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Abstract

Xanthomonas vasicola pv. musacearum (Xvm) which causes Xanthomonas wilt (XW) on

banana (Musa accuminata x balbisiana) and enset (Ensete ventricosum), is closely related

to the species Xanthomonas vasicola that contains the pathovars vasculorum (Xvv) and hol-

cicola (Xvh), respectively pathogenic to sugarcane and sorghum. Xvm is considered a

monomorphic bacterium whose intra-pathovar diversity remains poorly understood. With

the sudden emergence of Xvm within east and central Africa coupled with the unknown ori-

gin of one of the two sublineages suggested for Xvm, attention has shifted to adapting tech-

nologies that focus on identifying the origin and distribution of the genetic diversity within this

pathogen. Although microbiological and conventional molecular diagnostics have been use-

ful in pathogen identification. Recent advances have ushered in an era of genomic epidemi-

ology that aids in characterizing monomorphic pathogens. To unravel the origin and

pathways of the recent emergence of XW in Eastern and Central Africa, there was a need

for a genotyping tool adapted for molecular epidemiology. Multi-Locus Variable Number of

Tandem Repeat Analysis (MLVA) is able to resolve the evolutionary patterns and invasion

routes of a pathogen. In this study, we identified microsatellite loci from nine published Xvm

genome sequences. Of the 36 detected microsatellite loci, 21 were selected for primer

design and 19 determined to be highly typeable, specific, reproducible and polymorphic with

two- to four- alleles per locus on a sub-collection. The 19 markers were multiplexed and

applied to genotype 335 Xvm strains isolated from seven countries over several years. The

microsatellite markers grouped the Xvm collection into three clusters; with two similar to the

SNP-based sublineages 1 and 2 and a new cluster 3, revealing an unknown diversity in Ethi-

opia. Five of the 19 markers had alleles present in both Xvm and Xanthomonas vasicola

pathovars holcicola and vasculorum, supporting the phylogenetic closeliness of these three

pathovars. Thank to the public availability of the haplotypes on the MLVABank database,
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this highly reliable and polymorphic genotyping tool can be further used in a transnational

surveillance network to monitor the spread and evolution of XW throughout Africa.. It will

inform and guide management of Xvm both in banana-based and enset-based cropping

systems. Due to the suitability of MLVA-19 markers for population genetic analyses, this

genotyping tool will also be used in future microevolution studies.

Introduction

Plant disease emergences constitute a major threat for global food security worldwide. These

emergences may gain in importance due to the increase of plant transnational exchanges, crop

intensification, and climate change [1]. For better prevention and control of these emerging

diseases, it is essential to understand the origin of plant pathogens, decipher the evolutionary

mechanisms leading to pathogen adaptation to new crops, and identify the ecological factors

(including the crop system composition) favoring this adaptation.

Understanding how the pathogen genetic diversity is distributed and structured over time

and space, can allow to infer migration patterns, identify source populations, estimate the effi-

cient population size. Thus, assessing the pathogen genetic diversity and structure can give

access to the driving forces of pathogen population dynamics. Moreover, an unbiased assess-

ment of the pathogen genetic diversity is a prerequisite for building up reliable pathogen-

informed management strategies, notably involving crop resistance. The exploration of these

questions requires the implementation of a molecular epidemiology approach, including prop-

erly sampled bacterial collections and adequate genotyping tools.

From the early 2000s, an outbreak of Xanthomonas wilt disease caused by the economically

important Xanthomonas vasicola pv. musacearum (Xvm, synonym Xanthomonas campestris
pv. musacearum) threatened banana (Musa accuminata x balbisiana) and enset (Ensete ventri-
cosum) production within the East and Central African (ECA) countries [2]. The disease

affects all cultivated types of both crops, although damaging more severely the ABB type in

banana [3, 4]. Despite its economic impact on banana and enset production, little is known

about the population biology and epidemiology of Xvm. Several comparative genomics studies

revealed the phylogenetic closeness of Xvm to the vasculorum and holcicola pathovars of

Xanthomonas vasicola [5, 6], supporting a reclassification of the originally described Xantho-
monas campestris pv. musacearum into the species X. vasicola. We will thus refer to the patho-

gen as Xanthomonas vasicola pv. musacearum (Xvm) in this research. Molecular typing tools

including Rep-PCR, random amplification of polymorphic DNAs (RAPDs), enterobacterial

repetitive intergenic consensus-PCR (ERIC-PCR) and single-nucleotide polymorphisms

(SNPs) were developed to elucidate genetic relationships among Xvm populations [2, 5, 6].

However, due to the low inter- or intra-laboratory reproducibility for the first two methods

and to the low sequence diversity contained in Xvm, such markers have been unable to resolve

the Xvm evolutionary patterns and invasion routes [7]. SNP typing revealed four haplotypes

within the Xvm population from east Africa and Ethiopia, and low levels of polymorphism

outside Ethiopia [8]; as an example, populations sampled 10 years apart (2005 and 2014) in

Uganda shared the same unique haplotype [8]. With these results, discriminative molecular

typing tools for population studies such as Multi-Locus Variable Number of Tandem Repeat

Analysis (MLVA) are needed. Such markers have the power to discriminate between closely

related strains providing a better understanding of outbreaks and tracing back the pathways of

spread from inoculum sources.
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MLVA is based on the detection of tandem repeat (TR) polymorphisms within the genome

of an organism [9, 10]. Tandem repeats (TR) with short repetitive DNA sequences, called

microsatellites when smaller than a 9 bp unit, are highly variable within bacterial genomes [11,

12] and may resolve the genetic diversity of monomorphic pathogens [7, 13]. Variability in the

number of TRs is mainly generated through slipped strand mispairing during DNA replication

[14]. Short TR loci mainly evolve following either a stepwise mutation model (SMM) where

new alleles are created by the addition or deletion of a single repeat unit [15] or a generalized

two-phase model [16] where the distribution of the numbers of multiple-repeat mutations

approximate a geometric distribution [17]. The mutation rates differ between TR loci within a

wide range as a result of TR locus specific properties [18]. A high mutation rate increases the

likelihood of size homoplasy of TR alleles, i.e. they are identical by state (a same allele size) but

have different identity by descent. Size homoplasy may distort the information provided by

highly variable loci but this distortion can be minimized by increasing the number of loci and

combining markers with different genetic diversity values [16, 19].

