 2.40. Let A be a totally ordered Dunn monoid that is generated
by a set X of idempotent elements. Then A is idempotent.

Proof. Let a ∈ A. Then a = tA(a1, . . . , an) for some n-ary term t(x1, . . . , xn)
and some a1, . . . , an ∈ X. For brevity, we assume that terms are evaluated
in A and let ~a abbreviate a1, . . . , an. We show that a = a2 by induction on
the complexity #t of t.

When #t = 0, clearly t(~a)2 = t(~a), because t ∈ {e, x1, . . . , xn}.
Assume that s and r are terms with #s,#r < #t such that s(~a)2 = s(~a)

and r(~a)2 = r(~a).
If t = s∧r or t = s∨r, then t(~a) ∈ {s(~a), r(~a)}, sinceA is totally ordered,

and we are done. If t = s · r, then t(~a)2 = s(~a)2 · r(~a)2 = s(~a) · r(~a) = t(~a),
by the induction hypothesis. Lastly, suppose that t = s → r. Note that
t(~a) 6 t(~a)2, since A is square-increasing. On the other hand, by (2.6),

s(~a) · (s(~a)→ r(~a))2 = s(~a)2 · (s(~a)→ r(~a))2 6 r(~a)2 = r(~a).

So, t(~a)2 = (s(~a)→ r(~a))2 6 s(~a)→ r(~a) = t(~a), by the law of residuation.

Theorem 2.41. Let A be an semilinear Dunn monoid. The following are
equivalent:
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(i) A is negatively generated;

(ii) A is a generalized Sugihara monoid;

(iii) A satisfies equation (2.39).

Proof. (i) ⇒ (ii): By Birkhoff’s Subdirect Decomposition Theorem 1.3, A
embeds into

∏
i∈IAi for some set {Ai : i ∈ I} of totally ordered Dunn

monoids, such that each Ai is a homomorphic image of A. For each i ∈ I,
we have Ai = SgAiA−i , by Lemma 2.35. By (2.21), every element of A−i
is idempotent, so Ai is idempotent, by Theorem 2.40. Therefore, each
Ai ∈ GSM, by Theorem 2.38, so A is a generalized Sugihara monoid.

For (ii) ⇒ (iii), see the proof of [56, Cor. 3.5]. That (iii) ⇒ (i) follows
from the form of equation (2.39). In particular, a ∧ e and a∗ ∧ e belong to
A−, for every a ∈ A.

Corollary 2.42. The negatively generated Dunn monoids form a locally
finite variety, namely the variety of generalized Sugihara monoids.

Indeed, it is shown in [116, Thm. 18] that the variety of semilinear
idempotent RLs is locally finite, therefore GSM is as well. For each n ∈ ω,
an n-generated totally ordered idempotent RL has at most 3n+1 elements.
(This is due to the structure theorems that will be exhibited in Section 6.6.)
The bound reduces to n + 1 in the integral case, i.e., in the subvariety of
relative Stone algebras.

2.5 De Morgan monoids

In this section we shall show that each FSI De Morgan monoid is either
an FSI Sugihara monoid or a ‘rigorous extension’ of a nontrivial FSI anti-
idempotent De Morgan monoid (Theorem 2.57).

The next result is easy and well known, but note that it draws on all
the key properties of De Morgan monoids.

Theorem 2.43. Let A be a De Morgan monoid that is FSI, with a ∈ A.
Then e 6 a or a 6 f . Thus, A = [e) ∪ (f ].

Proof. As A is square-increasing, e 6 a ∨ ¬a, by (2.23). So, because A is
distributive and FSI, e 6 a or e 6 ¬a, by Lemma 2.16(ii). In the latter
case, a 6 f , because ¬ is antitone.

Corollary 2.44. Let A be a De Morgan monoid that is SI. Let c be the
largest element of A strictly below e (which exists, by Lemma 2.16(iii)).
Then c 6 f .
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The following result about bounded De Morgan monoids was essentially
proved by Meyer [99, Thm. 3], but his argument assumes that the elements
⊥,> are distinguished, or at least definable in terms of generators. To avoid
that presupposition, we give a simpler and more direct proof.

Theorem 2.45. Let A be a bounded FSI De Morgan monoid. Then A is
rigorously compact (see Definition 2.5).

Proof. Let ⊥ 6= a ∈ A, where ⊥,> are the extrema of A. It suffices to
show that > · a = >. As e · a 
 ⊥, we have > · a 66 f , by (2.1), so

e 6 > · a, (2.40)

by Theorem 2.43. Recall that >2 = >, by Lemma 2.3. Therefore,

> = > · e 6 >2 · a (by (2.40)) = > · a 6 >,

whence > · a = >.

Corollary 2.46. If a De Morgan monoid is FSI, then its finitely generated
subalgebras are rigorously compact.

Proof. This follows from Lemma 2.16(i) and Theorems 2.10 and 2.45.

As the structure of idempotent De Morgan monoids (a.k.a. Sugihara
monoids) is very transparent, we concentrate now on De Morgan monoids
that are not idempotent.

Lemma 2.47. Let A be a non-idempotent FSI De Morgan monoid, and
let a be an idempotent element of A. If a > f , then a > e. In particular,
f 2 > e.

Proof. Suppose a2 = a > f . As A is not idempotent, f 2 6= f , by Theo-
rem 2.11, so a 6= f . Therefore, a 66 f , whence e 6 a, by Theorem 2.43. As
f 6 a, we cannot have a = e, by Theorem 2.11, so e < a. The last claim
follows because f 2 is an idempotent upper bound of f (by Lemma 2.9).

Lemma 2.48. Let A be an FSI De Morgan monoid with f 6 a, b ∈ A,
where a and b are idempotent. Then a 6 b or b 6 a.

Proof. If A is a Sugihara monoid, the result follows from Lemma 2.23. We
may therefore assume thatA is not idempotent, so e < a, b, by Lemma 2.47.
Then a · ¬a = ¬a and b · ¬b = ¬b, by Lemma 2.7, so

(a · ¬b) ∧ (b · ¬a) 6 (a · ¬b) · (b · ¬a) (by (2.20))

= (a · ¬a) · (b · ¬b) = ¬a · ¬b (by the above)

= ¬a ∧ ¬b (by (2.21), as ¬a,¬b 6 e).
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Therefore, by De Morgan’s laws,

¬(¬a ∧ ¬b) 6 ¬((a · ¬b) ∧ (b · ¬a))

= ¬(a · ¬b) ∨ ¬(b · ¬a) = (a→ b) ∨ (b→ a)

and e < a ∨ b = ¬(¬a ∧ ¬b), so e < (a → b) ∨ (b → a). Then, since A is
FSI, Lemma 2.16(ii) and (2.15) yield e 6 a→ b or e 6 b→ a, i.e., a 6 b or
b 6 a.

Lemma 2.49. Let A be a De Morgan monoid that is FSI, and let f 6 a ∈
A, where a 6< f 2. Then a is idempotent.

Proof. By Lemma 2.9, f 2 is idempotent, so assume that a 6= f 2. From
f 6 f 2 and a 66 f 2, we infer a 66 f . Then e 6 a, by Theorem 2.43, so
e, f ∈ [¬a, a] (= {b ∈ A : ¬a 6 b 6 a}). Therefore, ¬(a2) 6 x 6 a2 for
all x ∈ SgA{a}, by Theorem 2.10. By Corollary 2.46, SgA{a} is rigorously
compact. In particular,

a2 · x = a2 whenever ¬(a2) < x ∈ SgA{a}. (2.41)

As a 6 a2 and a 66 f 2, we have a2 66 f 2. But a2 and f 2 are idempotent, by
Lemma 2.9, so f 2 < a2, by Lemma 2.48. Thus, ¬(a2) < ¬(f 2) ∈ SgA{a},
so

a2 = a2 · ¬(f 2), (2.42)

by (2.41). AsA/[¬(f 2)) is idempotent (by Theorem 2.13), ¬(f 2) 6 a2 → a,
i.e., a2 · ¬(f 2) 6 a, by (2.25) and (2.2). Then (2.42) gives a2 6 a, and so
a2 = a.

Theorem 2.50. Let A be a non-idempotent FSI De Morgan monoid, with
f 2 6 a ∈ A. Then ¬a < a and the interval [¬a, a] is a subuniverse of A.
In particular, [¬(f 2), f 2] is a subuniverse of A.

Proof. In A, we have ¬(f 2) 6 e, as noted after Lemma 2.12, while e < f 2,
by Lemma 2.47. Of course, ¬a 6 ¬(f 2), so ¬a < a. Thus, [¬a, a] includes
e, and it is obviously closed under ∧, ∨ and ¬. Closure under fusion follows
from (2.14) and the square-increasing law, because a is idempotent (by
Lemma 2.49).

Theorem 2.51. In any FSI De Morgan monoid, the filter [f) is the union
of the interval [f, f 2] and a chain whose least element is f 2. The elements
of this chain are just the idempotent upper bounds of f .
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Proof. This follows from Lemma 2.23 when the algebra is idempotent. In
the opposite case, the idempotent upper bounds of f are exactly the upper
bounds of f 2 (by (2.14) and Lemma 2.49), and they are comparable with
all upper bounds of f (by Lemmas 2.49 and 2.48).
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Theorem 2.52. Any non-idempotent FSI De Morgan monoid is the union
of the interval subuniverse [¬(f 2), f 2] and two chains of idempotents, (¬(f 2)]
and [f 2).

Proof. Let A be a non-idempotent FSI De Morgan monoid. Theorem 2.50
shows that e, f ∈ [¬(f 2), f 2] and (with Lemma 2.3) that ¬(f 2) · f = ¬(f 2).
Note that [f 2) and (¬(f 2)] are both chains of idempotents, by Theorem 2.51,
involution properties and (2.21).

Suppose, with a view to contradiction, that there exists a ∈ A such that
a /∈ (¬(f 2)] ∪ [¬(f 2), f 2] ∪ [f 2). By Theorem 2.43, e < a or a < f . By
involutional symmetry, we may assume that e < a. Then a is incomparable
with f 2 (as a /∈ [¬(f 2), f 2]∪ [f 2)), so f 2 ∨ a > f 2. Also, since f 2, a > e, we
have f 2 · a > f 2 ∨ a, by (2.14), so f 2 · a > f 2.

Because a > e, we have f · a > f . If f · a ∈ [¬(f 2), f 2], then

f 2 · a 6 (f · a)2 6 f 4 = f 2 (by Lemma 2.9),

a contradiction. So, by Theorem 2.51, f · a is idempotent and f · a > f 2.
Then f · a > e, f , and by Theorem 2.50, ¬(f · a) < f · a. This, with
Theorem 2.10, shows that f · a is the greatest element of the algebra C :=
SgA{f · a}, and ¬(f · a) is the least element of C. Note that ¬(f · a) <
¬(f 2), as f 2 < f · a. Now C is rigorously compact, by Corollary 2.46, so
¬(f 2) · (f · a) = f · a > f 2. Thus, ¬(f 2) · (f · a) 
 a, as f 2 
 a.

Nevertheless, as ¬(f 2)·f = ¬(f 2), we have (¬(f 2) · f) · a = ¬(f 2) · a 6 a,
because ¬(f 2) 6 e. This contradicts the associativity of fusion inA. There-
fore, A = (¬(f 2)] ∪ [¬(f 2), f 2] ∪ [f 2).
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Recall from (2.21) that fusion and meet coincide on the lower bounds
of e in any De Morgan monoid. For the algebras in Theorem 2.52, the
behaviour of fusion is further constrained as follows.

Theorem 2.53. Let A be a non-idempotent FSI De Morgan monoid, and
let f 6 a, b ∈ A. Then

a · b =

{
f 2 if a, b 6 f 2;

max6{a, b} otherwise.

If, moreover, a < b and f 2 6 b, then a · ¬b = ¬b = b · ¬b and b · ¬a = b.

Proof. If a, b 6 f 2, then f 2 6 a · b 6 f 4 = f 2, by (2.14) and Lemma 2.9,
so a · b = f 2. We may therefore assume (in respect of the first claim) that
a 66 f 2 or b 66 f 2. Then a and b are comparable, by Theorem 2.51. By
symmetry, we may assume that a 6 b and hence that b 66 f 2, so e < f 2 <
b = b2, by Theorems 2.50 and 2.51.

If a = b, then a ·b = b2 = b = max6{a, b}, so we may assume that a 6= b.
Thus, b > a > f , and so ¬b < ¬a 6 e < b.

As b is an idempotent upper bound of e, f, a,¬a,¬b, Theorem 2.10 shows
that b is the greatest element of SgA{a, b}, and ¬b is the least element.

By Corollary 2.46, SgA{a, b} is rigorously compact. We shall therefore
have a · b = b = max6{a, b}, provided that ¬b 6= a. This is indeed the case,
as we have seen that ¬a < b.

Finally, suppose a < b and f 2 6 b. Again, Theorems 2.50 and 2.51 show
that ¬b, b are the (idempotent) extrema of the algebra SgA{a, b}, whose
non-extreme elements include ¬a, a, so the remaining claims also follow
from the rigorous compactness of SgA{a, b}.

Theorem 2.54. Let A be a non-idempotent FSI De Morgan monoid. Then
A/[¬(f 2)) is a totally ordered odd Sugihara monoid. Furthermore, e/[¬(f 2))
is the interval [¬(f 2), f 2], and a/[¬(f 2)) = {a} for any a ∈ A \ [¬(f 2), f 2].

Proof. Let G := [¬(f 2)) and a ∈ [¬(f 2), f 2]. By Theorem 2.50, [¬(f 2), f 2]
is a subuniverse of A, so e → a, a → e ∈ [¬(f 2), f 2] ⊆ G, whence a/G =
e/G. Therefore, [¬(f 2), f 2] ⊆ e/G. In particular, since f ∈ [¬(f 2), f 2], we
have e/G = f/G, so A/G is an odd Sugihara monoid, by Theorem 2.25.
Furthermore, by Theorem 2.52, A \ [¬(f 2), f 2] is totally ordered, so A/G
is as well.

Let a ∈ e/G. Then ¬(f 2) 6 a and ¬(f 2) 6 a → e. By the law of
residuation a · ¬(f 2) 6 e, so by (2.1), ¬(f 2) · f 6 ¬a. Since [¬(f 2), f 2] is a
subuniverse of A with least element ¬(f 2), we have ¬(f 2) = ¬(f 2)·f 6 ¬a,
by Lemma 2.3. So, a 6 f 2. Therefore e/G = [¬(f 2), f 2].
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Lastly, let a ∈ A \ [¬(f 2), f 2], and suppose that a/G = b/G for some
b ∈ A. Notice that b /∈ [¬(f 2), f 2], since a /∈ e/G = [¬(f 2), f 2].

By involutional symmetry, we may assume that f 2 < a (rather than
a < ¬(f 2)), because otherwise f 2 < ¬a, and from x/G = {x} and the
double negation law, it follows easily that (¬x)/G = {¬x}.

If b < ¬(f 2), then b < e < a, but a/G includes a and b, and is an interval
of A, so it includes e, whence a/G = e/G, a contradiction. Therefore,
f 2 < b. By Theorem 2.53,

a→ b = ¬(a · ¬b) ∈ {a, b,¬a,¬b} ⊆ A \ [¬(f 2), f 2].

As a/G = b/G, we have ¬(f 2) 6 a → b, b → a, so e < a → b. Similarly,
e < b→ a, so a = b. Therefore, a/G = {a}.

To summarise this discussion, we show how any non-idempotent FSI
De Morgan monoid can be viewed as a ‘rigorous extension’ of its anti-
idempotent subalgebra on [¬(f 2), f 2] by the (idempotent) totally ordered
odd Sugihara monoid obtained by factoring out [¬(f 2)). This construction
is closely related to constructions in [50], [51], [110] and [111].

Let S be a totally ordered odd Sugihara monoid. For any non-constant
basic operation ϕ of S with arity n > 0, and for any a1, . . . , an ∈ S,

if ϕ(a1, . . . , an) = e then ai = e for some i ≤ n. (2.43)

When ϕ is ¬, (2.43) follows from the fact that S is odd, and when ϕ is ∧ or
∨, (2.43) holds because S is totally ordered. When ϕ is ·, notice that the
odd Sugihara monoid Z satisfies the quasi-equation x · y ≈ e =⇒ x ≈ e,
so since OSM = Q(Z), S satisfies the same quasi-equation, whence (2.43)
holds.

Definition 2.55. The rigorous extension of a De Morgan monoid A by a
totally ordered odd Sugihara monoid S is the algebra

S[A] := 〈(S \ {eS}) ∪ A;∧′,∨′, ·′,¬′, eA〉

with the following properties. Let ? ∈ {∧,∨, ·}. The operations ¬′ and ?′

extend those of S and A, i.e., for every s, p ∈ S \ {eS} and a, b ∈ A,

¬′s := ¬Ss, ¬′a := ¬Aa, s ?′ p := s ?S p, and a ?′ b := a ?A b

(whence {¬′s, s ?′ p} ⊆ S \ {eS}, by (2.43)), while

a ?′ s := s ?′ a :=

{
a if eS ?S s = eS

eS ?S s otherwise.4
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Theorem 2.56. For any De Morgan monoid A and any totally ordered
odd Sugihara monoid S, the algebra S[A] is a De Morgan monoid having
A as a subalgebra.

Proof. We can describe the order 6 on S[A] as the relation that extends
6A and 6S |S\{eS}, such that for all s ∈ S \ {eS} and a ∈ A we have

(a 6 s iff eS 6S s) and (s 6 a iff s 6S eS).

Since S is totally ordered and A distributive, it is easy to see (in light of
Theorem 1.22) that 6 is a distributive lattice order.

It is straightforward to verify that · is associative and has identity eA,
and that (2.1) is satisfied. Here, it is helpful to note that there is no element
s ∈ S \{eS} such that eS ·S s = eS. So, s ·a = a ·s = s for every s ∈ S \{e}
and a ∈ A.

Theorem 2.57. If A is an FSI De Morgan monoid, then one of the fol-
lowing mutually exclusive conditions holds:

(i) A is a Sugihara monoid, or

(ii) A ∼= S[A′], where A′ is the nontrivial anti-idempotent subalgebra of
A with universe [¬(f 2), f 2], and S = A/[¬(f 2)) is a totally ordered
odd Sugihara monoid.

Proof. Let A be an FSI De Morgan monoid in which (i) fails. Then A is
non-idempotent with f < f 2. Let G = [¬(f 2)) and S = A/G. Then S is a
totally ordered odd Sugihara monoid, by Theorem 2.54. Also, let A′ be the
nontrivial anti-idempotent subalgebra of A with universe [¬(f 2), f 2], which
exists by Theorem 2.50. We shall show that A ∼= S[A′], as witnessed by

h : a 7→

{
a if a ∈ A′

a/G otherwise.

It follows from Theorem 2.54 that h is a bijection. It remains to show that h
is a homomorphism. It is clear that h preserves e and ¬. Let ? ∈ {∧,∨, ·}.

4Note that in [50, Thm. 6.1] and [51, Sec. 9.6.1], the operations ∧ and ∨ are not well
defined; there s ? a := s ? eS , but in any nontrivial residuated lattice there is an a 6= e
for which e ∨ a = e or e ∧ a = e. In [111, Sec. 3], it is noted that one needs to add the
assumption a · b 6= e whenever a, b 6= e, for the algebras constructed in [110, Def. 4.7] to
be associative.
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If a, b ∈ A′ then h(a) ?S[A′] h(b) = a ?A
′
b = h(a ?A b), since A′ is a

subalgebra of A and of S[A′]. If a, b ∈ A \ A′, then a ?A b /∈ A′, because
otherwise a/G ?S b/G = e/G, whence a/G = e/G or b/G = e/G, by (2.43),
contradicting the fact that a/G = {a} and b/G = {b} (Theorem 2.54). So,

h(a) ?S[A′] h(b) = a/G ?S[A′] b/G = a/G ?S b/G = (a ?A b)/G = h(a ?A b).

Now, let a ∈ A′ and b ∈ A \ A′. If e/G ∧S b/G = e/G then f 2 < b, by
Theorems 2.52 and 2.54, so h(a)∧S[A′]h(b) = a = h(a∧Ab). If e/G∧Sb/G 6=
e/G then e/G∧S b/G = b/G, since S is totally ordered. Then b < ¬(f 2), so
h(a) ∧S[A′] h(b) = b/G = h(a ∧A b). Similarly, h(a) ∨S[A′] h(b) = h(a ∨A b).

It remains to show that h(a)·S[A′]h(b) = h(a·Ab). Note that e/G·Sb/G =
e/G ·S b/G = b/G, so we must show that a ·A b = b. This follows, as in the
proof of Theorem 2.53, from the fact that SgA{a, b} is rigorously compact
with idempotent extrema b and ¬b.

This largely reduces the study of irreducible De Morgan monoids to
the anti-idempotent case. We end this section by illuminating some of the
properties of rigorous extensions.

Theorem 2.58. Let {A,B} ∪ {Ai : i ∈ I} be a family of De Morgan
monoids, and {S} ∪ {Si : i ∈ I} a family of totally ordered odd Sugihara
monoids, for some set I.

(i) If h : A→ B is a homomorphism, then the map

h′ : x 7→

{
h(x) if x ∈ A
x otherwise,

is a homomorphism from S[A] to S[B] which extends h.

(ii) If P is a subalgebra of S and B a subalgebra of A, then P [B] is a
subalgebra of S[A].

(iii)
∏

i∈I (Si[Ai]) /U ∼=
(∏

i∈I Si/U
) [∏

i∈IAi/U
]

for every ultrafilter U
over I.

Proof. For (i), we only show preservation of the binary basic operations with
mixed arguments from S \{eS} and A, since the other cases are trivial. Let
s ∈ S \ {eS} and a ∈ A. If s < a then h′(s ∧ a) = h′(s) = s = h′(s) ∧ h′(a)
and h′(s ∨ a) = h′(a) = h(a) = s ∨ h(a) = h′(s) ∨ h′(a). When a < s the
argument is symmetrical. Also,

h′(s · a) = h′(s) = s = s · h(a) = h′(s) · h′(a).
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Item (ii) follows from the fact that if p ∈ P and b ∈ B, then for any
? ∈ {∧,∨, ·} we get {¬p,¬b, p ? b, b ? p} ⊆ {b,¬b, p,¬p} ⊆ P [B].

For (iii), we define a map h :
∏

i∈I Si[Ai] →
(∏

i∈I Si/U
) [∏

i∈IAi/U
]

in the following way. Let ~a ∈
∏

i∈I Si[Ai]. Define I~a := {i ∈ I : ai ∈ Ai}.
When I~a ∈ U , we let h(~a) = ~b/U ∈

∏
i∈I Ai/U where

bi = ai if ai ∈ Ai, and bi = eAi otherwise.

When I~a /∈ U , then its complement Ic~a = {i ∈ I : ai ∈ Si \ {eSi}} ∈ U , since
U is an ultrafilter. In this case we define h(~a) = ~s/U ∈ (

∏
i∈I Si/U) \ {e}

where
si = ai if ai ∈ Si, and si = eSi otherwise.

It can be verified that h is a surjective homomorphism whose kernel is
the congruence on

∏
i∈I Si[Ai] associated with U . By the Homomorphism

Theorem 1.1,
∏

i∈I (Si[Ai]) /U ∼=
(∏

i∈I Si/U
) [∏

i∈IAi/U
]
.

Corollary 2.59. Let A be a De Morgan monoid and S a totally ordered
odd Sugihara monoid. If C ∈ HSPU(A), then S[C] ∈ HSPU(S[A]).

Proof. Suppose that h : B → C is a surjective homomorphism, with B
a subalgebra of

∏
i∈IA/U for some ultrafilter U over a set I. By The-

orem 2.58(i), h can be extended to a surjective homomorphism h′ from
S[B] to S[C]. Recall that any algebra embeds into each of its ultrapowers.
In particular, we may identify S with a subalgebra of

∏
i∈I S/U . There-

fore, by Theorem 2.58(ii), S[B] is a subalgebra of
(∏

i∈I S/U
)

[
∏

i∈IA/U ].
Lastly, by Theorem 2.58(iii),

(∏
i∈I S/U

)
[
∏

i∈IA/U ] ∼=
∏

i∈I S[A]/U . So,
S[C] ∈ HSPU(S[A]).

 
 
 



Chapter 3

Crystalline and negatively
generated algebras

This chapter assembles a number of constructions and representation the-
orems that will be used throughout the rest of the thesis.

There are, up to isomorphism, only three simple 0-generated De Morgan
monoids, namely the two-element Boolean algebra, and two four-element
De Morgan monoids called C4 and D4; see Theorem 3.1. Of these, C4 is
distinctive, in view of a result of Slaney [130]: C4 is the only 0-generated
nontrivial algebra onto which finitely subdirectly irreducible De Morgan
monoids may be mapped by non-injective homomorphisms. Algebras that
do map onto C4 are called crystalline. We demonstrate in Section 3.1 that
there is a largest variety U of crystalline De Morgan monoids, as well as a
largest subvariety M of DMM such that C4 is a retract of every nontrivial
member of M. Thus, V(C4) ⊆ M ⊆ U. We furnish U and M with finite
equational axiomatizations; each has an undecidable equational theory and
uncountably many subvarieties.

In Section 3.2, we provide representation theorems for the members of U
and M (Corollaries 3.25 and 3.27), involving a ‘skew reflection’ construction
of Slaney [131].

We then present, in Section 3.3, further results of Slaney [129, 130],
showing that the free 0-generated De Morgan monoid is finite, and that
there are only seven non-isomorphic subdirectly irreducible 0-generated De
Morgan monoids. This free algebra and all the non-simple 0-generated SI
algebras are skew reflections.

The skew reflection construction generalizes an older (non-skew) reflec-
tion construction, which is essentially due to Meyer [97]. It was originally
used to add an involution to a Dunn monoid, and it may be used to map
varieties of Dunn monoids to varieties of De Morgan monoids, in such a

52
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way that several important properties are preserved. Section 3.4 therefore
focusses on the reflection construction.

In Section 3.5 all the tools that have been developed in this and the pre-
vious chapter are applied to provide a representation theorem for negatively
generated semilinear De Morgan monoids.

3.1 Crystalline algebras

In this section we introduce two important quasivarieties of De Morgan
monoids, which will be called W and N. Their definitions will come after
Theorem 3.4, which will make their significance clear. Each of them has
a largest subvariety. These varieties are called U and M, respectively, and
they contain only anti-idempotent algebras. In the next section (3.2) we
shall give representation theorems for the algebras in U and M.

We depict below the two-element Boolean algebra 2 (= S2), the three-
element Sugihara monoid S3, and two 0-generated four-element De Morgan
monoids, C4 and D4. In each case, the labeled Hasse diagram determines
the structure, in view of Lemma 2.3, Theorem 2.45 and the definitions.
That C4 and D4 are indeed De Morgan monoids was noted long ago in
the relevance logic literature, e.g., [98, 99]. All four algebras are simple, by
Lemma 2.16(iv).

s
se
f

2: ss
s
e = fS3 :

ss
ssf2

f
e
¬(f2)

C4 : s�� s@
@

s��s@@f
2

e f

¬(f2)

D4 :

The next theorem is implicit in findings of Slaney [129, 130], which
will be summarized in Section 3.3, but it is convenient here to give a self-
contained proof.

Theorem 3.1. Let A be a simple 0-generated De Morgan monoid. Then
A ∼= 2 or A ∼= C4 or A ∼= D4.

Proof. Because A is simple (hence nontrivial) and 0-generated, {e} is not
a subuniverse of A, so e 6= f and e has just one strict lower bound in A
(Lemma 2.16(iv)). Suppose A 6∼= 2. As 2 is finite, simple and 0-generated,
and BA = V(2), every FSI (and hence every simple) Boolean algebra is iso-
morphic to 2, by Jónsson’s Theorem 1.23. This, together with Lemma 2.31,
shows that A is not integral. Equivalently, f is not the least element of
A, so f 
 e. Then by Theorem 2.11, A is not idempotent and f < f 2,
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hence ¬(f 2) < e, so ¬(f 2) is the least element of A, i.e., f 2 is the greatest
element. Consequently, a ·¬(f 2) = ¬(f 2) for all a ∈ A, by Lemma 2.3, and
a · f 2 = f 2 whenever ¬(f 2) 6= a ∈ A, by Theorem 2.45.

There are two possibilities for the order: e < f or e 66 f . If e 66 f , then
e ∧ f < e, whence e ∧ f is the extremum ¬(f 2) and, by De Morgan’s laws,
e∨ f = f 2. Otherwise, ¬(f 2) < e < f < f 2. Either way, {¬(f 2), e, f, f 2} is
the universe of a four-element subalgebra ofA, having no proper subalgebra
of its own, so A = {¬(f 2), e, f, f 2}, as A is 0-generated. Thus, A ∼= C4 if
e < f , and A ∼= D4 if e 66 f .

In what follows, some features of C4 will be important.

Lemma 3.2. Let A be a nontrivial square-increasing IRL, and K a variety
of square-increasing IRLs.

(i) If e 6 f and a 6 f 2 for all a ∈ A, then e < f .

(ii) If e < f in A, then C4 can be embedded into A.

(iii) If A is simple and C4 or D4 can be embedded into A, then A is
anti-idempotent.

(iv) If C4 can be embedded into every SI member of K, then K consists
of anti-idempotent algebras and satisfies e 6 f .

(v) If D4 can be embedded into every SI member of K, then K consists
of anti-idempotent algebras.

Proof. (i) SupposeA satisfies e 6 f and x 6 f 2. ThenA is not idempotent,
by Corollary 2.14, so f 6= e, by Theorem 2.11, i.e., e < f .

(ii) Suppose e < f inA. Then f < f 2, by Theorem 2.11, i.e., ¬(f 2) < e.
Thus, {¬(f 2), e, f, f 2} is closed under ∧,∨ and ¬, and ¬(f 2) is idempo-
tent, by (2.21). By Lemma 2.9, f 2 is an idempotent upper bound of e, so
f 2 · ¬(f 2) = ¬(f 2), by Lemma 2.7. Closure of {¬(f 2), e, f, f 2} under fusion
follows from these observations and (2.14), so C4 embeds into A.

(iii) follows from Lemma 2.16(iv), because ¬(f 2) < e in C4 and in D4.
(iv) Suppose C4 embeds into every SI member of K. Then K satisfies

e 6 f , as C4 does. Now letB ∈ K be nontrivial. ThenB ∈ IPS{Bi : i ∈ I}
for suitable SI algebrasBi ∈ K, by Birkhoff’s Subdirect Decomposition The-
orem 1.3. As C4 embeds into each Bi, it embeds diagonally into

∏
i∈I Bi

(via the map a 7→ 〈a, a, a, . . . 〉), and therefore into B, because C4 is 0-
generated. Thus, no nontrivial B ∈ K is idempotent, and so K satisfies
x 6 f 2, by Corollary 2.14.

The proof of (v) is similar.
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The next lemma generalizes [130, Thms. 2, 3] (where it was confined to
FSI De Morgan monoids).

Lemma 3.3. Let A be a rigorously compact IRL.

(i) There is at most one homomorphism from A into C4.

(ii) If there is a homomorphism from A to C4, then ¬(f 2) 6 a 6 f 2 for
all a ∈ A.

Proof. Let ⊥,> be the extrema of A. Suppose h1, h2 : A→ C4 are homo-
morphisms, and note that they are surjective, because C4 is 0-generated.
For each i ∈ {1, 2}, as hi is isotone and preserves ·,¬, e, we have

hi(f
2) = f 2 = hi(>) and hi(¬(f 2)) = ¬(f 2) = hi(⊥),

so by Lemma 2.6(i), f 2 = > and ¬(f 2) = ⊥ (proving (ii)) and

h−1
i [{f 2}] = {f 2} and h−1

i [{¬(f 2)}] = {¬(f 2)}. (3.1)

Therefore, if h1 6= h2, then h1(a) = e and h2(a) = f for some a ∈ A. In that
case, h2(a2) = f 2, so a2 = f 2 (by (3.1)), whence h1(a2) = f 2, contradicting
the fact that h1(a2) = (h1(a))2 = e2 = e. Thus, h1 = h2, proving (i).

Theorem 3.4 (Slaney [130, Thm. 1]). Let h : A → B be a homomor-
phism, where A is an FSI De Morgan monoid, and B is nontrivial and
0-generated. Then h is an isomorphism or B ∼= C4.

Proof. As B is 0-generated, h is surjective. Suppose h is not an isomor-
phism. By the remarks preceding Lemma 2.3, h(a) = e for some a ∈ A
with a < e. By Theorem 2.43, a 6 f , so h(a) 6 h(f), i.e., e 6 f in B. As
B is 0-generated but not trivial, it cannot satisfy e = f , so e < f in B.
Then C4 embeds into B, by Lemma 3.2(ii), so B ∼= C4, again because B
is 0-generated.

Generalizing the usage of [130], we say that an IRL A is crystalline if
there is a homomorphism h : A→ C4 (in which case h is surjective).1

Recall that an algebra A is said to be a retract of an algebra B if
there are homomorphisms g : A→ B and h : B → A such that h ◦ g is the
identity function idA on A. This forces g to be injective and h surjective; we
refer to h as a retraction (of B onto A). The composite of two retractions,
when defined, is clearly still a retraction.

Theorem 3.4 motivates the following definitions.

1 For the sake of Theorem 3.9, we have dropped the requirement in [130] that crys-
talline algebras be FSI.
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Definition 3.5.

(i) W := {A ∈ DMM : |A| = 1 or A is crystalline};

(ii) N := {A ∈ DMM : |A| = 1 or C4 is a retract of A} ⊆ W.

By Lemma 3.3(ii), the rigorously compact algebras in W are anti-idem-
potent.

Remark 3.6. Given similar algebras A and B, the first canonical pro-
jection π1 : A × B → A is a retraction iff there exists a homomorphism
f : A→ B. (Sufficiency: as idA and f are homomorphisms, so is the func-
tion g from A to A×B defined by a 7→ 〈a, f(a)〉, and clearly π1 ◦ g = idA.)
Consequently, if an algebra C is a retract of every member of a class K,
then D is a retract of D ×E for all D,E ∈ K, because there is always a
composite homomorphism from D to E (whose image is isomorphic to C).

It follows that A is a retract of A×B for all nontrivial A,B ∈ N.

Remark 3.7. A 0-generated algebra A is a retract of an algebra B if
there exist homomorphisms g : A → B and h : B → A. For in this case,
every element of A has the form αA(c1, . . . , cn) for some term α and some
distinguished elements ci ∈ A, whence h◦g = idA, because homomorphisms
preserve distinguished elements (and respect terms).

Lemma 3.8. Let K be a variety of finite type, and let A ∈ K be finite,
simple and 0-generated. Then the following conditions are equivalent.

(i) A is a retract of every nontrivial member of K.

(ii) Every simple algebra in K is isomorphic to A and embeds into every
nontrivial member of K.

Proof. (i)⇒ (ii): For each simple C ∈ K, there is a homomorphism h from
C onto A, by (i), and h must be an isomorphism (as A is nontrivial and
C is simple). Thus, the embedding claim also follows from (i).

(ii)⇒ (i): By (ii) and Theorem 1.15,A is a homomorphic image of every
finitely generated nontrivial member of K. Consider an arbitrary nontrivial
algebra B ∈ K. By (ii), A ∈ IS(B). Like any nontrivial algebra, B embeds
into an ultraproduct U of finitely generated nontrivial subalgebras Bi of
B (Theorem 1.4). As A ∈ H(Bi) for all i, and as PUH(L) ⊆ HPU(L) for
any class L of similar algebras, there is a homomorphism h from U onto an
ultrapower of A. But A, being finite, is isomorphic to all of its ultrapowers,
so h restricts to a homomorphism from B into A. Therefore, A is a retract
of B, by Remark 3.7.
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Theorem 3.9. W and N are quasivarieties.

Proof. As W and N are isomorphically closed, we must show that they are
closed under S, P and PU, bearing Remark 3.7 in mind. If B ∈ S(A)
and h : A → C4 is a homomorphism, then so is h|B : B → C4, while any
embedding C4 → A maps into B, as C4 is 0-generated. Thus, W and N
are closed under S. Let {Ai : i ∈ I} be a subfamily of W, where, without
loss of generality, I 6= ∅. For any j ∈ I, the projection

∏
i∈IAi → Aj

can be composed with a homomorphism Aj → C4, so
∏

i∈IAi ∈ W. If,
moreover, Ai ∈ N for all i, then C4 embeds diagonally into

∏
i∈IAi, whence∏

i∈IAi ∈ N. Every ultraproduct of {Ai : i ∈ I} can be mapped into C4,
as in the proof of Lemma 3.8 ((ii)⇒ (i)). Also, as C4 is finite and of finite
type, the property of having a subalgebra isomorphic to C4 is first order-
definable and therefore persists in ultraproducts. Thus, W and N are closed
under P and PU.

Nevertheless, W and N are not varieties, i.e., they are not closed under
H. To see this, consider any simple De Morgan monoid A of which C4 is
a proper subalgebra, and let B = C4 ×A. Then B ∈ N, by Remark 3.6.
Now A ∈ H(B) but A /∈ W, because A is simple and not isomorphic to
C4. Concrete examples of finite simple 1-generated De Morgan monoids
having C4 as sole proper subalgebra are given in Section 4.2.

The examples in Section 4.2 show that even the semilinear anti-idem-
potent algebras in W or N do not form a variety. Note that N contains
(semilinear) algebras that are not anti-idempotent. For instance, C4 ×
S3[C4] ∈ N does not satisfy x 6 f 2, where S3[C4] is as in Definition 2.55,
i.e., it is the rigorously compact extension of C4 by new extrema.

As W and N are not varieties, it is not obvious that either of them
possesses a largest subvariety, but we shall show that both do. Purely
equational axioms will be needed in the proof, and the opaque postulate
(3.4), which abbreviates an equation, is introduced below for that reason.
The following convention helps to eliminate some burdensome notation.

Convention 3.10. In an anti-idempotent IRL, we define

1 := f 2 and 0 := ¬1 = ¬(f 2).

(These abbreviations will be used when they enhance readability, rather
than always. The typeface distinguishes them from standard uses of 0, 1.)
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Definition 3.11. We denote by U the variety of De Morgan monoids sat-
isfying

x2 ∨ (¬x)2 = 1 (3.2)

1 → (x ∨ y) 6 (1 → x) ∨ (1 → y) (3.3)

1 · x · y · q(x) · q(y) 6 q(x · y) ∧ q(x ∨ y) ∧ q(x→ y) ∧ (1 · (x→ y)), (3.4)

where q(x) := 1 → (¬x)2. (Note that U consists of anti-idempotent
algebras, by (3.2), so our use of the symbol 1 in this definition is justified.)

Lemma 3.12. Every rigorously compact member of W belongs to U.

Proof. Let A ∈ W be rigorously compact. We may assume that A is
nontrivial, so there is a (surjective) homomorphism from A to C4. Because
C4 satisfies (3.2),

[1 → (x ∨ y)]→ [(1 → x) ∨ (1 → y)] = 1 and

[1 · x · y · q(x) · q(y)]→ [q(x · y) ∧ q(x ∨ y) ∧ q(x→ y) ∧ (1 · (x→ y))] = 1 ,

it follows from Lemma 2.6(i) that A satisfies the same laws.2 Then A
satisfies (3.3) and (3.4), by (2.15), because e 6 1 . Thus, A ∈ U.

Corollary 3.13. If A ∈ W and A is FSI, then A ∈ U.

Proof. Let A ∈ WFSI be nontrivial. Since equations have only a finite
number of variables, one can verify that A satisfies every axiom of U,
by showing that every finitely generated subalgebra of A belongs to U.
Let B be any finitely generated subalgebra of A. Recall that B is FSI
(by Lemma 2.16(i)). It follows that B is rigorously compact, by Corol-
lary 2.46. Also, B ∈ W, since W is a quasivariety. Consequently, B ∈ U,
by Lemma 3.12, as required.

Theorem 3.14. U is the largest subvariety of W, i.e., U is the largest
variety of crystalline (or trivial) De Morgan monoids.

Proof. To see that U ⊆ W, let A ∈ U be SI. It suffices to show that A ∈ W,
because W, like any quasivariety, is closed under IPS. Now A is nontrivial
and bounded by 0 , 1 (because of (3.2)), so 0 < e 6 1 and A is rigorously
compact, by Theorem 2.45. It follows from (3.3), Lemma 2.16(ii) and (2.15)
that 1 is join-irreducible (whence 0 is meet-irreducible) in A. Let

B = {a ∈ A : a 6= 0 and (¬a)2 = 1} and B′ = {a ∈ A : ¬a ∈ B}.
2 To validate the last equation in C4 quickly, note that the premise of the implication

is 0 unless x and y are both e, in which case both the premise and the conclusion will
be 1 .
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Then e ∈ B (by definition of 1 ) and 1 /∈ B (as 0 2 = 0 6= 1 ), so e < 1 .
We claim that B is closed under the operations ·,→,∧,∨ of A. Indeed,

let b, c ∈ B, so 0 < b, c ∈ A and (¬b)2 = 1 = (¬c)2, i.e., q(b) = 1 = q(c).
Then b∧c 6= 0 and (¬(b∧c))2 = 1 (because (¬(b∧c))2 > (¬b)2), so b∧c ∈ B.
Clearly, b∨ c 6= 0 . Also, b · c 6= 0 , by (2.20), and 1 · b · c · q(b) · q(c) = 1 , by
rigorous compactness. Then, by (3.4), each of q(b · c), q(b∨ c), q(b→ c) and
1 · (b→ c) is 1 . Thus, 1 = (¬(b · c))2 = (¬(b∨ c))2 = (¬(b→ c))2, again by
rigorous compactness, and b→ c 6= 0 . This shows that b·c, b∨c, b→ c ∈ B,
as claimed.

Let a ∈ A \ {0 , 1}. Since 1 is join-irreducible, (3.2) shows that a ∈ B
or ¬a ∈ B, i.e., a ∈ B ∪ B′. Suppose a ∈ B ∩ B′, i.e., a,¬a ∈ B. Then
¬a → a = ¬((¬a)2) = ¬1 (as a ∈ B) = 0 , so (¬a → a)2 = 0 6= 1 , so
¬a → a /∈ B, contradicting the fact that B is closed under →. Therefore,
A is the disjoint union of B, B′, {0} and {1}.

Suppose b, c ∈ B, with ¬c 6 b. Then b 6= 1 , so ¬b 6= 0 and b2 > (¬c)2 =
1 , so b2 = 1 , hence ¬b ∈ B, i.e., b ∈ B ∩B′ = ∅, a contradiction. Thus, no
element of B has a lower bound in B′. This, together with the meet- [resp.
join-] irreducibility of 0 [resp. 1 ], shows that b ∧ d ∈ B and b ∨ d ∈ B′ for
all b ∈ B and d ∈ B′.

Let h : A → C4 be the function such that h(0 ) = 0 and h(1 ) = 1
and h(b) = e and h(¬b) = f for all b ∈ B. It follows readily from the
above conclusions that h is a homomorphism from A to C4, so A ∈ W, as
required.

Finally, let K be a subvariety of W. The FSI algebras in K belong to U,
by Corollary 3.13. Thus, K ⊆ U.

Remark 3.15. In C4, we have f → a = 0 iff a ∈ {0 , e}, while a→ e = 0
iff a ∈ {f, 1}. Therefore, C4 satisfies (f → x) ∨ (x → e) 6= 0 , and hence
also

((f → x) ∨ (x→ e))→ 0 = 0 . (3.5)

So, because every SI homomorphic image of a member of U is rigorously
compact and crystalline, it follows from Lemma 2.6(i) that U satisfies (3.5).
Note that N and W do not satisfy (3.5), as (3.5) fails in the algebra C4 ×
S3[C4] mentioned before Convention 3.10.

Definition 3.16. We denote by M the variety of anti-idempotent De Mor-
gan monoids satisfying e 6 f and (3.5).

Lemma 3.17. C4 is a retract of every nontrivial member of M.

Proof. Because M satisfies e 6 f , it also satisfies

x 6 f · x, (3.6)
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and therefore
e 6 x =⇒ f ∨ x 6 f · x. (3.7)

As M satisfies (3.5) and 0 → 0 = 1 , its nontrivial members satisfy

(f → x) ∨ (x→ e) 6= 0 , i.e., ¬(f · ¬x) ∨ ¬(f · x) 6= 0 ,

or equivalently (by De Morgan’s laws),

(f · x) ∧ (f · ¬x) 6= 1 . (3.8)

By Lemma 3.2(i),(ii), every nontrivial member of M satisfies e < f and
has a subalgebra isomorphic to C4. So, by Lemma 3.8, it suffices to show
that every simple member of M is isomorphic to C4. Suppose A ∈ M is
simple. We may assume that C4 ∈ S(A).

We claim that the intervals [0 , e], [e, f ] and [f, 1 ] of A are doubletons,
i.e.,

[0 , e] = {0 , e} and [e, f ] = {e, f} and [f, 1 ] = {f, 1}. (3.9)

The first and third assertions in (3.9) follow from Lemma 2.16(iv) and
involution properties. To prove the middle equality, suppose a ∈ A with
e < a < f . As f = ¬e, it follows that e < ¬a < f and, by (3.7),
f = f∨a 6 f ·a. As e·a 
 e, we have f ·a 
 f (by (2.1)), so f < f ·a. Then
f ·a = 1 , as [f, 1 ] = {f, 1}. By symmetry, f ·¬a = 1 , so (f ·a)∧(f ·¬a) = 1 ,
contradicting (3.8). Therefore, [e, f ] = {e, f}, as claimed.

