
 

 

Univariate parametric and nonparametric 

double generally weighted moving average 

control charts 

by 

 

Hossein Masoumi Karakani 

 

Submitted in partial fulfilment of 

the requirements for the degree 

 

Philosphiae Doctor (Mathematical Statistics) 

in the 

Faculty of Natural & Agricultural Sciences 

University of Pretoria 

Pretoria 

 
 

July 2020 

 
 



 2 

 

Declaration 

 
 
 

 
I, Hossein Masoumi Karakani, declare that the PhD thesis entitled, Univariate parametric and nonpara-

metric double generally weighted moving average control charts, which I hereby submit for the degree 

Doctor of Philosophy (Mathematical Statistics) at the University of Pretoria, is my own work and has 

not previously been submitted by me for a degree at this or any other tertiary institution. 

 

 

 

 

 

 

 

 

 

 

 

 
Signature:   Hossein Masoumi Karakani                              Date:   01/07/2020 

 

 

 

 

 

 

  



 
 

3 

 

Acknowledgements 

 
First and foremost, praises to my creator, the Almighty God, the greatest of all, on whom ultimately, 

we depend for sustenance and guidance, for his showers of blessings throughout my PhD journey to 

complete the research successfully. The journey could never be accomplished without genuine and 

committed involvement from others. I would like to convey my salutations to all the people who sup-

ported me and cared about me throughout this academic tour. 

• My sincere gratitude goes to my doctoral advisors, Dr. Schalk W. Human and Dr. Janet van 

Niekerk, for all the endless encouragement, infinite patience, and constructive ideas which have 

benefited me. They provided me with priceless guidance when I lost my direction in research. 

Their everlasting enthusiasms for high-quality research will continue to drive me to future 

achievements after the journey towards the PhD. 

• To my beloved family, thank you for encouraging me in all my pursuits and inspiring me to 

follow my dreams and make them come true. I am extremely grateful to my parents for their 

love, caring, prayers, and sacrifices for preparing and educating me to become who I am today. 

They are the ultimate role models. I always knew that you believed in me and wanted the best 

for me. Special gratitude to my sister, Zeinab, for her infinite love and support. 

• I express my gratitude to Prof. Andriette Bekker, the Head of the Department of Statistics, 

University of Pretoria, for her support during my Master and PhD studies. Her encouragement 

and sincere guidance have played an immense role in this endeavour.  

• I would like to express my sincere gratitude and deep appreciation to my esteemed academic 

mentor and guide Prof. Mohammad Arashi, for his constant encouragement and valuable sug-

gestions through my academic adventure at University of Pretoria.  

• Sincere appreciation is also due to all staff members (both teaching and non-teaching) at the 

Department of Statistics for the quality of education and research they provided, which exces-

sively improved my background in academics. Special gratitude to Ellen Mataboge and Gamu 

Malela for all their hard work and dedication at the Department of Statistics.  

• To my friends scattered in different continents, thank you for your thoughts, well-wishes, 

emails, texts, phone calls, visits, and being there whenever I needed a friend. This includes, but 

not limited to the following friends: Buwang (Ngiyabonga ndoda enkulu), Iketle, Seitie and 

Brenda. Special gratitude to my “best” friends, Ali Moayedi Azarpour and Siavash Valizadeh 



 4 

for their infinite kindness, friendship, and being there when others disappeared. By the time I 

am submitting this thesis, we are celebrating our 10th year friendship anniversary.  

• To my relatives, Auntie Parvaneh, Auntie Marjan, Uncle Afshin, Uncle Abbas, Uncle Khosro, 

and other relatives and family friends, thank you for creating unforgettable memories during 

my regular visits to Iran. Special thanks to my cousin, Mahya, for her support during my Master 

and PhD endeavour. 

• This research was supported in part by the National Research Foundation (NRF) under Grant 

Number 71199 and the postgraduate research bursary supported by the University of Pretoria. 

Any findings, opinions, and conclusions expressed in this thesis are those of the author and do 

not necessarily reflect the views of the parties.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

5 

 

 

 

 

 

 

 

 

 

 

This Thesis is dedicated to my parents and my sis-
ter, the hidden strength behind my every success 

and for their endless love, support and encourage-
ment. 

 

 

 

 

 

 

 

 

 

 

 

 



 6 

Abstract 

 
Statistical process control (SPC) is a collection of scientific tools developed and engineered to diagnose 

unnecessary variation in the output of a production process and eliminate it or perhaps accommodate it 

by adjusting process settings. The task of quality control (QC) is of fundamental importance in manu-

facturing processes, when a change in the process causes misleading results, this alteration should be 

detected and corrected as soon as possible. Statistical QC charts originated in the late 1920’s by Dr. W. 

A. Shewhart provide a powerful tool for monitoring production lines in manufacturing industries. They 

are also have been implemented in various disciplines, such as sequential monitoring of internet traffic 

flows, health care systems, and more. Shewhart-type charts are effective in detecting large shifts in the 

process but ineffective in detecting small to moderate shifts. This blind spot allows small shifts (smaller 

than one standard deviation) to continue undetected in the process, thereby incurring larger total costs 

for manufacturers.  

This thesis addresses this issue by augmenting current time-weighted charts (charts that use all the 

information from the start of a process until the most recent sample/observation) with a Double Gener-

ally Weighted Moving Average (DGWMA) chart, leading to more effective process monitoring. The 

objective of this thesis is to provide the fundamentals and introduce the researcher/practitioner to the 

essentials of the univariate DGWMA chart from both parametric and nonparametric perspectives. Nu-

merous concepts and characteristics of proposed DGWMA charts are discussed comprehensively. The-

oretical expressions and detailed calculations have been provided to aid the interested reader to famil-

iarize and study the topic more thoroughly. This thesis paints a bigger picture of the DGWMA chart in 

a sense that other time-weighted charts such as the Generally Weighted Moving Average (GWMA), 

Exponentially Weighted Moving Average (EWMA), Double Exponentially Weighted Moving Average 

(DEWMA) and Cumulative Sum (CUSUM) fall under this umbrella. Both real-life data and simulated 

examples have been embedded throughout the thesis. We make use of R and Mathematica software 

packages to calculate numerical results related to the run length distribution and its associated charac-

teristics in this thesis.  

We only consider control charts for monitoring the process location parameter. However, our conclu-

sions and recommendations are extendable for the process dispersion parameter. In this thesis, we con-

sider the DGWMA chart as the main chart and the EWMA, DEWMA, GWMA, and CUSUM charts as 

special cases. The thesis consists of the following chapters with a short description for each chapter as 

follows: 
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Chapter 1 provides a brief introduction to SPC concepts and gives a literature review in terms of back-

ground information for the research conducted in this thesis. The scope and objectives of the present 

research are highlighted in detail.  

Chapter 2 provides an overview and a theoretical background on the design and implementation of the 

DGWMA chart derived from the SPC literature review. The properties of the DGWMA chart, including 

the plotting statistic, the structure for the weights, the control limits (exact/steady-state), etc. are con-

sidered in detail. The weighting structure of the DGWMA chart and its special case are discussed and 

pictured to emphasize the impact of weights in increasing the detection capability of time-weighted 

charts. Three approaches are described and investigated for calculating the run length distribution and 

its associated characteristics for the DGWMA chart and its special case the DEWMA chart; this in-

cludes: (i) exact approach; (ii) Markov chain approach; (iii) Monte Carlo simulation. 

In Chapter 3 we develop a one-sided generalized parametric chart (denoted by DGWMA-TBE) for 

monitoring the time between events (TBE) of nonconformities items originating from the high-yield 

processes when the underlying process distribution is gamma and the parameter of interest is known 

(Case K) and unknown (Case U). A Markov chain approach is implemented to derive the run length 

distribution and its associated characteristics for the DGWMA and DEWMA charts. An exact approach 

is also used to derive closed-form expressions for the run length distribution of the proposed chart. 

Performance analysis has been undertaken to execute a comparative study with several existing time-

weighted charts. The proposed chart encompasses one-sided GWMA-TBE, EWMA-TBE, DEWMA-

TBE and Shewhart-type charts as limiting or special cases. The CUSUM-TBE chart is also included in 

the performance comparison. The necessary design parameters are provided to aid the implementation 

of the proposed chart and finding the optimal design and near optima design that is useful for practi-

tioners. Alternative discrete distributions are considered for the weights of the GWMA-TBE chart and 

a discussion is provided to address the connection between new weights originating from the suggested 

distributions and the chart’s capability in detecting shifts. As a result, one can design an optimal 

GWMA-TBE chart by replacing weights from the discrete Weibull distribution without the implemen-

tation of the double exponential smoothing technique.  

Chapter 4 focuses on developing a two-sided nonparametric (distribution-free) DGWMA control chart 

based on the exceedance (EX) statistic, denoted as DGWMA-EX, when the parameter of interest is 

unknown (Case U) and the underlying process distribution is continuous and symmetric. An exact ap-

proach and a Markov chain approach are considered to calculate the run length distribution and its 

associated characteristics for the proposed chart. A performance comparison has been undertaken to 
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execute analysis with other nonparametric time-weighted charts available in the SPC literature. The 

proposed chart encompasses two-sided  

 

GWMA-EX, EWMA-EX, DEWMA-EX and Shewhart-type charts as limiting or special cases. The 

CUSUM-EX chart is also included in the performance comparison Also, the performance of the pro-

posed DGWMA-EX chart has been evaluated under different symmetric and skewed distributions in 

comparison with its main counterparts, and the necessary results and recommendations are provided for 

practitioners to design an optimal chart.  

Chapter 5 encloses this thesis with a summary of the research conducted and provides concluding 

remarks concerning future research opportunities.  
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 Acronyms & Symbols 

 

ARL Average run length 𝑋𝑖𝑗 𝑗𝑡ℎ observation from the 𝑖𝑡ℎ random sample 

𝐴𝑅𝐿0 In-control average run length 𝑇𝑖 Sample statistic from the 𝑖𝑡ℎ sample 

𝐴𝑅𝐿1 Out-of-control average run length 𝑍𝑡
1 The plotting statistic (single exponential smoothing) 

𝐴𝑅𝐿0
∗  Desired value of 𝐴𝑅𝐿0 𝑍𝑡

2 The plotting statistic (double exponential smoothing) 

IC In-control 𝑁 The run length random variable (Chapters 1, 2 & 3) 

OOC Out-of-control 𝐾 The run length random variable (Chapter 4) 

TBE Time between events 𝑣𝑖 Weight for the 𝑖𝑡ℎ statistic in GWMA chart 

MDRL Median of the run length 𝑤𝑖 Weight for the 𝑖𝑡ℎ statistic in DGWMA chart 

SDRL Standard deviation of the run length 𝜃 Scale/location parameter 

p.d.f. Probability density function 𝜃0 In-control scale/location parameter 

p.m.f. Probability mass function 𝜃1 Out-of-control scale/location parameter 

QC Quality control 𝑈𝐶𝐿𝑒 Exact upper control limit 

SPC Statistical Process Control 𝐿𝐶𝐿𝑒 Exact lower control limit 

EWMA Exponentially Weighted Moving Average 𝑈𝐶𝐿𝑠 Steady-state upper control limit 

UWMA Uniformly Weighted Moving Average 𝐿𝐶𝐿𝑠 Steady-state lower control limit 

DEWMA Double Exponentially Weighted Moving Average 𝑈𝐶𝐿 Upper control limit 

GWMA Generally Weighted Moving Average 𝐿𝐶𝐿 Lower control limit 

DGWMA Double Generally Weighted Moving Average 𝐶𝐿 Centerline 

CUSUM Cumulative Sum SPRT Sequential Probability Ratio Test 

GMA Geometric Moving Average 𝐿 Width of the control limits from the centerline 

NP nonparametric 𝐹𝜃 Underlying process distribution 

EWMV Exponentially Weighted Moving Variance 𝐺𝜃 Distribution of the sample statistic under consideration 

EWMS Exponentially Weighted Mean Square Error 𝐻𝜃 Distribution of the plotting statistic 

EX Exceedance 𝑛 Sample size 

WOS Web of Science 𝜇 Expected value for the test statistic 

EGWMA 
Exponentially Generally Weighted Moving Aver-

age 
𝜎 Standard deviation for the test statistic 

𝑞1, 𝑞2, 𝛼1, 𝛼2 Design parameters for the DGWMA chart (Case 1) 𝑞, 𝛼 Design parameters for the DGWMA chart (Case 2) 

𝑞1, 𝛼1 Design parameters for the GWMA chart 𝜆 = 1 − 𝑞1 Design parameter for the EWMA chart 

𝜆1 = 1 − 𝑞1, 

𝜆2 = 1 − 𝑞2 
Design parameters for the DEWMA chart ℎ, 𝑘 Design parameters for the CUSUM chart 
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Addendum 

This addendum is included for examination purposes as well. The purpose of creating an addendum is 

pointing out the similarities and dissimilarities between the following articles: 

1.  Title: A Double Generally Weighted Moving Average Chart for Time Between Events – Hu-

man, S. W., Masoumi Karakani, H., & van Niekerk, J. 

✓ Submitted: 13th February 2018 – rejected: 17th July 2018, Journal of Statistical Com-

putation and Simulation 

✓ Submitted: 30th October 2018 – rejected: 25th November 2018, Journal of Quality Tech-

nology 

 

2. Title: Monitoring of time between events with a double generally weighted moving average 

control chart – Alevizakos, V., Koukouvinos, C., & Lappa, A. (Received: 30th June 2018, re-

vised: 4th October 2018, Accepted: 21st October 2018, Journal of Quality and Reliability Engi-

neering International) 

This addendum consists of the comparison between the Average Run Length (ARL) values, the tables, 

the graphs, etc. The purpose of this addendum is to point out to the examiners that I, Hossein Masoumi 

Karakani, has independently reached the same conclusions, where there are similarities.  
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Similarities 

Article 1 

Human, Masoumi Karakani, van Niekerk 

Article 2 

Alevizakos, Koukouvinos, Lappa 

Page 4, line 48, “Although the shape parameter 𝑘 > 0 can theo-

retically be any positive real number, in the development that fol-

low it is assumed that 𝑘 is a known/specified integer”. 

Page 3, lines 18 & 19, “The parameter 𝑘 can be any positive 

real number, but here, it is assumed to be a positive integer”. 

 

Page 4, line 53, “If 𝑘 = 1, the p.d.f. in (1) reduces to that of an 

exponential distribution with the scale parameter 𝜃 and the main 

interest is in monitoring the time until one failure”. 

Lines 21-23, “If we are interested in monitoring the time until 

only one failure, the Gamma (1, 𝜃) distribution reduces to the 

exponential distribution with scale parameter 𝜃”. 

 

Page 5, line 14, “The objective is to construct a control chart to 

monitor scale parameter 𝜃 for a sustained downward step shift, 

i.e., a decrease in the inter-arrival times, which would be indica-

tive of deterioration in the process”. 

Page 3, line 26, “Our aim is to construct a control chart to mon-

itor 𝜃 for a downward shift, ie, a decrease in the inter-arrival 

times which means that the process may have deteriorated”. 

 

Page 5, line 37, “The probability 𝑃(𝑀1 > 𝑡) is considered as the 

weight for the starting value, denoted by 𝑍0
1, which is typically 

taken as the in-control (IC) expected value of the statistic under 

consideration, i.e., 𝑍0
1 = 𝐸(𝑋𝑖|𝐼𝐶) = 𝑘𝜃0”. 

Page 3, column 2, above Equation (3), “… and the probability 

𝑃(𝑁 > 𝑡) is the weight of the starting value which is consid-

ered to be equal with the IC expected value of the statistic 𝑍𝑡, 

i.e, 𝑍0 = 𝑘𝜃0”. 

 

Table 1, for 𝑞 = 0.9, 𝛼 = 0.9, and 𝑡 = 10, 50, 100, the values for 

weights are 0.0058, 0.0188, and 0.0191, respectively. 

Table 1, for 𝑞 = 0.9, 𝛼 = 0.9, and 𝑡 = 10, 50, 100, the value 

for weights are 0.005825, 0.018773, and 0.019096. 

Title for Section 3 is: “The design and implementation of 

DGWMA-TBE chart”. 

Title for Section 3 is: “The design of DGWMA-TBE chart”. 

Page 10, lines 16-20, “To reduce the number of false OOC signals, 

a sufficiently large in-control ARL (denoted as 𝐴𝑅𝐿0) to avoid 

false alarms and sufficiently small OOC ARL (denoted as 𝐴𝑅𝐿1) 

to detect shifts rapidly when the process is out-of-control is re-

quired”. 

Page 5, 1st column, 2nd paragraph in Section 3, “When a pro-

cess is in an IC state, the control chart should signal a false 

alarm as slow as possible; that means one would like to have a 

large value of IC ARL (𝐴𝑅𝐿0). On the other hand, when a pro-

cess is in an OOC state, the control chart should signal as soon 
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as possible, i.e., one would like to have a small value of ARL 

(𝐴𝑅𝐿1)”. 

 

Page 14, lines 20-22, “In the next section, the “near optimal” de-

sign given the out-of-control (OOC) ARL values for different 

shift sizes will be considered”. 

Page 6, 1st column, the last paragraph in Section 3.2, “Follow-

ing this section, we investigate the design of the DGWMA-

TBE control chart that is near to its optimal design for different 

values of shifts”. 

 

Page 15, point iv., “As the value of k increases, the performance 

for both the DGWMA-TBE and GWMA-TBE charts improves. 

The improvement and increase in sensitivity of a control chart for 

higher values of k is due to the fact that larger value of k implies 

more observations/failures to be collected”. 

 

Page 6, 2nd column, point 2, “For specified values of the pa-

rameters, as the value of k increases, the performance of the 

DGWMA-TBE chart improves. A higher value of k entails 

collecting more observations before a decision can be made 

about the status of the process”. 

The L, 𝐴𝑅𝐿0, 𝐴𝑅𝐿1 and SDRL values for the DGWMA-TBE 

chart and same combinations of parameters are identical for both 

articles. For example, in Table 4, when k = 1, shift = 1, 𝑞 = 0.9, 

and 𝛼 = 0.9, the values for L and 𝐴𝑅𝐿0 are equal to 1.649 and 

369.78, respectively. From Table 4, when k = 1, shift = 0.9, 𝑞 =

0.9, and 𝛼 = 0.9, the SDRL and 𝐴𝑅𝐿1 values are equal to 112.48 

and 130.85, respectively. 

The L, 𝐴𝑅𝐿0, 𝐴𝑅𝐿1 and SDRL values for the DGWMA-TBE 

chart and same combinations of parameters are identical for 

both articles. For example, in Table 3, when k = 1, shift = 0.9, 

𝑞 = 0.9, and 𝛼 = 0.9, the values for L and 𝐴𝑅𝐿0 are equal to 

1.671 and 370.08, respectively. From Table 3, the SDRL and 

𝐴𝑅𝐿1 values are equal to 115.33 and 128.08, respectively. Ta-

ble 3, when k = 1, shift = 1, 𝑞 = 0.9, and 𝛼 = 0.9,  

 

From Table 5, when k = 2, shift = 0.925, 𝑞 = 0.9, 𝛼 = 1, and L = 

1.756, the values for SDRL and 𝐴𝑅𝐿1 are equal to 119.01 and 

134.61, respectively. 

 

From Table 4, when k = 2, shift = 0.925, 𝑞 = 0.9, 𝛼 = 1, and 

L = 1.772, the values for SDRL and 𝐴𝑅𝐿1 are equal to 124.14 

and 130.27, respectively. 

From Table 4, when k = 1, shift = 0.5, 𝑞 = 0.9, 𝛼 = 0.8, and L = 

1.868, the value for 𝐴𝑅𝐿1 is 17.25 

From Table 4, when k = 1, shift = 0.5, 𝑞 = 0.9, 𝛼 = 0.8, and 

L = 1.869, the value for 𝐴𝑅𝐿1 is 14.94. 

 

• The structure for both articles is similar. More specifically, the titles selected for different section are similar as well. This 

include the notation used for the gamma distribution, the GWMA control chart, the DGWMA control chart, the control 

limits, and the convergence for the weights. 
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• Section 3.1 title for the 2nd article is selected the same as the 1st article, “The run-length distribution of the DGWMA-TBE 

chart”. 

• The number of simulations runs in both articles is selected as 10 000. 

• Section 3.2 title for the 2nd article is selected the same as the 1st article, “The IC design of the DGWMA-TBE chart”. 

• Section 3.3 title for the 2nd article is selected the same as the 1st article, “The OOC design of the DGWMA-TBE chart”. 

• Section 4 title for the 2nd article is chosen the same as the 1st article, “Phase II DGWMA-TBE chart”. 

• Both articles concluded that the estimation of the unknown parameter from an IC Phase I sample affects the performance 

of the Phase II chart. 

 

Dissimilarities 

Article 1 

Human, Masoumi Karakani, van Niekerk 

Article 2 

Alevizakos, Koukouvinos, Lappa 

The main objective is to investigate the capability of the 

DGWMA-TBE chart in detecting small or tiny shifts. 

The main purpose is to study the ability of the DGWMA-TBE 

chart in detecting moderate to large shifts. 

Construct and design a parametric DGWMA control chart for 

the gamma distribution. The robustness of the chart has been 

studied in a different paper published by same authors in the 

Journal of Quality and Reliability Engineering International for 

the DGWMA nonparametric chart. The link to the published ar-

ticle is: 

https://onlinelibrary.wiley.com/doi/full/10.1002/qre.2393  

 

The robustness of the parametric DGWMA-TBE chart is con-

sidered when the TBE observations follow a Weibull or 

lognormal distributions. 

A one-sided DGWMA-TBE chart with a steady-state control 

limit based on the gamma distribution is proposed for monitor-

ing the TBE and detecting a deterioration in a process. 

A one-sided DGWMA-TBE chart with a time-varying con-

trol limit is proposed for monitoring the TBE and detecting a 

deterioration in a process. 

 

A brief discussion is included to answer the question, why the 

main focus is on constructing a one-sided chart and refer to 

scholarly works to support this idea. The reasons provided with 

No justification is provided for the unbiasedness of the pro-

posed DGWMA-TBE chart. One may raise the question that 

https://onlinelibrary.wiley.com/doi/full/10.1002/qre.2393
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respect to the biasness of the chart are supported by Chakraborty 

et al. (2017). 

 

why a one-sided chart is considered, and the response is related 

to the biasness of a control chart in SPC. 

The GWMA-TBE, EWMA-TBE, and Shewhart-TBE charts 

have been considered as “limiting cases” of the proposed 

DGWMA-TBE chart. The performance comparison is con-

ducted between the DGWMA-TBE, GWMA-TBE, EWMA-

TBE, and Shewhart-TBE charts. Further, the DEWMA-TBE is 

considered and discussed as the “special case” of the DGWMA-

TBE chart. 

The DEWMA-TBE chart is mentioned as the “special case” of 

the DGWMA-TBE chart, and the performance comparison is 

conducted only between the DGWMA-TBE, GWMA-TBE, 

and DEWMA-TBE charts. Note that, the EWMA-TBE and 

Shewhart-TBE charts are not included in the performance 

comparison, i.e., OOC performance. Hence, the conclusion 

made by authors that the DGWMA-TBE chart is efficient in 

detecting moderate and large shifts is questionable. The 

EWMA-TBE and Shewhart-TBE charts are more effective and 

superior to the DGWMA-TBE chart in detecting moderate and 

large shifts, respectively in the SPC literature. 

 

The range for the parameters 𝑞1 and 𝑞2 are selected as (0,1) (see 

page 5, line 53). Sheu and Hsieh (2009) proposed the DGWMA 

chart for the first time in the SPC literature under the normal 

distribution and also defined the range for the aforementioned 

parameters as (0,1). 

The range for the parameters 𝑞1 and 𝑞2 are selected as [0,1). 

Authors concluded that the weights for the GWMA-TBE and 

DGWMA-TBE charts follow a two-parameter discrete Weibull 

distribution. The same type of distribution is mentioned in 

Chakraborty et al. (2017) for the GWMA-TBE chart. The distri-

bution of the weights plays a major role in increasing the sensi-

tivity of a chart in detecting shifts. 

The distribution of the weights is not mentioned by the au-

thors. A reader may raise a question that what is the effect of 

the distribution on the performance of the proposed DGWMA-

TBE chart? 

 

To check the convergence rate for the weights, the chart param-

eters are selected as 𝑞 = 0.5, 0.7, 0.9 and 𝛼 = 0.5, 0.9, 1.3. 

Same set of values are used in Chakraborty et al. (2017). 

To check the convergence rate for the weights, the chart pa-

rameters are selected as 𝑞 = 0.7, 0.8, 0.85, 0.9 and 𝛼 =

0.6, 0.8, 0.9, 1.1. 

 

A brief discussion is provided on two different cases of the 

DGWMA-TBE chart. The first case is referred to the DGWMA-

TBE chart (Case 1) with four parameters, i.e., 𝑞1, 𝑞2, 𝛼1, 𝛼2, 

whereas the second case is referred to the DGWMA-TBE chart 

(Case 2) when two parameters are involved, i.e., 𝑞1 = 𝑞2 = 𝑞 

Authors only focused on the case where two parameters are 

involved for the DGWMA-TBE chart, i.e., DGWMA-TBE 

(Case 2). The DEWMA-TBE chart where the parameters are 

set equal to each other is considered and no information is 
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and 𝛼1 = 𝛼2 = 𝛼. The conclusion is that in some cases the 

DGWMA-TBE chart with four parameters outperforms the 

DGWMA-TBE chart with two parameters due to its flexibility 

gained by additional parameters. Further to this, two cases for 

the DEWMA-TBE chart as a “special case” of the DGWMA 

chart based on the equality and/or inequality of the chart param-

eters are discussed in detail. The charting statistic for the 

DEWMA-TBE chart is presented. 

provided in terms of the DEWMA-TBE chart when the pa-

rameters are not equal. 

 

The terms Case K (i.e., when the parameters are known) and 

Case U (i.e., when the parameters are unknown) have been used 

through the manuscript. These are common terminologies used 

frequently amongst SPC researchers. 

Authors used case I and case II instead of Case K and Case U. 

 

The exact approach has been considered and discussed in detail 

for the DGWMA-TBE chart in addition to the Markov chain and 

Monte Carlo simulation method to calculate the run length dis-

tribution of the chart. To the best of authors knowledge, the 

methods are investigated for the first time in the SPC literature 

for the DGWMA chart. 

The Monte Carlo simulation is the only method used by the 

authors to calculate the run length distribution of the 

DGWMA-TBE chart. 

The values for the parameters 𝑞 (0.5, 0.6, 0.7, 0.8, 0.9, and 0.95) 

and 𝛼 (0.5, 0.6, 0.7, 0.8, 0.9, 1.0, and 1.3) are chosen exactly the 

same as the ones from Chakraborty et al. (2017). This is done to 

conduct a fair and reliable performance comparison between the 

GWMA-TBE and the DGWMA-TBE charts. 

Authors decided to exclude some of these values for the chart’s 

parameters and select 𝑞 as 0.7, 0.8, 0.85, and 0.9 and 𝛼 as 0.6, 

0.7, 0.8, 0.9, 1.0, and 1.1. 

 

Results for the GWMA-TBE, EWMA-TBE, and Shewhart-TBE 

charts are compared with those obtained by Chakraborty et al. 

(2017) to ensure the validity of the algorithm developed in R and 

the reliability of results. 

Results are not compared for the similar chart, i.e., the 

GWMA-TBE chart, proposed by the Chakraborty et al. (2017). 

 

Other percentiles, i.e., 5th, 25th, 50th, 75th, and 95th, as well as the 

ARL and the SDRL are calculated and included in the manu-

script. 

Results provided in terms of the run length distribution are 

only limited to the calculation of the ARL and the SDRL. 

 

Authors concluded that the DGWMA-TBE chart is more sensi-

tive than other charts, i.e., the GWMA-TBE and the EWMA-

Authors concluded that the GWMA-TBE chart is more sensi-

tive than the proposed DGWMA-TBE chart in detecting tiny 
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TBE charts when tiny shifts occur in the process. The conclusion 

is accurate and reliable since Sheu and Hsieh (2009) mentioned 

that the DGWMA-TBE chart outperforms the GWMA-TBE 

chart in detecting tiny shifts in the process. 

shifts in the process. Although one can select the parameters 

for the GWMA-TBE in a manner to outperform the DGWMA-

TBE chart for tiny shifts. However, in general, the DGWMA-

TBE chart frequently outperforms the GWMA-TBE chart in 

detecting tiny shifts. 

Authors concluded that, the DGWMA-TBE chart outperforms 

the GWMA-TBE chart for tiny shifts and the GWMA-TBE 

chart outperforms the DGWMA-TBE chart for moderate to 

large shifts. 

Authors concluded that the GWMA-TBE chart outperforms 

the DGWMA-TBE chart for tiny shifts and vice versa for mod-

erate to large shifts. In order to make a correct and reliable de-

cision, it’s important to mention that in all of the articles pub-

lished and available in the SPC literature where the perfor-

mance between the GWMA and DGWMA charts is of interest, 

researchers concluded that the DGWMA charts are more ef-

fective and efficient in detecting tiny shifts in the process in 

comparison to the GWMA charts. 
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“Quality is everyone’s responsibility.” 

W. Edwards Deming 

1.1 Introduction 

The task of quality control (QC) is of fundamental importance in any manufacturing process. When a 

change in the process causes misleading results, this alteration should be detected and corrected as soon 

as possible. Statistical process control (SPC) is a collection of scientific tools developed and engineered 

for detecting shifts in the output of a production process originating from special causes in the process 

at the earliest time, diagnose the cause and eliminate it or perhaps accommodate it by adjusting process 

settings. The relationship between “quality” and “variation” is summarized in Montgomery (2013) as: 

“Quality is inversely proportional to variability”. This statement demonstrates the contribution of sta-

tistical methods to quality improvements 

Dr. W. A. Shewhart introduced the most commonly used tool in SPC known as the control chart (i.e., 

Shewhart-type charts). Since then and over the past century, the development and application of control 

charts has gained enormous popularity in different disciplines such as health care systems, internet traf-

fic flows and other which laid the foundation of SPC. The SPC literature has witnessed a rapid increase 

in research with new, innovative charts being developed and implemented by considering the following 

aspects: 1) underlying process distribution (when the distribution is known then parametric charts are 

applicable, whereas for unknown or undefined distribution, nonparametric charts are desirable), 2) as-

pect(s) of the underlying process distribution (whether to monitor the process location parameter and/or 

the process dispersion parameter), 3) Case K v.s. Case U (the former referred to the case when the 

parameters of the underlying distribution are known, whereas the latter referred to the case when the 

parameters are unknown), 4) sample size (individual observations vs. rational subgroups) and 5) one-

sided vs. two-sided charts. Shewhart-type charts are effective and highly sensitive for large shifts in 

production processes, but less effective and insensitive for detecting small or tiny changes, since the 

past information is ignored and only the present information of the process is considered. This blind 

spot allows process shifts smaller than one standard deviation to continue undetected, thereby incurring 

larger total costs for manufacturers. Many production processes are producing very low levels of 

Chapter 1 Introduction 



 22 

nonconforming items in the manufacturing industry due to the development of technological advance-

ments and automation. Note that the element of time is also essential in deciding to detect a large or 

small shift in the process. Hence, a small shift that persists for a long time through failing to be detected 

may incur a larger total cost than detecting a large shift.  

To overcome this drawback, the recommendation is to consider time-weighted charts, also known as 

the memory-type/memory-based control charts. Time-weighted charts use all the information from the 

start until the most recent sample/observation to decide if a process is in-control (IC) or out-of-control 

(OOC). These charts include, but not limited to, the Uniformly Weighted Moving Average (UWMA), 

the Exponentially Weighted Moving Average (EWMA), the Double Exponentially Weighted Moving 

Average (DEWMA), the Exponentially Generally Weighted Moving Average (EGWMA), the Cumu-

lative Sum (CUSUM) and the Generally Weighted Moving Average (GWMA). These charts have been 

considered in the SPC literature as alternatives to memory-less charts (i.e., Shewhart-type), and monitor 

the state of a process by combining present and past information. The memory-saving feature of these 

charts makes them more efficient and reliable for detecting small or tiny shifts originating from special 

causes in the production process. Roberts (1959) proposed the EWMA chart for monitoring process 

location parameter. The CUSUM chart was introduced by Page (1954) for monitoring change detection 

in the process location parameter based on cumulative sums, instead of individual means. CUSUM 

charts are useful and sometimes more naturally fitting in the process control environment in view of the 

sequential nature of data collection. CUSUM was proposed a few years after Wald (1947) developed 

the sequential probability ratio test (SPRT). The CUSUM chart properties are discussed in detail by 

Hawkins and Olwell (1998). Hawkins et al. (2003) brought a new perspective to the standards unknown 

case by the introduction of the change-point model. The full literature review for the time-weighted 

charts under consideration is provided in Section 1.3.  

Sheu and Hsieh (2009) proposed the Double Generally Weighted Moving Average (DGWMA) chart 

for the normal distribution (denoted by DGWMA-�̅�) by combining the DEWMA-�̅� chart developed by 

Shamma and Shamma (1992) and the GWMA-�̅� chart proposed by Sheu and Lin (2003). The DGWMA 

chart is a generalized type of time-weighted chart that includes the DEWMA chart as a special case, 

and the GWMA, EWMA, EGWMA and Shewhart-type charts as limiting cases. The DGWMA chart is 

more sensitive than other time-weighted charts in detecting small or tiny shifts (i.e., less than one stand-

ard deviation in the location) in the process due to the implementation of the double exponential smooth-

ing technique proposed by Brown (1962).  

Given the multifaceted structure of SPC, it is essential that a researcher accurately describes the context 

in-depth and the exact nature of his research with the SPC environment. Hence, the focus of the current 

thesis is as follows: 



 
 

23 

 

By acknowledging that variation is present in process outcomes, and that they are to some extent un-

certain, the current thesis is concerned with improving the methodologies of existing control charts , 

employ methods which take uncertainty explicitly into account and develop new charts; more spe-

cially, on univariate parametric and nonparametric DGWMA Phase I and Phase II charts (for sample 

of size 𝑛 > 1) when process parameters are known and unknown, where the former is known as Case 

K and the latter is known as Case U in the SPC domain. 

It is important to notice that only the key aspects of SPC terminologies are covered in the next section 

to equip the interested reader with the essential principals to provide an in-depth understanding for the 

rest of this thesis. Also, note that, new charts are constructed for sample sizes of 𝑛 > 1. In SPC, fre-

quently, the phrases “random sample” and “rational subgroup” are used interchangeably, however 

strictly speaking, a random sample is not necessarily a rational subgroup. For more information, the 

interested reader is referred to Montgomery (2013). 

Further, the study of the DGWMA chart weighting structure is of extreme importance that is rarely 

considered in the SPC literature. The shape for the weights is dependent of the type of probability mass 

function (p.m.f.) under consideration. This implies that different choices for the p.m.fs result in changes 

in chart’s performance in detecting tiny shifts. This area is covered in this thesis (see Chapter 3) in 

detail. To the best of our knowledge, the discrete Weibull distribution is the only distribution available 

for the weights of the GWMA and the DGWMA charts in the literature. As a result, the study in Chapter 

3 based on the new p.m.fs for the weights can be considered as a pioneer work in SPC. 

A brief overview of SPC and all the core concepts and general definitions within this context are fur-

nished in Section 1.2. A literature review for different weighting schemes is provided in Section 1.3 

with a bibliometric analysis (1956 – 2019) which also includes the DGWMA chart to illustrate the value 

and importance of the current research. The scope and main objectives of the thesis are presented and 

outlined in Section 1.4. A road map and general recommendations in terms of selecting the correct 

control chart conditional on the magnitude of the shift (large, medium, small or tiny) in the process and 

given the distributional assumption (i.e., parametric control chart) are laid out for practitioners in Sec-

tion 1.5. Further to this, the relationship between time-weighted (memory-type) and memory-less 

(Shewhart) charts are portrayed in Figure 1.2, that is missing from the current SPC literature. 
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1.2 Preliminaries 

In this section, a brief introduction to SPC concepts and fundamentals is provided to aid the interested 

reader to familiarize and study the preliminaries more thoroughly for the rest of this thesis. Two im-

portant concepts, namely, “common causes of variation” and “special causes of variation”, will be dis-

cussed.  