MLVAs were first used to characterize highly monomorphic bacterial pathogens within

the medical field [20–22], and have now been successfully used to evaluate diversity in plant

pathogens such as Ralstonia solanacearum [23–25], Xanthomonas citri subsp. citri [26, 27],

Xanthomonas oryzae pathovars [28, 29], Xylella fastidiosa [30], Xanthomonas axonopodis pv.

manihotis (Xam) [31], Clavibacter michiganesis [32] and Erwinia amylovora [33]. The advan-

tages of MLVAs include ease of performance, high reproducibility and discriminatory power,

portability and rapidity, as well as tremendous reduction in cost since they can be amplified

directly from a bacterial colony without need for DNA extraction [31, 34, 35]. In addition,

MLVAs allow for analysis of larger numbers of samples and loci due to reduction in sequenc-

ing costs [36, 37].

In this study, we describe the development of a new genotyping method for Xvm, based

on MLVA. The MLVA scheme was evaluated on a collection of 335 Xvm strains from five

countries, and its discriminatory power was compared to the SNP-derived typing method.

This work demonstrates the usefulness and power of the MLVA scheme targeting 19 TR loci

for monitoring Xvm populations and epidemics at different temporal and geographical

scales.

Materials and methods

Bacterial strains

A total of 335 strains of Xvm from known hosts and potential alternative hosts were collected.

They were sampled from Ethiopia (n = 122), Uganda (n = 150) and other parts of Eastern and

Central Africa (ECA; namely DR. Congo, Kenya, Rwanda, Tanzania, n = 63) (Table 1). Within

this collection, 20 strains were obtained from the National collection of Plant Pathogenic Bac-

teria (NCPPB) (Table 1). All 335 strains were confirmed to be Xvm using GspDm primers [38]

and five new Xvm-specific primers [8]. All bacterial strains were grown on Wilbrink or YPGA

medium for 48h at 28˚C and stored in W broth/glycerol or YPGA slants at -80˚C.

Furthermore, the specificity of the MLVA scheme was assessed on phylogenetically close

strains. Since Xvm genomes are most similar to members of the species X. vasicola, we tested a

collection of reference strains of X. vasicola pv. vasculorum (n = 6), X. vasicola pv. holcicola
(n = 5), originating from Africa, Reunion Island, and USA (DNA kindly given by J. Lang—

Colorado State University) (Table 2). Other Xanthomonas species, phylogenetically closely

related to X. vasicola (Jacques et al., 2016) were tested: Xanthomonas oryzae pv. oryzae (n = 2),

Xanthomonas campestris pv. cannabis (n = 1), and Xanthomonas citri pv. citri (n = 1).

MLVA-19 for surveilance of Xanthomonas vasicola pv. musacarum
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DNA extraction

Strains were first grown on a carbon source-free agar medium (Yeast extract-Peptone-Agar) at

28˚C for 24h, and DNA extracted using the Wizard Genomic DNA Purification kit (Promega,

Charbonnières-les-Bains, France). DNA quantification and quality control were performed

using a Tecan Infinite 200 NanoQuant microplate reader (Tecan Trading AG, Switzerland);

DNA was diluted to a final concentration of 10 ng.μL−1 using milliQ water, and stored at −20

˚C until use.

In silico identification of MLVA loci

Nine Xvm genomes (NCPPB 2005, 2251, 4379, 4380, 4381, 4384, 4392, 4394, and 4434) from

the National Centre for Biotechnology Information (NCBI) public database were screened for

VNTR loci using the online tool ‘Polloc-V’ (http://bioinfo-web.mpl.ird.fr/xantho/utils/) devel-

oped by Luis-Miguel Rodriguez-R and Ralf Koebnik. We used Tandem Repeat Finder, TRF

[39] as a TR detection algorithm proposed with the following selection criteria: full loci size

from 50 to 400 bp; pattern size from 5 to 9 bp; number of repetitions set to 6 or above; strin-

gency set to maximal values 2 (match) -7 (mismatch) -7 (indel); minimum percentage of

Table 1. Summary of the collections of Xanthomonas vasicola pv. musacearum.

Country Year SNP-based haplotype Strain number

Part 1: Collection genotyped with SNPs and MLVA (n = 63)

DRC 2015 Hap_1 3

Ethiopia 1966 Hap_1 1a

Ethiopia 1967 Hap_1 1a

Ethiopia 2004 Hap_1 1

Ethiopia 2004 Hap_3a 2

Ethiopia 2004 Hap_3b 5

Ethiopia 2004 Hap_4 4

Ethiopia 2015 Hap_3 1

Rwanda 2005 Hap_1 1a

Rwanda 2015 Hap_1 4

Tanzania 2015 Hap_2 15

Uganda 2014 Hap_2 25

Part 2: Collection genotyped with MLVA only (n = 272)

Burundi 2007 - 1a

DRC 2005 - 2a

DRC 2015 - 29

Ethiopia 2017 - 103

Ethiopia 2004 - 2

Ethiopia 2015 - 2

Kenya 2006 - 1

Rwanda 2005 - 3a

Tanzania 2007 - 4a

Uganda 2005 - 6a

Uganda 2012 - 78

Uganda 2014 - 6

Uganda 2016 - 35

a Strain obtained from the National Collection of Plant Pathogenic Bacteria (NCPPB).

https://doi.org/10.1371/journal.pone.0215090.t001
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Table 2. Core-collection of Xanthomonas vasicola pv. musacearum and Xanthomonas vasicola strains.

Code CFBP NCPPB Species Host Country Location Year of

isolation

Genomea Xvm

sublineaged

Core-collection Xanthomonas vasicola pv. musacearum
CIX 319 CFBP7123 NCPPB2005 X. vasicola pv.

musacearum
Ensete ventricosum Ethiopia NA 1966 AKBE00000000.1b I

CIX 318 CFBP7122 NCPPB2251 X. vasicola pv.

musacearum
Musa sp. Ethiopia NA 1967 LGTY00000000.1b I

CIX 308 CFBP7166 NCPPB4378 X. vasicola pv.

musacearum
Musa sp. Uganda NA 2005 NA Unknown

CIX 309 CFBP7167 NCPPB4386 X. vasicola pv.

musacearum
Musa sp. Uganda NA 2005 NA Unknown

Xvm

4387

CFBP7168 NCPPB4387 X. vasicola pv.

musacearum
Musa sp. DR. Congo NA 2005 SRR494494.1b I

CIX 310 CFBP7169 NCPPB4388 X. vasicola pv.

musacearum
Musa sp. DR. Congo NA 2005 NA Unknown

CIX 311 CFBP7170 NCPPB4389 X. vasicola pv.

musacearum
Musa sp. Rwanda NA 2005 SRR494495.2b I

CIX 312 CFBP7171 NCPPB4390 X. vasicola pv.

musacearum
Musa sp. Rwanda NA 2005 NA Unknown

CIX 317 CFBP7172 NCPPB4391 X. vasicola pv.