To complete the proof, it suffices to show that every element of A is
comparable with e, as that will imply, by involution properties, that every
element is comparable with f , forcing A = {0 , e, f, 1} = C4.

Suppose, on the contrary, that a ∈ A is incomparable with e, i.e., ¬a
is incomparable with f . As a 
 e and ¬a 
 f , we have e < e ∨ a and
f < f ∨ ¬a, as well as e 6 ¬a (by Theorem 2.43), i.e., a 6 f . So, by (3.7),
f ∨¬a 6 f ·¬a, hence f < f ·¬a, and so f ·¬a = 1 , because [f, 1 ] = {f, 1}.

Again, as e·a 
 e, we have f ·a 
 f , so e 6 f ·a, by Theorem 2.43. This,
with e < f , gives e 6 f ∧ (f · a). Also, a 6 f · a, by (3.6), so a 6 f ∧ (f · a).
Therefore, e ∨ a 6 f ∧ (f · a).

If we can argue that f ∧ (f · a) < f , then e < e ∨ a < f , contradicting
the fact that [e, f ] = {e, f}. So, to finish the proof, it suffices to show that
f is incomparable with f · a, and we have already shown that f · a 
 f . If
f < f · a, then f · a = 1 , as [f, 1 ] = {f, 1}, but since f ·¬a = 1 , this yields
(f · a)∧ (f ·¬a) = 1 , contradicting (3.8). Therefore, f and f · a are indeed
incomparable, as required.

Theorem 3.18. M is the largest subvariety of N.
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Proof. By Lemma 3.17, M is a subvariety of N. Let K be any subvariety
of N. Clearly, K satisfies e 6 f and, by Lemma 3.2(iv), its members are
anti-idempotent. Now K is a subvariety of U, by Theorem 3.14, because
N ⊆ W. By Remark 3.15, (3.5) is satisfied by U, so it holds in K. Thus,
K ⊆ M.

Corollary 3.19. M is the class of all algebras in U satisfying e 6 f . In
particular, M satisfies (3.2), (3.3) and (3.4).

Corollary 3.20. Every rigorously compact algebra in N belongs to M.

Proof. This follows from Lemma 3.12 and Corollary 3.19.

At this point in our account, N and M are organizational tools, suggested
by Theorem 3.4. They will assume an additional significance when we
discuss structural completeness in Chapter 5.

3.2 Skew reflections

In this section we are going to provide a representation theorem for algebras
in U or M, using ideas of Slaney [131]. 3

Definition 3.21. Let B = 〈B; ·B,→B,∧B,∨B, e〉 be a square-increasing
RL, with lattice order 6B. Let B′ = {b′ : b ∈ B} be a disjoint copy of the
set B, let 0 , 1 be distinct non-elements of B∪B′, and let S = B∪B′∪{0 , 1}.
Let 6 be a binary relation on S such that

(i) 6 is a lattice order whose restriction to B2 is 6B

(the meet and join operations of 〈S;6〉 being denoted by ∧ and ∨, respec-
tively), and for all b, c ∈ B,

(ii) b′ 6 c′ iff c 6 b,

(iii) b 6 c′ iff e 6 (b ·B c)′,

(iv) b′ 
 c,

(v) 0 6 b 6 1 and 0 6 b′ 6 1 .

The skew 6-reflection S6(B) of B is the algebra 〈S; ·,∧,∨,¬, e〉 such that

3 The nomenclature of [131] is untypical. There, ‘De Morgan monoids’ were not
required to be distributive, and likewise the ‘Dunn monoids’ of Definition 2.39.
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(vi) · is a commutative binary operation on S, extending ·B,

(vii) a · 0 = 0 for all a ∈ S, and if 0 6= a ∈ S, then a · 1 = 1 ,

(viii) b · c′ = (b→B c)′ and b′ · c′ = 1 for all b, c ∈ B,

(ix) ¬0 = 1 and ¬1 = 0 and ¬b = b′ and ¬(b′) = b for all b ∈ B.

A skew reflection of B is any algebra of the form S6(B), where 6 is a binary
relation on S satisfying (i)–(v). (Some examples are pictured in Section 4.2
on page 90.)

Definition 3.21 is essentially due to Slaney [131]. (In [131], (iii) is for-
mulated in an ostensibly more general manner, as

for all a, b, c ∈ B, we have a ·B b 6 c′ iff a 6 (b ·B c)′.

This follows from (iii), however. Indeed, for a, b, c ∈ B,

a ·B b 6 c′ iff e 6 ((a ·B b) ·B c)′ = (a ·B (b ·B c))′ iff a 6 (b ·B c)′.)

By an RL-subreduct of an IRL A = 〈A; ·,∧,∨,¬, e〉, we mean a subal-
gebra of the RL-reduct 〈A; ·,→,∧,∨, e〉 of A.

Theorem 3.22 ([131, Fact 1]). A skew reflection S6(B) of a square-
increasing RL B is a square-increasing IRL, and B is an RL-subreduct
of S6(B).

Remark 3.23. In a skew reflection S6(B) of a square-increasing RL B,
we have f = e′, hence f 2 = 1 , so S6(B) is anti-idempotent and our use
of 0 , 1 in Definition 3.21 is consistent with Convention 3.10. By definition,
S6(B) is rigorously compact. Because it has B as an RL-subreduct, S6(B)
satisfies (f → x) ∨ (x→ e) 6= 0 , and hence also (3.5). It satisfies (3.2) and
(3.4) as well.4 The fact that elements of B lack lower bounds in B′ has two
easy but important consequences. First,

S6(B) is simple iff B is trivial (i.e., e is the least element of B),

in view of Lemma 2.16(iv). Secondly, by Lemma 2.16(iii),

S6(B) is SI iff B is SI or trivial.

4 In verifying (3.4), we may assume that its left-hand side is not 0 , so x, y, q(x), q(y) 6=
0 . This forces x, y ∈ B, whence each conjunct of the right-hand side is 1 .
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Specifically, whenB is not trivial, an element of S6(B) is the greatest strict
lower bound of e in S6(B) iff it is the greatest strict lower bound of e in B.

Elements of B might lack upper bounds in B′, e.g., D4 arises in this way
from a trivial RL. Such cases are eliminated in the next theorem, however.

Theorem 3.24. The following two conditions on a square-increasing IRL
A are equivalent.

(i) There is a homomorphism h : A→ C4 and A is rigorously compact.

(ii) A is a skew reflection of a square-increasing RL B, and 0 is meet-
irreducible in A.

In this case, in the notation of Definition 3.21,

(iii) h is unique and surjective, and 1 is join-irreducible in A;

(iv) b ∧ c′ ∈ B and b ∨ c′ ∈ B′ for all b, c ∈ B, so each element of B has
an upper bound in B′, and elements of B′ have lower bounds in B;

(v) if B is distributive and A is modular, then A is distributive and
therefore a De Morgan monoid, belonging to U.

Proof. Note first that, in (iii), the uniqueness of h follows from Lemma 3.3(i)
(and its surjectivity from the fact that C4 is 0-generated).

(i) ⇒ (ii): Being crystalline, A is nontrivial. The set B := h−1[{e}]
is the universe of an RL-subreduct B of A, which inherits the square-
increasing law, and b 7→ b′ := ¬b defines an antitone bijection from B onto
B′ := h−1[{f}]. Clearly, B∩B′ = ∅ and no element of B′ is a lower bound
of an element of B, because h is isotone and e < f in C4. As h fixes 0
and 1 , Lemma 2.6 shows that A is anti-idempotent, with h−1[{0}] = {0}
and h−1[{1}] = {1}, and that 0 [resp. 1 ] is meet- [resp. join-] irreducible
in A, finishing the proof of (iii). In particular, A = B ∪ B′ ∪ {0} ∪ {1}
(disjointly).

We verify that A satisfies conditions (iii) and (viii) of Definition 3.21.
Let b, c ∈ B. Because B is closed under the operation · of A, we have

b 6 c′ iff b · e 6 ¬c iff b · c 6 f (by (2.1), deployed in A), iff e 6 (b · c)′.

Clearly, b ·c′ = (b→ c)′ and h(b′ ·c′) = ¬h(b) ·¬h(c) = f 2 = 1 , so b′ ·c′ = 1 .
This completes the proof that A = S6(B), where 6 is the lattice order of
A.

(ii) ⇒ (i): Rigorous compactness was noted in Remark 3.23. Defini-
tion 3.21 shows that ·,¬ and e are preserved by the function h : A → C4
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such that h(0 ) = 0 , h(1 ) = 1 , h(b) = e and h(b′) = f for all b ∈ B. As 0
is meet-irreducible (whence 1 is join-irreducible) in A, the map h preserves
∧,∨ too. Indeed, if b, c ∈ B, then b > b ∧ c′ 6= 0 and b has no lower bound
in B′, so b ∧ c′ ∈ B and, by involution properties, b ∨ c′ ∈ B′. This proves
(i) and (iv).

By (iv), when S6(B) is modular, it will be distributive iff the five-
element lattice M 3 doesn’t embed into the sublattice B ∪ B′ of S6(B);
see Theorem 1.22. That is true if B is distributive, as B and B′ are then
distributive sublattices of B ∪B′. This, with Lemma 3.12, proves (v).

Corollary 3.25. A De Morgan monoid belongs to U iff it is isomorphic to
a subdirect product of skew reflections of Dunn monoids, where 0 is meet-
irreducible in each subdirect factor.

Proof. The forward implication follows from Theorem 3.24 and Birkhoff’s
Subdirect Decomposition Theorem 1.3, because the SI homomorphic im-
ages of members of U are bounded by 0 , 1 , are rigorously compact (The-
orem 2.45) and are still crystalline (U being a variety), and because RL-
subreducts of De Morgan monoids inherit distributivity. Conversely, by
Remark 3.23, skew reflections of Dunn monoids satisfy the defining postu-
lates of U, except possibly for (3.3) and distributivity (which are effectively
given here), and U, like any quasivariety, is closed under IPS.

Lemma 3.26. Let A = S6(B) be a skew reflection of a square-increasing
RL B, where A satisfies e 6 f . Then, in the notation of Definition 3.21,

(i) b 6 (b→ e)′ for all b ∈ B, and

(ii) 0 is meet-irreducible and 1 is join irreducible in A.

Proof. (i) Let b ∈ B. By (2.6), b · (b → e) 6 e, so e 6 f 6 (b · (b → e))′.
Then b 6 (b→ e)′, by Definition 3.21(iii).

(ii) Let b, c ∈ B. By (i), c 6 (c → e)′, i.e., c → e 6 c′. Because B is
an RL-subreduct of A and 0 /∈ B, we have b ∧ c′ > b ∧ (c → e) ∈ B, so
b ∧ c′ 6= 0 . As B and B′ are both sublattices of A, this shows that 0 is
meet-irreducible (whence 1 is join-irreducible) in A.

Corollary 3.27. A De Morgan monoid belongs to M iff it satisfies e 6 f
and is isomorphic to a subdirect product of skew reflections of Dunn monoids.

Proof. This follows from Lemma 3.26(ii) and Corollaries 3.19 and 3.25.
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3.3 0-generated De Morgan monoids

In this section we recount Slaney’s description, in [129], of the free 0-
generated De Morgan monoid F DMM(0).

Infinite 1-generated De Morgan monoids exist. Indeed, there are De
Morgan monoids in which chains x < x2 < x3 < · · · < xk < xk+1 < . . .
occur; see Example 4.25. The larger varieties of distributive and of square-
increasing IRLs each have infinite 0-generated members as well [131], but
Slaney proved that the free 0-generated De Morgan monoid has just 3088
elements [129]. His arguments show that, up to isomorphism, only eight
0-generated De Morgan monoids are FSI; they were exhibited in [130], and
are depicted below. As the seven nontrivial 0-generated FSI De Morgan
monoids are finite, they are just the 0-generated SI De Morgan monoids.

In Theorem 3.1, we already saw that, up to isomorphism, the only simple
0-generated De Morgan monoids are 2, C4 and D4. Let A be a nontrivial
non-simple 0-generated FSI De Morgan monoid. As A is finitely generated
and has finite type, A has a (0-generated) simple homomorphic image,
by Theorem 1.15(ii). The simple image must be C4, by Theorem 3.4, so
A ∈ W. In fact, A ∈ U, by Corollary 3.13, since A is FSI. In particular, A
is anti-idempotent.

One can extend this argument to any anti-idempotent FSI De Morgan
monoid that is negatively generated:

Theorem 3.28. Let A be an anti-idempotent negatively generated FSI De
Morgan monoid. Then A ∼= D4 or A ∈ U.

Proof. We may suppose that A is nontrivial. As A is anti-idempotent,
V(A) is a Kollár variety, by Corollary 2.15, so A has a simple homo-
morphic image B, by Theorem 1.18. Since A = SgAA−, we have B =
SgBB− (Lemma 2.35), but B− is the chain ¬(f 2) < e, since B is simple
(Lemma 2.16(iv)) and anti-idempotent, so B is 0-generated. Therefore, B
is isomorphic to C4 or D4, by Theorem 3.1, as 2 is not anti-idempotent.
If B ∼= D4, then A ∼= D4, by Theorem 3.4. Otherwise B ∼= C4, in which
case A ∈ U, by Corollary 3.13.

As 0-generated IRLs are negatively generated, each of the four non-
simple 0-generated FSI De Morgan monoids is a skew reflection of some
Dunn monoid, by Theorems 3.25 and 3.28. Their lattice reducts are de-
picted below, with the underlying Dunn monoid highlighted. Slaney [130]
calls these algebras CA6 , CA10a, CA10b and CA14 , respectively.
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C5: C6: C7: C8:

@
@

s sf
s1
�
�t��te @@@@@@s0 0st
s
������
��@@ t

@@@@@@
e
t t@@@@@@������

fss s@@��
1s

s������
t@@@@

@
@
@
@
@

t
�
�
�
�
�
�

s
�
�

s
�
�

s

0

f

e

1

t@@@@
@
@
@
@
@

ts
s

0st
�
�
�
�
�
�

e
t@@@@@@tt������

@
@
@
@
@
@

s
@
@
@
@
@
@
�
�

@
@t t@@@@@@������s s
s
@
@

�
�

s
��

@@

f s @@
1s

There is already enough information in the diagrams to verify that these
algebras are 0-generated. In each case the greatest strict lower bound of e
is c := e ∧ f , and the greatest element of the highlighted Dunn monoid
turns out to be c∗ := (e ∧ f)→ e. With these elements one can generate
the rest of the algebra using only lattice operations and involution.

Let 2+ and D+
4 denote the RL-reducts of 2 and D4, respectively. Then

C5 = S6(2+) andC6 = S6(D+
4 ), where the respective orders6 are depicted

in the diagrams above. The algebrasC7 andC8 are skew reflections of Dunn
monoids D7 and D8, respectively, whose fusion tables are given below,
where we abbreviate c∗ ∧ ¬(c∗) as b.

· c e b c∗

c c c c c
e c e b c∗

b c b b b
c∗ c c∗ b c∗

· c e b b ∨ e f ∧ c∗ c∗

c c c c c c c
e c e b b ∨ e f ∧ c∗ c∗

b c b b b b b
b ∨ e c b ∨ e b b ∨ e f ∧ c∗ c∗

f ∧ c∗ c f ∧ c∗ b f ∧ c∗ c∗ c∗

c∗ c c∗ b c∗ c∗ c∗

In [129], Slaney showed that F DMM(0) ∼= 2×D4×A, where A is a skew
reflection of 2+ ×D+

4 ×D7 ×D8.

Remark 3.29. In each of 2, D4, 2+, D+
4 , D7 and D8, e has just one

strict lower bound. The neutral element in 2+ × D+
4 × D7 × D8 there-

fore has 24 lower bounds, so eA has 24 + 1 lower bounds in A, by Defini-
tion 3.21(iv),(v). Thus, the number of lower bounds of eFDMM(0) in F DMM(0)
(including eFDMM(0) itself) is 2 × 2 × (24 + 1) = 68. (This fact will become
relevant in Corollary 4.7.)
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3.4 Reflections

Definition 3.30. Let B be a square-increasing RL, with lattice order 6B,
and let S = B ∪B′∪{0 , 1}, where B′ = {b′ : b ∈ B} is a disjoint copy of B
and 0 , 1 are distinct non-elements of B ∪ B′. Let 6 be the unique partial
order of S whose restriction to B2 is 6B, such that

b 6 c′ for all b, c ∈ B

and conditions (ii), (iv) and (v) of Definition 3.21 hold. As (i) and (iii)
obviously hold too, we may define the reflection R(B) of B to be the
resulting skew reflection S6(B). This definition is essentially due to Meyer;
see [97] or [1, pp. 371–373].

In other words, for an SRL B, the order of its reflection R(B) extends
that of B by placing a reflected copy of B above B and adding fresh
extrema 0 < 1 .

By Theorem 3.22, every Dunn monoid B is an RL-subreduct of its
reflection R(B), and R(B) satisfies e 6 f (by definition) and is distributive
(asB is), so R(B) ∈ M, by Corollary 3.27. In particular, C4 is the reflection
of a trivial Dunn monoid. Conversely, the RL-reduct of an algebra from M
is of course a Dunn monoid, whence so are its subalgebras. This justifies a
variant of the ‘Crystallization Fact’ of [130, p. 124]:

Theorem 3.31. The variety of Dunn monoids coincides with the class of
all RL-subreducts of members of M.

Corollary 3.32. The equational theory of M is undecidable.

Proof. This follows from Theorem 3.31, because Urquhart [141, p. 1070]
proved that the equational theory of Dunn monoids is undecidable.

Corollary 3.33. M is not generated (as a variety) by its finite members.

Proof. This follows from Corollary 3.32, as M is finitely axiomatized (see
the remarks after Theorem 1.39).

Clearly, in the statements of Theorem 3.31 and Corollary 3.32, we may
replace M by any variety K such that M ⊆ K ⊆ DMM. The same applies to
Corollary 3.33 if K is also finitely axiomatized. In particular, the variety U
is not generated by its finite members.

The notational conventions of Definition 3.21 are assumed in the next
lemma, which reveals how reflections interact with the class operators H, S
and PU.
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Lemma 3.34. Let B be a Dunn monoid.

(i) If C is a subalgebra of B, then C ∪ {c′ : c ∈ C} ∪ {0 , 1} is the
universe of a subalgebra of R(B) that is isomorphic to R(C), and
every subalgebra of R(B) arises in this way from a subalgebra of B.

(ii) If θ is a congruence of B, then

R(θ) := θ ∪ {〈a′, b′〉 : 〈a, b〉 ∈ θ} ∪ {〈0 , 0 〉, 〈1 , 1 〉}

is a congruence of R(B), and R(B)/R(θ) ∼= R(B/θ). Also, every
proper congruence of R(B) has the form R(θ) for some θ ∈ Con(B).

(iii) If {Bi : i ∈ I} is a family of Dunn monoids and U is an ultrafilter
over I, then

∏
i∈I R(Bi)/U ∼= R

(∏
i∈I Bi/U

)
.

Proof. The first assertions in (i) and (ii) are straightforward. For the final
assertions, one shows that if D is a subalgebra and ϕ a proper congruence
of R(B), then D is the reflection of the subalgebra of B on D ∩ B, while
ϕ = R(B2 ∩ ϕ). To see that ϕ ⊆ R(B2 ∩ ϕ), observe that if ϕ identifies a
with b′ (a, b ∈ B), and therefore a′ with b, it must identify 1 = a′ · b′ with
b · a ∈ B. But this contradicts Lemma 2.6(i), because R(B) is rigorously
compact.

(iii) For each i ∈ I, let 0i and 1i denote the extrema of R(Bi) and,
for convenience, define 0̄i = {0i} and 1̄i = {1i} and (B′)i = B′i. By 0 , 1 ,
we mean (for the moment) the extrema of R

(∏
i∈I Bi/U

)
. Consider ~x ∈∏

i∈I R(Bi). As U is an ultrafilter, there is a unique F (~x) ∈ {B,B′, 0̄ , 1̄}
such that

{i ∈ I : xi ∈ F (~x)i} ∈ U ,

because the four possible sets of indexes above are disjoint from one an-
other, and their union equals the total index set I (see the remarks after
Theorem 1.3 on page 4). If F (~x) is 0̄ [resp. 1̄ ], define h(~x) to be 0 [resp.
1 ]. If F (~x) = B, define h(~x) = ~z/U , where ~z ∈

∏
i∈I Bi and, for each i ∈ I,

zi =

{
xi if xi ∈ Bi;

eBi otherwise.

If F (~x) = B′, define h(~x) = (~z/U)′, where ~z ∈
∏

i∈I Bi and, for each i ∈ I,

zi =

{
the unique b ∈ Bi such that xi = b′, if this exists;

eBi , otherwise.
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Then h is a homomorphism from
∏

i∈I R(Bi) onto R
(∏

i∈I Bi/U
)
, whose

kernel is
{
〈~x, ~y〉 ∈

(∏
i∈I R(Bi)

)2
: {i ∈ I : xi = yi} ∈ U

}
, so the result fol-

lows from the Homomorphism Theorem 1.1.

Definition 3.35. Given a variety K of Dunn monoids, the reflection R(K)
of K is the subvariety V{R(B) : B ∈ K} of M.

Jónsson’s Theorem 1.23, together with Lemma 3.34, yields the next
corollary (as every variety is generated by its FSI members).

Corollary 3.36. Let K be a variety of SRLs, with E ∈ R(K). Then E is
FSI iff E ∼= R(D) for some D ∈ KFSI . Also, E is SI iff E ∼= R(D) for
some D ∈ K that is either trivial or SI.

Lemma 3.37. A variety K of SRLs is locally finite iff R(K) is locally finite.

Proof. (⇒): As K is locally finite, there is a function p : ω → ω such that,
for each n ∈ ω, every n-generated member of KSI has at most p(n) elements
(Fact 1.21). It suffices to show that, for each n ∈ ω, every n-generated E ∈
R(K)SI has at most 2 + 2p(n) elements (see Fact 1.21). By Corollary 3.36,
any such E may be assumed to be R(D) for some D ∈ KSI . Let G be
an irredundant generating set for E, with |G| ≤ n. Then 0 , 1 /∈ G. Let
H = (G ∩ D) ∪ {¬g : g ∈ G ∩ D′}, so |H| ≤ n and C := SgDH has
at most p(n) elements. By Lemma 3.34(i), R(C) may be identified with a
subalgebra ofE, but thenG ⊆ R(C), so R(C) = E, whence |E| ≤ 2+2p(n).

(⇐): Use the fact that an SIRL of the form R(A) is generated by A.

As a function from the lattice of varieties of Dunn monoids to the sub-
variety lattice of M, the operator R is obviously isotone.

Lemma 3.38. R is order-reflecting and therefore injective.

Proof. Let R(K) ⊆ R(L), where K and L are varieties of Dunn monoids. We
must show that K ⊆ L. Let A ∈ K be SI. It suffices to show that A ∈ L. By
assumption, R(A) ∈ R(L). Also, R(A) is SI (because A is), so by Jónsson’s
Theorem 1.23, R(A) ∈ HSPU{R(B) : B ∈ L}. Because L is closed under H,
S and PU, it follows from Lemma 3.34 that R(A) ∼= R(B) for some B ∈ L,
whence A ∼= B, and so A ∈ L.

Note that Brouwerian algebras are just the integral Dunn monoids. Re-
call that every variety of countable type has at most 2ℵ0 subvarieties (see the
remarks after Jónsson’s Theorem 1.23 on page 14). It is known that there
are 2ℵ0 distinct varieties of Brouwerian algebras [150]. So, the injectivity of
R in Lemma 3.38 yields the following conclusion.
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Theorem 3.39. The variety M has 2ℵ0 distinct subvarieties.

This is the first of a number of theorems where we use reflections
of Brouwerian algebras to obtain results about varieties of De Morgan
monoids. That is in fact the theme of Chapter 7.

3.5 Negatively generated semilinear De

Morgan monoids

In this section we apply all the tools developed in this and the previous
chapter to obtain a representation theorem for all negatively generated
semilinear De Morgan monoids (using rigorous extensions of skew reflec-
tions of generalized Sugihara monoids). A representation of generalized
Sugihara monoids to be presented in Section 6.6 (Corollary 6.29) will there-
fore further illuminate the structure of negatively generated semilinear De
Morgan monoids, but here we do not rely on that representation.

Recall, from Theorem 3.28, that every FSI negatively generated anti-
idempotent De Morgan monoid A belongs to I({D4}) ∪ U. Therefore, by
Theorem 3.25, A is skew reflection of some Dunn monoid D.

Now suppose thatA is semilinear (so it is totally ordered by Lemma 2.22).
It follows that A ∈ M, because A satisfies e 6 f , but we can be more spe-
cific. Recall that, since A is a skew reflection, it satisfies b′ 66 c for every
b, c ∈ D (see Definition 3.21(iv)). But then c < b′ for all b, c ∈ D, i.e., A is
the reflection of D (see Definition 3.30). Furthermore, D is itself totally or-
dered, because D is a subalgebra of the RL-reduct of A, by Theorem 3.22.
Thus, we obtain:

Lemma 3.40. Every totally ordered negatively generated anti-idempotent
De Morgan monoid is a reflection of a totally ordered Dunn monoid (and
it belongs to M).

The underlying Dunn monoid in the statement above is itself nega-
tively generated, because of the next lemma. We shall see in the proof of
Theorem 3.42 that the converse of Lemma 3.40 holds for such (negatively
generated) Dunn monoids.

Lemma 3.41. Let A = R(D) for some Dunn monoid D. If A = SgAX
for some X ⊆ D, then D = SgDX.

Proof. Let B be the subalgebra of D generated by X. We argue that
B = D. By Lemma 3.34(i), R(B) can be identified with a subalgebra
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of A. (Note that Lemma 3.34(i) does not hold for skew reflections. For
example, the De Morgan monoids D7 and D8 on page 65 each have a
three-element subalgebra, but their respective skew reflections C7 and C8

have no subalgebra.) But then R(B) = A = R(D), since X ⊆ B ⊆ R(B)
and A = SgAX. It follows that B = D, because A is a reflection of a Dunn
monoid whose universe must be {a ∈ A : a 6= 0 and a2 6= 1}.

Lemma 3.41 becomes false if we replace ‘reflection’ with ‘skew reflec-
tion’; this can be shown using the algebras depicted before Lemma 4.19.
We can now give a representation of semilinear negatively generated anti-
idempotent De Morgan monoids. Define the following unary terms:

d′(x) := (f 2 → (x · f)) ∧ (f 2 · ¬x),

σ(x) := (x ∧ e) · (x∗ ∧ e)∗,
d(x) := d′(¬x) and σ′(x) := ¬σ(¬x).

Recall that σ(x) ≈ x is equation (2.39) on page 42, which is satisfied by
every generalized Sugihara monoid. Consider the equation

x ≈
(
d(σ(x))∧σ(x)

)
∨
(
d′(σ′(x))∧σ′(x)

)
∨
((
f 2 ∨ ¬(f 2)

)
→ σ′(x)

)
. (3.10)

Note that we do not abbreviate f 2 and ¬(f 2) above as 1 and 0 , respectively.
The reason for this (and for not rewriting f 2∨¬(f 2) as f 2) is that the next
theorem will be generalized in Theorem 3.45 to accommodate De Morgan
monoids that need not be anti-idempotent. In that situation the intuition
behind the abbreviations collapses. We retain the use of 1 and 0 , however,
to indicate the extrema of a reflection.

Theorem 3.42. LetA be an anti-idempotent semilinear De Morgan monoid.
The following are equivalent:

(i) A is negatively generated;

(ii) A is a subdirect product of reflections of totally ordered generalized
Sugihara monoids;

(iii) A satisfies equation (3.10).

Proof. (i) ⇒ (ii): As in the proof Theorem 2.41, by Birkhoff’s Subdirect
Decomposition Theorem 1.3, we need only show that every totally ordered
anti-idempotent De Morgan monoid B that is negatively generated is a
reflection of a totally ordered generalized Sugihara monoid. By Lemma 3.40,
B ∼= R(D) for some totally ordered Dunn monoid D. Note that R(D) is
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generated by D−, because R(D)− = D− ∪ {0} and 0 = ¬(f 2) ∈ SgB{e}.
But then D = SgDD−, by Lemma 3.41. It follows, by Theorem 2.41, that
D ∈ GSM.

(ii) ⇒ (iii): We claim that every reflection of a totally ordered general-
ized Sugihara monoid satisfies (3.10), and soA does as well. LetB = R(D)
for some totally ordered D ∈ GSM. For any a ∈ B, it follows from the def-
inition of reflection that

d(a) =

{
1 if a ∈ D;

0 otherwise,
d′(a) =

{
1 if a ∈ D′;
0 otherwise,

(f 2 ∨ ¬(f 2))→ a = f 2 → a =

{
1 if a = 1 ;

0 otherwise,

σ(a) =

{
1 if a ∈ D′;
a otherwise,

and σ′(a) =

{
0 if a ∈ D;

a otherwise.

It is then easy to verify that B satisfies (3.10), by checking the cases where
a ∈ D, a ∈ D′, a = 1 and a = 0 .

(iii) ⇒ (i): This follows directly from the shape of equation (3.10),
because σ is built up from the terms x ∧ e and x∗ ∧ e, and σ′ is built up
from ¬x ∧ e and (¬x)∗ ∧ e. For any assignment to x of an element of A,
these terms clearly evaluate into A−.

Corollary 3.43. Let K be the class of negatively generated semilinear anti-
idempotent De Morgan monoids. Then

(i) K is a variety that is axiomatized relative to semilinear De Morgan
monoids by x 6 f 2 and (3.10);

(ii) K = R(GSM);

(iii) K is locally finite.

(iv) If A ∈ K is totally ordered and n-generated, then |A| ≤ 6n+ 4.

Proof. (i) follows immediately from Theorem 3.42.
For (ii), it follow straightforwardly from Theorem 3.42 that K ⊆ R(GSM).

To establish the converse, it is enough to show that R(GSM)SI ⊆ K, because
K is closed under IPS (by (i)). By Corollary 3.36, this reduces to showing
that R(GSMSI) ⊆ K, which follows from Theorem 3.42.

(iii) follows from item (ii), because GSM is locally finite (Corollary 2.42),
and the reflection operator preserves local finiteness (Lemma 3.37).
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Recall from the remarks after Corollary 2.42 that if B ∈ GSM is totally
ordered and n-generated then |B| ≤ 3n + 1. Let A be a totally ordered
n-generated member of K. Since A is FSI (by Lemma 2.22) and finite
(by (iii)), A is SI. Interrogating the proof of Lemma 3.37, we find that
|A| ≤ 2(3n+ 1) + 2 = 6n+ 4, proving (iv).

Corollary 3.44. Let K be any nontrivial variety of negatively generated
semilinear anti-idempotent De Morgan monoids. Then K = R(L) for some
variety L of generalized Sugihara monoids.

Proof. Consider the class D := {D ∈ GSM : R(D) ∈ KSI}. Let L = V(D).
By Birkhoff’s Subdirect Decomposition Theorem 1.3, it suffices to show
that KSI = R(L)SI.

Let A ∈ KSI. By (i) ⇒ (ii) of Theorem 3.42, A ∼= R(D) for some
D ∈ GSM. But then D ∈ D, so A ∼= R(D) ∈ R(L).

Conversely, let A ∈ R(L)SI. By Corollary 3.36, A ∼= R(D) for some
D ∈ L that is either trivial or SI. In the first case A ∼= C4, and C4 ∈ K,
because K is a nontrivial subvariety of M (Lemma 3.40). In the second case,
D ∈ V(D)SI ⊆ HSPU(D), by Jónsson’s Theorem 1.23. So, by Lemma 3.34,

A ∼= R(D) ∈ HSPU({R(B) : B ∈ D}) ⊆ K.

We can now describe all semilinear De Morgan monoids that are nega-
tively generated, using the characterization of FSI De Morgan monoids (in
Theorem 2.57) by means of rigorous extensions.

Theorem 3.45. Let A be a semilinear De Morgan monoid. The following
are equivalent:

(i) A is negatively generated;

(ii) A is a subdirect product of totally ordered Sugihara monoids and De
Morgan monoids of the form S[R(D)], where S ∈ OSMFSI and D ∈
GSMFSI ;

(iii) A satisfies equation (3.10).

Proof. (i)⇒ (ii): Let B be a totally ordered negatively generated De Mor-
gan monoid. If B is a Sugihara monoid we are done, so suppose B is not
a Sugihara monoid. Then, by Theorem 2.57, B ∼= S[B′] for a nontrivial
anti-idempotent subalgebra B′ of B and an odd Sugihara monoid S (both
totally ordered). Suppose, with a view to contradiction, that B′ is not neg-
atively generated. Then B′′ := SgB′B− is a proper subalgebra of B′. But
then, by Theorem 2.58(ii), S[B′′] is a proper subalgebra of S[B′] containing
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S[B′]−, contradicting the fact that S[B′] is negatively generated. So, B′ is
negatively generated, totally ordered, and anti-idempotent, which implies
that B′ ∼= R(D) for some totally ordered D ∈ GSM, by Theorem 3.42.

(ii) ⇒ (iii): First we show that (3.10) holds for every Sugihara monoid,
using the fact that SM = V(Z∗). For a ∈ Z∗, we have d(a) = a∧¬a = d′(a),
σ(a) = a = σ′(a), and (f 2 ∨ ¬(f 2))→ a = e→ a = a. Therefore, the right-
hand side of (3.10) simplifies to (a ∧ ¬a) ∨ a, which clearly equals a.

Lastly, let B = S[R(D)] for some totally ordered S ∈ OSM and some
totally ordered D ∈ GSM. We have just seen that S satisfies (3.10). From
Theorem 3.42, the subalgebra R(D) of B also satisfies (3.10).

Let a ∈ B \ R(D), and let b be the right-hand side of (3.10) when x
is assigned the value of a. Recall from Theorems 2.54 and 2.57 that there
is a homomorphism from B onto S, whose kernel identifies two distinct
elements iff they belong to R(D). So, if a 6= b, then since a /∈ R(D), it
follows that h(a) is not h(b), contradicting the fact that S satisfies (3.10).

The proof of (iii) ⇒ (i) is similiar to that of Theorem 3.42.

Corollary 3.46. Let K by the class of all negatively generated semilinear
De Morgan monoids.

(i) K is a variety and it is axiomatized relative to semilinear De Morgan
monoids by (3.10).

(ii) If A ∈ K is totally ordered and n-generated, then |A| ≤ 6n+ 4.

(iii) K is locally finite.

Proof. (i) follows directly from Theorem 3.45.
Let A ∈ K be totally ordered an n-generated, where n ∈ ω. If A is a

Sugihara monoid, then |A| ≤ 2n+2 ≤ 6n+4 (see Theorem 2.26). IfA is not
a Sugihara monoid, then A ∼= S[A′] for an anti-idempotent subalgebra A′

of A, and a totally ordered odd Sugihara monoid S, by Theorem 2.57. Let
us divide the n generators of S[A′] into X ⊆ A′ and Y ⊆ S \ {eS}, so that
when |X| = p and |Y | = q, we have p+ q ≤ n. Since A′ is totally ordered,
anti-idempotent and negatively generated, |A′| ≤ 6p+ 4, by Corollary 3.43.
Note that S is generated by Y , because if there was a proper subalgebra P
of S still containing Y , then, by Theorem 2.58(ii), P [A′] would be a proper
subalgebra of S[A′] containing X∪Y , a contradiction. So, by Theorem 2.26,∣∣S \ {eS}∣∣ ≤ 2q. But then |A| ≤ 2q+6p+4 ≤ 6(p+q)+4 ≤ 6n+4, proving
(ii).

Therefore, K is locally finite, by Fact 1.21 (since the SI algebras in K
are totally ordered).

 
 
 



Chapter 4

The subvariety lattice of DMM

As was mentioned in the introduction, much of the interest in De Morgan
monoids stems from the fact that DMM algebraizes the relevance logic Rt,
whence the axiomatic extensions of Rt and the subvarieties of DMM form
anti-isomorphic lattices (see Theorem 1.38). This motivates analysis of the
lattice of varieties of De Morgan monoids. The present chapter is primarily
a study of the lower part of that lattice.

We prove that a variety of De Morgan monoids consists of Sugihara
monoids iff it omits C4 and D4 (Theorem 4.1). This implies that DMM
has just four minimal subvarieties, all of which are finitely generated (The-
orem 4.2). Sugihara monoids encompass two of the minimal varieties, viz.
the variety BA of Boolean algebras and V(S3). The remaining two are
generated, respectively, by C4 and D4.

In the literature of substructural logics, subvariety lattices are more
prominent than subquasivariety lattices, because they mirror the extensions
of a logic by new axioms, as opposed to new inference rules. Nevertheless,
some natural logical problems call for a consideration of quasivarieties if
they are to be approached algebraically, e.g., the identification of the struc-
turally complete strengthenings of a logic (see Chapter 5). Each of the four
minimal varieties of De Morgan monoids is also minimal as a quasivari-
ety, but they are not alone in this. Indeed, we prove that DMM has just
68 minimal subquasivarieties (Corollary 4.7). The proof exploits Slaney’s
description of the free 0-generated De Morgan monoid (see Section 3.3).

Sections 4.2–4.5 investigate the covers of the four atoms within the sub-
variety lattice of DMM. It suffices to consider the join-irreducible covers,
as the subvariety lattice of DMM is distributive. We show, in Section 4.2,
that BA has no join-irreducible cover within DMM, and that V(S3) has
just one; the situation for V(C4) and V(D4) is much more complex (see
Theorem 4.9).

75

 
 
 



CHAPTER 4. THE SUBVARIETY LATTICE OF DMM 76

The covers of V(C4) are distinctive, because C4 has more interesting
homomorphic pre-images than 2 or D4, by Theorem 3.4. With the help
of the skew reflection representations in Section 3.2, we identify all of the
covers of V(C4) within U (they are varieties whose nontrivial members are
homomorphic pre-images of C4; see Theorem 3.14). There are just ten such
covers, of which exactly six fall within M (i.e., their nontrivial members have
C4 as a retract; see Theorem 3.18). All ten of these varieties are finitely
generated (see Theorem 4.23 and Corollary 4.24 in Section 4.3).

Within DMM, every cover of V(D4) is semisimple. The same applies to
the covers of V(C4) that are not contained in U. In both cases, we identify
infinitely many such covers that are finitely generated, and some that are
not even generated by their finite members (see Sections 4.4 and 4.5).

4.1 Atoms

The fact that the subvariety lattice of DMM has just four atoms was first
proved in the author’s MSc thesis [146]. A simpler proof was subsequently
published in Moraschini, Raftery and Wannenburg [103]. We reproduce the
second proof below.

A quasivariety is said to be minimal if it is nontrivial and has no non-
trivial proper subquasivariety. If we say that a variety is minimal (without
further qualification), we mean that it is nontrivial and has no nontrivial
proper subvariety. When we mean instead that it is minimal as a quasivari-
ety, we shall say so explicitly, thereby avoiding ambiguity. (Recall from the
remarks after Theorem 1.23 on page 14 that every nontrivial [quasi]variety
has a minimal sub[quasi]variety.)

Theorem 4.1. A variety K of De Morgan monoids consists of Sugihara
monoids iff it excludes C4 and D4.

Proof. Necessity is clear, as C4 and D4 are not idempotent. Conversely,
suppose C4,D4 /∈ K and let A ∈ KSI. It suffices to show that A is a Sug-
ihara monoid. Suppose not. Then, by Theorem 2.50, ¬(f 2) < f 2 and the
subalgebra B of A on [¬(f 2), f 2] is nontrivial, whence the 0-generated sub-
algebra E of A is nontrivial. Recall that every nontrivial finitely generated
algebra of finite type has a simple homomorphic image (Theorem 1.15).
Let G be a simple homomorphic image of E, so G ∈ K. By assumption,
neither C4 nor D4 is isomorphic to G, but G is 0-generated, so 2 ∼= G,
by Theorem 3.1. Thus, 2 ∈ HS(B). Then 2 must inherit from B the
anti-idempotent identity x 6 f 2. This is false, however, so A is a Sugihara
monoid.
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Theorem 4.2. The distinct classes V(2), V(S3), V(C4) and V(D4) are
precisely the minimal varieties of De Morgan monoids.

Proof. Each X ∈ {2,S3,C4,D4} is finite and simple, with no proper non-
trivial subalgebra, so the nontrivial members of HS(X) are isomorphic to
X. Thus, the SI members of V(X) belong to I(X), by Jónsson’s The-
orem 1.23, because DMM is a congruence distributive variety. As vari-
eties are determined by their SI members, this shows that V(X) has no
proper nontrivial subvariety, and that V(X) 6= V(Y ) for distinct X,Y ∈
{2,S3,C4,D4}. As V(2) and V(S3) are the only minimal varieties of Sug-
ihara monoids, Theorem 4.1 shows that they, together with V(C4) and
V(D4), are the only minimal subvarieties of DMM.
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b
b
b

s
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"
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trivial

V(C4) V(S3)
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DMM

With a view to axiomatizing the varieties in Theorem 4.2, consider the
following (abbreviated) equations.

e 6 (x→ (y ∨ ¬y)) ∨ (y ∧ ¬y) (4.1)

e 6 (f 2 → x) ∨ (x→ e) ∨ ¬x (4.2)

x ∧ (x→ f) 6 (f → x) ∨ (x→ e) (4.3)

x→ e 6 x ∨ (f 2 → ¬x) (4.4)

Theorem 4.3 ([146, 103]).

(i) V(2) is axiomatized by adding x 6 e to the axioms of DMM;

(ii) V(S3) by adding e ≈ f , (2.28) and (4.1);

(iii) V(D4) by adding x 6 f 2, x ∧ ¬x 6 y and (4.2);
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(iv) V(C4) by adding x 6 f 2, e 6 f , (2.28), (4.3) and (4.4). 1

As the proof of Theorem 4.3 in [103] is not substantially different from
the corresponding proof in [146], it will not be reproduced here.

Theorem 4.2 says, in effect, that for each axiomatic consistent exten-
sion L of Rt, there exists B ∈ {2,S3,C4,D4} such that the theorems
of L all take values > e on any evaluation of their variables in B. Pos-
tulates for the four maximal consistent axiomatic extensions of Rt follow
systematically from Theorem 4.3. For example, (2.28) becomes the axiom
(p→ q) ∨ (q → p), while (4.4) becomes (p→ t)→ (p ∨ (f2 → ¬p)).

We shall now describe the minimal subquasivarieties of DMM.
Bergman and McKenzie [8] showed that every locally finite congruence

modular minimal variety is also minimal as a quasivariety. Thus, by The-
orem 4.2, V(2), V(S3), V(C4) and V(D4) are minimal as quasivarieties.
We proceed to show that the total number of minimal subquasivarieties of
DMM is still finite, but much greater than four.

Lemma 4.4. Let A and B be nontrivial algebras, where A is 0-generated.

(i) If B ∈ Q(A), then A can be embedded into B, whence Q(A) =
Q(B).

(ii) Q(A) is a minimal quasivariety.

(iii) If B ∈ Q(A) and B is 0-generated, then A ∼= B.

(iv) If A has finite type and Q(A) is a variety, then A is simple.

Proof. (i) Recall that Q(A) = ISPPU(A). Let B ∈ Q(A). So, B embeds
into a direct productD of ultrapowers ofA, where the index set of the direct
product is not empty (because B is nontrivial). Clearly, if a variable-free
equation ε is true in A, then it is true in B. Conversely, if ε is true in B,
then it is true in D, as variable-free equations persist in extensions. In that
case, since ε persists in homomorphic images, it is true in an ultrapower
U of A, whence it is true in A, because all first order sentences persist
in ultraroots, by Theorem 1.9. There is therefore a well defined injection
k : A→ B, given by

αA(cA1 , c
A
2 , . . . ) 7→ αB(cB1 , c

B
2 , . . . ),

where c1, c2, . . . are the nullary operation symbols of the signature and α is
any term. Clearly, k is a homomorphism from A into B, so A ∈ IS(B).

1 Of course, (i) is well known. We have not encountered (ii)–(iv) in earlier literature,
but a variant of (ii) could be derived from [37, Cor. 2].
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(ii) follows immediately from (i).
(iii) In the proof of (i), the image of the embedding k is a subalgebra of

B. So, if B is 0-generated, then k is surjective, i.e., k : A ∼= B.
(iv) Suppose A has finite type and is not simple. As A is 0-generated

and nontrivial, it has a simple homomorphic image C, by Theorem 1.15,
andC is still 0-generated. IfC ∈ Q(A), thenA ∼= C, by (iii), contradicting
the non-simplicity of A. So, C /∈ Q(A), whence Q(A) is not a variety (by
Birkhoff’s Theorem 1.7).

Theorem 4.5. A quasivariety of De Morgan monoids is minimal iff it is
V(S3) or Q(A) for some nontrivial 0-generated De Morgan monoid A.

Proof. Sufficiency follows from Lemma 4.4(ii) and previous remarks about
V(S3). Conversely, let K be a minimal subquasivariety of DMM. Being
minimal, K is Q(A) for some nontrivial De Morgan monoid A. Let B be
the smallest subalgebra of A. If B is trivial, then A satisfies e ≈ f , so K
is a variety, by Theorems 2.11 and 2.28. In this case, as K is a minimal
variety of odd Sugihara monoids, it is V(S3), by Corollary 2.27. On the
other hand, if B is nontrivial, then K = Q(B) (again by the minimality of
K), and this completes the proof, because B is 0-generated.

