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Abstract. The FitzHugh-Nagumo equation has various applications in the fields of flame propagation, logistic population
growth, neurophysiology, autocatalytic chemical reaction and nuclear theory [1, 6]. In this work, we construct three versions
of nonstandard finite difference schemes in order to solve the FitzHugh-Nagumo equation with specified initial and boundary
conditions under three different regimes. Properties of the methods such as positivity and boundedness are studied. The
performances of the three methods is compared by computing L1, L∞ errors and CPU time at given time, T = 1.0.
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INTRODUCTION

Partial differential equation are widely used to describe or model the complex phenomena in real life and applications
are fluid mechanics solid-state, plasma wave and chemical physics . The FitzHugh-Nagumo equation given by

ut = uxx +βu(1−u)(u− γ), (1)

is one form of application in biology where γ controls the global dynamics of the equation and is in the interval
(0,1) and u(x, t) is the unknown function which depends on the temporal variable t, and the spatial variable, x. β is
parameter. Nonstandard Finite Difference Scheme (NSFD) has been introduced by Mickens [2] to obtain solutions
of various partial differential equations. Their derivations are mostly based on the idea of dynamical consistency
(positivity, boundedness, monotonicity of the solutions etc) [3]. After generalizing these results, Mickens formulated
the following three basic rules in constructing NSFD schemes:
(i) The order of discrete derivatives should be equal to the order of corresponding derivatives appearing in the
differential equation.
(ii) Discrete representation for derivatives, in general have non trivial denominator functions, for instance

ut ≈
un+1

j −un
j

φ(Δt,λ )

where φ(Δt,λ ) = Δt +O[(Δt)2].
(iii) Nonlinear terms must be represented by nonlocal discrete representations.

We solve Eq. (1) i.e,
ut = uxx +βu(1−u)(u− γ),

where u(x, t) is the unknown function which depends on spatial variable, x ∈ [−10,10] and temporal variable, t ∈ [0,1].

The initial condition is u(x,0) = 1
2 − 1

2 tanh

(√
β

2
√

2
x
)

and the boundary conditions are:

u(−10, t) = 1
2 − 1

2 tanh
(√

β
2
√

2
(−10− ct)

)
and u(10, t) = 1

2 − 1
2 tanh

(√
β

2
√

2
(10− ct)

)
.

The exact solution is u(x, t) = 1
2 − 1

2 tanh
(√

β
2
√

2
(x− ct)

)
where β > 0, γ ∈ ℜ and c =−

√
β
2 (2γ −1). In this work, we

consider 3 cases:

Case 1 : β = 1, γ = 0.2.
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Case 2 : 0 < β < 1(β = 0.5), γ = 0.2.

Case 3 : β > 1(β = 10), γ = 0.2.

We test the performance of the schemes over different values of β over the domain x ∈ [−10,10] at time, T = 1.0.

NONSTANDARD FINITE DIFFERENCE SCHEME (NSFD)

We present derivation of three versions of NSFD Schemes termed as NSFD1, NSFD2, NSFD3 to discretise

ut = uxx +βu(1−u)(u− γ). (2)

In all the three methods, we use the same discretisation for ut and uxx. We approximate ut by
un+1

j −un
j

φ2(Δt) where

φ2(Δt) = φ2(k) = eβk−1
β and uxx by

un
j+1−2un

j+un
j−1

ψ1(Δx)ψ2(Δx) where ψ1(Δx) = ψ1(h) = 1−eβh

β and ψ2(Δx) = ψ2(h) = eβh−1
β .