1.2.1 Statistical process control 

SPC is a collection of scientific tools and statistical procedures developed and engineered to execute 

quality control in a production process. The variation in production processes occurs frequently – for 

example, during the manufacturing process of fluted stem glass, the length, or the diameter of any two 

glasses will not be similar. In general, two types of variations exist during the production process, 

namely chance (or common) causes of variation and assignable (special) causes of variation. The com-

mon causes of variation are defined as the variability that is inherent in the process and should be rela-

tively small. Nevertheless, the presence of special causes of variation are extraneous to the process and 

influence the performance of the underlying process, changing process parameters like location and/or 

dispersion. There are numerous applications of SPC that can be found in areas outside the classical 

manufacturing field. In recent times, SPC tools have been applied to enhance network monitoring 

(Woodall et al., 2017) and data quality (Jones-Farmer et al., 2014). Lizarelli et al. (2016) surveyed the 

topics about SPC from the Web of Science (WOS) database as: operations research and management 

science, engineering, business and economics, computer science and mathematical methods in social 

sciences. 

1.2.2 Control charts 

Nowadays, it is essential and often of interest to detect any changes in the process location and/or dis-

persion parameters at the earliest time. To trigger the presence of the special causes of variation in the 

process and to maintain the stability of a process, SPC possesses some of the most extensively used 

techniques. Dr. W. A. Shewhart introduced the most commonly used tool in SPC, known as the control 

chart (Shewhart-type charts), and laid the foundation of SPC (see Shewhart (1931) and Shewhart 

(1939)). The design and implementation of control charts are effective in detecting changes from an in-

control (IC) state to an out-of-control (OOC) state in the process. The control chart is a plot of a se-

quence of values based on a plotting statistic calculated from a sample of measurements. Thereafter, 

these points are plotted against three horizontal reference lines: the upper control limit (UCL), the cen-

terline (CL), and the lower control limit (LCL) versus time. The common causes of variation are present 

in the process if a plotting statistic plots within the control limits (LCL and UCL), hence the process is 

considered IC. The special causes of variation exist in the process if a plotting statistic plots on or 

outside either of the limits, and as a result the process is declared OOC. The underlying process 
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distribution and the parameter(s) under consideration are two important factors that decide whether to 

use a one- or two-sided chart. 

1.2.3 Control chart properties 

The False Alarm Rate (denoted by FAR), also known as Type I error (denoted by 𝛼), is the probability 

that an IC data points would appear as an OOC in the process. In SPC literature, the control limits (i.e., 

UCL and LCL) are selected in such a way that FAR is very small (0.0027 or less). The power of a control 

chart is defined as the probability of the OOC data points falling outside the control limits. The power 

of a control chart should be as high as possible in order for a chart to detect the OOC data points. 

The most common and well-known measure for evaluating a chart performance is the run length distri-

bution and can be used as an alternative approach to FAR for studying the performance of a chart in 

detecting varying shifts during the monitoring stage of the process parameters. The run length is defined 

as the number of plotting statistics that must be plotted so that the control chart signals for a shift in the 

process and is a discrete random variable (denoted by 𝑁). The expected value or the average of the run 

length random variable is symbolized by 𝐴𝑅𝐿. Further, the 𝐴𝑅𝐿 is classified into two different cases: 

the IC 𝐴𝑅𝐿 (denoted by 𝐴𝑅𝐿0) and the OOC 𝐴𝑅𝐿 (labelled as 𝐴𝑅𝐿1). 𝐴𝑅𝐿0 is defined as the expected 

number of plotting statistics to be plotted until a control chart detects an OOC signal when the process 

is under statistical control (IC). 𝐴𝑅𝐿1 is defined as the expected number of plotting statistics to be 

plotted until a control chart detects an OOC signal when the process has shifted to an OOC value. Note 

that the smaller the value for the 𝐹𝐴𝑅, the higher the value for the 𝐴𝑅𝐿1, as the control limits will be 

wider. For a practitioner to design an optimal control chart, a sufficiently large 𝐴𝑅𝐿0 is required, and 

on the contrary a sufficiently small 𝐴𝑅𝐿1 so that the chart detects shifts rapidly when the process is 

OOC. Hence, to find an optimal chart, the 𝐴𝑅𝐿0 and 𝐴𝑅𝐿1 must be balanced. The procedure to design 

and implement a control chart involves the calculation of the chart parameters (design parameters) to 

acquire a desired value for the IC 𝐴𝑅𝐿 labelled as 𝐴𝑅𝐿0
∗ , such that 𝐴𝑅𝐿0 ≈ 𝐴𝑅𝐿0

∗ . Other characteristics 

of a run length distribution, including the standard deviation of run length (denoted by 𝑆𝐷𝑅𝐿) and the 

percentile points (denoted by 𝑃𝑖, 𝑖 = 5, 25, 50, 75, 95), further describe the behavior of the run length. 

1.2.4 Control chart classification 

There are various factors involved in choosing a control chart to monitor the output of a production 

process. These factors could be the type of application, the type of data, the ease and cost of sampling, 

the process parameters (Case K versus Case U), the number of quality characteristics (individual obser-

vations vs. rational subgroups), and the underlying process distribution, amongst others.  
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Univariate control charts are used to monitor a single quality characteristic in the process, whereas 

multivariate charts are considered for multiple quality characteristics. 

The assumption for the parameter(s) of interest (known or unknown) creates two different scenarios in 

the SPC literature. If the process parameters are known, the case is referred to as Case K; whereas if the 

process parameters are unknown, then an estimation is required from an IC reference sample obtained 

from Phase I. The first case is known as the “standard known” (labelled as Case K) and the other is 

called the “standard unknown” case (categorized as Case U). Further, control chart process monitoring 

works under two different phases: Phase I (retrospective phase) and Phase II (prospective phase). Prac-

titioners estimate the unknown parameters from the reference sample (calibration sample) that is time-

ordered in Phase I. Then, the determination of the design parameter(s) as well as assessing the stability 

of a process are considered. The monitoring stage of the process using the estimated control limits 

obtained from Phase I is performed in Phase II. One of the main differences between Phase I and Phase 

II is the fact that the FAR is typically used to construct and evaluate Phase II charts, whereas the False 

Alarm Probability (FAP) is used to construct an evaluate Phase I charts. Phase I charts have been studied 

by numerous authors; see for example, King (1954), Sullivan and Woodall (1996), Champ and Jones 

(2004) and Koning (2006).  

The control chart can also be classified into variable and attribute charts based on the type of data 

available in the process. A variable chart is considered if the quality characteristic is continuous – for 

some examples, see the Shewhart �̅�, R and S charts (Shewhart, 1931, 1939). An attribute chart is con-

sidered if the quality characteristic is discrete – see the p-chart, np-chart, and c-chart for examples. 

Time-weighted charts are considered for both discrete and continuous quality characteristics, and the 

advantage is that they use the combination of past and present information to monitor the state of a 

process. 

The underlying process distribution also plays a vital role in the classification of control charts in SPC, 

which are divided into parametric and nonparametric. Most of the literature in SPC is based on the 

parametric charts, which implies that the underlying process distribution is known (typically assuming 

the normal distribution). However, in practice, the distributional assumption and in particular the as-

sumption of normality may not be justified or valid when the observations are from an unknown or non-

normal distribution. To overcome the limitation of the parametric charts, nonparametric or distribution-

free charts have been proposed as alternatives to monitor a process. In general, if the IC run length 

distribution is the same for all continuous distributions, the chart is called nonparametric. For an in-

depth bibliography on the nonparametric charts, the interested reader may consult the work of Gibbons 

and Chakraborti (2010), and Chakraborti et al. (2011). 
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1.2.5 General notation 

The general notation for the construction of different charts that will be used in this thesis is discussed 

in this section. Let 𝑋𝑖𝑗 denotes the 𝑗𝑡ℎ observation in the 𝑖𝑡ℎ observation sample, where 𝑖 = 1, 2, … ,𝑚 

and 𝑗 = 1, 2, … , 𝑛, where 𝑚 independent random samples, each size 𝑛 ≥ 1 taken sequentially over time 

from a process with a continuous cumulative distribution function (c.d.f.), denoted by 𝐹 (𝑥; 𝜃), where 

𝐹 is a known function and 𝜃 =  (𝜃1, 𝜃2, … , 𝜃𝑘), 𝑘 ≥ 1, is a vector of parameters (Case K or Case U), 

hence 𝑋𝑖𝑗~𝑖. 𝑖. 𝑑 𝐹 (𝑥; 𝜃). The sample statistic 𝑇𝑖 is a function of the observations with a continuous 

c.d.f., denoted by 𝐺(. ), and it depends on the underlying distribution of 𝑋𝑖𝑗 (𝐹(. )). The sample statistic 

follows an underlying distribution with the mean (target value) 𝜇𝑇 and the variance 𝜎𝑇
2. 

The plotting statistic 𝑍𝑡 is calculated based on the parameter of interest for 𝑡 = 1, 2, …, from each sub-

group. A plotting statistic 𝑍𝑡 with a continuous c.d.f., denoted by  𝐻(. ), is used to monitor a process 

which is typically a function of the observations and a function of the sample statistic. To comment on 

the state of a process, a comparison is performed between the plotting statistics and the control limits 

UCL and LCL. If a plotting statistic plots within the control limits the process is IC, whereas the process 

is declared to be OOC if a plotting statistic plots on or outside either of the limits. 

The properties of a control chart are as follows: 

𝑈𝐶𝐿 =  𝜇𝑇 + 𝐿𝜎𝑇 

𝐶𝐿 =  𝜇𝑇 

𝐿𝐶𝐿 =  𝜇𝑇 − 𝐿𝜎𝑇. 

 

 

(1.1) 

 

where 𝐿 > 0 is the charting constant that determines the distance between the centerline and the exact 

or steady-state limits. 

For a symmetric underlying process distribution, the control limits are based on the tacit assumption of 

the plotting statistic. However, in the case of asymmetric process distribution, only one-sided charts are 

applicable since a two-sided chart results in an ARL-biased chart. The plotting statistic for the Shewhart-

type charts is taken as the subgroup mean or standard deviation. For example, observations from the 

process being monitored are assumed to be mutually independent and from a normal distribution with 

mean 𝜇 and variance 𝜎2. Therefore, for a Shewhart �̅� chart, the control limits are given by 𝑈𝐶𝐿 = 𝜇 +

𝐿
𝜎

√𝑛
  and 𝐿𝐶𝐿 = 𝜇 − 𝐿

𝜎

√𝑛
, where 𝑛 denotes the sample size, and 𝐿 > 0 is the charting constant. Note 

that, for the Shewhart-type charts, 𝜇𝑇 =  𝜇 and 𝜎𝑇 = 𝜎. 



 28 

1.2.6 Designing a control chart 

The general steps involved in designing a univariate control chart are presented in Figure 1.1. 

 

Figure 1.1. Steps to design a control chart 

 

 

 

 

 

• Choose or identify the underlying process distribution (𝐹𝜃) (parametric chart) 

• If the underlying process distribution is unknown or there is no information available, then it is assumed to be con-

tinuous (and in some instances symmetric) (nonparametric chart) 

Example: Suppose 𝑋𝑖𝑗~𝑖. 𝑖. 𝑑 𝐹𝜃, the 𝑗𝑡ℎ observation in the 𝑖𝑡ℎ random sample, where 𝑖 = 1, 2, … ,𝑚 and 𝑗 = 1, 2, … , 𝑛. 

Non-i.i.d (autocorrelated) observations are out of scope for this thesis. 

• Choose the process characteristic (e.g., the process location and/or dispersion) and the associated sample statistic. If 

the parameter(s) is(are) known, then Case K is considered; whereas when the parameter(s) is(are) unknown, then 

Case U is considered, where the parameters are estimated by using a reference sample from Phase I. Thereafter, the 

monitoring stage of the process using the estimated control limits obtained from Phase I is performed in Phase II. 

Example:  The sample statistic 𝑇𝑖~iid 𝐺𝜃, conditional on the assumption for the underlying process distribution provided in 

the previous step, where 𝐺𝜃 denotes the distribution function of the sample statistic and 𝐹𝜃 ≠ 𝐺𝜃. 

• Choose the type of a control chart – e.g., time-weighted charts or memory-less charts – that will identify the plotting 

(charting) statistic to be calculated. 

Example: For the time-weighted charts, 𝑍𝑡 = 𝑓 (𝑇𝑖) and 𝑖 = 1, 2, … , 𝑡, which is a function of all the sample statistic. Note 

that, 𝑍𝑡~ 𝐻𝜃, where 𝐻𝜃 denotes the plotting statistic and 𝐹𝜃 ≠ 𝐺𝜃 ≠ 𝐻𝜃. 

Calculate the run length distribution and its characteristics, e.g., 𝑆𝐷𝑅𝐿 and the percentile points (denoted by 𝑃𝑖, 𝑖 = 5, 25, 50, 

75, 95), by solving for the charting constant 𝐿 > 0 to obtain the desired performance. For evaluation purposes, choose one of 

these three methods: (i) the exact approach, (ii) the Markov chain method, and (iii) the Monte Carlo simulation. 
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1.3 Literature review 

An increasing volume of research on SPC has emerged. There are various reasons for this growth, 

including but not limited to, the continuous improvement of manufacturing processes and an increase 

in global competitiveness generated by innovation. Lizarelli et al. (2016) mentioned that “Data analysis 

indicates that there was a growth rate of more than 90% in the number of publications on SPC after 

1990”. Hence, it is extremely important to scrutinize the literature to identify trends in SPC research 

and its relevance to the current research in this thesis. In this section, a brief literature review on different 

weighting schemes for time-weighted charts that already exist in the literature is provided. The literature 

review focuses on the charts exist to monitor the process location and/or dispersion for parametric and 

nonparametric cases. Note that, the memory-less charts, i.e., Shewhart-type, are defined as the charts 

that ignore past information. Alternatively, time-weighted charts use all the information from the past 

(i.e., the initial stage) and present (i.e., the most recent observation) to decide on the state of the process. 

1.3.1 Exponential weighting 

The EWMA charts have gradually achieved a significant place in SPC literature and keeps growing at 

a good pace. Numerous designs and innovations have been introduced by the researchers in the structure 

of EWMA charts for monitoring process location and/or dispersion parameter(s). 

The EWMA chart – originally called the geometric moving average (GMA) chart – was introduced by 

Roberts (1959) to monitor a process location parameter, i.e., process mean. Roberts (1959) assumed an 

i.i.d normal process and calculated the run length based on the Monte Carlo simulation method. As a 

result, the author concluded that the EWMA chart cannot improve the Shewhart chart in detecting large 

shifts in the process parameter. However, the EWMA chart provides greater capability in detecting 

relatively small shifts (less than one standard deviation). Roberts (1966) also proposed the UWMA 

chart that was constructed under the assumption of unweighted moving average. Since then, EWMA 

charts have been investigated and studied extensively by numerous researchers in the SPC literature. 

Robinson and Ho (1978) presented a numerical procedure based on the exact approach for the calcula-

tion of run length and its characteristics for the two-sided EWMA chart when the underlying process 

distribution is normal. Hunter (1986) exposited an EWMA chart technique that may be of value to both 

process quality engineers and manufactures. Also, the author explained the difference between the 

Shewhart, CUSUM, and EWMA charts in terms of weighting to the historical data. Crowder (1987) 

concluded that computational considerations and ease of use favor the exact approach over the method 

given by Robinson and Ho (1978). Also, the exact approach can be extended to non-normal distribu-

tions. Crowder (1989) reviewed the design strategy of EWMA charts and provided recommendations 



 30 

for design parameters. Lucas and Saccucci (1990) evaluated the properties of an EWMA chart for mon-

itoring the location parameter of a normally distributed process. A design procedure in terms of using 

uncommon parameter values in the literature is given. In addition, several enhancements to EWMA 

charts are developed that include, a fast-initial response feature, a combined Shewhart-EWMA chart 

that is effective in detecting both large and small shifts in a process, and an EWMA chart that detects 

outliers in a process. The EWMA chart has received a great deal of attention in the SPC literature. See, 

for example, Jones et al. (2001), Jones (2002), and Simoes et al. (2010). Lucas and Saccucci (1990) 

compared the average run length of CUSUM and EWMA charts over a range of parameter values and 

concluded that there is a little practical difference between the run length properties of the two charts. 

Numerous studies have compared the performance of the EWMA and CUSUM chart, see for example 

Hawkins and Wu (2014) and Zwetsloot and Woodall (2017). Zwetsloot and Woodall (2017) concluded 

that the general belief that the CUSUM and EWMA charts have similar performance no longer holds 

under estimated parameters. Hawkins and Wu (2014) compared the CUSUM and EWMA charts and 

concluded that depending on the shift size either the CUSUM or the EWMA chart can provide quicker 

detection. Steiner (1999) and Abbasi (2010) studied the difference between EWMA charts based on 

exact and steady-state limits. The interested researcher and practitioner may consult the research con-

ducted by Ruggeri et al. (2007) for an in-depth literature review of EWMA charts. Recently, researchers 

focused on a mixed type charts to improve the performance of EWMA and CUSUM charts. Abbas et 

al. (2013) proposed the mixed EWMA-CUSUM for monitoring of the manufacturing process. Authors 

concluded that this type of chart performs better than existing EWMA and CUSUM charts. Haq (2013) 

developed a chart using two EWMA statistics, called hybrid EWMA (denoted by HEWMA) chart. 

More details about the designing and application of other charts can be seen in Lucas (1982), Sparks 

(2000), Capizzi and Masarotto (2003), Borror et al (2010), Wu et al.  (2009) and Aslam et al. (2014). 

Nonparametric charts are proposed as opposed to their parametric counterparts when the underlying 

process distribution is unknown or there is no information available. Distribution-free (nonparametric) 

versions of the EWMA charts (labelled as NPEWMA) have also been discussed and investigated thor-

oughly in the literature. Amin and Searcy (1991) introduced the NPEWMA chart for monitoring the 

median of a symmetric continuous distribution based on the Wilcoxon signed-rank statistic. Li et al. 

(2010) developed a nonparametric analog of the EWMA chart based on the Wilcoxon signed-rank sta-

tistic for monitoring process mean shifts. Graham et al. (2011a) used Markov chain and Monte Carlo 

simulation approaches to compute the run length distribution and the associated performance charac-

teristics. Detailed recommendations and hints for selecting the design parameters of the proposed chart 

are provided for practical implementation. Graham (2011b) proposed a two-sided NPEWMA chart for 

i.i.d individual observations based on the nonparametric sign statistic. Monte Carlo simulation and Mar-

kov chain approaches are used to determine the run length distribution and the associated performance 

characteristics. Guidelines and recommendations are provided in order to aid practical implementation. 
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Yang et al. (2011) proposed a NPEWMA chart for detecting a shift in the process proportion based on 

the nonparametric sign statistic. The run length distribution and the associated characteristics of the 

proposed chart are derived through the Monte Carlo simulation. Haq (2017a) developed a distribution-

free EWMA chart for monitoring the shifts in the process variability based on the NPEWMA chart 

suggested by Yang and Arnold (2015). Extensive Monte Carlo simulations are used to compute the run 

length distribution of the proposed chart. 

The main objective of the scholarly works discussed so far is to monitor the process location parameter. 

It is important to monitor the process dispersion since in most practical applications a decrease in the 

process variance leads to an improvement in the process, while an increase in the process variance 

deteriorates the process. There is a numerous research conducted for the design and implementation of 

charts that monitor the process dispersion since identifying shifts in a process dispersion is a crucial 

ingredient of SPC in order to improve process productivity and product quality. Monitoring process 

variability fall into two categories. The first category utilizes a monotone function to transform the 

sample variance into a normal distribution. The logarithmic transformation has been widely imple-

mented due to its simplicity. See, for example, Crowder and Hamilton (1992) and Chen et al. (2001). 

The second category accumulates mean-squared or sample variance from the target by EWMA statis-

tics. The EWMA charts for dispersion have been studied and investigated by Wortham and Heinrich 

(1972), and Wortham and Ringer (1971). Ng and Case (1989) presented a systematic approach for the 

EWMA chart for monitoring the process mean and dispersion and the run length is determined by the 

Monte Carlo simulation. For the individual observations, the Exponentially Weighted Moving Variance 

(denoted by EWMV) and the Exponentially Weighted Mean Square Error (denoted by EWMS) charts 

have been advocated by MacGregor and Harris (1993) to monitor the process variability/dispersion. 

Shu and Jiang (2008) proposed an EWMA chart for monitoring a process variability by using a loga-

rithmic transformation. A Markov chain approach is considered to calculate the run length and its char-

acteristics. Abbasi and Miller (2012) analyzed the performance of different charts based on different 

estimates for the standard deviation. The performance is investigated under the existence and violation 

of normality assumption. Abbasi and Miller (2013) proposed an EWMA chart for efficient monitoring 

of process dispersion based on estimating the process standard deviation using the mean absolute devi-

ation taken from the sample median. A Monte Carlo simulation is considered to calculate the run length 

of the proposed chart. Abbas et al. (2013) proposed two memory-type charts for monitoring the process 

dispersion. The ARL performance of the charts is evaluated through a Monte Carlo simulation and is 

also compared with the CUSUM chart.  Haq (2017b) proposed EWMA charts using the auxiliary infor-

mation for monitoring the process dispersion. The run length profiles of proposed charts are computed 

through an extensive Monte Carlo simulation. Sheu et al. (2009) proposed a chart for monitoring the 
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process mean and the process variability simultaneously (known as location-scale). Recently, consid-

erable attention has been drawn toward methods that use a single chart for monitoring the process mean 

and variability. Domangue and Patch (1991) proposed some omnibus EWMA charts for detecting shifts 

in both the location and the spread. Chen and Cheng (1998) developed the location-scale max chart, 

which plots maximum absolute values of the standardized mean and standard deviation on a single 

chart.   

1.3.2 Sequential weighting 

The CUSUM chart was introduced by Page (1954) for monitoring change detection in the process lo-

cation parameter based on cumulative sums, instead of individual means. CUSUM charts are useful and 

sometimes more naturally fitting in the process control environment in view of the sequential nature of 

data collection. CUSUM was proposed a few years after Wald (1947) developed the sequential proba-

bility ratio test (SPRT). In his book, Sequential Analysis Wald (1947) gives an approximate formula for 

the operating characteristic of a sequential test or, equivalently, for the probability that a particle per-

forming a linear random walk between two absorbing barriers is absorbed by a specific barrier. A chart 

constructed based on a SPRT is effective when the interests is in detecting both small and large shifts 

in process parameters. Stoumbos and Reynolds (1996) proposed an SPRT chart for monitoring the pro-

cess mean of a normal distribution. They concluded that the proposed chart outperforms the Shewhart-

type and CUSUM charts. For early developments of CUSUM charts, see for example, Gibra (1975), 

van Dobben de Bruyn (1968) and Wetherill (1969). Zhang et al. (2014) focused on the economic design 

of the SPRT chart for short-run production. Chou et al. (2006) proposed a SPRT chart to monitor the 

process dispersion when the underlying process distribution is normal. Ou et al. (2015) proposed a 

SPRT chart for monitoring the process mean and variance simultaneously (i.e., location-scale). Haw-

kins and Zamba (2005) mentioned that the CUSUM chart has attractive optimally properties for the 

detection of step changes in parameters. Early evidence of research in nonparametric SPC mainly cap-

italized the asymptotic theory of sequential analysis, see, for example, Bhattacharya and Frierson 

(1981).  

Nevertheless, the analogy between the CUSUM control chart and the SPRT provides a useful insight in 

the theoretical foundations of the CUSUM chart. The SPRT technique is extensively used for system 

monitoring and early detection of shifts in the process. SPRT is well-known and commonly used for 

quality control applications, in industries and areas requiring a highly sensitive and especially fast de-

tection of degradation behavior. The mathematical expressions for SPRT are derived under two as-

sumptions: (1) The samples follow a-priori known distribution function and (2) The samples are i.i.d. 

For example, consider a sequence of values {𝑌𝑛} = 𝑦0, 𝑦1, … , 𝑦𝑛 resulting from a stationary process  and 

data follows a normal distribution with mean 𝜇0 and variance 𝜎0
2. 𝜇0 and 𝜎0

2 are referred to as IC pa-

rameters. Since the objective of this research is to monitor a shift in the location parameter, we only 
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discuss the case when there is a shift occurred in the process and the OOC mean is denoted by 𝜇1. More 

explicitly, the null and alternative hypothesis could be written as: 

𝐻0: 𝜇0 = 𝜇1 

𝐻1: 𝜇0 ≠ 𝜇1 

The likelihood ration (LR) is the ratio of probabilities for observing the sequence {𝑌𝑛} under an alter-

native hypothesis, versus the null hypothesis as follows: 

𝐿𝑅(𝑛) =
𝑃(𝑦1, … , 𝑦𝑛|𝐻1)

𝑃(𝑦1, … , 𝑦𝑛|𝐻0)
 

At each step of the {𝑌𝑛} sequence, SPRT calculates a test index as the natural log of LR, referred to as 

LLR and compares it to two stopping boundaries: 

𝐿𝐿𝑅(𝑛) = log(𝐿𝑅(𝑛)) 

log(𝐴) < 𝐿𝐿𝑅(𝑛) < log (𝐵) 

𝐻0 is rejected if 𝐿𝐿𝑅 ≥ log (𝐵). As long as LLR remains between these two boundaries there is not 

enough evidence to reach a conclusion. The decision boundaries are derived from the following equa-

tions:  

𝐴 =
𝛽

1−𝛼
           𝑎𝑛𝑑         𝐵 =

1−𝛽

𝛼
; 

where 𝛼 and 𝛽 are referred to as type I error and type II errors, respectively.  

For the normal distribution and under condition mentioned above, the expression for LR is as follows: 

𝐿𝐿𝑅(𝑛) =
(𝜇1 − 𝜇0)

𝜎0
2 ∑𝑦𝑖 −

𝑛

2𝜎0
2
(𝜇1
2 − 𝜇0

2)

𝑛

𝑖=1

 

Note that, for the alternative hypothesis, 𝐻1: 𝜇0 ≠ 𝜇1, two cases are possible such as : 𝐻1: 𝜇0 < 𝜇1 

and/or 𝐻1: 𝜇0 > 𝜇1. The former case is used when the practitioner is interested in detecting an increase 

in the process location parameter and as a result an upper-sided chart is constructed. For the latter case, 

i.e., 𝐻1: 𝜇0 > 𝜇1, the practitioner is interested in detecting a decrease in the process location parameter 

and as a result a lower-sided chart is constructed. For two sided charts, i.e., 𝐻1: 𝜇0 ≠ 𝜇1, the practitioner 

could detect negative as well as positive changes in the process location parameter. Note that the dis-

cussion provided here is only applicable when the practitioner is interested in detecting a shift in the 

process location parameter.  

The ARL of all the charts depends on the underlying process distribution, true location parameter, and 

true standard deviation of the process as well as the values of the chart constants, e.g., reference value 

and decision interval for CUSUM. Hawkins et al. (2003) brought a new perspective to the standards 

unknown case by the introduction of the change-point model when the underlying process distribution 

is normal. Also, there have been developments for the nonparametric case for monitoring the process 
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location parameter by Hawkins and Deng (2010). Hawkins and Zamba (2005) mentioned that the IC 

process location and scale parameters are seldom known and recommended modeling a persistent shift 

in the process location parameter by 𝑋𝑖~{
𝑁(𝜇1, 𝜎

2)    𝑖 ≤ 𝜏

𝑁(𝜇2, 𝜎
2)     𝑖 > 𝜏

, 𝑋1, 𝑋2, … , 𝑋𝑖 , … are the sequential process 

readings, 𝜇1 is the IC process mean, 𝜇2 is the OOC value to which the process mean shifts, 𝜏 is the 

changepoint, and 𝜎 is the standard deviation of the process, assumed to be constant. Hawkins and Zamba 

(2005) developed a chart based on a variance change-point methodology and the likelihood ratio test 

for detecting a shift in the variance. They concluded that using the change-point model in SPC leads to 

testing for the presence of a shift and estimating the parameters. Zamba et al. (2008) applied a sequential 

Bayesian model for early detection of intentional outbreaks. Zamba and Hawkins (2006) developed a 

multivariate chart  based on unknown-parameter change-point approach that outperformed the esti-

mated-parameter 𝑇2 chart and having a much faster response to medium sized shifts as well as large 

shifts. Zamba and Hawkins (2009) developed a multivariate change-point model to detect shifts for an 

unknown mean vector and/or covariance based on the generalized likelihood-ratio statistics applied 

sequentially. 

Hawkins (1992) studied the evaluation of ARL for CUSUM chart with an arbitrary data distribution. 

Since then, the CUSUM chart have been studied and developed by numerous researchers. Barnard 

(1959) suggested a new approach to construct a control chart for industrial processes. Ewan and Kemp 

(1960) constructed a CUSUM chart for monitoring the location parameter when the underlying process 

distribution is normal. Johnson (1961) developed a theoretical approach to obtain an approximate for-

mula for the CUSUM chart. Johnson and Leone (1962a) considered simultaneous applications of SPRT 

to test a null hypothesis against two separate alternative hypotheses and thereafter the decision lines are 

used to construct a CUSUM chart when the underlying process distribution is normal. Johnson (1966) 

extended the Johnson and Leone (1962) procedure to a CUSUM chart under the Weibull distribution. 

Goldsmith and Whitfield (1961) computed the run length distribution of the CUSUM chart when the 

underlying process distribution is normal and either independent or serially correlated class. Ewan 

(1963) described and reviewed CUSUM charts by emphasizing on the practical aspects of successful 

application. Goel and Wu (1971) calculated the run length distribution and its associated characteristics 

of a CUSUM chart by solving the systems of linear equations to approximate the exact approach. Nu-

merical results are provided for monitoring the process mean when the underlying process distribution 

is normal by a nomogram and guidelines in terms of design parameters are discussed in detail. Chiu 

(1974) proposed an economic design of CUSUM charts for monitoring the process mean when the 

underlying process distribution is normal. A simplified version of the algorithm is devised which is 

suitable for application purposes. Yang and Cheng (2011) introduced the CUSUM mean chart to illus-

trate the superiority of the proposed chart compared to other charts when the underlying process distri-

bution is unknown. Li et al. (2016) proposed two CUSUM charts that perform well for the joint 
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monitoring of the mean and variance when the parameters of the underlying process distribution are 

unknown (Case U). A comprehensive simulation study is studied to examine the performance of the 

charts. Also, beneficial recommendations are provided for the practitioners. There is a plethora of re-

search on the joint monitoring charts. Some scholars addressed monitoring the mean and variance sim-

ultaneously (i.e., location-scale) on a single chart, see for example, Chen et al (2001), Wu et al. (2010), 

Zhang et al. (2011), and the references therein. For a more complete exposition of CUSUMs in general, 

see Hawkins and Olwell (1998). For more literature on the CUSUM charts for monitoring the process 

dispersion, see Tuprah and Ncube (1987), Chang and Gan (1995), Acosta-Mejia (1999), Knoth (2006), 

Castagliola et al. (2009), and the references therein.  

CUSUM charts discussed thus far are designed for monitoring the process location parameter. However, 

in several industrial applications it is important to monitor the process variability as well. Hawkins 

(1981) developed for employing the CUSUM procedure for monitoring the process dispersion param-

eter. The author has shown that for both normal and heavy-tailed distributions centred around zero, the 

square root of the absolute value gives a random variable whose distribution is approximately normal. 

Thus, the quality control on the spread of a process may be carried out effectively through CUSUM 

methods designed for detecting shifts in the process location parameter when the underlying process 

distribution is normal. Hawkins (1993) concluded that the EWMA and the CUSUM chart are effective 

in detecting shifts, however, the CUSUM chart is a little better for the diagnosis of when the shift 

occurred. Hawkins and Olwell (1997) developed a location-scale CUSUM chart under the inverse 

Gaussian distribution and evaluates its performance in detecting step shifts in each of the parameters.  

McGilchrist and Woodyer (1975) developed a nonparametric CUSUM chart (denoted by NPCUSUM) 

for detecting a shift in the median of a rainfall distribution when the underlying process distribution is 

normal, and the process parameter is known. Bakir and Reynolds (1979) proposed a NPCUSUM chart 

based on Wilcoxon signed-rank statistic for monitoring a shift in the process location parameter. Also, 

the run length distribution of the new chart is computed for any distribution for which the distribution 

of the Wilcoxon signed-rank statistic is known. Amin et al. (1995) proposed a NPCUSUM chart based 

on the sign statistic to monitor the process location parameter. These charts are denoted NPCUSUM-

SN and NPCUSUM-SR, respectively. Chakraborti et al. (2004) considered a class of nonparametric 

Phase II Shewhart-type charts based on the so-called precedence statistics, called the precedence charts, 

however, the main contribution was covered in the overview paper of Chakraborti et al. (2011). Hence, 

CUSUM-type charts based on precedence statistics is considered in Mukherjee et al. (2013). Mukherjee 

et al. (2013) proposed a CUSUM chart based on the exceedance statistic (denoted CUSUM-EX).  
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1.3.3 Double/dual exponential weighting 

The DEWMA chart with a single smoothing parameter was initially introduced by Shamma and 

Shamma (1992) for the process mean by implementing the double exponential smoothing technique 

proposed by Brown (1962). The DEWMA chart enhances the performance of the EWMA chart con-

structed under the single exponential technique. The DEWMA chart with two smoothing parameters 

was proposed by Zhang and Chen (2005) for the normal distribution to monitor the process mean. Khoo 

et al. (2010) further investigated the quality characteristic of interest of the DEWMA chart under the 

normal distribution. Zhang et al. (2003) assumed the Poisson distribution as the underlying process 

distribution for the DEWMA chart to monitor the process mean. Mahmoud and Woodall (2010) con-

ducted a performance comparison between the DEWMA and EWMA charts. Alkahtani (2013) assessed 

the robustness of the DEWMA and the EWMA charts to non-normal processes. His study considers 

several symmetric non-normal distributions such as the t-distribution, and skewed distributions such as 

the gamma distribution. He concluded that the DEWMA chart is more robust to the non-normality 

assumption when compared to the EWMA chart. 

The nonparametric case of the DEWMA chart (denoted by NPDEWMA) was developed by Riaz and 

Abbasi (2016) to ensure efficient monitoring of the process location parameter. Tsai et al. (2016) ex-

tended the NPEWMA sign chart to a DEWMA sign chart to improve the efficiency and the detection 

capability of the NPEWMA sign chart. Raza et al. (2015) investigated the performance of the EWMA 

and the DEWMA charts under censoring for the gamma distribution to monitor the process location 

and the process variance simultaneously (i.e., location-scale).  

1.3.4 General weighting 

The extended version of the EWMA chart, called the GWMA chart, was developed by Sheu and Lin 

(2003) for the normal distribution to monitor the process mean by applying the method of Sheu and 

Griffith (1996) and Sheu (1998, 199). The weights for the GWMA chart are based on the p.m.f. for the 

two-parameter discrete Weibull distribution proposed by Nakagawa and Osaki (1975). As a conclusion, 

the GWMA chart has superior detection, in comparison with the EWMA chart, for small shifts in the 

process mean. Sheu and Yang (2006) proposed a parametric GWMA chart for the process median. Sheu 

and Chiu (2007) introduced a GWMA chart by assuming the Poisson distribution as the underlying 

process distribution. Aslam et al. (2015) proposed a GWMA chart when the underlying process distri-

bution follows an exponential distribution. 

Chakraborty et al. (2016) proposed the nonparametric GWMA chart by implementing the signed-rank 

statistic when the process parameter of interest is known (Case K). An exact approach is considered to 

calculate the run length distribution for the proposed chart. Areepong (2015) proposed the GWMA chart 

for the zero-inflated Poisson distribution. Chakraborty et al. (2017) developed the parametric GWMA 
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chart to monitor the time between events (TBE) for the nonconforming under the gamma distribution. 

Chakraborty et al. (2018) constructed the nonparametric version of the GWMA chart for the process 

location parameter based on the exceedance statistic (EX) when the process parameter of interest is 

unknown (Case U).  

The GWMA chart to monitor the process dispersion was proposed by Sheu and Tai (2009). Teh et al. 

(2012) developed a new max chart to simultaneously detect both the decrease and increase in the mean 

and/or variability (i.e., location-scale). Huang (2014) proposed a new chart called the sum of squares 

generally weighted moving average, denoted by SS-GWMA, to simultaneously detect both the increase 

and decrease in the mean and/or variability (i.e., location-scale).  