musacearum
Musa sp. Rwanda NA 2005 NA Unknown

CIX 316 CFBP7173 NCPPB4392 X. vasicola pv.

musacearum
Musa sp. Tanzania NA 2007 AKBI01000000.1b II

CIX 313 CFBP7174 NCPPB4393 X. vasicola pv.

musacearum
Musa sp. Tanzania NA 2007 NA Unknown

CIX 314 CFBP7175 NCPPB4394 X. vasicola pv.

musacearum
Musa sp. Tanzania NA 2007 AKBJ00000000.1b II

CIX 315 CFBP7176 NCPPB4395 X. vasicola pv.

musacearum
Musa sp. Tanzania NA 2007 SRR494490.2b II

Xvm

4433

NA NCPPB4433 X. vasicola pv.

musacearum
Musa sp. Burundi NA 2007 SRR494496.1b II

Xvm

4434

NA NCPPB4434 X. vasicola pv.

musacearum
Musa sp. Kenya NA 2006 SRR494497.1b II

Collection X. vasicola
19 NA NCPPB

1241

X. vasicola pv.

holcicola
Sorghum vulgare Australia NA 1962 NA

423 NA NA X. vasicola pv.

holcicola
Sorghum bicolor South

Africa

NA NA

453 NA NA X. vasicola pv.

holcicola
USA Nebraska NA

CFBP

2543

CFBP

2543

NCPPB

2417

X. vasicola pv.

holcicola
Sorghum vulgare New

Zealand

NA 1969 JSBW00000000.2c

989 NA NCPPB 989 X. vasicola pv.

holcicola
Holcus sp. USA Kansas 1961 NA

454 NA NA X. vasicola pv.

vasculorum
Saccharum
officarum

Mauritius NA NA

387 NA NA X. vasicola pv.

vasculorum
Zea mays USA Nebraska NA

444 NA NA X. vasicola pv.

vasculorum
Zea mays USA Kansas NA

459 NA NA X. vasicola pv.

vasculorum
Zea mays USA Colorado NA

Xvv 1381 NA NCPPB

1381

X. vasicola pv.

vasculorum
Saccharum
officinarum

Zimbabwe NA 1962 AKBL00000000.1c

(Continued)
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similarity between repeat units: 80%. In prokaryotic genomes, short tandem repeats (1–4 nt)

are very rare in large genomes with high GC-content [40]. A preliminary screen gave no results

for pattern size below 5, so we further focused on larger motifs.

Polloc-V identifies groups of loci based on the similarity rate of their flanking regions. After

visual inspection of the 36 loci groups identified, 32 groups were further retained based on the

criteria that: each was present in a single locus per genome, with a locus of the same sequence.

For each identified locus, the repetition sequences of the motif and the 500 bp-upstream and

downstream flanking regions were transferred and concatenated using Geneious v.9.2 [41], to

design PCR primers.

Definition and selection of the PCR primers

PCR primers (20- to 27- nucleotides long) were designed in the flanking regions of the tandem

repeat sequence using Geneious v. 9.2. Melting temperatures were set around 68 ˚C to allow

downstream primer multiplexing with the QIAGEN Multiplex kit. Primer design parameters

were set to be stringent, to avoid the formation of primer dimers and hairpins and to allow

downstream multiplexing, and the annealing temperature parameter was set at Melting Tem-

perature minus 4˚C (Tm—4˚C).

Using BLASTN [42] under Geneious, primers and their corresponding TRs were searched

for within the nine Xvm reference genomes to determine the location of each locus (inter- or

intragenic), and to verify that (i) each motif corresponded to a single locus per genome, and

(ii) the locus-corresponding primers exactly targeted the genomic region containing the locus.

Only primers fulfilling these criteria were selected for subsequent analyses. Hence, 21 loci and

their corresponding primers were selected for development of the MLVA scheme.

Preliminary PCR screening

This first screening assessed typeability (ability to amplify all strains of a given lineage or spe-

cies), reproducibility, and polymorphism of the identified loci. These criteria were assessed on

a core-collection comprising of 15 Xvm strains from Burundi, DR. Congo, Ethiopia, Kenya,

Rwanda, Tanzania and Uganda representing the geographical distribution of the pathogen.

PCR amplifications were done using the Multiplex PCR kit (Qiagen) in a total volume of

15μL. PCR cycles consisted of one initial denaturation (95˚C for 15 minutes) to activate the

« hot start » Polymerase, followed by 25 cycles of denaturation at 94˚C for 30s, annealing

(55˚C to 62˚C) for 90s, elongation at 72˚C for 90 s; and a final elongation step at 60˚C for 30

minutes. Electrophoresis of PCR products was done on 3% agarose gel at 100V for 45 minutes.

From this screening, 19 polymorphic loci and primer pairs were retained for the following

steps.

Table 2. (Continued)

Code CFBP NCPPB Species Host Country Location Year of

isolation

Genomea Xvm

sublineaged

Xvv 0206 CFBP

7162

NCPPB 206 X. vasicola pv.

vasculorum
Zea mays South

Africa

NA 1948 AKBM00000000.1c

a Genome identified by GenBank accession number, or SRA accession number. NA: not available.
b Source: Wasukira et al 2012.
c Source: Sapp M. and Studholme D, unpublished.
d Xvm sublineages (SL) as named by Wasukira et al. (2012).

https://doi.org/10.1371/journal.pone.0215090.t002
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Primer multiplexing

The multiplexing consisted of three to four loci mixes per PCR reaction. Each of the multiplex

PCR reactions was optimized by testing three hybridization temperatures (57, 60 and 63˚C)

per mix, according to QIAGEN indications, on seven bacterial strains of the core Xvm collec-

tion. The optimal hybridization temperature was determined by visualization of amplicon

intensity on 3% agarose gel electrophoresis. The combinations of the different loci in each

reaction mix were chosen according to the size ranges of the PCR products, in order to avoid

overlapping fragment sizes.

Genotyping on ABI3500 capillary sequencer

The "forward" primers of each pair were labeled with a fluorophore: 6-FAM, blue (Eurogentec,

Angers, France); VIC, green; NED, black; or PET, red (Applied Biosystems, Life Technologies,

Saint Aubin, France). The labeling of the different primers was chosen according to the size

and intensity of each PCR product: the NED and PET fluorophores being assigned to the

smaller fragments, 6-FAM to the primers giving fragments of weak intensity, and VIC to prim-

ers giving larger fragments.