NSFD1 scheme

We extend the scheme constructed in [4] to discretise Eq. (1). The scheme is given by

un+1
j −un

j

φ2(k)
− un

j+1 −2un
j +un

j−1

ψ1(h)ψ2(h)
= β

(
−3

2

(
un

j−1

)2 un+1
j +

1

2

(
un

j−1

)3
)
+β (1+ γ)

(
un

j−1

)2 −β γ un+1
j . (3)

A single expression for the scheme is

un+1
j =

(1−2R)un
j +R(un

j+1 +un
j−1)+βφ2(k)

(
(1+ γ)

(
un

j−1

)2
+ 1

2

(
un

j−1

)3
)

1+β γ φ2(k)+ 3
2 β φ2(k)

(
un

j−1

)2
, (4)

where R = φ2(k)
ψ1(h)ψ2(h)

.

The scheme is positive if 1−2R ≥ 0 i.e. (R ≤ 1
2 ). Positivity is guaranteed if

(a) k ≤ 4.9948×10−3 for β = 0.5.

(b) k ≤ 4.9917×10−3 for β = 1.0.

(c) k ≤ 5.2880×10−3 for β = 10.

Boundedness

(un+1
j −1)

(
1+βγφ2(k)+

3

2
βφ2(k)

(
un

j−1

)2
)
= (1−2R)un

j +R(un
j+1 +un

j−1)+βφ2(k)
[
(1+ γ)(un

j−1)
2 +

1

2
(un

j−1)
3
]

− 1−βγφ2(k)− 3

2
βφ2(k)(un

j−1)
2. (5)

We check if the scheme is bounded. We note that 0 ≤ un
j ≤ 1. If the scheme is bounded, we need to prove that

0 ≤ un+1
j ≤ 1. We have

(un+1
j −1)

(
1+βγφ2(k)+

3

2
βφ2(k)

(
un

j−1

)2
)
≤ (1−2R)+2R+βφ2(k)(1+ γ)(un

j−1)
2 +

1

2
βφ2(k)(un

j−1)
3 −

1−βγφ2(k)− 3

2
βφ2(k)(un

j−1)
2, (6)

which simplifies as

(un+1
j −1)

(
1+βγφ2(k)+

3

2
βφ2(k)

(
un

j−1

)2
)
≤ 0.

Hence 0 ≤ un+1
j ≤ 1 and therefore NSFD1 is bounded.
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NSFD2 scheme

We extend the scheme in [4] to discretise Eq. (1). The scheme is given by

un+1
j −un

j

φ2(k)
− un

j+1 −2un
j +un

j−1

ψ1(h)ψ2(h)
= β

(
−un+1

j
(
un

j
)2

+(1+ γ)un+1
j un

j − γun+1
j

)
, (7)

which can be rewritten as

un+1
j =

(1−2R)un
j +R(un

j+1 +un
j−1)

1+β φ2(k) γ −β (1+ γ)φ2(k)un
j +β φ2(k)

(
un

j

)2
, (8)

where R = φ2(k)
ψ1(h)ψ2(h)

.

For positivity of NSFD2, we need un+1
j ≥ 0 assuming 0 ≤ un

j ≤ 1. This is possible if 1−2R ≥ 0 and 1−βφ2(k)γ2 > 0.
This gives

k ≤ 1
β ln

(
1+ 1

γ2

)
and k ≤ 1

β ln

(
1+ 1

2β
(eβh−1)

2

eβh

)
.

(a) k ≤ 6.5162 and k ≤ 4.9948×10−3 for β = 0.5.

(b) k ≤ 3.2581 and k ≤ 4.9917×10−3 for β = 1.0.

(c) k ≤ 3.2581×10−1 and k ≤ 5.2880×10−3 for β = 10.

Boundedness

(un+1
j −1)(1+βφ2(k)−β (1+ γ)φ2(k)un

j +βφ2(k)(un
j)

2) = (1−2R)un
j +R(un

j+1 +un
j−1)−1−βφ2(k)γ +

β (1+ γ)φ2(k)un
j −βφ2(k)(un

j)
2. (9)

Since 0 ≤ un
j ≤ 1 for all values for n and j, we have

(un+1
j −1)

(
1+βφ2(k)−β (1+ γ)φ2(k)un

j +βφ2(k)
(
un

j
)2
)

≤ 1−2R+2R−1−βγφ2(k)+β (1+γ)φ2(k)un
j −βφ2(k)

(
un

j
)2≤ 0. (10)

Hence 0 ≤ un+1
j ≤ 1 and NSFD2 satisfies the boundedness properties.