Theorem 4.6. The minimal subquasivarieties of DMM form a finite set,
whose cardinality is the number of lower bounds of e in the free 0-generated
De Morgan monoid F DMM(0).

Proof. Let F = F DMM(0). As we noted in Section 3.3, Slaney [129] proved
that F has just 3088 elements; its bottom element is eF ↔ fF , by The-
orem 2.10. By the Homomorphism Theorem 1.1, every 0-generated De
Morgan monoid is isomorphic to a factor algebra of F , so DMM has only
finitely many minimal subquasivarieties, by Theorem 4.5.

Now consider a factor algebra F /G, where G is a deductive filter of F .
As F is finite, G = [αF ) for some nullary term α in the language of IRLs,
where αF 6 eF . If F /G is nontrivial, i.e., αF 
 eF ↔ fF , then F /G is not
odd (by (2.16)), whence Q(F /G) 6= V(S3). The function αF 7→ Q(F /[αF ))
is therefore a well defined surjection from the lower bounds of eF in F to the
set consisting of the trivial subvariety (corresponding to the bottom element
of F ) and the minimal subquasivarieties of DMM, other than V(S3). It
remains only to show that this map is injective. To that end, suppose
F /[αF ) and F /[βF ) generate the same quasivariety, where αF , βF 6 eF .
Then there is an isomorphism g : F /[αF ) ∼= F /[βF ), by Lemma 4.4(iii).
As βF 6 eF , we have βF ↔ eF = βF ∈ [βF ), by (2.15) and (2.17), so
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βF /[βF ) = eF /[β
F ). Now

g(βF /[αF )) = g(βF /[αF )) = βF /[βF ) = eF /[β
F ) = g(eF /[αF )),

but g is injective, so βF /[αF ) = eF /[αF ), i.e., βF = βF ↔ eF ∈ [αF ).
This means that αF 6 βF and, by symmetry, αF = βF , completing the
proof.

Corollary 4.7. There are exactly 68 minimal quasivarieties of De Morgan
monoids.

Proof. This follows immediately from Theorem 4.6 and Remark 3.29.

4.2 Covers of atoms

Recall that when a lattice L has a least element ⊥, its atoms are the covers
of ⊥. Provided that L is modular, the join of any two distinct atoms covers
each join-and, so a cover c of an atom is interesting when it is not the join of
two atoms. If L is distributive, that is equivalent to the ostensibly stronger
demand that c be join-irreducible.

Recall that the lattice of subvarieties of a congruence distributive variety
E is itself distributive. Therefore, once the atoms of this lattice have been
determined, the immediate concern is to identify the join-irreducible covers
of each atom E′; we refer to these as covers of E′ within E. In particular,
it behoves us to investigate the join-irreducible covers, within DMM, of the
four varieties in Theorem 4.2.

Let S be a nontrivial variety of De Morgan monoids. By Theorem 4.2,
S includes an algebra X ∈ {2,S3,C4,D4}. So, a cover of V(X) within S
is a variety K, with V(X) ( K ⊆ S, such that no proper subvariety of K
properly contains V(X).2

By Corollary 2.27, V(S5) is a join-irreducible cover of V(S3) within
DMM.

For eachX ∈ {2,S3,C4,D4} and each variety K of De Morgan monoids,
if A ∈ (K \ I(X))FSI is nontrivial, then A /∈ V(X), by Jónsson’s Theo-
rem 1.23, because the nontrivial members of HS(X) belong to I(X). In this
case, if K covers V(X), then K = V(A,X), so if K is also join-irreducible,
it coincides with V(A). In other words:

2 For S = DMM, the logic `K (see p. 23) corresponding to K is then pre-maximal in
the lattice of axiomatic extensions of Rt, i.e., it is not a co-atom of this lattice, but each
of its consistent axiomatic proper extensions is a co-atom.
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Fact 4.8. If X ∈ {2,S3,C4,D4}, then every join-irreducible cover of
V(X) within DMM is generated by each of its nontrivial FSI members,
other than the isomorphic copies of X.

In the subvariety lattice of U, the only atom is V(C4) (as U ⊆ W by
Theorem 3.14 and every algebra in W maps onto C4; see Definition 3.5).
So, every cover of V(C4) within U is join-irreducible.

Recall from Section 3.3 that the four nontrivial non-simple 0-generated
De Morgan monoids, C5, . . . ,C8, belong to U. For n ∈ {5, 6, 7, 8}, Cn

violates e 6 f , so Cn ∈ U \ M. Moreover, Cn has just three deductive
filters, and hence just three factor algebras, since |(e]| = 3 in Cn. The
class of nontrivial members of HS(Cn) is therefore I(Cn,C4), because Cn

is 0-generated. Thus, V(Cn) is a (join-irreducible) cover of V(C4) within
U, by Jónsson’s Theorem 1.23.

Theorem 4.9.

(i) V(2) has no join-irreducible cover within DMM.

(ii) V(S5) is the only join-irreducible cover of V(S3) within DMM.

(iii) If K is a join-irreducible cover of V(C4) within DMM, then K consists
of anti-idempotent algebras and exactly one of the following holds.

(1) K ⊆ M.

(2) K = V(Cn) for some n ∈ {5, 6, 7, 8}.
(3) K = V(A) for some simple 1-generated De Morgan monoid A,

where C4 is a proper subalgebra of A.

(iv) If K is a join-irreducible cover of V(D4) within DMM, then K =
V(A) for some simple 1-generated De Morgan monoid A, where D4

is a proper subalgebra of A. In this case, K consists of anti-idempotent
algebras.

Proof. Let X ∈ {2,S3,C4,D4}, and let K be a join-irreducible cover of
V(X) within DMM. As V(X) ( K, there exists a finitely generated SI
algebra A ∈ K \ V(X). Then K = V(A), by Fact 4.8. Note that A is
rigorously compact, by Corollary 2.46. LetB be the 0-generated subalgebra
of A, so B is FSI, by Lemma 2.16(i). Now B is finite, since F DMM(0) is
finite, so B is SI or trivial.

If B is trivial, then A is an odd Sugihara monoid (by Theorem 2.11),
whence K consists of odd Sugihara monoids, forcingX = S3 and K = V(S5)
(by Corollary 2.27), as K covers V(X).
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We may therefore assume that B is nontrivial, in view of the present
theorem’s statement. By Theorems 1.15 and 3.4, B is simple or crystalline,
so by Theorem 3.1, we may assume that B ∈ {2,D4} or C4 ∈ H(B).

If B = 2, then A is idempotent (by Theorem 2.11). In this case, if
X 6= 2, then K = V(X,2), while if X = 2, then A 6∼= 2 (as A /∈ V(X)),
so S3 ∈ H(A) (by the remark preceding Corollary 2.27), whereupon K =
V(2,S3). Either way, this contradicts the join-irreducibility of K, soB 6= 2,
whence D4 = B or C4 ∈ H(B).

For the same reason, the cases X 6= D4 = B and X 6= C4 ∈ H(B) are
ruled out, as K would be V(X,D4) in the first of these, and V(X,C4) in the
second. If X = C4 ∈ H(B) \ I(B), then K = V(B), instantiating (iii)(2),
as C5, . . . ,C8 are, up to isomorphism, the only SI 0-generated De Morgan
monoids that map homomorphically onto C4 but are not isomorphic to it
(see Section 3.3). The assertion ‘X = C4 ∈ H(B) \ I(B)’ may therefore
be assumed false. (The exclusivity claim in (iii) will be proved separately
below.)

It follows that B ∼= X ∈ {C4,D4}. We identify B with X and refer
henceforth only to the latter. Thus, X is a subalgebra ofA, andX 6= A (as
A /∈ V(X)), so A is not 0-generated. Also, K has no nontrivial idempotent
member (otherwise K would be V(X,2) or V(X,S3)), so K consists of
anti-idempotent algebras, by Corollary 2.14.

By Theorem 1.15, there is a surjective homomorphism h : A → E for
some simple E ∈ K. Now E 6∼= D4, by Theorem 3.4, because A is not
0-generated.

If X = C4, then C4 ∈ S(A). If, moreover, C4 ∈ H(A), then A ∈ N, by
Remark 3.7, so A ∈ M, by Corollary 3.20, because A is rigorously compact.
In this case, K ⊆ M, because K = V(A).

We may therefore assume that X = D4 or X = C4 /∈ H(A). In both
cases, E 6∼= X. As E is a nontrivial member of K, it is not idempotent, so
the subalgebra h[X] of E cannot be trivial (by Theorem 2.11). Therefore,
h|X embeds X into E, because X is simple. Since X is 0-generated and
finite, it is isomorphic to a proper subalgebra of a 1-generated subalgebra
E′ of E. As E is simple, so is E′, by Theorem 1.24, since IRLs have the
CEP. Thus, because X � E′ ∈ K, Fact 4.8 gives K = V(E′), witnessing
(iii)(3) or (iv).

For the mutual exclusivity claim in (iii), note that (1) precludes (2)
(as Cn /∈ M) and (3) (as C4 /∈ H(A) for the simple generator A of K in
(3)). Also, (2) precludes (3), by Corollary 2.17, because Cn is SI but not
simple.

If K andA are as in Theorem 4.9(iii)(3) [resp. 4.9(iv)], then K is semisim-
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ple, by Corollary 2.17. If, moreover, A is finite, then the class of simple
members of K is I(C4,A) [resp. I(D4,A)], by Jónsson’s Theorem 1.23 and
the CEP. The options for A are discussed in Sections 4.4 and 4.5.

An immediate consequence of Theorem 4.9(iii) is the following.

Corollary 4.10. The varieties V(C5), V(C6), V(C7) and V(C8) are ex-
actly the covers of V(C4) within U that are not within M.

In the next section, we shall show that V(C4) has just six covers within
M. Some preparatory results will be required.

Lemma 4.11. Let K be a cover of V(C4) within U. Then K = V(A)
for some skew reflection A of an SI Dunn monoid B, where 0 is meet-
irreducible in A, and A is generated by the greatest strict lower bound of
e in B.

Proof. By assumption, there is an SI algebra G ∈ K \ V(C4), and K is
join-irreducible in the subvariety lattice of DMM. As G ∈ U, Corollary 3.25
shows that G is a skew reflection of a Dunn monoid H , and 0 is meet-
irreducible in G. Now H is nontrivial, because G 6∼= C4, so Remark 3.23
shows that H is SI, and that H includes the greatest strict lower bound
of e in G, which we denote by c. Then A := SgG{c} ∈ K is SI, by
Lemma 2.16(iii), and A 6∼= C4, as 0 < c < e. Consequently, K = V(A),
by Fact 4.8. Clearly, A is the skew reflection of the SI Dunn monoid
B := SgA(H ∩ A), with respect to the restricted order of A, and 0 is
meet-irreducible in A.

A partial converse of Lemma 4.11 is supplied below. It extends the claim
about C5, . . . ,C8 preceding Theorem 4.9.

Lemma 4.12. If a skew reflection A ∈ U of a finite simple Dunn monoid
B is generated by the least element of B, then V(A) is a (join-irreducible)
cover of V(C4) within U.

Proof. Let ⊥ be the least element of B. By Lemma 2.16(iv), ⊥ is the only
strict lower bound of e in B. The lower bounds of e in A therefore form
the chain 0 < ⊥ < e, so A 6∼= C4, but A is SI, by Remark 3.23. Therefore,
A /∈ V(C4), by Jónsson’s Theorem 1.23, and so V(C4) ( V(A) ⊆ U. To see
that V(A) covers V(C4), let E ∈ V(A) \V(C4) be SI. We must show that
A ∈ V(E). Since A is finite, Jónsson’s Theorem 1.23 gives E ∈ HS(A).
Any subalgebra D of A is nontrivial, so e has a strict lower bound in D,
by (2.16). If 0 is the only strict lower bound of e in D, then D is a
simple member of U (by Lemma 2.16(iv)), whence D ∼= C4 (as U ⊆ W).
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Otherwise, ⊥ ∈ D, in which case D = A, as A is generated by ⊥. Thus,
S(A) ⊆ {C4,A}, and so E is a homomorphic image of A (as C4 is simple).
Now A has only three deductive filters (because |(e]| = 3 in A), so A has
just three factor algebras, of which A and a trivial algebra are two. The
other is isomorphic to C4, as A ∈ U ⊆ W. Therefore, E ∼= A, whence
A ∈ V(E), as required.

The RL-reducts of 2, S3 and C4 shall be denoted by 2+, S+
3 and C+

4 ,
respectively. (In fact, S3 and S+

3 are termwise equivalent, because ¬x is
definable as x→ e in S+

3 .) The following result will be needed later.

Theorem 4.13. Let B be a square-increasing RL that is SI. Let c be the
greatest strict lower bound of e in B (which exists, by Lemma 2.16(iii)).

If c→ e = e, then SgB{c} = {c, e} and SgB{c} ∼= 2+.
If c→ e 6= e, then SgB{c} ∼= S+

3 , its lattice reduct being c < e < c→ e.

Proof. As c < e, we have c2 = c, by (2.21), and e 6 c→ e, by (2.15). Then
c→ c = c→ e, because (2.14), (2.17) and (2.22) yield

c→ c 6 c→ e 6 c→ (c→ c) 6 c→ c.

Therefore, in view of (2.17), if c → e = e, then {c, e} is the universe of a
subalgebra of B, isomorphic to 2+.

We may now assume that e < c → e. Then (c → e) → e 6 e → e = e,
by (2.14), whereas e 
 (c → e) → e, by (2.15), so (c → e) → e < e. Then
(c→ e)→ e 6 c, by definition of c, so (c→ e)→ e = c, by (2.6). It suffices,
therefore, to show that the chain (c → e) → e < e < c → e constitutes a
subalgebra of B, isomorphic to S+

3 , but this was already proved by Galatos
[50, Thm. 5.7]. Although its statement in [50] assumes idempotence (and a
weak form of commutativity) for fusion, all appeals to idempotence in the
proof require only the square-increasing law.

4.3 Covers of V(C4) within M

If K is a cover of V(C4) within M, then by Lemma 4.11 and Remark 3.23,
there exist A, B and ⊥ such that K = V(A),

• B is an SI Dunn monoid, A is a skew reflection of B in which
e < f , and A = SgA{⊥}, where ⊥ ∈ B is the greatest strict lower
bound of e in A.
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The displayed properties of A, B and ⊥ will now be assumed, until the
‘conclusions’ after Lemma 4.22. By Lemma 3.26(ii), they imply that 0 is
meet-irreducible (and 1 join-irreducible) in A. We shall prove that they
also force A to be finite and B simple, with |A| ≤ 14 (i.e., |B| ≤ 6).

We define > = ⊥ → e, so > ∈ B. By Theorem 4.13, SgB{⊥} consists
of ⊥, e,> and is isomorphic to 2+ (with e = >) or to S+

3 (with e < >).
The respective tables for · and → in SgB{⊥} are recalled below. (There is
no guarantee that SgB{⊥} exhausts B.)

· ⊥ >
⊥ ⊥ ⊥
> ⊥ >

→ ⊥ >
⊥ > >
> ⊥ >

or

· ⊥ e >
⊥ ⊥ ⊥ ⊥
e ⊥ e >
> ⊥ > >

→ ⊥ e >
⊥ > > >
e ⊥ e >
> ⊥ ⊥ >

Warning. Although ⊥,> will turn out to be extrema for B, that fact will
emerge only after Lemma 4.22. Until then, our use of these symbols should
not be taken to justify claims like ‘b · ⊥ = ⊥ for all b ∈ B’ on the basis of
Lemma 2.3 alone. Such claims will be justified directly when needed.

All this notation will remain fixed until the ‘conclusions’ after Lemma 4.22.
We use freely the notation from Definition 3.21 as well, e.g., ⊥′ = ¬A⊥ ∈ B′
and >′ = ¬A> ∈ B′. The superscript A will normally be omitted.

Theorem 4.14. The algebra A is the reflection of B iff e and >′ are
comparable. In this case, e < >′ and B = SgB{⊥}, so B consists of
⊥, e,> only, and

(i) e = > iff B ∼= 2+, iff A ∼= R(2+);

(ii) e 6= > iff B ∼= S+
3 , iff A ∼= R(S+

3 ).

Proof. In the first assertion, necessity follows from the definition of reflec-
tion. Conversely, suppose e and >′ are comparable, and let h be the unique
homomorphism from A to C4. As h is isotone and h(e) = e < f = h(>′),
we can’t have >′ 6 e, so e < >′ = (> · >)′. Then, by Definition 3.21(iii),
> 6 >′, so

0 < ⊥ < e 6 > < >′ 6 f < ⊥′ < 1 , (4.5)

where e = > iff >′ = f . The elements ⊥, e,> ∈ B are closed under ·,→, so
items (vi)–(ix) of Definition 3.21 ensure that the elements listed in (4.5) are
closed under ·,∧,∨,¬. They include e, so they constitute a subalgebra ofA.
As they also include ⊥, which generates A, they exhaust A. Consequently,
A = R(B), where B consists of ⊥, e,> only, and is therefore generated by
⊥. Then (i) and (ii) follow from Theorem 4.13.

 
 
 



CHAPTER 4. THE SUBVARIETY LATTICE OF DMM 86

Corollary 4.15. If SgB{⊥} 6∼= S+
3 , then A ∼= R(2+).

Proof. In this case, SgB{⊥} ∼= 2+, by Theorem 4.13, so e = >. As A ∈ M,
we have e < f = e′ = >′, so the result follows from Theorem 4.14.

By Lemma 4.12, R(2+) and R(S+
3 ) generate covers of V(C4) within M,

as each is generated by its own unique atom. Because our aim is now to
isolate the other covers of V(C4) within M, the previous two results allow
us to assume, until further notice, that

• SgB{⊥} is isomorphic to S+
3 and has universe ⊥ < e < >, and

• A is not the reflection of B, i.e., e and >′ are incomparable.

Consider the formal diagram below.

t����
�
�

�
�

r@@@
@
@

@

rr���
�
r@@rr

t
@

@
@

@
@

@
t����
�
�

�
�
tt

t���
�

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

⊥′

f

f ∧ (>′ ∨ >)

>′ ∨ e

>′

>′ ∨ >

>

f ∧ >
e ∨ (>′ ∧ >)

e >′ ∧ >

⊥

By Theorem 3.24(iv), the labels on the thicker points all identify elements
of B, but we do not claim that the twelve depicted elements are distinct in
A. (It will turn out that they exhaust A, but that is not yet obvious.)

Lemma 4.16. The subset of A comprising the elements depicted above is
closed under the operations ∧,∨ and ¬ of A.

Moreover, the label on the diagrammatic join of any two elements is the
actual join in A of the labels on those elements, and similarly for meets.

Proof. Note first that the diagram order is sound, in the sense that wherever
x is depicted as a lower bound of y, then x 6 y in A. This is easy to see,
except perhaps for the A-inequalities ⊥ 6 >′ and >′ ∧ > 6 f (= e′). The
first of these follows from Lemma 3.26(i), as > = ⊥ → e, and the second
from Definition 3.21(iii), because e 6 > 6 >∨>′ = (>′∧>)′ = ((>′∧>)·e)′
in A.
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Closure under ¬ follows from the identity ¬¬x ≈ x and De Morgan’s
laws.

Let x, y be expressions from the diagram. We shall show that x ∨ y
(computed in A) is equal (in A) to the label on the diagrammatic join of
x, y. In view of the chosen labels and De Morgan’s laws, the same will
then follow for meets. We go through the possible values of x. Because
the diagram order is sound, we can eliminate cases where y is comparable
(according to the diagram) with x. This eliminates ⊥ and ⊥′ as values for
x and for y.

If x is e, then the uneliminated values of y are >′ and >′ ∧ >. These
cases are disposed of by noting that e ∨ >′ and e ∨ (>′ ∧ >) appear (up
to commutativity of ∨) in the diagram, and that the diagram order makes
them the least upper bounds, respectively, of e,>′ and of e,>′ ∧ >.

When x is >′ ∧>, the only uneliminated value of y is e, which we have
just considered.

When x is e ∨ (>′ ∧ >), the uneliminated possibilities for y are e,>′ ∧
>,>′, of which all but >′ have been considered. As e∨(>′∧>)∨>′ = >′∨e,
which appears (in the correct place) in the diagram, we are done with this
case.

When x is >′, the only uneliminated choices for y, not already consid-
ered, are > and f ∧ >. Now >′ ∨ > is well-placed in the diagram, and in
A, we have >′ ∨ (f ∧>) = (>′ ∨ f)∧ (>′ ∨>) = f ∧ (>′ ∨>), which is also
well-placed.

When x is >′∨e, the only interesting possibilities for y are > and f ∧>.
And in A, we have well-placed values (>′ ∨ e) ∨ > = >′ ∨ > and

(>′ ∨ e) ∨ (f ∧ >) = (>′ ∨ e ∨ f) ∧ (>′ ∨ e ∨ >) = f ∧ (>′ ∨ >).

From cases already considered, it follows that (f ∧>)∨ y is well-placed
in the diagram, for every y.

When x is f ∧ (>′ ∨ >), the only interesting y is >. In A, we have

(f ∧ (>′ ∨ >)) ∨ > = (f ∨ >) ∧ ((>′ ∨ >) ∨ >) = (f ∨ >) ∧ (>′ ∨ >).

This expression will simplify to the well-placed >′∨>, provided that f∨> =
⊥′, or equivalently, e∧>′ = ⊥ (inA), which we now show. We have already
verified that ⊥ 6 >′, so ⊥ 6 e∧>′. As e 
 >′, we have e∧>′ < e, whence
e ∧ >′ 6 ⊥ (by definition of ⊥), and so e ∧ >′ = ⊥, as required.

When x is >, the only new y to consider is f , but we have just shown
that > ∨ f = ⊥′, which is well-placed.

When x is f , the only new y is >′ ∨ >, and > 6 >′ ∨ > 6 ⊥′. In A,
we have seen that f ∨ > = ⊥′ = f ∨ ⊥′, so f ∨ (>′ ∨ >) = ⊥′, which is
well-placed.
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When x is >′ ∨>, there is no longer any unconsidered option for y.

Lemma 4.17. Fusion in A behaves as in the following table.

· ⊥ e >′ ∧ > e ∨ (>′ ∧ >) f ∧ > >
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
e e >′ ∧ > e ∨ (>′ ∧ >) f ∧ > >

>′ ∧ > >′ ∧ > >′ ∧ > >′ ∧ > >′ ∧ >
e ∨ (>′ ∧ >) e ∨ (>′ ∧ >) f ∧ > >

f ∧ > >
> >

Proof. The submatrix involving only ⊥, e,> is justified, because SgB{⊥} is
an RL-subreduct ofA. If x ∈ {>′∧>, e∨(>′∧>), f∧>}, then ⊥ 6 x 6 >,
so ⊥ · x = ⊥, by (2.14), since ⊥2 = ⊥ = ⊥ ·>. This justifies the first row;
the second records the neutrality of e in A.

To see that (>′ ∧ >) · > = >′ ∧ >, note the following consequences of
(2.14), Definition 3.21(viii) and the tables for SgB{⊥}:

(>′ ∧ >) ·> 6 (>′ ·>) ∧ >2 = (> → >)′ ∧ >
= >′ ∧ > = (>′ ∧ >) · e 6 (>′ ∧ >) ·>.

For any x ∈ {>′ ∧ >, e ∨ (>′ ∧ >), f ∧ >}, we now have

>′ ∧ > 6 (>′ ∧ >)2 6 (>′ ∧ >) · x 6 (>′ ∧ >) ·> = >′ ∧ >,

so (>′ ∧ >) · x = >′ ∧ >. If y ∈ {e ∨ (>′ ∧ >), f ∧ >, >}, then

> = e ·> 6 y ·> 6 >2 = >,

whence y ·> = >. By (2.11) and the idempotence of >′ ∧ >,

(e ∨ (>′ ∧ >))2 = e ∨ (>′ ∧ >) ∨ (>′ ∧ >)2 = e ∨ (>′ ∧ >).

Finally, by (2.11) and since >′ 6 f , we have

(e ∨ (>′ ∧ >)) · (f ∧ >) = (e · (f ∧ >)) ∨ ((>′ ∧ >) · (f ∧ >))

= (f ∧ >) ∨ (>′ ∧ >) = f ∧ >.

Lemma 4.18. Residuation in A behaves as in the following table.
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→ ⊥ e >′ ∧ > e ∨ (>′ ∧ >) f ∧ > >

⊥ > > > > > >
e ⊥ e >′ ∧ > e ∨ (>′ ∧ >) f ∧ > >

>′ ∧ > > > > >
e ∨ (>′ ∧ >) ⊥ >′ ∧ > e ∨ (>′ ∧ >) f ∧ > >

f ∧ > ⊥ >′ ∧ > e ∨ (>′ ∧ >) >
> ⊥ ⊥ >′ ∧ > >′ ∧ > >′ ∧ > >

Proof. All elements in the table lie between ⊥ and >. The submatrix
involving only ⊥, e,> documents residuation in SgB{⊥}, so the first row
and last column follow from (2.14), because > = ⊥ → ⊥ = ⊥ → > =
> → >. The second row is justified by (2.17). Then (>′ ∧ >) → >′ =
¬((>′ ∧ >) ·>) = (>′ ∧ >)′ (Lemma 4.17) = >′ ∨ >, so by (2.12),

(>′∧>)→ (>′∧>) = ((>′∧>)→ >′)∧((>′∧>)→ >) = (>′∨>)∧> = >.

Now, for each x ∈ {e ∨ (>′ ∧ >), f ∧ >},

> = (>′ ∧ >)→ (>′ ∧ >) 6 (>′ ∧ >)→ x 6 (>′ ∧ >)→ > = >,

by (2.14), whence (>′ ∧ >)→ x = >.
Clearly, e ∨ (>′ ∧ >) 6 > = ⊥ → ⊥, so (2.8) and (2.14) yield

⊥ 6 (e ∨ (>′ ∧ >))→ ⊥ 6 e→ ⊥ = ⊥,

whence (e ∨ (>′ ∧ >)) → ⊥ = ⊥. By Lemma 4.17, e ∨ (>′ ∧ >) is an
idempotent upper bound of e, so (e∨(>′∧>))→ (e∨(>′∧>)) = e∨(>′∧>),
by Lemma 2.7. Also, by (2.13),

(e ∨ (>′ ∧ >))→ (>′ ∧ >) = (e→ (>′ ∧ >)) ∧ ((>′ ∧ >)→ (>′ ∧ >))

= (>′ ∧ >) ∧ > = >′ ∧ >;

(e ∨ (>′ ∧ >))→ (f ∧ >) = (e→ (f ∧ >)) ∧ ((>′ ∧ >)→ (f ∧ >))

= (f ∧ >) ∧ > = f ∧ >.

Similarly, from f ∧ > 6 > = ⊥ → ⊥ and e 6 f ∧ > and (2.8), (2.14), we
obtain ⊥ 6 (f ∧>)→ ⊥ 6 e→ ⊥ = ⊥, hence (f ∧>)→ ⊥ = ⊥. Also, by
(2.12),

(f ∧ >)→ (>′ ∧ >) = ((f ∧ >)→ >′) ∧ ((f ∧ >)→ >)

= ¬((f ∧ >) ·>) ∧ > = >′ ∧ > (by Lemma 4.17);
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(f ∧ >)→ (f ∧ >) = ((f ∧ >)→ f) ∧ ((f ∧ >)→ >) = ¬(f ∧ >) ∧ >
= (e ∨ >′) ∧ > = e ∨ (>′ ∧ >) (by distributivity, since e 6 >);

> → (>′ ∧ >) = (> → >′) ∧ (> → >) = ¬(> ·>) ∧ > = >′ ∧ >;

> → (f ∧ >) = (> → f) ∧ (> → >) = ¬> ∧ > = >′ ∧ >,

so, because >′ ∧ > 6 e ∨ (>′ ∧ >) 6 f ∧ >, (2.14) yields

> → (e ∨ (>′ ∧ >)) = >′ ∧ >.

Recall that A has the following properties (under present assumptions):

• [>′) ∩ (>] = ∅, by the definition of a skew reflection,

• ⊥ < e < > and >′ < f < ⊥′, as SgB{⊥} ∼= S+
3 , and

• e and >′ are incomparable, by Theorem 4.14, as A 6= R(B).

There are only four ways to identify elements from the diagram preceding
Lemma 4.16 while respecting these rules. Thus, A must have one of the
four Hasse diagrams below, where the thicker points denote the elements of
B.
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Case IV

Lemma 4.19. In Cases II, III and IV, we have (f ∧ >)→ e = ⊥.

Proof. From f ∧ > 6 > = ⊥ → e and (2.8) we infer ⊥ 6 (f ∧ >) → e.
As e 6 f ∧ >, (2.14) shows that (f ∧ >) → e 6 e → e = e. In Cases II,
III and IV, f ∧ > 
 e, so (2.15) shows that (f ∧ >) → e < e. Therefore,
(f ∧ >)→ e 6 ⊥ (by definition of ⊥), hence the result.
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Lemma 4.20. In Cases II and IV, we have (f ∧ >)2 = >.

Proof. By (2.14), (f∧>)2 6 >2 = >. By Lemma 4.18, (f∧>)→ (f∧>) =
e∨ (>′∧>). In Cases II and IV, therefore, (f ∧>)→ (f ∧>) 6= f ∧> > e,
so f ∧> is not idempotent (by Lemma 2.7), i.e., f ∧> < (f ∧>)2. Suppose,
with a view to contradiction, that (f ∧ >)2 < >. Then the diagram below
depicts a five-element subposet of 〈A;6〉, which we claim is a sublattice of
〈A;∧,∨〉. By Theorem 1.22, that will contradict the distributivity of A,
finishing the proof.

r���
rr

@@

r��r@
@@

f ∧ >

f
(f ∧ >)2

>

⊥′

The claim amounts to the assertion that f ∨ (f ∧ >)2 = ⊥′. As f and
(f ∧>)2 are incomparable, we have f < f ∨ (f ∧>)2 6 ⊥′. In A, however,
⊥′ is the smallest strict upper bound of f (because ⊥ is the greatest strict
lower bound of e). Therefore, f ∨ (f ∧ >)2 = ⊥′.

Lemma 4.21. In Cases III and IV, ⊥ is the value of all three of

(>′ ∧ >)→ e, (>′ ∧ >)→ ⊥ and (e ∨ (>′ ∧ >))→ e.

Proof. As >′ ∧ > 6 > = ⊥ → ⊥ and ⊥ 6 e, we have

⊥ 6 (>′ ∧ >)→ ⊥ 6 (>′ ∧ >)→ e,

by (2.8) and (2.14). Thus, the first claim subsumes the second. Suppose,
with a view to contradiction, that

⊥ < (>′ ∧ >)→ e. (4.6)

Since e 6 >, it follows from (2.14) that

(>′ ∧ >)→ e 6 > · ((>′ ∧ >)→ e). (4.7)

On the other hand, (>′ ∧ >) ·> = >′ ∧ >, by Lemma 4.17, so

(>′ ∧ >) ·> · ((>′ ∧ >)→ e) = (>′ ∧ >) · ((>′ ∧ >)→ e) 6 e,

by (2.6), whence > · ((>′ ∧ >) → e) 6 (>′ ∧ >) → e, by (2.2). Then, by
(4.7),

> · ((>′ ∧ >)→ e) = (>′ ∧ >)→ e = d, say. (4.8)
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In Cases III and IV, >′ ∧ > 
 e, so e 
 d, by (2.15). Consequently,
d 6 f , by Theorem 2.43, because A is SI. Therefore, e 6 ¬d = ¬(d ·>) (by
(4.8)) = d→ >′, so d 6 >′, i.e., (>′ ∧ >)→ e 6 >′. Also, ⊥ 6 >′ ∧ >, so
by (2.14), (>′ ∧ >)→ e 6 ⊥ → e = >. Therefore,

(>′ ∧ >)→ e 6 >′ ∧ >. (4.9)

Now, by (2.2),

e > (>′ ∧ >) · ((>′ ∧ >)→ e) > ((>′ ∧ >)→ e)2 (by (4.9))

> (>′ ∧ >)→ e > ⊥ (by (4.6)).

This forces
(>′ ∧ >) · ((>′ ∧ >)→ e) = e, (4.10)

by definition of ⊥. Then, by Lemma 4.17,

>′ ∧ > = (>′ ∧ >)2 > (>′ ∧ >) · ((>′ ∧ >)→ e) (by (4.9)) = e (by (4.10)),

contradicting the diagrams for Cases III and IV. Thus, (>′ ∧>)→ e = ⊥.
Finally, by (2.13) and the claim just proved,

(e ∨ (>′ ∧ >))→ e = (e→ e) ∧ ((>′ ∧ >)→ e) = e ∧ ⊥ = ⊥.

The next lemma applies to Case IV. Its statement remains true in
Case II, but is redundant there, as >′ ∧ > = ⊥ and e ∨ (>′ ∧ >) = e
in Case II (cf. Lemma 4.19).

Lemma 4.22. In Case IV, we have (f ∧ >)→ (e ∨ (>′ ∧ >)) = >′ ∧ >.

Proof. Observe that

>′ ∧ > = (f ∧ >)→ (>′ ∧ >) (by Lemma 4.18)

6 (f ∧ >)→ (e ∨ (>′ ∧ >)) (by (2.14))

6 e→ (e ∨ (>′ ∧ >)) (by (2.14), as e 6 f ∧ >)

= e ∨ (>′ ∧ >) (by (2.17)).

In Case IV, f ∧ > 
 e ∨ (>′ ∧ >), so e 
 (f ∧ >) → (e ∨ (>′ ∧ >)), by
(2.15). Thus, (f ∧ >) → (e ∨ (>′ ∧ >)) 6= e ∨ (>′ ∧ >). Suppose, with a
view to contradiction, that (f ∧ >)→ (e ∨ (>′ ∧ >)) 6= >′ ∧ >. Then

>′ ∧ > < (f ∧ >)→ (e ∨ (>′ ∧ >)) < e ∨ (>′ ∧ >),

so the Hasse diagram below depicts a five-element subposet of 〈A;6〉.
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⊥

e
>′ ∧ >
(f ∧ >)→ (e ∨ (>′ ∧ >))

e ∨ (>′ ∧ >)

Using the fact that ⊥ is the greatest strict lower bound of e in A, we
obtain

e ∧ ((f ∧ >)→ (e ∨ (>′ ∧ >))) 6 ⊥

(cf. the proof of Lemma 4.20). On the other hand, by Lemma 4.17,

(f ∧ >) ·⊥ = ⊥ 6 e ∨ (>′ ∧ >),

so by (2.2), ⊥ 6 (f ∧ >)→ (e ∨ (>′ ∧ >)). Also, ⊥ 6 e, so

⊥ 6 e ∧ ((f ∧ >)→ (e ∨ (>′ ∧ >))).

Therefore, e∧((f ∧>)→ (e∨(>′∧>))) = ⊥, whence the elements depicted
above form a sublattice of 〈A;∧,∨〉, contradicting the distributivity of A.

This completes the tables from Lemmas 4.17 and 4.18 in all cases.

Conclusions.

The above arguments put constraints on B and on the order 6 if A =
S6(B) is to generate a cover of V(C4) within M. In particular, B must be
finite and simple, with |B| ≤ 6 (i.e., |A| ≤ 14), and in each of Cases I–IV,
there is at most one way to choose 6 and the operations ·,→ on B if this
is to happen, in view of Lemmas 4.16–4.22. It remains, however, to check
that in each case, B really is a Dunn monoid for which SgA{⊥} = A. If
so, then since B is finite and simple, V(A) will indeed be a cover of V(C4)
within M, by Lemma 4.12, and the resulting varieties will be the only covers
of V(C4) within M, apart from R(2+) and R(S+

3 ).
In Case I, the intended B is clearly the Dunn monoid S+

3 , which is
generated by ⊥, so SgA{⊥} = A.

In Case II, B ∼= C+
4 , so B is a Dunn monoid. Its elements form the

chain
⊥ < e < f ∧ > < >.

As the co-atom of B is f ∧>, it is clear that ⊥ generates the skew reflection
A of B shown in the diagram for Case II.
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In Case III, the intended elements of B are

⊥, e, >′ ∧ >, > and f ∧ > = e ∨ (>′ ∧ >).

That the operations in the lemmas turn this into a Dunn monoid (actually,
an idempotent one) with neutral element e can be verified mechanically, the
only real issues being the associativity of fusion and the law of residuation;
we omit the details.

We shall call this Dunn monoid T 5. It is clear from the above description
of its elements that its skew reflection A, in the diagram for Case III, is
generated by ⊥.

Finally, in Case IV, the intended elements of B are

⊥, e, >′ ∧ >, e ∨ (>′ ∧ >), f ∧ > and >.

We suppress the mechanical verification that this becomes a Dunn monoid,
with neutral element e, when equipped with the operations in the lemmas.

We denote this Dunn monoid by T 6. Again, the above description of
its elements shows that its skew reflection A, in the diagram for Case IV,
is generated by ⊥.

We have now proved the following.

Theorem 4.23. The covers of V(C4) within M are just

V(R(2+)), V(R(S+
3 )), V(S6(S+

3 )), V(S6(C+
4 )), V(S6(T 5)) and V(S6(T 6)),

for the last four of which 6 is as in the respective diagrams of Cases I–IV.

We shall see in Theorem 5.43 that these varieties in fact cover V(C4) as
quasivarieties.

Combining Theorem 4.23 and Corollary 4.10, we obtain the follow-
ing. (Recall that C5, . . . ,C8 are, up to isomorphism, the non-simple SI
0-generated De Morgan monoids from Section 3.3.)

Corollary 4.24. There are just ten covers of V(C4) within U, viz. the six
listed in Theorem 4.23 and V(C5), . . . ,V(C8).

In contrast with Theorem 5.43, for each n ∈ {5, 6, 7, 8}, the quasivariety
Q(Cn) omits C4, and is therefore strictly smaller than V(Cn). Indeed, the
quasi-equation e ≈ e ∧ f =⇒ x ≈ y holds in Cn but not in C4.

By Theorem 4.9 and Corollaries 2.17 and 4.24, the non-semisimple covers
of atoms in the subvariety lattice of DMM (regardless of join-irreducibility)
are just V(S5) and the ones contained in U. All of these are finitely gen-
erated varieties. Example 4.29 will show, however, that V(C4) has at least
one join-irreducible cover within DMM (but not within U) that is not finitely
generated.

 
 
 



CHAPTER 4. THE SUBVARIETY LATTICE OF DMM 95

4.4 Other covers of V(C4)

We have seen that each cover of V(C4) within U is generated by a finite
non-simple algebra. By Lemma 3.2(iii), a simple De Morgan monoid A is
anti-idempotent if it has C4 as a subalgebra (cf. Theorem 4.9(iii)(3)). If A
is finite as well, then it generates a cover of V(C4) exactly when C4 is its
only proper subalgebra, by Jónsson’s Theorem 1.23, and Theorem 1.24. In
that case, by the same arguments, V(A) is join-irreducible in the subvariety
lattice of DMM.

In fact, V(C4) has infinitely many finitely generated covers within DMM
witnessing Theorem 4.9(iii)(3), as the next example shows.

Example 4.25. For each positive integer p, let Ap be the rigorously com-
pact De Morgan monoid on the chain 0 < 1 < 2 < 4 < 8 < . . . < 2p < 2p+1,
where fusion is multiplication, truncated at 2p+1. Thus, |Ap| = p + 3 and
e is the integer 1, while f = 2p and ¬(2k) = 2p−k for all k ∈ {0, 1, . . . , p}.
Clearly, Ap is simple and generated by 2, and we may identify C4 with the
subalgebra of Ap on {0, 1, 2p, 2p+1}.

Now suppose p is prime. We claim that C4 is the only proper subalgebra
of Ap.

As Ap = SgAp{2}, it suffices to show that, whenever k ∈ {1, 2, . . . , p−
1}, then 2 ∈ SgAp{2k}. The proof is by induction on k and the base case
is trivial, so let k > 1. As p is prime, it is not divisible by k, whence there
is a positive integer n such that kn ∈ {p − 1, p − 2, . . . , p − (k − 1)}, so
¬(2kn) ∈ {2, 4, . . . , 2k−1} ∩ SgAp{2k}. Because ¬(2kn) = 2r, where 1 ≤ r <
k, the induction hypothesis implies that 2 ∈ SgAp{¬(2kn)} ⊆ SgAp{2k}, as
required.

Thus, V(Ap) is a (join-irreducible) cover of V(C4) within DMM. And
by Jónsson’s Theorem 1.23, V(Ap) 6= V(Aq) for distinct primes p, q, vindi-
cating the claim preceding this example.

The ∧,∨ reduct of a simple De Morgan monoid is a self-dual distributive
lattice in which e is an atom and f a co-atom. It is therefore not difficult
to verify that, up to isomorphism, there are just eight simple De Morgan
monoids A on at most 6 elements (and none on 7 elements) such that C4

is the only proper subalgebra of A. Six such algebras are depicted below;
the other two are A2 and A3 from Example 4.25. Each of these eight De
Morgan monoids is 1-generated and generates a (join-irreducible) cover of
V(C4) exemplifying Theorem 4.9(iii)(3).
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The exhaustiveness of this eight-item list will not be proved here, as we
shall not rely on it below.3 Some features of the covers of V(C4) consisting
of semilinear algebras deserve to be established, however. We consider first
the case where A has an idempotent element outside C4.

Theorem 4.26. Let A be a simple totally ordered De Morgan monoid,
having C4 as a proper subalgebra, and suppose a2 = a ∈ A \ C4. Then
a generates a subalgebra of A isomorphic to one of the first two algebras
pictured above.

Proof. By Lemmas 2.16(iv) and 3.2(iii), A is anti-idempotent, with e <
a < f and e < ¬a < f . Now a 6 ¬a, by (2.1), as a2 6 f . Also, a ·¬a = ¬a,
by Lemma 2.7, and f · a = f 2 = f · ¬a, by Corollary 2.19. If ¬a = a,
then SgA{a} matches the first of the two pictured algebras. If ¬a 
 a then
(¬a)2 
 f , by (2.1), whence (¬a)2 = f 2 and SgA{a} matches the second
pictured algebra.

Now we consider the case where A has no idempotent element outside
C4, assuming that A is finite.

3 Readers wanting to confirm it should note that all self-dual distributive lattices
on 5, 6 or 7 elements are pictured above, except for the seven-element chain (ruled out
by Theorem 4.28) and the seven-element lattice that stacks one four-element diamond
on another, gluing them at the juncture. The latter supports several simple De Morgan
monoidsA that extendC4, but in each case, the vertical ‘midpoint’ a ofA is a fixed point
of ¬, and a · f = f2, by Corollary 2.19 and Lemma 3.2(iii), while a 6 a2 = a · ¬a 6 f ,
so a2 ∈ [a, f ] = {a, f}. Thus, SgA{a} is a proper subalgebra of A, strictly containing
C4, so V(A) does not cover V(C4). The arguments for the lattices depicted above are
no more difficult.
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Theorem 4.27. Let A be a finite simple totally ordered De Morgan monoid,
having C4 as a proper subalgebra, where no element of A\C4 is idempotent.

Let c be the cover of e in A, and n the smallest positive integer such
that cn+1 = cn+2. Then

(i) cn = f and cn+1 = f 2;

(ii) ¬(cm+1) < cn−m 6 ¬(cm) for each positive integer m < n;

(iii) b · ¬b = f for all b ∈ A \ {f 2,¬(f 2)}.

If, moreover, |A| is odd, then SgA{a} ∼= A2 (as defined in Exam-
ple 4.25), where a is the fixed point of ¬ in A.

Proof. Again, recall thatA is anti-idempotent, withA = {¬(f 2), f 2}∪[e, f ],
and note that f covers ¬c, by definition of c.

(i) As cn+1 is idempotent, we have e < cn+1 ∈ C4 (by assumption),
whence cn+1 = f 2. As cn is not idempotent, cn < f 2, i.e., cn 6 f (since A
is totally ordered and simple). But cn 
 ¬c (by (2.1), since cn+1 
 f), so
cn = f , because f covers ¬c.

(ii) Consider a positive integer m < n. We cannot have cn−m 6 ¬(cm+1),
otherwise cn+1 = cm+1 · cn−m 6 cm+1 · ¬(cm+1) 6 f (by (2.3)), a contra-
diction. Thus, ¬(cm+1) < cn−m. By (2.2), cn−m 6 cm → cn = cm → f =
¬(cm).

(iii) Let b ∈ A \ {f 2,¬(f 2)}. Then b ·¬b 6 f , by (2.3). Since b ·¬b = f
for b ∈ {e, f}, we may assume that e < b < f , i.e., c 6 b 6 ¬c. Suppose
b · ¬b < f , i.e., b · ¬b 6 ¬c. Then b · c 6 b, by (2.1). As c 6 b < f = cn, we
have cp 6 b < cp+1 for some positive integer p < n. Then cp+1 6 b · c 6 b <
cp+1, a contradiction. Thus, b · ¬b = f .

Finally, let |A| be odd, so ¬a = a for some (unique) a ∈ A, as ¬ is a bi-
jection. Then a /∈ C4, so a2 = a·¬a = f , by (iii), whence SgA{a} = C4∪{a}
and SgA{a} ∼= A2.