Pools of four pairs of labeled primers corresponding to each locus were established

(Table 3) and tested in multiplex PCR, using the Multiplex PCR kit (QIAGEN, Courtaboeuf,

France) according to manufacturer recommendations. Reaction mixtures (15 μL) consisted of

0.2 μM of each primer (forward primer labelled with one of the fluorescent dyes 6-carboxy-

fluorescein FAM, NED, PET, and VIC, 2X QIAGEN Multiplex MasterMix, 5X Q-solution and

2 μL of bacterial genomic DNA (10 ng.μL−1). PCR reactions consisted of an initial denatur-

ation step of 15 min at 95 ˚C; 25 cycles of 30 s at 94 ˚C, at annealing temperatures of either 60

or 63˚C, 90 s at 72 ˚C, and a final 30 min step at 60 ˚C. Each PCR product was diluted to 100−1

and 1.5 μL of diluted PCR product was added to 1.5 μL Hi-Di Formamide (for GeneScan -500

LIZ) and 12 μl GeneScan -500 LIZ internal size standard (Applied Biosystems). The 100-fold

dilution was chosen following preliminary tests of different PCR loading volumes, because it

gave peaks of good intensity (3000–10000 fluorescence units) with no stutter peaks and

rare fluorescence saturation phenomena. This was done to avoid peaks saturating the electro-

pherogram and enable accurate analysis. Capillary electrophoresis was conducted on the

ABI3500XL DNA Analyzer 24-channel sequencer (Applied Biosystems).

Analyses were conducted at the GenSeq technical facilities of the « Institut des Sciences de

l’Evolution de Montpellier »—Labex CEMEB “Centre Méditerranéen de l’Environnement et

de la Biodiversité”.

Analysis of a core-collection using SNP-derived RFLP markers

A collection of 63 strains was analyzed using the MLVA-19 scheme and SNP-derived RFLP

typing tools. Two sets of SNP-derived markers were used. The first set, named WAS-SNPs,

targeting 500-bp loci was adopted from Wasukira et al. [6] while the second set, named

VN-SNPs, targeting between 200 to 600-bp were newly designed to further characterize the

Xvm population [8].

Data analysis

Data scoring. Electrophoregramms were analyzed with GeneMapper 4.0 (Applied Biosys-

tems). Peaks were first automatically detected using the analysis panels we defined for each

mix. Each peak was then carefully checked by eye, and false peaks (rare artefacts due to fluores-

cence saturation) were discarded. The reproducibility of the allelic patterns was checked by
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running several DNA extractions of the strains NCPPB2005 and NCPPB2251, as well as dupli-

cate analyses of eight Ugandan Xvm DNAs. Fragment sizes obtained for each TR locus were

transformed to tandem repeats numbers. Subsequently, the allele sizes were transformed into

repeat numbers using a home-made script using R version 3.4.0 [43]. The tandem repeat num-

bers obtained were rounded up to the next integer [12]. All alleles scored by size, and their

Table 3. Microsatellites, primer description and amplification conditions of the MLVA-19 scheme.

Locus Primer Sequence (5’– 3’) Genome of origin Tandem repeat sequence Product Size Multiplex mix Tan (˚C)a

XVM022 XVM022_289F TGTCCGCATATCCAGCACGC NCPPB4379 GGCTGCT 313 MIX01 60

XVM022_601R GATATCCCAGCCGCACGTCTTG

XVM002 XVM002_353 F CCAGGCCACCACGTAATTCAGTCAGG NCPPB4379 TCGCTG 236

XVM002_588 R CGAACTGCAAAAGCCAAGCCAGAG

XVM028 XVM028_459F TGAGGGCAACTAGATCGACGGGTTC NCPPB4379 GGGAATC 200

XVM028_658R CAGACGGATTTGTTCAACGCATCGCAT

XVM029 XVM029_310F CGATATTGGGGTTCTGGCTAGGGTC NCPPB2005 TTGCAC 375

XVM029_684R AAGTGACGTTTGAGGGGCGC

XVM020 XVM020_450F CGTTATTGATCTGACGTATTGCCCATCG NCPPB4380 GACGCAC 365 MIX02 60

XVM020_814R ACTTCATGCCACCCACGTTGC

XVM030 XVM030_333 F TGGTGGATGGATGGGTGTTGGTGGT NCPPB2005 TTGTTGC 250

XVM030_582 R CCCCGGAGAAGCAAGAACCTAGAACCT

XVM027 XVM027_367 F GCTCCCGATCCAACGCTTGCTCATG NCPPB4379 AGAGCCG 228

XVM027_594 R CGCTGCTCCTGGTTCAATTTCCCGATT

XVM015 XVM015_460F CGACCAGACCGCCTTGTTCAGAGAAAT NCPPB4379 AGCGCACGG 249

XVM015_708R GGGATGGTGTTGCTGATGTGGTTTTGC

XVM016 XVM016_295F ACTTCTCCACGCCTCTGTTTGCC NCPPB4384 GGCTATT 377 MIX03 63

XVM016_671R GATCTTAACGCTTCCTTGACATCGGC

XVM021 XVM021_454F GTCGTTGAAGCGTTCCATGAAGCCG NCPPB4379 CTTCTGCG 238

XVM021_691R TGTCCTTGGATGAACAAAAGCCCTCGA

XVM035 XVM035_419F TTGAATCCAACGGTGCCCTGTCC NCPPB4380 GCACCAA 225

XVM035_643R GTGCCATGTGTTTCCCCTAGTGTGC

XVM024 XVM024_387F CGATCCCAACTCGCCGATGA NCPPB4379 GCATCGT 323

XVM024_709R CGTACTTCAAGATCACCGCAGAGCAT

XVM006 XVM006_107 F GGTAGCGGTGTGGGTTGCGAAGAC NCPPB4379 GGGATTC 427 MIX04 63

XVM006_533 R GGCTACGAGGTGGATGTGCAGGTG

XVM018 XVM018_440F GAACTGCTGTAACCGTCGATTGCCTC NCPPB4434 TGAGTGC 269

XVM018_708R GCGTCACCTACTCCGTTGCCAGAT

XVM038 XVM038_404F ACGGTAGTAATGGGCAGCAGGGTG NCPPB4379 CGGTGGTGGCTT 227

XVM038_630R CGGTGTCGTTCGAGAAGCTCAAGATAGA

XVM014 XVM014_402F AGGTTCCAGGTCACGCAGATTCTTGT NCPPB4384 GAATTGG 316

XVM014_718R GACTGGTGTGGATGGGCGTTCT

XVM005 XVM005_376F AAGCAGCCACGGAAAGGACAGG NCPPB2005 CGCCAG 362 MIX05 63

XVM005_737R TGACCACTGCCGCACACCAA

XVM036 XVM036_164 F CTGGCTGCTCAAGGACATCACCAACC NCPPB4384 TCCCGAA 386

XVM036_549 R GGTAGCGGTGTGGGTTGCGAAGA

XVM012 XVM012_223F TGCGTACCGAACTCTGTGGCTAC NCPPB2005 TGGCGG 376

XVM012_598R GGTTGTGCGAACTTTTGTCGTGCTAC

a Tan: annealing temperature.

https://doi.org/10.1371/journal.pone.0215090.t003
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corresponding “raw” and rounded repeat numbers, are summarized in the S2 Table in Supple-

mental Information.