NSFD3 scheme

We construct a Nonstandard finite difference scheme using the idea from Roger and Mickens [5]. We propose the
following scheme to discretise Eq. (1):

un+1
j −un

j

φ2(k)
− un

j+1 −2un
j +un

j−1

ψ1(h)ψ2(h)
= β

(
−
(

2un+1
j −un

j

)(
un

j
)2

+(1+ γ)(un
j)

2 − γun+1
j

)
. (11)

A single expression for NSFD3 scheme is

un+1
j =

(1−2R)un
j +R(un

j+1 +un
j−1)+βφ2(k)

((
un

j

)3
+(1+ γ)

(
un

j

)2
)

1+βφ2(k)γ +2βφ2(k)
(

un
j

)2
. (12)

NSFD3 is positive and definite if 1−2R ≥ 0. We next check if the NSFD3 is bounded.

(un+1
j −1)

(
1+β φ2(k)γ +2βφ2(k)

(
un

j
)2
)
= (1−2R)un

j +R(un
j+1 +un

j−1)+βφ2(k)
((

un
j
)3

+(1+ γ)
(
un

j
)2
)

−1−β γφ2(k)−2β φ2(k)
(
un

j
)2
. (13)
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We note that 0 ≤ un
j ≤ 1 for all values of n and j,

(un+1
j −1)

(
1+βγφ2(k)+2βφ2(k)

(
un

j
)2
)

≤ 1−2R+2R+βφ2(k)
(
(1+ γ)

(
un

j
)2

+
(
un

j
)3
)
−1−β γφ2(k)−2βφ2(k)

(
un

j
)2 ≤ 0. (14)

Hence the boundedness of NSFD3.
We tabulate L1, L∞ and CPU time at k = 0.0005 using γ = 0.2, h = 0.1 at time, T = 1.0 for 3 cases namely; β = 0.5,
1.0, 10.0 using NSFD1, NSFD2, NSFD3 schemes in Table (1).

TABLE 1. Computation of L1, L∞ errors and CPU time using NSFD1,
NSFD2, NSFD3 for three different values of β .

Methods β L1 error L∞ error CPU (s)

NSFD1 0.5 3.4717×10−2 5.2542×10−3 6.276

NSFD2 0.5 8.1163 ×10−5 1.3847 ×10−5 6.311

NSFD3 0.5 4.9406 ×10−5 9.1704 ×10−6 6.377

NSFD1 1.0 6.9845 ×10−2 1.4490 ×10−2 6.214

NSFD2 1.0 3.2693 ×10−4 6.0565 ×10−5 7.527

NSFD3 1.0 2.3529 ×10−4 4.9940 ×10−5 6.053

NSFD1 10.0 3.7574 ×10−1 6.4116 ×10−1 6.461

NSFD2 10.0 4.1558 ×10−2 2.5652 ×10−2 6.508

NSFD3 10.0 4.4636 ×10−2 2.7639 ×10−2 6.912

CONCLUSION

In this work, we construct three nonstandard finite difference schemes to solve FitzHugh-Nagumo equation under 3
different regimes. We derive conditions such that the scheme are positive definite and bounded. The first order time
derivative and second order spatial derivative are approximately in the same way for all the methods and it is only
the non-linear polynomial in the partial differential equation which is discretised differently. NSFD2 and NSFD3 are
much better than NSFD1 for the 3 cases studied. NSFD3 is better than NSFD2 when β = 0.5, 1.0 while NSFD2 is
slightly better than NSFD3 when β = 10.
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