Mohsin et al. (2016) developed a new single GWMA chart to monitor the process mean and dispersion, 

i.e., location-scale chart, based on Taguchi’s loss function. A Monte Carlo simulation is used to calcu-

late the run length and its associated characteristics. Haq and Ul Abidin (2018) proposed an enhanced 

version of the GWMA chart (denoted by AIB-GWMA) by using an auxiliary-information-base (AIB) 

to increase the sensitivity of the AIB-EWMA chart. The AIB-Shewhart introduced by Riaz (2008) and 

AIB-EWMA proposed by Abbas et al. (2014), are special cases of the AIB-GWMA chart. 

1.3.5 Double general weighting 

Sheu and Hsieh (2009) developed the DGWMA chart by implementing the double exponential smooth-

ing technique and combining it with the GWMA chart to monitor the process mean for the normal 

distribution. Chiu (2009) and Chiu and Lu (2015) created a DGWMA chart for monitoring the Poisson 

observations in the process, later studying the steady-state performance of the Poisson DGWMA chart. 

Huang et al. (2014) proposed a DGWMA chart based on the sum of squares of the plotting statistic. 

These authors concluded, in their respective papers, that the DGWMA chart is more sensitive than the 

GWMA, DEWMA, EWMA, and Shewhart-type charts in detecting small or tiny shifts in the process. 

Alevizakos et al. (2018) proposed a DGWMA chart for monitoring of time between events when the 

underlying process distribution is gamma and the chart parameters are set to be equal (i.e., 𝑞1 = 𝑞2 = 𝑞 

and 𝛼1 = 𝛼2 = 𝛼).  

Lu (2018) developed a nonparametric DGWMA sign chart to monitor the process proportion when the 

process parameter of interest is known (Case K). Masoumi Karakani et al. (2019) proposed a general-

ized nonparametric DGWMA chart (denoted by DGWMA-EX) to monitor the process median based 

on the EX when the location parameter of interest is unknown (Case U). The GWMA-EX and EWMA-

EX charts are the limiting cases of the DGWMA-EX chart. Also, the DEWMA-EX chart is a special 
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case of the proposed DGWMA-EX chart. Teh et al. (2011) proposed and investigated a DGWMA chart 

for individual observations to monitor the process mean and the process variance simultaneously. 

1.3.6 Bibliometric analysis for the DGWMA chart 

An increasing number of papers on time-weighted charts has emerged in the past decade due to the 

fundamental role that SPC plays in quality and production processes. In this sense, it is essential to 

understand what has been done, and identify the research gaps that exist in the current SPC research. 

The WOS database, is a well-known reliable resource for researchers in scientific fields and it covers 

research from most of the well-known scientific resources including more than 15 thousand journals 

and 55 million articles. This database is used in this section to conduct a bibliometric analysis for the 

DGWMA chart from 1956 to 2019. The main objective of this analysis is to use bibliometrics to analyze 

the availability and growth of the EWMA, DEWMA, CUSUM, GWMA and DGWMA charts and un-

cover the areas that require further research. Advanced search methods were used to retrieve the key-

words: EWMA, DEWMA, CUSUM, GWMA, and DGWMA. Then, the titles for the results (published 

papers) were checked to confirm the relativeness of the conducted research and the keywords. The 

search in the WOS database found 4430 articles regarding the time-weighted charts published from 

1956 to 2019. The results are illustrated in Figure 1.2: 

 

Figure 1.2. Bibliometric analysis for the time-weighted charts (1956 – 2019) 

The highest number of publications belong to the EWMA chart (50.97% of the records), which is ex-

pected due to the global performance of this chart and popularity amongst researchers and practitioners. 

The second place is for the CUSUM chart (47.40% of the records). The third place is for the DEWMA 

chart (0.90% of the records). The GWMA chart, with 0.56% of the records, stays in the fifth place. The 

DGWMA chart, which is the core and the main objective of the present research, only has 0.16% of the 

publication records. Therefore, the bibliometric analysis clearly indicates that there are various research 
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gaps within this domain (DGWMA) that need to be addressed and will be discussed in Sections 1.5 and 

1.6 as the contribution of the thesis. 

1.4 Small shifts in SPC 

In SPC, for an IC manufacturing process, the process produces readings with mean (denoted by 𝜇0) and 

a standard deviation (denoted by 𝜎0). The main objective of constructing a control chart is to identify 

special causes of variation in the process and make timely decision. These causes can lead to a shift or 

a change in the process location parameter or a change in the process scale parameter or both, i.e., 

location-scale. In this thesis, the concentration will be on shifts that will be occurred in the location 

parameter; however, our recommendations and conclusions apply to shifts in the process scale param-

eter.  

Assume that 𝑋𝑖𝑗 denotes the 𝑗𝑡ℎ observation in the 𝑖𝑡ℎ observation sample, where 𝑖 = 1, 2, … ,𝑚 and 

𝑗 = 1, 2, … , 𝑛. During the process monitoring, some cause occurred at some time and shifts the IC lo-

cation parameter value, e.g., mean (𝜇0), to an OOC value (denoted by 𝜇1). The purpose of SPC is to 

construct charts that are effective in detecting shifts at the earliest time, diagnose the cause, and remove 

or accommodate it through adjustment of process settings. The importance of detecting small shifts in 

the process is discussed in this section with the following real-life example.  

Assume a toothpaste has a nominal content of 12 ml. The actual fillings assume to follow a distribution, 

i.e., normal distribution with parameters 𝜇 and standard deviation 0.25 ml. The manufacturer aims to 

set the location parameter high enough to avoid legal problems related to labelling. Hence, only 5% of 

containers will have a content less than 12 ml (nominal value). The desired IC mean is then 𝜇0 = 12 +

1.28 ∗ 0.25 = 12.32 ml. Downward shifts in the mean lead to substantial increases in the percentage 

of underfilled tubes, whereas upward shifts result tubes containing more fillings than is required. The 

former case will face legal actions due to labelling regulations, whereas the latter case represents wasted 

spilling from overfilled tubes or a gift to the consumer. Suppose that the toothpaste costs the manufac-

turer $0.008 per ml and that the line fills 6000 tuber per hour. Hence, each 1-ml upward shift in the 

mean costs $0.008*6000 = $48 per hour, or $1152 per day. Hence, a daily loss of $1152 would corre-

spond to a mean overfill of 0.25 ml, that is given by 12.32 + 0.25 = 12.57 ml. This lost is based on a 

shift in the mean by one standard deviation which is in fact the definition for a small shift in the process. 

One might be interested in detecting the shift by two or three standard deviation (large shifts in the 

process).  

Suppose a tube is sampled every 2 hours and the quality practitioner measured its exact content. The 

cost of running at the process is proportional to the amount by which the mean fill exceed the nominal 
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level multiplied by the length of time for which the process runs at the shifted mean. Hence, the expected 

loss will be: 𝐸(𝐿(𝜇)) = $40 ∗ 𝐴𝑅𝐿 ∗ (𝜇1 − 𝜇0), 𝜇1 > 𝜇0, where 𝐴𝑅𝐿 is the average number of fillings 

from the time processes shifts OOC and the IC value is 𝜇0 = 12.37. Note that the element of time is 

essential in deciding to detect a large or small shift in the process. Hence, a small shift that persists for 

a long time through failing to be detected may incur a larger total cost than detecting a large shift.  

For example, one can draw a figure to illustrate the expected loss for varying shift sizes in the mean for 

two schemes – Shewhart chart and a CUSUM chart with the following parameters 𝑑 = 0.5 and ℎ =

4.77, where 𝑑 is a reference value and ℎ is the decision limit 

 

Figure 1.3. Comparison of loss between the Shewhart and CUSUM charts 

The horizontal axis presents the shift in the mean (in standard deviation) and the vertical axis presented 

the expected loss measured in US dollars ($) per incident.  

These two schemes are based on taking one reading per 2 hours and assuming the IC ARL of 740 

readings. These values are taken from the research published by Hawkins and Zamba (2003) which the 

authors illustrate the importance of small shifts in the production processes. As illustrated, the curve is 

high for the Shewhart chart for detecting small shifts and a severe blind spot for shifts about 0.3 standard 

deviation of overfill. On the contrary, the CUSUM chart has much lower expected loss than the 

Shewhart chart for changes below 2 standard deviation (medium shift) and 1 standard deviation (small 

shift). 

Note that there are numerous research available in SPC who mentioned the term “small shifts”, for 

example, Hawkins (1978), Bakir and Reynolds (1979), Bhattacharya and Frierson (1981), Amin et 

al. (1995), Borror et al. (2003), Hawkins and Zamba (2003), Sheu and Lin (2003), Sheu and Hsieh 
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(2009), Tai and Hsieh (2010), Abbas et al. (2013), Huang et al. (2014), Chiu and Lu (2015), Lu (2018), 

and the references therein.  

1.5 Scope and objectives 

This research is based on developing novel generalized time-weighted (memory-type) control charting 

techniques for the DGWMA chart. Sheu and Hsieh (2009) concluded that the DGWMA chart is superior 

in detecting small or tiny shifts in the manufacturing processes compared to its counterparts, e.g., the 

GWMA, the DEWMA and the EWMA charts. The main focus of this thesis is within this domain (i.e., 

double general weighting) by employing the double exponential smoothing technique – proposed by 

Brown (1962) – to enhance the performance and the detection capability of the existing memory-type 

charts. 

 Since the introduction of the Shewhart chart, time-weighted charts (parametric and nonparametric) 

have been developed and shown to have improved the performance of the memory-less charts. Amongst 

these time-weighted charts, the GWMA, EWMA and CUSUM charts are known to be effective in de-

tecting small shifts in the process. However, for example, the performance comparison between the 

DGWMA chart and the CUSUM chart is not currently available in the SPC literature. 

In order to find relevant research gaps for the DGWMA chart and provide motivation for the current 

research, the following aspects are taken into consideration and compared with other DGWMA charts 

already exist in the literature: 1) underlying process distribution, 2) one-sided charts vs. two-sided 

charts, 3) Case K vs. Case U, 4) monitoring objective based on the parameter(s) of the underlying dis-

tribution, and 5) calculation methods for the run length distribution. These aspects are monitored for all 

of the published articles available in SPC related to the DGWMA chart as follows: 

1) Sheu and Hsieh (2009) – A two-sided DGWMA-�̅� chart is constructed to monitor the process 

location parameter under the normal distribution when the parameter of interest is known (Case 

K). The Monte Carlo simulation is used to calculate the run length distribution and its associated 

characteristics. A simulated example is presented. 

2) Tai et al. (2010) – A two-sided DGWMA chart is constructed to monitor the process mean and 

process variability simultaneously (i.e., location-scale) under the normal distribution, when pa-

rameters of the underlying distribution are known (Case K). The Monte Carlo simulation is 

considered to calculate the run length distribution and its associated characteristics. 

3) Huang et al. (2014) – A two-sided DGWMA chart is constructed to monitor the process mean 

and process variability simultaneously under the normal distribution, when parameters are 
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known (Case K) and unknown (Case U). The Monte Carlo simulation is used to evaluate the 

run length distribution and its associated characteristics.  

4) Chiu and Lu (2015) – A two-sided DGWMA chart is constructed to monitor the process loca-

tion parameter under the Poisson distribution, when the parameter of interest is known (Case 

K). The Monte Carlo simulation is used to calculate the run length distribution of the proposed 

chart.  

5) Lu (2018) – A two-sided nonparametric DGWMA chart is constructed when the underlying 

process distribution is unknown for monitoring the process proportion based on the sign statis-

tic. The parameter of interest is assumed to be known (Case K) and the Monte Carlo simulation 

is considered to calculate the run length distribution.  

Table 1.1. provides a broad overview of different types of charts (memory-less versus time-weighted) 

available in the SPC literature and an illustration of how the contribution of the research studied in this 

thesis for the DGWMA charts fit into the SPC environment. 

Table 1.1. The contribution of the thesis 

 
Memory-less chart Time-weighted charts 

Shewhart EWMA GWMA DGWMA DEWMA 

Parametric 

Case K × × × ×∎ ×∎ 

Case U 
Phase I × ×    

Phase II × × × ∎ ∎ 

Nonparametric 

Case K × × × × × 

Case U 
Phase I ×     

Phase II × × × ∎ ∎ 

 

In summary, Table 1.1 reveals that: 

(i) The symbol “×” denotes the existing charts in the SPC literature, whereas “∎” represents 

the contribution of this thesis. Note that, for some cases, both symbols “×” and “∎” have 

been used, since there is already some work available in the literature. The grey blocks 

represent the charts developed and studied in this research. 

(ii) The research conducted in this thesis is only limited to the design and implementation of 

univariate (parametric and nonparametric) charts. Multivariate harts have been studied by 

numerous researchers in the SPC literature. Hotelling (1947) proposed a chart for detecting 

a shift in the mean vector under the multivariate normal distribution. Lowry et al. (1992) 

extended the original univariate EWMA chart to a multivariate case for monitoring the 

mean vector under the multivariate normal distribution. Qiu and Hawkins (2003) developed 
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a nonparametric multivariate CUSUM chart for detecting shifts in all directions. Hence, the 

multivariate control charts are out of scope for this study. Zamba and Hawkins (2009) pro-

vided a multivariate toolkit for practitioners to detect change in the mean vector and/or 

covariance matrix through the lens of LR statistics. 

(iii) Also, both cases when 𝑛 = 1 (individual observations) and 𝑛 > 1 (rational subgroups) are 

considered. In SPC, frequently, the phrases “random sample” and “rational subgroup” are 

used interchangeably, however strictly speaking, a random sample is not necessarily a ra-

tional subgroup. For more information, the interested reader is referred to the discussion 

provided in Montgomery (2013). 

(iv) Note that these charts are constructed when the observations are assumed to be mutually 

independently and identically distributed, i.e., i.i.d. The effect of autocorrelation in SPC 

has been studied by numerous authors. This include but not limited to the following, John-

son and Bagshaw (1974), Schmid (1997), Psarakis and Papaleonida (2007), Alwan and 

Roberts (1988), amongst others. Furthermore, the following areas indicate the interest in 

constructing charts with autocorrelated observations: Finance (Frisen, 2007), public health 

monitoring (Woodall, 2006), and network monitoring (Ye & Chen, 2001). Several other 

studies consider monitoring the residuals after fitting a time series model to processes that 

exhibit autocorrelation and may be stationary or non-stationary, for example, Hawkins 

(1991), Tsiamyrtzis and Hawkins (2008), Kim et al. (2012) and Montgomery and Mastran-

gelo (1991). Atienza et al. (1998) proposed a chart for detecting shifts in autocorrelated 

data. Zhang (1981) along with Lu and Reynolds (1999a, 1999b) and Apley and Lee (2003) 

proposed EWMA based methods to accommodate the lack of independence. Zacks and 

Kenett (1994) developed a change-point model based on a mixture of normal distributions 

that could be applied to startup data. For more information, the interested reader is referred 

to the work by Triantafyllopoulos and Bersimis (2016) and the references therein. Auto-

correlated data is out of scope for this study.  

(v) For the parametric case, DGWMA charts available in the literature only focus on Case K, 

where the parameter(s) of interest are known and constructed under the normality assump-

tion. The contribution of the present research is to develop a DGWMA chart for Case K 

(known parameters) and Case U (unknown parameters) under the non-normal distribu-

tion(s) and more specifically for the skewed distributions, e.g., exponential and gamma. A 

DEWMA-TBE chart, is also constructed and studied for Cases K and U (see Chapter 3). 
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(vi) From the existing information, it can be deduced that, for the nonparametric case, there is 

only one research article published for Case K to monitor the process proportion (see Lu, 

2018). The contribution of the present research is to construct a nonparametric DGWMA 

chart based on the nonparametric EX statistic for monitoring the process location parame-

ter. The objective is to monitor the process median which is a more robust location param-

eter compared to its counterparts. The DGWMA-EX chart and the DEWMA-EX chart are 

proposed for Case U. The robustness of the proposed DGWMA-EX chart is evaluated un-

der several symmetric and asymmetric distributions (see Chapter 4). 

A quick summary of the objectives and the main contributions for this thesis are as follows: 

• Construct a generalized type of time-weighted (memory-type) charts (DGWMA) to be effective 

in detecting small shifts in the process. The proposed charts include other time-weighted charts 

like the GWMA, DEWMA, EWMA, CUSUM and Shewhart-type charts as special or limiting 

cases. 

• This generalized chart is considered for parametric and nonparametric cases. In the parametric 

case, a DGWMA chart is proposed when the underlying process distribution follows a gamma 

distribution. For the nonparametric case, the underlying process distribution is assumed to be 

symmetric and continuous. 

• Both parametric and nonparametric DEWMA charts, which are the special cases of the pro-

posed DGMWA charts (i.e., denoted by DGWMA-TBE and DGWMA-EX), are developed 

and considered in detail. For the sake of brevity, in the rest of this thesis, the DEWMA chart 

with two smoothing parameters is denoted by the DEWMA chart (Case 1), whereas the one 

with a single smoothing parameter is denoted by the DEWMA chart (Case 2). 

• Case K (when the parameters of the underlying process distribution are known) and Case U 

(when the parameters of the underlying process distribution are unknown) have been considered 

in this thesis for the DGWMA chart, since Case U for the nonparametric is not available in the 

SPC literature. 

• In the existing SPC literature, the majority of researchers only considered the DGWMA chart 

in the scenario when the chart parameters (i.e., 𝑞1 = 𝑞2 = 𝑞 and 𝛼1 = 𝛼2 = 𝛼 are equal, e.g., 

Sheu and Hsieh (2009)). These authors concluded that the performance of the chart does not 

differ when all four parameters of the DGWMA chart are included under the normal distribu-

tion. However, in this thesis, a comparative study is conducted to evaluate the performance 

between these two scenarios. For the sake of brevity, in the rest of this thesis, the DGWMA 

chart with four parameters is denoted by the DGWMA chart (Case 1), whereas the DGWMA 

chart with two parameters is represented by the DGWMA chart (Case 2). 
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• The run length distribution will be considered as the chart performance measure in detail for 

the proposed DGWMA charts. To calculate the run length distribution, there are three different 

approaches in SPC: (i) an exact approach, (ii) a Markov chain method, and (iii) a Monte Carlo 

simulation. The Monte Carlo simulation has been implemented and considered as the only 

method in the SPC environment for the DGWMA chart. In this thesis, the exact and the Markov 

chain approaches are also studied for the first time for the DGWMA chart  

• A constructive discussion is provided in Section 1.6 for the practitioners to provide a road map 

and general guidelines in selecting the control chart(s) that are efficient in detecting different 

shift magnitudes (large, medium, small or tiny) in the process, given the distributional assump-

tion. These guidelines are of utmost importance in the present era surrounded by various prac-

tical necessities. 

• The GWMA charts currently available in the SPC literature are constructed under the assump-

tion that the weights follow a two-parameter discrete Weibull distribution proposed by Nak-

agawa and Osaki (1975). However, in this thesis, alternative discrete distributions, i.e., discrete 

Burr and discrete Burr Type III distributions, will be considered to enhance the detection capa-

bility and the performance of the existing GWMA charts. A motivation for considering alter-

native discrete distributions is provided in Chapter 3 in detail.  

1.6 Guidelines for practitioners 

Numerous control charts have been proposed and developed by researchers in the SPC paradigm for 

detecting various shift sizes (large, medium, small, or tiny) in the production process as quickly as 

possible. The number of manuscripts published on SPC topics seems to be growing exponentially, thus 

keeping full records of advances in the SPC literature is impossible. However, it may be fair to conclude 

that the advances in the research world of SPC methods have not yet been fully incorporated in practice. 

Therefore, the crucial step is finding an approach to narrow the gap between the theory developed by 

academic researchers and the practice applied by practitioners. As Deming (1993, p. 106) mentioned: 

“Without theory, experience has no meaning. Without theory, one has no questions to ask. Hence, with-

out theory, there is no learning.” By reviewing the charts available in statistical packages – e.g., SAS, 

R, MINITAB, etc. – due to the lack of accessibility of the more advanced charts, they are not used as 

often as most practitioners would prefer. Therefore, there is a necessity in the SPC literature to provide 

some hints or recommendations that encourage practitioners to consider advanced charts in practice. 

Woodall (2017) addressed this problem only for basic charts, such as the �̅� chart and the R chart and 

provides some ideas and suggestions. However, due to various changes in the types of processes 
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available today (i.e., high-yield processes), there is a lack of discussion on the time-weighted charts that 

proved to be more efficient in detecting small shifts compared to the basic charts. Hence, we give rec-

ommendations for the implementations of these charts as to encourage their use. 

The properties for the EWMA, DEWMA charts (Case 1 and Case 2) and CUSUM charts are provided 

in Appendix A. For the GWMA chart, the interested reader is referred to the work by Sheu and Lin 

(2003). 

Since the novel DGWMA chart proposed in this thesis is a generalized time-weighted chart, the rela-

tionship between the proposed chart and other existing charts is portrayed in Figure 1.4. 

 

 

 

 

 

 

 

 

 

 
Figure 1.4. Time-weighted (memory-type) and memory-less charts relationship 

The guidelines for practitioners are provided in terms of a table, where the columns denoted the type of 

a control chart (memory-less versus time-weighted) and the rows denote the magnitude of a shift in the 

production process. The information provided in this table is based on the findings from Chapter 3, 

which assume the gamma distribution (denoted by 𝐺𝑎𝑚𝑚𝑎 (𝑘, 𝜃)) as the underlying process distribu-

tion. For illustration purposes, the IC scale parameter is assumed to be one (i.e., 𝜃0 = 1) and the value 

for the shape parameter is chosen as 𝑘 = 1. The OOC scale parameter is denoted by 𝜃1, and the shift is 

defined as the ratio of the OOC and IC scale parameters as 𝛿 = 𝜃1/𝜃0. The size of the shift in the 

process can be classified as tiny (𝛿 = 0.975, 0.95, 0.925), small (𝛿 = 0.9, 0.85), medium (𝛿 = 0.8, 0.7) 

and large (𝛿 = 0.5, 0.25). The objective of this table is to provide recommendations that, given the 

process distributional assumption and the size of the shift, assist a practitioner in selecting an optimal 

time-weighted chart as well as selecting the most efficient chart for detecting tiny shifts. More precisely, 

an easy-to-use table is provided for the time-weighted chart’s design parameters to aid practical imple-

mentation. 

DGWMA (𝒒𝟏, 𝒒𝟐; 𝜶𝟏, 𝜶𝟐) 

DEWMA (𝟏 − 𝒒𝟏, 𝟏 − 𝒒𝟐) 

EWMA (𝟏 − 𝒒𝟏) 

Shewhart 

(Memory-less) 

𝜶𝟏 = 𝜶𝟐 = 𝟏 

𝒒𝟐 → 𝟎 

𝒒𝟏 → 𝟎 

GWMA (𝒒𝟏, 𝜶𝟏) 

𝜶𝟏 = 𝟏 

𝒒𝟐 → 𝟎 and 𝜶𝟐 = 𝟏 
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Table 1.2. Roadmap for practitioners when the underlying process distribution is gamma 

 Type of control chart 

 Memory-less Time-weighted 

Magnitude 

of a shift 

(𝜹) 

Shewhart-TBE EWMA-TBE DEWMA-TBE GWMA-TBE DGWMA-TBE 

Large 

 𝑞1, 𝑞2 → 0 

 𝛼1 = 𝛼2 = 1 
 

        

Medium   

 

𝑞1 = 1 −  = 0.95 

 𝑞1 = 1 − 1 = 0.95 

 

𝑞2 = 1 − 2 = 0.95  

  

0.8 ≤ 𝑞 ≤ 0.95 

0.9 ≤ 𝛼 ≤ 1 

Small       
 0.5 ≤ 𝑞1 ≤ 0.95 

0.6 ≤ 𝛼1 ≤ 1 

0.5 ≤ 𝑞 ≤ 0.95 

0.6 ≤ 𝛼 ≤ 1 

Tiny         
0.5 ≤ 𝑞 ≤ 0.95 

0.6 ≤ 𝛼 ≤ 1 

 

The recommendations for the practitioners with respect to Table 1.2 are summarized as follows: 

(i) The general guidelines recommended in Table 1.2 in terms of selecting the chart parameters 

are only valid when the underlying process distribution is gamma (i.e., parametric para-

digm). However, one can extend and construct a similar table for other parametric charts 

constructed under different types of distributions (normal versus non-normal) as well as 

nonparametric charts. For more information, the interested reader may consult Montgom-

ery (2013). 

(ii) The DGWMA-TBE chart developed and proposed in this thesis (see Chapter 3), outper-

formed other time-weighted cha, under consideration, in detecting medium, small, and 

more precisely the tiny shifts in the production processes. The proposed DGWMA-TBE 

chart is more efficient and better alternative than its counterparts in detecting tiny shifts in 

the process. 

(iii) The Shewhart-TBE charts (memory-less) are known as the limiting cases of the proposed 

DGWMA-TBE chart. A practitioner can conclude from Table 1.2 that these types of charts 

are only effective in detecting large shifts in the process. 

(iv) The EWMA-TBE chart, which is the limiting case of the proposed DGWMA-TBE chart, 

is efficient at detecting medium/moderate shifts in the process. Further, the larger value for 

the parameter 𝑞1 implies a smaller value for the smoothing parameter . A similar 
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recommendation is also given by Montgomery (2013) for the EWMA chart to detect shifts 

in the process. 

(v) The DEWMA-TBE chart is also developed in this thesis (see Chapter 3) – is also efficient 

in detecting medium shifts in the process. Further, based on the results in Chapter 3, the 

DEWMA-TBE chart is more effective than the EWMA-TBE and Shewhart-TBE charts in 

detecting moderate shifts due to the implementation of the double exponential smoothing 

technique. 

(vi) The GWMA-TBE chart proposed by Chakraborty et al. (2016) is the limiting case of the 

DGWMA-TBE chart constructed in this thesis and is efficient at detecting small shifts in 

the process. Results from Chapter 3 recommend that the GWMA-TBE chart outperforms 

the EWMA-TBE and Shewhart-TBE charts in detecting small shifts which line up with the 

results obtained by Chakraborty et al. (2016). 

(vii) A platform or a forum is needed in SPC so that academic researchers and practitioners can 

use to share their own perspectives from the charts available in the literature. Also, the 

research papers should be written with practitioners in mind, whenever possible. As Hoerl 

(2000) stated, “the research community breathes its own exhaust without practitioners’ in-

put”.  

1.7 Outline of the thesis 

The structure of the thesis is discussed below. 

Chapter 2 provides an overview on the design and implementation of the DGWMA chart. The proper-

ties of the DGWMA chart, including the plotting (charting) statistics, the structure for the weights, the 

properties of the plotting statistic (the expected value and the variance), centerline, and control limits 

(exact/steady-state) will be considered. The special and limiting cases of the DGWMA chart are also 

analyzed and the behavior of the weighting structure is discussed through graphical illustrations. Fur-

thermore, three calculation methods for the run length distribution of the DGWMA chart will be inves-

tigated and discussed in-depth. 

Chapter 3 provides a new parametric time-weighted chart (denoted by DGWMA-TBE) for monitoring 

the TBE of nonconforming items originating from the high-yield processes for Case K and Case U. The 

statistical properties of the proposed DGWMA-TBE chart have been studied and a performance analysis 

based on the Monte Carlo simulation has also been undertaken to execute a comparative study with a 

number of existing control charting procedures. The special case of the DGWMA-TBE chart (i.e., 

DEWMA-TBE) is also constructed and considered in this chapter. The Markov chain approach and the 

exact approach are considered to calculate the run length distribution for the first time in the literature. 

Alternative discrete distributions (i.e., discrete Burr and discrete Burr Type III distributions) for the 
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GWMA-TBE chart weights are considered and a performance comparison is conducted with its coun-

terparts. The DGWM-TBE and DEWMA-TBE charts for Case U are also discussed in detail. 

Chapter 4 provides a distribution-free (nonparametric) DGWMA chart for Case U based on the two-

sample nonparametric statistic EX, denoted as DGWMA-EX. The statistical properties of the proposed 

DGWMA-EX chart have been studied and a performance analysis based on the Monte Carlo simulation 

has also been undertaken to make comparisons with a number of existing control charting procedures. 

The Markov chain approach and the exact approach are considered to calculate the run length distribu-

tion for the first time in the literature. The DGWMA-EX chart with four parameters (Case 1) and the 

DGWMA-EX chart with two parameters (Case 2) are also considered. A distribution-free DEWMA-

EX chart is also proposed. Note that, the robustness of the proposed DGWMA-EX chart is evaluated 

under several symmetric and heavy-tailed distributions. To the best of our knowledge, the robustness 

study for nonparametric DGWMA charts is not available in the SPC literature and has been addressed 

in this thesis.  

Chapter 5 provides a conclusion and recommendations for an extension of the current research. 
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2.1 Introduction 

SPC is a collection of scientific tools and statistical procedures developed and engineered to execute 

quality control in a production process. The variation in production processes occurs frequently and 

needs to be detected in timely manner. In general, two types of variations exist during the production 

process, namely common causes of variation and special causes of variation. The common causes of 

variation are defined as the variability that is inherent in the process and should be relatively small. 

Nevertheless, the presence of special causes of variation are extraneous to the process and influence the 

performance of the underlying process, shifting process parameters like location and/or dispersion.  

In the present era, surrounded by innumerable technologically advanced tools, special causes are fre-

quently presented and need to be detected at the earliest time. The main objective of SPC research is to 

design and implement efficient control charts for detecting small shifts (one standard deviation) origi-

nating from the presence of special causes of variation in the process. Note that the element of time is 

essential in deciding to detect a large or small shift in the process. Hence, a small shift that persists for 

a long time through failing to be detected may incur a larger total cost than detecting a large shift.  

There are numerous charts designed in the SPC literature to detect small shifts that have gained lots of 

attention amongst researchers. The Shewhart-type charts are well-known as they can be easily imple-

mented in practice and for their global performance in detecting large shifts. However, the blind spot 

of these charts, also known as memory-less charts, is their weak performance in detecting small or tiny 

shifts. In contrast, more efficient classes of charts labelled as time-weighted (memory-based or 

memory-type) charts, such as the UWMA, EWMA, EGWMA, DEWMA, CUSUM and GWMA charts, 

are more naturally appropriate and effective for detecting small shifts in the production process. These 

charts use a mixture of past and present information to monitor the state of the process, known as the 

memory-saving feature.  

A time-weighted DGWMA chart, denoted by DGWMA (𝑞1, 𝑞2, 𝛼1, 𝛼2), was proposed by Sheu and 

Hsieh (2009) under the normal distribution (denoted by DGWMA-�̅�) through the combination of the 

DEWMA-�̅� and the GWMA-�̅� charts. The authors concluded that the DGWMA chart is superior at 

detecting small or tiny shifts in comparison with its main counterparts – i.e., the GWMA and the 

DEWMA charts – due to the implementation of the double or dual exponential smoothing technique 

proposed by Brown (1962).  

Chapter 2 Double Generally Weighted Moving Av-

erage control chart – an overview 
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The underlying process distribution for the DGWMA chart is assumed to be normal in this chapter. The 

preliminaries and statistical framework required for the construction of the DGWMA chart are studied 

and discussed in Section 2.3. The aforementioned information will be used as a baseline in Chapters 3 

and 4. Further to this, a brief discussion of exact and steady-state control limits is provided with the key 

emphasis being on the pros and cons for each of these control limits. Two types of DGWMA charts, 

namely Case 1 and Case 2, are discussed in Section 2.4. The limiting and special cases of the DGWMA 

chart are presented in more depth in Section 2.5. Furthermore, the weighting structure and behaviour 

for time-weighted charts is studied. An informative discussion is provided to link the relationship be-

tween the shapes of the weights and the performance of time-weighted charts. In general, there are three 

methods in SPC literature to calculate and evaluate the run length distribution: (i) the exact approach, 

(ii) the Markov chain approach, and (iii) the Monte Carlo simulation. These approaches are discussed 

in detail for the DGWMA chart and its special case the DEWMA chart in Section 2.6. Further to this, 

the pros, and cons for each of these methods are outlined.  

2.2 Motivation 

The bibliometric analysis for the time-weighted charts presented in Chapter 1 (see Section 1.3.6) reveals 

that few researches has been conducted in the SPC literature for the DGWMA chart. From the literature 

review, most of the existing parametric DGWMA charts are constructed under the normality assump-

tion. Also, parameters of interest based on the underlying distribution are assumed to be known (Case 

K) in majority of scholar works related to the DGWMA chart. However, a practitioner or researcher 

might be interested in evaluating the performance of the DGWMA chart under heavy-tailed distribu-

tions or non-normal distributions. Frequently, the underlying process distribution is unknown, or no 

information is available. Also, the parameters of interest are rarely known in practice and there is a 

necessity to design a DGWMA chart to accommodate this assumption. Sheu and Hsieh (2009) men-

tioned that the added parameters in the DGWMA plotting statistics slightly adjust the kurtosis of the 

weight function so that the DGWMA chart becomes more sensitive than other time-weighted charts, 

under consideration in this thesis, in detecting small shifts. The choice of the DGWMA parameters and 

the weighting distribution determine the decline of the weights, and thereby the effect of past observa-

tions in the computation of weights.  

Motivated by these findings, the objective of this thesis is to design a parametric (under normal and 

non-normal distributions) or nonparametric (under continuous and symmetric distributions) DGWMA 

chart when the parameters of interest are unknown (Case U) and when the parameters of interest are 

known (Case K). In this thesis, the DGWMA chart is viewed as a generalized time-weighted chart.  
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In the published papers within the DGWMA chart domain, the main focus is only on the DGWMA 

chart (Case 2), where an equality is assumed for the chart parameters, i.e., 𝑞1 = 𝑞2 = 𝑞 and 𝛼1 = 𝛼2 =

𝛼. However, one might be interested in the performance of the DGWMA chart when the equality as-

sumption for the chart parameters is not fulfilled. Hence, two types of the DGWMA chart (Case 1 and 

Case 2) are discussed in this chapter and subsequent chapters.  

Further to this, the weighting structure for time-weighted charts plays a vital role in increasing and 

enhancing the chart’s sensitivity in detecting small or tiny shifts. The amount of information allocated 

to the past and present observations and the shapes for the weights have a direct impact on the perfor-

mance of a chart. The plots illustrated in this chapter to study the behavior of the weights for the time-

weighted charts can be considered as the pioneer work within this field (DGWMA) and based on the 

findings, the weights possess the properties of a valid probability mass function (p.m.f.). 

The run length distribution is the most commonly used performance measure to evaluate and compare 

different charts. The Monte Carlo simulation is frequently considered in the majority of the published 

papers and scholarly work as the only approach to calculate the run length distribution of a chart due to 

its ease of implementation and the increasing access to software packages. In this chapter, the exact 

approach and the Markov chain approach are discussed in detail for the DGWMA chart and the neces-

sary closed-form expressions are obtained. To the best of our knowledge, there is no scholarly work 

available to calculate the run length distribution of the DGWMA chart through the Markov chain and 

exact approaches and address these methodologies in the SPC literature.  

2.3 Preliminaries and statistical framework 

2.3.1 Assumptions  

Let 𝑋𝑖𝑗~𝑖. 𝑖. 𝑑 𝐹𝜽 for 𝑖 = 1, 2, … ,𝑚, and 𝑗 = 1,2, … , 𝑛, denote random samples from a quality charac-

teristic of an arbitrary process, where 𝑛 ≥ 1. The vector of parameters is denoted by 𝜃 =

 (𝜃1, 𝜃2, … , 𝜃𝑘), , 𝑘 ≥ 1, with the discrete or continuous process c.d.f. 𝐹𝜽. The sample statistic is repre-

sented by 𝑇𝒊 = 𝑓(𝑋𝑖1, 𝑋𝑖2, … , 𝑋𝑖𝑛) based on the 𝑖𝑡ℎ subgroup observations in Case K. 