The third example pictured above shows that, in Theorem 4.27, when
A has even cardinality, it need not have a subalgebra of the form Ap for
p > 1.

Theorem 4.28. If V(A) is a cover of V(C4) within DMM, where A is
finite, simple and totally ordered, then |A| is 5 or an even number.

Proof. The hypothesis implies that C4 is the only proper subalgebra of A,
as noted earlier. If |A| is odd, then |A| 6= 6, so by Theorems 4.26 and 4.27,
A has a five-element subalgebra, which cannot be proper, so |A| = 5.

 
 
 



CHAPTER 4. THE SUBVARIETY LATTICE OF DMM 98

In the statement of Theorem 4.9(iii)(3), the algebra A cannot always
be chosen finite, in view of the following example.

Example 4.29. The set B = {0} ∪ {2n : n ∈ ω} ∪ {∞} is the universe of
a Dunn monoid B whose lattice order is the conventional total order, and
whose fusion is ordinary multiplication on the finite elements of B, while
0 ·∞ = 0 and b ·∞ = ∞ whenever 0 6= b ∈ B (hence e = 1). For finite
nonzero b, c ∈ B, the value of b→ c is c/b if b divides c; otherwise it is 0. It
is well known that there is a unique totally ordered De Morgan monoidA∞,
having B as an RL-subreduct and having exactly the additional elements
indicated and ordered below:

0 < 1 < 2 < 4 < 8 < 16 < . . . < ¬16 < ¬8 < ¬4 < ¬2 < ¬1 <∞.

Here, b · ¬c = ¬(b → c) and ¬b · ¬c = ∞ for all finite nonzero b, c ∈ B.
Note that A∞ is generated by 2. The subalgebra of A∞ on {0, 1,¬1,∞} is
isomorphic to C4. Clearly, A∞ is simple, so A∞ /∈ W, whence A∞ is not
the reflection of a Dunn monoid.

By Corollary 2.17, every SI algebra C ∈ V(A∞) embeds into an ul-
trapower of A∞, and it is easily deduced that C contains an isomorphic
copy of A∞, unless C ∼= C4 (take the subalgebra generated by an ele-
ment a ∈ C \ C4 for which a2 6= f 2). In particular, 2,S3,D4 /∈ V(A∞),
and V(A∞) is not generated by its finite members. This establishes that
V(A∞) is a join-irreducible cover of V(C4) within DMM, exemplifying The-
orem 4.9(iii)(3), and that V(A∞) is not finitely generated.

Actually, A∞ embeds naturally into an ultraproduct of the algebras
Ap (p a positive prime) from Example 4.25, so V(A∞) is contained in the
varietal join of the V(Ap).

4.5 Covers of V(D4)

Suppose D4 is a subalgebra of an FSI De Morgan monoid A. Then A is the
disjoint union of the anti-isomorphic sublattices [e) and (f ] of 〈A;∧,∨〉, by
Theorem 2.43. Consequently, if A is finite, then |A| is even. Also, if A is
simple (cf. Theorem 4.9(iv)), then it is anti-idempotent, by Lemma 3.2(iii).
When A is both finite and simple, then D4 is the sole proper subalgebra
of A iff V(A) is a cover of V(D4) within DMM, in which case V(A) is
join-irreducible (the arguments being just as for C4).

Example 4.30. Each of the simple De Morgan monoids depicted below
generates a cover of V(D4) within DMM, witnessing Theorem 4.9(iv). Up
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to isomorphism, they are the only two such algebras on 6 elements. (The
one on the left is a subalgebra of the eight-element ‘Belnap lattice’; it is
obtained by removing from that structure the elements labeled 2 and −2
in [1, p. 252]. The one on the right is isomorphic to the algebra B2 in
Example 4.31 below.)

s
�s
�s s�s
�s
@@
@@@
@

f2 = f · ¬a

e

a2 = a
f

¬(f2)

¬a = (¬a)2 = a · ¬a

s
�s

�s s�s
�s
@@

@@@
@

f2 = a2 = f · ¬a

e

a
f = (¬a)2 = a · ¬a

¬(f2)

¬a

In analogy with the case of C4, there are infinitely many finitely gen-
erated covers of V(D4) within DMM, as well as a cover that is not finitely
generated (nor even generated by its finite members). This is shown by the
next two examples.

Example 4.31. For each positive integer p, it can be checked that there
is a unique rigorously compact (simple) De Morgan monoid Bp having the
labeled Hasse diagram and fusion indicated below, where it is understood
that m,n, k, ` ∈ ω with m,n ≤ p and k, ` < p.

Bp :

q q qq q
q s¬4
@@

s2p−2

��

s¬2
@@

s2p−1

�� ��

�� s¬1 = f
@@

s2p = f2

s¬(2p−2)

s4
@@

��s¬(2p−1)

��s2
@@��

��s
0 = ¬(f2)

@@

se = 1

2m · 2n = 2min{m+n,p}

2m · ¬(2`) =

{
¬(2`−m) if ` ≥ m;

2p if ` < m.

¬(2k) · ¬(2`) =

{
¬(2k+`−p) if k + ` ≥ p;

2p if k + ` < p.
.

The subalgebra of Bp on {0, 1,¬1, 2p} may be identified with D4.
Now suppose p is prime. We claim that Bp has no proper subalgebra

other than D4. It suffices (by involution properties) to show, by induction
on k, that 2 ∈ Y := SgBp{2k} for each positive integer k < p. The base
case is trivial, so let k > 1. As k does not divide p, we have r := p− kn ∈
{1, 2, . . . , k − 1} for some positive integer n, so ¬(2p−r) = ¬(2kn) ∈ Y ,
whence 2r = e ∨ ¬(2p−r) ∈ Y . By the induction hypothesis, 2 ∈ SgBp{2r},
so 2 ∈ Y , completing the proof. Thus, V(Bp) is a cover of V(D4) within
DMM and, by Jónsson’s Theorem 1.23, V(Bp) 6= V(Bq) for distinct primes
p, q.
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Example 4.32. In each Bp above, the element e has a unique cover. That
is a first order property, so it persists in the rigorously compact simple
ultraproduct

∏
pBp/F , for each nonprincipal ultrafilter F over the set of

positive primes. By similar applications of  Los’ Theorem 1.8, in any such
ultraproduct, the rigorously compact simple subalgebra B∞ generated by
the cover of e (still denoted by 2) has the infinite lattice reduct shown in
the next diagram, and its fusion is determined by the following additional
information, where m,n are positive integers:

f · x = f 2 whenever x ∈ B∞ \ {0, e}
2m · 2n = 2m+n

2m · 2n = 2m+n = 2m · 2n

¬(2m) · ¬2n = f 2 = ¬2m · ¬2n = ¬(2m) · ¬(2n)

2m · ¬2n =

{
¬2n−m if m ≤ n
f 2 if m > n

}
= 2m · ¬(2n) = 2m · ¬(2n) = 2m · ¬2n.

We claim that V(B∞) is a join-irreducible cover of V(D4) within DMM,
not generated by its finite members. For this, it suffices, as in Example 4.29,
to establish the following.

Fact 4.33. Let D be a subalgebra of an ultrapower of B∞, where D 6∼= D4.
Then B∞ can be embedded into D.

B∞ :

@
@

s8 s
8
q q q s¬8
@@

s¬8q q q ��

s¬4
@@

s¬4
�� ��

s¬2
@@

s¬2
�� ��

�� sf@@

sf2

�
�s
4

�
�s4
@
@

�
�s
2

�
�s2
@
@�

�

�
�s
0 = ¬(f2)

@
@

se

Proof. (Sketch) IdentifyingD4 with the 0-generated subalgebra of the ultra-
power U (and hence of D), we see that D is anti-idempotent, rigorously
compact and simple, and that D is the disjoint union of its subsets [e)
and (f ]. We may choose a ∈ D \ D4, because D 6∼= D4 and D4 is finite.
Membership and non-membership of D4 are first order properties, because
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e is distinguished. We can arrange that

e < a < a2 < f 2,

because the following properties of B∞ are expressible as universal first
order sentences (which therefore persist in both U and D):

x ≈ x2 =⇒ x ∈ D4;

(x /∈ D4 & x2 ≈ f 2) =⇒ e < (e ∨ ¬x) < (e ∨ ¬x)2 < f 2.

(So, we may replace a by e ∨ ¬a ∈ D if a2 = f 2, and by e ∨ a ∈ D if e 6< a
with a2 < f 2.) As 2 generates B∞, there is at most one homomorphism
h : B∞ → D sending 2 to a. To see that h is well defined and injective, it
suffices (by (2.16)) to show that for any unary term α in ·,∧,¬, e, we have

e 6 αB∞(2) iff e 6 αD(a).

This can be shown by induction on the complexity of α. At the inductive
step, the case of ∧ is trivial, while ¬ is straightforward, because D is the
disjoint union of [e) and (f ]. Fusion requires an examination of subcases,
which is aided by noting that B∞ (and hence D) has properties of the
following kind, where n,m, p are any fixed positive integers with p ≥ m:

e < x < x2 < f 2 =⇒ (xm · xn ≈ xm+n & xm · (e∨¬(xp)) ≈ e∨¬(xp−m)).
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The subvariety lattice of De Morgan monoids u
DMMu
U

{trivials}
u

2
u

A∞u A2u A3u A5u · · ·

C4

R(2+) R(S+
3 ) S6(S+

3 ) S6(C+
4 ) S6(T5) S6(T6)

M

u

u

u u u u u u C5u C6u C7u C8u

D4

u

B∞u B2u B3u B5u · · ·

S3

u

S5u
A := V(A)

DMM see p. 36
U see p. 57

M see p. 59
A∞ see p. 98
Ap see p. 95

covers in M see p. 94
C5, . . . ,C8 see p. 65

B∞ see p. 100
Bp see p. 99
Sn see p. 38

atoms see p. 77

Items shown:
the atoms;
join-irreducible (JI)
covers of 2 and of S3;
all covers of C4 in U;
some JI covers of C4 outside U
(infinitely many, not all finitely generated);
similarly for covers of D4.

 
 
 



Chapter 5

Singly generated quasivarieties

In this chapter, we further our understanding of the lattice of varieties
of De Morgan monoids by investigating some of its connections with the
subquasivariety lattice of DMM. When analysing a variety K of De Morgan
monoids, it may help to know, for instance, that every subquasivariety
of K is a variety or, more generally, that each proper subquasivariety of
K generates a proper subvariety of K or—still more generally—that K is a
singly generated quasivariety, i.e., that K = Q(A) for some algebraA. Each
of these properties has a logical significance, as will be explained below.

When a logic is algebraized by a quasivariety K, the derivable rules of
the logic may or may not be determined by a single set of ‘truth tables’,
i.e., by the operation tables of a single algebra A ∈ K. If some member of K
determines the finite rules of the logic, then another member determines all
of the rules (see Remark 5.17), so what is needed is only that K be generated
by a single algebra. Even when K is a variety, it must be generated as a
quasivariety by one of its members, if the generator is to determine rules
(as opposed to theorems only), i.e., K must be singly generated.

Obviously, classical propositional logic (CPL) has this property: its
algebraic counterpart BA is generated as a quasivariety by its unique two-
element member 2. More surprisingly, the same holds for the intuitionistic
propositional logic IPL (though not with a finite algebra), and for the rel-
evance logic R [137], but not for its conservative expansion Rt. In the
intuitionistic case, the algebra determining the (possibly infinite) rules can-
not be countable [151].

Maltsev [89] proved that a quasivariety K is singly generated iff it has
the joint embedding property (JEP), i.e., any two nontrivial members of K
can both be embedded into some third member. By [42, Thm. 3], the JEP
amounts to a syntactic ‘relevance principle’ (Definition 5.12 below), which
stems from the so-called  Loś-Suszko Theorem 5.13.

103
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Various strengthenings of the JEP have received attention in the liter-
ature and they are the focus of this chapter. Their names reflect logical
origins, but we choose maximally transparent characterizations here as def-
initions. One such strengthening, called structural completeness, asks (in
effect) that a quasivariety be generated by its free ℵ0-generated member.
A quasivariety is hereditarily structurally complete if each of its subquasi-
varieties is structurally complete. When a variety K has one of these prop-
erties, the structure of its subvariety lattice is illuminated by the following
characterizations: K is structurally complete [resp. hereditarily structurally
complete] iff each proper subquasivariety of K generates a proper subvariety
of K [resp. each subquasivariety of K is a variety]; see Theorem 5.20.

A weaker variant of structural completeness, now called passive struc-
tural completeness (PSC), amounts to the demand that any two nontrivial
members of K have the same existential positive theory. This hereditary
property still implies the JEP (Theorem 5.19).

When we started to investigate these properties for classes of De Mor-
gan monoids, it became clear that, in many of our results, large parts of the
proofs had a general universal algebraic (or even model-theoretic) charac-
ter. The first two sections of this chapter largely concern such generalities.
Recall that a quasivariety K is called a Kollár quasivariety (Definition 1.16)
if its nontrivial members lack trivial subalgebras. We prove that if such a
quasivariety has the JEP, then its relatively simple members all belong to
the universal class generated by one of them (Theorem 5.7). If, in addition,
K is relatively semisimple, then it is generated (as a quasivariety) by one
K-simple algebra. We prove that a quasivariety of finite type with a finite
nontrivial member is PSC iff its nontrivial members have a common retract
(Theorem 5.28).

Before characterizing the varieties of De Morgan monoids with the JEP
(Theorem 5.37), we describe completely those that are PSC (Theorem 5.34).
The structurally complete varieties of De Morgan monoids fall into two
classes—a denumerable family that is fully transparent and a more opaque
collection of subvarieties of M (see Definition 3.16 and Theorem 3.18).
Within M, however, there are also 2ℵ0 structurally incomplete varieties;
this will be proved in Chapter 7.

We show, in Section 5.3, that in the varietal join J of the six covers of
V(C4) within M, every finite subdirectly irreducible algebra is projective.
It follows that J is (hereditarily) structurally complete.

Some of the results in this chapter can be generalized to a model-
theoretic setting (i.e., they may hold for structures with relations as well
as operations). For consistency, however, we restrict the scope of the cur-
rent discussion to the algebraic setting. (An interested reader may consult
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Moraschini, Raftery and Wannenburg [106] for the more general case.)

5.1 The joint embedding property

Definition 5.1. A class K of similar algebras is said to have the joint
embedding property (JEP) if, for any two nontrivial algebras A,B ∈ K,
there exists C ∈ K such that A and B can both be embedded into C.

For quasivarieties, the characterization of the JEP given below was
proved in [89, Thm. 4] (also see [91, p. 288] or [63, Prop. 2.1.19]).

Theorem 5.2 (Maltsev). A quasivariety K has the JEP iff it is generated
by a single algebra (i.e., there exists A ∈ K such that K = Q(A)).

Additional characterizations of the JEP for a quasivariety K can be
found in [42, Thm. 3] and implicitly in [70, Thm. 1.2]. They include the
following.1

(i) For each set S of nontrivial members of K, there exists a member of
K into which every member of S embeds.

(ii) Whenever Φ and Ψ are universal sentences whose disjunction Φ t Ψ
is true in all nontrivial members of K, then there exists Ξ ∈ {Φ,Ψ}
such that Ξ is true in every nontrivial member of K.

(iii) Whenever Φ and Ψ are existential sentences, each of which is true in
some nontrivial member of K, then their conjunction Φ & Ψ is true
in some nontrivial member of K.

(iv) Whenever Σ is a set of existential sentences, each of which is true in
at least one nontrivial member of K, then there is a nontrivial member
of K in which all sentences from Σ are true.

Easily, (ii) and (iii) follow from the JEP, and (iv) from (i). To prove (i), we
apply the Compactness Theorem 1.10 to Σ ∪ {Diag(A) : A ∈ S}, where Σ
is a set of sentences axiomatizing K and each Diag(A) is the set of atomic

1 In [70], the JEP is formulated for arbitrary first order theories, without the restric-
tion to nontrivial models, and its equivalence with each of (i)–(iv) (likewise unrestricted)
is inferred from a result proved in [153].
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or negated atomic sentences that are true in AA.2 (We arrange first that
the members of S are disjoint.)3

The next result allows us to restrict attention to relatively subdirectly
irreducible algebras when testing a quasivariety for the JEP.

Proposition 5.3. Let K be a quasivariety, and suppose that, whenever
A,B ∈ KRSI, then there exists C ∈ K such that A and B can both be
embedded into C. Then K has the JEP.

Proof. Let A,B ∈ K be nontrivial. Then

A ∈ IPS{Ai : i ∈ I} and B ∈ IPS{Bj : j ∈ J}

for suitable Ai,Bj ∈ KRSI, where I and J are non-empty sets. We may
assume that I ⊆ J . Fixing ` ∈ I and defining Aj = A` for all j ∈ J \ I, we
find that A ∈ IPS{Aj : j ∈ J}. By assumption, for each j ∈ J , there exists
Cj ∈ K such that Aj,Bj ∈ IS(Cj). Then

∏
J Aj and

∏
J Bj both embed

into C :=
∏

J Cj ∈ K, so A,B ∈ IS(C).

Corollary 5.4. The JEP is decidable for finitely generated quasivarieties
of finite type.

Proof. Let K = Q(A1, . . . ,Am), where A1, . . . ,Am are finitely many fi-
nite algebras of finite type. Let A = A1 × . . . × Am, and let k = |A|.
Then V(K) = V(A). For any cardinal n, the free n-generated algebra in
V(A) belongs to K and embeds into the direct power A(kn), so it has at
most f(n) := k(kn) elements. So, every n-generated member of V(K) (in
particular, of K) has at most f(n) elements.

Recall thatQ = IPSSPU, so ifA,B ∈ KRSI, thenA,B ∈ IS(A1, . . . ,Am)
(because the Ai are finite). Therefore, by Proposition 5.3, K has the JEP
iff some C ∈ K contains isomorphic copies of A1, . . . ,Am as subalgebras.
In this case, because K is closed under S, the algebra C can be chosen
n-generated, where n is the (finite) sum of the cardinalities of A1, . . . , Am,
so C can be assumed to have at most f(n) elements. So, the JEP for K
can be settled by taking an arbitrary f(n)-element set X and examining
the members of K whose universes are subsets of X. There are only finitely

2 Recall that atomic formulas in an algebraic language are just equations, so atomic
sentences are equations that contain no variable. Also recall that for A = 〈A;F 〉, the
algebra AA is defined on page 16 to be 〈A;F ∪ A0〉, where A0 consists of the elements
of A, treated as nullary operations on A.

3 In fact, the JEP implies that the (categorical) K-free product of the members of
any set S ⊆ K exists in K, so it can serve as the common extension in (i); see [42, Thm. 3]
and [89, Cor. 3].
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many of these, as K has finite type. Moreover, each candidate for C, being
finite, can be checked mechanically for membership of K, because C is the
domain of only finitely many functions into each of A1, . . . , Am.

Remark 5.5. Let m be the maximum of ℵ0 and the cardinalities of the
respective sets of operation and relation symbols of a quasivariety K with
the JEP. Then K = Q(A) for some structure A for which |A| ≤ m. To see
this, let Σ be the set of all quasi-equations over Var (our denumerable set
of variables) that are not satisfied by K, so |Σ| ≤ m. For each Φ ∈ Σ, we
can choose AΦ ∈ K such that AΦ is finitely generated (whence |AΦ| ≤ m)
and AΦ 6|= Φ. As K has the JEP, {AΦ : Φ ∈ Σ} ⊆ IS(A) for some A ∈ K,
by item (i) after Theorem 5.2. Clearly, we may choose A to be generated
by the union of the images of the structures AΦ, whence |A| ≤ m. Now A
refutes every formula from Σ, whence K = Q(A).

Proposition 5.6. Let K be a quasivariety with the JEP.

(i) ([81]) Any two nontrivial 0-generated members of K are isomorphic.

(ii) If K has a constant symbol, then K is a Kollár quasivariety or every
member of K has a trivial subalgebra.

(iii) Every nontrivial 0-generated member of K is relatively simple.

Proof. (i) Let A,B ∈ K be nontrivial and 0-generated. By the JEP, there
exist C ∈ K and embeddings g : A→ C and h : B → C. As g[A] and h[B]
are 0-generated substructures of C, they coincide, so h−1|h[B] ◦ g : A ∼= B.

(ii) Let c be a constant symbol of K. If A ∈ K has no trivial subalgebra,
then for some basic operation symbol f of A, the equation f(c, c, . . . , c) ≈ c
(briefly, Φ) is false in A. In that case, if B ∈ K has a proper trivial
subalgebra, then Φ is true in B, so A and B have no common extension,
contradicting the JEP.

(iii) Let A ∈ K be nontrivial and 0-generated. Then K has a constant
symbol and A has no trivial subalgebra, so K is a Kollár quasivariety, by
(ii). Therefore, A has a homomorphic image B ∈ KRS, by Corollary 1.18.
Since B is also 0-generated and nontrivial, it is isomorphic to A, by (i), so
A is relatively simple.

The assumption that K has a constant symbol cannot be dropped from
(ii), even when K is a variety (see Example 5.16).

Theorem 5.7. Let K be a nontrivial Kollár quasivariety with the JEP.
Then there is a relatively simple algebra A ∈ K such that ISPU(A) includes
every relatively simple member of K.
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Consequently, Q(KRS) = Q(A), so Q(KRS) also has the JEP.

Proof. For any algebra B, let EPS(B) denote the set of existential positive
sentences that are true in B. As K has the JEP, Theorem 5.2 shows that
K = Q(C) for someC ∈ K. Since K is nontrivial, so isC. By Corollary 1.18,
C has a homomorphic image A ∈ KRS. Observe that

A |= EPS(C), (5.1)

as A ∈ H(C). We claim, moreover, that

C |= EPS(B), for every B ∈ KRS. (5.2)

Indeed, because K = Q(C) = IPSSPU(C), we have KRS ⊆ KRSI ⊆ ISPU(C),
so C ∈ RUEH(B) for all B ∈ KRS. Thus, (5.2) follows from Corollary 1.30.

Now let B ∈ KRS. Then A |= EPS(B), by (5.1) and (5.2), so there is a
homomorphism h : B → U for some ultrapower U of A, by Theorem 1.29.
Since A is nontrivial, so is U . Then h is an embedding, by Fact 1.19, as K
is a Kollár quasivariety. Thus, B ∈ ISPU(A), as claimed.

This shows that Q(KRS) = Q(A), which has the JEP, by Theorem 5.2.

Corollary 5.8. Let K be a nontrivial relatively semisimple Kollár quasi-
variety with the JEP. Then K = Q(A) for some relatively simple A ∈ K.

Proof. This follows from Theorem 5.7, as K = Q(KRSI) and KRSI = KRS.

Corollary 5.9. Let K be a nontrivial Kollár quasivariety with the JEP. If
the class of all relatively simple members of K is elementary, then it too
has the JEP.

Proof. Let A,B ∈ KRS. By Theorem 5.7, there exist C ∈ KRS and embed-
dings A → U and B → V , where U ,V ∈ PU(C). Because U and V are
elementarily equivalent, some ultrapower W of U is isomorphic to an ul-
trapower of V , by the Keisler-Shelah Theorem 1.11, and of course W ∈ K.
Then A and B both embed into W . Moreover, as W is elementarily
equivalent to C, and as KRS is elementary, W ∈ KRS.

In view of Theorem 5.2 and Corollary 5.8, it is natural to ask whether a
quasivariety with the JEP must be generated by a relatively finitely subdi-
rectly irreducible algebra. This is not the case, as the next example shows
(also see Example 5.40).
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Example 5.10. The Dunn monoid reduct of a De Morgan monoid A shall
be denoted by A+. We then denote by X(A) the De Morgan monoid that
extends the reflection R(A+) by just one element x, where a < x < b′ for
all a, b ∈ A, and x · ¬(f 2) = ¬(f 2) and x = ¬x = x · c and x · d = f 2

whenever ¬(f 2) < c 6 x < d 6 f 2. (It is easily checked that this X(A) is
indeed a De Morgan monoid, with R(A+) ∈ S(X(A)).)

Let K = V(X(2 × S3)). As K is generated by one finite algebra, its
finitely subdirectly irreducible members are finite and can be computed
mechanically, by Jónsson’s Theorem 1.23. None of them has the property
that its HS-closure contains all the others, but all of them embed into
X(2 × S3) (excepting the trivial algebra). Therefore, K is not generated
as a variety by a single (finitely) subdirectly irreducible algebra, but K =
Q(X(2× S3)), so K has the JEP, by Theorem 5.2.

Theorem 5.11. Let K be a variety with EDPC (defined on page 15), and
A ∈ K a simple algebra. Then V(A) = Q(A), so the variety V(A) has the
JEP.

Proof. As K has EDPC, its class of simple members is closed both under
PU and (by the CEP) under nontrivial subalgebras (see Theorem 1.25).
So, when A ∈ K is simple, the nontrivial members of HSPU(A) belong to
ISPU(A). In this case, by Jónsson’s Theorem 1.23, V(A) = Q(A), which
has the JEP, by Theorem 5.2.

Recall from Section 2.3 (page 35) that every variety of De Morgan
monoids has EDPC. By Theorem 4.9, every join-irreducible cover of an
atom in the lattice of subvarieties of DMM that is not contained in U or
OSM is generated as a variety by a simple algebra, and therefore has the
JEP. We shall give a full characterization of the join-irreducible covers with
the JEP in Corollary 5.39.

The JEP has a syntactic meaning in algebraic logic. For a set Γ of
formulas, we denote by Var(Γ) the set of all variables x such that x occurs
in at least one member of Γ.

Definition 5.12. A finitary deductive system ` is said to respect the ab-
stract relevance principle if the following is true whenever Γ∪∆∪ {α} is a
finite set of formulas, with Var(∆)∩Var(Γ∪{α}) = ∅, and ∆ is consistent
over ` (i.e., there exists a formula β such that ∆ 0 β):

if Γ ∪∆ ` α, then Γ ` α.

The  Loś-Suszko Theorem 5.13 ([82, p. 182], corrected in [149]). Let `
be a finitary deductive system that is algebraized by a quasivariety K. Then
` respects the abstract relevance principle iff K is singly generated.
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(More exactly, this ‘bridge theorem’ is the specialization of the  Loś-
Suszko Theorem to elementarily algebraizable finitary logics. Variants of
the  Loś-Suszko Theorem for special families of deductive systems are dis-
cussed in [3, 51, 75, 84, 86, 137].)

We say that a quasivariety K respects the abstract relevance principle
when its equational consequence relation |=K satisfies the conditions of
Definition 5.12, where ‘formulas’ are replaced there by ‘equations’. The
following result is therefore (via Theorem 5.2) an analogue of the  Loś-Suszko
Theorem for the equational consequence relations of quasivarieties.

Theorem 5.14 ([42]). A quasivariety has the JEP iff it respects the abstract
relevance principle.

Proof. (⇒) This follows from item (ii) after Theorem 5.2, because quasi-
equations are essentially disjunctions, and because the sentences ∀x̄ (Φ tΨ)
and (∀x̄Φ)t (∀x̄Ψ) are logically equivalent when Φ and Ψ involve different
variables and are quantifier-free.

(⇐) If A,B are disjoint nontrivial members of a quasivariety K, then
the respective identity functions on A and B extend to surjective homo-
morphisms πA : F K(A) → A and πB : F K(B)→ B (recalling that F K(X)
denotes a member of K that is K-free over X). In F := F K(A ∪ B), let θ
be the K-congruence generated by the union of the kernels of πA and πB,
and let C = F /θ, so C ∈ K. The map hA : a 7→ a/θ [resp. hB : b 7→ b/θ] is
a homomorphism from A [resp. B] into C. To prove the injectivity of hA
suppose that a/θ = a′/θ. Then ΘF

K (a, a′) ⊆ θ = ΘF
K (kerπA∪ kerπB). By the

algebraicity of the lattice ConK(F ) (Lemma 1.13), there is a finite set Y ⊆
kerπA ∪ kerπB, such that ΘF

K (a, a′) ⊆ ΘF
K Y . We then apply Lemma 1.14

and the abstract relevance principle to show that 〈a, a′〉 ∈ kerπA, which
implies that a = a′. The argument for hB is the same.

Definition 5.15. A relevant algebra is an e-free subreduct of a De Morgan
monoid (i.e., a subalgebra of the reduct 〈A; ·,∧,∨,¬〉 of some A ∈ DMM).

These algebras form a variety RA, algebraizing the t-free fragment R of
Rt (see Section 1.2). A finite equational basis for RA is given in [47] (also
see [41], [69, Cor. 4.11] and [103, Sec. 7]). Note that Boolean algebras may
be regarded as relevant algebras, since they satisfy e ≈ x ∨ ¬x.

As we mentioned in the introduction, relevance logic was originally de-
signed to avoid the paradoxes of material implication, as exemplified by
the weakening axiom p→ (q → p). The relevance logicians wanted a logic
where α would imply β only if α is relevant to β. This demand found its
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expression in the form of a variable sharing principle, called the (concrete)
relevance principle, which holds for ‘relevant’ implication:

if `R α→ β, then α and β have a common variable [5]. (5.3)

The corresponding claim for Rt is false, for example, Rt satisfies axiom
A11 (t→ (p→ p)) of Definition 1.42. Although a study of RA accom-
modates the relevance principle, it has some forbidding features for the
algebraist. It lacks the congruence extension property (CEP) [35], whereas
DMM has EDPC, and therefore the CEP. Also, De Morgan monoids have
much in common with abelian groups (the residual being a partial surrogate
for multiplicative inverses), but relevant algebras are less intuitive, being
semigroup-based, rather than monoid-based. Finally, the study of De Mor-
gan monoids can simplify the analysis of relevant algebras; see for example
[103, Sec. 7].

Since RA lacks the CEP, it does not have EDPC, by Theorem 1.25.
Therefore, R does not have a deduction-detachment theorem, by Theo-
rem 1.41. The relevance principle (5.3) is therefore tied to the connective
→, and it does not lead straightforwarly to a proof of the abstract relevance
principle for R (and RA). Nevertheless, we have:

Example 5.16. The variety RA respects the abstract relevance principle
of Definition 5.12, by [84, Thm. 6].4 Therefore, RA has the JEP, by Theo-
rem 5.14. In other words (by Theorem 5.2), RA = Q(A) for some A (cf.
[137, Thm. 5]). By the  Loś-Suszko Theorem 5.14, therefore, R respects not
only the relevance principle, but the abstract relevance principle as well.

In contrast, the abstract relevance principle fails for Rt, because DMM
lacks the JEP (by Proposition 5.6(i), as it has non-isomorphic 0-generated
nontrivial members).

Because 2 has no trivial subalgebra, while the e-free reduct of S3 has
a trivial subalgebra (and so belongs to no Kollár quasivariety), RA would
violate Proposition 5.6(ii) if we dropped the demand there for a constant
symbol in the signature.

In the variety K generated by the (simple) relevant algebra reducts of C4

and D4, these reducts and 2 are the only subdirectly irreducible algebras,
by Jónsson’s Theorem 1.23. Thus, K is a Kollár variety that lacks the JEP,
by Theorem 5.7. This shows that the JEP is not a hereditary property.

4It should be noted here that every finite set of equations in the signature of RA is
consistent over RA, as follows from a consideration of the locally finite e-free reduct of
the odd Sugihara monoid Z.
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Remark 5.17. For a class K of similar algebras, let U(K) be the class of all
algebras B such that every |Var |-generated subalgebra of B belongs to K.
In general, UISP(K) ⊆ Q(K), and the two need not be equal. Now suppose
K is a quasivariety with the JEP. Then K = UISP(A) for some A ∈ K, by
item (i) after Theorem 5.2, because the |Var |-generated members of K form
a set, up to isomorphism. Thus, if we allowed quasi-equations (over Var)
to have infinitely many premises, their validity in A would still entail their
validity throughout K. In fact, if we generalized Definition 5.12 to arbitrary
sets Γ ∪∆ of formulas, then Theorem 5.14 would remain true. This point
is made in [42, Thm. 3(vi)].

We shall see in Examples 5.31 that the variety HA of Heyting algebras
has the JEP. When HA is represented as Q(C) = UISP(D), the algebra C
can be chosen countable (by Remark 5.5), but D cannot (see [151]).

5.2 Passive structural completeness

Recall Corollary 1.31, which states that the following (hereditary) demands
on a quasivariety K are equivalent.

(i) The nontrivial members of K all satisfy the same existential positive
sentences.

(ii) For any two nontrivial members of K, each can be mapped homomor-
phically into an ultrapower of the other.

Definition 5.18. A quasivariety is said to be passively structurally com-
plete (PSC) if it satisfies the equivalent conditions of Corollary 1.31. (The
reasons for this name will emerge from remarks made after Definitions 5.21
and 5.23.)

Because the JEP need not persist in subvarieties (see Example 5.16),
the following result is of interest.

Theorem 5.19. If a quasivariety is PSC, then it has the JEP, and so do
all of its subquasivarieties.

Proof. LetA,B be nontrivial members of a PSC quasivariety K. Then there
are homomorphisms f : A→ Bu and g : B → Au, for suitable ultrapowers
Au and Bu of A and B, respectively. Recall that there are (elementary)
embeddings eA : A→ Au and eB : B → Bu. Consider the maps

〈eA, f〉 : A→ Au ×Bu and 〈g, eB〉 : B → Au ×Bu
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defined by the following rules: for every a ∈ A and b ∈ B,

〈eA, f〉(a) = 〈eA(a), f(a)〉 and 〈g, eB〉(b) = 〈g(b), eB(b)〉.

Clearly, 〈eA, f〉 and 〈g, eB〉 are embeddings, so A,B ∈ IS(Au ×Bu), and
Au×Bu ∈ Q(A,B) ⊆ K. Thus, K has the JEP, as do its subquasivarieties,
in view of the argument—or by heredity of the PSC condition.

Recall that every variety K is generated by its free ℵ0-generated alge-
bra, i.e., K = V(F K(ℵ0)), but K need not coincide with the quasivariety
Q(F K(ℵ0)) (which has the JEP, by Theorem 5.2).

Theorem 5.20 ([6, Prop. 2.3]). The following conditions on a quasivariety
K are equivalent.

(i) K = Q(F K(ℵ0)).

(ii) Whenever K′ is a proper subquasivariety of K, then K′ and K generate
distinct varieties, i.e., H(K′) ( H(K).

(iii) For each quasi-equation (ϕ1 ≈ ψ1 & · · · & ϕn ≈ ψn) =⇒ ϕ ≈ ψ that
is invalid in (some member of ) K, there exists a substitution h (i.e.,
an endomorphism of the absolutely free algebra over Var) such that
K |= h(ϕi) ≈ h(ψi) for i = 1, . . . , n, but K 6|= h(ϕ) ≈ h(ψ).

Definition 5.21. A quasivariety K is said to be structurally complete (SC)
if it satisfies the equivalent conditions of Theorem 5.20. It is hereditarily
structurally complete (HSC) if, in addition, its subquasivarieties are all SC.

In particular, a variety K is SC iff each of its proper subquasivarieties
generates a proper subvariety of K; it is HSC iff its subquasivarieties are all
varieties [6, Prop. 2.4]. Note that Theorem 2.28 therefore states that the
variety OSM of odd Sugihara monoids is HSC.

Theorem 5.22 (Gorbunov [61]; also see [112, Sec. 9]). A locally finite
variety K is HSC iff every finite SI member of K embeds into each of its
homomorphic pre-images in K.

The logical significance of these notions is as follows: when a quasivariety
K algebraizes a finitary logic `, then K is SC iff every proper extension of
` has some new theorem (as opposed to having nothing but new derivable
rules); K is HSC iff every extension of ` is an axiomatic extension (see
page 21, and, for instance, [113]).

 
 
 



CHAPTER 5. SINGLY GENERATED QUASIVARIETIES 114

Every SC quasivariety K is PSC in the sense of Definition 5.18. Indeed, if
A,B ∈ K are nontrivial, thenA has a homomorphic image C ∈ KRSI, while
B is an extension of a 1-generated homomorphic image of F K(ℵ0), so it suf-
fices to show that F K(ℵ0) satisfies the existential positive sentences that are
true in C. This is indeed the case, by Theorem 1.29, as C ∈ ISPU(F K(ℵ0))
(because K = IPSSPU(F K(ℵ0)), by Theorem 5.20(i)). Alternatively, con-
dition (iii) of Theorem 5.20 clearly entails the characterization of passive
structural completeness in Theorem 5.24 below.

The above argument and Theorem 5.19 establish the implications

HSC =⇒ SC =⇒ PSC =⇒ JEP,

none of which is reversible. A variety of lattices that is SC but not HSC
is exhibited in [6, Ex. 2.14.4]. It is well known (and follows, for instance,
from [102]) that the variety of Heyting algebras is not SC, but it is PSC
(see Examples 5.31). As we noted in Example 5.16, RA has the JEP, but it
is not PSC. In fact, RA has no nontrivial PSC subvariety, other than V(2)
[121, Thm. 6].

Definition 5.23. A set Γ of equations in the signature of a quasivariety
K is said to be unifiable over K if there is a substitution h such that K |=
h(ϕ) ≈ h(ψ) for every equation ϕ ≈ ψ from Γ. A quasi-equation

(ϕ1 ≈ ψ1 & · · · & ϕn ≈ ψn) =⇒ ϕ ≈ ψ

in the same signature is said to be active [resp. passive] over K if its set of
premises {ϕi ≈ ψi : i = 1, . . . , n} is [resp. is not] unifiable over K.

The next result amplifies the logical meaning of passive structural com-
pleteness. (It strengthens an earlier finding of Bergman [6, Thm. 2.7].)

Theorem 5.24 (Wroński [152, Fact 2, p. 68]). A quasivariety K is PSC iff
every quasi-equation that is passive over K is valid in (all members of) K.

Theorem 5.24 motivates the ‘passive’ terminology used above, which is
adapted from [30]. A complementary demand, now called ‘active struc-
tural completeness’ (ASC) and analysed in [26, 40], asks that condition (iii)
of Theorem 5.20 should hold for all active quasi-equations; also see [128].
Computational aspects of these notions are explored in [39, 95, 135]. 5

5 Obviously, an ASC quasivariety is SC iff it is PSC. As Corollary 1.31 and Theo-
rems 5.25 and 5.35 (below) do not assume active structural completeness, they cast a
more general light on items 3.2–3.4 and 4.1–4.3 of [26].
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Evidently, a quasi-equation is passive over a quasivariety K iff it is pas-
sive over the variety V(K). It may happen that K is PSC for the vacuous
reason that no quasi-equation is passive over K (as applies, for instance, to
every quasivariety of lattices). The next theorem and its corollary decode
this case in model-theoretic terms. The conditions mentioned in these re-
sults persist, of course, under varietal generation, unlike passive structural
completeness itself.

Theorem 5.25. Let K be a quasivariety. Then the following conditions are
equivalent.

(i) No quasi-equation is passive over K (i.e., every finite set of equations
in the signature of K is unifiable over K).

(ii) K is PSC and is either trivial or not a Kollár quasivariety.

(iii) Every member of K has an ultrapower with a trivial subalgebra.

(iv) F K(1) has an ultrapower with a trivial subalgebra.

Proof. (i)⇒ (ii): Certainly, K is PSC, by (i) and Theorem 5.24. If F K(1) is
trivial, then every member of K has a trivial subalgebra (by Theorem 1.6),
so we may assume that F K(1) is nontrivial.

Let Σ be the set of all existential positive sentences in the first order
signature of K, and let {f1, . . . , fn} be any finite set of basic operation
symbols of K. By (i), the equations fi(x, . . . , x) ≈ x (i = 1, . . . , n) are
unifiable, i.e., there is a term ϕ such that K |= fi(ϕ, . . . , ϕ) ≈ ϕ for i =
1, . . . , n. Identifying variables, we see that ϕ may be chosen unary, whence

F K(1) |= ∃x (x ≈ f1(x, . . . , x) ≈ · · · ≈ fn(x, . . . , x)).

As {f1, . . . , fn} was arbitrary, this implies that F K(1) |= Σ. Let C ∈ K
be trivial. Of course, Σ is the set of all existential positive sentences that
hold in C, so by Theorem 1.29, C can be mapped homomorphically into an
ultrapowerU of F K(1), i.e., U has a trivial subalgebra. Now U is nontrivial
(because F K(1) ∈ IS(U )), so K is not a Kollár quasivariety.

(ii)⇒ (iii): Let A ∈ K. We may assume that K is nontrivial (otherwise,
(iii) is immediate). Then, by (ii), some nontrivial B ∈ K has a trivial
subalgebra C, and K is PSC, so there is a homomorphism h : B → U for
some U ∈ PU(A) (see Corollary 1.31). Now h[C] is a trivial subalgebra of
U .

(iii)⇒ (iv) is immediate, since F K(1) ∈ K.
(iv)⇒ (i): Let U ∈ PU(F K(1)), where U has a trivial subalgebra. Then,

for any finite set Γ of equations in the signature of K, the sentence ∃ ~x
(
& Γ

)
is true in U , so it is true in F K(1). Therefore, Γ is unifiable over K.
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Corollary 5.26. Let K be a quasivariety, either of finite type or whose free
1-generated algebra is finite. Then no quasi-equation is passive over K iff
every member of K has a trivial subalgebra.

Proof. Sufficiency follows from Theorem 5.25. Conversely, suppose that no
quasi-equation is passive over K. Then some ultrapower A of F K(1) has a
trivial subalgebra, again by Theorem 5.25. It clearly suffices to show that
F K(1) has a trivial subalgebra. If F K(1) is finite, then it is isomorphic to
A, and we are done. If the signature of K is finite then, for its models,
the property of having a trivial subalgebra is expressed by an existential
positive sentence (which persists in ultraroots by Theorem 1.8). In that
case, F K(1) has a trivial subalgebra, because A does.

In general, however, the ultrapowers in Theorem 5.25 cannot be elimi-
nated, because of the next example.

Example 5.27. For n ∈ N = {1, 2, 3, . . . }, let fn : N → N be the function
such that fn(m) = m + n for m = 1, . . . , n and fn(m) = m whenever
n < m ∈ N. Let A be the algebra with universe N, whose set of basic
operations is {fn : n ∈ N}, and let K = V(A). In this signature, every term
that is not a variable has the form fi1 . . . fik(x) for some i1, . . . , ik ∈ N.
Therefore, since A generates K, every finite set of equations can be unified
over K by substituting fr(x) for every variable, where r is sufficiently large.
Thus, no quasi-equation is passive over K, butA is a nontrivial member of K
that has no trivial subalgebra. (For each non-principal ultrafilter U over N,
the ultrapower AN/U has a trivial subuniverse, viz. {〈1, 2, 3, . . . 〉/U}.)

In the context of De Morgan monoids, by Corollary 5.26, the subqua-
sivarieties of DMM over which no quasi-equation is passive are exactly the
sub(quasi)varieties of OSM, because every De Morgan monoid with a trivial
subalgebra is an odd Sugihara monoid, by Theorem 2.25.

The next result identifies the PSC quasivarieties of finite type containing
at least one finite nontrivial algebra. (It strengthens Lemma 3.8.)

Theorem 5.28. Let K be a quasivariety of finite type, with a finite non-
trivial member. Then the following conditions are equivalent.

(i) K is PSC.

(ii) The nontrivial members of K have a common retract.

(iii) Each nontrivial member of K can be mapped homomorphically into
every member of K.
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In this case, the nontrivial members of K have a finite common retract that
has no nontrivial proper subalgebra and is either trivial or relatively simple.

Moreover, when K is PSC, its nontrivial members have at most one
nontrivial common retract, and they have at most one 0-generated common
retract (up to isomorphism).

Proof. By assumption, K has a finite nontrivial member, and that algebra
has a relatively simple (finite nontrivial) homomorphic image A ∈ K, by
Theorem 1.15(ii).

(i)⇒ (ii): Possession of a trivial subalgebra is expressible, over K, by
an existential positive sentence, because K has finite type. Therefore, since
K is PSC, if some nontrivial member of K has a trivial subalgebra, then
so does every member of K. In that case, every member of K has a trivial
retract.

We may therefore assume that K is a Kollár quasivariety. In particular,
A has no trivial subalgebra. To complete the proof of (ii), we shall show
that A is a retract of every nontrivial member of K.

Accordingly, let B ∈ K be nontrivial, so B has no trivial subalgebra.
SinceA is finite and of finite type, there is an existential positive sentence Φ
such that an algebra in the signature of K satisfies Φ iff it has a subalgebra
that is a homomorphic image of A. As Φ is true in A, it is true in B,
because K is PSC (and since A and B are nontrivial). Therefore, there
is a homomorphism g : A → B. As A is relatively simple and B has no
trivial subalgebra, g is an embedding, by Fact 1.19. Moreover, since K is
PSC, there is a homomorphism h from B into an ultrapower of A, but A
is finite, so h : B → A. Thus, h ◦ g is an endomorphism of A.

Because A has no trivial subalgebra, the argument for the injectivity of
g applies equally to h ◦ g. Then, since h ◦ g is an injection from the finite
set A to itself, it is surjective, i.e., h ◦ g is an automorphism of A.

As the automorphism group of A is finite, (h ◦ g)n+1 = idA for some
n ∈ ω. Then, for the homomorphism k := g ◦ (h ◦ g)n : A → B, we have
h ◦ k = (h ◦ g)n+1 = idA. Thus, A is a retract of B, as claimed.