Analysis of genetic data. The typeability and specificity of each MLVA locus to Xvm,

pathovars of X. vasicola, and other Xanthomonas species were evaluated by comparing the per-

centage of strains amplified.

Principal component analysis (PCA) was performed using the FactoMineR package [44] in

R to estimate the contribution of each locus and how they account for the genetic variability

described in the current Xvm collection.

We estimated the genotypic resolution of the MLVA scheme [45] and described the geno-

typic diversity in relation to different combinations of TR loci by a genotype accumulation

curve using R (R::poppr:: genotype_curve [46]). The curve is generated by sampling x loci

randomly and counting the number of multilocus genotypes (MLG) observed. This sam-

pling is repeated r times from 1 to n-1 loci, creating n-1 distributions of observed MLGs

[47].

Reconstructing evolutionary relationships across Xvm African haplotypes. Haplotype

networks were constructed using the algorithm combining global optimal eBURST (goe-

BURST) and Euclidean distances in the Phyloviz 2 software [48]. It allowed the visualization of

the different clonal complexes (groups of haplotypes differing by a single locus, or Single locus

variant (SLV)).

The mutation model followed by the MLVA molecular markers was estimated by looking

at the locus variation of recently diverging haplotypes, i.e. single-locus variants (SLV) and dou-

ble-locus variants (DLV), along the haplotype network of the minimum spanning tree. Fur-

thermore, the number of TR repeats involved in the mutation event was examined to

determine whether the stepwise mutation model (SMM), i.e. addition or deletion of a single

repeat, was supported for these TR loci.

Comparison of the discriminatory power and congruence of the typing techniques.

MLVA-19 and SNP-derived RFLP typing techniques were compared using the Hunter and

Gaston discriminatory Index (HGDI) [49].

Distance matrices calculated from each MLVA-19 and SNP dataset were calculated and

compared using the Mantel test performed by the CADM.post function of the R package ape

5.0, with 9,999 permutations [50]. The Mantel correlation coefficients were computed on

rank-transformed distance matrices.

Genetic structure. The genetic structure of the Xvm population was assessed by Discrimi-

nant Analysis of Principal Components (DAPC) using the adegenet package for the R software

[51–53] since DAPC is free of any assumption linked to a population genetic model (such as

Hardy-Weinberg equilibrium or absence of linkage disequilibrium). The number of clusters

was assessed using the function find.clusters, which runs successive k-means clustering with

increasing number of clusters (k) and the optimal number of clusters selected based on lowest

Bayesian information criterion (BIC) [52]. Eleven independent k-means and DAPC runs were

performed to assess the stability of clustering.

Deposition to MLVABank website

The MLVA-19 allelic profiles were deposited to the MLVA website dedicated to plant bacterial

pathogens http://bioinfo-web.mpl.ird.fr/MLVA_bank/Genotyping/, corresponding to the

MLVAbank at http://microbesgenotyping.i2bc.paris-saclay.fr/, to make MLVA-19 data acces-

sible in an interactive way [54]. The website allows viewing databases with sorting and cluster-

ing options, submitting queries, and sharing databases which are maintained and managed by

different owners once a common agreement is achieved among partners [26].
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Results

The MLVA scheme MLVA-19 is based on 19 highly polymorphic loci that

are evenly distributed on the genome

From the in silico screening of VNTR loci and corresponding primers (detailed in Materials

and methods), 21 loci were selected that were unique in each genome, and whose correspond-

ing primers were specific to the locus flanking regions.

From the initial screening of a representative Xvm core-collection strains from different

countries (n = 15), 19 loci out of the 21 tested were polymorphic, with two to four alleles per

locus. Loci XVM013 and XVM023 did not amplify in any strain and were therefore excluded

from the downstream analyses. The primers targeting the 19 loci were multiplexed in sets of

either four- or three-loci mixes (Table 3). All but one (XVM038) were considered as microsat-

ellite loci, with motif sizes ranging from 6 to 9 nucleotides. The majority (12 of 19) consisted of

7 nucleotide repeats, and most (12 of 19) had an intergenic location (Table 4). Most loci were

evenly distributed on the Xvm genome (S1 Fig). The distance between two adjacent loci ran-

ged from 26.9 kb to 1293.7 kbp, except between XVM006 and XVM036 (652 bp), and between

XVM030 and XVM002 (1835 bp).

Of the 19 loci, 12 contained perfect repeat motifs (no variation of the TR sequence) among

which six were interrupted in 3’ (S1 Table). Seven loci contained imperfect repeat motifs

Table 4. Nomenclature, location, function and genetic diversity of the 19 TR loci retained in the MLVA scheme of Xanthomonas vasicola pv. musacearum. The

basic statisticsd were obtained from the Xvm collection (n = 335).

Locus Official nomenclaturea Location (intra /intergenic)b Coordinates in

NCPPB4379 (bp)c
Repeat size Basic

statisticsd
TR numbers range

Start End HE NA

XVM002 NCPPB4379_3.746_6_61_10.2 Hypothetical protein 2152939 2152217 6 0.73 21 6–35

XVM005 NCPPB2005_18.431_6_36_6 intergene 2519193 2518146 6 0.6 7 2–8

XVM006 NCPPB4379_0.145_7_67_9.6 intergene 1288216 1288926 7 0.63 14 7–20

XVM012 NCPPB2005_28.458_6_36_6 intergene 728842 728307 6 0.62 10 2–14

XVM014 NCPPB4384_7.903_7_72_10.3 intergene 69918 70996 7 0.66 13 5–25

XVM015 NCPPB4379_7.618_9_61_6.8 intergene 322772 323832 9 0.66 13 3–27

XVM016 NCPPB4384_1.353_7_53_7.6 intergene 3154338 3155390 7 0.56 7 6–12

XVM018 Kenyan_21.741_7_44_6.3 intergene 512386 513422 7 0.69 6 4–10

XVM020 NCPPB4380_14.211_7_61_8.7 intergene 4481478 4482029 7 0.85 16 5–21

XVM021 NCPPB4379_28.913_8_64_8 Hypothetical protein 4175076 4176139 8 0.82 10 4–13