2.3.2 Plotting statistic 

The discrete random variables 𝑀1 and 𝑀2 denote the number of samples until the next occurrence of 

an event since its last occurrence with the following property: 

 

 

∑ 𝑃(∞
𝑖=1 𝑀𝑗 = 𝑖) = ∑ 𝑃(𝑀𝑗 = 𝑖) + 𝑃(𝑀𝑗 > 𝑡)

𝑡
𝑖=1 = 1  ,   𝑗 = 1, 2 . (2.1) 

𝑀1 and 𝑀2 notations are used to represent weighting schemes for the GWMA and DGWMA charts, 

respectively. Note that, in Sheu and Lin (2003), since the objective is to construct a GWMA chart, 𝑀 

is used instead of 𝑀1. Also, Sheu and Hsieh (2009) used 𝑀 and 𝑀1 to distinguish between the weighting 
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notations for the GWMA and the DGWMA charts. The probability 𝑃(𝑀𝑗 = 𝑖) is known as the weight 

(denoted by 𝑣𝑖) for the 𝑖𝑡ℎ most recent sample statistic 𝑇𝑡−𝑖+1, where 𝑖 = 1, 2, … , 𝑡. The probability 

𝑃(𝑀𝑗 = 1) is the weight (denoted by 𝑣1) for the latest observation 𝑇𝑡; the probability 𝑃(𝑀𝑗 = 𝑡) is the 

weight (denoted by 𝑣𝑡) for the most outdated observation 𝑇1. Also, 𝑃(𝑀𝑗 > 𝑡) represents the weight for 

the starting value (denoted by 𝑍0
1). For the statistic under consideration, the starting value (𝑍0

1) is se-

lected as the IC expected value – i.e., 𝐸(𝑇𝑖|𝐼𝐶) for Case K. The plotting statistic for the GWMA chart 

is defined as (see Sheu and Lin (2003)):  

 

 

𝑍𝑡
1 = ∑ 𝑃(𝑀1 = 𝑖)

𝑡
𝑖=1 𝑇𝑡−𝑖+1 + 𝑃(𝑀1 > 𝑡)𝑍0

1 . 

 

(2.2) 

Equation (2.2) can be rewritten in terms of the weights for the GWMA chart as: 

 

 

𝑍𝑡
1 = ∑ 𝑣𝑖

𝑡
𝑖=1 𝑇𝑡−𝑖+1 + 𝑣0𝑍0

1 , (2.3) 

where 𝑣𝑖 = 𝑃(𝑀1 = 𝑖), 𝑣0 = 𝑃(𝑀1 > 𝑡), and ∑ 𝑣𝑖
𝑡
𝑖=1 + 𝑣0 = 1. In Case U, the starting value 𝑍0

1 will 

be a random variable that needs to be estimated from the calibration sample or reference sample col-

lected in Phase I. 

Note that, the weights are denoted by 𝑣𝑖 for the GWMA chart and for the DGWMA chart the weights 

are denoted by 𝑤𝑖. 

The p.m.f. for the discrete variables 𝑀1 and 𝑀2 are: 

 

 

𝑃(𝑀1 = 𝑖) = 𝑞1
(𝑖−1)𝛼1

− 𝑞1
𝑖𝛼1     for   𝑖 = 1, 2, … (2.4) 

 

and 

 

 

𝑃(𝑀2 = 𝑖) = 𝑞2
(𝑖−1)𝛼2

− 𝑞2
𝑖𝛼2    for     𝑖 = 1, 2, … , (2.5) 

where 0 < 𝑞1, 𝑞2 < 1 and 𝛼1, 𝛼2 > 0, are the parameters of the DGWMA chart. Nakagawa and Osaki 

(1975) proposed and developed the p.m.f. in equations (2.4) and (2.5), which are known as the two-

parameter discrete Weibull distribution. 

The plotting statistic for the DGWMA chart is defined as follows: 

 

 

𝑍𝑡
2 = ∑ 𝑃(𝑀2 = 𝑖)

𝑡
𝑖=1 𝑍𝑡−𝑖+1

1 + 𝑃(𝑀2 > 𝑡)𝑍0
2 ,  (2.6) 
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where 𝑍0
2 = 𝑍0

1 = 𝐸(𝑇𝑖|𝐼𝐶) = 𝜇 is the expected value of the statistic under consideration, also known 

as the starting value. 

Much like the Sheu and Hsieh (2009) approach, the plotting statistic in equation (2.6) can be presented 

in terms of weights as: 

 

 

𝑍𝑡
2 = 𝑃(𝑀2 = 1)𝑍𝑡

1 + 𝑃(𝑀2 = 2)𝑍𝑡−1
1 +⋯+ 𝑃(𝑀2 = 𝑖)𝑍1

1 + 𝑃(𝑀2 > 𝑖)𝑍0
2 

= 𝑤1𝑇𝑖 + 𝑤2𝑇𝑖−1 +⋯+𝑤𝑖𝑇1 + (1 − ∑ 𝑤𝑖
𝑡
𝑖=1 )𝑍0

2 . 

 

  (2.7) 

For the DGWMA chart, the weight at time t is defined as: 

 

 

𝑤𝑡 = ∑ 𝑃(𝑀1 = 𝑗)𝑃(𝑀2 = 𝑡 − 𝑗 + 1)
𝑡
𝑗=1      for  𝑡 = 1,2,3, … (2.8) 

The weight function can be written in terms of the two-parameter discrete Weibull distribution p.m.f. 

by replacing (2.4) and (2.5) into (2.8) as: 

 

 

𝑤𝑡 = ∑ (𝑞1
(𝑗−1)𝛼1

− 𝑞1
𝑗𝛼1
)𝑡

𝑗=1 (𝑞2
(𝑡−𝑗)𝛼2

− 𝑞2
(𝑡−𝑗+1)𝛼2

).   

(2.9) 

Therefore, the plotting statistic for the DGWMA chart in terms of weights is defined as: 

 

 

𝑍𝑡
2 = ∑ 𝑤𝑖

𝑡
𝑖=1 𝑇𝑡−𝑖+1 + (1 − ∑ 𝑤𝑖

𝑡
𝑖=1 )𝑍0

2   for  𝑡 = 1,2,3, … (2.10) 

Note that the superscripts used to denote the plotting statistics for the GWMA and DGWMA charts 

(i.e., 𝑍𝑡
1 and 𝑍𝑡

2, respectively) also denote the order in which the first-order and second-order “smooth-

ing” of the sample statistic 𝑇𝑖 are applied. These superscripts should not be confused with the mathe-

matical concept of raising a number or variable to an arbitrary power. 

2.3.3 Control limits 

The mean and the variance of the statistic under consideration are defined as 𝐸(𝑇𝑖) = 𝜇0 and 𝑣𝑎𝑟(𝑇𝑖) =

𝜎0
2, respectively for all 𝑖 = 1,2,3, …. Therefore, the properties of the DGWMA plotting statistic 𝑍𝑡

2, 

including the IC expected value and the IC variance, can be obtained as follows: 

 

 

𝐸(𝑍𝑡
2|𝐼𝐶) = ∑ 𝑤𝑖

𝑡
𝑖=1 𝐸(𝑇𝑡−𝑖+1) + (1 − ∑ 𝑤𝑖

𝑡
𝑖=1 )𝐸(𝑍0

2) = 𝜇0  (2.11) 

and 

 

 

𝑣𝑎𝑟(𝑍𝑡
2|𝐼𝐶) = ∑ 𝑤𝑖

2𝑡
𝑖=1 𝑣𝑎𝑟(𝑇𝑡−𝑖+1) = 𝑄𝑡

′𝜎0
2 , (2.12) 

where 𝑄𝑡
′ = ∑ 𝑤𝑖

2𝑡
𝑖=1 . 

From equation (2.12), one can observe that the variance of the DGWMA plotting statistic is a conver-

gent function of 𝑡, resulting in a finite variance for the plotting statistic. The calculation for this quantity 

involves selecting the values for the DGWMA chart parameters (i.e., 𝑞1, 𝑞2, 𝛼1, 𝛼2) and the time 𝑡. For 
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illustration purposes, the parameters are selected as 𝑞1 = 𝑞2 = 𝑞 and 𝛼1 = 𝛼2 = 𝛼. However, note that 

there is no necessity to assume an equality assumption for the chart’s parameters and 𝑄𝑡
′ can also be 

calculated for the DGWMA chart with four parameters (i.e., Case 1). The parameters are chosen as 𝑞 = 

0.5, 0.7, 0.9, 𝛼 = 0.5, 0.9, 1.3, and the time is selected as 𝑡 = 5, 10, 50, and 100. For various combina-

tions of DGWMA parameters (𝑞, 𝛼) and different values of 𝑡, the values for the quantity  𝑄𝑡
′ are illus-

trated in Table 2.1. 

Table 2. 1. 𝑸𝒕
′ = ∑ 𝒘𝒊

𝟐𝒕
𝒊=𝟏  values. 

t 𝒒 = 𝟎. 𝟓, 𝜶 = 𝟎. 𝟓 𝒒 = 𝟎. 𝟕, 𝜶 = 𝟎. 𝟗 𝒒 = 𝟎. 𝟗, 𝜶 = 𝟏. 𝟑 

5 0.0941 0.1632 0.1415 

10 0.1002 0.1682 0.1450 

50 0.1026 0.1682 0.1457 

100 0.1026 0.1682 0.1458 

t 𝒒 = 𝟎. 𝟓, 𝜶 = 𝟎. 𝟓 𝒒 = 𝟎. 𝟕, 𝜶 = 𝟎. 𝟗 𝒒 = 𝟎. 𝟗, 𝜶 = 𝟏. 𝟑 

5 0.0169 0.1230 0.1340 

10 0.0211 0.1245 0.1355 

50 0.0261 0.1243 0.1353 

100 0.0264 0.1245 0.1340 

t 𝒒 = 𝟎. 𝟓, 𝜶 = 𝟎. 𝟓 𝒒 = 𝟎. 𝟕, 𝜶 = 𝟎. 𝟗 𝒒 = 𝟎. 𝟗, 𝜶 = 𝟏. 𝟑 

5 0.0533 0.0019 0.0080 

10 0.0725 0.0058 0.0085 

50 0.0759 0.0188 0.0211 

100 0.0759 0.0191 0.0212 

 

We observe that the variance is finite and converges in those settings considered in Table 2.1. 

2.3.3.1 Exact control limits 

For a two-sided DGWMA chart, the symmetric (exact) control limits (labelled as 𝑈𝐶𝐿𝑒 and 𝐿𝐶𝐿𝑒) and 

the centerline (𝐶𝐿) are given by: 

 

 

𝐿𝐶𝐿𝑒 = 𝜇0 − 𝐿 𝜎0√𝑄𝑡
′    

𝑈𝐶𝐿𝑒 = 𝜇0 + 𝐿 𝜎0√𝑄𝑡
′   , 

(2.13) 

where 𝐿 > 0 is the charting constant that determines the distance between the centerline and the exact 

limits, and these exact control limits are denoted by the subscript “e”. 

Note that, symmetrically placed control limits defined in equation (2.13) are only applicable if the plot-

ting statistic has a symmetric distribution. In the case of the DGWMA-TBE chart proposed in Chapter 

3, the underlying process distribution is gamma (an asymmetric distribution). As a result, a linear com-

bination of gamma random variables is used and, in such a case, a one-sided chart will be constructed, 
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since a two-sided chart is ARL-biased. The biasness terminology for control charts is discussed in detail 

in Chapter 3. For more information, the interested reader is referred to Chakraborty et al. (2017). 

2.3.3.2 Steady-state control limits 

It has been observed from Table 2.1 that as 𝑡 → ∞, the quantity 𝑄𝑡
′ converges, which results in an 

asymptotic and a finite variance that is given by lim
𝑡→∞

𝑣𝑎𝑟(𝑍𝑡
2) = 𝑄′𝜎0

2, where 𝑄′ = lim
𝑡→∞

𝑄𝑡
′, and 𝑄𝑡

′ =

∑ 𝑤𝑖
2𝑡

𝑖=1 . 

Hence, for a two-sided DGWMA chart, the steady-state control limits (labelled as 𝑈𝐶𝐿𝑠  and 𝐿𝐶𝐿𝑠), 

and the centerline (𝐶𝐿) are given by: 

 

 

𝐿𝐶𝐿𝑠 = 𝜇0 − 𝐿 𝜎0√ 𝑄
′   

𝑈𝐶𝐿𝑠 = 𝜇0 + 𝐿 𝜎0√ 𝑄
′  , 

(2.14) 

where 𝑄′ = lim
𝑡→∞

𝑄𝑡
′, and the subscript “s” denotes the steady-state control limits. 

For the DGWMA chart Case U – where the parameter(s) of interest are unknown – in order to find the 

estimates for the 𝜇0 and 𝜎0, the reference sample from Phase I (retrospective phase) is required. There-

after, these estimates are denoted by �̂�0 and �̂�0, respectively, and substitute for 𝜇0 and 𝜎0 in equation 

(2.14) to obtain the estimated control limits (i.e., denoted by 𝐿𝐶�̂�𝑠 and 𝑈𝐶�̂�𝑠) that will be used in Phase 

II (prospective phase) to monitor the state of the process.  

2.3.3.3 Exact versus steady-state control limits 

In designing a control chart, one of the critical decisions that must be made is specifying and calculating 

the control limits. The Markov chain approach required the use of steady-state limits to simplify matters, 

whereas for the Monte Carlo simulation there is no significant difference to distinguish between the 

exact and the steady-state limits. If the control limits are moved further away from the centerline, the 

Type I error – defined as a point falling beyond the limits that declares the process is OOC when no 

assignable cause present – is decreasing. On the contrary, by narrowing the control limits, the  and error, 

defined as the probability of a point falling between the limits when the process is actually OOC, is 

increasing. The steady-state limits are typically used when the control chart has been running for several 

time periods and to simplify the calculation of the IC run length distribution through the Markov chain 

approach. Since the Monte Carlo simulation is the main approach that has been considered through this 

thesis to calculate the run length distribution and its associated characteristics, the exact control limits 

are used for calculation and illustration purposes.  

Note that, although asymptotic control limits are considered, there are charts available in the SPC liter-

ature for small sample. The price paid for considering steady-state limits is that the wider limits reduce 

the chart’s ability to react quickly to early shifts.  



 
 

57 

 

For illustration purposes, the DGWMA-�̅� chart under the normal distribution for monitoring the process 

mean is considered here. The subgroup size is set at 𝑛 = 1, and the sample statistic 𝑇𝑡, 𝑡 = 1, 2,…, 

follows an independent normal distribution with the mean 𝜇 = 0, and the variance 𝜎2 = 1. Hence, the 

exact control limits are defined as: 𝐿𝐶𝐿𝑒 = −𝐿√𝑄𝑡
′ and 𝑈𝐶𝐿𝑒 = 𝐿√𝑄𝑡

′. The steady-state control limits 

will then be: 𝐿𝐶𝐿𝑠 = −𝐿√𝑄
′ and 𝑈𝐶𝐿𝑠 = 𝐿√𝑄

′, where 𝑄′ = lim
𝑡→∞

𝑄𝑡
′. Two sets of design parameters 

are selected for the DGWMA-�̅� chart to calculate and compare the exact and the steady-state limits.  

The results are outlined in Table 2.2. 

Table 2. 2. Comparison between the exact and the steady-state control limits 

DGWMA parameters Exact control limits Steady-state control limits 

𝑞 =  0.9 , 𝛼 = 0.7, 𝐿 = 2.188  

𝑡 = 1 𝐿𝐶𝐿𝑒 = −0.292  𝑈𝐶𝐿𝑒 = 0.292 

 𝐿𝐶𝐿𝑠 = −0.498 𝑈𝐶𝐿𝑠 = 0.498 
𝑡 = 5 𝐿𝐶𝐿𝑒 = −0.410  𝑈𝐶𝐿𝑒 = 0.410 

𝑡 = 10 𝐿𝐶𝐿𝑒 = −0.456 𝑈𝐶𝐿𝑒 = 0.456 

𝑡 = 15 𝐿𝐶𝐿𝑒 = −0.478 𝑈𝐶𝐿𝑒 = 0.478 

 𝑞 = 0.6  , 𝛼 = 0.8, 𝐿 = 2.921 

𝑡 = 1 𝐿𝐶𝐿𝑒 = −0.469 𝑈𝐶𝐿𝑒 = 0.469 

 𝐿𝐶𝐿𝑠 = −0.630 𝑈𝐶𝐿𝑠 = 0.630 
𝑡 = 5  𝐿𝐶𝐿𝑒 = −0.530  𝑈𝐶𝐿𝑒 = 0.530 

𝑡 = 10 𝐿𝐶𝐿𝑒 = −0.577 𝑈𝐶𝐿𝑒 = 0.577 

𝑡 = 15 𝐿𝐶𝐿𝑒 = −0.607 𝑈𝐶𝐿𝑒 = 0.607 

 

To ensure the validity of the values obtained in Table 2.2, these results are compared to those of Sheu 

and Hsieh (2009) for the DGWMA-�̅� chart under the normal distribution as follows: 

• For 𝑞 =  0.9, 𝛼 = 0.7, 𝐿 = 2.185, Sheu and Hsieh (2009) computed the exact control limits 

for 𝑡 = 15 as (−0.472, 0.472). From Table 2.2, when 𝑞 =  0.9, 𝛼 = 0.7, 𝐿 = 2.188, the con-

trol limits are (−0.478, 0.478). 

• For 𝑞 =  0.6, 𝛼 = 0.8, 𝐿 = 2.917, Sheu and Hsieh (2009) computed the steady-state control 

limits as (−0.624, 0.624). From Table 2.2, when 𝑞 =  0.9, 𝛼 = 0.7, 𝐿 = 2.921, the steady-

state control limits are (−0.630, 0.630). 

The quantity 𝑄′ is a convergent function of 𝑡, which implies the convergence of exact control limits in 

(2.13) towards the steady-state control limits in (2.14). 

Hereafter, for the sake of brevity, UCL and LCL are used in the rest of this thesis to represent the steady-

state control limits. 
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2.4 Two types of the DGWMA chart 

The DGWMA chart can be classified as two different cases based on the equality or/and inequality of 

its parameters – i.e., 𝑞1, 𝑞2, 𝛼1, 𝛼2. The general form of this chart (Case 1) includes four parameters – 

𝑞1, 𝑞2, 𝛼1 and 𝛼2 – and is denoted by DGWMA (𝑞1, 𝑞2, 𝛼1, 𝛼2). By assuming the equality for the 

parameters – i.e., 𝑞1 = 𝑞2 = 𝑞, and 𝛼1 = 𝛼2 = 𝛼 – then the DGWMA chart reduces into two parame-

ters and is denoted by DGWMA (𝑞, 𝛼) and will be called Case 2 throughout the entire thesis. Sheu and 

Hsieh (2009) concluded that the DGWMA chart (Case 1) does not outperform the DGWMA chart (Case 

2) under the normal distribution, and only considered Case 2 for the design and implementation of the 

DGWMA-�̅� chart. Contrarily, this thesis discusses both cases in detail for the parametric and nonpara-

metric cases, and the necessary recommendations that would be of interest for practitioners will be 

provided. The majority of the peer-reviewed articles published in the SPC environment assume the 

equality of the parameters, and therefore only Case 2 has been considered. However, as stated in Section 

1.5, one of the main contributions of this research is to also scrutinize the DGWMA chart (Case 1) and 

compare the performance with the DGWMA chart (Case 2). This comparative study is performed to 

evaluate and study the effect of adding extra parameters and their influence on the detection capability 

of the proposed chart(s). The relationship between these two charts can be portrayed as follows: 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Relationship between the DGWMA (Case 1 and Case 2) and the DEWMA (Case 1 

and Case 2) charts 

In Figure 2.1, two types of the DGWMA chart are illustrated. The DEWMA chart is a special case of 

the DGWMA chart by assuming 𝛼1 = 𝛼2 = 𝛼 and also consists of two different cases. The relationship 

between these cases are also portrayed in the above figure. In Section 2.5, more information is provided 

with respect to different types of the DEWMA chart. 
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2.5 Special and limiting cases  

In this section, the general steps for obtaining the special and limiting cases of the DGWMA chart (Case 

1) are discussed. The limiting cases are the GWMA, EWMA, and Shewhart charts, and the special case 

is the DEWMA chart. Further, the DEWMA chart is classified as Case 1 and Case 2, dependent on the 

equality and/or inequality of its parameters. Sheu and Hsieh (2009) were the first authors to use the 

“special cases” terminology for the DGWMA chart in SPC which only limited to the DGWMA chart 

(Case 2), EGWMA, and DEWMA (Case 1 and Case 2) charts. Later, Chiu and Lu (2015) also men-

tioned that the DEWMA chart is the special case of the DGWMA chart and compared the performance 

of their proposed chart with the GWMA, DEWMA, and EWMA charts. Note that the EWMA chart is 

a special case of the GWMA chart, as mentioned by Chakraborty et al. (2016), Chakraborty et al. (2017) 

amongst others. 

2.5.1 DGWMA chart (Case 2) 

By assuming the equality assumption for the parameters of the DGWMA chart – i.e., 𝑞1 = 𝑞2 = 𝑞, and 

𝛼1 = 𝛼2 = 𝛼 – the chart simplifies to a DGWMA chart denoted by DGWMA (𝑞, 𝛼). This chart is the 

GWMA chart that is weighted sequentially twice by implementing the double exponential smoothing 

technique proposed by Brown (1962). As a result, the weighting scheme defined in equation (2.9) be-

comes: 

 

 

𝑤𝑡 = ∑ (𝑞(𝑗−1)
𝛼
− 𝑞𝑗

𝛼
)𝑡

𝑗=1 (𝑞(𝑡−𝑗)
𝛼
− 𝑞(𝑡−𝑗+1)

𝛼
). (2.15) 

Figure 2.2 illustrates the weights for the DGWMA chart. The values for the DGWMA parameters are 

selected as 𝑞 = 0.5, and 𝛼 = 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2. The main objective of constructing a graph 

for the weights is to evaluate the weighting mechanism from the initial stage of the process (i.e., 𝑡 = 1) 

up to the most recent observation. The shape of the weights play a major role in the performance of the 

charts. Also, the influence of the parameter 𝛼 on the weights is studied when the other chart parameter 

𝑞 is equal for all the series. For small values of the parameter 𝛼 (0.5 to 0.9), less weights are assigned 

to the initial observations and the weights decrease exponentially. For larger values of the parameter 𝛼 

(𝛼 ≥ 1), more weights are allocated to the past observations. The same interpretation is true by using 

𝑞 = 0.6, which is illustrated in Figure 2.2.  

The allocation of the weights to observations, i.e., increasing and decreasing patterns, determines the 

ability of time-weighted charts in detecting shifts in production processes. Since time-weighted charts 

use the mixture of previous and current information, hence as a result have faster detection capability 

in detecting small shifts in the process due to the implementation of double exponential smoothing. 
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Figure 2.2. Weights for the DGWMA chart when 𝒒 = 𝟎. 𝟓 

 

 

Figure 2.3. Weights for the DGWMA chart when 𝒒 = 𝟎. 𝟔 

2.5.2 GWMA chart 

In the DGWMA chart, by assuming 𝑞2 → 0 and 𝛼2 = 1, the chart reduces to the GWMA chart denoted 

by GWMA (𝑞1, 𝛼1). Note that, theoretically the parameter 𝑞2 cannot be equal to zero, since 𝑞2 > 0. 

Thus, this time-weighted chart is called the “limiting case” of the DGWMA chart. 

The weighting scheme for the GWMA chart is illustrated in Figures 2.3 and 2.4, when the parameter 

𝑞1 is selected as 0.5 and 0.9, respectively. The value for the parameter 𝛼1 is selected as 0.75, 1, 1.25 
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for Figure 2.4, and 0.5, 0.75, 1, 1.25 for Figure 2.5. These figures illustrate that as the value for the 

parameter 𝛼1 starts increasing, there are more weights assigned to the initial observations. Furthermore, 

by increasing the value for the parameter 𝑞1, the weighting structure starts changing as well. 

 

Figure 2.4. Weights for the GWMA chart when 𝒒 = 𝟎. 𝟓 

 

Figure 2.5. Weights for the GWMA chart when 𝒒 = 𝟎. 𝟗 

2.5.3 EWMA chart 

In the GWMA chart, by selecting 𝛼1 = 1, then it simplifies to the EWMA chart denoted as EWMA (𝑞1). 

The same result can be obtained if one selects 𝛼1 = 𝛼2 = 1 and 𝑞2 → 0 – the DGWMA chart reduces 

to the EWMA chart denoted as EWMA (𝑞1). Hence, the EWMA chart can be regarded as a limiting case 
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of the DGWMA chart, and as a special case of the GWMA chart. Also, Chakraborty et al. (2017) con-

cluded that the EWMA chart is a special case of the GWMA chart. Further, one can briefly show that 

the EWMA chart reduces to the Shewhart chart when 𝑞1 → 0, which implies that the Shewhart chart is, 

in fact, a limiting case of the EWMA chart. The EWMA chart introduced by Roberts (1959) is denoted 

by EWMA (𝜆), where 𝜆 is the smoothing parameter. The relationship between the parameter 𝑞1 and the 

smoothing parameter 𝜆 is 𝑞1 = 1 − 𝜆, and as a result the EWMA chart can also be denoted alternatively 

by EWMA (𝑞1 = 1 − 𝜆). The weighting function of the EWMA chart is illustrated in Figure 2.6 when 

the parameter 𝑞1 is: 0.95, 0.9, 0.8, 0.5 and 0.2, and as a result the weights are decreasing exponentially. 

 

Figure 2.6. Weights for the EWMA chart 

From Figure 2.6, the shape of the weights for the EWMA chart are decreasing exponentially quicker 

than the DGWMA, and the GWMA charts. Further, less weights are assigned to the initial observations 

for the EWMA chart in comparison with the GWMA and the DGWMA charts. This feature has a sig-

nificant impact on the detection capability of the EWMA chart. For more information, see the OOC 

performance of the charts in Chapters 3 and 4. 

2.5.4 EGWMA chart 

In the DGWMA chart, by selecting 𝑞1 = 𝑞2 = 𝑞 and 𝛼2 = 1, the chart simplifies to the EGWMA chart 

denoted by EGWMA (𝑞, 𝛼1). The EGWMA chart is a combination of the weighted sequences for the 

EWMA and the GWMA charts. As a result, the weighting scheme defined in equation (2.9) becomes: 

 

 

𝑤𝑡 = (1 − 𝑞)(𝑞
𝑡−1 − 𝑞𝑡

𝛼1) + (1 − 𝑞)2∑ 𝑞(𝑡−𝑗)
𝛼1+𝑗−1𝑡−1

𝑗=1  . (2.16) 
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Sheu and Hsieh (2009) introduced the EGWMA chart as the special case of the DGWMA chart. How-

ever, they did not study the design and implementation of this chart in detail. Therefore, this will not be 

studied further in this thesis and is included in the scope for further research. 

2.5.5 DEWMA chart (Case 1) 

In general, Zhang and Chen (2005) studied and discussed two different scenarios for the DEWMA 

chart, depending on the equality and/or inequality of the smoothing parameters i.e., 1 and 2. By se-

lecting 𝛼1 = 𝛼2 = 1, the DGWMA chart simplifies to the DEWMA chart (Case 1) denoted by 

DEWMA (1 − 𝑞1, 1 − 𝑞2). Further to this, the relationship between the smoothing parameters (i.e., 1 

and 2) and the parameters of the DGWMA chart (i.e., 𝑞1 and 𝑞2) can be expressed as 1 = 1 − 𝑞1 and 

2 = 1 − 𝑞2. Moreover, by selecting 1 → 1 and 2 → 1, then the DEWMA chart reduces to the 

Shewhart chart. Also, by selecting 1 → 1 or 2 → 1, then the DEWMA chart reduces to the EWMA 

chart. As a conclusion, the EWMA and Shewhart charts are the limiting cases of both the DGWMA 

and the DEWMA charts. 

The weighting scheme defined in equation (2.9) becomes: 

 

 
𝑤𝑡 = (1 − 𝑞1)(1 − 𝑞2)

1−(
𝑞1
𝑞2
)
𝑡

1−
𝑞1
𝑞2

𝑞2
𝑡−1. 

 

(2.17) 

Then, for the DGWMA chart, the plotting statistic can be rewritten as: 

 

 
𝑍𝑡
2 = (1 − 𝑞1)(1 − 𝑞2)∑

1−(
𝑞1
𝑞2
)
𝑡−𝑖+1

1−
𝑞1
𝑞2

𝑞2
𝑡−𝑖𝑡

𝑖=1 𝑇𝑖 + (𝑞2(1 − 𝑞1)
𝑞2
𝑖−𝑞1

𝑖

𝑞2−𝑞1
+ 𝑞1

𝑖)𝑍0
2 ; 

 

(2.18) 

where 𝑍0
2 is the starting value, and 𝑇𝑖 is the sample statistic. 

The weights for the DEWMA chart are illustrated in Figures 2.7 and 2.8 for different combinations of 

the parameters 𝑞1 and 𝑞2. In Figure 2.7, 𝑞1 = 0.5 and 𝑞2 = 0.6, 0.8, 0.9; whereas in Figure 2.7, 𝑞1 =

0.6, 0.8, 0.9 and 𝑞2 = 0.7. From Figure 2.7, when the parameter 𝑞1 is the same for all of the series, 

more weight is assigned to the initial observations for smaller values of the parameter 𝑞2. In Figure 2.8, 

when the parameter 𝑞2 is the same for all of the series, more weights are assigned to the initial obser-

vations when 𝑞1 = 0.8. 
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Figure 2.7. Weights for the DEWMA chart (Case 1) 

 

Figure 2.8. Weights for the DEWMA chart (Case 2) 

The shape for the DEWMA chart’s weights illustrates that more weights are assigned to the initial 

observations in comparison to the EWMA chart. However, further analysis is required in terms of the 

design and implementation of the DEWMA chart and the performance comparison with other time-

weighted charts. 
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2.5.6 DEWMA chart (Case 2) 

By selecting 𝑞1 = 𝑞2 = 𝑞 and 𝛼1 = 𝛼2 = 1, the DGWMA chart reduces to the DEWMA chart, denoted 

by DEWMA (1 − 𝑞). As a result, the weighting scheme defined in equation (2.9) becomes: 

 𝑤𝑡 = 𝑡𝑞
𝑡−1(1 − 𝑞)2 (2.19) 

Then, the plotting statistic is defined as: 

 

 

𝑍𝑡
2 = (1 − 𝑞)2 ∑ (𝑡 − 𝑖 + 1)𝑞𝑡−𝑖𝑡

𝑖=1 𝑇𝑡−𝑖+1 + 𝑞
𝑡(𝑡 − 𝑡𝑞 + 1)𝑍0

2  (2.20) 

Shamma and Shamma (1992) introduced and studied the performance of the DEWMA chart denoted 

by DEWMA (𝜆) with a single smoothing parameter. The DEWMA chart presented in this section is 

called the DEWMA chart (Case 2) since the smoothing parameters are equal (i.e., 1 = 2 = 𝜆). The 

relationship between the smoothing parameter (𝜆) and the DGWMA parameter (𝑞) is equivalent to 𝑞 =

1 − 𝜆. 

The weights for the DEWMA chart are illustrated in Figure 2.9 when the parameter 𝑞 is selected as 𝑞 =

0.6, 0.7, 0.8. The initial observations are assigned with more weight for the smaller value of the param-

eter 𝑞. 

 

 

Figure 2.9. Weights for the DEWMA chart (Case 2) 
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2.6 Run length distribution 

There are several measures in the SPC environment to evaluate and compare the performance of com-

peting charts. The recent brief literature review by Nikolaidis and Tagaras (2017), discussed and devel-

oped new statistical measures of performance. The most well-known and commonly used measure is 

the run length distribution, which is defined in Section 1.2 in Chapter 1. The average run length (ARL) 

is the most conventional statistical measure in SPC and other properties of the run length distribution, 

such as the median of the run length (MDRL), the standard deviation of the run length (SDRL), and the 

different percentiles, could be calculated to provide more information and insight on the performance 

comparison between different charts.  

For the DGWMA chart, which is the core of this thesis, a Monte Carlo simulation is considered as the 

only method in the context of the SPC literature to evaluate the run length distribution. Sheu and Hsieh 

(2009) and Lu (2018) amongst others concluded that other approaches encounter challenges/obstacles, 

such as the computational difficulties, and are time-consuming. Overall, there are three methods that 

are often used to calculate or evaluate the ARL: (i) the exact approach introduced by Crowder (1987); 

(ii) the Monte Carlo simulation; and (iii) the Markov chain approach proposed and developed by Brook 

and Evans (1972). For more recent developments in the area of computing the ARL and related indexes 

in SPC, the work of Li et al. (2014) is relevant.  

In this section, each of these approaches are discussed in more detail for the DGWMA chart and the 

pros and cons will also be highlighted. As stated in Chapter 1, one of the main contributions of the 

present research is to calculate the run length distribution for the DGWMA chart by implementing the 

exact and the Markov chain approaches. For the Markov chain approach, the steady-state limits are 

used, whereas the exact limits are considered for the exact approach. These methods are generally ne-

glected and dismissed in the SPC literature due to the computational time and other complexities arise 

during the evaluation of the closed-form expressions. Further to this, for the DEWMA chart, which is 

the special case of the DGWMA chart, the Markov chain approach is used to obtain the closed-form 

expressions for the ARL and other properties of the run length distribution. This is due to the fact that 

the DEWMA chart can be viewed as a first-order Markov chain as opposed to the DGWMA chart. 

2.6.1 Exact approach 

The idea of computing the ARL through the exact approach by evaluating the integral equations is orig-

inally proposed for the EWMA chart by Crowder (1987). Moreover, he used numerical quadrature 

methods to solve the exact integral equations for the normal distribution. Let 𝑁 denote the run length 

for the DGWMA chart, and the p.m.f. of 𝑁 is called the run length distribution, denoted as 𝑃[𝑁 = 𝑛], 

where 𝑛 = 1, 2, 3, …. The signaling event at the 𝑖𝑡ℎ sample is denoted by 𝐴𝑖, whereas the non-signaling 

event is denoted by 𝐴𝑖
𝑐, and given by 𝐴𝑖

𝑐 = [𝐿𝐶𝐿 < 𝑍𝑖
2 < 𝑈𝐶𝐿] for 𝑖 = 1, 2, .... The run length 
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distribution can be written as P[𝑁 = 𝑛] = P[{∩𝑖=1
𝑛−1  𝐴𝑖

c} ∩ 𝐴𝑛], for 𝑛 = 1, 2, .... The plotting statistic 

plots below the UCL for ∀𝑡 > 1, can be written as: 

𝑍𝑡
2 < UCL ⇔ (∑ 𝑤𝑡

𝑡
𝑖=1 𝑇𝑡−𝑖+1 + (1 − ∑ 𝑤𝑖

𝑡
𝑖=1 )𝑍0

2) < UCL 

 ⇔ 𝑇𝑡 <
𝑈𝐶𝐿−(∑ 𝑤𝑡

𝑡
𝑖=2 𝑇𝑡−𝑖+1+(1−∑ 𝑤𝑖

𝑡
𝑖=1 )𝑍0

2)

(1−𝑞1)(1−𝑞2)
. 

The plotting statistic plots above the LCL for ∀𝑖 > 1, can be written as: 

𝑍𝑡
2 > LCL ⇔ 𝑇𝑡 >

𝐿𝐶𝐿−(∑ 𝑤𝑡
𝑡
𝑖=2 𝑇𝑡−𝑖+1+(1−∑ 𝑤𝑖

𝑡
𝑖=1 )𝑍0

2)

(1−𝑞1)(1−𝑞2)
. 

The following notations are defined for 𝑡 = 2, 3, … as follows: 

 

 
𝑈𝑡 =

𝑈𝐶𝐿 − (∑ 𝑤𝑡
𝑡
𝑖=2 𝑇𝑡−𝑖+1 + (1 − ∑ 𝑤𝑖

𝑡
𝑖=1 )𝑍0

2)

(1 − 𝑞1)(1 − 𝑞2)
,

𝐿𝑡 =
𝐿𝐶𝐿 − (∑ 𝑤𝑡

𝑡
𝑖=2 𝑇𝑡−𝑖+1 + (1 − ∑ 𝑤𝑖

𝑡
𝑖=1 )𝑍0

2)

(1 − 𝑞1)(1 − 𝑞2)
,

 

 

 

 

(2.21) 

where 𝑈1 =
𝑈𝐶𝐿−(1−𝑤1)𝑍0

2

(1−𝑞1)(1−𝑞2)
 and 𝐿1 = 

𝐿𝐶𝐿−(1−𝑤1)𝑍0
2

(1−𝑞1)(1−𝑞2)
.  