We have shown that a finite common retract A′ of the nontrivial mem-
bers of K exists and can be chosen relatively simple or trivial. Being finite,
A′ cannot be a retract of a proper subalgebra of itself, so it has no such
nontrivial subalgebra. In particular, if A′ is nontrivial, then it is isomor-
phic to any other nontrivial common retract of the nontrivial members of
K. Consequently, if A′ is 0-generated, then it is isomorphic to any other
common retract of the nontrivial members of K, because it is either trivial
or has no trivial subalgebra.

 
 
 



CHAPTER 5. SINGLY GENERATED QUASIVARIETIES 118

(ii)⇒ (iii): Let C,D ∈ K, where C is nontrivial. We may assume
that D is nontrivial, so there is a common retract A of C,D, by (ii). Then
there exist a surjective homomorphism C → A and an embedding A→D,
whose composition is a homomorphism C →D.

(iii)⇒ (i): Let C,D ∈ K be nontrivial. By (iii), C can be mapped
homomorphically into (an ultrapower of) D, so K is PSC.

Note 5.29. In Theorem 5.28, the finiteness of the signature and the pres-
ence of a finite nontrivial algebra in K are needed only for the implication
(i)⇒ (ii).

It follows easily from Theorem 5.28(iii) that passive structural complete-
ness is a decidable property for finitely generated quasivarieties of finite
type. Also, Theorem 5.28(iii) amounts to the demand that each nontrivial
member of K is a retract of its direct product with any member of K.

Recall that the quasivariety N, from Definition 3.5, comprises all De
Morgan monoids that are either trivial or have C4 as a retract. So, it
follows from Theorem 5.28 that N is PSC, as are all of its subquasivarieties
(including its largest subvariety M; see Theorem 3.18).

Corollary 5.30. Let K be a PSC Kollár quasivariety of finite type, with
a finite nontrivial member. Then K has a unique relatively simple member
(up to isomorphism), and that algebra is a finite common retract of the
nontrivial members of K.

Proof. This follows from Theorem 5.28, because a relatively simple member
of a Kollár quasivariety is isomorphic to each of its retracts (by Fact 1.19).

Examples 5.31. It follows from Theorem 5.28 (and Note 5.29) that every
variety consisting of groups or of Heyting algebras is PSC (and therefore has
the JEP, by Theorem 5.19). Indeed, every group has a trivial retract, while
the two-element Boolean algebra is a retract of every nontrivial Heyting
algebra. The class of all distributive lattices is a PSC variety whose non-
trivial members have both a trivial and a nontrivial common retract, the
latter being the two-element lattice (see [7, Cor. 2.45]). In Corollary 5.30,
we cannot drop the demand that K be a Kollár quasivariety, as the variety
of abelian groups satisfies the other hypotheses, but includes all the simple
groups Zp (p a positive prime).

Notation. For a quasivariety K, with A ∈ K, we define

Ret(K,A) = {B ∈ K : B is trivial or A is a retract of B}.
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(In this notation, N = Ret(DMM,C4).)

Theorem 5.32. Let K be a quasivariety of finite type, and A ∈ K a finite
0-generated algebra.

(i) Ret(K,A) is a PSC quasivariety.

(ii) If A is nontrivial or K is not a Kollár quasivariety, then Ret(K,A)
is a maximal PSC subquasivariety of K.

(iii) If K′ is a maximal PSC subquasivariety of K, and if B′ ∈ K′ is finite
and nontrivial, then K′ = Ret(K,A′), where A′ is the 0-generated
subalgebra of B′.

(iv) Every PSC subquasivariety of K that has a finite nontrivial member
is contained in just one maximal PSC subquasivariety of K.

Proof. Let L = Ret(K,A).
(i) It suffices, by Note 5.29, to show that L is a quasivariety. We can

use the proof of Theorem 3.9 (for N), with A in the role of C4, because in
that proof, we used only the fact that C4 is finite, 0-generated and of finite
type.

(ii) Suppose L ⊆ K′ ⊆ K, where K′ is a PSC quasivariety. Then A ∈ K′.
If A is nontrivial, then Theorem 5.28 applies to K′ (because A is finite)
and it shows that, for every nontrivial C ∈ K′, there are homomorphisms
A→ C and C → A (as K′ is PSC). In this case K′ ⊆ L, by Remark 3.7 (as
A is 0-generated). We may therefore assume thatA is trivial. Now suppose
K is not a Kollár quasivariety. Then A embeds into some nontrivial B ∈ K,
whence B ∈ L, and so B ∈ K′. Thus, K′ is not a Kollár quasivariety. Then
K′ ⊆ L, by Proposition 5.6(ii) and Theorem 5.19.

(iii) Let K′,B′,A′ be as described. By (i), it is enough to show that
K′ ⊆ Ret(K,A′). This will be true if every member of K′ has a trivial
subalgebra (in which case A′ is trivial). We may therefore assume, by
Proposition 5.6(ii) and Theorem 5.19, that K′ is a Kollár quasivariety (as
K′ is PSC). Then A′ is nontrivial, so it is K′-simple, by Proposition 5.6(iii).
Thus, K′ ⊆ Ret(K,A′), by Corollary 5.30.

(iv) follows from Theorem 5.28, together with (i)–(iii).

Notice that N is a maximal PSC subquasivariety of DMM, by Theo-
rem 5.32(ii), since C4 is finite and 0-generated. We shall now show that
every maximal PSC subquasivariety of DMM is Ret(DMM,A) for some 0-
generated De Morgan monoid A.
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Recall from Remark 3.29 that the free 0-generated De Morgan monoid
has 68 factor algebras, no two of which are isomorphic (see the proof of The-
orem 4.6). Let A1, . . . ,A68 denote the factor algebras, where A1 is trivial.
By the Homomorphism Theorem 1.1, these are all of the 0-generated De
Morgan monoids, up to isomorphism. As passive structural completeness
persists in subquasivarieties, the next result is a characterization of the PSC
quasivarieties of De Morgan monoids.

Theorem 5.33. The maximal PSC subquasivarieties of DMM are just the
distinct classes Ret(DMM,Ai), i = 1, . . . , 68, and every nontrivial PSC
quasivariety of De Morgan monoids is contained in just one of these.

Moreover, Ret(DMM,A1) is the variety of odd Sugihara monoids. For
i > 1, each relatively simple member of Ret(DMM,Ai) is isomorphic to
Ai.

Proof. A De Morgan monoid has a trivial subalgebra iff it is an odd Sugihara
monoid, by Theorem 2.11, so Ret(DMM,A1) = OSM, and DMM is not a
Kollár variety. Therefore, Ret(DMM,Ai) is a maximal PSC subquasivariety
of DMM, for i = 1, . . . , 68, by Theorem 5.32(i), (ii). Every maximal PSC
subquasivariety K′ of DMM, other than OSM, has a finite nontrivial member
(viz. the 0-generated subalgebra of any member of K′ \ OSM), so K′ =
Ret(DMM,Ai) for some i ∈ {2, . . . , 68}, by Theorem 5.32(iii), and every
nontrivial PSC subquasivariety of DMM is contained in Ret(DMM,Ai) for
exactly one i ∈ {1, . . . , 68}, by Theorem 5.32(iv). For i > 1, the common
retract Ai of Ret(DMM,Ai) is unique (up to isomorphism) and relatively
simple, by Theorem 5.28, since it is 0-generated and nontrivial.

The PSC subvarieties of DMM are more limited.

Theorem 5.34. Let K be a variety of De Morgan monoids. Then K is
PSC iff one of the following four (mutually exclusive) conditions holds:

(i) K is the variety V(2) of all Boolean algebras;

(ii) K = V(D4);

(iii) K consists of odd Sugihara monoids;

(iv) K is a nontrivial subvariety of M.

Proof. By Theorem 5.33, a nontrivial variety of De Morgan monoids is PSC
iff it lies within Ret(DMM,Ai) for some i ∈ {1, . . . , 68} (in which case i is
unique). This includes all the varieties mentioned in the present theorem,
because 2, C4, D4 and the trivial De Morgan monoid are 0-generated and
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finite. Conversely, consider a nontrivial PSC variety K ⊆ Ret(DMM,Ai).
As Ret(DMM,A1) = OSM, we may assume that i > 1. Theorem 5.33 also
asserts that Ai is relatively simple in the quasivariety Ret(DMM,Ai), so it
is a simple member of K. Therefore, Ai ∈ I(2,C4,D4), by Theorem 3.1. If
Ai
∼= C4 then K ⊆ M, by Theorem 3.18, so supposeAi

∼= 2 [resp.Ai
∼= D4].

Let B ∈ K be subdirectly irreducible. As Ai ∈ H(B), Theorem 3.4 shows
that B ∼= Ai. Consequently, K is V(2) [resp. V(D4)].

Notice that any minimal quasivariety is HSC, and hence (P)SC. Of
the 68 minimal subquasivarieties of De Morgan monoids, the four that
are varieties are generated by simple algebras. This fact instantiates the
following general theorem, in view of Corollary 2.17.

Theorem 5.35. A relatively semisimple quasivariety K is PSC iff it is a
minimal quasivariety or has no passive quasi-equation.

Proof. Sufficiency is obvious. Conversely, let K be PSC and suppose that
some quasi-equation is passive over K. Then K is a nontrivial Kollár qua-
sivariety, by Theorem 5.25. Let A ∈ K be nontrivial. As K is relatively
semisimple, its minimality will follow if we can show that KRS ⊆ Q(A), so
let B ∈ KRS. Since B is nontrivial and K is PSC, there is a homomorphism
h from B into an ultrapower C of A. Of course, C is also nontrivial, so
h is an embedding, by Fact 1.19, because K is a Kollár quasivariety. Thus,
B ∈ IS(C) ⊆ ISPU(A) ⊆ Q(A), as required.

The proof of Theorem 5.35 yields the following.

Corollary 5.36. If a relatively semisimple quasivariety with a passive quasi-
equation is PSC, then it is both a Kollár quasivariety and a minimal qua-
sivariety (and is therefore HSC).

We can now describe the varieties of De Morgan monoids with the JEP.

Theorem 5.37. Let K be a variety of De Morgan monoids. Then K has
the JEP iff one of the following (mutually exclusive) conditions is met.

(i) K is PSC (see Theorem 5.34).

(ii) K = V(A) for some simple De Morgan monoid A such that D4 is a
proper subalgebra of A.

(iii) There exist A,B such that K = Q(B), A is a simple subalgebra of
B, and C4 is a proper subalgebra of A.
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In (iii), ‘K = Q(B)’ can be paraphrased as ‘K = V(B) and every finitely
generated subdirectly irreducible member of HPU(B) belongs to ISPU(B)’.

Proof. Sufficiency follows from Theorems 5.2, 5.19 and 5.11, since DMM
has EDPC.

Conversely, suppose that K has the JEP but is not PSC. Then K is non-
trivial and, by Theorem 5.34, K does not consist solely of Boolean algebras,
nor solely of odd Sugihara monoids. In particular, not every member of
K has a trivial subalgebra. Therefore, K is a Kollár variety, by Proposi-
tion 5.6(ii), so S3 /∈ K. As we observed before Corollary 2.27, every finitely
generated subdirectly irreducible Sugihara monoid that is not a Boolean
algebra maps homomorphically onto S3, so no such algebra belongs to K,
whence every idempotent member of K is Boolean. Consequently, if K has
an idempotent nontrivial member, then the 0-generated subalgebras of its
nontrivial members are all isomorphic to 2, by Proposition 5.6(i). In that
case, K consists of idempotent algebras, by Theorem 2.11, and so coincides
with V(2), a contradiction. This shows that K has no nontrivial idempotent
member.

Being nontrivial, K therefore includes C4 or D4, so I(C4) or I(D4) is
the class of all 0-generated nontrivial members of K, by Proposition 5.6(i).
Also, by Corollary 2.14, K satisfies x 6 f 2 (and hence ¬(f 2) 6 x as well).
On the other hand, K 6⊆ M and K 6= V(D4), by Theorem 5.34, as K is not
PSC.

By Theorem 5.7, there is a simple De Morgan monoid A ∈ K such that

every simple member of K belongs to ISPU(A). (5.4)

By Theorem 5.2, there exists E ∈ K such that K = Q(E) = IPSSPU(E),
whence A ∈ ISPU(E) (as A is simple). Choose B ∈ IPU(E) with A ∈
S(B). As B is an ultrapower of E, we have E ∈ IS(B), whence K = Q(B).

Suppose first that I(C4) is the class of 0-generated nontrivial members
of K. As K is a Kollár variety, the 0-generated subalgebra of A is nontrivial,
so it can be identified with C4. If A = C4, then every simple member of K
is isomorphic to C4, by (5.4), so C4 is a retract of every nontrivial member
of K (by Corollary 1.18 and Remark 3.7), i.e., K ⊆ M, a contradiction. This
shows that C4 is a proper subalgebra of A, so (iii) holds.

We may now assume that I(D4) is the class of 0-generated nontrivial
members of K. Let G be any subdirectly irreducible member of K. Again,
since K is a Kollár variety, the 0-generated subalgebras of A,G are nontriv-
ial, so we may assume that D4 ∈ S(A) ∩ S(G). Therefore, as D4 satisfies
e ∧ f ≈ ¬(f 2), so does G. Consequently, as ¬(f 2) is the least element of
G, it follows from Theorem 2.43 that ¬(f 2) is the sole strict lower bound
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of e in G, whence G is simple, by Lemma 2.16(iv). This shows that K is a
semisimple variety, so K = Q(A), by (5.4). Since K 6= V(D4) = Q(D4), we
must have A 6= D4, and so (ii) holds.

Note that (i) precludes both (ii) and (iii), by Theorem 5.28, because
each of C4,D4 has no retract other than its isomorphic images, and cannot
be a retract of a strictly larger simple algebra. Also, (ii) precludes (iii), by
Proposition 5.6(i), as C4 and D4 are both 0-generated and nontrivial.

Since every variety is generated as such by its finitely generated sub-
directly irreducible members, the paraphrase in the last claim is justi-
fied by Jónsson’s Theorem 1.23, and the fact that HS(P ) ⊆ SH(P ) for
all P ∈ DMM (by Theorem 1.24, because De Morgan monoids have the
CEP).

Corollary 5.38. A variety of Sugihara monoids has the JEP iff it is PSC.

Corollary 5.39. In the lattice of varieties of De Morgan monoids, all but
four of the join-irreducible covers of atoms have the JEP.

Proof. From Theorem 4.9, with four exceptions, each join-irreducible cover
of an atom has the JEP, as it is either a subvariety of M or of OSM (and is
thus PSC) or has the form V(A) for a simple algebraA. The exceptions are
covers of V(C4) that lack the JEP, by Proposition 5.6(i), because they are
the varietal closures of the 0-generated algebras C5, . . . ,C8 (respectively),
each of which has more elements than C4.

We showed in Example 5.10 that V(X(2×S3)) = Q(X(2×S3)). This
instantiates Theorem 5.37(iii), because for the trivial De Morgan monoid
E, the five-element simple algebra X(E) belongs to V(X(2×S3)) and has
C4 as its smallest subalgebra. So, in Theorem 5.37(iii), it can happen that
K is not generated, even as a variety, by one finitely subdirectly irreducible
algebra, and that remains the case when K = Q(B) for some finite B.

As cases (i) and (iii) of Theorem 5.37 are mutually exclusive, the variety
V(X(2×S3)) is not PSC. But it is still the case that a PSC variety (which
has the JEP, by Theorem 5.19) need not be generated as a quasivariety by
a finitely subdirectly irreducible algebra, as the next example shows.

Example 5.40. Let K = V(A,B), where A and B are the only two non-
isomorphic subdirectly irreducible five-element Heyting algebras (depicted
below). s

s��s@@s
@@s��
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Like every variety of Heyting algebras, K is PSC and therefore has the JEP
(see Examples 5.31). Suppose K = Q(C), where C is finitely subdirectly
irreducible. By Jónsson’s Theorem 1.23, C ∈ HSPU(A,B) = HS(A,B)
(as A and B are finite), whence |C| ≤ 5. Now A and B are subdirectly
irreducible members of Q(C) = IPSSPU(C), so A,B ∈ ISPU(C) = IS(C)
(as C is finite). Since |C| ≤ |A| , |B|, this forces A ∼= C ∼= B, a contra-
diction. Thus, no finitely subdirectly irreducible algebra generates K as a
quasivariety.

5.3 Structural completeness

Recall that the four minimal varieties of De Morgan monoids are minimal
as quasivarieties (see Theorem 4.5). In particular, V(2), V(C4) and V(D4)
are HSC, and so is OSM (because of Theorem 2.28).

By Theorem 5.34, every remaining SC variety of De Morgan monoids
must be a subvariety of M. We shall see, in Section 7.1, that there is also
a continuum of structurally incomplete subvarieties of M. This shows that
M and the quasivariety N are not HSC. (We conjecture that M and N are
not SC.)

Recall from Theorem 4.23 that, in the lattice of subvarieties of M,
the unique atom V(C4) has just six covers. We shall now show that
the varietal join of those six covers is HSC. To facilitate the proof, let
G1, . . . ,G6 abbreviate the six algebras mentioned in Theorem 4.23, so that
V(Gi), i = 1, . . . , 6, are the covers of V(C4) within M. Their varietal join
V(G1, . . . ,G6) is locally finite, like any finitely generated variety (Theo-
rem 1.20). For each i ∈ {1, . . . , 6}, recall that Gi and C4 are the only
subalgebras of Gi and are also, up to isomorphism, the only nontrivial
homomorphic images of Gi (because |(e]| = 3 in Gi). By Jónsson’s Theo-
rem 1.23,

if ∅ 6= X ⊆ {G1, . . . ,G6,C4}, then V(X)SI = I(X ∪ {C4}). (5.5)

Lemma 5.41. Let Z1, . . . ,Zn ∈ {G1, . . . ,G6,C4}, where 0 < n ∈ ω.
Then Z1, . . . ,Zn are retracts of each algebra that embeds subdirectly into∏n

i=1Zi.

Proof. The proof is by induction on n. The case n = 1 is trivial, so let
n > 1. For Z :=

∏n
i=1Zi, suppose that A ∈ S(Z) and that πi[A] = Zi for

each canonical projection πi : Z → Zi.
Let B = π[A], where π : Z →

∏n−1
i=1 Zi is the homomorphism

〈z1, . . . , zn−1, zn〉 7→ 〈z1, . . . , zn−1〉.
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Then B embeds subdirectly into
∏n−1

i=1 Zi, so by the induction hypothesis,

Z1, . . . ,Zn−1 are retracts of B. (5.6)

Also, A embeds subdirectly into B ×Zn and shall be identified here with
the image of the obvious embedding.

By Fleischer’s Lemma 1.28 (and since IRLs are congruence permutable),
there exist an algebra C and surjective homomorphisms g : B → C and
h : Zn → C such that

A = {〈x, y〉 ∈ B × Zn : g(x) = h(y)}. (5.7)

As C ∈ H(Zn), we may assume that C is Zn or C4 or a trivial algebra.
If C is trivial, then A = B ×Zn, by (5.7), so the retracts of A include

B and Zn (by Remark 3.6) and hence all of Z1, . . . ,Zn, by (5.6).
If C = Zn � C4, then h is an isomorphism and

Zn ∈ H(B) ⊆ HPS(Z1, . . . ,Zn−1) ⊆ V(Z1, . . . ,Zn−1),

but Zn is SI, so Zn ∈ I(Z1, . . . ,Zn−1), by (5.5), whence Z1, . . . ,Zn are
retracts ofB, by (5.6). In this case, therefore, it suffices to show that B is a
retract ofA. As idB : B → B and h−1◦g : B → Zn are homomorphisms, so
is the function k : B → B×Zn defined by x 7→ 〈x, h−1g(x)〉, and k[B] ⊆ A,
by (5.7). Obviously, π ◦ k = idB, so π|A is the desired retraction.

We may therefore assume, for the remainder of the proof, that C = C4.
First, let i ∈ {1, . . . , n−1}. By (5.6), there are homomorphisms r : Zi →

B and s : B → Zi (and hence s ◦ π|A : A→ Zi) with s ◦ r = idZi . Because
g◦r : Zi → C4 ∈ S(Zn) is a homomorphism, so is the map p : Zi → B×Zn

defined by x 7→ 〈r(x), gr(x)〉. Now h|C4 is an endomorphism of C4, which
can only be idC4 , so gr(x) = hgr(x) for all x ∈ Zi, whence p[Zi] ⊆ A, by
(5.7). Clearly, s ◦ π|A ◦ p = idZi , so Zi is a retract of A.

It remains to show that Zn is a retract of A. As h : Zn → C4 ∈
S(B) is a homomorphism, so is the function t : Zn → B × Zn given by
x 7→ 〈h(x), x〉. Since the endomorphism g|C4 of C4 is the identity map, we
have gh(x) = h(x) for all x ∈ Zn. Therefore, t[Zn] ⊆ A, by (5.7), while
πn|A ◦ t = idZn .

A member of a variety K is said to be projective in K if it is a retract of
each of its homomorphic pre-images in K. It follows that a finitely generated
member of K is projective in K iff it is a retract of its finitely generated
homomorphic pre-images in K (see for instance [112, Lem. 8.2]).

Theorem 5.42. In the variety V(G1, . . . ,G6), every finite subdirectly ir-
reducible algebra E is projective.
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Proof. Let A ∈ J := V(G1, . . . ,G6) be a finitely generated homomorphic
pre-image of E. Then A is finite (as J is locally finite) and nontrivial.
Also, JSI = I(G1, . . . ,G6,C4), by (5.5), and there are only finitely many
maps from A to members of {G1, . . . ,G6,C4}. Therefore, by Birkhoff’s
Subdirect Decomposition Theorem 1.3, there exist an integer n > 0 and (not
necessarily distinct) algebras Z1, . . . ,Zn ∈ {G1, . . . ,G6,C4} such that A
embeds subdirectly into

∏n
i=1Zi. By Lemma 5.41, Z1, . . . ,Zn are retracts

of A. Now E is an SI member of HPS(Z1, . . . ,Zn) ⊆ V(Z1, . . . ,Zn), so
E ∈ I(Z1, . . . ,Zn,C4), by (5.5). As C4 is a retract of each nontrivial
member of M, this show that E is a retract of A, and hence that E is
projective in J.

Theorem 5.43. Every subquasivariety of V(G1, . . . ,G6) is a variety, i.e.,
V(G1, . . . ,G6) is HSC.

Proof. Since V(G1, . . . ,G6) is locally finite (by Theorem 1.20), it is enough
to show, by Theorem 5.22, that every finite SI member of V(G1, . . . ,G6)
embeds into each of its homomorphic pre-images. But this follows immedi-
ately from Theorem 5.42.

Theorem 5.43 shows that not only is each V(Gi) (i = 1, . . . , 6) a cover
of V(C4) in the subvariety lattice of DMM (Theorem 4.23), but each is a
cover of V(C4) in the subquasivariety lattice of DMM.

 
 
 



Chapter 6

Surjectivity of epimorphisms

The ‘bridge theorems’ of abstract algebraic logic include connections be-
tween the so-called ‘definability properties’ of a logic and the surjectivity of
suitable epimorphisms between its models. In this chapter, after recalling
the precise definitions and connections, we explore the prevalence of these
conditions in varieties of residuated structures—and particularly in varieties
of De Morgan monoids.

Given a class K of similar algebras, a K-morphism is a homomorphism
f : A → B, where A,B ∈ K. It is called a K-epimorphism provided that,
whenever g, h : B → C are K-morphisms with g ◦ f = h ◦ f , then g = h.

A����f- B����g-h- C����
Clearly, surjective K-morphisms are K-epimorphisms.

The converse need not hold. Indeed, rings and distributive lattices each
form varieties in which non-surjective epimorphisms arise. As it happens,
this reflects the absence of unary terms defining multiplicative inverses in
rings, and complements in distributive lattices, despite the uniqueness of
those entities when they exist. Such constructs are said to be implicitly
(and not explicitly) definable.

Definition 6.1. A class K of algebras has the epimorphism-surjectivity (ES)
property if all K-epimorphisms are surjective. A K-morphism f : A→ B is
said to be almost onto if there is a finite subset C ⊆ B such that f [A] ∪ C
generates B. The class K is said to have the weak ES property if all almost
onto K-epimorphisms are surjective.

The notion of a set ρ(x, y) of equivalence formulas for a logic was defined
on page 20. Recall that, in the substructural logics under discussion here,
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we can always take {x→ y, y → x} (or {x↔ y}) for ρ. Also recall that, in
this thesis, all deductive systems are formulated over a fixed denumerable
set Var of variables.

Definition 6.2. Let ` be a deductive system with a set ρ of equivalence
formulas. We shall say that ` has the infinite (deductive) Beth (definability)
property (w.r.t. Var)1 provided that the following is true for all disjoint
sets X and Z of variables, and all sets Γ of formulas over X ∪Z, such that
T (X) 6= ∅ 2 and Var \ (X ∪ Z) is infinite: if

for each z ∈ Z and each substitution h such that h(x) = x for
all x ∈ X, we have Γ ∪ h[Γ] ` ρ(z, h(z)),

then, for each z ∈ Z, there exists a formula ϕz overX such that Γ ` ρ(z, ϕz).

The displayed assumption is pronounced as ‘Γ defines Z implicitly in
terms of X in `’. The term ϕz in the conclusion is called an explicit defi-
nition of z in terms of X, with respect to Γ, in `.

Definition 6.3. If, in Definition 6.2, we ask only that the implicit defin-
ability of Z (by Γ in terms of X) entails the explicit definability of Z (by Γ
in terms of X) for finite sets Z of variables (still assuming the other con-
ditions on Γ, X and Z in Definition 6.2), then ` is said to have the finite
Beth property.

The assumption ‘Var \(X∪Z) is infinite’ is not normally included in def-
initions of the Beth properties. It is required for the bridge theorem below,
which depends crucially on the denumerability of Var and the countability
of `’s signature [105]. In lieu of these assumptions, one may formulate more
general versions of the Beth properties with a similar bridge theorem, but
only under the awkward assumption that ` be formulated with a proper
class of variables [13]. The definitions agree in the restricted setting of
Theorem 6.4.

Theorem 6.4 ([105, Cor. 7.8, Thm. 7.9]). Let ` be a finitary logic with a
countable signature and K a quasivariety that algebraizes `. Then

(i) ` has the infinite Beth property iff K has the ES property, and

(ii) ` has the finite Beth property iff K has the weak ES property.

1 The allusion is to E.W. Beth’s theorem concerning classical predicate logic in [9].
2 This means that X 6= ∅ or the signature includes a constant symbol.
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In this situation, if K is a variety, then its subvarieties algebraize the
axiomatic extensions of `, but the ES property need not persist in subva-
rieties. For example, the variety of all lattices has the ES property, while
its subvariety comprising the distributive lattices does not. It is therefore
a well-motivated (but often nontrivial) task to determine which subvari-
eties of K have surjective epimorphisms. The present chapter addresses this
question in the context of (possibly involutive) square-increasing residuated
lattices (S[I]RLs), i.e., the algebraic models of the substructural logics FLec

and FL+
ec. (The arguments in Section 6.5 do not require distributivity and

apply regardless of the presence or absence of an involution, so De Morgan
monoids are special cases.)

Recall that Brouwerian algebras are integral SRLs (Definition 2.32).
The next theorem states two classical ES results for varieties of Brouwerian
algebras; the first was proved by Maksimova [88] (also see [45, 49, 87]), and
the second (in effect) by Kreisel [78].

Theorem 6.5.

(i) The variety BRA of Brouwerian algebras has the ES property.

(ii) Every subvariety of BRA has the weak ES property.

(In Chapter 7, we shall investigate varieties of Brouwerian algebras in which
the ES property fails.)

Recall from Section 2.4 that, given an S[I]RL A, its set of negative
elements is denoted by A− = {a ∈ A : a 6 e}. The set A− can be given the
structure of a Brouwerian algebra A− (see Section 6.2), called the negative
cone of A. This allows us to ascribe to A a ‘depth’, which is either a
non-negative integer or ∞ (see Definition 6.20).

One can construct a functor from a variety of S[I]RLs to a variety of
Brouwerian algebras that sends S[I]RLs to their negative cones (and restricts
morphisms accordingly). Such a functor is not a category equivalence, ex-
cept in quite special cases; see [48, 53, 55, 56]. Partly for these reasons, we
cannot systematically reduce ES problems for arbitrary varieties of S[I]RLs
to an examination of negative cones.

Nevertheless, A− contains enough information about A to facilitate the
main results of this chapter, which provide sufficient conditions for the
surjectivity of epimorphisms in varieties of S[I]RLs whose FSI members are
negatively generated.

The main result of Section 6.5, namely Theorem 6.22, states that, in
a variety K of S[I]RLs (e.g. De Morgan monoids or Dunn monoids), epi-
morphisms will be surjective if each finitely subdirectly irreducible member
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of K is negatively generated and has finite depth. Theorem 6.22 is a gen-
eralization of a recent result, in [11], that epimorphisms are surjective in
varieties of Brouwerian algebras with finite depth. The assumptions of The-
orem 6.22 persist in subvarieties and under varietal joins, so the result is
labour-saving.

Section 6.6 culminates in the result that every variety of negatively gen-
erated semilinear De Morgan or Dunn monoids has surjective epimorphisms
(even those that contain algebras with infinite depth); see Corollary 6.46.
This result strengthens earlier findings that established the ES property for
all varieties of relative Stone algebras and Sugihara monoids [11, Thms. 5.7,
8.5], and the weak ES property for every variety K of generalized Sugihara
monoids [56, Thm. 13.1].

Before proving the main results of this chapter (in Sections 6.5 and 6.6),
it is convenient to collect some tools (in Sections 6.1–6.4) that will be used
throughout this and the next chapter. These include a categorical duality
(due to Esakia) between the variety of Brouwerian algebras and a certain
class of ordered topological spaces, which is recounted briefly in Section 6.4.

6.1 Epic subalgebras

Consider a class K of similar algebras. A subalgebra A of an algebra B ∈ K
is said to be K-epic (in B) when, for every pair of morphisms g, h : B → C
in K,

if g|A = h|A, then g = h.

Lemma 6.6. Let K be a class of algebras such that S(K) ⊆ K. Then K has
the ES property if and only if all its members lack proper K-epic subalgebras.

Proof. Observe that if there is a non-surjective epimorphism f : A → B
in K, then f [A] is a proper K-epic subalgebra of B. Conversely, if A is
a proper K-epic subalgebra of B, then the inclusion map A ↪→ B is a
non-surjective epimorphism in K.

Theorem 6.7 ([105, Thm. 5.1]). A quasivariety K has the weak ES property
iff no finitely generated member of K has a proper K-epic subalgebra.

Recall that if A is a subalgebra of an algebra B, and µ ∈ Con(B), then
the relation µ|A := A2 ∩ µ is a congruence of A.

Lemma 6.8. Let K be a variety of algebras, and A a K-epic subalgebra of
B ∈ K. Then, for any µ ∈ Con(B), the map f : A/(µ|A) → B/µ defined
by a/(µ|A) 7→ a/µ is an injective K-epimorphism.
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Proof. As K is a variety,B/µ, A/(µ|A) ∈ K. Let i : A→ B be the inclusion
homomorphism and q : B → B/µ the surjective homomorphism b 7→ b/µ.
Clearly, µ|A is the kernel of the homomorphism q ◦ i : A→ B/µ, so f is an
injective K-morphism.

Suppose g, h : B/µ → C ∈ K are homomorphisms with g ◦ f = h ◦ f .
Then g ◦ q and h ◦ q are homomorphisms from B to C. For each a ∈ A,

g(q(a)) = g(a/µ) = g(f(a/(µ|A))) = h(f(a/(µ|A))) = h(q(a)),

i.e., g ◦ q ◦ i = h ◦ q ◦ i. Therefore, g ◦ q = h ◦ q, as i is a K-epimorphism.
Since q is surjective, it follows that g = h, as required.

The following theorem will allow us to focus on FSI algebras when in-
vestigating the ES property.

Theorem 6.9 (Campercholi [25, Thm. 6.8]). If a congruence permutable
variety K with EDPM lacks the ES property, then some FSI member of K
has a K-epic proper subalgebra.

Recall from Section 2.3 that every variety of [I]RLs is congruence per-
mutable and has EDPM. Therefore, Theorem 6.9 applies to all such vari-
eties, and we shall make extensive use of it in this chapter.

Lemma 6.10. Let K be a variety of algebras and let B be a subalgebra of
A ∈ K. Then B is K-epic in A iff, whenever C ∈ KSI and g, h : A → C
are homomorphisms that agree on B, then g = h.

Proof. The forward implication is clear. Conversely, suppose that C is an
arbitrary member of K and that g, h : A → C are homomorphisms that
agree on B. By Birkhoff’s Subdirect Decomposition Theorem 1.3, there is
a subdirect embedding i : C →

∏
j∈J Cj, where Cj ∈ KSI for every j ∈ J .

Let πj :
∏

k∈J Ck → Cj denote the j-th projection map, for every j ∈ J .
If g(a) 6= h(a) for some a ∈ A, then i(g(a)) 6= i(h(a)), because i is an
embedding. So, there exists j ∈ J such that πj(i(g(a))) 6= πj(i(h(a))).
Then πj ◦ i ◦ g and πj ◦ i ◦ h are two different homomorphisms into Cj that
agree on B, a contradiction. So, g = h.

6.2 Negative cones

Definition 6.11. The negative cone of an S[I]RLA = 〈A;∧,∨, ·,→, e [,¬]〉
is the Brouwerian algebra

A− =
〈
A−; ∧|(A−)2 , ∨|(A−)2 , →−, e

〉
,

where a→− b = (a→ b) ∧ e for all a, b ∈ A−.
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When A is a Brouwerian algebra, we refer to its deductive filters just
as ‘filters’, because they coincide with the filters of 〈A;∧,∨〉.

Lemma 6.12. Let A and B be S[I]RLs, and F a deductive filter of A.

(i) If h : A → B is a homomorphism, then h|A− is a homomorphism
from A− to B−. If, moreover, h is surjective, then so is h|A− .

(ii) A− ∩ F is a filter of A−, and (A/F )− ∼= A−/(A− ∩ F ), the isomor-
phism and its inverse being

a/F 7→ (a ∧ e)/(A− ∩ F ) and a/(A− ∩ F ) 7→ a/F .

Proof. (i) Since homomorphisms between S[I]RLs are isotone maps that
preserve e, we have h[A−] ⊆ B−. Also, as h is a homomorphism, it is
clear from the definitions of the operations on the negative cone that h|A−
is a homomorphism from A− to B−. Now suppose h is onto. For each
b ∈ B−, there exists a ∈ A with h(a) = b, and since b 6 e, we have
b = h(a) ∧ e = h(a ∧ e). As a ∧ e ∈ A−, this shows that B− = h[A−].

(ii) Clearly, A−∩F is a filter of A−. Let q : A→ A/F be the canonical
surjection. By (i), q|A− : A− → (A/F )− is a surjective homomorphism. For
all a, b ∈ A−, we have a ↔ b ∈ F iff (a ↔ b) ∧ e ∈ A− ∩ F (since F is

upward closed and contains e), i.e., the kernel of q|A− is ΩA−(A− ∩ F ); see
page 33. Thus, by the Homomorphism Theorem 1.1, a/(A− ∩ F ) 7→ a/F
defines an isomorphism from A−/(A−∩F ) onto (A/F )−. For any a ∈ A, if
a/F ∈ (A/F )−, then a∧ e ∈ A− and (a∧ e)/F = (a/F )∧ (e/F ) = a/F , so
a/F 7→ (a∧ e)/(A− ∩ F ) defines the inverse of the above isomorphism.

Given an S[I]RL A, if F is a filter of A−, then (by (2.27) on page 33)

FgA F = {a ∈ A : a > b for some b ∈ F}, so A− ∩ FgA F = F. (6.1)

On the other hand, for any deductive filter G of an S[I]RL A, we have G =
FgA(G∩A−), by (2.30) on page 40. So, the deductive filters of an S[I]RL A
are completely determined by the filters of A−. In fact, Fil(A) ∼= Fil(A−)
via the map G 7→ G ∩ A−, whose inverse is F 7→ FgA(F ).

As we mentioned in the introduction to this chapter, the ‘negative cone
functor’ that sends an algebra A from a variety K of S[I]RLs to A− and a
homomorphism h : A→ B between algebras in K to h|A− , is not normally
a category equivalence. One exception (proved in [55, Thm. 5.8]) is that the
variety OSM of odd Sugihara monoids is categorically equivalent, via the
negative cone functor, to the variety RSA of relative Stone algebras (i.e.,
the variety of semilinear Brouwerian algebras). An analogous but more
complex result for arbitrary Sugihara monoids is proved in [56, Thm. 10.5]
and refined in [48, Thm. 2.24].
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6.3 Prerequisites for Esakia duality

Although there is no advance guarantee that ES problems involving (possi-
bly non-integral) S[I]RLs can be reduced to an examination of (Brouwerian)
negative cones, the availability of Esakia duality for Brouwerian algebras
is an incentive, because it allows one to work with simpler structures. We
therefore give a brief account of Esakia duality over the next two sections.
(Relational duals for non-integral S[I]RLs also exist [142], but they are
rather complicated.)

The following notation departs from the conventions of Chapter 2, but
is standard in duality theory. In an indicated poset 〈X;6〉, we define

↑x := {y ∈ X : x 6 y} ( = [x) ) and ↑U :=
⋃

u∈U
↑u,

for U ∪ {x} ⊆ X, and if U = ↑U , we call U an upset of 〈X;6〉. We define
↓x, ↓U and downset dually. For x, y ∈ X, the notation x ≺ y signifies that
y covers x.

If Y ⊆ X and x ∈ X, we sometimes need to refer to Y ∩ ↑x, which we
then denote as ↑Y x, even if x /∈ Y .

A filter F of a lattice 〈L;∧,∨〉 is said to be prime if its complement
L \F is closed under the binary operation ∨. It follows that, for any filters
F,G,H of 〈L;∧,∨〉,

if F ∩G ⊆ H and H is prime, then F ⊆ H or G ⊆ H. (6.2)

Prime Filter Extension Theorem 6.13 ([4, Thm. III.6.5]). Let 〈K;∧,∨〉
be a sublattice of a distributive lattice 〈L;∧,∨〉. Then the prime filters of
〈K;∧,∨〉 are exactly the non-empty sets K∩F such that F is a prime filter
of 〈L;∧,∨〉.

Prime Filter Lemma 6.14 ([7, Thm. 4.1]). Let 〈A;∧,∨〉 be a distributive
lattice and let a, b ∈ A. If a 66 b, then there is a prime filter F of 〈A;∧,∨〉
such that a ∈ F and b /∈ F .

We use Pr(A) to denote the set of all prime deductive filters of an S[I]RL
A, including A itself. We always consider Pr(A) to be partially ordered by
set inclusion. For a deductive filter F of A, we write

↑A F = {H ∈ Pr(A) : F ⊆ H},

i.e., ↑A F abbreviates ↑Pr(A) F , within 〈Fil(A);⊆〉.
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Remark 6.15. Suppose h : A → B is a surjective homomorphism of
S[I]RLs. Recall (from page 33) that the kernel of h is ΩAK for some
deductive filter K of A. If G is a deductive filter of A, with K ⊆ G, then
h[G] := {h(g) : g ∈ G} is a deductive filter of B, and by the Correspon-
dence Theorem 1.12,

H 7→ h−1[H] := {a ∈ A : h(a) ∈ H}

is a lattice isomorphism from the deductive filter lattice ofB onto the lattice
of deductive filters of A that contain K; the inverse isomorphism is given
by G 7→ h[G]. In particular,

h−1[h[G]] = G for all deductive filters G of A such that K ⊆ G. (6.3)

Clearly, a deductive filter H of B is prime iff the filter h−1[H] of A is prime,
so H 7→ h−1[H] also defines an isomorphism of partially ordered sets from
Pr(B) onto ↑AK (both ordered by inclusion).

6.4 Esakia duality

A well known duality between Heyting algebras and Esakia spaces was
established by Esakia in [43, 44]. It entails an analogous duality between
the variety BRA of Brouwerian algebras (considered as a concrete category,
equipped with all algebraic homomorphisms) and the category PESP of
‘pointed Esakia spaces’ defined below, i.e., there is a category equivalence
between BRA and the opposite category of PESP. This is explained, for
instance, in [11, Sec. 3], but we recall the key definitions here.

A structure X = 〈X; τ,6,m〉 is a pointed Esakia space if 〈X;6〉 is a
partially ordered set with a greatest element m, and 〈X; τ〉 is a compact
Hausdorff space in which

(i) every open set is a union of clopen (i.e., closed and open) sets;

(ii) ↑x is closed, for all x ∈ X;

(iii) ↓V is clopen, for all clopen V ⊆ X.

In this case, the Priestley separation axiom of [115] holds: for all x, y ∈ X,

(iv) if x 
 y, then x ∈ U and y /∈ U , for some clopen upset U ⊆ X.
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The morphisms of PESP are the so-called Esakia morphisms between these
objects. They are the isotone continuous functions g : X → Y such that,

whenever x ∈ X and g(x) 6 y ∈ Y , then y = g(z) for some z ∈ ↑x. (6.4)

It follows that g(m) = m, and if g is bijective then g−1 : Y →X is also an
Esakia morphism, so g is a (categorical) isomorphism.3

Given A ∈ BRA and a ∈ A, let γA(a) denote {F ∈ Pr(A) : a ∈ F} and
γA(a)c its complement {F ∈ Pr(A) : a /∈ F}. The dual (in PESP) of A is
A∗ = 〈Pr(A); τ,⊆, A〉, where τ is the topology on Pr(A) with sub-basis

{γA(a) : a ∈ A} ∪ {γA(a)c : a ∈ A}.

The dual of a morphism h : A → B in BRA is the Esakia morphism
h∗ : B∗ → A∗, defined by F 7→ h−1[F ]. Thus, the contravariant functor
(−)∗ : BRA→ PESP in the duality is given by A 7→ A∗; h 7→ h∗.

The contravariant reverse functor (−)∗ : PESP→ BRA works as follows.
Let g : X → Y be an Esakia morphism, where X,Y ∈ PESP. Then

X∗ = 〈Cpu(X);∩,∪,→, X〉 ∈ BRA,

where Cpu(X) is the set of all non-empty clopen upsets of X, and

U → V := X \ ↓(U \ V )

for all U, V ∈ Cpu(X), while the homomorphism g∗ : Y ∗ →X∗ is given by
U 7→ g−1[U ]. We refer to X∗ [resp. g∗] as the dual of X [resp. g] in BRA.

For A ∈ BRA and X ∈ PESP, the respective canonical isomorphisms
from A to A∗

∗ and from X to X∗∗ are given by a 7→ γA(a) and

x 7→ {U ∈ Cpu(X) : x ∈ U}.

Given a variety K of Brouwerian algebras, we denote by K∗ the full
subcategory of PESP whose class of objects is the isomorphic closure of
{A∗ : A ∈ K}. It is clear that the functors (−)∗ and (−)∗ restrict to a dual
equivalence between K and K∗.

In PESP, there is a notion of substructure: an E-subspace of X ∈ PESP
is a non-empty closed upset U of X. It is the universe of a pointed Esakia
space U , with the restricted order and the subspace topology, so the inclu-
sion U →X is an Esakia morphism.

A correct partition on X (sometimes called an Esakia relation or bisim-
ulation equivalence in the literature) is an equivalence relation R on X such
that for every x, y, z ∈ X,

3We use here the fact that a continuous bijection from a compact space to a Hausdorff
space always has a continuous inverse function.
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(i) if 〈x, y〉 ∈ R and x 6 z, then 〈z, w〉 ∈ R for some w > y, and

(ii) if 〈x, y〉 /∈ R, then there is a clopen U , such that x ∈ U and y /∈ U ,
which moreover is a union of equivalence classes of R.

In this case, we denote by X/R the pointed Esakia space consisting of the
quotient space of X with respect to R,4 equipped with the partial order
6X/R defined as follows: for every x, y ∈ X,

x/R 6X/R y/R⇐⇒ there are x′, y′ ∈ X such that

〈x, x′〉, 〈y, y′〉 ∈ R and x′ 6X y′.

Notice that m/R is the greatest element of X/R. The map q : x 7→ x/R
is an Esakia morphism from X to X/R, and for every Esakia morphism
f : X → Y , the kernel of f is a correct partition on X. If, moreover, f is
surjective, then there is a PESP-isomorphism i : X/ ker f ∼= Y , such that
i ◦ q = f .

Lemma 6.16. Let A ∈ BRA, and X ∈ PESP.

(i) A is FSI if and only if the poset underlying A∗ is rooted (i.e., has a
least element).

(ii) A homomorphism h between Brouwerian algebras is injective iff h∗ is
surjective. Also, h is surjective iff h∗ is injective.

(iii) The image of an Esakia morphism is an E-subspace of the co-domain,
and the restriction of an Esakia morphism to an E-subspace is still
an Esakia morphism.

(iv) Let R be a correct partition on X. If Y is an E-subspace of X, then
R ∩ Y 2 is a correct partition on Y .

(v) Every non-empty chain in X has an infimum and a supremum. More-
over, infima and suprema of chains are preserved by Esakia mor-
phisms.