XVM022 NCPPB4379_30.295_7_55_7.9 Hypothetical protein 4220957 4221499 7 0.64 8 5–13

XVM024 NCPPB4379_20.274_7_90_12.9 intergene 3580348 3579259 7 0.79 11 4–14

XVM027 NCPPB4379_47.799_7_63_9 RNA binding protein 3745391 3746453 7 0.92 25 7–32

XVM028 NCPPB4379_7.722_7_57_8.1 Hypothetical protein 4397186 4398249 7 0.77 15 5–21

XVM029 NCPPB2005_15.36_6_48_8 Hypothetical protein 3936107 3937148 6 0.61 7 5–13

XVM030 NCPPB2005_4.034_7_42_6 intergene 2151016 2151719 7 0.77 17 6–31

XVM035 NCPPB4380_1.724_7_59_8.4 intergene 3310409 3309372 7 0.56 7 4–10

XVM036 NCPPB4384_0.443_7_67_9.6 intergene 1288274 1288984 7 0.63 16 7–23

XVM038 NCPPB4379_2.022_12.00_86_7.20 Hypothetical protein 4148185 4149270 12 0.5 5 5–9

a Loci were named according to their genome of origin, physical position (kb), TR unit size, total length in the genome of origin, number of repeats [55].
b The intra/intergenic location was assessed on all nine Xvm genomes available.
c The coordinates are based on the Xvm complete genome NCPPB4379 (ASM27789v2, https://www.ncbi.nlm.nih.gov/assembly/GCF_000277895.2), composed of a 4,79

Mb-chromosome and a 49.4 kb-plasmid named pXCM49; all loci were located on the chromosome.
d HE, Nei’s gene diversity; NA, number of alleles.

https://doi.org/10.1371/journal.pone.0215090.t004
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(XVM006, XVM014, XVM016, XVM024, XVM029, XVM036, XVM038) with alternative TR

sequence displaying only one mismatch from the reference sequence (mostly transitions

between Thymine and Cytosin).

Loci XVM027, XVM002, and XVM030 were the most polymorphic, whereas XVM018 and

XVM038 were the least polymorphic (Table 4). There was no clear relationship between poly-

morphism and motif size (S2 Fig), nor with location on the genome, although the least poly-

morphic locus XVM038 had the greatest motif size (12 bp) and considered a minisatellite.

The MLVA-19 scheme allowed for good genotypic resolution within Xvm

Contribution of each MLVA marker to the scheme was determined from the Principal Com-

ponent Analysis (PCA). The first three dimensions explained 66.5% of variance, with axes 1

and 2 being the most informative (respectively 41.9% and 16.88%). Loci XVM030, XVM016,

XVM024, XVM022 and XVM020 contributed most to the axis 1, while XVM035, XVM018,

XVM012, XVM006 and XVM036 contributed most to axis 2 (S3 Fig); loci XVM002 and

XVM028 contributed most to axis 3 (S3 Table, S4 Fig). Some variables were correlated, e.g.

XVM006 and XVM036; XVM002 and XVM022; XVM005 and XVM030; XVM015 and

XVM038; XVM012 and XVM028 (S3 and S4 Figs).

The genotypic resolution of the MLVA-19 scheme is represented by the genotype accumu-

lation curve (Fig 1). Our set of loci has been shown to be sufficient to accurately resolve the dif-

ferent haplotypes in our sample as the curve reached a plateau with 19 loci. The genotype

Fig 1. Genotype accumulation curve for 335 strains of Xanthomonas vasicola pv. musacearum genotyped over 19 loci. The

horizontal axis represents the number of loci randomly sampled without replacement up to n-1 loci, the vertical axis shows the

number of unique multilocus genotypes observed (n = 208) in the data set. The level of 95% of unique multilocus genotype detected

is indicated with a dotted red line.

https://doi.org/10.1371/journal.pone.0215090.g001
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accumulation curve revealed that more than 90% of the genotypes could be detected with 16

markers, hence the MLVA-19 scheme accurately estimates the clonal diversity of our sample

(Fig 1).

Most of the mutations of our MLVA-19 loci involve single repeat events

In order to estimate the mutation model of the MLVA microsatellite marker evolution, we

looked at the variation of repeat numbers between recently diverging haplotypes, i.e. SLVs

within the clonal complexes and also with double-locus variants (DLV); most loci were ana-

lyzed on more than five evolutionary steps. Thirteen loci (XVM002, 5, 6, 12, 14, 20, 21, 22, 24,

27, 28, 35, and 38) revealed that SLVs resulted from more than 60% of single TR variation,

with eight above 80%. XVM012 has a majority (44.44%) of single steps, and XVM014 had 50%

of both single and double repeat variation. The locus XVM015 displayed a majority of multiple

repeats variations ranging from 2 to 13 repeats. Such events involving large number of repeats

could result from recombination mechanism [56]. The loci XVM016, XVM018, XVM029,

XVM030 and XVM036 were not involved in SLVs or DLVs. But for those loci, almost all the

alleles or number of repeats fulfilled the allelic range observed within our collection (S2 Table).

MLVA-19 loci are highly typeable on Xvm and specific to X. vasicola
The typeability of most loci was excellent when used on Xvm strains (n = 335), with 18 of the

19 loci amplifying in more than 97% of strains. On the other hand, the locus XVM 015 was

amplified in 90.4% of strains (Table 5).

Table 5. Typeability and specificity of each XVM locus considering X. vasicola pv. musacearum (Xvm), X. vasicola pathovars holcicola (Xvh), and vasculorum (Xvv),

and other Xanthomonas species: X. oryzae pv. oryzae (Xoo); X. campestris pv. cannabis (Xcc); X. citri pv. citri (Xc), estimated by the number (percentage) of amplified

strains.