The plotting statistics 𝑇𝑡 are dependent on the control limits defined in (2.21). Hence, this dependency 

arises complexity to use the exact approach and obtain the closed-form expressions for the run length 

distribution. As an alternative, the joint distribution of a sequence of independent sample statistics  𝑇𝑖 

is considered and then compared with the limits defined in equation (2.21). Hence, the non-signaling 

event are equivalent to: 𝐴𝑖
𝑐 = [𝐿𝐶𝐿 < 𝑍𝑖

2 < 𝑈𝐶𝐿] ≡ [𝐿𝑖 < 𝑇𝑖 < 𝑈𝑖]. This implies that the calculation 

for the run length distribution depends on the distribution of the sample statistic 𝑇𝑖. 

The probability of run length equal to 1 is equivalent to: 

 

 

P[N = 1] = P[𝐴1] = 1 − P[𝐿1 < 𝑇1 < 𝑈1].  (2.22) 

By implementing the unconditional/conditional approach, the probability that the run length distribution 

is equal to n, i.e., P[𝑁 = 𝑛], can be written as: 

P[𝑁 = 𝑛] = P[{∩𝑖=1
𝑛−1  𝐴𝑖

𝑐} ∩ 𝐴𝑛] 

= P[∩𝑖=1
𝑛−1  {𝑇𝑖 ∈ (𝑈𝑖 , 𝐿𝑖) } ∩ {𝑍𝑛

2 ∉ (𝑈𝐶𝐿, 𝐿𝐶𝐿)}] 

= ∫ ∫ … ∫ P[{𝑍𝑛
2 ∉ (𝑈𝐶𝐿, 𝐿𝐶𝐿)} |  ∩𝑖=1

𝑛−1  {𝑇𝑖 ∈ (𝑈𝑖 , 𝐿𝑖) }]
𝑈𝑛−1
𝐿𝑛−1

𝑈2
𝐿2

𝑈1
𝐿1

 𝑔(𝑡1, 𝑡2, … , 𝑡𝑛−1)𝑑𝑡𝑛𝑑𝑡𝑛−1…𝑑𝑡1  

In Section 2.3, it is assumed that the observations are independent, which results in the independency 

of the sample statistics 𝑇𝑖. Hence, the joint distribution of 𝑇1, 𝑇2, … . , 𝑇𝑛 can be written as 
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𝑔(𝑡1, 𝑡2, … , 𝑡𝑛) = ∏ 𝑔(𝑡𝑖)
𝑛
𝑖=1 , when 𝑇𝑖 ∼ 𝐺𝜽 (∀ 𝑖), and for some continuous c.d.f. 𝐺𝜽 . Hence, 

P[𝑁 = 𝑛] can be written as: 

P[𝑁 = 𝑛] = ∫ ∫ … ∫ P[{𝑍𝑛
2 ∉ (𝑈𝐶𝐿, 𝐿𝐶𝐿)} |  ∩𝑖=1

𝑛−1  {𝑇𝑖 ∈ (𝑈𝑖 , 𝐿𝑖) }]
𝑈𝑛−1
𝐿𝑛−1

𝑈2
𝐿2

𝑈1
𝐿1

 ∏ 𝑔(𝑡𝑖)
𝑛−1
𝑖=1 𝑑𝑡𝑛𝑑𝑡𝑛−1…𝑑𝑡1, 

where g(.) is the probability density function of the plotting statistic. 

This approach requires calculation of all the sample statistics 𝑇𝑖 values so that 𝑇𝑖 ∈ (𝑈𝑖 , 𝐿𝑖), ∀𝑖 and as 

the number of run length i.e., n increases, the computation of the integrals becomes cumbersome and 

time-consuming.  

An alternative approach would be to write the run length probability as follows: 

P[𝑁 = 𝑛] = P[{∩𝑖=1
𝑛−1  𝐴𝑖

𝑐} ∩ 𝐴𝑛] = P[∩𝑖=1
𝑛−1 𝐴𝑖

𝑐] − P[{∩𝑖=1
𝑛−1 𝐴𝑖

𝑐} ∩ 𝐴𝑛
𝑐 ]  

= P[∩𝑖=1
𝑛−1 𝐴𝑖

𝑐] − P[∩𝑖=1
𝑛 𝐴𝑖

𝑐]. 

Therefore, for 𝑛 = 2,3,…: 

 

 

P[𝑁 = 𝑛] = P[∩𝑖=1
𝑛−1  𝐴𝑖

𝑐] − P[∩𝑖=1
𝑛 𝐴𝑖

𝑐]; (2.23) 

where 𝐴𝑖
𝑐 is the non-signalling event at the 𝑖𝑡ℎ sample, and is defined as 𝐴𝑖

𝑐 = [𝐿𝑖 < 𝑇𝑖 < 𝑈𝑖]. 

Equation (2.23) is equivalent to: 

 

 

P[𝑁 = 𝑛] = 𝐼𝑛−1 − 𝐼𝑛, 𝑛 = 2,3,… (2.24) 

where 𝐼𝑛 = P[∩𝑖=1
𝑛  𝐴𝑖

𝑐] and P[𝑁 = 1] = P[𝐴1] = 1 − 𝐼1. 

In Section 2.3, it is assumed that the observations are independent, which results in the independency 

of the sample statistics 𝑇𝑖. Hence, the joint distribution of 𝑇1, 𝑇2, … . , 𝑇𝑛 can be written as 

𝑔(𝑡1, 𝑡2, … , 𝑡𝑛) = ∏ 𝑔(𝑡𝑖)
𝑛
𝑖=1 , when 𝑇𝑖 ∼ 𝐺𝜽 (∀ 𝑖), and for some continuous c.d.f.  𝐺𝜽 . 

Therefore, 

 

 

𝐼𝑛 = P[∩𝑖=1
𝑛 𝐴𝑖

𝑐] = ∫ ∫ … ∫ ∏ 𝑔(𝑡𝑖)
𝑛
𝑖=1

𝑈𝑛
𝐿𝑛

𝑈2
𝐿2

 𝑑𝑡𝑖
𝑈1
𝐿1

. (2.25) 

The expression in equation (2.25) implies that for any p.d.f. 𝑔(𝑡𝑖), a DGWMA control chart can be 

designed. However, the design for the DGWMA chart depends on the availability of an efficient algo-

rithm, which can evaluate expression (2.25) without any simulation involved. 

The ARL can be obtained as follows: 

𝐴𝑅𝐿 = 𝐸(𝑁) = ∑ 𝑛 P[𝑁 = 𝑛]∞
𝑛=1   

= P[𝑁 = 1] + ∑ 𝑛 P[𝑁 = 𝑛]∞
𝑛=2  = P[𝐴1] + ∑ 𝑛(𝐼𝑛−1 − 𝐼𝑛)

∞
𝑛=2 = 1 − 𝐼1 + 𝐼1 + ∑ 𝐼𝑛

∞
𝑛=1   

= 1+∑ 𝐼𝑛
∞
𝑛=1 . 
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The variance for the run length distribution denoted as VRL can be obtained as: 

VRL = 𝑣𝑎𝑟(𝑁) = 𝐸(𝑁2) − (𝐸(N))2 

= ∑ 𝑛2 P[𝑁 = 𝑛]∞
𝑛=1 − 𝐴𝑅𝐿2 = P[𝑁 = 1] + ∑ 𝑛2 P[𝑁 = 𝑛]∞

𝑛=2 − 𝐴𝑅𝐿2  

= 1 − 𝐼1 + ∑ (𝑛(𝑛 − 1) + 𝑛) P[𝑁 = 𝑛]∞
𝑛=2 − 𝐴𝑅𝐿2  

= 1 − 𝐼1 + ∑ 𝑛(𝑛 − 1)(𝐼𝑛−1 − 𝐼𝑛)
∞
𝑛=2 + ∑ 𝑛(𝐼𝑛−1 − 𝐼𝑛)

∞
𝑛=2 − 𝐴𝑅𝐿2  

= 1 + 2𝐼1 + 2∑ 𝑛𝐼𝑛
∞
𝑛=2 + ∑ 𝐼𝑛

∞
𝑛=1 − 𝐴𝑅𝐿2   

= 1 + 2∑ 𝑛𝐼𝑛
∞
𝑛=1 + ∑ 𝐼𝑛

∞
𝑛=1 − 𝐴𝑅𝐿2  

= 1 + ∑ (2𝑛 + 1)𝐼𝑛
∞
𝑛=1 − 𝐴𝑅𝐿2 . 

The p.d.f. of the run length N, denoted by  𝐹𝑁(𝑛) for 𝑛 = 1,2,3, …, can be obtained as follows: 

𝐹𝑁(𝑛) = ∑ P[𝑁 = 𝑖]𝑛
𝑖=1 = P[𝑁 = 1] + ∑ (𝐼𝑖−1 − 𝐼𝑖)

𝑛
𝑖=2   

= 1 − 𝐼1 + (𝐼1 − 𝐼2) + (𝐼2 − 𝐼3) + ⋯+ (𝐼𝑛−1 − 𝐼𝑛) = 1 − 𝐼𝑛. 

Hence, the closed-form expressions for the ARL, VRL, SDRL, and 𝐹𝑁(𝑛) for the DGWMA chart ob-

tained from the exact approach are: 

ARL = 1+∑ 𝐼𝑛
∞
𝑛=1     (2.26) 

VRL = 1 + ∑ (2𝑛 + 1)𝐼𝑛
∞
𝑛=1 − 𝐴𝑅𝐿2   (2.27) 

SDRL =√1 + ∑ (2𝑛 + 1)𝐼𝑛
∞
𝑛=1 − 𝐴𝑅𝐿2   (2.28) 

            𝐹𝑁(𝑛) = 1 − 𝐼𝑛, for 𝑛 = 1,2, …   (2.29) 

where 𝐼𝑛 is defined in equation (2.25). 

Although the properties of the run length distribution are provided in terms of closed-form expressions, 

the evaluation of these equations is cumbersome and time-consuming due to the following reasons: 

(i) In equation (2.25), the lower bounds in the integrals are functions of the preceding statistics 

𝑋1, 𝑋2, … , 𝑋𝑖−1, and mutually dependent, which makes the exact method a computationally in-

efficient approach. 

(ii)  Since calculating equations (2.26) to (2.29) depends on finding the integrals in (2.25), the cal-

culation process is complex. 

(iii) As 𝑛 increases, the number of integrals in equation (2.25) that needs to be evaluated increases. 

As a result, a high-dimensional integral equation need to be evaluated and the computation 

process becomes time-consuming and intensive. 



 70 

However, by using the Mathematica software package and by assuming a specific type of distribution, 

equation (2.25) can be evaluated and calculated for 𝑛 = 1,2,3,4. The results are presented in Chapter 3 

for the proposed DGWMA-TBE chart under the gamma distribution. 

2.6.2 Markov chain approach 

Brook and Evans (1972) proposed the Markov chain approach for the first time in the SPC literature. 

For the EWMA chart, Lucas and Saccucci (1990) implemented the Markov chain approach for the 

normal distribution. This approach is easily adjustable to various time-weighted charts exist in the lit-

erature and simplify solutions to the particular cases to which they are applied. The complexities of 

implementing the Markov chain method for the DGWMA chart have been raised and noted by Sheu 

and Hsieh (2009), Chiu and Lu (2015), amongst others. This section includes a brief discussion on the 

general steps involved in applying the Markov chain method for the DGWMA chart, as well as for its 

special case, the DEWMA chart.  

Fu and Lou (2003) provided a detailed discussion on the general results of the Markov chain approach. 

The approach entails that the run length can be written in terms of a finite Markov chain. As a result, 

the run length random variable N can be demonstrated by the probability that the Markov chain resides 

in a specific subset S that belongs to a state-space (denoted by Ω), and M that is a transition probability 

matrix. The state-step defined as the set of values that the random variable N can take, consists of two 

types of states – (i) 𝜈 non-absorbing states (i.e., the region between the control limits); and (ii) one 

absorbing state (i.e., the region on or above/below the control limits) – so that in total there are 𝜈 + 1 

states. The transition probability matrix M is defined as: 

𝑴(𝜈+1)×(𝜈+1) = (
𝑸𝜈×𝜈 𝑞𝜈×1
01×𝜈 𝟏𝒗×𝟏

). 

The expressions for the 𝐴𝑅𝐿, SDRL, and 𝐹𝑁(𝑛), based on the theorems from Fu and Lou (2003) are as 

follows: 

𝐴𝑅𝐿 = 𝝃(𝑰 − 𝑸)−1𝟏                                             (2.30) 

𝑆𝐷𝑅𝐿 = √𝝃(𝑰 + 𝑸)(𝑰 − 𝑸)−2𝟏 – 𝐴𝑅𝐿2        (2.31) 

𝐹𝑁(𝑛) = 1 − 𝝃𝑸𝒏𝟏, for 𝑛 = 1,2, … ,  (2.32) 

where the sub-matrixx𝑸𝜈×𝜈 = 𝑸 is called the essential transient probability sub-matrix with order 𝜈, 

𝑞𝜈×1 is a column vector defined as 𝑞𝜈×1 = (𝑰𝜈 − 𝑸𝜈×𝜈)𝟏𝜈×1, where 𝟏𝜈×1 is a unit vector, 𝑰𝜈 is an 

identity matrix with order 𝜈, 01×𝜈 is a row vector, and  𝝃1×𝜈 = 𝝃 = (1,0,0, … ,0) is the initial distribu-

tion. 
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The procedures of constructing the state-space Ω and the essential transition probability sub-matrix  

𝑸𝜈×𝜈 are the fundamental parts and main objectives of employing the Markov chain approach to cal-

culate the run length distribution.  

(i) DGWMA chart 

 Each plotting statistic 𝑍𝑡
2 for the DGWMA chart depends on all the previous plotting statistics. From 

equation (2.10) the plotting statistic is: 

 

 

𝑍𝑡
2 = ∑ 𝑤𝑡

𝑡
𝑖=1 𝑇𝑡−𝑖+1 + (1 − ∑ 𝑤𝑖

𝑡
𝑖=1 )𝑍0

2   for    𝑡 = 1,2,3, … ,   

(2.33) 

where 𝑤𝑡 = ∑ (𝑞1
(𝑗−1)𝛼1

− 𝑞1
𝑗𝛼1
)𝑡

𝑗=1 (𝑞2
(𝑡−𝑗)𝛼2

− 𝑞1
(𝑡−𝑗+1)𝛼2

), are the weights. 

The plotting statistic for different values of 𝑡 can be expanded as follows: 

𝑍1
2 = (1 − 𝑞1)(1 − 𝑞2)𝑇1 + (𝑞1 + 𝑞2 − 𝑞1𝑞2)𝑍0

2 

𝑍2
2 = (1 − 𝑞1)(𝑞2 − 𝑞2

2𝛼2)𝑇2 + (𝑞1 − 𝑞1
2𝛼1)(1 − 𝑞2)𝑇1 + (1 − 𝑞1 + 𝑞2

2𝛼2 + 𝑞1
2𝛼1 − 𝑞2𝑞1

2𝛼1 +

2𝑞1𝑞2 − 𝑞2)𝑍0
2                                   

𝑍3
2 = (1 − 𝑞1)(𝑞2

2𝛼2 − 𝑞2
3𝛼2)𝑇3 + (𝑞1 − 𝑞1

2𝛼1)(𝑞2 − 𝑞2
2𝛼2)𝑇2 + (𝑞1

2𝛼1 − 𝑞1
3𝛼1)(1 − 𝑞2)𝑇1 + (1 −

𝑞2
2𝛼2 + 𝑞2

3𝛼2 + 𝑞1𝑞2
2𝛼2 − 𝑞1𝑞2

3𝛼2 − 𝑞1𝑞2 + 𝑞1𝑞2
2𝛼2 + 𝑞2𝑞1

2𝛼1 − 𝑞1
2𝛼1𝑞2

2𝛼2 − 𝑞1
2𝛼1 + 𝑞2

2𝛼2 + 𝑞1
3𝛼1 −

𝑞2𝑞1)𝑍0
2  

. 

. 

. 

𝑍𝑡
2 = (1 − 𝑞1) (𝑞2

(𝑡−1)𝛼2
− 𝑞2

𝑡𝛼2) 𝑇𝑡 +⋯+ (𝑞1
(𝑡−1)𝛼1

− 𝑞1
𝑡𝛼1) (1 − 𝑞2)𝑇1 + (1 − 𝑞2

(𝑡−1)𝛼2
+ 𝑞1

𝑡𝛼1 +

𝑞2𝑞1
(𝑡−1)𝛼1

− 𝑞1𝑞2
𝑡𝛼2 + 𝑞2

𝑡𝛼2) 𝑍0
2.                                                                                                     (2.34)                                                                       

 

The (𝑡 + 1)𝑡ℎ plotting statistic is given by: 

 

 

𝑍𝑡+1
2 = (1 − 𝑞1) (𝑞2

𝑡𝛼2 − 𝑞2
(𝑡+1)𝛼2

) 𝑇𝑡+1 +⋯+ (𝑞1
𝑡𝛼1 − 𝑞1

(𝑡+1)𝛼1
) (1 − 𝑞2)𝑇1 + (1 − 𝑞2

𝑡𝛼2 + 𝑞1
(𝑡+1)𝛼1

+

𝑞2𝑞1
𝑡𝛼1 − 𝑞1𝑞2

(𝑡+1)𝛼2
+ 𝑞2

(𝑡+1)𝛼2
)𝑍0

2 . 

 

 

 (2.35) 

The first 𝑡 equations in (2.34) can be written in a matrix format as follows: 
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                                                  �̰�𝑡
2 = 𝓐𝑡  �̰�𝑡 + 𝑍0

2 �̰�𝑡;   

  (2.36) 

where �̰�𝑡
2 is representing a column vector for plotting statistics (order 𝑡), i.e.,  �̰�𝑡

2 = (𝑍1
2, 𝑍2

2, … , 𝑍𝑡
2)𝑇, 

�̰�𝑡 = (𝑇1, 𝑇2, 𝑇3, … , 𝑇𝑡)
𝑇 is a column vector for the test statistics (order 𝑡), �̰�𝑡 = (𝑞1 + 𝑞2 − 𝑞1𝑞2, 1 −

𝑞1 + 𝑞2
2𝛼2 + 𝑞1

2𝛼1 − 𝑞2𝑞1
2𝛼1 + 2𝑞1𝑞2 − 𝑞2, … ,1 − 𝑞2

𝑡𝛼2 + 𝑞1
(𝑡+1)𝛼1

+ 𝑞2𝑞1
𝑡𝛼1 − 𝑞1𝑞2

(𝑡+1)𝛼2
+

𝑞2
(𝑡+1)𝛼2

)
𝑇

, and 𝓐𝑡  is a (𝑡 × 𝑡) lower triangular matrix given by: 

𝓐𝑡 =

(

 
 
 

(1 − 𝑞1)(1 − 𝑞2)

(𝑞1 − 𝑞1
2𝛼1)(1 − 𝑞2)

(𝑞1
2𝛼1 − 𝑞1

3𝛼1)(1 − 𝑞2)

0
(1 − 𝑞1)(𝑞2 − 𝑞2

2𝛼2)

(𝑞1 − 𝑞1
2𝛼1)(𝑞2 − 𝑞2

2𝛼2)

0
0

(1 − 𝑞1)(𝑞2
2𝛼2 − 𝑞2

3𝛼2)
⋯

0
0
0

                       ⋮ ⋱ ⋮

(𝑞1
(𝑡−1)𝛼1 − 𝑞1

𝑡𝛼1) (1 − 𝑞2) 𝑞(𝑡−2)
𝛼
− 𝑞(𝑡−1)

𝛼
⋯ (1 − 𝑞1)(1 − 𝑞2))

 
 
 

.  

The (𝑡 + 1)𝑡ℎ plotting statistic defined in equation (2.35) can be rewritten as: 

𝑍𝑡+1
2 = (1 − 𝑞1) (𝑞2

𝑡𝛼2 − 𝑞2
(𝑡+1)𝛼2

) 𝑇𝑡+1 + ((𝑞1
𝑡𝛼1 − 𝑞1

(𝑡+1)𝛼1
) (1 − 𝑞2), … , (𝑞2

𝑡𝛼2 −

𝑞2
(𝑡+1)𝛼2

) (𝑞1
𝑡𝛼1 − 𝑞1

(𝑡+1)𝛼1
)) �̰�𝑡 + (1 − 𝑞2

𝑡𝛼2 + 𝑞1
(𝑡+1)𝛼1

+ 𝑞2𝑞1
𝑡𝛼1 − 𝑞1𝑞2

(𝑡+1)𝛼2
+ 𝑞2

(𝑡+1)𝛼2
) 𝑍0

2.  

Equation (2.36) is equivalent to: 

�̰�𝑡 = 𝓐𝑡
−1 (�̰�𝑡

2 − 𝑍0
2 �̰�𝑡). 

By replacing the above equation into 𝑍𝑡+1
2  in equation (2.35), the result is as follows: 

𝑍𝑡+1
2 = (1 − 𝑞1) (𝑞2

𝑡𝛼2 − 𝑞2
(𝑡+1)𝛼2

) 𝑇𝑡+1 + �̰�𝑡  𝓐𝑡
−1 (�̰�𝑡

2 − 𝑍0
2 �̰�𝑡) + (1 − 𝑞2

𝑡𝛼2 + 𝑞1
(𝑡+1)𝛼1

+

𝑞2𝑞1
𝑡𝛼1 − 𝑞1𝑞2

(𝑡+1)𝛼2
+ 𝑞2

(𝑡+1)𝛼2
)𝑍0

2 ;                                                                             

(2.37) 

where �̰�𝑡 = ((𝑞1
𝑡𝛼1 − 𝑞1

(𝑡+1)𝛼1
) (1 − 𝑞2), … , (1 − 𝑞1)(1 − 𝑞2)) is a row vector of order 𝑡. 

From equations (2.36) and (2.37), it can be observed that for each plotting statistic, the order of depend-

ency varies as a new observation enters the process. The order of dependency is (𝑡 − 1) for 𝑍𝑡
2, whereas 

for 𝑍𝑡+1
2  the order is 𝑡. Hence, for the DGWMA plotting statistics, the order of dependency is varying, 

and all plotting statistics contain information from the initial stage of the process. Thus, if changes are 

made at the starting point of the process, all the future plotting statistics are affected accordingly. In 

other words, from the practical point of view this implies that the DGWMA chart combines information 

from the past and present which increases the sensitivity of the chart in detecting tiny shifts in the 

process. 
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The order of dependency is varying for the DGWMA chart, and as a result the charting statistic cannot 

be viewed as a first-order Markov chain. Hence, the derivation of the closed-form expressions becomes 

cumbersome. Further to this, Chakraborty et al. (2017) concluded the same outcome for the GWMA 

chart which is a limiting case of the DGWMA chart. 

Alternatively, in order to make the Markov chain approach more convenient and obtain the closed-form 

expressions for the ARL and other properties of the run length distribution, the special case of the 

DGWMA chart, the DEWMA chart, will be discussed next. 

(ii) DEWMA chart  

The Markov chain approach can be considered for Case 1 and Case 2 of the DEWMA chart, see Figure 

2.1. However, since Case 1 is a generalized form of the DEWMA chart involving two smoothing pa-

rameters, i.e., 1 and 2, the Markov chain methodology is discussed for this case. Note that, the results 

can be obtained for Case 2 in a similar manner.  

The run length distribution of a DEWMA chart can be approximated by the Markov chain approach, 

which entails that the plotting statistic – i.e., 𝑍𝑡 defined as 𝑍𝑡 = 2𝐶𝑡 + (1 − 2)𝑍𝑡−1 for 𝑡 ≥ 1, where 

𝐶𝑡 = 1𝑇𝑡 + (1 − 1)𝐶𝑡−1 for 𝑡 ≥ 1 – can be considered as a first-order Markov chain with Ω as a 

state-space, and a transition probability matrix 𝑴. Since the present value of the plotting statistics 𝑍𝑡 

depends on the current plotting statistic 𝐶𝑡 and one previous plotting statistic 𝑍𝑡−1, it is possible to 

implement the Markov chain approach. A crucial point that needs to be employed first is to discretize 

the range of the plotting statistic within the control limits. As a result, each subinterval can be taken as 

a state of the Markov chain, since the plotting statistics are generally continuous random variables. For 

a two-sided DEWMA chart, half of the width for the subinterval is defined as 𝛾 = (𝑈𝐶𝐿 − 𝐿𝐶𝐿)/2𝜈, 

where 𝜈 is defined as the number of subintervals between the control limits. The area outside the control 

limits represents the absorbing state (one absorbing state), while each subinterval within the control 

limits is called a non-absorbing state (𝜈 transient states), so that there are 𝜈 + 1 states in total. The 

process is said to be OOC when the plotting statistic is in an absorbing state, while the process is de-

clared to be IC if the plotting statistic is in a non-absorbing state. The midpoint of the 𝑖𝑡ℎ subinterval 

denoted by 𝑆𝑖 is defined as 𝑆𝑖 = 𝐿𝐶𝐿 + (2𝑖 − 1) 𝛾 for 𝑖 = 1, 2, … , 𝑣.  

The 𝑡𝑡ℎ plotting statistic is in state 𝑖 if 𝑍𝑡 is in the 𝑖𝑡ℎ subinterval. The transition probability 𝑝𝑖𝑗 is 

defined as 𝑝𝑖𝑗 = 𝑃[𝑆𝑗 − 𝛾 < 𝑍𝑡 < 𝑆𝑗 + 𝛾|𝑍𝑡−1 = 𝑆𝑖] (see Evan and Brooks (1972)). For the DEWMA 

chart, the transition probability can be written as: 

𝑃[𝑆𝑗 − 𝛾 < 𝑍𝑡 < 𝑆𝑗 + 𝛾|𝑍𝑡−1 = 𝐶𝑡−1 = 𝑆𝑖] 

= 𝑃[𝑆𝑗 − 𝛾 < 2𝐶𝑡 + (1 − 2)𝑍𝑡−1 < 𝑆𝑗 + 𝛾|𝑍𝑡−1 = 𝐶𝑡−1 = 𝑆𝑖]  
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= 𝑃[𝑆𝑗 − 𝛾 < 2𝐶𝑡 + (1 − 2)𝑆𝑖 < 𝑆𝑗 + 𝛾|𝑍𝑡−1 = 𝐶𝑡−1 = 𝑆𝑖]  

= 𝑃[𝑆𝑗 − 𝛾 < 2(1𝑇𝑡 + (1 − 1)𝐶𝑡−1) + (1 − 2)𝑆𝑖 < 𝑆𝑗 + 𝛾|𝑍𝑡−1 = 𝐶𝑡−1 = 𝑆𝑖]  

= 𝑃[𝑆𝑗 − 𝛾 < 12𝑇𝑡 + 2(1 − 1)𝑆𝑖 + (1 − 2)𝑆𝑖 < 𝑆𝑗 + 𝛾|𝑍𝑡−1 = 𝐶𝑡−1 = 𝑆𝑖]  

= 𝑃 [
𝑆𝑗−𝛾−2(1−1)𝑆𝑖−(1−2)𝑆𝑖

12
< 𝑇𝑡 <

𝑆𝑗+𝛾−2(1−1)𝑆𝑖−(1−2)𝑆𝑖

12
]  

= 𝑃 [
𝑆𝑗−𝛾−𝑆𝑖(1−12)

12
< 𝑇𝑡 <

𝑆𝑗+𝛾−𝑆𝑖(1−12)

12
]  

= 𝐹𝐺 (
𝑆𝑗+𝛾−𝑆𝑖(1−12)

12
) − 𝐹𝐺 (

𝑆𝑗−𝛾−𝑆𝑖(1−12)

12
).                                      (2.38) 

The above expression can be calculated and evaluated for any c.d.f. 𝐹𝐺 . 

The performance of the Markov chain approach hinges on the number of transient states, and the larger 

its value, the smaller the number of transient states of 𝛾 (i.e., the width for the subinterval). As a result, 

the plotting statistic falls closer to the midpoint. For the Markov chain approach, when the number of 

subintervals is sufficiently large, it provides an effective method to accurately approximate the run 

length properties of a chart. Yu (2007) mentioned that in practice, values of 𝜈 around 100 yield satis-

factory approximations. However, the author compared simulation results with the Markov chain ap-

proach and suggest that the discrepancies between values obtained from these approaches can be some-

what large for 𝜈 ≤ 100. For larger values of 𝜈, i.e., greater than 100, the discrepancies are small and 

particularly small when an even larger value, such as 𝜈 = 1001, is employed. However, note that in 

principle, taking larger values of subintervals should result in more accurate results while implementing 

the Markov chain approach, but in doing so, some run length characteristics could not be computed 

within a practical period of time. For more information, the interested reader is referred to Graham and 

Chakraborti (2019) and references therein. The first step is to obtain the transition probabilities, and 

after this the essential transition probability matrix of order 𝜈 can be constructed and is defined as 

𝑸𝜈×𝜈 = ((𝒑𝒊𝒋)). A submatrix of the transition probability matrix 𝑴(𝜈+1)×(𝜈+1) is called an essential 

transition probability matrix that contains the transition probabilities for the non-absorbing states. 

The ARL, SDRL, and the c.d.f. of the run length N for the DEWMA chart can be obtained by imple-

menting expressions (2.30), (2.31) and (2.32), respectively. 

2.6.3 Monte Carlo simulation approach 

The advent of more complicated control charts – e.g., the DGWMA chart – and the cumbersome cal-

culation of the run length distribution by implementing the exact approach and/or the Markov chain 

approach, has necessitated the application of the Monte Carlo simulation. The computational time plays 

a major role in designing and implementing a control chart. In practice, a shorter computational time 

chart in most cases due to various reasons. In this thesis, 10,000 iterations are used to calculate the run 

length and its properties for the Monte Carlo simulation. The reason behind choosing this specific value 

is that without losing much information, the computational time is reduced. More information regarding 
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the number of simulations is provided in Chapter 3 (see Section 3.6.4), where a comparative study is 

conducted to weigh up the IC ARL and SDRL values for 10,000 and 100,000 simulations. Each simula-

tion for the results provided in Chapter 3 and Chapter 4 were run with 10,000 iterations, and given an 

IC ARL (𝐴𝑅𝐿0) of 370, the approximate standard error of the simulation is thus 370/√10,000 ≅ 3.7.   

The Monte Carlo simulation algorithm differs for varying cases (Case K versus Case U) in terms of the 

parameter(s) of interest in the process. The simulation’s algorithm for Case K is described first, and 

thereafter the algorithm for Case U can easily be modified.  

The Monte Carlo simulation algorithm for the DGWMA chart (Case K) is described as follows: 

(i) Specify a process c.d.f. 𝐹𝑋(𝑥), the sample size 𝑛, the IC distribution parameter(s) of inter-

est, the magnitude of the shift denoted by 𝛿, and the chart design parameters 

(𝑞1, 𝑞2, 𝛼1, 𝛼2, 𝐿). 

(ii) 𝑍0
2 is equivalent to the IC expected value of the statistic under consideration – i.e., 𝑍0

2 =

𝐸(𝑇𝑖|𝐼𝐶) – and is known as the starting value. 

(iii) Calculate the quantity 𝑄′ = lim
𝑡→∞

𝑄𝑡
′ = lim

𝑡→∞
∑ 𝑤𝑖

2𝑡
𝑖=1  by considering a large value for 𝑡 given 

the combination of parameters (see Table 2.1). Then, calculate the control limits (exact or 

steady-state) according to equations (2.13) and/or (2.14). 

(iv) The plotting statistic is calculated according to equation (2.10) with the 𝑍0
2 = 𝐸(𝑇𝑖|𝐼𝐶). 

(v) The run length is incremented if the plotting statistic calculated in step (iv) is within the 

control limits worked out in step (iii) – i.e., 𝐿𝐶𝐿 < 𝑍𝑡
2 < 𝑈𝐶𝐿. 

(vi) Steps (iii) to (v) are repeated until a signal is given (OOC state), which is 𝑍𝑡
2 ≤ 𝐿𝐶𝐿 or 

𝑍𝑡
2 ≥ 𝑈𝐶𝐿, and then the run length is recorded. 

(vii) For a large number of iterations (i.e., 10,000), steps (i) to (vi) are repeated. 

The simulation algorithm for Case U differs in step (ii) since the plotting statistic 𝑍𝑡
2 becomes a random 

variable. As a result, the estimated control limits are required, which are obtained from a reference 

sample in Phase I (retrospective phase). For more information on Case U and an overview of Phase I 

control procedures, refer to Chakraborti et al. (2008). 

The Monte Carlo simulation algorithm for the DGWMA chart (Case U) is as follows: 

(a) Specify a process c.d.f. 𝐹𝑋(𝑥), the sample size 𝑛, the reference sample size 𝑚, the IC distribu-

tion parameter of interest, the magnitude of the shift denoted by 𝛿, and the chart design param-

eters (𝑞1, 𝑞2, 𝛼1, 𝛼2, 𝐿). 
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(b) From the underlying process distribution 𝐹𝑋(𝑥), a Phase I reference sample is drawn, and then 

the process distribution parameter(s) of interest is estimated by using the Phase I reference 

sample. 

(c) Steps (i) to (vii) of the simulation algorithm for Case K are performed as mentioned above, with 

the only difference being that the estimation of the process distribution parameter(s) is used in 

the calculation, which results in an estimated control limit. 

(d) The ARL or other characteristics of a DGWMA chart for Case U are obtained by repeating steps 

(a) and (c). 

Note that, the Monte Carlo simulation algorithm provides a general guideline and platform for practi-

tioners, and since the DGWMA chart is a generalized type of time-weighted chart, which includes the 

GWMA, the EWMA, and Shewhart-type charts as limiting cases, and the DEWMA chart as a special 

case, the same algorithm can also be applied for these charts by modifying the algorithms discussed 

above. 

2.7 Concluding remarks 

An overview for the generalized type of time-weighted (memory-type or memory-based) chart known 

as the DGWMA chart is discussed in detail. The necessary preliminaries and statistical framework for 

the construction of this chart as well as its properties – e.g., the plotting statistic and control limits (exact 

and steady-state) – are provided and investigated. A brief discussion in terms of the exact and steady-

state limits are also provided. The limiting cases of the DGWMA chart, which includes the GWMA, 

EWMA, and Shewhart-type charts as well as the special case which is the DEWMA chart (Case 1 and 

Case 2) are all discussed. The general behavior of the weighting mechanism for the time-weighted 

charts are investigated in terms of graphical representation. As a result, it is concluded that the shape of 

the weights has a direct impact on the performance of a chart in detecting different types of shifts in the 

process. Three main procedures exist in the SPC literature to calculate and evaluate the run length dis-

tribution are discussed and the pros and cons for each approach are provided. These methods include 

(i) the exact approach, (ii) the Markov chain approach, and (iii) the Monte Carlo simulation. The closed-

form expressions for the ARL and other properties of the run length distribution, i.e., SDRL, VRL, etc. 

for the DGWMA chart are obtained. The obstacles and challenges of obtaining the closed-form expres-

sions for the DGWMA chart through the Markov chain approach are highlighted. Furthermore, since 

the DEWMA chart can be viewed as a first-order Markov chain, a detailed description, and the neces-

sary steps for implementing the Markov chain for this chart are provided. The Monte Carlo simulation 

is explained and the algorithms for Case K and Case U are also provided for the DGWMA chart. 
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3.1 Introduction 

High-yield processes are in more demand nowadays since the accessibility to new technology for pro-

cess monitoring purposes is increasing. In general, an item that does not comply with standards is known 

as a nonconforming or defective item. For high-yield processes, the occurrence rate is usually very low 

– i.e., one in a million or one in a billion (for instance, in manufacturing processes like airplane gener-

ators, automobile engines, etc., see Ali et al. (2016) and references therein). In these processes, shifts 

are usually tiny, but may lead to large financial losses due to the nature of the process.  

Shewhart-type attributes control charts use the present information of the process and ignore the past 

information. As a result, these types of charts are less sensitive and ineffective in detecting small or tiny 

changes, but highly sensitive and effective when it comes to large shifts in the process. To overcome 

this shortcoming, the recommendation is to monitor the time between events (TBE), which observes 

the inter-arrival times of nonconforming items. As in the case of a high-yield process, where the failure 

rate is very low, TBE charts are effective and efficient. The Shewhart-type C-chart or U-chart monitor 

the proportion or number of occurrences within a specific sampling interval, whereas TBE charts track 

the inter-arrival time between successive occurrences of events.  

The underlying assumption in most TBE chart is the exponential data-generating process of the inter-

arrival time. However, numerous researchers revealed that in-control (IC) average run length of the 

TBE charts for the exponential distribution does not reach its maximum level. This type of behavior is 

known as biasness of a control chart. To circumvent this bias, a one-sided chart based on the gamma 

distribution has been considered as an alternative.  