Proof. The statements of (i)–(v) are essentially contained in [44]. See [11,
Lem. 3.4] for brief English explanations of (i), (ii) and the first part of (iii).
The right-to-left implication of the first assertion of (ii) relies on the fact
that BRA has the ES property (Theorem 6.5(i)). The forward implication

4This means that A ⊆ X/R is open in X/R iff q−1[A] is open in X, where q : X →
X/R is the canonical surjection.
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in the second assertion of (ii) employs the Prime Filter Extension Theo-
rem 6.13. The second part of (iii) follows from the fact that the inclusion
map from an E-subspace to its parent space is an Esakia morphism.

To prove (iv), notice that R ∩ Y 2 is the kernel of the Esakia morphism
obtained by composing the canonical surjection from X to X/R with the
inclusion from Y to X.

Finally, (v) is a consequence of the duality, together with the observation
that unions and intersections of chains of prime filters are still prime filters
(and that these unions and intersections are preserved by inverse images of
homomorphisms).

Note that, owing to (ii), if K is a variety of Brouwerian algebras then
K∗ is closed under taking E-subspaces and quotients by correct partitions.

In the absence of a convenient reference, a proof of the next lemma is
supplied below; the result is presumably well known.

Lemma 6.17. Let F be a filter of a Brouwerian algebra A, and q : A→ A/F
the canonical surjection. Then q∗ is an isomorphism from (A/F )∗ onto the
E-subspace q∗[(A/F )∗] of A∗ whose universe is ↑A F . Also, the map

γAF : a/F 7→ {H ∈ Pr(A) : F ∪ {a} ⊆ H}

is an isomorphism from A/F onto (q∗[(A/F )∗])
∗ and the following diagram

commutes, where i1 : q∗[(A/F )∗]→ A∗ is the inclusion map.

A∗
∗−−−−→−−−−→i∗1 (q∗[(A/F )∗])

∗ = (↑A F )∗

A−−−−−−→−−−−−−→q
A/F−−→∼ γA

−−→∼ γAF

Furthermore, if G is a filter of A, with F ⊆ G, then the following diagram
commutes, where q′ : a/F 7→ a/G, and i2 is the inclusion map.

(↑A F )∗ = (q∗[(A/F )∗])
∗−−−→−−→i

∗
2 (q∗[(A/G)∗])

∗ = (↑AG)∗

A/F −−−−−−→−−−−−−→q′

A/G−−→∼ γAF

−−→∼ γAG

Proof. As q : A → A/F is a surjective BRA-morphism, Lemma 6.16(ii)
shows that q∗ : (A/F )∗ → A∗ is an injective Esakia morphism; its image
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is the E-subspace ↑A F of A∗, by Lemma 6.16(iii) and Remark 6.15. Let
k = q∗

−1
∣∣
↑A F

, so k : ↑A F ∼= (A/F )∗ is defined by

k(H) = q[H] = H/F := {a/F : a ∈ H} (H ∈ ↑A F ),

and k∗ : (A/F )∗
∗ ∼= (↑A F )∗. Since γA/F : A/F ∼= (A/F )∗

∗, we have

k∗ ◦ γA/F : A/F ∼= (↑A F )∗.

For each a ∈ A,

(k∗ ◦ γA/F )(a/F ) = k∗({H ∈ Pr(A/F ) : a/F ∈ H})
= {G ∈ ↑A F : a/F ∈ G/F}
= {G ∈ ↑A F : a ∈ G} (by (6.3)) = γAF (a/F ),

so k∗ ◦ γA/F = γAF , whence γAF : A/F ∼= (↑A F )∗ = (q∗[(A/F )∗])
∗.

Commutativity of the second diagram subsumes that of the first (after
identification of A/{e} with A, and γA{e} with γA).

Accordingly, let G be a filter of A, with F ⊆ G, so q′ : a/F 7→ a/G is a
homomorphism from A/F onto A/G. For each a ∈ A, the respective left
and right hand sides of the equation γAG (q′(a/F )) = i∗2(γAF (a/F )) are, by
definition,

{H ∈ Pr(A) : G ∪ {a} ⊆ H} and (↑AG) ∩ {H ∈ Pr(A) : F ∪ {a} ⊆ H},

which are clearly equal, so i∗2 ◦ γAF = γAG ◦ q′.

The next result is a topological reformulation of Lemma 6.6 for varieties
of Brouwerian algebras. Notice that, because of the dual equivalence, the
dual of every epimorphism between Brouwerian algebras is a monomorphism
between pointed Esakia spaces (i.e., a morphism f such that, for any Esakia
morphisms g and h, if f ◦ g = f ◦ h then g = h).

Lemma 6.18. A variety K of Brouwerian algebras lacks the ES property
if and only if there is an Esakia space X ∈ K∗ with a correct partition
R, different from the identity relation, such that for every Y ∈ K∗ and
every pair of Esakia morphisms g, h : Y →X, if 〈g(y), h(y)〉 ∈ R for every
y ∈ Y , then g = h.

Proof. First suppose that K lacks the ES property. By Lemma 6.6, there
exists A ∈ K with a proper K-epic subalgebra B. Let i denote the inclusion
map from B to A. Note that i is an injective, non-surjective epimorphism.
From the duality and Lemma 6.16(ii), it follows that i∗ : A∗ → B∗, is a
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surjective, non-injective monomorphism. Let R = ker i∗, q : A∗ → A∗/R
the canonical surjection, and σ : A∗/R ∼= B∗ the isomorphism such that
σ ◦ q = i∗. So, R is a non-identity correct partition on A∗.

Let Y ∈ K∗ and let g, h : Y → A∗ be Esakia morphisms such that
〈g(y), h(y)〉 ∈ R for every y ∈ Y . Then q ◦ g = q ◦ h. It follows that
σ ◦ q ◦ g = σ ◦ q ◦ h, i.e., i∗ ◦ g = i∗ ◦ h. Therefore g = h, since i∗ is a
monomorphism.

Conversely, suppose that X ∈ K∗ and R is a non-identity correct par-
tition on X as in the statement of the Lemma. Let q : X → X/R be
the canonical surjection. It follows that q is a surjective, non-injective
monomorphism. But then, by the duality and Lemma 6.16(ii), q∗ : (X/R)∗ →
X∗ is a non-surjective epimorphism.

6.5 Finite depth

For X = 〈X; τ,6,m〉 ∈ PESP and x ∈ X, we define depth(x) (the depth of
x in X) to be the greatest n ∈ ω (if it exists) such that there is a chain

x = x0 < x1 < · · · < xn = m

in X. (Thus, m has depth 0 in X.) If no greatest such n exists, we set
depth(x) =∞. We define depth(X) = sup {depth(x) : x ∈ X}.

For A ∈ BRA and any subvariety K of BRA, we define

depth(A) = depth(A∗) and depth(K) = sup {depth(B) : B ∈ K}.

The following claims are explained in [11, Sec. 4], where their antecedents
are also discussed.

If a subvariety of BRA is finitely generated (i.e., of the form V(A) for
some finite A ∈ BRA) then it has finite depth, and if it has finite depth
then it is locally finite (i.e., its finitely generated members are finite). Both
converses are false. For each n ∈ ω, let

Dn := {A ∈ BRA : depth(A) ≤ n}.

Notice that D0 is the class of trivial Brouwerian algebras.

Theorem 6.19. Let n ∈ ω. A Brouwerian algebra A has depth at most n
if and only if it satisfies the equation dn ≈ e, where

d0 := y

dn+1 := xn+1 ∨ (xn+1 → dn), for all n ∈ ω.

As a consequence, Dn is a finitely axiomatizable variety.
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Definition 6.20. For any S[I]RL A and any variety K of S[I]RLs, we define
the depth of A to be the depth of its negative cone A−, and the depth of K
to be sup {depth(B) : B ∈ K}.

Consequently, every finitely generated variety of S[I]RLs has finite depth.
For each n ∈ ω, an S[I]RL has depth at most n iff it satisfies the equa-

tions that result from the axioms for Dn when we replace → by →− and x
by x∧ e, for every apparent variable x. Thus, the S[I]RLs of depth at most
n also form a finitely axiomatizable variety.

Theorem 6.21. Let K be a variety of S[I]RLs such that each FSI member
of K has finite depth. Then K has finite depth.

Proof. Suppose, with a view to contradiction, that K doesn’t have finite
depth. Then, for each finite n, there exists An ∈ K \ Dn. Moreover, An

can be chosen SI, because Dn is a variety (and by Birkhoff’s Subdirect
Decomposition Theorem 1.3). Let U be a non-principal ultrafilter over ω,
and let A be the corresponding ultraproduct of the algebras An (n ∈ ω).
Then A is FSI (by Lemma 2.16(i)) and belongs to K, so by assumption, A
has finite depth, say depth m ∈ ω. But {i ∈ ω : depth(Ai) > m} ∈ U , since
the former is a co-finite set and the latter contains the Fréchet filter. So,
since the property ‘depth(A) > m’ is expressible by a first order sentence
(by Theorem 6.19), A has depth greater than m (by  Loś’ Theorem 1.8), a
contradiction.

We can now formulate the main result of this section.

Theorem 6.22. Let K be a variety of S[I]RLs, such that each FSI mem-
ber of K is negatively generated and has finite depth. Then every K-
epimorphism is surjective.

The proof of Theorem 6.22 is by contradiction, and it proceeds via a
sequence of claims. Let K be as postulated, and suppose that K lacks
the ES property. By Theorem 6.9, some A ∈ KFSI has a proper K-epic
subalgebra. Now A/θ ∈ K for all θ ∈ Con(A), as K is a variety. We shall
define a congruence θ of A such that the following is true.

Claim 1: There exist a ∈ A and a K-epic proper subalgebra C of A/θ
such that C is generated by its negative cone C−, and A/θ is generated by
C− ∪ {a/θ}, and a/θ ≺ e/θ in A/θ.

Once θ has been identified and Claim 1 proved, we shall contradict the
fact that C is K-epic inA/θ, by constructing a non-identity homomorphism
` : A/θ → A/θ, such that `|C = idC , as follows.
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Let b = a/θ. Then FgA/θ{b} = {d ∈ A/θ : b 6 d}, because b < e/θ. Let
α = ΩA/θ FgA/θ{b} (see page 33). For any u, v ∈ A/θ, we have

u ≡α v iff b 6 u↔ v. (6.5)

In particular, e/θ ≡α b, by (2.15) and (2.17).
Let {ai : i ∈ I} be an indexing of A/θ, and ~c = c0, c1, . . . a well-ordering

of the elements of C−. Since C 6= A/θ and A/θ is generated by C−∪{b}, it

follows that b /∈ C and, for each i ∈ I, we have ai = t
A/θ
i (b,~c) for a suitable

S[I]RL-term ti(x, ~y), where ~y = y0, y1, . . . . When ai is some cj ∈ C−, we
can (and do) choose ti to be the variable yj.

We define ` : A/θ → A/θ by

`(ai) = t
A/θ
i (e/θ,~c) for all i ∈ I.

By the above choice, `(cj) = cj for j = 0, 1, . . . , while `[A/θ] ⊆ C, because
C is a subalgebra of A/θ. We claim that ` is a homomorphism.

To see this, let σ be a basic S[I]RL-operation symbol, and let ai1 , . . . , ain ∈
A/θ, where n is the arity of σ. Then σA/θ(ai1 , . . . , ain) = aj for some j ∈ I.
For this j, we perform the following calculation, where every term is eval-
uated in A/θ :

σ(`(ai1), . . . , `(ain)) = σ(ti1(e/θ,~c), . . . , tin(e/θ,~c))

≡α σ(ti1(b,~c), . . . , tin(b,~c))

= σ(ai1 , . . . , ain)

= aj = tj(b,~c)

≡α tj(e/θ,~c) = `(aj) = `(σ(ai1 , . . . , ain)).

By (6.5), therefore,

b 6 (σ(`(ai1), . . . , `(ain))↔ `(σ(ai1 , . . . , ain))) ∧ (e/θ).

Note that

(σ(`(ai1), . . . , `(ain))↔ `(σ(ai1 , . . . , ain))) ∧ (e/θ) ∈ C

(because `[A/θ] ⊆ C), but b /∈ C, so

b < (σ(`(ai1), . . . , `(ain))↔ `(σ(ai1 , . . . , ain))) ∧ (e/θ) 6 e/θ.

Since b ≺ e/θ in A/θ, this forces

e/θ = (σ(`(ai1), . . . , `(ain))↔ `(σ(ai1 , . . . , ain))) ∧ (e/θ),
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i.e., e/θ 6 σ(`(ai1), . . . , `(ain))↔ `(σ(ai1 , . . . , ain)). Then, by (2.16),

σ(`(ai1), . . . , `(ain)) = `(σ(ai1 , . . . , ain)),

confirming that ` is a homomorphism.
For each c ∈ C, we have c = tA/θ(~c) for some S[I]RL-term t (as C is

generated by C−), so

`(c) = `(t(~c)) = t(`(c0), `(c1), . . . ) = t(c0, c1, . . . ) = c.

This shows that `|C = idC , but `(b) 6= b, since `(b) ∈ C. As intended, this
contradicts the fact that C is K-epic in A/θ.

It remains to construct θ and to prove Claim 1. The construction of θ
exploits the assumption that members of KFSI have finite depth.

Recall that A has a proper K-epic subalgebra, B say. As A is FSI, so
is B (by Lemma 2.16(i)). By assumption, therefore, A and B are both
negatively generated, so B− 6= A−, because B 6= A.

For each F ∈ Pr(A−), we clearly have B ∩ F = B− ∩ F = i∗(F ), where
i is the inclusion map i : B− → A−, considered as a BRA-morphism.

As i is not surjective, its dual i∗ : A
−
∗ → B−∗ is not injective, by

Lemma 6.16(ii), i.e., the following set is not empty:

W := {〈F1, F2〉 ∈ (Pr(A−))2 : F1 6= F2 and F1 ∩B = F2 ∩B}.

By assumption, A− has finite depth, so

{min {depth(F1), depth(F2)} : 〈F1, F2〉 ∈ W}

is a non-empty subset of ω, and therefore has a least element, n say. Pick
F1 ∈ Pr(A−) such that depth(F1) = n and 〈F1, G〉 ∈W for some G. Now,

whenever 〈F ′1, F ′2〉 ∈ W, then depth(F1) ≤ depth(F ′1), depth(F ′2). (6.6)

Having fixed F1 in this way, we similarly choose F2 ∈ Pr(A−) \ {F1}
such that F1 ∩B = F2 ∩B and

whenever 〈F1, F
′
2〉 ∈ W, then depth(F2) ≤ depth(F ′2). (6.7)

As 〈F1, F2〉 ∈ W , we have depth(F1) ≤ depth(F2) (by (6.6)), so F1 is not a
proper subset of F2.

Lemma 6.23. If F1 ( G ∈ Pr(A−), then F2 ( G.
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Proof. Let F1 ( G ∈ Pr(A−), so depth(G) < depth(F1). As i∗ is an Esakia
morphism and i∗(F2) = i∗(F1) ⊆ i∗(G), there exists H ∈ Pr(A−) such that
F2 ⊆ H and i∗(G) = i∗(H), by (6.4), i.e., G ∩ B = H ∩ B. Therefore, if
G 6= H, then depth(F1) ≤ depth(G), by (6.6). This is a contradiction, so
G = H, whence F2 ⊆ G. If F2 = G, then

depth(F2) = depth(G) < depth(F1),

contradicting the fact that depth(F1) ≤ depth(F2). Therefore, F2 ( G.

Lemma 6.24. If F2 ( G ∈ Pr(A−), then F1 ⊆ G.

Proof. Let F2 ( G ∈ Pr(A−). Again, i∗(F1) = i∗(F2) ⊆ i∗(G), so there
exists H ∈ Pr(A−) such that F1 ⊆ H and i∗(G) = i∗(H). Suppose G 6= H.
If F1 = H, then F1 ∩ B = G ∩ B, so, by (6.7), depth(F2) ≤ depth(G),
contradicting the fact that F2 ( G. Therefore, F1 ( H, so depth(H) <
depth(F1). Then, by (6.6), depth(F1) ≤ depth(H), since G ∩ B = H ∩ B.
This is a contradiction, so G = H, whence F1 ⊆ G.

Recalling that F1, F2 are distinct and that F1 is not properly contained
in F2, we make the following claim:

Claim 2: There are just two possibilities:

(A) F2 ( F1, in which case F2 ≺ F1 (in fact, F1 is the least strict upper
bound of F2 in Pr(A−));

(B) F1 and F2 are incomparable, in which case they have the same depth,
the same strict upper bounds and, therefore, the same covers in Pr(A−).

Proof. If F2 ( F1, then F1 is the least strict upper bound of F2, by
Lemma 6.24, i.e., F1 is the unique cover of F2. We may therefore assume
that F2 is not a proper subset of F1, i.e., that F1 and F2 are incomparable.
Then, by Lemmas 6.23 and 6.24, F1 and F2 have the same strict upper
bounds, and hence the same covers in Pr(A−), from which it clearly follows
that they also have the same depth.

By (6.1), FgA(F1 ∩ F2) = {d ∈ A : d > c for some c ∈ F1 ∩ F2}. We
define

θ = ΩA FgA(F1 ∩ F2).

Claim 3: The following diagram commutes, where the maps will be defined
in the proof.
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Z∗−−−−−−→∼
(i∗|Y )∗

Y ∗

−−−→

∼
γA

−
F1

A−/F1

B−/(F1 ∩B) X∗

−−→∼
γA

−
F1∩F2

A−/(F1 ∩ F2)−−→∼ γB−
F1∩B

−−→
− −→ (iY )∗

−−→
− −→ q

(B/(θ|B))−↪−−−−−−−−−−−→j
(A/θ)−− −→∼ i2

− −→∼ i1

Proof. The map j : B/(θ|B)→ A/θ, defined by b/(θ|B) 7→ b/θ, is an injec-
tive K-epimorphism, by Lemma 6.8. By Lemma 6.12(i), the restriction of j
to (B/(θ|B))− is a BRA-morphism from (B/(θ|B))− into (A/θ)−. We shall
not distinguish notationally between j and this restriction. Whenever b ∈ B
and b/(θ|B) 6 e/(θ|B), then b/(θ|B) = (b ∧ e)/(θ|B) and b/θ = (b ∧ e)/θ, so

(B/(θ|B))− = {b/(θ|B) : b ∈ B−} (6.8)

and j[(B/(θ|B))−] = {b/θ : b ∈ B−}.
Let K = F1 ∩ F2, so θ = ΩA FgAK. By (6.1), A− ∩ FgAK = K, so

B− ∩ FgAK = B− ∩K = B ∩K = B ∩ F1 (since B ∩ F1 = B ∩ F2). By
(2.26), θ|B = ΩB(B ∩ FgAK), so Lemma 6.12(ii) supplies isomorphisms

i1 : (A/θ)− ∼= A−/(F1 ∩ F2) and i2 : (B/(θ|B))− ∼= B−/(F1 ∩B),

defined by a/θ 7→ (a ∧ e)/(F1 ∩ F2) and b/(θ|B) 7→ (b ∧ e)/(F1 ∩B).

By Lemma 6.17, ↑B−(F1∩B) is the universe of an E-subspace, Z say, of
B−∗, and γB

−

F1∩B : B−/(F1∩B) ∼= Z∗. Also, q : a/(F1∩F2) 7→ a/F1 defines a
homomorphism from A−/(F1 ∩F2) onto A−/F1. Let X [resp. Y ] be the E-

subspace of A−∗ with universe ↑A−(F1∩F2) [resp. ↑A−F1]. Let iY : Y →X
be the inclusion morphism in PESP. By Lemma 6.17, the following diagram
commutes.

A−/F1−−−−−−→∼
γA

−
F1

Y ∗

−−→
−−→ q

−−→
−−→ (iY )∗

A−/(F1 ∩ F2)−−−→∼
γA

−
F1∩F2 X∗

Recall that the BRA-morphism i : B− → A− is the inclusion map. As i
is injective, its dual i∗ : A

−
∗ → B−∗ is surjective, by Lemma 6.16(ii).

The above definitions clearly imply that i∗[Y ] ⊆ Z. To establish the
reverse inclusion, let G ∈ Z. By the Prime Filter Extension Theorem 6.13,
G = H∩B for some H ∈ Pr(A−). Now, i∗[F1] = B∩F1 ⊆ G = i∗[H], so by
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(6.4), i∗[H] = i∗[H
′] for some H ′ ∈ ↑A−F1 = Y , whence G = i∗[H

′] ∈ i∗[Y ].
Therefore, Z = i∗[Y ].

We claim that i∗|Y is injective. Suppose, on the contrary, thatH1, H2 ∈ Y ,
with H1 6= H2 and i∗[H1] = i∗[H2]. For each k ∈ {1, 2}, (6.6) shows that
depth(F1) ≤ depth(Hk), but F1 ⊆ Hk, so Hk = F1, whence H1 = H2. This
contradiction confirms that i∗|Y is injective, whence i∗|Y : Y ∼= Z in PESP.
In BRA, therefore, (i∗|Y )∗ : Z∗ ∼= Y ∗.

A composition of isomorphisms in BRA is an isomorphism, so

g := (i∗|Y )∗ ◦ γB−F1∩B : B−/(F1 ∩B) ∼= Y ∗. (6.9)

To show that the diagram in Claim 3 commutes, it remains to prove that
g ◦ i2 = γA

−

F1
◦ q ◦ i1 ◦ j. And indeed, if b ∈ B and b/(θ|B) ∈ (B/(θ|B))−, then

(g ◦ i2)(b/(θ|B)) = g((b ∧ e)/(F1 ∩B))

= (i∗|Y )∗({H ∈ Pr(B−) : (F1 ∩B) ∪ {b ∧ e} ⊆ H})
= {H ∈ Pr(A−) : F1 ⊆ H and (F1 ∩B) ∪ {b ∧ e} ⊆ H ∩B}
= {H ∈ Pr(A−) : F1 ∪ {b ∧ e} ⊆ H}
= γA

−

F1
((b ∧ e)/F1) = (γA

−

F1
◦ q ◦ i1 ◦ j)(b/(θ|B)).

Claim 4: Suppose k ∈ {1, 2} and a ∈ A− and b ∈ B−, where a ≡θ b.
Then a ∈ Fk iff b ∈ Fk. Consequently, a /∈ (F1 \ F2) ∪ (F2 \ F1).

Proof. As a ≡θ b, we have a↔ b ∈ FgA(F1 ∩ F2), so

a↔− b := (a↔ b) ∧ e ∈ A− ∩ FgA(F1 ∩ F2) = F1 ∩ F2,

by (6.1). As a →− b, b →− a > a ↔− b, it follows that a →− b, b →− a ∈
Fk. Thus, a ∈ Fk iff b ∈ Fk. In particular, if a ∈ (F1 \ F2) ∪ (F2 \ F1) then
b ∈ B∩((F1\F2)∪(F2\F1)), contradicting the fact that B∩F1 = B∩F2.

By Claim 3, h := γA
−

F1∩F2
◦ i1 : (A/θ)− ∼= X∗ and, for each a ∈ A such

that a/θ ∈ (A/θ)−, we have

h(a/θ) = {H ∈ Pr(A−) : (F1 ∩ F2) ∪ {a ∧ e} ⊆ H}.

By Claim 2, F1 \ F2 6= ∅. In fact,

h(d/θ) = ↑A−F1 for all d ∈ F1 \ F2.

To confirm this, let d ∈ F1 \ F2. Clearly, ↑A−F1 ⊆ h(d/θ). Conversely, let
H ∈ h(d/θ). If F1 6⊆ H, then since F1∩F2 ⊆ H ∈ Pr(A−), we have F2 ⊆ H,
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by (6.2). In that case, F2 ( H, because d ∈ H \ F2, but this contradicts

Lemma 6.24. Thus, F1 ⊆ H, and so h(d/θ) = ↑A−F1, as claimed.

In Case (A) of Claim 2, we have ↑A−F2 = ↑A−(F1 ∩ F2) = X = h(e/θ).
In Case (B), we have F2 \ F1 6= ∅, and we claim that

h(d/θ) = ↑A−F2 for every d ∈ F2 \ F1.

To see this, let d ∈ F2 \ F1. It is clear that ↑A−F2 ⊆ h(d/θ), so consider
H ∈ h(d/θ). If F2 6⊆ H then, since F1 ∩F2 ⊆ H, we have F1 ⊆ H, by (6.2).
In that case, F1 ( H, as d ∈ H \ F1, but this contradicts Lemma 6.23.

Thus, F2 ⊆ H, and so h(d/θ) ⊆ ↑A−F2.
We define M = (A/θ)− \ j[(B/(θ|B))−].

Claim 5: Fix any a1 ∈ F1 \F2. Choose a2 to be e in Case (A) of Claim 2,
and an arbitrary element of F2 \ F1 in Case (B). Then

M = {a1/θ} in Case (A), and M = {a1/θ, a2/θ} in Case (B).

Moreover, a/θ ≺ e/θ (in A/θ) for all a ∈ A such that a/θ ∈M .

Proof. Observe that a1, a2 6 e and, as we showed above,

h(a1/θ) = ↑A−F1 and h(a2/θ) = ↑A−F2.

By Claim 4 and (6.8), we have a1/θ ∈ M and, in Case (B), a2/θ ∈ M . In
Case (A), a2/θ /∈M , since e ∈ B.

Because h is an isomorphism, h[M ] = X∗ \h[j[(B/(θ|B))−]] and, for the

first assertion of Claim 5, it suffices to prove that h[M ] ⊆ {↑A−F1, ↑A
−
F2}.

Suppose, with a view to contradiction, that there exists U ∈ h[M ] with

U /∈ {↑A−F1, ↑A
−
F2}. Then U ⊆ X, but U 6= X, because

X = h(j(e/(θ|B))) ∈ h[j[(B/(θ|B))−]].

We show first that U ( ↑A−F1.
Suppose F1, F2 ∈ U . For each H ∈ X, we have F1 ⊆ H or F2 ⊆ H,

by (6.2), so H ∈ U (since U is upward closed). This shows that X ⊆ U , a
contradiction. Therefore, F1 and F2 don’t both belong to U .

Suppose F2 ∈ U . Then F1 /∈ U and ↑A−F2 ⊆ U , as U is upward closed.
If H ∈ U , then H 6= F1 and F1 ∩ F2 ⊆ H (as U ⊆ X). In that case,
F2 ⊆ H (otherwise, F1 ⊆ H, by (6.2), whence F1 ( H, but then F2 ( H,

by Lemma 6.23). This shows that U ⊆ ↑A−F2, so U = ↑A−F2, contrary to
our initial assumptions about U . Therefore, F2 /∈ U .
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We claim that U ⊆ ↑A−F1. For otherwise, F1 6⊆ H for some H ∈
U , whence H 6= F2 and, by (6.2), F2 ⊆ H, i.e., F2 ( H, whereupon

Lemma 6.24 delivers the contradiction F1 ⊆ H. Thus, U ( ↑A−F1 (since

U 6= ↑A−F1, by assumption).
Now we shall argue that U ∈ h[j[(B/θ|B)−]] (contradicting the fact that

U ∈ h[M ], and thereby confirming the relation h[M ] ⊆ {↑A−F1, ↑A
−
F2}).

As U ∈ X∗ and U ( ↑A−F1 = Y , we have

U = U ∩ Y = (iY )∗(U) ∈ Y ∗,

so by Claim 3, there exists b ∈ B with b/(θ|B) ∈ (B/(θ|B))− such that

U = g(i2(b/(θ|B))) = (iY )∗(h(j(b/(θ|B)))) = Y ∩ h(b/θ) = Y ∩ V ,

where g is as in (6.9), and V := h(b/θ). By (6.8), we may assume that
b 6 e.

Now V ∈ X∗, so V is an upward-closed subset of X. Note that F1 /∈ V
(otherwise Y = ↑A−F1 ⊆ V , yielding the contradiction U ( Y = Y ∩ V =
U). It follows that Y 6⊆ V (as F1 ∈ Y ).

For any H ∈ V , if F1 ⊆ H, then F1 ( H (as F1 /∈ V), whence F2 ( H
(by Lemma 6.23), whereas if F1 6⊆ H, then F2 ⊆ H (by (6.2)). This shows

that V ⊆ ↑A−F2.
We now argue that V ⊆ Y .
Suppose, on the contrary, that there exists H ∈ V \ Y . Then F1 6⊆ H

(by definition of Y ), so F2 ⊆ H, by (6.2). Now Lemma 6.24 prevents F2

from being a proper subset of H, so F2 = H. In particular, F2 ∈ V , so
↑A−F2 ⊆ V , whence V = ↑A−F2.

In Case (A) of Claim 2, it would follow that Y = ↑A−F1 ⊆ ↑A
−
F2 = V ,

a contradiction.
In Case (B), we have e > a2 ∈ F2 \ F1 and h(a2/θ) = ↑A−F2 = V =

h(b/θ). Then, since h is injective, a2/θ = b/θ, contradicting Claim 4.
This confirms that V ⊆ Y , and so V = Y ∩ V = U . Therefore,

U = h(b/θ) = h(j(b/(θ|B))) ∈ h[j[(B/θ|B)−]],

completing the proof that M is {a1/θ} in Case (A), and is {a1/θ, a2/θ} in
Case (B).

It remains to show that a/θ ≺ e/θ in A/θ, whenever a/θ ∈M .
To establish that a1/θ ≺ e/θ in A/θ (i.e., in (A/θ)−), it suffices to show

that ↑A−F1 ≺ X in X∗, because h is an isomorphism.
Suppose ↑A−F1 ( W ( X, where W ∈ X∗. Then F1 6⊆ H for some

H ∈ W , whence F2 ⊆ H, by (6.2). We cannot have F2 = H, otherwise
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↑A−F2 ⊆ W , in which case every element G of X belongs to W (as G
contains F1 or F2, again by (6.2)). Therefore, F2 ( H, and so F1 ⊆ H, by
Lemma 6.24. This contradiction confirms that a1/θ ≺ e/θ in A/θ.

We may now assume that Case (B) applies. The desired conclusion

a2/θ ≺ e/θ amounts similarly to the claim that ↑A−F2 ≺ X inX∗. Suppose,

on the contrary, that ↑A−F2 ( W ( X, for some W ∈ X∗. Then F2 6⊆ H
for some H ∈ W . Now H ∈ X, so F1 ⊆ H, by (6.2). Then F1 = H,

by Lemma 6.23, so F1 ∈ W , whence ↑A−F1 ⊆ W . By (6.2) again, X ⊆
(↑A−F1) ∪ (↑A−F2) ⊆ W , contradicting the fact that W ( X. Therefore,
a2/θ ≺ e/θ in A/θ.

We are now in a position to prove Claim 1 (and hence Theorem 6.22).

Proof of Claim 1. Since A and B are negatively generated, so are A/θ and
B/(θ|B), by Lemma 2.35. The subalgebra

J := j[B/(θ|B)]

of A/θ is isomorphic to B/(θ|B), so J is also generated by its negative cone
J−. By Lemma 6.12(i), J− = j[(B/(θ|B))−], whence M = (A/θ)− \ J−. As
B is K-epic in A, Lemma 6.8 shows that J is K-epic in A/θ. Moreover,

S := SgA/θ(J− ∪ {a1/θ})

is negatively generated (since J− ∪ {a1/θ} ⊆ S−), and J is a subalgebra of
S (as J = SgA/θ(J−)), so S is K-epic in A/θ (because J is).

Observe that J 6= A/θ, because a1/θ /∈ J (by Claim 4 and (6.8), since
a1 ∈ F1 \ F2), and that A/θ = SgA/θ((A/θ)−) = SgA/θ(J− ∪M).

We choose C = J and a = a1 in Case (A). We make the same choices
in Case (B) if a2/θ ∈ S. Under these conditions, J− ∪M = J− ∪ {a1/θ}
(by Claim 5) and A/θ = SgA/θ(J−∪M) ⊆ S = SgA/θ(C−∪{a/θ}), so A/θ
is generated by C− ∪ {a/θ}, as required.

In Case (B), if a2/θ /∈ S (whence S 6= A/θ), we choose C = S and
a = a2, whereupon J− ∪M = J− ∪ {a1/θ, a2/θ} (by Claim 5) and

A/θ = SgA/θ(J− ∪M) ⊆ SgA/θ(S− ∪ {a2/θ}) = SgA/θ(C− ∪ {a/θ}),

so again, A/θ is generated by C− ∪ {a/θ}.

Applications

Recall from Theorem 4.2 that the four minimal varieties of De Morgan
monoids satisfy the conditions of Theorem 6.22 (their FSI members have
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finite depth and are negatively generated), and thus have the ES property.
Furthermore, by Corollary 4.24, each of the ten covers of V(C4) within U
is generated by a finite De Morgan monoid that is itself generated by one
of its negative elements. Therefore, the conditions of Theorem 6.22 obtain
in all ten covers, and hence in their varietal join, so we deduce:

Theorem 6.25. The join of the ten covers of V(C4) within U has the ES
property, and so do all of its subvarieties.

As was mentioned in the introduction to this chapter, Theorem 6.22 can
be viewed as a generalization (to certain non-integral varieties of SRLs) of
the following recent result:

Corollary 6.26 ([11, Thm. 5.4]). Every variety of Brouwerian algebras
with finite depth has the ES property.

(This follows directly from Theorem 6.22, because every Brouwerian algebra
is negatively generated.)

Theorem 6.22 remains true for varieties of S[I]RLs with distinguished
extrema; its proof requires no essential alteration.5 In this form, it gener-
alizes the finding that every variety of Heyting algebras of finite depth has
surjective epimorphisms [11, Thm. 5.3].

In the same paper, Corollary 6.26 is used to prove that epimorphisms
are surjective in every variety of semilinear Brouwerian algebras (i.e., ev-
ery variety of relative Stone algebras) [11, Cor. 5.7]. It therefore follows
immediately from the category equivalence mentioned at the end of Sec-
tion 6.2 that every variety of odd Sugihara monoids has the ES property.
More generally, the next theorem is proved in [11] using similar categorical
methods.

Theorem 6.27 ([11, Thm. 8.5]). Every variety of Sugihara monoids has
surjective epimorphisms.

The same is true of all varieties of positive Sugihara monoids (i.e., RL-
subreducts of Sugihara monoids) [11, Thm. 8.6]. For the finitely generated
varieties of these kinds, the surjectivity of epimorphisms could alternatively
be deduced (immediately) from Theorem 6.22. (Note that [positive] Sug-
ihara monoids are always negatively generated, as they satisfy equation
(2.39).)

5 More precisely, the (slight) alterations needed are to definitions in the underlying
duality theory (see page 186), not to the proof strategy of Theorem 6.22 itself.
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6.6 Semilinearity and epimorphisms

We proved in the previous section that the ES property holds in all vari-
eties of S[I]RLs whose FSI members are negatively generated and have finite
depth (Theorem 6.22). A number of varieties of S[I]RLs that have infinite
depth are known to have the ES property. We have already mentioned, for
example, BRA, RSA, SM, OSM and the variety of positive Sugihara monoids
(see Theorem 6.5 and the end of the last section). All these varieties con-
sist of negatively generated idempotent algebras, and (with the exception of
BRA) they all consist of semilinear algebras. In this section, we shall estab-
lish more general sufficient conditions for the surjectivity of epimorphisms,
encompassing the semilinear cases just mentioned.

We begin this section with a representation theorem (from [59]) for to-
tally ordered idempotent RLs (Theorem 6.28 below), and a characterization
of homomorphisms between algebras of this kind (Theorem 6.32). These
results will be used to prove that epimorphisms are surjective in a number
of interesting varieties of semilinear idempotent RLs. (The idempotence as-
sumption will be relaxed in the following section, where involutive algebras,
such as semilinear De Morgan monoids, are also considered.)

Let A be a totally ordered idempotent RL. (Recall that x∗ was defined
to be x→ e on page 41.) Then

A∗∗ := {a∗∗ : a ∈ A}

is the universe of a subalgebra A∗∗ of A which, moreover, is termwise
equivalent to a (totally ordered) odd Sugihara monoid, where ¬x := x∗

[59, Lem. 3.3, Prop. 3.4]. For every c ∈ A∗∗, the set

Ac := {a ∈ A : a∗∗ = c}

is an interval of A with greatest element c [59, Prop. 3.4]. For any A as
above, we define

A := {〈Ac;6|Ac〉 : c ∈ A∗∗}.

Let S be a totally ordered odd Sugihara monoid and let

X = {〈Xc;6c〉 : c ∈ S}

be an S-indexed family of disjoint chains such that each c ∈ S is the greatest
element of Xc. For all a, b ∈ S with x ∈ Xa and y ∈ Xb, we define

x 4 y iff a < b or (a = b and x 6a y).
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Thus, 4 is the lexicographic total order on S ⊗X :=
⋃
{Xc : c ∈ S}.

We let ∧ and ∨ denote the meet and join operations for 4 and define

S ⊗X := 〈S ⊗X ;∧,∨, ·,→, e〉,

where for a, b ∈ S and x ∈ Xa, y ∈ Xb,

x · y =


x ∧ y if a = b 6 e

x ∨ y if e < a = b

x if a 6= b and a ·S b = a

y if a 6= b and a ·S b = b

and x→ y =

{
a∗ ∨ y if x 6 y

a∗ ∧ y if y < x
.

Recall that a · b ∈ {a, b} for all elements a, b of the Sugihara monoid Z∗

(see page 36). As this property is expressible as a positive universal sen-
tence, it holds for every totally ordered Sugihara monoid, by Jónsson’s
Theorem 1.23. This shows why the definition of · above is exhaustive. The
following representation theorem for totally ordered idempotent RLs from
[59] has an antecedent in [116].

Theorem 6.28 ([59, Thm. 3.5]). For S and X as above, the algebra S⊗X is
a totally ordered idempotent RL satisfying S = (S⊗X )∗∗ and (S⊗X )c = Xc

for every c ∈ S. Moreover, every totally ordered idempotent RL has this
form. In particular, A = A∗∗ ⊗ A, for any totally ordered idempotent RL
A (where A is as on page 150).

Recall that the variety GSM of generalized Sugihara monoids was intro-
duced in Definition 2.37 and characterized in Theorem 2.38.

Corollary 6.29 ([56]). A totally ordered idempotent RL A is a generalized
Sugihara monoid iff Ac = {c} for every c > e.

Proof. (⇒): Let e < c ∈ A. As A ∈ GSM, we have c∗∗ = c, and therefore
c ∈ Ac. Now let d ∈ Ac, i.e., d∗∗ = c, so d∗ = d∗∗∗ = c∗ 6 e. We must
show that d = c. If d 6 e, then e 6 d∗, so d∗ = e, whence c = d∗∗ = e,
a contradiction. Consequently, e < d. Then, since A ∈ GSM, we have
d = d∗∗ = c, as required.

(⇐): Suppose Ac = {c} whenever e < c ∈ A. To see that A ∈ GSM,
let e 6 a ∈ A. If a = e, then a∗∗ = e = a, so assume that e < a. Then
e < a∗∗ (because a 6 a∗∗), so Aa∗∗ = {a∗∗}, by assumption. But a ∈ Aa∗∗ ,
so a = a∗∗, as required.

The next two lemmas will assist in proving a characterization of homo-
morphisms between totally ordered idempotent RLs (Theorem 6.32).
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Lemma 6.30 ([111, Prop. 2.5]). Let A be a totally ordered idempotent
RL and let F ∈ Fil(A). If a and b are distinct elements of A such that
a/F = b/F , then b/F = e/F .

Proof. By definition, a/F = b/F means that a → b, b → a ∈ F . By
semilinearity and symmetry, we may assume that a < b. Then e 66 b → a,
by (2.15), so b→ a < e, because A is totally ordered. It follows from (2.14)
that b → (b → a) 6 b → e. Now, b → (b → a) = (b · b) → a = b → a, by
(2.9) and the fact that b is idempotent. Therefore b→ a 6 b→ e, whence
b → e ∈ F , because b → a ∈ F . On the other hand, b 66 b → a, because
otherwise b = b · b 6 a. So, b → a < b, since A is totally ordered. As
b→ a ∈ F , we have e→ b = b ∈ F , so b/F = e/F .

Recall that any congruence class of an algebra with a lattice reduct is
an interval; specifically, if F is a deductive filter of an [I]RL A, then the
set e/F = {a ∈ A : e→ a, a→ e ∈ F} = {a ∈ A : a, a∗ ∈ F} is an interval
subuniverse of A (see [66] or [51, Thm. 4.47]). When A is totally ordered,
then e/F is the convex closure of {a : e > a ∈ F} ∪ {a∗ : e > a ∈ F},
because if e < a ∈ A, then a→ e < e and a 6 (a→ e)∗.

Lemma 6.31. Let A be a totally ordered idempotent RL and let I be an
interval of A, containing e, that is closed under ∗. Define

I∗ := {a ∈ A : a /∈ I and a∗ ∈ I}.

(i) I is a subuniverse of A;

(ii) I∗ ∩ A∗∗ = ∅;

(iii) Every element of I∗ is strictly below every element of I;

(iv) If b ∈ I∗ then b∗ is the greatest element of I;

(v) I ∪ I∗ is an interval of A that is closed under ∗.

Proof. Item (i) follows from the fact that {a·b, a→ b} ⊆ {a, b, a∗, b∗} for any
a, b ∈ I, by Theorem 2.36 (and the fact the e ∈ I by assumption). Item (ii)
holds, because otherwise a∗∗ ∈ I∗ for some a ∈ A, but then a∗∗ = a∗∗∗∗ ∈ I,
a contradiction.

Let b ∈ I∗. Then b∗ ∈ I and thus b∗∗ ∈ I. Suppose, with a view to
contradiction, that a 6 b for some a ∈ I. Then a 6 b 6 b∗∗, by (2.32).
Since I is an interval, b ∈ I, a contradiction. Therefore, (iii) holds.

For (iv), suppose a > b∗ for some a ∈ I. If b 6 a∗, then a 6 a∗∗ 6 b∗,
contrary to the supposition, so a∗ < b 6 b∗∗. Then b ∈ I, a contradiction.
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To show (v), notice that I ∪ I∗ is clearly closed under ∗, so it remains to
show that I∪I∗ is an interval. If I∗ = ∅ we are done, so let b be an arbitrary
element of I∗. For any a ∈ I∗, we have a∗ = b∗, by (iv), so a ∈ Ab∗∗ . It
follows that I ∪ I∗ is the union of the overlapping intervals I and Ab∗∗ .

se
I∗ = ∅

}I b∗∗ s
Ab∗∗ {
se
}I∗ 6= ∅
}I
sb∗

s��1b
Theorem 6.32. Let A and B be totally ordered idempotent RLs. A map
h : A→ B is a homomorphism from A to B iff the following holds:

(i) The set I = h−1[{e}] is an interval of A, which contains e and is
closed under ∗.

(ii) h is an order embedding from I∗ into Be \ {e}.

(iii) h is an order embedding from A∗∗ \ I into B∗∗ \ {e}, preserving ∗.

(iv) For every a ∈ A∗∗ \ I, h is an order embedding from Aa into Bh(a).

I { HHHHHj
��
�

��*

I∗
↪→{ .......

.....

sa ............

Aa{ ↪→
............

se
}Be

sh(a)

}Bh(a)

Proof. Suppose h : A → B is a homomomorphism. The congruence θ :=
kerh corresponds to a deductive filter F of A, so that A/θ = A/F . Let
I = h−1[{e}]. Then I = e/F , which we have already noted is an interval
and a subuniverse of A. In particular, I is closed under ∗ and contains e.

Let a, b ∈ A \ I such that a 6= b. Then h(a) 6= h(b), because otherwise
a/F = b/F , which would imply that b/F = e/F , by Lemma 6.30, i.e., that
h(b) = h(e) = e, contradicting b /∈ I. Therefore, h is injective outside of I.

By [59, Lem. 3.3], h restricts to a homomorphism h|A∗∗ : A∗∗ → B∗∗,
which in particular preserves ∗. Then (iii) holds, because h(a) 6= e for any
a ∈ A∗∗ \ I.
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For any a ∈ I∗, we have a∗ ∈ I, so e = e∗ = h(a∗)∗ = h(a)∗∗ and
h(a) 6= e. Therefore, h[I∗] ⊆ Be \ {e}, so (ii) holds. For any a ∈ A∗∗ \ I
and x ∈ Aa, we have x∗∗ = a = a∗∗, so h(x)∗∗ = h(a)∗∗. Therefore,
h[Aa] ⊆ Bh(a), so (iv) holds.

Conversely, let h be as in the theorem and let I = h−1[{e}]. By Theo-
rem 6.28, A = A∗∗ ⊗ A and B = B∗∗ ⊗ B, so the families {Aa : a ∈ A∗∗}
and {Bb : b ∈ B∗∗} are partitions of A and B, respectively. Note that
I ∪ I∗ =

⋃
{Aa : a ∈ I ∩ A∗∗}, because for each c ∈ A, we have c ∈ I ∪ I∗

iff c∗∗ ∈ I (using (2.32)). So, the sets I, I∗, and Aa (a ∈ A∗∗ \ I) form a
partition of A. It follows from properties (i)–(iv) that h is injective outside
of I, and that h preserves order (and hence the lattice operations), in view
of the definitions of A∗∗ ⊗A and B∗∗ ⊗ B.

Let a ∈ A. If a ∈ I ∪ I∗ then a∗ ∈ I, so h(a∗) = e = h(a)∗, by (i)
and (ii). If a ∈ A \ (I ∪ I∗), then a∗∗ ∈ A∗∗ \ I. From (iii) and (iv), it
follows that h(a∗∗∗) = h((a∗∗)∗) = h(a∗∗)∗ and h(a) ∈ h[Aa∗∗ ] ⊆ Bh(a∗∗),
i.e., h(a)∗∗ = h(a∗∗). So, h(a∗) = h(a∗∗∗) = h(a∗∗)∗ = h(a)∗∗∗ = h(a)∗.
Therefore, h preserves ∗.