Locus Strains amplified within

Xvm

(n = 335)

Xvv

(n = 5)

Xvh

(n = 5)

Xoo

(n = 2)

Xcc

(n = 1)

Xc

(n = 1)

XVM002 335 (100) 2 (40) 3 (60) 0 (0) 0 (0) 0 (0)

XVM005 335 (100) 2 (40) 0 (0) 0 (0) 0 (0) 0 (0)

XVM006 327 (97.6) 1 (20) 3 (60) 1 (50) 0 (0) 0 (0)

XVM012 328 (97.9) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

XVM014 332 (99.1) 3 (60) 1 (20) 0 (0) 0 (0) 0 (0)

XVM015 303 (90.4) 5 (100) 0 (0) 0 (0) 0 (0) 0 (0)

XVM016 332 (99.1) 4 (80) 2 (40) 0 (0) 0 (0) 0 (0)

XVM018 333 (99.4) 0 (0) 1 (20) 0 (0) 0 (0) 0 (0)

XVM020 333 (99.4) 3 (60) 2 (40) 0 (0) 0 (0) 0 (0)

XVM021 332 (99.1) 2 (40) 1 (20) 0 (0) 0 (0) 0 (0)

XVM022 334 (99.7) 5 (100) 3 (60) 0 (0) 0 (0) 0 (0)

XVM024 335 (100) 5 (100) 0 (0) 0 (0) 0 (0) 0 (0)

XVM027 332 (99.1) 3 (60) 1 (20) 0 (0) 0 (0) 0 (0)

XVM028 335 (100) 3 (60) 2 (40) 0 (0) 0 (0) 0 (0)

XVM029 333 (99.4) 5 (100) 3 (60) 0 (0) 0 (0) 0 (0)

XVM030 334 (99.7) 4 (80) 2 (40) 0 (0) 0 (0) 0 (0)

XVM035 332 (99.1) 4 (80) 0 (0) 0 (0) 0 (0) 0 (0)

XVM036 326 (97.3) 2 (40) 2 (40) 1 (50) 0 (0) 0 (0)

XVM038 333 (99.4) 3 (60) 0 (0) 0 (0) 0 (0) 0 (0)

Total 335 5 5 2 1 1

https://doi.org/10.1371/journal.pone.0215090.t005
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Most of the TR loci of the MLVA scheme for Xvm amplified at least a few strains of X. vasi-
cola pv. vasiculorum (17/19 loci) and pv. holcicola (13/19 loci) (Table 5). However, specificity

of the loci was variable between Xvm and X. vasicola. XVM012 was the only Xvm-specific

locus and was not amplified in any other X. vasicola pathovar. Four loci (XVM002, XVM006,

XVM022, XVM029) amplified 60% of strains belonging to the pathovar holcicola (n = 5), while

amplification in X. vasculorum ranged between 20% and 40%. Seven loci (XVM015, XVM016,

XVM022, XVM024, XVM029, XVM030, and XVM035) amplified 40 to 100% of pathovar vas-
culorum strains (n = 5) that were tested (Table 5). Importantly, some loci produced alleles that

were both present in Xvm and another pathovar of X. vasicola (XVM002, XVM005, XVM006,

XVM014, XVM015, XVM020, XVM027, XVM028, XVM029, and XVM036). For instance

three alleles of the locus XVM006 were shared by Xvm and Xvh, while one allele was shared by

Xvm and Xvv (S2 Table, summarizing all alleles by size and repeat numbers).

No locus or very few loci were amplified with other Xanthomonas species used in this

study.

MLVA-19 is congruent with the SNP-RFLP based typing method but more

discriminative

We estimated the congruence between the MLVA-19 scheme and the SNP-derived typing

method from Wasukira et al.[6] by three complementary approaches. We first assessed the dis-

tribution of SNP sublineages and SNP-based haplotypes on the goeBURST minimum span-

ning tree drawn from the 53 MLVA-19 haplotypes. Two MLVA clusters were consistent with

the SNP-sub-lineages SLI and SLII described by Wasukira et al. (Fig 2). Moreover, the

MLVA19-haplotypes corresponding to SNP-haplotypes 3 and 4 are also clustered together.

We also assessed whether the 12 genetic clusters identified by DAPC (named DAPC clus-

ters, and described in detail below) based on MLVA-19, corresponded to SNP-based haplo-

types [57] (Fig 3). The SLI haplotypes (Hap1) were distributed within clusters 4, 5, 10 and 11,

while SLII haplotypes (Hap2) corresponded to clusters 2, 3, 8 and 11; Hap3 and Hapl4

belonged to clusters 1, 2, and 10, and 7 and 9, respectively (Fig 3). Hence, SLI and SLII strains

were distributed in distinct clusters, with the exception of cluster 11 (Fig 3). Cluster 11 con-

tained one Hap1-SLI strain, and the SLII strain T35C; but T35C was actually poorly assigned

(53%) to cluster 11 while also assigned to SL II-associated cluster 8 (44%). Clusters 2 and 10

were also shared between Hap3 and Hap2 and Hap1, respectively.

We also performed the Mantel tests between distance matrices obtained on a strain subset

(n = 32) genotyped by both methods. Distance matrices (Euclidean and Manhattan distances)

were highly correlated, with respective Mantel correlation coefficients of 0.412 and 0.492 (P<

0.001 for both Euclidean and Manhattan matrices, 9999 permutations), indicating that genetic

distances from MLVA-19 and SNP-based RFLPs were significantly congruent.

A collection of 63 strains was typed with both SNP-derived markers [6, 57] and the MLVA-

19 scheme. The discriminatory index was 0.981 for MLVA (n = 63 haplotypes) and 0.564 for

the SNPs (n = 6 haplotypes).

MLVA-19 reveals epidemiological relationships between countries and is

discriminative at the field scale

The MLVA-19 scheme distinguished 208 haplotypes among the Xvm collection (n = 335).

Twenty-nine clonal complexes (CC) defined as groups of single locus variant (SLV) grouped

51.34% of the strains using the goeBURST algorithm. Numbers of haplotypes per CC ranged

from 2 to 11; 13 CC grouped three haplotypes and above. Fifty-five per cent of the haplotypes

(n = 114) remained as singletons, differing from each other by four to thirteen loci.
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Interestingly, no haplotype was shared by strains from different countries. Most CC (n = 26)

were country-specific (13 from Uganda, 12 from Ethiopia, one from Tanzania), while three

were shared among countries (CC1: Uganda, Tanzania, Burundi, DRC; CC13 and CC29:

DRC, Rwanda) (S4 Table).

We also analyzed strains that were isolated from the same field. At this scale, the MLVA-19

scheme discriminated from 8 to 13 haplotypes per field (Ethiopia, n = 2 and Uganda, n = 1)

(Table 6). Hence, the MLVA-19 was discriminative enough to distinguish different haplotypes

from the country scale to the field scale.

Discussion

Understanding invasion routes, biology and epidemiology of pathogens is important to eluci-

date the main factors involved in the invasion process, to develop epidemiological surveillance

strategies aimed at preventing new introductions, as well as building pathogen-informed

breeding strategies. At small-scales, it is important to determine the source of outbreaks and

the means of transmission to limit the pathogen dispersion. In this study, we developed a

highly discriminative typing tool that allowed us to elucidate the population structure and

Fig 2. Minimum spanning tree (MST) of Xanthomonas vasicola pv. musacearum based on SNP haplotypes identified using

goeBURST in PHYLOVIZ. Each sequence type (ST) is displayed as a circle with a size proportional to the number of strains by which is

represented. The different colors indicate the SNP haplotype. Numbers on the branches indicate the number of locus differences between

the neighboring haplotypes.

https://doi.org/10.1371/journal.pone.0215090.g002
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diversity of Xanthomonas vasicola pv. musacearum. The MLVA approach has become a stan-

dard in evaluating the population structure and dynamics of bacterial pathogens affecting

human, animal and plant health especially due to its ability to detect small yet significant

genetic differences.