SPC researchers recommend the use of time-weighted (memory-type or memory-based) control charts 

to increase the sensitivity of a chart in detecting small or tiny shifts in the process. A one-sided 

DGWMA chart (Case K and Case U) under the assumption of a gamma distribution for monitoring 

TBE data, known as the DGWMA-TBE chart, is proposed in this chapter. The proposed chart is effec-

tive in detecting a deterioration – i.e., when a sustained downward step shift in a process is investigated. 

The proposed one-sided DGWMA-TBE chart is run length unbiased, due to the consideration of a one-

Chapter 3 A Double Generally Weighted Moving 

Average control chart for time between events 
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sided chart constructed under the gamma distribution assumption. Furthermore, the DEWMA-TBE 

chart (Case K and Case U) chart is introduced and discussed in detail. The shape for the weights has a 

direct impact on improving the performance of a chart in detecting tiny shifts. Alternative discrete dis-

tributions are considered as the p.m.f. for the weights of the GWMA-TBE chart.  

The structure for this chapter is as follows: Section 3.2 provides a literature review for time-weighted 

TBE charts available in SPC. Section 3.3 presents the rationale for constructing the DGWMA-TBE 

chart and the methodologies used in the entire thesis are discussed in detail. In Section 3.5, the prelim-

inaries and statistical framework concerning the DGWMA-TBE chart are provided. Discussions on two 

types of the DGWMA-TBE chart and the DEWMA-TBE chart are supplied in Sections 3.6 and 3.7, 

respectively. The run length distribution and its calculation approaches are discussed in Section 3.8. 

The design and implementation of the proposed charts are presented in Section 3.9. The OOC perfor-

mance evaluation of the proposed charts and their counterparts are given for Case K in Section 3.10. 

The optimal design as well as the near optimal design are considered in Section 3.11. Alternative dis-

crete distributions for the weights of the GWMA-TBE chart are discussed in detail in Section 3.12. 

Also, the usefulness of these alternative discrete distributions for practitioners is discussed in detail. 

Further, the IC design and the OOC performance of the new charts are investigated as well. The imple-

mentation of the DGWMA-TBE and DEWMA-TBE charts in Phase II are provided in Sections 3.13 

and 3.14, respectively. Two illustrative examples in the form of simulated data and real-life data is 

provided in Section 3.15. 

3.2 Literature review 

There are numerous TBE charts available in the SPC literature. Note that, in this section, only research 

articles related to TBE charts are discussed. For an overview of time-weighted charts and their 

weighting schemes, the reader is referred to the literature review provided in Section 1.3. TBE charts 

ae introduced as alternatives for monitoring high quality processes when nonconforming items are 

rarely observed. The TBE charts observe the time between successive occurrences of events instead of 

monitoring the number of events occurring in a certain sampling interval. These charts can be used for 

monitoring any processes with TBE random variables that includes, time between medical errors (Dogu, 

2012), time between two consecutive radiation pulses (Lu et al., 2012) and time between asthma attacks 

(Alemi and Neuhauser, 2004).  

Calvin (1983) monitored the cumulative number of conforming items between two nonconforming 

items and developed the first TBE chart based on probability limits and further studied by Goh (1987). 

Scariano & Calzada (2003) proposed synthetic chart based on the exponential data and the zero-state 

ARL performance of the chart was studied using a direct formulation method. Authors concluded that 

the exponential EWMA and CUSUM charts are still superior to their proposed charts in detecting small 

shifts in the process, except for large shifts. Vardeman and Ray (1985) extended the work so-called 
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TBE charts for the CUSUM chart when the underlying process distribution is exponential. Authors 

showed that for the case of exponentially distributed observations, Page (1954) integral equation for the 

run length can be solved without resorting to approximations. Radaelli (1998) developed the one-sided 

and two-sided Shewhart TBE charts when the TBE is exponentially distributed. Gan (1998) developed 

an EWMA chart based on the inter-arrival times for monitoring the rate of occurrences of rare events. 

Benneyan (2001) developed Shewhart-TBE charts based on the negative binomial and geometric dis-

tributions. The TBE charts based on the CUSUM or EWMA charts have also been proposed to monitor 

both variables and attributes TBE data. These include the Poisson CUSUM and exponential CUSUM 

charts proposed by Vardeman and Ray (1985) and Gan (1994), respectively; geometric CUSUM and 

geometric EWMA charts proposed and discussed by Xie et al. (1998), Bourke (2001), Sun and Zhang 

(2000); exponential EWMA chart proposed by Gan (1998), exponential EWMA chart with estimated 

parameters by Ozsan et al. (2010) and the references therein. Gan (1998) indicated that based on a 

performance comparison, the exponential CUSUM and the exponential EWMA charts have similar 

performance. Xie et al. (2002) developed a TBE chart to monitor the TBE based on the exponential 

distribution. Borror et al. (2003) proposed an exponential CUSUM-TBE chart and investigated the ro-

bustness of the chart for the lognormal and Weibull distributions. Liu et al. (2006) compared the per-

formance of EWMA-TBE chart and the CUSUM-TBE chart when the underlying process distribution 

is exponential. Zhang et al. (2007) developed a gamma chart for monitoring the TBE. Pehlivan and 

Testik (2010) evaluated the sensitivity of lower-sided exponential EWMA charts in detecting mean 

shifts and a detailed analysis is carried out to evaluate the robustness of the chart when the distribution 

departs from the exponential distribution. The Markov chain approach is considered to compute the run 

length and its associated characteristics. Xie et al. (2010) discussed the development of TBE charts and 

their applications in health sector. Cheng and Chen (2011) proposed TBE charts with run rules. Shafae 

et al. (2014) assesses the performance of three CUSUM-TBE charts and the robustness of the ECUSUM 

chart is evaluated by a comparative study with two CUSUM charts that are designed based on the 

Weibull distribution. These two charts include the Weibull CUSUM (denoted by WCUSUM) that was 

discussed by Hawkins and Olwell (1998) and an adjusted ECUSUM chart. Chakraborty et al. (2016) 

developed a chart labelled as GWMA-TBE, constructed under the assumption of a gamma distribution 

when the parameters of the underlying distribution are known (Case K) and unknown (Case U). The 

Markov chain and the integral equation methodologies are considered for obtaining a closed-form ex-

pression for the run length distribution. 
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3.3 Motivation 

The inefficiency of Shewhart-type attributes charts, i.e., C-chart or U-chart, in detecting small or tiny 

shifts in the high-yield processes provide a platform for the construction of the TBE charts. These charts 

monitor the time between the consecutive occurrences of the failure. Ali et al. (2016) provided a detailed 

literature review related to the high-quality or TBE concept. Authors concluded that most of researchers 

in SPC arena constructed their proposed charts for TBE data based on the assumption that the process 

parameters are known (i.e., Case K). Hence, proposed charts with estimated parameters is carried out 

in this thesis to increase the competitiveness of DGWMA-TBE charts and to enhance the chart’s prac-

tical advantages.  

Also, the underlying assumption in most TBE charts is the exponential data-generating process of the 

inter-arrival times. Zhang et al. (2007) revealed that the IC average run length (ARL) of the TBE charts 

based on the exponential distribution only reaches a maximum once a shift in the process occurs. In the 

context of the SPC literature, this type of behavior is known as biasness of a control chart. Also, Knoth 

and Morais (2015) mentioned that, for example, the 𝑆2-chart recommended by most SPC textbooks, to 

effectively detect the occurrence of both increase and decrease in the standard deviation – is an ARL-

biased chart. To circumvent this bias, a one-sided chart based on the gamma distribution has been con-

sidered as an alternative for the inter-arrival times by Zhang et al. (2007). The performance of the 

Shewhart-type TBE chart for the gamma distribution is evaluated by Zhang et al. (2007). The authors 

revealed that the TBE charts constructed under the gamma distribution are more sensitive to small shifts 

than the TBE charts based on the exponential distribution. 

In the context of TBE, there is a need to develop new parametric DGWMA charts under different dis-

tributional assumptions. Utilization of the current and past information makes DGWMA charts more 

sensitive to small shifts in the process parameters. Limited number of researches is available in the 

literature to address the performance of DGWMA charts under positively skewed or heavy-tailed dis-

tributions, such as exponential, gamma and Weibull distributions. In real applications, the underlying 

process distribution is frequently not normally distributed.  

Further, an optimal design of a control chart is an important concept by itself when it comes to the 

performance of time-weighted charts. The weights behavior of time-weighted charts has a direct impact 

on the performance of a chart. The discrete Weibull distribution is the only distribution considered in 

SPC for the weights of the GWMA chart. A research question could be raised about alternative discrete 

distributions that can be substituted and considered to aid the optimal design and near optimal design 

of time-weighted charts. A response to this question is also provided in this chapter by considering other 

alternative distributions for the weights of the GWMA-TBE chart to aid the optimal design of a control 

chart. 
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Motivated by these findings and a growth in the development of the TBE charts, it is recommended that 

practitioners and quality managers conduct further research for DGWMA charts within the TBE do-

main, which is the main objective of the current chapter. Hence, a one-sided DGWMA-TBE chart is 

proposed in this chapter (to overcome the biasness issue) constructed under the gamma distribution 

assumption and for both Case K and Case U to assess the performance and behavior of the aforemen-

tioned chart to non-normal processes, i.e., positively skewed distributions. Moreover, the DEWMA-

TBE chart that is the special case of the proposed DGWMA-TBE chart is constructed in this chapter. 

The presented work for the DEWMA-TBE can be considered as the pioneering body that will cover 

Case K and Case U. A real-life example and a simulated dataset are considered for addressing the ap-

plication of the proposed chart to practitioners.  

3.4 Methodology 

We use a Markov chain approach, see Fu and Lou (2003), to derive the run length distribution and its 

associated characteristics for our proposed DGWMA-TBE and DEWMA-TBE charts. This approach 

provides a more unified and compact view of the derivations. Balakrishnan and Koutras (2004) stated 

that, “The Markov techniques possess a great advantage (over the classical combinatory methods) as 

they are easily adjustable to many problems; they often simplify the solutions to specific problems they 

are applied on and remain valid even for cases involving non-identical or dependent trials”. Also, a 

novel algorithm based on this approach is developed in R in order to provide a platform to compare the 

results with other approaches, e.g., the exact approach and the Monte Carlo simulation. The computa-

tional time (in seconds) is captured for the calculation of the run length. This methodology is novel in 

SPC for the DGWMA chart, since Sheu and Hsieh (2009), Lu (2018) and Chiu and Lu (2015) concluded 

that the implementation of the Markov chain approach encounter challenges such as the complexity to 

obtain expressions and the calculation is time-consuming. 

The exact approach utilizes mathematical derivations and combinatorics to obtain a closed-form ex-

pression of the run length distribution. This approach is commonly discarded in the literature for the 

DGWMA chart since the process of obtaining expressions is cumbersome or difficult to evaluate nu-

merically. However, we also use this methodology to obtain the closed-form expressions for the pro-

posed DGWMA-TBE chart. Further, by using integration and functional tools available in Mathemat-

ica, the run length is calculated for some arbitrary values and the computational is captured as well. 

We also developed a Monte Carlo simulation algorithm to calculate the run length distribution of the 

proposed charts. This approach has been considered as the only numerical method by various authors 

in the SPC literature for the DGWMA chart. The popularity of the Monte Carlo simulation stems from 
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the fact that computer simulations can almost always be implemented to calculate the run length distri-

bution fairly accurately, provided the simulation size is big enough.  

There is a lack of proper guidance to the practitioner on the design and implementation of time-weighted 

charts and more specifically the DGWMA chart. There is multiple combination of the chart parameters 

that will yield the desired result when the process is IC. A research question will be answered in this 

chapter is that which combination of the design parameters is able to detect a shift in the process 

quicker? This question is answered by using the optimal design and near optimal design concepts and 

assuming alternative discrete distributions for the weights of the GWMA-TBE chart without the imple-

mentation of the double exponential technique. 

3.5 The DGWMA-TBE chart 

3.5.1 Assumptions 

The inter-arrival times between consecutive failure rates are denoted by 𝑌𝑗~𝑖. 𝑖. 𝑑 𝐸𝑥𝑝(𝜃), 𝑗 = 1,2,3, …, 

and 1/𝜃 is the rate parameter. 𝑋 = ∑ 𝑌𝑗
𝑘
𝑗=1  denotes the sum of the inter-arrival times of 𝑘 consecutive 

failures. It can be shown that 𝑋 follows a 𝐺𝑎𝑚𝑚𝑎(𝑘, 𝜃) distribution with the p.d.f. given by: 

 𝑓(𝑥; 𝑘, 𝜃) =
𝑒−𝑥/𝜃𝑥𝑘−1

Γ(𝑘)𝜃𝑘
, 𝑥 > 0 , 𝜃 > 0 and  𝑘 > 0; 

 

(3.1) 

where 𝜃 and 𝑘 are the parameters known as the scale and shape parameters, respectively. 

The following points are crucial with respect to equation (3.1) and the strategies to construct the pro-

posed parametric chart:  

i. The properties of the continuous random variable 𝑋 are 𝐸(𝑋) = 𝑘𝜃 and 𝑣𝑎𝑟(𝑋) = 𝑘𝜃2, which are 

known as the expected value and variance, respectively. 

ii. In practice, the value for the shape parameter (𝑘 > 0) is selected by the practitioner, and in this 

research, is assumed to be known – i.e., 𝑘 = 1,2,3, …, where 𝑘 is the number of consecutive events. 

iii. By setting up the shape parameter 𝑘 = 1, equation (3.1) becomes an exponential distribution with 

the scale parameter 𝜃. Thus, the exponential distribution that monitors the time until one failure is 

regarded as a special case of the gamma distribution. 

iv. The gamma distribution with an integer shape parameter (𝑘) is also known as the Erlang distribu-

tion. The Erlang random variable describes the time interval between any event and the 𝑘𝑡ℎ fol-

lowing event. 

v. In general, two cases are considered in SPC depend on the parameter(s) of interest. If the scale 

parameter 𝜃 is unknown, then it is estimated from an IC reference sample from Phase I 
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(retrospective phase). If the scale parameter is known, 𝜃0 is assumed to denote the known value of 

the parameter 𝜃. The first case is known as the “standard unknown” (Case U), and the latter is 

called the “standard known” (Case K). In this chapter, both of these scenarios are considered for 

the DGWMA-TBE and DEWMA-TBE charts. 

vi. The main objective is to construct a one-sided generalized time-weighted control chart that moni-

tors the scale parameter 𝜃 to detect a deterioration in the process (i.e., a sustained downward step 

shift). The proposed time-weighted chart will be employed to detect small or tiny shifts in the 

process at the earliest possible time. 

3.5.2 Plotting statistics 

The DGWMA-TBE chart is a generalization of the GWMA-TBE chart proposed and studied by 

Chakraborty et al. (2016). The major advantage of the DGWMA-TBE chart over the GWMA-TBE 

chart is the implementation of dual or double exponential smoothing technique proposed by Brown 

(1962) which increases the DGWMA chart capability in detecting small shifts in the process (see, Sheu 

and Hsieh, 2009). The plotting statistic for the DGWMA-TBE chart can be obtained following a similar 

approach described in Section 2.3. Since the gamma distribution is considered in this chapter as the 

underlying process distribution, the starting values are defined as 𝑍0
2 = 𝑍1

2 =  𝐸(𝑋𝑖|IC) = 𝑘𝜃0. As a 

result, the plotting statistic for the DGWMA-TBE chart is defined as: 

 𝑍𝑡
2 = ∑ 𝑤𝑡

𝑡
𝑖=1 𝑋𝑡−𝑖+1 + (1 − ∑ 𝑤𝑖

𝑡
𝑖=1 )𝑘𝜃0     for  𝑡 = 1,2, …  ; 

 

(3.2) 

where 𝑤𝑡 = ∑ (𝑞1
(𝑗−1)𝛼1

− 𝑞1
𝑗𝛼1
)𝑡

𝑗=1 (𝑞2
(𝑡−𝑗)𝛼2

− 𝑞2
(𝑡−𝑗+1)𝛼2

) is the weighting function, and has the fol-

lowing property; ∑ 𝑤𝑡
𝑡
𝑖=1 +(1 − ∑ 𝑤𝑖

𝑡
𝑖=1 ) = 1. Hence, the weights possess the properties of a valid 

p.m.f. For a detailed discussion on the weighting scheme for time-weighted charts under consideration, 

see Section 2.5. 

The properties of the plotting statistic 𝑍𝑡
2, including the IC expected value and IC variance, are: 

 𝐸(𝑍𝑡
2|𝐼𝐶) = ∑ 𝑤𝑖

𝑡
𝑖=1 𝐸(𝑋𝑡−𝑖+1) + (1 − ∑ 𝑤𝑖

𝑡
𝑖=1 )𝑘𝜃0 = 𝑘𝜃0 (3.3) 

and 

 𝑣𝑎𝑟(𝑍𝑡
2|𝐼𝐶) = ∑ 𝑤𝑖

2𝑡
𝑖=1 𝑣𝑎𝑟(𝑋) = 𝑘𝜃0

2∑ 𝑤𝑖
2𝑡

𝑖=1  (3.4) 

respectively. 
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3.5.3 Control limits 

In the SPC environment, it is vital to detect a deterioration or an improvement in a process, where the 

former is defined as a small sustained downward shift, and the latter is seen as a small sustained upward 

shift. In this section, the concept of bias in SPC is discussed in detail in the next section as the motivation 

for designing a one-sided chart in this chapter. Also, the exact control limits and steady-state control 

limits are discussed in subsequent sections. 

3.5.3.1 Bias in SPC 

The objective of this chapter is to focus on the gamma distribution as the underlying process distribu-

tion. It is important to bear in mind that most of the TBE charts available in the SPC literature are ARL-

biased. Pignatiello et al. (1995) introduced the term ARL-unbiased in SPC and Acosta-Mejia et al. 

(1999) conducted the first attempt to overcome the bias of the ARL function of the np-chart.  

The ARL is defined as the average number of samples that must be plotted until and OOC signal is 

detected in the process. A well-designed chart should ensure that the ARL curves reach their maximum 

or nominal values at their IC occurrence rates. In other words, the chart is set in such a way that the 

ARL curve attains a maximum in the IC situation, i.e., the chart is ARL-unbiased; and when the IC ARL 

(denoted by 𝐴𝑅𝐿0) or attained ARL is equal to or close to a pre-specified or nominal value (denoted by 

𝐴𝑅𝐿0
∗ ). The pre-specified value for 𝐴𝑅𝐿0

∗  is typically selected as 370 or 500.  

Symmetrically placed control limits are only applicable if the plotting statistic has a symmetric distri-

bution or, a downward/upward shift is equally important. These limits are calculated based on the equal-

tail probability limits that are often used in the literature to calculate the control limits of gamma charts. 

However, for charts constructed based on symmetrically places limits, their ARL curves will not reach 

their maximum values at their pre-specified value. For more information, see Knoth and Morais (2015) 

and the references therein.  

Hence, in the case of the DGWMA-TBE chart proposed in this chapter, since the underlying process 

distribution is gamma (an asymmetric distribution), then a linear combination of gamma random vari-

ables is used. As a result, a one-sided chart will be utilized as the two-sided chart is ARL-biased.  

On the one hand an increase in the process location parameter means process deterioration and on the 

other hand, a decrease in the process location parameter can indicate process improvement. Controlling 

both increase and decrease in a parameter, i.e., process location parameter, by using a plotting statistic 

with an asymmetrical distribution, e.g., gamma, frequently leads to an ARL-biased chart and as a result 

it takes longer to detect shifts in the parameter. Although a one-sided DGWMA-TBE chart is con-

structed to detect a deterioration in the process, a one-sided DGWMA-TBE chart for detecting an im-

provement in the process can be designed, which would require only an upper limit. For example, in 

the medical field, psychologists may be interested in monitoring the maximum reaction time to a 
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stimulus, hence, the upper control limit becomes more critical in this case. Since, the data for these 

scenarios have positively skewed distributions, such as exponential, gamma, etc, then an appropriate 

one-sided chart needs to be carefully designed to detect an improvement in the process. Another exam-

ple, electronic components are subjected to life tests about their failure rates. The failure rates of these 

parts need to be monitored carefully to maintain below a maximum acceptable level. The upper limit 

becomes more critical in this case. Hence, an appropriate one-side chart needs to be designed.  

3.5.3.2 Exact control limits 

For a two-sided DGWMA-TBE chart, the exact symmetrically placed control limits, and the centerline 

(𝐶𝐿) are given by: 

 
𝐿𝐶𝐿𝑒 = 𝑘𝜃0 − 𝐿√𝑘𝜃0

2∑ 𝑤𝑖
2𝑡

𝑖=1       

   𝐶𝐿 = 𝑘𝜃0 

𝑈𝐶𝐿𝑒 = 𝑘𝜃0 + 𝐿√𝑘𝜃0
2∑ 𝑤𝑖

2𝑡
𝑖=1 ; 

 

 

 

 

(3.5) 

where 𝐿 > 0 is the charting constant that determines the distance between the centerline and the exact 

limits. 

3.5.3.3 Steady-state control limits 

For a two-sided DGWMA-TBE chart, the steady-state (asymptotic) control limits and the centerline are 

given by: 

 𝐿𝐶𝐿𝑠 = 𝑘𝜃0 − 𝐿√𝑘𝜃0
2𝑄′    

  𝐶𝐿 = 𝑘𝜃0 

𝑈𝐶𝐿𝑠 == 𝑘𝜃0 + 𝐿√𝑘𝜃0
2𝑄′; 

 

 

 

(3.6) 

where 𝑄′ = lim
𝑡→∞

∑ 𝑤𝑖
2𝑡

𝑖=1  .  

Table 2.1 shows that for different choices of the parameters (𝑞, 𝛼), and various values of 𝑡, the quantity 

𝑄′ is a convergent function of 𝑡. This implies the convergence of exact control limits in (3.5) towards 

the steady-state control limits given in (3.6). The steady-state control limits are used for the implemen-

tation of the proposed chart and for illustration purposes. Note that, as discussed in Chapter 2, there is 

no prerequisite to use the steady-state limits and the exact control limits can be considered alternatively. 



 86 

As this research is primarily interested in detecting a deterioration in the process location parameter – 

i.e., a decrease in the waiting times between failures – only an LCL is considered for the design and 

implementation of the proposed DGWMA-TBE chart. The lower steady-state control limit is defined 

as: 

 
𝐿𝐶𝐿𝑠 = 𝐿𝐶𝐿 = 𝑘𝜃0 − 𝐿√𝑘𝜃0

2𝑄′ 
(3.7) 

If the plotting statistic for the DGWMA-TBE chart 𝑍𝑡
2 plots on or below the 𝐿𝐶𝐿 in (3.7), the process 

is declared OOC and a search for assignable causes is started. Otherwise, the process is considered to 

be IC, which implies no change occurred in the scale parameter 𝜃, and the charting procedure continues. 

3.6 Two types of the DGWMA-TBE chart 

The special and/or limiting cases of the generalized time-weighted DGWMA chart are discussed in 

Chapter 2 in detail. For the TBE data, the DGWMA chart with four parameters (Case 1) denoted by 

DGWMA-TBE (𝑞1, 𝑞2, 𝛼1, 𝛼2) are dismissed and unavailable in the current SPC literature. To fill the 

gap in relation to this matter, the DGWMA-TBE chart (Case 1) will be considered in this chapter and a 

performance comparison is conducted to investigate the detection capability due to adding extra param-

eters to the chart. The results for the DGWMA-TBE chart, including the design parameters, the IC ARL 

(𝐴𝑅𝐿0), and the OOC ARL (𝐴𝑅𝐿1) are calculated and discussed in detail in the subsequent sections. 

The relationship between the DGWMA-TBE chart and its special case, the DEWMA-TBE chart is il-

lustrated in Figure 3.1. Further, the connection between different cases of these charts are also presented. 

 

 

 

 

 

 

 

 

 

Figure 3.1. Relationship between the DGWMA-TBE and the DEWMA-TBE charts 

The DEWMA-TBE chart, a special case of the DGWMA-TBE chart, is discussed in the ensuing section 

in more detail. The main difference between the DGWMA-TBE and DEWMA-TBE charts is the as-

sumptions made for the chart parameters, i.e., 𝑞1, 𝑞2, 𝛼1, 𝛼2. Hence, the control limits defined for the 

DGWMA-TBE (𝒒, 𝜶) DGWMA-TBE (𝒒𝟏, 𝒒𝟐, 𝜶𝟏, 𝜶𝟐) 
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DGWMA-TBE chart are valid for the DEWMA-TBE chart by considering an assumption that result in 

the special case, i.e., 𝛼1 = 𝛼2 = 𝛼. 

3.7 DEWMA-TBE chart as special case 

The DEWMA chart is introduced for the TBE data, labelled as the DEWMA-TBE chart in this research, 

which is a special case of the proposed DGWMA-TBE chart.  

Zhang and Chen (2005) state that two different scenarios exist for the DEWMA chart, depending on 

the equality and/or inequality of the smoothing parameters (1 = 1 − 𝑞1, 2 = 1 − 𝑞2). These two 

cases for the DEWMA-TBE chart are denoted as DEWMA-TBE ( = 1 − 𝑞) and DEWMA-TBE (1 =

1 − 𝑞1, 2 = 1 − 𝑞2), respectively. In the DGWMA-TBE chart, if one selects 𝛼1 = 𝛼2 = 1, the result 

is the DEWMA-TBE chart with parameters 𝑞1 and 𝑞2, denoted as DEWMA-TBE (1 − 𝑞1, 1 − 𝑞2). To 

illustrate this, consider the plotting statistic of the DGWMA-TBE chart in equation (3.2) as follows: 

𝑍𝑡
2 = (1 − 𝑞2)∑ 𝑞2

𝑖𝑍𝑡−𝑖
1 +𝑡−1

𝑖=0 𝑞2
𝑡𝑘𝜃0  (3.8) 

= (1 − 𝑞2)∑ 𝑞2
𝑖 ((1 − 𝑞1) ∑ 𝑞1

𝑘𝑋𝑡−𝑖−𝑘
𝑡−𝑖+1
𝑘=0

𝑡−1
𝑖=0 + 𝑞1

𝑡−𝑖𝑘𝜃0) + 𝑞2
𝑡𝑘𝜃0  

= (1 − 𝑞1)(1 − 𝑞2)∑ 𝑞2
𝑖𝑡−1

𝑖=0 ∑ 𝑞1
𝑘𝑋𝑡−𝑖−𝑘

𝑡−𝑖+1
𝑘=0 + (1 − 𝑞2)∑ 𝑞2

𝑖𝑞1
𝑡−𝑖𝑘𝜃0

𝑡−1
𝑖=0 + 𝑞2

𝑡𝑘𝜃0  

= (1 − 𝑞1)(1 − 𝑞2)∑ (𝑞1
𝑡−𝑖 ∑ (

𝑞2
𝑞1⁄ )𝑘𝑡−𝑖

𝑘=0
𝑡
𝑖=1 )𝑋𝑖 + (1 − 𝑞2)∑ 𝑞2

𝑖𝑞1
𝑡−𝑖𝑘𝜃0

𝑡−1
𝑖=0 + 𝑞2

𝑡𝑘𝜃0  

= (1 − 𝑞1)(1 − 𝑞2)∑
1−(

𝑞2
𝑞1⁄ )𝑡−𝑖+1

1−(
𝑞2

𝑞1⁄ )

𝑡
𝑖=1 𝑞1

𝑡−𝑖𝑋𝑖 + (𝑞1(1 − 𝑞2)
𝑞1
𝑡−𝑞2

𝑡

𝑞1−𝑞2
+ 𝑞2

𝑡)𝑘𝜃0 . 

 

 

 

 

 

The DEWMA-TBE defined as above is referred to as Case 1 for the rest of this chapter for frequently 

used purposed. For more information, see Figure 3.1. 

If it is assumed that 𝑞1 = 𝑞2 = 𝑞 and 𝛼1 = 𝛼2 = 1, then the plotting statistic in (3.2) is written as 

follows:   

 𝑍𝑡
2 = (1 − 𝑞)2 ∑ (𝑡 − 𝑗 + 1)𝑞𝑡−𝑗𝑡

𝑗=1 𝑋𝑖 + 𝑞
𝑡(𝑡 − 𝑡𝑞 + 1) 𝑘𝜃0 . (3.9) 

The plotting statistic 𝑍𝑡
2 in equation (3.9) is the plotting statistic of the DEWMA-TBE and is named as 

Case 2 for the rest of this chapter for frequently used purposed. For more information, see Figure 3.1. 
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3.8 Run length distribution 

There are different types of measures available in the SPC literature that can be considered when de-

signing and comparing the performance of the competing chart. The most well-known and commonly 

used measure is the run length distribution. The design and implementation as well as the OOC perfor-

mance for the proposed DGWMA-TBE chart are based on the ARL measure that is commonly used in 

SPC. 

The procedure for designing and implementing the proposed DGWMA-TBE chart typically involves 

the calculation of the chart parameters to acquire a desired value for the IC 𝐴𝑅𝐿 labelled as 𝐴𝑅𝐿0
∗  – i.e., 

one has to solve for 𝑞1, 𝑞2, 𝛼1, 𝛼2 and 𝐿 such that 𝐴𝑅𝐿0 ≈ 𝐴𝑅𝐿0
∗ . The computational aspects (i.e., time, 

complexity, etc.) need to be carefully considered and investigated. For the DGWMA-TBE chart, all of 

the four parameters are included; whereas for the other case, the parameters are set equal to each other, 

i.e., 𝑞1 = 𝑞2 = 𝑞 and 𝛼1 = 𝛼2 = 𝛼 to reduce the computational time. Contrarily, as discussed previ-

ously, the limiting cases for the DGWMA-TBE chart – i.e., the GWMA-TBE, EWMA-TBE, and 

Shewhart-TBE charts – are obtained by selecting specific values for the parameters of the proposed 

DGWMA-TBE chart. Since the GWMA-TBE and the EWMA-TBE charts are the limiting cases of the 

proposed DGWMA-TBE chart, the parameters 𝑞2 and 𝑞1 are selected as 0 and 1, respectively. How-

ever, since the parameters (𝑞1 and 𝑞2) for the DGWMA-TBE chart lie between 0 and 1 (i.e., 0 <

𝑞1, 𝑞2 < 1), the weights tend to be zero mathematically. 

There are numerous approaches available to evaluate the run length distribution of a control chart. These 

methods are discussed in Chapter 2 in detail for the DGWMA chart under the normal distribution. For 

the DGWMA-TBE chart constructed under the gamma distribution assumption (parametric control 

chart), some modifications such as considering a one-sided chart is required in terms of the methods 

discussed in Chapter 2. These methods are: (i) the exact approach; (ii) the Markov chain approach; and 

(iii) the Monte Carlo simulation algorithm and each of these approaches are considered for the one-

sided DGWMA-TBE chart and its special case, which is the DEWMA-TBE chart. 

3.8.1 Exact approach 

Let 𝑁 denote the run length for the DGWMA-TBE chart and the signaling event at the 𝑖𝑡ℎ sample is 

denoted by 𝐴𝑖. The non-signaling event is denoted by 𝐴𝑖
𝐶  and given by 𝐴𝑖

𝐶 = [𝑍𝑖
2 > 𝐿𝐶𝐿] for 𝑖 = 1,2, 

3, … . The non-signaling event can be rewritten as 𝐴𝑖
𝐶 = [𝑋𝑖 > 𝐿𝑖] for ∀𝑖 ≥ 1, where 𝐿1 =

𝐿𝐶𝐿−(1−𝑤1)𝑘𝜃0

(1−𝑞1)(1−𝑞2)
, and:  

 
𝐿𝑖 =

𝐿𝐶𝐿 − ∑ 𝑤𝑗𝑋𝑖−𝑗+1 − (1 − ∑ 𝑤𝑗
𝑡
𝑗=2 )𝑘𝜃0

𝑖
𝑗=2

(1 − 𝑞1)(1 − 𝑞2)
, 𝑖 = 2,3,4, … 

(3.10) 
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From equation (2.24), the run length distribution can be written as: 

 𝑃[𝑁 = 1] = 1 − 𝑃[𝑋1 > 𝐿1]   and   𝑃[𝑁 = 𝑛] = 𝐼𝑛−1 − 𝐼𝑛;  (3.11) 

where 𝐼𝑛 = 𝑃[⋂ 𝐴𝑖
𝐶𝑛

𝑖=1 ] = 𝑃[⋂ {𝑋𝑖 > 𝐿𝑖}]
𝑛
𝑖=1  for 𝑛 = 2,3,4, … 

The continuous random variables 𝑋𝑖’s are assumed to follow an independent 𝐺𝑎𝑚𝑚𝑎 (𝑘, 𝜃). Hence, 𝐼𝑛 

can be written as: 

 𝐼𝑛 = ∫ ∫ …∫ ∏ 𝑓(𝑥𝑖; 𝑘, 𝜃)𝑑𝑥𝑖
𝑛
𝑖=1

∞

𝐿𝑛

∞

𝐿2

∞

𝐿1
 ;  

(3.12) 

where 𝑓(𝑥𝑖; 𝑘, 𝜃) is defined in (3.1), which is the p.d.f. for the gamma distribution. 

Similar to equation (2.26), an alternative expression for the 𝐴𝑅𝐿 is as follows:  

 𝐴𝑅𝐿 = 1 + ∑ 𝐼𝑛
∞
𝑛=1  . (3.13) 

The scaled random variable 𝑋/𝜃1 follows a gamma distribution with the parameters 𝑘 and 1/𝛿 

(𝑋~𝐺𝑎𝑚𝑚𝑎(𝑘,
1

𝛿
)). The continuous random variable 𝑋 follows a 𝐺𝑎𝑚𝑚𝑎(𝑘, 𝜃0) distribution with 

p.d.f. defined in (3.1), where 𝜃1, which is the OOC scale parameter is defined as 𝜃1 = 𝛿𝜃0, 𝜃0 is the IC 

scale parameter, and 𝛿 > 0 is the shift size. Similarly, the continuous random variable 𝑌 = 𝑋/𝜃0 also 

follows a gamma distribution (𝑌~𝐺𝑎𝑚𝑚𝑎(𝑘, 1)), and as a result the IC scale parameter can be taken 

as 𝜃0 = 1. Thus, irrespective of the value for the IC scale parameter i.e., 𝜃0, the ratios 𝑋/𝜃1 and 𝑌/𝛿 

have the same distribution and can be denoted as 
𝑋

𝜃1
 =
𝑑

 
𝑌

𝛿
~𝐺𝑎𝑚𝑚𝑎 (𝑘,

1

𝛿
). For the DGWMA-TBE chart, 

the IC scale parameter is taken as 𝜃0 = 1, so that the chart is applicable for any IC scale parameter 

when the process is IC, and the shift is taken as the ratio so that it is applicable for any 𝜃0 and 𝜃1. To 

obtain the IC run length distribution, the magnitude for the shift is selected as 𝛿 = 1; whereas for the 

OOC run length, the shift is selected as 𝛿 ≠ 1. 

Equations (3.12) and (3.13) can be used to calculate the exact value for the 𝐴𝑅𝐿. Equation (3.12) con-

sists of multiple integrals, and as 𝑛 increases, the number of integrals rise accordingly. Furthermore, 

the lower bounds (i.e., 𝐿1, 𝐿2,…, 𝐿𝑛) in equation (3.12) are mutually dependent based on the sequence 

of statistics 𝑋1, 𝑋2, … , 𝑋𝑖−1. Hence, the evaluation of the aforementioned equation is computationally 

cumbersome and time-consuming. However, as previously discussed in Section 2.6, the run length is 

calculated for the DGWMA-TBE for 𝑛 = 1,2,3,4 by using Mathematica software package and the re-

sults are presented in Section 3.8.4. 
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3.8.2 Markov chain approach 

The Markov chain approach provides a unified method to calculate the run length distribution and its 

characteristics for a control chart. The general steps involved in calculating the run length distribution 

through the Markov chain method are provided for the DGWMA and DEWMA charts in Chapter 2 in 

details. The challenges or obstacles involved in implementing this approach in the case of a DGWMA 

chart were highlighted. In this section, the Markov chain method is used to calculate the run length 

distribution for a one-sided DEWMA-TBE chart. 