For a, b ∈ A, if we consider the characterization of a → b in Theo-
rem 2.36, the preservation of→ follows from the preservation of ∧, ∨ and ∗,
except when a > b but h(a) = h(b). In this situation a, b ∈ I, because h is
injective outside of I, so a→ b ∈ I, by Lemma 6.31(i), whence

h(a)→ h(b) = e→ e = e = h(a→ b).

Therefore, h also preserves | - |.
Again, by Theorem 2.36, since h preserves ∨, ∧ and | - |, to show preser-

vation of ·, we need only consider cases where |a| > |b| but |h(a)| = |h(b)|
(i.e., h(|a|) = h(|b|)) for some a, b ∈ A. Then |a|, |b| ∈ I, so a, b ∈ I ∪I∗, be-
cause for any c ∈ A, |c| ∈ {c, c∗}, by Theorem 2.36. We have h(a·b) = h(a),
since a · b = a, and h(a) · h(b) = h(a) ∧ h(b), so it remains to show that
h(a) 6 h(b).

Note that we cannot have b ∈ I∗, because in this case b 6 e, by
Lemma 6.31(iii), so that |b| = b∗ > |a|, by Lemma 6.31(iv), since |a| ∈ I. If
a, b ∈ I, then h(a) = e = h(b). Lastly, if a ∈ I∗ and b ∈ I, then a 6 e, so
h(a) 6 h(e) = e = h(b).

Theorem 6.33. Epimorphisms are surjective in the variety of all idempo-
tent semilinear RLs.

Proof. Let B be a proper subalgebra of a totally ordered idempotent RL
A. Let a ∈ A \ B. We shall show that B is not epic in A by constructing
a totally ordered idempotent RL C and two homomorphisms from A into
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C which agree on B but differ at a. It then follows from Theorem 6.9 that
the variety of all idempotent semilinear RLs has the ES property. We split
into two cases: a ∈ A∗∗ and a /∈ A∗∗.

First suppose that a ∈ A∗∗. Without loss of generality, a < e. Indeed,
if e 6 a, then e > a∗ = a∗∗∗ ∈ A∗∗; moreover, a∗ /∈ B, because otherwise,
a = a∗∗ ∈ B. Then F := {b ∈ A : b > a} is a deductive filter ofA. Let q be
the canonical surjection from A to the totally ordered algebra C := A/F .
Consider the set

I := [a, a∗] ∪ [a, a∗]∗ = [a, a∗] ∪ {x ∈ A : x /∈ [a, a∗] and x∗ ∈ [a, a∗]}.

Define the map h : A→ A/F by

h(x) =

{
eC if x ∈ I
q(x) otherwise.

Note that h(a) = eC , since a ∈ I, so h(a) 6= q(a) (because, if a ∈ e/F
then a = e → a ∈ F , which is not the case). We now show that h is a
homomorphism. As [a, a∗] is an interval containing e that is closed under ∗

(because a ∈ A∗∗), the same of true of I, by Lemma 6.31(v). Furthermore,
h−1[{eC}] = I, because q−1[{eC}] = e/F ⊆ {b ∈ A : a < b 6 a∗} ⊆
I. So, condition (i) of Theorem 6.32 holds. Note that a∗ = max I, by
Lemma 6.31(iii).

If b ∈ I∗ then b /∈ I and b∗ is the greatest element of I, by Lemma 6.31(iv),
so b∗ = a∗. But, since b /∈ [a, a∗] and b∗ ∈ [a, a∗], we have b ∈ [a, a∗]∗, a
contradiction. So, I∗ = ∅, and condition (ii) of Theorem 6.32 is vacuously
satisfied.

As q is a homomorphism between totally ordered idempotent RLs, The-
orem 6.32 applies to q. In particular, the following conditions hold:

(iii) q is an order embedding from A∗∗ \ (e/F ) into C∗∗ \ {e}, preserving ∗;

(iv) for every a ∈ A∗∗ \ (e/F ), q is an order embedding from Aa into Cq(a).

As e/F ⊆ I, conditions (iii) and (iv) also hold for h. So, h is a homomor-
phism, by Theorem 6.32.

To show that h|B = q|B, we let b ∈ B ∩ I and prove that q(b) = eC ,
i.e., that b, b∗ ∈ F . Note that b∗ ∈ [a, a∗]. If b∗ /∈ F then b∗ 6 a by
the definition of F , so a = b∗ ∈ B, a contradiction. Therefore b∗ ∈ F ,
as required. Suppose that b ∈ [a, a∗]∗. By Lemma 6.31(iv), b∗ = a∗, so
a = a∗∗ = b∗∗ ∈ B, a contradiction. So, b ∈ [a, a∗]. Since a 6= b, we get
a < b, i.e., b ∈ F .
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Now suppose that a /∈ A∗∗. Let A′s = 〈As;6|As〉 whenever a∗∗ 6= s ∈
A∗∗. Define A′a∗∗ = 〈A′a∗∗ ;6′〉 where A′a∗∗ = Aa∗∗ ∪ {c} for some fresh
element c /∈ A and 6′ is the total order on A′a∗∗ that extends 6|Aa∗∗ with
c <′ a and b <′ c whenever a > b ∈ Aa∗∗ . Let A′ = {A′s : s ∈ A∗∗} and
C = A∗∗ ⊗ A′. By Theorem 6.28, C is a totally ordered idempotent RL.
By Theorem 6.32, the inclusion map i : A → C is a homomorphism, and
so is the map

h : x 7→

{
c if x = a

x otherwise.
.

Note that h and i differ only at a, so h|B = i|B.

Definition 6.34.

(i) The strong ES property for a class K of algebras asks that, whenever
A is a subalgebra of B ∈ K and b ∈ B\A, then there exist C ∈ K and
homomorphisms g, h : B → C such that g|A = h|A and g(b) 6= h(b).

(ii) The amalgamation property for a variety K is the demand that, for
any two embeddings gB : A → B and gC : A → C between algebras
in K, there exist embeddings hB : B → D and hC : C → D, with
D ∈ K, such that hB ◦ gB = hC ◦ gC .

(iii) The strong amalgamation property for K asks, in addition to the de-
mands of (ii), that D, hB and hC can be chosen so that (hB ◦gB)[A] =
hB[B] ∩ hC [C].

These conditions are linked as follows (see [71, 125, 76] and [68, Sec. 2.5.3]).

Theorem 6.35. A variety has the strong amalgamation property iff it has
the amalgamation property and the weak ES property. In that case, it also
has the strong ES property.

It was recently shown in [59, Thm. 6.6] that the variety of semilinear
idempotent RLs has the amalgamation property. Combining this observa-
tion with Theorems 6.33 and 6.35, we obtain:

Corollary 6.36. The variety of semilinear idempotent RLs has the strong
amalgamation property and hence the strong ES property.

Note that the proof of Theorem 6.33 essentially showed that the class of
totally ordered idempotent RLs has the strong ES property. Nevertheless,
we cannot deduce from this fact alone that the whole variety of semilinear
idempotent RLs has the strong ES property, because there is no analogue
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of Theorem 6.9 for the strong ES property. For instance, the strong ES
property holds for L4

FSI but fails for L4, where L4 is the variety generated
by the four-element totally ordered Brouwerian algebra. In fact, Maksi-
mova showed in [88, Thm. 4.3] that there are just six nontrivial varieties of
Brouwerian algebras with the strong ES property, only three of which are
semilinear, namely the variety of all relative Stone algebras and the vari-
eties generated, respectively, by the two-element and three-element relative
Stone algebras.

The fact that L4
FSI has the strong ES property can be deduced from the

proof of the next theorem.

Not all varieties of semilinear idempotent RLs have the ES property,
as we shall see in Example 6.40. But the following theorem shows that
epimorphisms are surjective in all varieties of negatively generated semilin-
ear idempotent RLs, i.e., all varieties of generalized Sugihara monoids (even
those with infinite depth). This theorem strengthens [56, Thm. 13.1], which
states that every variety of generalized Sugihara monoids has the weak ES
property, and it also strengthens [11, Thm. 8.9], which shows that the ES
property holds in all varieties of positive Sugihara monoids.

Theorem 6.37. All varieties of generalized Sugihara monoids have surjec-
tive epimorphisms.

Proof. Assume, with a view to contradiction, that K is a subvariety of GSM
without the ES property. Then, by Theorem 6.9, there exists A ∈ KFSI

(i.e., a totally ordered A ∈ K) with a proper K-epic subalgebra B.
Since A is negatively generated, there exists a ∈ A− \ B, so a < e. So,

as in Theorem 6.33, F := {b ∈ A : a < b} is a deductive filter of A. Let
C := A/F , and let q : A → C be the canonical surjection. Note that C
is totally ordered and C ∈ K, because K is a variety.

Recall that a 6 a∗∗. If a = a∗∗, then a ∈ A∗∗, so we can use the first
homomorphism in the proof of Theorem 6.33, to show that B is not K-epic
in A, a contradiction.

So, we may suppose that a < a∗∗. In this case, define h : A→ C by

h(x) =

{
eC if x = a

q(x) otherwise.

Then h−1[{eC}] = (e/F )∪ {a}. We claim that (e/F )∪ {a} = [a, a∗], which
is clearly an interval of A containing e that is closed under ∗. If b ∈ [a, a∗]
and b 6= a, we must show that b/F = e/F , i.e., that a < b, b∗. Clearly
a < b and a 6 b∗. If a = b∗, then a∗∗ = b∗∗∗ = b∗ = a, contradicting the
assumption that a < a∗∗. So, a < b∗, as required.

 
 
 



CHAPTER 6. SURJECTIVITY OF EPIMORPHISMS 158

Because q satisfies conditions (ii)–(iv) of Theorem 6.32, and q−1[{eC}] =
e/F ⊆ h−1[{eC}], it is easy to see that h satisfies the conditions of Theo-
rem 6.32. So, h is a homomorphism. Clearly, h|B = q|B, but h(a) 6= q(a).
Therefore, B is not K-epic in A, a contradiction.

Every variety K of RLs with the ES property exhibited thus far has at
least one of the following two properties: (i) K is generated by algebras
that are negatively generated (as in Theorems 6.22 and 6.37), or (ii) K has
infinite depth (as in Theorem 6.33). In the next theorem we supply an
example of a variety with surjective epimorphisms which satisfies neither
(i) nor (ii).

Let 2+ denote the two-element Brouwerian algebra. Recall that the
three-element Sugihara monoid S3 has universe {−1, 0, 1}. For any chain
P with greatest element 1, we abbreviate S3 ⊗ {{−1}, {0},P } as S3 ⊕P .

s1
P :
sss 10−1

S3:

s
ss

1

0
−1

S3 ⊕ P :

Lemma 6.38 ([110, Thm. 3.7]). A semilinear idempotent RL is simple iff
it is isomorphic to 2+ or S3 ⊕ P for some chain P with top element 1.

Let S be the class of all simple totally ordered idempotent RLs.

Theorem 6.39. Epimorphisms are surjective in V(S).

Proof. We use the same strategy as in Theorems 6.33 and 6.37. Let A ∈
V(S)FSI and B a proper subalgebra of A. It follows that A is nontrivial.
By Corollary 2.17, A is simple. So, by Lemma 6.38, A is isomorphic to 2+

or S3 ⊕ P for some chain P with greatest element 1.
In the first case, B = {e}. The identity map from A to itself, and the

map sending A onto the trivial subalgebra of A, are two different homo-
morphisms that agree on B. So, B is not V(S)-epic in A.

We may therefore suppose thatA = S3⊕P . IfB is trivial, we are done,
as in the previous paragraph. So, we may assume that B is nontrivial, in
which case S3 ⊆ B. Let c ∈ A \B. Then c ∈ P \ {1}.

As in Theorem 6.33, let P ′ = P ∪ {d} for some fresh element d /∈ A
and extend the total order of P to P ′ by defining d to be the immediate
predecessor of c. By Theorem 6.32, the inclusion map i from S3 ⊕ P to
S3 ⊕ P ′ ∈ S is a homomorphism, and the map

h : x 7→

{
d if x = c

x otherwise
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is also homomorphism, differing from i only at c, so that h|B = i|B. Thus,
B is not V(S)-epic in A.

We now exhibit a subvariety of V(S) which does not have the ES prop-
erty. Let 2 be the two-element chain with elements c < 1.ssss

1
c
0
−1

S3 ⊕ 2 :

Example 6.40. V(S3 ⊕ 2 ) does not have the ES property.

Proof. We show that S3 is an epic subalgebra of S3 ⊕ 2 .
Let g, h : S3 ⊕ 2 → C be two homomorphisms into C ∈ V(S3 ⊕ 2 )SI

such that g|S3 = h|S3 . By Lemma 6.10, it suffices to show that g = h.
Since S3 ⊕ 2 is simple, and g and h agree on a non-neutral element,

g and h are either both embeddings or they both have range {e}. In the
second case, clearly g = h. So, we assume that g and h are embeddings.

By Jónsson’s theorem 1.23, C ∈ HSPU(S3⊕2 ). Since S3⊕2 is finite and
simple, C is isomorphic to S3 or to S3⊕ 2 . Since g and h are embeddings,
the first case is ruled out on cardinality grounds, so C ∼= S3⊕ 2 . But then
g = h because S3 ⊕ 2 has no nontrivial automorphism.

Note that S3⊕ 2 is not negatively generated (as the subuniverse gener-
ated by {−1, 0} excludes c). Also, since S3 ⊕ 2 is finite and has a proper
V(S3⊕ 2 )-epic subalgebra, V(S3⊕ 2 ) fails to have even the weak ES prop-
erty, by Theorem 6.7.

We now relax the condition of idempotence and consider varieties of
semilinear RLs that are merely square-increasing.

Recall from Theorem 2.41 that the class of negatively generated semi-
linear Dunn monoids coincides with the variety of generalized Sugihara
monoids. The following is therefore a paraphrase of Theorem 6.37.

Corollary 6.41. Let D be a variety of negatively generated semilinear Dunn
monoids. Then D has surjective epimorphisms.

The variety of all semilinear Dunn monoids does not have the ES prop-
erty, however. This is illustrated by the following examples.

Theorem 6.42. Let K be a variety of semilinear Dunn or De Morgan
monoids containing a totally ordered algebra A which is generated by some
a ∈ A that satisfies a = an → an+1 for some positive integer n, such that
an+1 generates a proper subalgebra of A. Then K does not have the ES
property.
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Proof. We show that B = SgA{an+1} is a proper K-epic subalgebra of
A. Let h, g : A → C be two different homomorphisms that agree at an+1.
Because of Lemma 6.10, we may suppose that C ∈ KSI, so C is a totally
ordered algebra. Note that h(a) 6= g(a), because A is generated by a. Since
C is totally ordered, we may suppose by symmetry that h(a) < g(a). Note
that h(an) = h(a)n 6 g(a)n = g(an). Then

g(a) · h(an) 6 g(a) · g(an) = g(an+1) = h(an+1).

But then g(a) 6 h(an) → h(an+1) = h(an → an+1) = h(a), by the law of
residuation (2.2), a contradiction. So, h = g.

By Theorem 6.7, none of these varieties has even the weak ES property,
because the algebra in Theorem 6.42 is finitely generated.

Recall from Example 4.25 that for every positive integer p, we defined
a totally ordered De Morgan monoid called Ap on the chain 0 < 1 < 2 <
· · · < 2p+1, where fusion is multiplication, truncated at 2p+1. For each p > 2,
Ap is generated by 2, and satisfies 2 = 2p−1 → 2p. Furthermore, f = 2p,
and the subalgebra SgAp{f} has universe {0, 1, 2p, 2p+1} and is isomorphic
to C4. So, Ap satisfies the conditions of Theorem 6.42 with n = p− 1.

Recall that for distinct primes p, q > 2, the algebras Ap,Aq generate
distinct covers of V(C4) in the subvariety lattice of De Morgan monoids.
There are therefore infinitely many covers of V(C4) that lack the (weak)
ES property and consist of semilinear algebras.

An analogous situation holds for the involution-less reducts of these
algebras (except that they do not generate covers of atoms in the subvariety
lattice of Dunn monoids). For every positive integer p, let A+

p denote the
Dunn monoid reduct of Ap. Note that 2 still generates A+

p , and 2 = 2p →
2p+1. Moreover, 2p+1 is idempotent in A+

p , so it generates an idempotent
subalgebra of A+

p , by Theorem 2.40, which must therefore be a proper

subalgebra. In fact, SgA+
p {2p+1} = {0, 1, 2p+1}. Therefore, A+

p satisfies the
conditions of Theorem 6.42, with a = 2 and n = p.

For distinct primes p and q, it follows from Jónsson’s Theorem 1.23 that
V(A+

p−1) 6= V(A+
q−1), since the only proper nontrivial subalgebra of A+

p−1

has universe {0, 1, 2p}, and each A+
p−1 is simple and finite. We therefore

obtain infinitely many varieties of semilinear Dunn monoids in which the
(weak) ES property fails.
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6.7 Epimorphisms in semilinear varieties

with involution

We shall now use the representation theorems of Section 3.5 to prove some
positive ES results for semilinear varieties with involution.

The effect on epimorphisms of the reflection construction (A 7→ R(A)
and K 7→ R(K); see Section 3.4) is described in the next theorem.

Theorem 6.43. Let K be a variety of SRLs, let B be a subalgebra of A ∈
K, and identify R(B) with the subalgebra of R(A) given in Lemma 3.34(i).
Then

(i) B is K-epic in A iff R(B) is R(K)-epic in R(A);

(ii) K has the ES property iff R(K) has the ES property;

(iii) K has the weak ES property iff R(K) has the weak ES property;

Proof. (i) (⇒): Let g, h : R(A)→ E ∈ R(K) be homomorphisms that agree
on R(B). In showing that g = h, we may assume that E is subdirectly
irreducible (by Lemma 6.10), whence E = R(D) for some D ∈ KFSI ,
by Corollary 3.36. Since g, h preserve e, ·,¬, they preserve 1 (= f 2) and
0 (= ¬(f 2)). If a, b ∈ A, then g(a), h(a) 6= 0 (otherwise, the kernel of
g or h would identify 1 = a · 1 with 0 · 1 = 0 ), and g(a), h(a) 6= 1
(because the kernels don’t identify 1 = 1 → 1 with 1 → a = 0 ), while
g(a), h(a) 6= b′ (because the kernels don’t identify a2 ∈ A with 1 = (b′)2).
Thus, g[A], h[A] ⊆ D, and so g|A, h|A are homomorphisms from A to D,
which agree on B. As D ∈ K and B is K-epic in A, we conclude that
g|A = h|A. Then g|A′ = h|A′ , since g, h preserve ¬. Consequently, g = h.

(⇐): Let g, h : A→D ∈ K be homomorphisms that agree on B. Then
R(D) ∈ R(K). Let g, h : R(A) → R(D) be the respective extensions of
g, h, preserving 0 , 1 , such that g(a′) = g(a)′ and h(a′) = h(a′) for all a ∈ A.
Then g, h are homomorphisms that agree on R(B), so by assumption, g = h,
whence g = h.

(ii) Obviously, B = A iff R(B) = R(A). Therefore, the implication
from right to left follows from (i). For the converse, use Theorem 6.9,
Corollary 3.36, Lemma 3.34(i) and item (i) of the present theorem.

(iii) This is similar to the previous item, except that it also uses Theo-
rem 6.7 and the fact that A is finitely generated iff R(A) is as well (see the
proof of Lemma 3.37).
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Theorem 6.43 will be used throughout the next chapter to infer ES
results for varieties of De Morgan monoids from corresponding results about
varieties of Brouwerian algebras.

Recall that S is the class of all simple totally ordered idempotent RLs. It
follows immediately from Theorem 6.43(ii) that R(V(S)) has the ES prop-
erty. It also has finite depth and its members are not all negatively gener-
ated.

Recall from Corollary 3.44 that every nontrivial variety of negatively
generated semilinear anti-idempotent De Morgan monoids is R(L) for some
variety L of generalized Sugihara monoids.

Theorem 6.44. Let K be any variety of negatively generated semilinear
anti-idempotent De Morgan monoids. Then K has surjective epimorphisms.

Proof. We may suppose without loss of generality that K is nontrivial, so
K = R(L) for some variety L of generalized Sugihara monoids, by Corol-
lary 3.44. By Theorem 6.37, L has surjective epimorphisms. But then, by
Lemma 6.43(ii), R(L) = K has as well.

Now we can strengthen Theorem 6.44 as follows:

Theorem 6.45. Let K be any variety of negatively generated semilinear De
Morgan monoids. Then K has surjective epimorphisms.

Proof. Suppose not. By Theorem 6.9, there exists A ∈ KFSI with a proper
K-epic subalgebra B.

Let KSM be the class of all idempotent members of K. Note that KSM

is a variety of Sugihara monoids, and so has surjective epimorphisms, by
Theorem 6.27. Therefore, A is not a Sugihara monoid. But then, by
Theorem 2.57, we may suppose that A = S[A′] for some nontrivial anti-
idempotentA′ ∈ K and some odd Sugihara monoid S, both totally ordered.

Let B′ be the subalgebra of A′ with universe A′ ∩ B. We conclude
the proof by showing that B′ is a proper V(A′)-epic subalgebra of A′,
which will contradict the fact that, by Theorem 6.44, V(A′) has surjective
epimorphisms.

First, we claim that B = S[B′]. Evidently B ⊆ S[B′]. Suppose, with
a view to contradiction, that a ∈ S \ B. Note that a ∈ A. Let h : A → S
be the extension, from Theorem 2.58(i), of the homomorphism which maps
A′ onto the trivial algebra. Then h(a) /∈ h[B], by definition of h, since
a ∈ S. It therefore follows from the surjectivity of h that h[B] is a proper
KSM -epic subalgebra of S (since B is K-epic in A and compositions of
epimorphisms are epimorphisms). But then KSM does not have the ES
property, a contradiction. This confirms that B = S[B′].
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Since B ( A = S[A′], it follows from the claim just proved that B′ ( A′,
so it remains only to show thatB′ is V(A′)-epic inA′. Let h, g : A′ → C be
homomorphisms into someC ∈ V(A′)SI such that h|B′ = g|B′ . By Jónsson’s
Theorem 1.23, C ∈ HSPU(A′). By Corollary 2.59, S[C] ∈ HSPU(S[A′]) ⊆
K. We extend h and g to homomorphisms h′ and g′ from S[A′] to S[C],
as in Theorem 2.58(i). Note that h′|B = g′|B, because B = S[B′], and
h′|S = g′|S, by construction. But then h′ = g′, since B is K-epic in A.
Therefore, h = g, so B′ is V(A′)-epic in A′, by Lemma 6.10.

The conjunction of Corollary 6.41 and Theorem 6.45 can be expressed
as follows:

Corollary 6.46. Every variety of negatively generated semilinear S[I]RLs
has surjective epimorphisms.

 
 
 



Chapter 7

Some uncountability results

The variety M (which consists of De Morgan monoids) was introduced in
Definition 3.16 and characterized in Corollary 3.27. In Lemma 3.38 we
proved the injectivity of the reflection operator R which maps varieties of
Dunn monoids to subvarieties of M. Since Brouwerian algebras are Dunn
monoids, we concluded in Theorem 3.39 that M has 2ℵ0 distinct subvarieties,
using the fact that there are 2ℵ0 distinct subvarieties of BRA [150] (and that
every variety of countable type has at most 2ℵ0 subvarieties).

In this chapter we shall prove a number of results of a similar kind,
where we use R to transfer findings about varieties of Brouwerian algebras
to corresponding findings about De Morgan monoids.

The first main result (Theorem 7.6) establishes the extent to which
structural completeness can fail in subvarieties of M (and hence of DMM).
The second (Theorem 7.23) draws analogous conclusions about the surjec-
tivity of epimorphisms. In both cases, we prove new results about Brouw-
erian algebras first, using the Esakia duality summarized in Section 6.4.

7.1 Structural completeness

Recall from Section 1.2 that Heyting and Brouwerian algebras model in-
tuitionistic propositional logic and its positive fragment, respectively. We
noted in Example 5.31 that all varieties of Heyting algebras are passively
structurally complete; the same applies to Brouwerian algebras, by Theo-
rem 5.28, as they have trivial retracts. Citkin has determined the hereditar-
ily structurally complete varieties of Heyting algebras [31] and of Brouwe-
rian algebras [32]. There are denumerably many of each. In Section 5.2 we
determined which extensions of relevance logic in its full signature (Rt) are
modelled by PSC varieties (Theorem 5.34).

164
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Currently, no transparent characterization of the structurally complete
subvarieties of BRA (or of HA) is known. The same is true for varieties of De
Morgan monoids, although here, because of Theorem 5.34, the undiagnosed
SC varieties all belong to M. Moreover, we saw in Section 5.3 that the join
of the six covers of the atom in the subvariety lattice of M is HSC.

In this section we contribute to these open problems by showing that
there are 2ℵ0 structurally incomplete varieties of Brouwerian algebras. We
then show that the operator R preserves structural incompleteness, and
infer that there is a continuum of structurally incomplete varieties of De
Morgan monoids, even within M. The cardinality of the set of structurally
complete varieties is not known in either case, so far as we are aware.

For each positive integer n, let Kn be the pointed Esakia space whose
underlying poset is the subposet of the n-th direct power of the two-element
chain, consisting of the least element, the greatest element, the n atoms and
the n co-atoms. Note that Kn is rooted and has depth 3. Each atom of
Kn is covered by just n − 1 co-atoms, and each co-atom covers just n− 1
atoms. Let

K := the power set of {Kn : 3 ≤ n ∈ N},
so |K| = 2ℵ0 . Kuznetsov [79] proved that there are 2ℵ0 distinct varieties of
Brouwerian algebras of depth 3, by establishing the following:

for any C,D ∈ K, if C 6= D, then V(C∗) 6= V(D∗), (7.1)

where C∗ abbreviates {X∗ : X ∈ C}, i.e., the set comprising the algebraic
duals of the spaces in C. (Ostensibly, [79] deals with Heyting algebras, but
its argument applies equally to Brouwerian algebras.)

By (6.4), for any Esakia morphism g : X → Y between pointed Esakia
spaces,

if x ∈ X has depth n ∈ ω, then g(x) has depth at most n. (7.2)

Each finite X ∈ PESP is an E-subspace of a pointed Esakia space X̂,
which differs from X only as follows: whenever a, b are distinct elements
of depth 2 in X, then X̂ has a (new) element eab that has no strict lower
bound; the strict upper bounds of eab are just the elements of ↑X{a, b}, i.e.,
elements of X that are upper bounds of both a and b. (Note: eab and eba
are the same element.)

Observe that if X has depth n, then so does X̂, unless n = 2 (in

which case X̂ has depth 3). Also, since X ∈ Cpu(X̂), we always have

X∗ ∈ H(X̂
∗
), by Lemma 6.16(ii).

The hat construction is illustrated below for a pointed Esakia space P 6

that will play a role in subsequent arguments.
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Lemma 7.1. Let Y ,Z,W ∈ {P 6} ∪ {Kn : n ≥ 3}, where Y /∈ {P 6,Z}.
Then Y ∗ /∈ SH(Ẑ

∗
) and W ∗ /∈ IS(Ẑ

∗
).

Proof. Suppose Y ∗ ∈ SH(Ẑ
∗
). Dualizing the injective/surjective homo-

morphisms, we infer from Lemma 6.16(ii) that there exist U ∈ Cpu(Ẑ) and

a surjective Esakia morphism g : U → Y . Now Y and Ẑ have depth 3,
and Y has a unique element of depth 3, viz. its least element, w say. As g
is surjective, w = g(u) for some u ∈ U . Then u has depth 3, by (7.2). As g
is an Esakia morphism (see (6.4) on page 135) and w has at least three dis-
tinct covers, each of depth 2, the same is true of u, by (7.2). This prevents
u from having the form exy, so u belongs to Z. As the least element of Z

is its sole element of depth 3, it is u. Therefore, Z ⊆ U , as U ∈ Cpu(Ẑ).

Moreover, ↑w = ↑ g(u) = g
[
↑Ẑ u

]
, i.e., Y = g[Z].

Then Z 6= P 6, because Y has at least eight elements, while P 6 has
only six. Thus, Y ,Z are distinct elements of {Kn : n ≥ 3}. As g|Z is a
surjective Esakia morphism Z → Y , the homomorphism (g|Z)∗ : Y ∗ → Z∗

is injective, by Lemma 6.16(ii), so Y ∗ ∈ IS(Z∗), whence V(Y ∗,Z∗) =

V(Z∗). This contradicts (7.1), because Y 6= Z, so Y ∗ /∈ SH(Ẑ
∗
).

Now suppose W ∗ ∈ IS(Ẑ
∗
). Then the situation in the first paragraph

of the present proof obtains, but with U = Ẑ and Y = W . Let p, q, r
be distinct covers of w in W . As we saw above, u has distinct covers
p′, q′, r′ (of depth 2) that are mapped by g to p, q, r, respectively. As g is
isotone, g(ep′q′) is a common lower bound of the set {g(p′), g(q′)} = {p, q},
so g(ep′q′) = w. Then, because w has three distinct covers (of depth 2) in
W , it follows from (6.4) and (7.2) that ep′q′ has three distinct covers (of

depth 2) in Ẑ, but this contradicts the definitions of ep′q′ and Ẑ. Thus,

W ∗ /∈ IS(Ẑ
∗
).

Lemma 7.2. Let C = {P̂ 6}∪{Ẑ : Z ∈ E}, where E ∈ K. Then the variety
V(C∗) is structurally incomplete.

 
 
 



CHAPTER 7. SOME UNCOUNTABILITY RESULTS 167

Proof. Let D be the direct product of the members of C∗. Then V(C∗) =

V(D), so it suffices to show that V(C∗) 6= Q(D). As P 6
∗ ∈ H(P̂

∗
6) ⊆ V(C∗),

it is enough to prove that P 6
∗ /∈ Q(D). Observe that

P 6
∗ ∈ Q(D) iff P 6

∗ ∈ ISPU(D) iff P 6
∗ ∈ IS(D).

The first equivalence obtains because Q = IPSSPU and P 6
∗ is subdirectly

irreducible; the second because P 6
∗ is finite and of finite type (so that

having a copy of P 6
∗ as a subalgebra is a first order property, persisting

under PU and RU, by  Loś’ Theorem 1.8). We must therefore show that
P 6
∗ /∈ IS(D).
Suppose P 6

∗ ∈ IS(D). Then P 6
∗ ∈ ISP(C∗). As SP = PSS, it follows

(again from the subdirect irreducibility of P 6
∗) that P 6

∗ embeds into Ẑ
∗

for some Z ∈ {P 6} ∪ E. This contradicts Lemma 7.1, so P 6
∗ /∈ IS(D).

Lemma 7.3. The set {V(C∗) : C = {P̂ 6} ∪ {Ẑ : Z ∈ E} for some E ∈ K}
is a continuum of varieties of Brouwerian algebras of depth 3.

Proof. Suppose E∪{Y } ∈ K, where Y /∈ {P 6}∪E. It suffices to show that

Ŷ
∗
/∈ V({P̂

∗
6}∪{Ẑ

∗
: Z ∈ E}). As Y ∗ ∈ H(Ŷ

∗
), it is enough to prove that

Y ∗ /∈ V({P̂
∗
6} ∪ {Ẑ

∗
: Z ∈ E}).

Let G be the class of all Brouwerian algebras B such that Y ∗ /∈ SH(B).
We noted before Corollary 2.17 that the variety of SRLs has EDPC. As
Brouwerian algebras are SRLs, all varieties of Brouwerian algebras have
EDPC. So, since Y ∗ is finite and subdirectly irreducible, Theorem 1.26
shows that, for any variety K of Brouwerian algebras, we have Y ∗ /∈ K iff

K ⊆ G. Therefore, it remains only to confirm that {P̂
∗
6}∪{Ẑ

∗
: Z ∈ E} ⊆ G,

i.e., that Y ∗ /∈ SH(P̂
∗
6) and Y ∗ /∈ SH(Ẑ

∗
) for all Z ∈ E. This is indeed the

case, by Lemma 7.1, because Y /∈ {P 6} ∪ E.

Theorem 7.4. The variety of Brouwerian algebras has 2ℵ0 structurally
incomplete subvarieties (of depth 3).

Proof. Use Lemmas 7.2 and 7.3.

Theorem 7.5. Let K be a variety of Dunn monoids. If R(K) is structurally
complete, then so is K (i.e., R preserves structural incompleteness).

Proof. Suppose K is not SC, so K = H(L) for some quasivariety L ( K. Now
L† := I{R(B) : B ∈ L} is closed under S and PU, by Lemma 3.34(i),(iii),
so Q(L†) = IPS(L†) ⊆ R(K). As L ( K, and because all quasivarieties are
closed under subdirect products, there is an algebra A ∈ KSI \ L. Then
R(A) belongs to R(K) and is subdirectly irreducible. So, if R(A) ∈ Q(L†),
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then R(A) ∼= R(B) for some B ∈ L, whence A ∼= B, contradicting the fact
that A /∈ L. Therefore, R(A) /∈ Q(L†), and so Q(L†) 6= R(K).

We claim that R(K) = V(L†). To see this, let C ∈ R(K)SI. By
Jónsson’s Theorem and Lemma 3.34, C ∼= R(D) for some D ∈ K. As
K = H(L), we may assume that D = E/θ for some E ∈ L and some
θ ∈ Con(E). ThenC ∼= R(E/θ) ∼= R(E)/R(θ), by Lemma 3.34(ii), whence
C ∈ H(L†) ⊆ V(L†). This vindicates the claim.

In summary, Q(L†) is a proper subquasivariety of R(K) that fails to
generate a proper subvariety of R(K), so R(K) is not SC.

The variety of semilinear Dunn monoids is structurally incomplete [113,
Thm. 9.4]. Its reflection is just the variety SLM of semilinear members of
M, by Lemma 3.34 and Corollary 3.27, so SLM is not structurally complete
either, by Theorem 7.5. This confirms that M is not HSC (and likewise N),
but we can say more:

Theorem 7.6. The variety M has 2ℵ0 structurally incomplete subvarieties.

Proof. This follows from Theorems 7.4 and 7.5, because the operator R is
injective (by Lemma 3.38).

7.2 Epimorphism surjectivity

Recall that in the previous section (on page 165) we exhibited 2ℵ0 distinct
subvarieties of BRA that have depth 3. Since each of these varieties has
finite depth, they all have the ES property (by Corollary 6.46). We saw in
Theorem 6.43 that R preserves the ES property, and in Lemma 3.37 that
it preserves local finiteness. The following can then be inferred from the
injectivity of R (Lemma 3.38).

Theorem 7.7. There are 2ℵ0 distinct locally finite varieties of De Morgan
monoids with the ES property.

We saw after Theorem 6.42 that there are infinitely many varieties of
De Morgan monoids that lack even the weak ES property, and that these
varieties can be chosen to generate covers of V(C4) in the subvariety lattice
of DMM.

Beyond the covers of V(C4), there are in fact uncountably many fur-
ther examples. Indeed, by an argument of Urquhart [143] (also see [13,
Cor. 4.15]), a variety of De Morgan monoids lacks the weak ES property if
it contains a certain six-element algebra C, called the crystal lattice (which
is not generated by its negative cone). That algebra is depicted below.
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(Deletion of b leaves an epic subalgebra behind, owing to the uniqueness
of existent relative complements in distributive lattices.) The argument
adapts to Dunn monoids, using the RL-reduct of C.

ss��
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a2 = a = ¬a b = ¬b = b2

e
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In particular, C is absent from each of the 2ℵ0 varieties K of De Morgan
monoids in Theorem 7.7, while the corresponding varieties V(K∪{C}) lack
the weak ES property, and by Jónsson’s Theorem 1.23, they are distinct.
Each such variety V(K ∪ {C}) is also locally finite, because by (1.4) and
Jónsson’s Theorem 1.23, every finitely generated A ∈ V(K∪{C})SI belongs
either to K or HSPU(C). In the first case A is finite by the local finiteness
of K, and in the second case finiteness of A follows from the fact that C is
finite. Thus, we obtain:

Theorem 7.8. There is a continuum of distinct locally finite varieties of
De Morgan monoids without the weak ES property.

The situation is different for varieties of Heyting and Brouwerian alge-
bras. Recall from Theorem 6.5(ii), that every variety of Brouwerian algebras
has the weak ES property (the same is true for every variety of Heyting al-
gebras). It follows from a result of Campercholi [25, Cor. 6.5] that, in any
finitely generated variety with a majority term (e.g., one generated by a
finite lattice-based algebra), the weak ES property entails the ES property.
This provides a different explanation of the slightly earlier finding, in [11],
that all finitely generated varieties of Brouwerian (or Heyting) algebras have
the ES property (see the end of Section 6.5).

Maksimova [49, 87, 88] established that only finitely many varieties of
Brouwerian (or Heyting) algebras enjoy the strong ES property (see Defi-
nition 6.34(i) and the remarks after Corollary 6.36 on page 156).

It was shown in [11, Cor. 6.2] that even a locally finite variety of Brouw-
erian algebras need not have the ES property. (The counter-example con-
firmed Blok and Hoogland’s conjecture [13] that the weak ES property really
is strictly weaker than the ES property, and therefore that the finite Beth
property does not entail the infinite Beth property; see Theorem 6.4.) In
the last two sections of this chapter we show that the ES property fails
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in uncountably many further locally finite varieties of Brouwerian algebras
(Theorem 7.22). We then apply the fact that R preserves the weak ES
property and also failure of the ES property (Theorem 6.43) to conclude
that there are 2ℵ0 locally finite varieties of De Morgan monoids that lack
the ES property, and yet have the weak ES property.

The results in these last two sections are adapted from Moraschini and
Wannenburg [108], which proves analogous results for varieties of Heyting
algebras, but there it is also shown that, for every finite n > 2, the ES
property fails in the variety of all Heyting algebras with width at most n.
That manuscript also establishes a test for the ES property in subvarieties
of the so-called Kuznetsov-Gerčiu variety KG. (KG is the variety generated
by finite linear sums of 1-generated Heyting algebras; see (7.6) on page 186.)

7.3 Width and incomparability

Definition 7.9. Let n be a positive integer. A pointed Esakia space X =
〈X; τ,6,m〉 has width at most n if for every x ∈ X, the poset ↑x does not
contain an antichain of n+ 1 elements.

A Brouwerian algebra A has width at most n when its dual space A∗
has.

For 0 < n ∈ ω, let Wn denote the class of Brouwerian algebras with
width at most n.

Since Brouwerian algebras are integral, (2.15) simplifies to the law

x→ y ≈ e ⇐⇒ x 6 y

in this context.

Theorem 7.10. Let 0 < n ∈ ω. A Brouwerian algebra A has width at
most n if and only if it satisfies the equation wn ≈ e, where

wn :=
n∨
i=0

(
xi →

∨
i6=j∈{0,...,n}

xj
)
.

As a consequence, Wn is a variety.

Proof. The axiomatization for Wn can be found in [28, p. 43] in the context
of Heyting algebras. In lieu of a convenient reference to a proof which
survives the transition from Heyting to Brouwerian algebras, we provide
such a proof here.
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First assume that A has width at most n. Suppose, with a view to
contradiction, that A does not satisfy wn ≈ e. By Birkhoff’s Subdirect
Decomposition Theorem 1.3, some SI homomorphic image B of A fails to
satisfy wn ≈ e. Let h : A → B be a surjective homomorphism. Then, by
Lemma 6.16(iii), h∗[B∗] is an E-subspace of A∗, and, since h∗ is injective
by Lemma 6.16(ii), h∗[B∗] is isomorphic to B∗. It follows plainly from the
definition that B also has width at most n.

Since B falsifies wn ≈ e, there exist a0, a1, . . . , an ∈ B such that
ai 66

∨
j 6=i aj for every i ∈ {0, 1, . . . , n}. By the Prime Filter Lemma 6.14,

for every i = 0, 1, . . . , n, there exists Fi ∈ Pr(B) such that ai ∈ Fi and∨
j 6=i aj /∈ Fi. Since Fi is prime, aj /∈ Fi for every j ∈ {0, 1, . . . , n} \ {i}. It

follows that F0, F1, . . . , Fn form an antichain of n+1 elements in B∗, which
contradicts the fact that B∗ has width at most n, because B∗ is rooted by
Lemma 6.16(i), since B is FSI.

Conversely, assume that A satisfies wn ≈ e. Suppose with a view
to contradiction that A does not have width at most n. There exist
G,G0, G1, . . . , Gn ∈ Pr(A), such that G0, G1, . . . , Gn form an antichain
whose members all contain G. Because A∗ is a pointed Esakia space, ↑G
is closed in A∗, so it forms a rooted E-subspace of A∗. By Lemma 6.16(ii),
(↑G)∗ is an FSI homomorphic image of A, which therefore also satisfies
wn ≈ e. Thus, we may assume without loss of generality that A is FSI.

Let i ∈ {0, 1, . . . , n}. For every j ∈ {0, 1, . . . , n} \ {i}, let gj ∈ Gi \
Gj. Then set ai =

∧
j 6=i gj. It follows that ai ∈ Gi and ai /∈ Gj for

every j ∈ {0, 1, . . . , n} \ {i}. Since A is FSI, e is join-irreducible in A, by
Lemma 2.16(i), so as A satisfies wn ≈ e, there exists i ∈ {0, 1, . . . , n} such
that ai 6

∨
j 6=i aj. But then

∨
j 6=i aj ∈ Gi, so, since Gi is prime, aj ∈ Gi for

some j 6= i, a contradiction.

Note that w1 = (x0 → x1) ∨ (x1 → x0), so w1 ≈ e amounts to equation
(2.28) on page 37. Therefore, W1 is the variety of semilinear Brouwerian
algebras, i.e., the variety of relative Stone algebras, by Theorem 7.10 (as
one would expect).

Definition 7.11. Let n ∈ ω. A pointed Esakia space X is said to have
incomparability degree at most n if, for every x ∈ X, the set ↑x does not
contain any point which is incomparable with n+ 1 elements of ↑x.

Clearly, pointed Esakia spaces of incomparability degree at most n also
have width at most n + 1, but the converse is not true in general (since
elements incomparable with a given element may be comparable with each
other).
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Definition 7.12. A Brouwerian algebra A has incomparability degree at
most n when its dual space A∗ has. We denote by IDn the class of all
Brouwerian algebras of incomparability degree at most n.

Notice that ID0 = W1, the variety of relative Stone algebras. We shall
see that IDn is a (finitely axiomatizable) variety.

Let n ∈ ω. Consider a set of variables Zn = {y1, . . . , yn+1}. We let
Zn,1, . . . ,Zn,kn be a fixed enumeration of all possible posets with universe
Zn. For each such Zn,k = 〈Zn,6k〉, with k 6 kn, define the terms

ψn,k :=
n+1∨
i=1

(yi → (x ∨
∨

j : yi 66kyj

yj)).

When the set {j : yi 66k yj} is empty for some i ≤ n+1 in the display above,
we follow the convention that the disjunction with

∨
j : yi 66kyj yj is ignored.

Moreover, we set

δn,k := ψn,k ∨ (x→
n+1∨
i=1

yi)

and
Σn := {δn,k ≈ e : k = 1, . . . , kn}.

Theorem 7.13. For every n ∈ ω, the class IDn of Brouwerian algebras
with incomparability degree at most n is axiomatized by the set of equations
Σn. As a consequence, IDn is a variety.

Proof. First we show that for every Brouwerian algebra A /∈ IDn, we have
A 6|= Σn. Note that we need only exhibit the failure of some equation of Σn

in some homomorphic image of A. Since A /∈ IDn, there is an x ∈ A∗ such
that ↑x contains a point which is incomparable with n+ 1 points. Thus, as
in the proof of Theorem 7.10, we may, without loss of generality, suppose
that A is FSI, otherwise we replace A with its FSI homomorphic image
whose dual is isomorphic to the subspace ↑x.

Since A /∈ IDn, there are distinct F,G1, . . . , Gn+1 ∈ Pr(A) such that F
is incomparable with each of G1, . . . , Gn+1. Then for every i ≤ n + 1 we
can choose an element ai ∈ F \Gi. We set

â := a1 ∧ · · · ∧ an+1.

Observe that
â ∈ F \ (G1 ∪ · · · ∪Gn+1). (7.3)
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Given i ≤ n+1, we can choose bi ∈ Gi\F . Moreover, for every j ≤ n+1
such that Gi * Gj, we choose bij ∈ Gi \Gj and set

b′i := bi ∧
∧

j : Gi*Gj

bij .

Finally for every j ≤ n+ 1, we define

b̂j :=
∧

i : Gi⊆Gj

b′i.

Observe that for every i ≤ n+ 1,

b̂i ∈ Gi \ (F ∪
⋃

j : Gi*Gj

Gj). (7.4)

From (7.3), (7.4) and the fact that G1, . . . , Gn+1 are different, we deduce
that the elements â, b̂1, . . . , b̂n+1 are different one from the other. Then
consider the subposet X of A with universe {b̂1, . . . , b̂n+1}. Clearly there is
a k ≤ kn such that Zn,k is isomorphic to X under the map yi 7→ b̂i (i ≤ n+1).