MLVA-19 scheme is well suited for molecular epidemiological analysis of

Xanthomonas vasicola pv. musacearum
To our knowledge, MLVA-19 is the first scheme of this type to be developed for Xvm. This

scheme consists of 19 loci evenly distributed on the Xvm genome. When choosing markers for

analysis, it is important to ensure that the combination of markers selected allow for accurate

discrimination of the haplotypes [58]. Principal component analysis and the genotype accu-

mulation curve indicated that these 19 loci are sufficient to accurately discriminate the Xvm

population and thus adding more markers would not identify many new genotypes. The geno-

type accumulation curve assesses the power to discriminate among unique haplotypes given a

Fig 3. Correspondence between SNP haplotypes with generic clusters inferred by discriminant analysis of principal components. The

clusters are shown on the horizontal axis and the countries and SNP haplotypes are indicated on the vertical axis. The black squares represent

the number of strains per SNP haplotype within the given cluster. The Figs were created using the table.value function in the R “Adegenet”

package [53].

https://doi.org/10.1371/journal.pone.0215090.g003

Table 6. MLVA-19 is discriminative at the field scale. Number of MLVA-19 haplotypes detected in three fields of Ethiopia and Uganda.

Country and location Field Host No. of strains No. of haplotypes

ETHIOPIA, Yem Meleka Enset 16 13

Oya Freto Enset 14 8

UGANDA, Mukono Kiifu Banana 10 8

https://doi.org/10.1371/journal.pone.0215090.t006
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random combination of loci [47] and resolved almost all the haplotypes with 16 to 17 micro-

satellite markers, indicating that such a number of loci would be sufficient to detect most of

the genetic diversity within Xvm.

MLVA-19 is also well suited for molecular epidemiology analyses. We determined that most

loci of the MLVA-19 scheme evolved by gaining or losing a single repeat at one time, support-

ing a stepwise mutation model. This may facilitate the relatedness analyses and gene genealo-

gies, and makes this MLVA-19-scheme useful in molecular epidemiology study. Several

authors have noted that although SMM is considered to be the predominant mutational model

for the microsatellites within bacteria, precise data remain scarce on the actual mutation model

and possible variations around this model within the Proteobacteria phylum [26, 33, 59, 60].

MLVA-19 was also discriminative enough to identify and monitor different haplotypes of

Xvm at the field scale, as shown in the banana and enset fields in Uganda, and Ethiopia respec-

tively. This paves the way for future studies addressing the importance of multi-infection events

and the spatial dynamics of bacterial infection within and across farm fields, comparing the spa-

tial structures of aerial infestations and soilborne or tool-mediated infestations, among others.

MLVA-19 are partially transferable to other pathovars of X. vasicola
All MLVA-19 loci were amplified in Xvm, but several loci amplified within the other pathovars

of X. vasicola. One MLVA scheme initially developed for Xanthomonas citri pv. citri has also

been partly and successfully adapted to a close pathogenic bacterium from the same species

[61, 62]. On the other hand, the phylogenetically closest species (X. oryzae, X. cannabis [63])

were not amplified by the MLVA-19. Collectively, these findings further provided evidence for

a close phylogenetic relatedness between Xvm and other pathovars of Xanthomonas vasicola.

MLVA-19 is congruent with SNP markers, while revealing an unexpected

diversity

From our data, the MLVA typing scheme was much more discriminatory than the SNP typing

method described by Wasukira et al.[6]. Indeed, SNP and MLVA markers differ in mutation

rates and mechanisms with independent evolutionary processes. Although SNP markers are

robust phylogenic markers, less prone to distortion via selective pressure, as is the case for

repetitive sequences [64]; their mutation rate is much lower than that of TR, and as such, do

not offer enough polymorphisms to discover recent evolutionary events. Whereas, MLVAs

mutate faster through the addition or subtraction of tandem repeats, producing greater levels

of variation and often providing more discriminatory power per marker. Due to their different

evolutionary dynamics, MLVAs and SNPs offer complementary information [65]. MLVA is

considered suitable for short-term epidemiological analysis, while SNPs are suited to long-

term or global epidemiological analyses [66].

MLVA-19 typing confirmed the differentiation of Xvm into two main sublineages as

defined by Wasukira et al [6]. Furthermore, MLVA also identified several homogeneous

clusters within each of these sublineages with three to four DAPC clusters per sublineage.

Interestingly, some genetic groups (DAPC 6, 7, 9, 12) were not discriminated by SNP-derived

markers. The phylogenetic relationship of these clusters to sublineages I and II remains to be

determined, and should be clarified by additional genomic sequence analyses.

MLVA-19 as part of a hierarchical Xvm typing system

While SNPs reveal little polymorphism, their phylogenetic signal is informative as it is not dis-

turbed by homoplasic events. The little diversity obtained with SNP markers defined sub-line-

ages within Xvm but is not sufficient to track the strains of this genetically monomorphic
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pathogen during outbreaks [7]. We developed highly discriminatory TR markers suitable to

separate Xvm isolates within populations which are congruent with SNP typing. In the future,

both genotyping systems could be used together within a hierarchical typing procedure [16,

67], with the SNP markers being used to define the higher evolutionary groups at the lineage

level, and our MLVA-19 scheme being used for outbreak investigations, regional surveillance,

amount and directions of gene flows.

Conclusion

We have established that the MLVA-19 scheme developed in this study is highly resolvent

from the regional scale to the field scale. This genotyping tool is thus perfectly suited for

exploring the genetic diversity of the recently emerging Xvm populations in East and Central

Africa and could in future be helpful in addressing evolutionary and ecological questions that

are important to address for deciphering the epidemiology of Xanthomonas wilt on banana,

including the reconstruction of Xvm invasion routes throughout Africa. With the MLVA pro-

files deposited in MLVA Bank (http://bioinfo-web.mpl.ird.fr/MLVA_bank/Genotyping/), it

will be possible to share data from new outbreaks or new emerging situations and compare

them to the Xvm known genetic diversity for epidemiological investigations. This portable and

simple genotyping tool can also be used in the future to assist the regional deployment of new

Xvm-resistant banana and enset genitors.
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