As discussed previously, a one-sided DEWMA-TBE chart is a special case of the proposed DGWMA-

TBE chart when 𝛼1 = 𝛼2 = 1. Further to this, the parameters for the DEWMA-TBE chart are 𝑞1 = 1 −

𝜆1 and 𝑞2 = 1 − 𝜆2, where 𝜆1 and 𝜆2 are the smoothing parameters (i.e., 0 < 𝜆1, 𝜆2 ≤ 1). Thus, the 

steady-state control limit defined in (3.7) is simplified to 𝐿𝐶𝐿𝑠 = 𝑘𝜃0 − 𝐿𝜃0√𝑘
𝑞2

𝑞1−𝑞2
 for the DEWMA-

TBE chart, and the value for the scale parameter is selected as 𝜃0 = 1 for illustration purposes. The 

DEWMA-TBE plotting statistic, i.e., 𝑍𝑡 is defined as: 

 𝐶𝑡 = 1𝑋𝑡 + (1 − 1)𝐶𝑡−1      𝑡 ≥ 1 

𝑍𝑡 = 2𝐶𝑡 + (1 − 2)𝑍𝑡−1     𝑡 ≥ 1 

 

(3.14) 

 

The plotting statistic for the DEWMA-TBE chart can be viewed as a first-order Markov chain. Two 

types of states exist in the state-space: (i) 𝜐 non-absorbing states; and (ii) one absorbing state (the region 

on or below the LCL). Therefore, there are 𝜐 + 1 states in total.  

For a one-sided DEWMA-TBE chart proposed in this chapter, since the upper limit does not exist, the 

construction of transient states is challenging. 𝑈′ is assumed as the UCL for the DEWMA-TBE chart, 

such that 𝑃[𝑍𝑡 ≥ 𝑈
′|𝐼𝐶] ≤ 𝜀, when 𝜀 is very small. The Lugananni-Rice saddlepoint approximation 

method proposed by Lugananni and Rice (1980) can be used to approximate the upper-tail probability 

𝑃[𝑍𝑡 ≥ 𝑈′|𝐼𝐶]. A similar approach is explained and implemented by Chakraborty (2017) for a one-

sided EWMA-TBE chart, which is a special case of the GWMA-TBE chart. 

The plotting statistic 𝑍𝑡 depends on the previous plotting statistic 𝐶𝑡 and 𝑍𝑡−1, which depends on all of 

the previous sample statistics. From equation (2.17), the weights for the DEWMA-TBE chart are as 

follows: 𝑤𝑖 = (1 − 𝑞1)(1 − 𝑞2)
1−(

𝑞1
𝑞2
)
𝑖

1−
𝑞1
𝑞2

𝑞2
𝑖−1 for 0 < 𝑞1, 𝑞2 < 1. Hence, the plotting statistic for the 

DGWMA-TBE chart (as the general form of the DEWMA-TBE) in this case can be written as follows: 

𝑍𝑡
2 = (𝑎)(𝑏)∑

1−(
𝑞1
𝑞2
)
𝑡−𝑖+1

1−
𝑞1
𝑞2

𝑞2
𝑡−𝑖𝑡

𝑖=1 𝑋𝑖 + (𝑞2(𝑎)
𝑞2
𝑖−𝑞1

𝑖

𝑞2−𝑞1
+ 𝑞1

𝑖) 𝑍0
2, where 𝑎 = (1 − 𝑞1) and 𝑏 = (1 − 𝑞2). 

As illustrated in Chapter 2, the weights are descending as time increases. As a result the plotting statistic 
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can be approximated by 𝑍𝑡
2 ≈ ∑ 𝑤𝑖𝑋𝑡−𝑖+1

𝑀
𝑖=1 , where 𝑀 is chosen as 𝑤𝑖~0 for 𝑖 > 𝑀. This procedure 

simplifies the calculation of the upper-tail probability. The value of 𝑀 can be approximated by the 

following expression 𝑀 = ([(
log 𝜀

log𝑞
)] + 1) as recommended by Chakraborty (2017), where [𝑥] is the 

largest integer less than or equal to 𝑥, and 𝜀 is a very small number (i.e., 𝜀 = 10−5 ), such that 𝑤𝑖 < 𝜀. 

Jensen (1995) defined the saddlepoint equation as 
𝑑

𝑑𝑠
𝑘(𝑠) = 𝑈′, where 𝑘(𝑠) is the cumulant generating 

function of the DEWMA-TBE plotting statistic 𝑍𝑡 and is equivalent to 𝑘(𝑠) = 𝑙𝑜𝑔𝑀𝑍𝑡(𝑠). The mo-

ment-generating function (m.g.f.) for the plotting statistic 𝑍𝑡 in the case of the gamma distribution is 

given by 𝑀𝑍𝑡
(𝑠) = ∏ 𝑀𝑋(𝑠𝑤𝑖)

𝑀
𝑖=1 = ∏ (1 − 𝜃𝑠𝑤𝑖)

−𝑘𝑀
𝑖=1 , and as a result the cumulant generating func-

tion is 𝑘(𝑠) = −∑ 𝑘𝑙𝑜𝑔(1 − 𝜃𝑠𝑤𝑖)
𝑀
𝑖=1 . The solution of the first derivative for the cumulant generating 

function, 𝑘′(𝑠) = −∑
𝑘𝜃𝑤𝑖

1−𝜃𝑠𝑤𝑖

𝑀
𝑖=1 = 𝑈′, will provide the saddlepoint 𝛾, which can be obtained through 

available software packages. In the current thesis, R programming language is used to approximate the 

saddlepoint. Consequently, the upper-tail probability based on this methodology is approximated by 

𝑃[𝑍𝑡 ≥ 𝑈′|𝐼𝐶]~1 −Φ(𝑟) + 𝜙(𝑟) (
1

𝑏
−
1

𝑟
), where 𝜙(. ) and Φ(. ) are standard normal p.d.f. and c.d.f., 

respectively; 𝑟 = 𝑠𝑖𝑔𝑛(𝛾) = √[2(𝛾𝑈′ − 𝑘(𝛾))], and 𝑏 = (1 − 𝑒−𝛾)𝜎(𝛾). The initial value to obtain 

𝑈′ is taken as 𝑘𝜃 and increased by 0.001 increment, such that 𝑃[𝑍𝑡 ≥ 𝑈
′|𝐼𝐶] ≤ 𝜀. Once 𝑈′ is obtained, 

the transient states correspond to 𝜐 equal-length subintervals are obtained by dividing the interval be-

tween 𝐿𝐶𝐿 and 𝑈′.  

As in Chapter 2, the half of the width of a subinterval is defined as 𝛾 = (𝑈′ − 𝐿𝐶𝐿)/2𝜐, and the mid-

point of the 𝑖𝑡ℎ subinterval is seen as 𝑆𝑖 = 𝐿𝐶𝐿 + (2𝑖 − 1)𝛾 for 𝑖 = 1,2, … , 𝜐. The expression for the 

𝑆𝑣 is equal to 𝑆𝑣 = 𝐿𝐶𝐿 + (2𝑣 − 1)𝛾 = 𝐿𝐶𝐿 + (
𝑈′−𝐿𝐶𝐿

𝛾
− 1) 𝛾 = (𝑈′ − 𝐿𝐶𝐿) + 𝐿𝐶𝐿 − 𝛾 = 𝑈′ − 𝛾. 

The properties of the run length distribution can be obtained through the expressions (2.30), (2.31), and 

(2.32) provided in Chapter 2 (see, Fu & Lou, 2003). 

The next step is to calculate the transition probabilities 𝑝𝑖𝑗 – i.e., the probability that the plotting statistic 

𝑍𝑡 falls in state 𝑗 at time 𝑡 conditional on 𝑍𝑡−1 in state 𝑖 at time 𝑡 − 1, hence this probability is defined 

as: 𝑝𝑖𝑗 = 𝑃(𝑍𝑡 = 𝑆𝑗|𝑍𝑡−1 = 𝑆𝑖). For the DEWMA-TBE chart, the transition probability can be written 

as: 

 

 

𝑃[𝑆𝑗 − 𝛾 < 𝑍𝑡 < 𝑆𝑗 + 𝛾|𝑍𝑡−1 = 𝐶𝑡−1 = 𝑆𝑖] 

= 𝑃[𝑆𝑗 − 𝛾 < 2𝐶𝑡 + (1 − 2)𝑍𝑡−1 < 𝑆𝑗 + 𝛾|𝑍𝑡−1 = 𝐶𝑡−1 = 𝑆𝑖]  

= 𝑃[𝑆𝑗 − 𝛾 < 2𝐶𝑡 + (1 − 2)𝑆𝑖 < 𝑆𝑗 + 𝛾|𝑍𝑡−1 = 𝐶𝑡−1 = 𝑆𝑖]  
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= 𝑃[𝑆𝑗 − 𝛾 < 2(1𝑋𝑡 + (1 − 1)𝐶𝑡−1) + (1 − 2)𝑆𝑖 < 𝑆𝑗 + 𝛾|𝑍𝑡−1 = 𝐶𝑡−1 = 𝑆𝑖]  

= 𝑃[𝑆𝑗 − 𝛾 < 12𝑋𝑡 + 2(1 − 1)𝑆𝑖 + (1 − 2)𝑆𝑖 < 𝑆𝑗 + 𝛾|𝑍𝑡−1 = 𝐶𝑡−1 = 𝑆𝑖]  

= 𝑃 [
𝑆𝑗 − 𝛾 − 2(1 − 1)𝑆𝑖 − (1 − 2)𝑆𝑖

12
< 𝑋𝑡 <

𝑆𝑗 + 𝛾 − 2(1 − 1)𝑆𝑖 − (1 − 2)𝑆𝑖

12
] 

= 𝑃 [
𝑆𝑗 − 𝛾 − 𝑆𝑖(1 − 12)

12
< 𝑋𝑡 <

𝑆𝑗 + 𝛾 − 𝑆𝑖(1 − 12)

12
]. 

 

 

 

 

 

 

(3.15) 

Since 1 = 1 − 𝑞1 and 2 = 1 − 𝑞2, equation (3.15) can be rewritten as:  

𝑃 [
𝑆𝑗 − 𝛾 − 𝑆𝑖(1 − (1 − 𝑞1 )(1 − 𝑞2)) 

(1 − 𝑞1)(1 − 𝑞2)
< 𝑋𝑡 <

𝑆𝑗 + 𝛾 − 𝑆𝑖(1 − (1 − 𝑞1 )(1 − 𝑞2)) 

(1 − 𝑞1)(1 − 𝑞2)
] 

= 𝐹𝐺 (
𝑆𝑗 + 𝛾 − 𝑆𝑖(1 − (1 − 𝑞1 )(1 − 𝑞2)) 

(1 − 𝑞1)(1 − 𝑞2)
) − 𝐹𝐺 (

𝑆𝑗 − 𝛾 − 𝑆𝑖(1 − (1 − 𝑞1 )(1 − 𝑞2)) 

(1 − 𝑞1)(1 − 𝑞2)
) ; 

   (3.16) 

where 𝐹𝐺  is the c.d.f. of the gamma distribution defined in (3.1). The approximation of the run length 

distribution through the Markov chain approach provides better results as the number of subintervals is 

large. However, by increasing the number of states 𝑣, the computational time increased as well, which 

causes the software to run slowly. In this study, 𝑣 = 2001 is considered, as recommended by Graham 

et al. (2011a) and Chakraborty et al. (2018). The motivation behind selecting the number of states is 

provided in detail in Section 2.6.2. For more information related to the saddlepoint approximation, refer 

to the book by Butler (2007). 

Note that, the EWMA chart is the limiting case of the DEWMA chart when 1 → 1 or 2 → 1, or 

alternatively 𝑞1 → 0 or 𝑞2 → 0. Hence, the one-sided EWMA-TBE chart is also the limiting case of the 

proposed DEWMA-TBE chart. To ensure the validity of expression (3.16), one can replace 𝑞1 → 0 in 

equation (3.16) and the result is: 

𝑃 [
𝑆𝑗 − 𝛾 − 𝑆𝑖(1 − (1 − 𝑞1 )(1 − 𝑞2)) 

(1 − 𝑞1)(1 − 𝑞2)
< 𝑋𝑡 <

𝑆𝑗 + 𝛾 − 𝑆𝑖(1 − (1 − 𝑞1 )(1 − 𝑞2)) 

(1 − 𝑞1)(1 − 𝑞2)
] 

= 𝐹𝐺 (
𝑆𝑗 + 𝛾 − 𝑆𝑖(1 − (1 − 𝑞2 )) 

(1 − 𝑞2)
) − 𝐹𝐺 (

𝑆𝑗 − 𝛾 − 𝑆𝑖(1 − (1 − 𝑞2 )) 

(1 − 𝑞2)
). 

(3.17) 

Since 2 = 1 − 𝑞2, equation (3.17) can be written as: 

𝐹𝐺 (
𝑆𝑗 + 𝛾 − 𝑆𝑖(1 − (1 − 𝑞2 )) 

(1 − 𝑞2)
) − 𝐹𝐺 (

𝑆𝑗 − 𝛾 − 𝑆𝑖(1 − (1 − 𝑞2 )) 

(1 − 𝑞2)
) 

= 𝐹𝐺 (
𝑆𝑗 + 𝛾 − 𝑆𝑖(1 − 2) 

 2
) − 𝐹𝐺 (

𝑆𝑗 − 𝛾 − 𝑆𝑖(1 − 2) 

 2
). 



 
 

93 

 

(3.18) 

By assuming  2 = 𝜆 = 1 − 𝑞, equation (3.18) can be written as: 

𝐹𝐺 (
𝑆𝑗 + 𝛾 − 𝑆𝑖(1 − 2) 

 2
) − 𝐹𝐺 (

𝑆𝑗 − 𝛾 − 𝑆𝑖(1 − 2) 

 2
) 

= 𝐹𝐺 (
𝑆𝑗 + 𝛾 − 𝑞𝑆𝑖  

 1 − 𝑞
) − 𝐹𝐺 (

𝑆𝑗 − 𝛾 − 𝑞𝑆𝑖  

 1 − 𝑞
). 

(3.19) 

Expression (3.19) is identical to equation (3.13) obtained by Chakraborty (2017) for a one-sided 

EWMA-TBE chart as expected, since the EWMA-TBE chart is the limiting case of the proposed 

DEWMA-TBE chart. 

Furthermore, if 1 → 1 and 2 → 1 or equivalently 𝑞1 → 0 and 𝑞2 → 0, then the DEWMA-TBE chart 

reduces to the Shewhart-TBE chart, and can be considered as the limiting case of the proposed 

DEWMA-TBE chart. Therefore, equation (3.16) reduces to: 

𝐹𝐺 (
𝑆𝑗 + 𝛾 − 𝑆𝑖(1 − (1 − 𝑞1 )(1 − 𝑞2)) 

(1 − 𝑞1)(1 − 𝑞2)
) − 𝐹𝐺 (

𝑆𝑗 − 𝛾 − 𝑆𝑖(1 − (1 − 𝑞1 )(1 − 𝑞2)) 

(1 − 𝑞1)(1 − 𝑞2)
) 

= 𝐹𝐺(𝑆𝑗 + 𝛾 − 𝑆𝑖) − 𝐹𝐺(𝑆𝑗 − 𝛾 − 𝑆𝑖)                                           (3.20) 

As a conclusion, the closed-form expression derived in this chapter through the Markov chain approach 

– equation (3.16) – can be used alternatively for the limiting cases of a one-sided DEWMA-TBE chart 

– i.e., a one-sided EWMA-TBE and Shewhart-TBE charts. 

Note that, the saddlepoint approximation is considered only for the Markov chain approach since the 

upper control limit is required to construct the transient state. However, for the Monte Carlo simulation 

that will be discussed in the next section, the availability of the upper control limit is not mandatory for 

numerical calculations. 

3.8.3 Monte Carlo simulation  

The evaluation of the run length distribution for the DGWMA chart by implementing the exact or the 

Markov chain approaches is extremely challenging and difficult (see Section 2.6). In this chapter, a 

numerical Monte Carlo simulation has been implemented to estimate the 𝐴𝑅𝐿 values of the DGWMA-

TBE chart. Further, the algorithm developed for this aim can also be employed for the limiting and 

special cases of the proposed DGWMA-TBE chart by modifying and selecting specific values for the 

chart parameters – i.e., 𝑞1, 𝑞2, 𝛼1, 𝛼2. The general algorithm is constructed under the assumption that 
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all four parameters of the DGWMA chart are included for the computational purposes. For more infor-

mation, see Figure 3.1. 

The following steps elaborates the simulation algorithm for the DGWMA-TBE chart: 

i. Select a combination of the design parameters – i.e., (𝑞1, 𝑞2, 𝛼1, 𝛼2, 𝐿) – the shift to be 

detected (𝛿), the IC scale parameter set as 𝜃0 = 1, and calculate the LCL defined in equa-

tion (3.7). 

ii. Use statistical software R package to generate individual gamma observations 

(𝐺𝑎𝑚𝑚𝑎(𝑘, 1), 𝑘 = 1,2,3,4,5), and use equation (3.2) to calculate the DGWMA-TBE plot-

ting statistic Zt
2 by selecting the starting value as Z0

2 = 𝑘. 

iii. If the plotting statistic is plotted above the steady-state control limit in equation (3.7) – i.e., 

Zt
2 > 𝐿𝐶𝐿 – the process is declared to be IC and a run length counter is incremented. 

iv. By running steps (i) to (iii) for 10,000 iterations, the number of samples until the first plot-

ting statistic falls on or outside the steady-state limit, known as the run length, is calculated 

for each of the interactions corresponding to the specific process 𝑘 and (𝑞1, 𝑞2, 𝛼1, 𝛼2, 𝐿) 

combination. These 10,000 empirical run length values are then used to calculate the aver-

age run length and other characteristics for the run length. 

v. The charting constant (𝐿 > 0) corresponding to the desired 𝐴𝑅𝐿0
∗  is obtained through the 

“grid search” method by repeating steps (i) to (iv) under the process IC scale parameter 

(𝜃0 = 1). The grid search will be discussed in the subsequent sections.  

vi. All the 𝐴𝑅𝐿1s for the given OOC parameter can be calculated by repeating steps (i) to (iii) 

under the exact combination of (𝑞1, 𝑞2, 𝛼1, 𝛼2, 𝐿), which corresponds to 𝐴𝑅𝐿0
∗ . 

Other characteristics of the run length distribution, including the 𝑆𝐷𝑅𝐿 and percentile points (denoted 

by 𝑃𝑖, 𝑖 = 5, 25, 50, 75, 95), are also computed to further describe the behavior of the run length, and 

are provided in the Appendix. 

3.8.4 Comparative study 

In the previous sections, numerical methods to calculate the run length distribution for the proposed 

DGWMA-TBE chart are discussed in detail and the pros and cons for each approach are provided, too. 

In this section, a comparative study between these three methods – (i) the exact approach, (ii) the Mar-

kov chain approach, and (iii) the Monte Carlo simulation – are performed. For the DGWMA-TBE chart, 

the comparison study is conducted between the Monte Carlo simulation and the exact approaches. For 

the DEWMA-TBE chart that is the special case of the DGWMA-TBE chart, the comparison is done 

between the Markov chain approach and Monte Carlo simulation (10,000 versus 100,000). Further to 

this, an assessment is also conducted in terms of the number of simulations (10,000 versus 100,000) to 



 
 

95 

 

observe whether there are any significant differences for the computation of the 𝐴𝑅𝐿0 and IC SDRL. 

These results are illustrated in Tables 3.1. and 3.2. for the DGWMA-TBE and the DEWMA-TBE charts, 

respectively. 

Table 3.1. The run length distribution for the DGWMA-TBE chart when 𝒏 = 1, 2, 3, 4 

Run length 𝒒𝟏 = 𝒒𝟐 = 𝒒 𝜶𝟏 = 𝜶𝟐 = 𝜶 𝑳 10, 000 100, 000 Exact approach 

 𝑷(𝑵 = 𝟏) 0.9  0.8 1.552 0.032 0.035 0.031 

 𝑷(𝑵 = 𝟐) 0.9 0.8 1.552 0.037 0.038 0.036 

 𝑷(𝑵 = 𝟑)  0.9 0.8 1.552 0.040 0.039 0.043 

 𝑷(𝑵 = 𝟒) 0.9 0.8 1.552 0.043 0.045 0.042 

 

Table 3.2. IC ARL and SDRL values for the Markov chain approach, 10,000 and 100,000 simu-

lations for the DEWMA-TBE chart 

 

Scale parameter 𝒒𝟏 = 𝒒𝟐 = 𝒒 𝜶𝟏 = 𝜶𝟐 = 𝜶 𝑳 10, 000 100, 000 Markov chain approach 

 𝒌 = 𝟏 0.95 1.0 1.405 370.11 (353.84) 374.40 (357.30) 372.65 (355.45) 

 𝒌 = 𝟐 0.95 1.0 1.418 370.40 (354.17) 374.35 (358.09) 373.20 (356.78) 

 𝒌 = 𝟑  0.95 1.0 1.417 369.64 (355.60) 370.78 (355.30) 370.35 (355.08) 

 𝒌 = 𝟒 0.95 1.0 1.414 370.39 (358.07) 368.14 (355.60) 369.12 (356.14) 

 𝒌 = 𝟓 0.95 1.0 1.420 369.51 (350.86) 371.00 (355.52) 370.78 (354.90) 

 

The following points are worth mentioning in relation to the above tables: 

i. A quick comparison between the 10,000 and 100,000 simulations reveals that the 10,000 

simulation results are providing estimates as good as the 100,000 simulation results. Thus, 

the 10,000 simulation is used in the throughout this thesis to reduce the computational time 

without losing much information. 

ii. Table 3.1 shows the IC ARL and SDRL results for a one-sided DGWMA-TBE chart through 

the exact approach and the Monte Carlo simulation. The aforementioned values approxi-

mated by the Monte Carlo simulation with 10,000 and 100,000, and exact approach are 

close. 

iii. Table 3.2 illustrates the IC ARL and SDRL values for a one-sided DEWMA-TBE chart by 

implementing the Markov chain approach and the Monte Carlo simulation. These values 

approximated by the Markov chain approach and Monte Carlo simulation with 10,000 and 

100,000 are close.  
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Next, the computational time (in seconds) of the IC ARL through the Markov chain and the Monte Carlo 

simulation for the proposed charts are calculated with a central processing unit (CPU) of 2.7 GHz Core 

i5 (MacBook Pro) system. The results are presented in Table 3.3.: 

Table 3.3. CPU time (in seconds) of the IC ARL for the DGWMA-TBE and DEWMA-TBE 

charts 

 

Time-weighted chart Markov chain approach 
Monte Carlo simulation 

(10,000) 

Monte Carlo simulation 

(100,000) 

DGWMA-TBE chart 91.899 100.156 693.963 

 DEWMA-TBE chart 83.529 91.415 667.763 

 

From Table 3.3., the computational time for the Markov chain approach is less than the Monte Carlo 

simulation (10,000) for both the DGWMA-TBE and the DEWMA-TBE charts. As a result, one can 

also consider using the Markov chain approach as an alternative to calculate the run length distribu-

tion. 

3.9 The IC design 

For the proposed DGWMA-TBE chart, the IC design consists of the calculation for the charting constant 

(𝐿 > 0) based on a chosen value for the shape parameter 𝑘, and a combination of the DGWMA-TBE 

design parameters (𝑞1, 𝑞2, 𝛼1, 𝛼2, 𝐿), so that the attained 𝐴𝑅𝐿 is close to the pre-specified value 𝐴𝑅𝐿0
∗ . 

The pre-specified value is typically selected as 370 or 500, and the former is taken into consideration 

for this study. Furthermore, to enhance and increase the sensitivity of the shift detection ability for the 

DGWMA-TBE chart in the case of the small shift occurrence in the process, the parameters are selected 

from the following intervals; 0.5 ≤ 𝑞 ≤ 0.9 and 0.5 ≤ 𝛼 ≤ 1. Similar range of values are defined and 

recommended by Huang et al. (2014), Sheu and Hsieh (2009), and Tai et al. (2010). Chakraborty et al. 

(2016) considered the ranges 𝑞 = 0.5, 0.6, 0.7, 0.8, 09, 095 and 𝛼 = 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.3 for 

the GWMA-TBE chart. Since the GWMA-TBE chart is the main counterpart of the DGWMA-TBE 

chart amongst other time-weighted charts, the range for the selected parameters should be the same to 

make the comparison valid. Hence, the shape parameter is selected as 𝑘 = 1, 2, 3, 4, 5, and the chart 

parameters are chosen as 𝑞 = 0.5, 0.6, 0.7, 0.8, 09, 095, and 𝛼 = 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.3. There 

are various combinations for the DGWMA-TBE chart (Case 1) parameters – i.e., 𝑞1, 𝑞2, 𝛼1, 𝛼2 – that 

can be used to compare the performance and the detection capability with the DGWMA-TBE chart 

(Case 2). For the DGWMA-TBE chart (Case 1), the chart parameters are selected as 𝑞1 = 0.7, 0.8, 0.9, 

𝑞2 = 0.5, 0.6, 0.8, 0.9, 0.95, 𝛼1 = 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.3, and 𝛼2 = 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.3. 

For the DEWMA-TBE chart (Case 1), the chart parameters are chosen as 𝑞1 = 0.5, 0.6, 0.7, 0.8, 0.9, 

and 𝑞2 = 0.6 0.7, 0.8, 0.9, 0.95. For the DEWMA-TBE chart (Case 2), the chart parameters are selected 

as 𝑞 = 0.5, 0.6, 0.7, 0.8, 0.9, 0.95. For more information in terms of different cases of the DGWMA-
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TBE and the DEWMA-TBE charts, refer to Figure 3.1. The grid search procedure for obtaining the 

charting constant 𝐿 > 0 is as follows: 

• Input: The chart parameters are selected as follows, 𝑞1: 0.7(0.1)0.95, 𝑞2: 0.5(0.1)0.95, 𝛼1: 

0.5(0.1)1, 𝛼2: 0.5(0.1)1, and the shape parameter is selected as 𝑘 = 1(1)5, where the values 

given in the parentheses are representing the step size (grid size). The starting values for the 

parameters 𝑞1, 𝑞2,  𝛼1, and 𝛼2 are selected as 0.7, 0.5, 0.5, and 0.5, respectively and incremented 

based on the given step size for other combinations. The starting value for the shape parameter 

is selected as 1 and incremented by 1. 

• Output: For the chosen (𝑞1, 𝑞2, 𝛼1, 𝛼2, 𝑘) as an input, the algorithm searches for the combina-

tion of ( 𝐿, 𝐴𝑅𝐿0) under the desired 𝐴𝑅𝐿0
∗ = 370. Thereafter, the charting constants 𝐿 > 0 are 

obtained such that the attained 𝐴𝑅𝐿0 is approximately equal to the desirable value of 𝐴𝑅𝐿0
∗ =

370. 

By implementing the grid search method in the simulation algorithm, the charting constant 𝐿 > 0 are 

obtained for the chosen (𝑞1, 𝑞2, 𝛼1, 𝛼2, 𝐿) combination, and the value of the shape parameter 𝑘 has been 

specified, so that the attained 𝐴𝑅𝐿0 is approximately equal to the desirable value of 𝐴𝑅𝐿0
∗ = 370. The 

values of 𝐿 determined through this approach are presented in Tables A.3.1 to A.3.5 (Appendix for 

Chapter 3) for the DGWMA-TBE (Case 2), GWMA-TBE, EWMA-TBE (highlighted row), and 

Shewhart-TBE charts. Furthermore, the 𝐴𝑅𝐿0
∗  values and the charting constant 𝐿 > 0 for the DGWMA-

TBE chart (Case 1) are presented in Table A.3.6 (Appendix for Chapter 3). For the DEWMA-TBE chart 

(Cases 1 and 2), the 𝐴𝑅𝐿0
∗  and 𝐿 > 0 values are presented in Table A.3.7 (Appendix for Chapter 3). 

Note that, the first value in each cell is the charting constant 𝐿 and the second value in each cell is the 

𝐴𝑅𝐿0. The charting constants presented in these tables will be useful for the design and implementation 

of time-weighted charts under consideration. 

A comparative study is conducted to ensure the validity of the results obtained by an algorithm devel-

oped in R with the simulation results obtained by Chakraborty et al. (2016). The comparison is reason-

able and valid since the GWMA-TBE, EWMA-TBE, and Shewhart-TBE charts are the limiting cases 

of the proposed DGWMA-TBE chart. For example, consider the following two cases: 

i. When 𝑘 = 1, 𝑞1 = 0.9, 𝑞2 = 0, 𝛼1 = 0.5, and 𝛼2 = 1 from Table A.3.1, the value for the 

charting constant and the IC ARL are 𝐿 = 1.620 and 𝐴𝑅𝐿0 = 371.34, respectively. In 

Chakraborty et al. (2016), the GWMA-TBE chart with 𝑞1 = 𝑞 = 0.9 and 𝛼1 = 𝛼 = 0.5 

and 𝐿 = 1.620 has an attained 𝐴𝑅𝐿0 = 371.32. 
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ii. When 𝑘 = 2, 𝑞1 = 0.95, 𝑞2 = 0, 𝛼1 = 0.7 and 𝛼2 = 1 from Table A.3.2, the value for the 

charting constant and the IC ARL are 𝐿 = 1.802 and 𝐴𝑅𝐿0 = 370.61, respectively. In 

Chakraborty et al. (2016), the GWMA-TBE chart with 𝑞1 = 𝑞 = 0.95 and 𝛼1 = 𝛼 = 0.7 

and 𝐿 = 1.802 has an attained 𝐴𝑅𝐿0 = 370.62. 

3.10 The OOC performance 

To evaluate the OOC performance for different charts, the first step is to ensure that the 𝐴𝑅𝐿0s for all 

the competing charts are close to 370 (𝛿 = 1), so that all the charts are on an equal footing. Since the 

main objective is to detect a downward step shift in the process, i.e., deterioration, the magnitude of the 

shifts is selected as 𝛿 < 1 (𝛿 = 0.975, 0.95, 0.925, 0.9, 0.85, 0.8, 0.7, 0.5, and 0.25) as recommended 

and considered by Chakraborty et al. (2016). 

The OOC performance results are shown in Tables A.3.8 to A.3.12 for the DGWMA-TBE (Case 2); 

Tables A.3.13 to A.3.17 for the GWMA-TBE, the EWMA-TBE, and the Shewhart-TBE charts; Tables 

A.3.18 to A.3.22 for the DGWMA-TBE (Case 1) chart, and Tables A.3.23 to A.3.27 for the DEWMA-

TBE (Case 1 and Case 2), and when 𝑘 = 1, 2, 3, 4, 5. Note that all these tables are included in the Ap-

pendix for Chapter 3. For the CUSUM-TBE charts, the tables are embedded within the text in Chapter 

3.  

The OOC performance comparison between time-weighted charts under consideration for the TBE data 

can be conducted in terms of a chart’s detection superiority and ability in detecting small or tiny shifts 

in the production process. The comparative study is divided into multiple parts dependents on the type 

of a chart, and a brief discussion is provided for each part. Tables that contain the relevant results are 

presented in the Appendix for Chapter 3. The essential discussion points that are necessary to design 

and implement a time-weighted chart are summarized in this section which highlight practical ad-

vantages of the proposed chart that are useful for practitioners.  

(i) DGWMA-TBE (Case 2) versus GWMA-TBE, EWMA-TBE, and Shewhart-

TBE  

The first comparison is conducted between the proposed DGWMA-TBE chart and its main counterparts 

the GWMA-TBE, the EWMA-TBE and the Shewhart-TBE charts. The simulation results advocate the 

following: 

i. The DGWMA-TBE chart outperforms the EWMA-TBE and Shewhart-TBE charts for all val-

ues of the shape parameter 𝑘, and all shifts irrespective of the values for the parameters 𝑞 and 

𝛼. 

ii. For tiny, small, and moderate shifts (𝛿 ≥ 0.7), the DGWMA-TBE chart outperforms the 

GWMA-TBE chart. For example, consider Tables A.3.8 and A.3.13 from the Appendix, with 
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the results for 𝑘 = 1, where 𝑞 = 0.8: all DGWMA-TBE charts with 𝛼 = 0.5, 0.6, 0.7, 0.8, 0.9, 

1, and 1.3 outperform the GWMA-TBE charts. The same is applicable for other values of the 

shape parameter 𝑘 and different parameter combinations. 

iii. For large shifts (𝛿 ≤ 0.5), the GWMA-TBE chart outperforms the DGWMA-TBE chart. For 

example, consider Tables A.3.9 and A.3.14, with the results for 𝑘 = 2, where 𝑞 = 0.95: all 

GWMA-TBE charts with 𝛼 = 0.5, 0.6, 0.7, 0.8, 0.9, 1, and 1.3 outperform the DGWMA-TBE 

charts in detecting large shifts. Also, the GWMA-TBE chart outperforms the EWMA-TBE and 

Shewhart-TBE charts in detecting small to large shifts irrespective of the values for the param-

eters. Note that, same conclusions obtained in Chakraborty et al. (2016).  

iv. The performance for both the DGWMA-TBE and GWMA-TBE charts improves as the 𝑘 value 

increases. For example, from Table A.3.8, when 𝑘 = 1 and 𝛿 = 0.925, the 𝐴𝑅𝐿1 for a 

DGWMA-TBE chart with 𝑞 = 0.95, 𝛼 = 0.5, 𝐿 = 0.595 is 92.49; while from Table A.3.9, the 

𝐴𝑅𝐿1 for a DGWMA-TBE chart when 𝑘 = 2 and 𝛿 = 0.925, and 𝑞 = 0.95, 𝛼 = 0.5, 𝐿 = 0.608 

is 72.06. The improvement and increase in sensitivity of a chart for higher values of 𝑘 is due to 

the fact that as the shape parameter 𝑘 increases, more failures need to be collected. However, 

practitioners will choose the specific value for the shape parameter 𝑘.  

In the following figures, different aspects of the DGWMA-TBE, the GWMA-TBE, and the EWMA-

TBE charts are illustrated and discussed. The optimal values for the chart’s parameters, the chart’s 

ability in detecting different shift sizes as well as the effect of chart’s parameters in increasing or de-

creasing chart performance are discussed. 
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Figure 3.2. DGWMA-TBE chart with different parameter combinations 

 

In Figure 3.2, different parameter combinations for the DGWMA-TBE chart are illustrated. The param-

eter 𝑞 is selected as 0.5, 0.8, 0.95 and the values selected for the parameter 𝛼 are 0.5, 0.8, and 1.3. Note 

that the shape parameter 𝑘 is selected as 1 for all the combinations, and different range of values are 

considered for the parameters to identify the impact of varying parameters on the chart’s detection ca-

pability. These values are extracted from Table A.3.8, see, Appendix for Chapter 3. The chart constant 

𝐿, values are selected as 1.692, 1.747, 1.703, 1.837, 0.595, 1.677, respectively. The (𝑞 = 0.95, 𝛼 = 0.5) 

combination provides the best performance in detecting tiny to medium shifts in comparison to other 

combinations. The (𝑞 = 0.5, 𝛼 = 0.8) combination provided the worse performance in detecting tiny 

to medium shifts in the process. Practitioners could use this graph as a guideline to select optimal values 

for the DGWMA-TBE chart parameters for detecting small shifts in the process. For large values of the 

parameter 𝑞 (close to 0.95) and small values of the parameter 𝛼 (close to 0.5), the DGWMA-TBE 

provides optimal performance in detecting small shifts in the production process. Note that parameters 

𝑞 and 𝛼 are selected in the following intervals, (0 < 𝑞 < 1) and (𝛼 > 0), respectively.  

1.000 0.975 0.950 0.925 0.900 0.850 0.800 0.700 0.500 0.250

q = 0.5 and alpha = 0.5 370.67 297.73 240.63 193.80 158.38 110.18 77.96 42.79 17.55 8.18

q = 0.5 and alpha = 0.8 371.38 320.95 276.34 240.78 207.45 150.89 112.48 62.34 21.16 7.55

q = 0.8 and alpha = 0.5 370.52 258.44 188.96 144.11 113.91 76.01 55.42 34.12 17.73 10.50

q = 0.8 and alpha = 1.3 370.86 314.99 270.65 231.60 198.89 144.07 105.24 56.72 19.27 8.09

q = 0.95 and alpha = 0.5 369.85 199.25 128.47 92.49 72.32 49.61 37.64 24.97 14.66 9.58

q = 0.95 and alpha = 1.3 370.40 288.90 229.97 183.24 147.34 98.76 69.65 39.61 19.76 14.11
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Figure 3.3. GWMA-TBE and EWMA-TBE charts with different parameter combinations. 