For every i, j ≤ n+ 1,

b̂i 6k b̂j iff b̂j ∈ Gi. (7.5)

The forward implication follows from the fact that b̂i ∈ Gi. Conversely, if
b̂i ∈ Gj, then by (7.4), Gj ⊆ Gi. In this case, whenever Gk ⊆ Gj, then

Gk ⊆ Gi, so b̂i 6k b̂j (by definition).
We show that A fails to satisfy δn,k(x, y1, . . . .yn+1) ≈ e, by showing that

δAn,k(â, b̂1, . . . , b̂n+1) 6= e. Suppose the contrary. Then

ψA
n,k(â, b̂1, . . . , b̂n+1) ∨ (â→

n+1∨
i=1

b̂i) = δAn,k(â, b̂1, . . . , b̂n+1) = e.

As A is FSI, e is join-irreducible in A, by Lemma 2.16(i). The display
above thus decomposes into two cases:

either ψA
n,k(â, b̂1, . . . , b̂n+1) = e or â 6

n+1∨
i=1

b̂i.

First consider the case where â 6
∨n+1
i=1 b̂i. Since â ∈ F by (7.3), this

implies
∨n+1
i=1 b̂i ∈ F . As F is prime, we conclude that b̂i ∈ F for some

i ∈ {1, . . . , n+ 1}. But this contradicts (7.4).
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Then we conclude that

e = ψA
n,k(â, b̂1, . . . , b̂n+1) =

n+1∨
i=1

(b̂i → (â ∨
∨

j:b̂i 66k b̂j

b̂j)).

By the join-irreducibility of e, there exists i ∈ {1, . . . , n+ 1} such that

b̂i 6 â ∨
∨

j:b̂i 66k b̂j

b̂j.

As b̂i ∈ Gi, the right-hand side of the inequality above also belongs to Gi.
So, as Gi is a prime filter and â /∈ Gi by (7.3), there exists j ∈ {1, . . . , n+1}
such that b̂j ∈ Gi and b̂i 66k b̂j. But this contradicts (7.5). We have therefore
established that A 6|= Σn.

Conversely, consider a Brouwerian algebra A such that A 2 Σn. We
show that A /∈ IDn. There exists k ≤ kn such that the equation δn,k ≈ e in
Σn is not valid in A, so there are a, b1, . . . , bn+1 such that

n+1∨
i=1

(bi → (a ∨
∨

j : yi 66kyj

bj)) ∨ (a→
n+1∨
i=1

bi) 6= e.

Therefore, for every i ≤ n+ 1,

bi 66 a ∨
∨

j : yi 66kyj

bj and a 66
n+1∨
j=1

bj.

By the Prime Filter Lemma 6.14, there are prime filters F,G1, . . . , Gn+1 of
A such that

a ∈ F and b1, . . . , bn+1 /∈ F

and for every i ≤ n+ 1,

bi ∈ Gi and {a} ∪ {bj : yi 66k yj} ⊆ A \Gi.

It follows easily from these properties and the pairwise distinctness of
y1, . . . , yn+1 that G1, . . . , Gn+1 are pairwise different, and that F is in-
comparable with Gi for every i ∈ {1, . . . , n + 1}. Therefore A /∈ IDn as
required.
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Sums of Brouwerian algebras

Let A and B be Brouwerian algebras. The (linear) sum A + B is the
Brouwerian algebra obtained by pasting B below A, gluing the top element
of B to the bottom element of A when it exists. To give a more formal
definition, it is convenient to assume that the universes of A and B are
disjoint. Moreover, let us denote by 6A and 6B the lattice orders of A and
B, respectively. Let A′ = A\{0} if A has a bottom element 0, and A′ = A,
otherwise. Then A + B is the unique Brouwerian algebra with universe
A′ ∪B whose lattice order 6 is defined as follows: for every a, b ∈ A′ ∪B,

b 6 a iff (a, b ∈ A and b 6A a) or (a, b ∈ B and b 6B a)

or (b ∈ B and a ∈ A).

As + is clearly associative, there is no ambiguity in writing A1 + · · ·+An

for the descending chain of finitely many Brouwerian algebras A1, . . . ,An,
each glued to the previous one where possible.

To obtain interesting results about epimorphisms in Brouwerian vari-
eties that are not consequences of Theorem 6.22, we need to consider alge-
bras with unbounded depth. It is therefore useful to introduce an infinite
generalization of the above construction. Let {An : n ∈ ω} be a family of
Brouwerian algebras with disjoint universes. The sum

∑
An is the unique

Brouwerian algebra with universe
⋃
n∈ω A

′
n and whose lattice order is de-

fined as follows: for every a, b ∈
⋃
n∈ω A

′
n,

a 6 b iff (a, b ∈ An for some n ∈ ω and a 6An b)

or (a ∈ An and b ∈ Am for some n,m ∈ ω such that n > m).

In words,
∑
An is a tower of algebras, each pasted below the previous, glu-

ing the top element to the bottom previous algebra where possible. When
{An : n ∈ ω} is a family consisting of copies of the same algebra A, we
write A∞ instead of

∑
An.

These constructions are analogous to the more familiar notion of sums
of Heyting algebras (see page 186), which has found various applications in
the study of intermediate logics. See for instance [10, 58, 80, 85], but note
that in the usual definition, subsequent algebras are added on top, instead
of below. For finitely many summands this amounts to only a notational
difference.

For present purposes, it is convenient to describe the dual spaces of sums
of Brouwerian algebras as well.

Let X and Y be two pointed Esakia spaces with disjoint universes.
(Recall that m denotes the maximum element of a pointed Esakia space.)
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Let X ′ = X \ {m} when {m} is open in X, and X ′ = X otherwise. Note
that {m} is always closed, because X is Hausdorff, and is obviously an
upset of X. So, {m} is open iff it is the smallest non-empty clopen upset of
X, i.e., the least element of the algebra X∗. The sum X +Y has universe
X ′ ∪ Y , and order relation 6 defined as follows: for every x, y ∈ X ′ ∪ Y ,

x 6 y iff (x, y ∈ X and x 6X y) or (x, y ∈ Y and x 6Y y)

or (x ∈ X and y ∈ Y ).

In words, the poset of X+Y is obtained by placing Y above the restriction
of X to X ′, so its top element is mY . The topology of X + Y consists of
the sets U ⊆ X ′ ∪ Y such that U ∩X ′ and U ∩ Y are open, respectively, in
X and Y . Then X + Y is a pointed Esakia space.

Then let {Xn : n ∈ ω} be a family of pointed Esakia spaces with disjoint
universes, and let m be a fresh element. The sum

∑
Xn has universe

{m} ∪
⋃
n∈ω

X ′n

and order relation 6 defined as follows: for every x, y ∈
∑
Xn,

x 6 y iff y = m or (x, y ∈ Xn for some n ∈ ω and x 6Xn y)

or (x ∈ Xn and y ∈ Xp for some n, p ∈ ω such that n < p).

Hence, the poset of
∑
Xn is obtained by placing the primed restriction of

each successive poset above the previous and adding a new top element.
The topology of

∑
Xn is

τ ={U : U ∩X ′n is open in Xn for all n ∈ ω, and

if m ∈ U , then there exists n ∈ ω with
⋃
n≤p

X ′p ⊆ U}.

Then
∑
Xn is a pointed Esakia space. When {Xn : n ∈ ω} consists of

copies of the same pointed Esakia space X, we write X∞ instead of
∑
Xn.

Lemma 7.14. Let {A,B} ∪ {An : n ∈ ω} be a family of Brouwerian al-
gebras. The pointed Esakia spaces (A+B)∗ and (

∑
An)∗ are isomorphic,

respectively, to A∗ +B∗ and
∑
An∗.

Proof. We sketch the proof only for the case of
∑
An. We define a map

f :
∑

An∗ → (
∑

An)∗ ,
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setting f(m) :=
∑
An (= m(

∑
An)∗) and for every n ∈ ω and F ∈ (An∗)

′,

f(F ) := {a ∈
∑

An : a > b for some b ∈ F}.

It is not difficult to see that f is order-preserving. That f is bijective follows
from the fact that a Brouwerian algebra A has a bottom element iff {mA∗}
is open (and thus clopen) in A∗. Therefore, it remains only to prove that
f is continuous and satisfies (6.4).

To show the latter, suppose that m 6= F ∈
∑
An∗ and

∑
An 6= G ∈

(
∑
An)∗ such that f(F ) 6 G. Then F ∈ (Aj∗)

′ for some j ∈ ω. We may
therefore let k ∈ ω be the least k ≥ j such that G∩Ap 6= ∅ for every p ≥ k.
If we let G′ = G ∩ Ak, it follows that G′ ∈ (Ak∗)

′ ⊆
∑
An∗, with F 6 G′

and f(G′) = G.
To prove that f is continuous, first consider some subbasic clopen set of

the form γ
∑

An(a) (= {F ∈ Pr(
∑
An) : a ∈ F}) with a ∈

∑
An. We have

a ∈ A′k for some k ∈ ω and, therefore,

f−1[γ
∑

An(a)] = {m} ∪ γAk(a) ∪
⋃
p>k

(Ap∗)
′.

Clearly the sets γAk(a) and {m} ∪
⋃
p>k Ap∗ are open in

∑
An∗. Now,

similarly, consider a subbasic clopen set of the form γ
∑

An(a)c. Then

f−1[γ
∑

An(a)c] = f−1[γ
∑

An(a)]c = γAk(a)c ∪
k−1⋃
p=0

(Ap∗)
′,

which is also clearly open in
∑
An∗. This shows that f is continuous.

Therefore, f is a bijective Esakia morphism, and hence an isomorphism.

As an example, we can now construct an algebra (D∞2 )∗, which witnesses
the failure of the ES property in the variety generated by it. We let D2 be
the pointed Esakia space with two incomparable elements below the maxi-
mum. It follows that D2

∗ ∼= 2+ × 2+, where 2+ is the two-element Brouw-
erian algebra. From Lemma 7.14, it follows that (D∞2 )∗ ∼= (2+×2+)∞, i.e.,
it comprises denumerably many copies of the four-element diamond, each
pasted below the previous one.1

1The algebra used in [11, Cor. 6.2] to generate a variety of Brouwerian algebras
without the ES property is in fact 2+ + (D∞2 )∗, which has the virtue of being SI. For us,
however, this difference is immaterial, since 2+ + (D∞2 )∗ and (D∞2 )∗ generate the same
variety, and both have epic subalgebras in this variety.

 
 
 



CHAPTER 7. SOME UNCOUNTABILITY RESULTS 178
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D∞2 (D∞2 )∗

We can also use this construction to show that W2∩ID2 has a continuum
of subvarieties. Let A be the direct product of the two-element and three-
element Brouwerian algebras. For n ∈ ω, let Bn be the algebra 2+ +A +
C1+· · ·+Cn+A, whereC1, . . . ,Cn are copies of the four-element diamond
D2
∗. The algebra Bn (depicted below) is SI, and belongs to W2 ∩ ID2.2
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s @@�� s
s

} n copies
of D2

∗

Lemma 7.15. Let n,m ∈ ω such that n 6= m. Then Bn /∈ HS(Bm).

Proof. First, notice that if n > m, we are done on cardinality grounds.
So, suppose with a view to contradiction that n < m, and there exist
S ∈ S(Bm) and a surjective homomorphism h : S → Bn.

There exist a, b, c ∈ Bn such that a is incomparable with both b and c,
and a∨ b∨ c is the co-atom of Bn. Since h is surjective, there exist distinct
a′, b′, c′ ∈ S ⊆ Bm, such that h(a′) = a, h(b′) = b and h(c′) = c. Then a′ is
incomparable with both b′ and c′, because h is order-preserving. Therefore,
a′, b′ and c′ must be in either the top or the bottom copy of A in Bm. If

2These algebras are adapted from similar ones used in [10, Lem. 5.38(5), Thm.
5.39(1)] in the context of Heyting algebras.
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they are in the bottom copy then a′ ∧ b′ ∧ c′ is the bottom element of Bm.
Consider the bottom element ⊥ of Bn. Since h is surjective there exists
⊥′ ∈ S such that h(⊥′) = ⊥, but then ⊥ = h(⊥′) ≥ h(a′∧b′∧c′) = a∧b∧c.
This contradicts the fact that a ∨ b ∨ c is the co-atom of Bn. So, a′, b′ and
c′ must be in the top copy of A in Bm. Therefore, a′∨ b′∨ c′ is the co-atom
d of Bm.

Suppose that h is not injective. Then h(d) = h(eS), so a ∨ b ∨ c =
h(a′ ∨ b′ ∨ c′) = h(d) = eBn , a contradiction. So, h is injective, and hence
an isomorphism.

Therefore, Bn embeds into Bm. Since incomparable elements remain
incomparable under a lattice embedding, similar arguments to the above
show that the two copies of A in Bn must be mapped to the respective
copies in Bm. Every proper subalgebra of Bm that keeps the top structure
of 2+ +A and the bottom structure of A intact introduces a two-element
chain in the middle, making the embedding impossible.

Corollary 7.16. Let F := {Bn : n ∈ ω}. For every pair of distinct sub-
sets S, T ⊆ F , we have V(S) 6= V(T ). Consequently, W2 ∩ IDn has 2ℵ0

subvarieties.

Proof. For Bn ∈ S \ T , Lemma 7.15 shows that T is contained in K :=
{A ∈ BRA : Bn /∈ HS(A)}, and Theorem 1.26 shows that this K is a variety,
so V(T ) is contained in K, whence Bn /∈ V(T ) (as required).

7.4 Separating the ES and weak ES

properties

In this section we show that there is a continuum of locally finite subvarieties
of W2∩ID2 lacking the ES property. Each of these varieties distinguishes the
ES property from the weak ES property, because every variety of Brouwe-
rian algebras has the weak ES property (Theorem 6.5(ii)). We then draw
some conclusions for varieties of De Morgan monoids.

We shall need the following technical lemma.

Lemma 7.17. Let 0 < n ∈ ω and let f : Y → X be an Esakia morphism
between pointed Esakia spaces of width at most n such that

(i) Y has a minimum ⊥, and

(ii) for every z ∈ X \ {m}, if f(⊥) < z, then there is an antichain of n
elements in ↑ f(⊥), which contains z.
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Then there is a subposet 〈Z;6Y 〉 of Y such that the restriction

f : 〈Z;6Y 〉 → 〈↑ f(⊥);6X〉

is a poset isomorphism.

Proof. Observe that, since f is an Esakia morphism, ↑ f(⊥) coincides with
f [Y ]. Suppose z ∈ ↑ f(⊥) \ {m, f(⊥)} and define

Tz := {a ∈ Y : f(a) = z}.

Observe that Tz 6= ∅.
We claim that Tz is a chain in X. Indeed, since f(⊥) < z, assumption

(ii) shows that z belongs to an antichain {x1, . . . , xn−1, z} of n elements in
↑ f(⊥). Since f is an Esakia morphism, there are y1, . . . , yn−1 ∈ Y such
that f(yi) = xi for i = 1, . . . , n− 1. Together with the fact that f is order-
preserving, this implies that the set {y1, . . . , yn−1, a} is an antichain of n
elements in Y , for every a ∈ Tz.

Now, suppose with a view to contradiction that Tz is not a chain. Then
there are two incomparable elements a, c ∈ Tz. Hence {y1, . . . , yn−1, a, c} is
an antichain of n + 1 elements in Y . Together with the fact that Y has
a minimum element by assumption (i), we conclude that Y does not have
width at most n. But this contradicts the assumptions, thus establishing
the claim.

By Lemma 6.16(v), the chain Tz has a maximum element, which we
denote by max(Tz). Consider the set

Z := {max(Tz) : z ∈ ↑ f(⊥) \ {m, f(⊥)}} ∪ {⊥,m}.

Clearly Z ⊆ Y , and it is easy to verify that the restriction

f : 〈Z;6Y 〉 → 〈↑ f(⊥);6X〉

is a surjective order-preserving map. In order to prove that f is a poset
isomorphism, it remains only to show that f is order-reflecting. To this
end, consider z1, z2 ∈ Z such that f(z1) 6X f(z2). If z1 = ⊥, then clearly
z1 = ⊥ 6Y z2, and we are done. Also, if z2 = m, then z1 ≤ z2 = m. So,
consider the case where z1 6= ⊥ and z2 6= m. In particular, this implies
that f(z1), f(z2) ∈ ↑ f(⊥)\{m, f(⊥)}, and therefore that z2 = max(Tf(z2)).
Now, since f(z1) 6X f(z2) and f is an Esakia morphism, there exists z3 ∈ Y
such that z1 6Y z3 and f(z3) = f(z2). But then z3 ∈ Tf(z2), which implies
that z3 6Y z2 and, therefore, that z1 6Y z3 6Y z2. Thus, we conclude that
f is order-reflecting, as desired.
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Lemma 7.18. Let K be a subvariety of ID2 ∩W2. If D∞2 ∈ K∗, then K
lacks the ES property.

Proof. Suppose with a view to contradiction that there is a variety K ⊆
ID2 ∩ W2 with the ES property and such that D∞2 ∈ K∗. Let R be the
equivalence relation on D∞2 whose corresponding partition is depicted in
the diagram below:

s s�
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ss
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x4
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x6

m

We start by showing that R is a correct partition on D∞2 . It is easily
verified that R satisfies condition (i) in the definition of correct partitions
on page 136. Notice that if U is any finite subset of D∞2 \ {m}, then U is
clopen in D∞2 . Indeed, it is open by the definition of the topology on D∞2 ,
since the topology on D2 is discrete. That U is closed follows from the fact
that singletons are closed in Hausdorff spaces. To prove condition (ii), we
consider two distinct points x, y ∈ D∞2 such that 〈x, y〉 /∈ R. If x 6= m, then
the equivalence class x/R is a finite subset of D∞2 \ {m}, and thus clopen.
Also, x/R is clearly a union of equivalence classes of R with x ∈ x/R and
y /∈ x/R, as required. Now suppose that x = m. Then there is some k ∈ ω
such that y /∈ ↑xk. Note that x ∈ ↑xk and ↑xk is a union of R-equivalence
classes. Also, ↑xk is clopen, since (↑ xk)c is a finite subset of D∞2 \ {m}.

Since K has the ES property, we can apply Lemma 6.18, so there exist
Y ∈ K∗ and a pair of different Esakia morphisms f, g : Y →D∞2 such that
〈f(y), g(y)〉 ∈ R for every y ∈ Y .

Since f 6= g, there exists ⊥ ∈ Y such that f(⊥) 6= g(⊥). Together with
the fact that 〈f(⊥), g(⊥)〉 ∈ R, this implies that {f(⊥), g(⊥)} = {xn, yn}
for some n ∈ ω. We can assume without loss of generality that f(⊥) = xn
and g(⊥) = yn. Note that ↑⊥ is an E-subspace of Y which belongs to K∗,
since K is closed under homomorphic images. Also, by Lemma 6.16(iii),
the restrictions of f and g to ↑⊥ are Esakia morphisms. We may therefore
assume without loss of generality that Y = ↑⊥ (otherwise we replace Y
with ↑⊥).

Observe D∞2 and Y have width at most 2. Moreover, Y and D∞2 , and
the Esakia morphism f : Y →D∞2 satisfy the assumptions of Lemma 7.17.
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Therefore, Y has a subposet 〈Z;6Y 〉 such that the restriction

f : 〈Z;6Y 〉 → 〈↑ f(⊥);6D∞2 〉

is a poset isomorphism. For the sake of simplicity, we denote the elements
of Z exactly as their alter egos in ↑ f(⊥). Under this convention,

Z = {xn+p : p ∈ ω} ∪ {yn+p : p ∈ ω} ∪ {m},

and f(xi) = xi and f(yi) = yi, for every xi, yi ∈ Z \ {m}. On the other
hand, since g is order-preserving and g(⊥) = yn, we have g(xi) = g(yi) = yi,
for all xi, yi ∈ Z \ {m}. In summary, for all xi, yi ∈ Z \ {m}, we have

f(xi) = xi and f(yi) = g(xi) = g(yi) = yi.

We shall now interrogate the structure of Y to produce a sequence of
elements zn+2, zn+3, · · · ∈ Y \ Z and describe how they are ordered with
respect to the elements of Z. First, observe that g(yn) = yn 6D∞2 xn+2.
Since g is an Esakia morphism, there is an element zn+2 ∈ Y such that
yn 6Y zn+2 and g(zn+2) = xn+2. Let us describe the structure of the poset
〈Z ∪ {zn+2};6Y 〉. First observe that zn+2 is incomparable with xn+1 and
yn+1 with respect to 6Y , since g is order-preserving and g(zn+2) = xn+2 is
incomparable with g(xn+1) = g(yn+1) = yn+1 in D∞2 . Moreover, zn+2 6Y

xn+2. To prove this, observe that xn+2 and yn+1 are incomparable in Y .
Since Y has width at most 2, this implies that zn+2 must be comparable
with one of them. Since zn+2 is incomparable with yn+1, if follows that
zn+2 is comparable with xn+2. Keeping in mind that g(xn+2) = yn+2 66D∞2

xn+2 = g(zn+2) and that g is order-preserving, we obtain xn+2 66Y zn+2.
As a consequence, we conclude that zn+2 <

Y xn+2 as desired. Summing
up, the structure of 〈Z ∪ {zn+2};6Y 〉 is described exactly by the following
picture:
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Now, observe that g(zn+2) = xn+2 6D∞2 xn+3. Since g is an Esakia
morphism, there is an element zn+3 ∈ Y with zn+2 6Y zn+3 such that
g(zn+3) = xn+3. We can replicate the previous argument, used to describe
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the structure of the poset 〈Z ∪ {zn+2};6Y 〉, to show that zn+3 is incompa-
rable with xn+2 and yn+2, and that zn+3 <

Y xx+3. Then, as in the previous
argument, yn+1 <Y zn+3. Iterating this process we construct a series of
elements {zn+p : 2 ≤ p ∈ ω} ⊆ Y such that g(zi) = xi, for all i ≥ 2. The
structure of the poset Z′ := 〈Z ∪ {zn+p : 2 ≤ p ∈ ω};6Y 〉 is as depicted
below:
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We claim that for every a ∈ Y such that xn+2 6Y a, either a ∈ Z ′ or
b 6Y a for every b ∈ Z ′ \ {m}. To prove this, consider a ∈ Y such that
xn+2 6Y a and a /∈ Z ′. It will be enough to show that xn+p 6Y a for
2 < p ∈ ω. Suppose, with a view to contradiction, that there is a smallest
integer p > 2 such that xn+p 66Y a. Looking at the figure above, it is easy
to see that every point in Z ′\{xn, yn,m} is incomparable with two elements
in ↑xn. Since Y has incomparability degree at most 2, it follows that every
element in ↑xn \Z ′ is comparable with all the elements of Z ′ \{xn, yn}. We
shall make extensive use of this observation. First recall that xn+p 66Y a.
As a is comparable with xn+p, this implies that a <Y xn+p. Moreover, a is
comparable with yn+p−1. Since yn+p−1 66Y xn+p and a <Y xn+p, it follows
that a <Y yn+p−1. Now, a is comparable with zn+p. If zn+p 6Y a, then
zn+p 6Y yn+p−1, which is false. Thus, a <Y zn+p. By minimality of p we
have xn+p−1 6Y a. This yields that xn+p−1 6Y zn+p. This contradiction
establishes the claim.

From the definition of a pointed Esakia space we know that the upset
↑xn+2 in Y is closed and, therefore, an E-subspace of Y . Moreover, ↑xn+2 ∈
K∗, since K is closed under homomorphic images. Consider the equivalence
relation S on ↑xn+2 defined as follows: for every a, b ∈ ↑xn+2,

〈a, b〉 ∈ S iff either a = b or a, b /∈ Z ′ \ {m}.
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We shall prove that S is a correct partition on ↑xn+2. To this end, observe
that from the claim it follows that S satisfies condition (i) in the definition
of a correct partition (page 136). In order to prove condition (ii), consider
a, b ∈ ↑xn+2 such that 〈a, b〉 /∈ S. We can assume without loss of generality
that b ∈ Z ′ \ {m}. If b ∈ {xn+2, yn+2}, let b′ = zn+4; otherwise, let b′ = b.
Let c be the minimum element of ↑xn+2 that is incomparable with b′. By the
Priestley separation axiom (item (iv) on page 134), since c 66Y b′, there is a
clopen upset U such that c ∈ U and b′ /∈ U . Looking at the above picture,
it is easy to see that U = ↑ c and U c = ↓ b′. In particular, b ∈ ↓ b′ = U c.
By the claim above, a ∈ ↑ c = U . The fact that U and U c are unions of
equivalence classes of S follows from the definition of S. This establishes
condition (ii) and, therefore, that S is a correct partition on ↑xn+2.

Then let W be the pointed Esakia space (↑xn+2)/S. Observe that
W ∈ K∗, since K is closed under homomorphic images. Moreover, the
poset underlying W is isomorphic to Z ′ ∩↑ xn+2, because by the claim and
the definition of S all elements of ↑xn+2 \ Z ′ are identified with m. Now,
consider the equivalence relation T on W whose corresponding partition is
depicted below:
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An argument, similar to the one detailed in the case of S, shows that the
relation T is a correct partition on W , except that in this case we let b be
such that a 66 b, and let b′ be c0 if b ∈ {a0, b0} and the maximum of the
equivalence class b/T otherwise.

Since K has the ES property, we can apply Lemma 6.18, so there exist
V ∈ K∗ and a pair of different Esakia morphisms f, g : V →W such that
〈f(v), g(v)〉 ∈ T for every v ∈ V . As above, since f 6= g, there are ⊥ ∈ V
and n ∈ ω such that {f(⊥), g(⊥)} = {an, bn}. We can assume without loss
of generality that f(⊥) = an and g(⊥) = bn, and that V = ↑⊥. Moreover,
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we can find a subposet 〈Q;6V 〉 of V such that the restriction

f : 〈Q;6V 〉 → 〈↑ f(⊥);6W 〉

is a poset isomorphism. We denote the elements of Q exactly as their alter
egos in ↑ f(⊥). Under this convention,

Q = {an+p : p ∈ ω} ∪ {bn+p : p ∈ ω} ∪ {cn+p : p ∈ ω} ∪ {m},

and for every ai, bi, ci ∈ Q \ {m},

f(ai) = ai and f(bi) = g(ai) = g(bi) = bi and f(ci) = g(ci) = ci.

Observe that g(bn) = bn 6W an+2. Since g is an Esakia morphism, there
exists v ∈ V such that bn 6V v and g(v) = an+2. So,

{g(v), g(an+2), g(bn+2)} = {an+2, bn+2} and g(cn+1) = cn+1.

Therefore, the elements g(v), g(an+2), g(bn+2) are incomparable with g(cn+1)
in W . Since g is order-preserving, v, an+2, bn+2 are incomparable with cn+1

in V . Because an+2 6= bn+2 and V has incomparability degree ≤ 2, we
conclude that either v = an+2 or v = bn+2. Observe that if v = an+2, then
an+2 = g(v) = g(an+2) = bn+2, which is false. A similar argument rules
out the case where v = bn+2. We have therefore reached a contradiction, as
desired.

As was already mentioned, until now the only published example of
a variety of Brouwerian algebras without the ES property was precisely
V((D∞2 )∗). This example is now subsumed by the above lemma.

Before showing that there is a continuum of locally finite varieties in
the interval [V((D∞2 )∗),W2 ∩ ID2], we need to recall some facts about the
connection between Brouwerian algebras and Heyting algebras, and to in-
troduce the ‘Kuznetsov-Gerčiu variety’.

If A is a Brouwerian algebra, we let A⊥ denote the unique Heyting
algebra whose lattice reduct is got by adding a new least element ⊥ to
〈A;∧,∨〉. For a variety K of Brouwerian algebras let K⊥ := V({A⊥ : A ∈
K}). The proof of the following lemma can be found in [88, Lems. 3.2, 3.5].

Lemma 7.19. Let K be a variety of Brouwerian algebras and A a Brouw-
erian algebra.

(i) A ∈ K iff A⊥ ∈ K⊥.

(ii) If K = V(L) for some class L of Brouwerian algberas, then

K⊥ = V({A⊥ : A ∈ L}).
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The original Esakia duality of [44] supplies an equivalence between the
category HA of Heyting algebras (and their homomorphisms—which must
preserve ⊥) and the opposite of the category ESP of Esakia spaces.

The objects of ESP are like those of PESP, except that they need not
have maximum elements; the definition of morphisms is unaffected. For
A ∈ HA and X ∈ ESP, we re-define Pr(A) as the set of prime proper
filters of A, and Cpu(X) as the set of all clopen upsets of X, including ∅.
After these changes, the definitions of A∗, X

∗, the duals of morphisms, and
the canonical isomorphisms remain the same (but note that A∗ is empty
when |A| = 1). The definition of depth is adjusted so that a Heyting algebra
and its Brouwerian reduct have the same depth. (In particular, the depth
of the Esakia space reduct of a pointed Esakia space X exceeds that of X
by 1.)

If A is a Heyting algebra, we let A+ denote its Brouwerian reduct. Let
A and B be Heyting algebras. Notice that A+ +B+ has a least element,
namely the least element of B+. Also, the least element of A+ is identified
with the greatest element of B+ in A+ + B+. We define A + B be the
unique Heyting algebra whose Brouwerian reduct is A+ +B+. Notice that
if A is a Heyting algebra then (A+)⊥ = A+ 2, where 2 is the two-element
Boolean algebra, considered as a Heyting algebra.

It is well known that the free 1-generated Heyting algebra is the Rieger-
Nishimura latticeRN , depicted below [109, 124]. As a consequence, H(RN )
is the class of 1-generated Heyting algebras.
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The Kuznetsov-Gerčiu variety is defined as follows:

KG := V({A1 + · · ·+An : 0 < n ∈ ω and A1, . . . ,An ∈ H(RN )}). (7.6)

The variety KG was introduced by Kuznetsov and Gerčiu [58, 80] in a study
of varieties of Heyting algebras that are finitely axiomatized and/or gener-
ated by their finite members (also see [10, 12]). Remarkably, a continuum
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of subvarieties of KG are generated by their finite members, and also a con-
tinuum fail to have this property [10, Thm. 5.39(1), Cor. 5.41]. We charac-
terized the subvarieties of KG that have the ES property in Moraschini and
Wannenburg [108].

Theorem 7.20 (Bezhanishvili et al. [10, Thms. 8.49, 8.54]). Let K be a
subvariety of KG. The following conditions are equivalent:

(i) K is locally finite.

(ii) K excludes an algebra of the form A+2 where A is a finite SI member
of H(RN ).

Lemma 7.21. (D∞2 )∗ ∈ V(RN+).

Proof. Recall that every algebra embeds into a ultraproduct of its finitely
generated subalgebras (Theorem 1.4). Now, observe that the finitely gener-
ated subalgebras of (D∞2 )∗ coincide with finite sums, where each summand
is the RL-reduct of either the two-element or the four-element Boolean
algebra. It is therefore not hard to see, when considering the subalge-
bra of encircled elements in the figure of RN above, that every finitely
generated subalgebra of (D∞2 )∗ belongs to HS(RN+). As a consequence,
(D∞2 )∗ ∈ SPUHS(RN+) ⊆ V(RN+).

Theorem 7.22. There are 2ℵ0 locally finite subvarieties of W2 ∩ ID2 with-
out the ES property.

Proof. Define F := {Bn : n ∈ ω}, where each algebra Bn is as defined
before Lemma 7.15. From Corollary 7.16, V(S) 6= V(T ), for every pair of
different subsets S, T ⊆ F .

We claim that V(S, (D∞2 )∗) 6= V(T, (D∞2 )∗), for every pair of differ-
ent subsets S, T ⊆ F . To prove this, consider two different S, T ⊆ F .
Since V(S) 6= V(T ), we can assume without loss of generality that Bn ∈
V(S) \ V(T ) for some n ∈ ω. Suppose with a view to contradiction
that V(S, (D∞2 )∗) = V(T, (D∞2 )∗). In particular, Bn ∈ V(T, (D∞2 )∗)FSI.
Now, from (1.4) on page 15, it follows that V(T, (D∞2 )∗)FSI = V(T )FSI ∪
V((D∞2 )∗)FSI. Since Bn /∈ V(T )FSI, we have Bn ∈ V((D∞2 )∗). Now, ob-
serve that (D∞2 )∗ ∈ ID1. As a consequence, Bn ∈ ID1. But this is easily
seen to be false. So, we have reached a contradiction, thus establishing the
claim.

From the claim it follows that the set

G := {V(T,D∞2 ) : T ⊆ F}
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has the cardinality of the continuum. Consider T ⊆ F . By Lemma 7.18,
V(T, (D∞2 )∗) ⊆ W2 ∩ ID2 lacks the ES property. It remains to show that
V(T, (D∞2 )∗) is locally finite.

We first claim that V(T, (D∞2 )∗)⊥ ⊆ KG. From Lemmas 7.19(i) and 7.21,
it follows that ((D∞2 )∗)⊥ ∈ V((RN+)⊥). But (RN+)⊥ = RN + 2 ∈ KG.
So, ((D∞2 )∗)⊥ ∈ KG. Consider Bn ∈ T , for some n ∈ ω. Then (Bn)⊥ ∼=
2 +A′ +C ′1 + · · ·+C ′n +A′ + 2, where A′ the direct product of the two-
element and three-element Heyting algebras and C ′i

∼= 2×2 for every i ≤ n.
It is easy to see that 2,2× 2, and A′ are 1-generated, whence they belong
to H(RN ), from which it follows that Bn ∈ KG. So, the claim follows from
Lemma 7.19(ii).

Then we turn to prove that V(T, (D∞2 )∗)⊥ is locally finite. Let D be
the Brouwerian algebra depicted below:
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Observe that the equation

3∨
i=1

(x→ yi) ∨ (yi → x) ≈ e

holds in V(T, (D∞2 )∗) but fails in D. As a consequence, D /∈ V(T, (D∞2 )∗).
Now, from Lemma 7.19(i), it follows that D⊥ /∈ V(T, (D∞2 )∗)⊥. But
D⊥ ∼= D′ + 2, where D′ is D considered as a Heyting algebra. Since
D⊥ has the form of one of the algebras in condition (ii) of the statement of
Theorem 7.20, we conclude that V(T, (D∞2 )∗)⊥ is locally finite.

Finally, let E ∈ V(T, (D∞2 )∗) be n-generated, for some n ∈ ω. Then
E⊥ ∈ V(T, (D∞2 )∗)⊥, by Lemma 7.19(i). Note that E⊥ is also n-generated.
Since V(T, (D∞2 )∗)⊥ is locally finite, E⊥ is finite. But then E is also finite.
Therefore, V(T, (D∞2 )∗) is locally finite.

Recall that every variety of Brouwerian algebras has the weak ES prop-
erty (Theorem 6.5(ii)). The next theorem therefore follows from the fact
that R is injective (Lemma 3.38), and that R preserves local finiteness, the
weak ES property and failure of the ES property (see Lemma 3.37 and
Theorem 6.43).

Theorem 7.23. There are 2ℵ0 locally finite varieties of De Morgan monoids
that lack the ES property, but that do have the weak ES property.
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[81] J.  Loś, Common extension in equational classes, in E. Nagel, P. Sup-
pes, A. Tarksi (eds.), ‘Logic, Methodology and Philosophy of Science.
Proceedings of the 1960 International Conference’, Stanford Univer-
sity Press, Stanford, 1962, pp. 136–142.
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[121] J.G. Raftery, K. Świrydowicz, Structural completeness in relevance
logics, Studia Logica 104 (2016), 381–387.

[122] S. Read, ‘Relevant Logic’, Basil Blackwell, Oxford, 1988.

[123] G. Restall, Relevant and substructural logics, in D. Gabbay, J. Woods
(eds.), ‘Handbook of the History and Philosophy of Logic’, Oxford
University Press, 2001, pp. 289–398.

[124] L. Rieger, On the lattice theory of Brouwerian propositional logic,
Acta Fac. Nat. Univ. Carol., Prague 189 (1949), 40.

[125] C.M. Ringel, The intersection property of amalgamations, J. Pure
Appl. Algebra 2 (1972), 341–342.

[126] R. Routley, R.K. Meyer, The semantics of entailment, in H. Leblanc
(ed.), ‘Truth, Syntax and Modality’, North Holland, Amsterdam,
1973, pp. 99–243.

[127] R. Routley, R.K. Meyer, V. Plumwood, R.T. Brady, ‘Relevant Logics
and their Rivals, Vol. I’, Ridgeview Publishing Company, California,
1982.

[128] V.V. Rybakov, ‘Admissibility of Logical Inference Rules’, Studies in
Logic and the Foundations of Mathematics 136, Elsevier, Amsterdam,
1997.

[129] J.K. Slaney, 3088 varieties: a solution to the Ackermann constant
problem, J. Symbolic Logic 50 (1985), 487–501.

[130] J.K. Slaney, On the structure of De Morgan monoids with corollaries
on relevant logic and theories, Notre Dame J. Formal Logic 30 (1989),
117–129.

[131] J.K. Slaney, Sentential constants in systems near R, Studia Logica 52
(1993), 443–455.

[132] J.K. Slaney, Personal communication to J.G. Raftery, 28 October
2016.

 
 
 



BIBLIOGRAPHY 199

[133] J.K. Slaney, R.K. Meyer, Logic for two: the semantics of distribu-
tive substructural logics, Technical Report 1-97, Automated Reason-
ing Project, Australian National University, January 3, 1997. [Also see
‘Proceedings of the first international joint conference on qualitative
and quantitative practical reasoning’, 1997, pp. 554–567.]

[134] M.M. Stronkowski, Axiomatization of universal classes through infini-
tary logic, Algebra Universalis 79 (2018), Art. 26, 12 pp.

[135] M.M. Stronkowski, Deciding active structural completeness, Arch.
Math. Logic 59 (2020), 149–165.
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[149] R. Wójcicki, Some remarks on the consequence operation in sentential
logics, Fund. Math. 68 (1970), 269–279.
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subdirectly irreducible, 4
trivial, 2

algebraic lattice, 10
algebraic semantics, 20
algebraic signature, 2
algebraizable deductive system, 19
algebraize, 19
almost onto, 127
amalgamation property, 156

strong, 156
anti-idempotence, 34
anti-isomorphism, 10
antitone, 10
arity, 2

term, 6
atom, 9

atomic formula, 6
automorphism, 3
axiomatic extension, 21

basic operation, 2
Beth property

finite, 128
infinite, 128

Birkhoff’s Subdirect Decomposition
Theorem, 4

Birkhoff’s Theorem, 8
Boolean algebra, 39
bounded

lattice, 39
residuated lattice, 30

Brouwerian algebra, 39

canonical surjection, 4
chain, 10
co-atom, 9
co-finite, 4
Compactness Theorem, 9
compatible relation, 3
complement, 39
complemented lattice, 39
completely

join-irreducible, 11
meet-irreducible, 10

complexity, 6
conclusion, 21
congruence, 3

distributive, 14
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extension property, 15
finitely generated, 11
modular, 14
permutable, 16
principal, 11
relative, 4

congruence lattice, 11
connective, 18
consequence relation, 18

equational, 18
finitary, 18

conservative expansion, 22
consistent logic, 22
constant, 2
constant symbol, 5
contraction, 23
correct partition, 135
countable type, 2
cover, 9
crystalline residuated lattice, 55

De Morgan monoid, 36
deducibility relation, 21
deduction-detachment theorem, 23
deductive filter, 33
deductive system, 18

algebraizable, 19
axiomatization, 21
elementarily algebraizable, 19

definable
explicitly, 128
implicitly, 128

defining equations, 20
depth, 140
derivable rule, 18
derivation, 21
direct power, 3
direct product, 2
distinguished element, 2
distribution, 25
distributive lattice, 14

downset, 133
dual

algebra, 135
poset, 9
space, 135

Dunn monoid, 42

E-subspace, 135
element

distinguished, 2
elementarily algebraizable deduc-

tive system, 19
elementarily equivalent, 16
elementary

embedding, 16
extension, 16
subalgebra, 16

elementary class, 8
embedding

algebra, 3
elementary, 16
poset, 10

endomorphism, 3
epic subalgebra, 130
epimorphism, 127
epimorphism surjectivity property,

127
strong, 156
weak, 127

equation, 6
equational consequence relation, 18
equational theory, 22
equationally definable principal con-

gruences, 15
equationally definable principal meets,

15
equivalence formulas, 20
equivalent k-deductive systems, 19
equivalent quasivariety, 19
Esakia morphism, 135
exchange, 23
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existential positive sentence, 9
existential sentence, 9
expansion, 2
explicitly

definable, 128
extension, 2, 21

axiomatic, 21
elementary, 16

extrema, 30

factor algebra, 3
filter

deductive, 33
lattice, 33
over a set, 4
prime, 133

finitary consequence relation, 18
finite algebra, 2
finite Beth property, 128
finite type, 2
finitely generated

algebra, 2
congruence, 11
variety, 13

finitely subdirectly irreducible, 4
relatively, 4

first order
formula, 6
sentence, 6
signature, 5

formal system, 21
formula, 18

atomic, 6
first order, 6

fragment, 22
Fréchet filter, 4
free algebra, 7
fusion, 28

generalized Sugihara monoid, 42
generating subset, 2

generation
subalgebra, 2
subuniverse, 2

Gödel-Dummet axiom, 37

hereditarily structurally complete,
113

Heyting algebra, 40
Hilbert system, 21
homomorphic image, 3
homomorphism, 3

almost onto, 127
Homomorphism Theorem, 3

idempotence, 32
identity relation, 11
implicitly definable, 128
incomparability degree, 171
inconsistent logic, 22
infimim, 10
infinite Beth property, 128
integrality, 39
interval, 9
intuitionistic logic, 25

positive, 25
involution, 28
isomorphic image, 3
isomorphism

algebra, 3
poset, 10

isotone map, 10

join, 10
join-irreducible, 11

completely, 11
joint embedding property, 105

kernel, 3
Kollár quasivariety, 12
Kuznetsov-Gerčiu variety, 186

lattice, 10
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algebraic, 10
bounded, 39
complemented, 39
distributive, 14
filter, 33
modular, 14

law of residuation, 28
locally finite

algebra, 13
class, 13

logic, 18
 Loś’ Theorem, 8
lower bound, 10

meet, 10
meet-irreducible, 10

completely, 10
mingle, 25
minimality, 76
modular lattice, 14

negative cone, 131
negative element, 40
negatively generated, 40

odd residuated lattice, 37
operation

basic, 2
term, 6

operation symbols, 2, 5
order embedding, 10
order-preserving map, 10
order-reflecting map, 10
order-reversing map, 10

partial order, 9
passive quasi-equation, 114
pointed Esakia space, 134
poset, 9

dual, 9
isomorphism, 10

positive element, 40

positive intuitionistic logic, 25
positive sentence, 9
positive Sugihara monoid, 149
premises, 21
Priestley separation axiom, 134
prime De Morgan monoid, 36
prime filter, 133
Prime Filter Extension Theorem,

133
Prime Filter Lemma, 133
principal congruence, 11
principal ultrafilter, 4
product, 2

subdirect, 4
projective, 125
proof, 21

quasi-equation, 6
active, 114
passive, 114

quasivariety, 6

reduct, 2
reflection, 67
reflection operator, 69
relation symbols, 5
relative congruence, 4
relative Stone algebra, 40
relatively

finitely subdirectly irreducible,
4

simple, 11
subdirectly irreducible, 4

relevance principle, 111
abstract, 109

relevant algebra, 110
residual, 28
residuated lattice, 28

anti-idempotent, 34
bounded, 30
distributive, 34
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idempotent, 32
integral, 39
involutive, 28
modular, 34
odd, 37
semilinear, 37
square-increasing, 31

residuated structure, 23
residuation

law of –, 28
retract, 55
retraction, 55
Rieger-Nishimura lattice, 186
rigorous extension, 48
rigorously compact, 30
RL-reduct, 28
rooted poset, 136

semilinearity, 37
semisimple, 13
sentence, 6

existential, 9
existential positive, 9
universal, 9
universal positive, 9

signature
algebraic, 2
first order, 5

similar algebras, 2
simple, 12

relatively, 11
singly generated quasivariety, 103
skew reflection, 61
square-increasing law, 31
strong amalgamation property, 156
strong epimorphism surjectivity prop-

erty, 156
structurally complete, 113
sub-cover, 9
subalgebra, 2

elementary, 16

subdirect
embedding, 4
product, 4

subdirectly irreducible, 4
relatively, 4

subidempotence, 31
sublattice, 10
submonoid, 33
subquasivariety, 15
subreduct, 2
substitution, 18
subuniverse, 2
subvariety, 15
Sugihara monoid, 36

generalized, 42
positive, 149

sum of Brouwerian algebras, 175
sum of Esakia spaces, 176
supremum, 10

term, 5
algebra, 6
operation, 6

termwise equivalent
algebras, 6
varieties, 8

theorem, 18
theory, 19
total order, 10
trivial

algebra, 2
class, 7

type, 2
countable, 2
finite, 2

ultrafilter, 4
principal, 4

ultrapower, 5
ultraproduct, 5
ultraroot, 5
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unifiable equations, 114
universal class, 9
universal positive class, 9
universal positive sentence, 9
universal sentence, 9
universal theory, 9
universe, 2
upper bound, 10
upset, 133

variety, 6

weak epimorphism surjectivity prop-
erty, 127

weakening, 23
width, 170
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