 

In Figure 3.3, different parameter combinations are selected for the GWMA-TBE and the EWMA-TBE 

charts. Note that, these charts are the limiting cases of the proposed DGWMA-TBE chart and 

Chakraborty et al. (2016) mentioned that the EWMA-TBE chart is the special case of the GWMA-TBE 

chart. The parameter 𝑞 is selected as 0.5, 0.8, 0.95 and the values selected for the parameter 𝛼 are 0.5, 

and 1.0. From Table A.3.13, the chart constant 𝐿, values are selected as 1.345, 1.451, 1.594, 1.812, 

1.552, 1.859, respectively. The (𝑞 = 0.95, 𝛼 = 0.5) combination which corresponds to the GWMA-

TBE chart, provides the best performance in detecting tiny to medium shifts in comparison to other 

combinations. The worse performance is for the combination (𝑞 = 0.5, 𝛼 = 1.0) which corresponds to 

the EWMA-TBE chart. For large values of the parameter 𝑞 (close to 0.95) and small values of the 

parameter 𝛼 (close to 0.5), the GWMA-TBE provides optimal performance in detecting small shifts in 

the production process. Note that, when 𝛼 = 1.0, the GWMA-TBE chart reduces to the EWMA-TBE 

chart.  

1 0.975 0.95 0.925 90 0.85 0.8 0.7 0.5 0.25

q = 0.5 and alpha = 0.5 370.02 307 253.72 212.97 176.24 126.13 91.17 50.54 19.81 8.19

q = 0.5 and alpha = 1.0 370.15 332.7 296.89 267.16 235.9 187.98 148.49 91.72 32.11 8.7

q = 0.8 and alpha = 0.5 371.19 273.18 207.9 161.35 128.63 86.84 62.68 37 17.26 8.89

q = 0.8 and alpha = 1.0 369.17 311.44 260.89 218.98 184.55 133.49 95.66 51.95 18.5 7.73

q = 0.95 and alpha = 0.5 370.34 236.13 167.99 126.82 99.91 67.82 50.15 31.51 16.23 9.05

q = 0.95 and alpha = 1.0 370.05 283.85 219 169.41 136.09 89.47 63.69 36.55 17.64 10.4
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Figure 3.4. The effect of the parameter 𝜶 on the DGWMA-TBE chart 

 

In Figure 3.4, the effect of the parameter 𝛼 on the DGWMA-TBE is investigated and illustrated. Dif-

ferent values for the parameter 𝛼 are considered 0.5, 0.8, 1.3, when the parameter 𝑞 is constant (𝑞 =

0.95). For small values of the parameter 𝛼, the DGWMA-TBE performs best in detecting small to large 

shifts in the process. The chart’s detection capability in detecting small to large shifts deteriorated when 

the value for the parameter 𝛼 increased. Hence, the combination (𝑞 = 0.95, 𝛼 = 1.3) has the worse 

case scenario in detection small shifts in the process.  

 

Figure 3.5. The effect of the parameter 𝒒 on the DGWMA-TBE chart 

The effect of the parameter 𝑞 on the performance of the DGWMA-TBE chart is illustrated in Figure 

3.5. When the parameter 𝛼 is constant (0.8), different values for the parameter 𝑞 are selected such as 
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q = 0.95 and alpha = 0.5 369.85 199.25 128.47 92.49 72.32 49.61 37.64 24.97 14.66 9.58

q = 0.95 and alpha = 0.8 369.90 252.04 181.29 138.35 108.35 73.94 55.33 36.81 23.04 16.58

q = 0.95 and alpha = 1.3 370.40 288.90 229.97 183.24 147.34 98.76 69.65 39.61 19.76 14.11
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0.5, 0.8 and 0.95. For large values of the parameter 𝑞, the DGWMA-TBE chart performs best in detect-

ing small shifts in the process. The chart’s detection capability in detecting small to large shifts deteri-

orated when the value for the parameter 𝑞 decresed. Hence, the combination (𝑞 = 0.5, 𝛼 = 0.8) has the 

worst-case scenario in detection small shifts in the process.  

 

Figure 3.6. The effect of the parameter 𝜶 on the GWMA-TBE and EWMA-TBE charts 

 

The effect of the parameter 𝛼 on the detection capability of the GWMA-TBE and the EWMA-TBE 

charts are illustrated in Figure 3.6. Different values for the parameter 𝛼 are selected such as 0.5, 0.8, 

1.0 when the parameter 𝑞 is constant (0.95). For small values of the parameter 𝛼, the GWMA-TBE 

chart performs best in detecting small shifts in the process. The GWMA-TBE and EWMA-TBE charts 

performance deteriorated in detection small shifts in the process when the value for the parameter 𝛼 

increased. The combination (𝑞 = 0.95, 𝛼 = 0.5) has the best performance in detecting small shifts in 

the process.  
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q = 0.95 and alpha = 0.5 370.34 236.13 167.99 126.82 99.91 67.82 50.15 31.51 16.23 9.05

q = 0.95 and alpha = 0.8 370.59 265.65 197.52 151.89 119.9 79.44 57.56 34.92 17.99 10.56
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Figure 3.7. The effect of the parameter 𝒒 on the GWMA-TBE and EWMA-TBE charts 

 

The effect of the parameter 𝑞 on the detection capability of the GWMA-TBE and the EWMA-TBE 

charts are illustrated in Figure 3.7. Different values for the parameter 𝑞 are selected such as 0.5, 0.8, 

0.95 when the parameter 𝛼 is constant (0.8). For large values of the parameter 𝑞, the GWMA-TBE chart 

performs best in detecting small shifts in the process. The GWMA-TBE and EWMA-TBE charts per-

formance deteriorated in detection small shifts in the process when the value for the parameter 𝑞 de-

creased. The combination (𝑞 = 0.95, 𝛼 = 0.8) has the best performance in detecting small shifts in the 

process.  
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q = 0.95 and alpha = 0.8 370.59 265.65 197.52 151.89 119.90 79.44 57.56 34.92 17.99 10.56
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Figure 3.8. DGWMA-TBE vs GWMA-TBE vs EWMA-TBE 

 

In Figure 3.8, the proposed DGWMA-TBE chart is compared with the GWMA-TBE and the EWMA-

TBE charts. The parameters for the DGWMA-TBE chart are selected as 0.95 and 0.5, respectively. 

Different sets of parameters are selected for the GWMA-TBE chart and the EWMA-TBE chart. These 

values are extracted from Tables available in the Appendix for Chapter 3. The DGWMA-TBE chart 

outperforms the GWMA-TBE and the EWMA-TBE charts in detecting small to medium shifts in the 

process. Also, the proposed DGWMA-TBE chart is competitive for detecting large shifts. The GWMA-

TBE chart outperforms the EWMA-TBE chart and as discussed in the previous sections, the GWMA-

TBE chart with large value for the parameter 𝑞 and small value for the parameter 𝛼, performs better 

than the GWMA-TBE chart with other parameter combinations.  

(ii) DGWMA-TBE (Case 1) versus DGWMA-TBE (Case 2) 

Sheu and Hsieh (2009) concluded that the DGWMA chart with four parameters does not perform better 

than the DGWMA chart with two parameters under the normal distribution. However, it was discovered 

based on the calculations in this chapter that there are DGWMA-TBE charts (Case 1) that outperform 

the DGWMA-TBE chart (Case 2) in detecting small shifts in the process when the underlying process 

distribution is gamma. The results are presented in Tables A.3.18 to A.3.22 (see, Appendix for Chapter 

3) for different values of the shape parameter 𝑘. Note that, the first step before conducting the compar-

ison between these two charts or any other types of time-weighted chart is to compute the 𝐴𝑅𝐿0 first, 
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to ensure that the competing charts are on an equal footing. The simulation results advocate the follow-

ing: 

i. There are various combinations of the DGWMA-TBE chart (Case 1) that outperform the 

DGWMA-TBE chart (Case 2). The 𝐴𝑅𝐿0 of the DGWMA-TBE (𝑞1, 𝑞2, 𝛼1, 𝛼2) is 369.58, 

and for the DGWMA (𝑞, 𝛼) it is 370. For example, from Table A.3.18, for 𝑘 = 1, 𝑞1 = 0.9, 

𝑞2 = 0.95, 𝛼1 = 0.5, 𝛼2 = 0.6, and L = 0.865, the OOC 𝐴𝑅𝐿 is equal to 𝐴𝑅𝐿1 = 225.32, and 

𝐴𝑅𝐿1 = 45.32, for shift sizes (𝛿) 0.975 and 0.8, respectively. From Table A.3.11, for 𝑞1 = 

𝑞2 = 𝑞 = 0.9, 𝛼1 = 𝛼2 = 𝛼 = 0.5, and L = 1.140, the OOC 𝐴𝑅𝐿 is equal to 𝐴𝑅𝐿1 = 232.01, 

and 𝐴𝑅𝐿1 = 47.27, for shift sizes 0.975 and 0.8, respectively. 

ii. The performance for the DGWMA-TBE charts (Cases 1 and 2) improves as the value of 𝑘 

increases. For example, from Table A.3.9, when 𝑘 = 2 and 𝛿 = 0.9, the 𝐴𝑅𝐿1 for a 

DGWMA-TBE chart (Case 2) with 𝑞 = 0.9, 𝛼 = 0.5, 𝐿 = 1.173 is 69.72; while from Table 

A.3.10, the 𝐴𝑅𝐿1 when 𝑘 = 3, 𝛿 = 0.9, 𝑞 = 0.9, 𝛼 = 0.5, and 𝐿 = 1.177 is 55.98. For the 

DGWMA-TBE chart (Case 1), from Table A.3.18, when 𝑘 = 1 and 𝛿 = 0.9, the 𝐴𝑅𝐿1 with 

𝑞1 = 0.7, 𝑞2 = 0.8, 𝛼1 = 0.5, 𝛼2 = 0.6, 𝐿 = 1.833 is 126.02; while from Table A.3.19, the 

𝐴𝑅𝐿1 when 𝑞1 = 0.7, 𝑞2 = 0.8, 𝛼1 = 0.5, 𝛼2 = 0.6, 𝐿 = 1.935 for 𝑘 = 2 and 𝛿 = 0.9 is 

92.39. 

 

Figure 3.9. Comparison between the DGWMA Case 1 vs DGWMA Case 2 

 

A comparative plot is illustrated in Figure 3.9 to compare the performance between different cases of 

the proposed DGWMA-TBE chart. From Table A.3.8, when 𝑞 = 0.95, 𝛼 = 1.3, 𝐿 = 1.677, the 
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𝐴𝑅𝐿1 = 288.90 and 229.97, for small shifts (𝛿 ≥ 0.95). From Table A.3.18, when 𝑞1 = 0.8, 𝑞2 = 0.9, 

𝛼1 = 0.5, 𝛼2 = 0.6, 𝐿 = 1.500, the 𝐴𝑅𝐿1 = 251.19 and 180.65, for small shifts (𝛿 ≥ 0.95). Also, 

from Table A.3.18, when 𝑞1 = 0.7, 𝑞2 = 0.95, 𝛼1 = 0.5, 𝛼2 = 0.5, 𝐿 = 1.401, the 𝐴𝑅𝐿1 = 232.71 

and 163.21, for small shifts (𝛿 ≥ 0.95). Hence, the DGWMA-TBE chart (Case 1) outperformed the 

DGWMA-TBE charts (Case 2) in detecting small shifts in the process. For medium to large shifts, the 

DGWMA-TBE chart (Case 1) is competitive with the DGWMA-TBE chart (Case 2).  

(iii) DEWMA-TBE versus GWMA-TBE, EWMA-TBE, and Shewhart-TBE  

The DEWMA-TBE chart is also proposed and discussed in Section 3.7. For the DEWMA-TBE chart, 

there are two different cases that are dependent on the equality and/or inequality of the smoothing pa-

rameters. For more information, see Figure 3.1 in Section 3.6. In this part, the performance of the 

DEWMA-TBE chart (Case 1 and Case 2) with the GWMA-TBE, EWMA-TBE, and Shewhart-TBE 

charts are considered in detail as follows: 

i. Zhang and Chen (2005) mentioned that the DEWMA-TBE chart with two smoothing pa-

rameters does not outperform the DEWMA-TBE chart with a single smoothing parameter 

under the normal distribution. However, it was discovered that there are some cases, where 

the latter (Case 2) is outperformed by the former (Case 1). For example, from Table A.3.23, 

the 𝐴𝑅𝐿0 is calculated first to ensure that both of the DEWMA-TBE cases are on an equal 

footing, and the IC ARL is equal to 𝐴𝑅𝐿0 = 370.79 (Case 1) and 𝐴𝑅𝐿0 = 371.85 (Case 

2). For the DEWMA-TBE chart (Case 1), when 𝑘 = 1, 𝑞1 = 0.5, 𝑞2 = 0.6, 𝛼1 = 1.0, 𝛼2 =

1.0, L = 1.773 and 𝛿 = 0.975, 𝐴𝑅𝐿1 is equal to 324.18; whereas for the DEWMA-TBE 

(Case 2), when 𝑘 = 1, 𝑞1 = 𝑞2 = 𝑞 = 0.5, 𝛼1 = 𝛼2 = 1, L = 1.719 and 𝛿 = 0.975, 𝐴𝑅𝐿1 

is equal to 327.37. 

ii. For small or tiny shifts, some combinations of the parameters exist, where the DEWMA-

TBE chart (Case 1) outperforms the GWMA-TBE chart. The 𝐴𝑅𝐿0 for these two charts is 

equal to 370 and 369.50, respectively. For example, from Table A.3.23, when 𝑘 = 1, 𝑞1 =

0.5, 𝑞2 = 0.8, 𝛼1 = 1.0, 𝛼2 = 1.0, L = 1.874 and 𝛿 = 0.975, 𝐴𝑅𝐿1 is equal to 310.30; 

whereas for the GWMA-TBE chart from Table A.3.13, when 𝑘 = 1, 𝑞1 = 0.5, 𝑞2 = 0, 

𝛼1 = 0.8, 𝛼2 = 1.0, L = 1.433 and 𝛿 = 0.975, 𝐴𝑅𝐿1 is equal to 323.56. 

iii. For larger shifts, in most cases the GWMA-TBE chart outperforms the DEWMA-TBE 

chart for all the values of the shape parameter 𝑘. 
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iv. The DEWMA-TBE chart (Cases 1 and 2) outperforms the EWMA-TBE and Shewhart-

TBE charts for all values of the shape parameter 𝑘, and all shifts irrespective of the values 

for the parameters 𝑞 and 𝛼. 

 

Figure 3.10. DEWMA-TBE chart with different parameter combinations 

 

In Figure 3.10, different parameter combinations for the DEWMA-TBE chart are illustrated. Different 

cases of the DEWMA-TBE charts are illustrated based on the equality or inequality of the parameters. 

From Table A.3.23, the chart constant 𝐿 values are selected as 1.889, 1.713 and 1.405 for combinations 

(𝑞1 = 0.5, 𝑞2 = 0.9), (𝑞1 = 0.9, 𝑞2 = 0.9), and (𝑞1 = 0.95, 𝑞2 = 0.95), respectively. From the above 

plot, one can conclude that, the DEWMA-TBE chart with equal parameters, i.e., 𝑞1 = 𝑞2 = 𝑞 = 0.95, 

outperformed the DEWMA-TBE chart with inequal parameters. Also, by comparing two cases of the 

DEWMA-TBE chart with different parameters, one can also comment on the optimal combination of 

the chart’s parameters. For example, when 𝑞2 = 0.9, and for different values for the parameter 𝑞1, 0.5 

and 0.9, the DEWMA-TBE chart with larger 𝑞1 outperformed the latter one in detecting small shifts in 

the process.  
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Figure 3.11. The effect of the parameter 𝒒𝟐 on the DEWMA-TBE chart 

 

The effect of the parameter 𝑞2 on the detection capability of the DEWMA-TBE chart is illustrated in 

Figure 3.11. Different values for the parameter 𝑞2 are selected such as 0.9, 0.95, 0.7 when the parameter 

𝑞1 is constant (0.5). For large values of the parameter 𝑞2, the DEWMA-TBE chart performs best in 

detecting small shifts in the process. The DEWMA-TBE chart performance deteriorated in detection 

small shifts in the process when the value for the parameter 𝑞2 decreased. The combination (𝑞1 =

0.5, 𝑞2 = 0.95) has the best performance in detecting small shifts in the process.  
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Figure 3.12. DEWMA-TBE vs GWMA-TBE vs EWMA-TBE 

 

The performance between different charts in detecting shifts is evaluated in terms of comparing their 

𝐴𝑅𝐿1 values. In Figure 3.12, the DEWMA-TBE chart is compared with different GWMA-TBE charts. 

The 𝐴𝑅𝐿0 for all the charts are set equal so that the charts are at an equal footing and then the chart with 

the minimum value for 𝐴𝑅𝐿1 performs best in detecting small shifts compared to its counterparts. For 

the DEWMA-TBE chart and from Table A.3.23, 𝑞1 = 𝑞2 = 𝑞 = 0.95 and 𝐿 = 1.405; for the GWMA-

TBE chart and from Table A.3.13, (𝑞 = 0.5, 𝛼 = 0.5, 𝐿 = 1.345), (𝑞 = 0.9, 𝛼 = 0.9, 𝐿 = 1.898), (𝑞 =

0.5, 𝛼 = 1.3, 𝐿 = 1.880), and for the EWMA-TBE chart, (𝑞 = 0.5, 𝛼 = 1.0, 𝐿 = 1.451) are selected. 

The DEWMA-TBE chart outperformed the GWMA-TBE charts and the EWMA-TBE chart in detecting 

small to moderate shifts in the process. Note that, the DEWMA-TBE chart is a special case of the 

proposed DGWMA-TBE chart and also proposed in this chapter. The GWMA-TBE chart outperformed 

the EWMA-TBE chart in detecting small to large shifts.  
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Figure 3.13. DEWMA-TBE vs GWMA-TBE vs EWMA-TBE 

 

Different cases of the DEWMA-TBE chart based on the equality and/or inequality of the parameters 

are compared with different GWMA-TBE charts in Figure 3.13. The parameters for the GWMA-TBE 

chart are selected from Table A.3.13 as follows: (𝑞 = 0.5, 𝛼 = 0.5, 𝐿 = 1.345), (𝑞 = 0.8, 𝛼 = 0.5, 𝐿 =

1.594) and (𝑞 = 0.95, 𝛼 = 0.8, 𝐿 = 1.764). The parameters for the DEWMA chart are selected from 

Table A.3.23 as follows: (𝑞1 = 0.5, 𝑞2 = 0.95, 𝐿 = 1.800) and  (𝑞1 = 0.5, 𝑞2 = 0.7, 𝐿 = 1.827). The 

GWMA-TBE chart with (𝑞 = 0.95, 𝛼 = 0.8, 𝐿 = 1.764) outperformed other charts in detecting small 

to medium shifts in the process. The DEWMA-TBE chart with (𝑞1 = 0.5, 𝑞2 = 0.7, 𝐿 = 1.827) per-

formed worse in detecting small shifts in the process. However, the DEWMA-TBE chart with (𝑞1 =

0.5, 𝑞2 = 0.95, 𝐿 = 1.800) outperformed other GWMA-TBE charts in detecting small to medium 

shifts. One can conclude that from Figures 3.12 and 3.13, different cases exist where in some cases the 

DEWMA-TBE chart outperformed the GWMA-TBE chart and in other cases the GWMA-TBE chart 

outperformed the DEWMA-TBE. Hence, a roadmap is necessary to provide guidelines for practitioners 

to select optimal design parameters for detecting small shifts in the production processes.  
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(iv) DGWMA-TBE versus DEWMA-TBE  

A performance comparison is conducted to measure the detection capability of these two charts, i.e., 

the DGWMA-TBE as the general case and the DEWMA-TBE chart as its special case, for different 

shift sizes, specifically in detecting small or tiny shifts in the process. The findings for these charts 

reveal that: 

i. For small to moderate shifts (𝛿 ≥ 0.8), the DGWMA-TBE chart with four parameters out-

performs the DEWMA-TBE chart with two smoothing parameters, for all values of the 

shape parameter 𝑘 irrespective of the values for the chart parameters – i.e., 𝑞1, 𝑞2, 𝛼1, 𝛼2. 

The 𝐴𝑅𝐿0 for these two charts is equal to 369.95 and 370.10, respectively. For example, 

from Table A.3.18, when 𝑘 = 1, 𝑞1 = 0.8, 𝑞2 = 0.9, 𝛼1 = 0.5, 𝛼2 = 0.6, L = 1.500 and 

𝛿 ≥ 0.8, the DGWMA-TBE chart (Case 1) outperforms the DEWMA-TBE (Case 1) chart. 

ii. For large shifts (𝛿 ≤ 0.7), the DEWMA-TBE chart (Case 1) outperforms the DGWMA-

TBE chart (Case 1) for some values of the chart parameters 𝑞1, 𝑞2, 𝛼1, 𝛼2. The 𝐴𝑅𝐿0 for 

these two charts is equal to 370.30 and 369.75, respectively. For example, from Table 

A.3.24, when 𝑘 = 2, 𝑞1 = 0.7, 𝑞2 = 0.8, 𝛼1 = 1.0, 𝛼2 = 1.0, L = 2.013 and 𝛿 = 0.5, the 

𝐴𝑅𝐿1 for the DEWMA-TBE (Case 1) chart is equal to 10.52; whereas f, when 𝑘 = 2, 𝑞1 =

0.7, 𝑞2 = 0.8, 𝛼1 = 0.5, 𝛼2 = 0.6, L = 1.833 and 𝛿 = 0.5, the 𝐴𝑅𝐿1 for the DGWMA-

TBE chart (Case 1) is equal to 17.50. 

iii. The DGWMA-TBE chart with two parameters outperforms the DEWMA-TBE chart with 

a single smoothing parameter for all the shift size in the shift range 𝛿 ≥ 0.5, and for all 

from Table 3.22, values of the shape parameter 𝑘, irrespective of the values for the param-

eter 𝑞 and when 𝛼 ≤ 1.  

iv. The DEWMA-TBE chart with a single smoothing parameter outperforms the DGWMA-

TBE chart with two parameters when 𝛿 = 0.25 (i.e., large shift). Further to this, the 

DEWMA-TBE chart always outperforms the DGWMA-TBE chart with 𝛼 = 1.3, regard-

less of the shift sizes. The 𝐴𝑅𝐿0 for these two charts is equal to 370.24 and 370.51, respec-

tively. For example, from Table A.3.23, when 𝑘 = 1, 𝑞1 = 0.6, 𝑞2 = 0.6, 𝛼1 = 1.0, 𝛼2 =

1.0, L = 1.813 and 𝛿 = 0.25, the 𝐴𝑅𝐿1 for the DEWMA-TBE chart is equal to 7.46; 

whereas from Table A.3.8, when 𝑘 = 1, 𝑞1 = 0.6, 𝑞2 = 0.6, 𝛼1 = 0.7, 𝛼2 = 0.7, L = 

1.856 and 𝛿 = 0.25, the 𝐴𝑅𝐿1 for the DGWMA-TBE chart  is equal to 8.05. 
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Figure 3.14. DGWMA-TBE vs DEWMA-TBE 

 

A comparative study is illustrated in Figure 3.14 to compare the performance between the DGWMA-

TBE chart and the DEWMA-TBE chart. For the DGWMA-TBE chart and from table A.3.18, the pa-

rameters are selected as follows: (𝑞1 = 0.7, 𝑞2 = 0.95, 𝛼1 = 0.5, 𝑞2 = 0.5, 𝐿 = 1.401), (𝑞1 =

0.8, 𝑞2 = 0.9, 𝛼1 = 0.5, 𝑞2 = 0.6, 𝐿 = 1.500). For the DGWMA-TBE chart (Case 2) and from Table 

A.3.8, the parameters are selected as (𝑞 = 0.9, 𝛼 = 1.0, 𝐿 = 1.713). The DGWMA-TBE chart (Case 

1) outperforms the DGWMA-TBE chart (Case 2) and the DEWMA-TBE chart in detecting small to 

medium shifts in the process. The DEWMA-TBE chart outperforms the DGWMA-TBE chart (Case 2) 

in detecting small to medium shifts in the process. Hence, in some cases the DEWMA-TBE chart out-

performs the DGWMA-TBE chart and in other cases the latter outperforms the former.   

The visual presentations of the findings discussed so far provide more insights on the detection capa-

bility and superiority of a chart in detecting different shift sizes, and more specifically for the small or 

tiny shifts, which is the main objective of the thesis. The design parameters selected for illustration 

purposes are as follows: 𝑞1 = 0.9, 𝑞2 = 0.95, 𝛼1 = 0.5, 𝛼2 = 0.9, L = 1.208 for the DGWMA-TBE 

chart (Case 1); 𝑞1 = 0.9, 𝑞2 = 0.9, 𝛼1 = 0.6, 𝛼2 = 0.6, L = 1.285 for the DGWMA-TBE chart (Case 

2); 𝑞1 = 0.9, 𝑞2 = 0, 𝛼1 = 0.5, 𝛼2 = 1.0, L = 1.808 for the GWMA-TBE chart; 𝑞1 = 0.9, 𝑞2 = 0, 

𝛼1 = 1.0, 𝛼2 = 1.0, L = 2.045 for the EWMA-TBE chart; 𝑞1 = 0.9, 𝑞2 = 0.95, 𝛼1 = 1.0, 𝛼2 = 1.0, L 

= 1.590 for the DEWMA-TBE chart (Case 1), and 𝑞1 = 0.9, 𝑞2 = 0.9, 𝛼1 = 1.0, 𝛼2 = 1.0, L = 1.756 

for the DEWMA-TBE chart (Case 2). A comparative plot between the proposed DGWMA-TBE chart 
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(Cases 1 and 2) as the generalized time-weighted chart, the special case (i.e., the DEWMA-TBE chart), 

and the limiting cases (i.e., the GWMA-TBE, EWMA-TBE, and Shewhart-TBE charts) is illustrated in 

the following figure: 

 

Figure 3.15. Comparative plot between time-weighted charts 

 

From the above plot, one can easily observe that the proposed DGWMA-TBE chart outperforms other 

time-weighted charts in detecting small or tiny shifts. Further to this, the DGWMA-TBE chart is com-

petitive in terms of detecting moderate shifts compared to its counterparts. Also, the GWMA-TBE chart 

outperforms the DEWMA-TBE and the EWMA-TBE chart in detecting small shifts in the process de-

pendent on the parameters under consideration  in this case. 

The effect of the shape parameter 𝑘 and the effects of the chart parameters 𝑞, 𝛼 for the DGWMA-TBE 

chart (Case 2) are investigated as well. The results are presented in Figures 3.16, 3.17 and 3.18. Note 

that, one can plot the same type of figures for the special and the limiting cases of the DGWMA-TBE 

chart to study the effect of the aforementioned parameters on the chart’s performance. 
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EWMA-TBE 370.16 270.61 201.20 151.26 115.79 70.82 46.63 24.34 10.78 6.09
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Figure 3.16. The effect of the parameter 𝒌 on the performance of the DGWMA-TBE chart 

The performance of the DGWMA-TBE chart for larger values of the shape parameter 𝑘 is illustrated in 

Figure 3.16. This caused by an increase in the shape parameter, resulting in more failures needing to be 

collected. In other words, the performance of the proposed DGWMA-TBE chart improves as the 𝑘 

value increases. The improvement and increase in sensitivity of a chart for higher values of 𝑘 is due to 

the fact that as the shape parameter 𝑘 increases, more failures need to be collected. However, practi-

tioners will choose the specific value for the shape parameter 𝑘.  
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Figure 3.17. The effect of the parameter 𝒒 on the performance of the DGWMA-TBE chart 

In Figure 3.17, for 𝛼 = 0.8, three different values for the parameter 𝑞 (0.5, 0.8, and 0.95) are selected, 

and based on the results, a larger value of 𝑞 has better OOC performance for the DGWMA-TBE chart 

as a consequence. As the value for the parameter 𝑞 starts decreasing, the performance of the DGWMA-

TBE chart deteriorated. 

 

Figure 3.18. The effect of the parameter 𝜶 on the performance of the DGWMA-TBE chart 
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q=0.95 and alpha=0.8 369.90 252.04 181.29 138.35 108.35 73.94 55.33 36.81 23.04 16.58
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In Figure 3.18, for 𝑞 = 0.7, three different values for the parameter 𝛼 (0.5, 0.8, and 1.3) are considered 

and the conclusion is that the smaller values of 𝛼 lead to better OOC performance of the DGWMA-

TBE chart. 

(v) DGWMA-TBE versus CUSUM-TBE  

Numerous CUSUM charts have been developed in SPC to monitor the time between failures for non-

conforming items in the process, including the CUSUM chart, denoted by CUSUM-TBE, developed, 

and studied by Vardeman and Ray (1985), Lucas (1985) and Borror et al. (2003) when the underlying 

process distribution is exponential and the geometric CUSUM chart proposed by Bourke (2001). For 

more information regarding the research conducted for CUSUM charts to monitor TBE data, the inter-

ested reader is referred to the literature review in Section 3.2. In most of the research conducted for the 

CUSUM-TBE chart, the TBE is assumed to follow an exponential distribution. Lucas (1985) proposed 

a two-sided CUSUM chart which consists of two one-sided charts: a lower-sided CUSUM chart for 

decreasing shifts for the parameters of the exponential distribution and an upper-sided CUSUM chart 

for detecting increasing shifts. 

Various methods have been proposed to calculate the run length distribution and its associated charac-

teristics for the CUSUM chart. Goel and Wu (1971) obtained approximate ARL values through an exact 

approach. Lucas and Crosier (1982) considered both exact and Markov chain approaches to calculate 

the run length distribution. Woodall (1983) calculated the run length distribution for the CUSUM chart 

by considering a geometric distribution for the underlying process distribution. Huang et al. (2014) 

evaluated the run length distribution of CUSUM charts when the underlying process distribution is 

gamma. A performance comparison is conducted in this part for comparing the results for the CUSUM-

TBE chart and the proposed chart, the DGWMA-TBE chart based on the Monte Carlo simulation. The 

design of CUSUM-TBE charts involve the choices of d  and h, which are known as reference value and 

decision interval, respectively. Note that the choice for the parameter d is dependent on the IC shape 

and scale parameters and the target OOC scale parameter.  

Note that, Borror et al. (2013) and Pehlivan and Testik (2009) concluded that the CUSUM-TBE and 

the EWMA-TBE charts are very robust to departures from the exponential distribution to the Weibull 

distribution regardless of the value of the shape parameter. Gan (1998) indicated that based on a per-

formance comparison, the exponential CUSUM and the exponential EWMA charts have similar per-

formance in detecting shifts in the process. For our comparison purposes, the proposed DGWMA-TBE 

chart is compared with the CUSUM-TBE chart for three different scenarios: (i) the underlying process 

distribution is gamma, (ii) the underlying process distribution is exponential, and (iii) the underlying 

process distribution is Weibull. The CUSUM-TBE chart proposed by Shafae et al. (2014) is considered 
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when the underlying process distribution is Weibull. In order to make the comparison sensible and 

equivalent, charts are compared based on similar conditions, hence, the proposed DGWMA-TBE is 

modified when the underlying process distribution is Weibull and the results are obtained. Also, since 

the exponential distribution is the special case of both gamma and Weibull distributions, the DGWMA-

TBE chart and the CUSUM-TBE chart based on the exponential distribution are also compared. The 

ARL is used as a performance metric in order to compare the IC and OOC characteristic of the 

DGWMA-TBE and the CUSUM-TBE chart. The GWMA-TBE chart and its special case the EWMA-

TBE chart are also included in the comparative study since no previous comparison is available in the 

literature between the GWMW-TBE and the CUSUM-TBE charts. For the comparison under the 

Weibull distribution, the pre-specified value for the ARL is assumed to be 100, since this is the value 

considered in Shafae et al. (2014) and Borror et al. (2003). For more information related to the CUSUM 

chart under both the exponential and the Weibull distribution, the interested reader is referred to the 

discussion provided by Shafae et al. (2014) and the references therein. The relative performance of 

these charts is investigated in detecting a decreasing shift in the process. Shafae et al. (2014) mentioned 

that the comparison is based on detecting a decrease in the IC TBE mean, denoted by 𝜇0 to the OOC 

TBE mean denoted by 𝜇1. This corresponds to detecting a shift in the scale parameter, 𝜃 of the gamma 

and Weibull distribution for a fixed value of the shape parameter, k. The comparison is divided into 

three different parts based on the underlying process distribution and the results and recommendations 

for practitioners are provided. Note that, for the parametric CUSUM chart, the decision interval is typ-

ically selected as 𝑑 =
1

2
∗ 𝛿, where 𝛿 represents the size of the shift. Hawkins and Olwell (1998) rec-

ommended that 𝑑 = 0.25 for shift sizes in the mean less than 0.73. Mukherjee et al. (2013) concluded 

that when there is no prior information available regarding the size of the shift, then a smaller value of 

𝑑 is recommended.  

a. Gamma distribution 

In this section the performance of the proposed DGWMA-TBE chart is compared with the CUSUM-

TBE, GWMA-TBE and EWMA-TBE charts when the underlying process distribution is gamma. The 

parameters for the DGWMA-TBE chart are selected as (𝑞 = 0.95, 𝛼 = 0.5, 𝐿 = 0.595), the parameters 

for the GWMA-TBE chart are selected as (𝑞 = 0.95, 𝛼 = 0.5, 𝐿 = 1.552) and the parameters for the 

EWMA-TBE chart are selected as (𝑞 = 0.95, 𝛼 = 1.0, 𝐿 = 1.859). The parameters for the CUSUM-

TBE chart are selected from the references available in the literature. These results are provided in Table 

3.4. Also, different combination of parameters is selected in order to provide sensible comparative study 

between charts. For this purpose, the parameters for the DGWMA-TBE chart are selected as (𝑞 =

0.9, 𝛼 = 0.6, 𝐿 = 1.285), the parameters for the GWMA-TBE chart are selected as (𝑞 = 0.9, 𝛼 =

0.5, 𝐿 = 1.893) and the parameters for the EWMA-TBE chart are selected as (𝑞 = 0.9, 𝛼 = 1.0, 𝐿 =

2.045). These results are presented in Table 3.5.  
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Table 3.4. 𝑨𝑹𝑳𝟎 and 𝑨𝑹𝑳𝟏 values for the DGWMA-TBE, GWMA-TBE, CUSUM-TBE and 

EWMA-TBE chart when 𝒌 = 𝟏 and 𝑨𝑹𝑳𝟎
∗ = 370 under the gamma distribution 

𝛿 DGWMA-TBE GWMA-TBE CUSUM-TBE EWMA-TBE 

1.000 369.85 370.08 370.80 370.05 

0.975 199.25 236.13 245.96 283.85 

0.950 128.47 167.99 160.28 219.00 

0.925 92.49 126.82 64.10 169.41 

0.900 72.32 99.91 41.20 136.09 

0.850 49.61 67.82 26.60 89.47 

0.800 37.64 50.15 17.80 63.69 

0.700 24.97 31.51 12.60 36.55 

0.500 14.66 16.23 9.40 17.64 

0.250 9.58 9.05 7.30 10.40 

 

Figure 3.19. Comparison between the DGWMA-TBE, GWMA-TBE, CUSUM-TBE and 

EWMA-TBE charts 

The above plot illustrates a comparative study between the proposed DGWMA-TBE chart with its 

counterparts, the GWMA-TBE and the CUSUM-TBE charts. For tiny shifts in the process (𝛿 ≥ 0.925), 

the proposed DGWMA-TBE chart outperforms the CUSUM-TBE, GWMA-TBE, and EWMA-TBE 

charts. For medium to large shifts (0.9 ≤ 𝛿 ≤ 0.25), the CUSUM-TBE chart outperforms the 
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EWMA-TBE 370.05 283.85 219.00 169.41 136.09 89.47 63.69 36.55 17.64 10.40
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DGWMA-TBE, GWMA-TBE and EWMA-TBE charts. Also, the GWMA-TBE chart outperforms the 

CUSUM-TBE chart in detecting small shifts in the process and outperforms the EWMA-TBE charts 

for all shift sizes. The CUSUM-TBE chart outperforms the EWMA-TBE chart for all shift sizes under 

consideration. Note that, Gan (1998) indicated that based on a performance comparison, the exponential 

CUSUM and the exponential EWMA charts have similar performance in detecting shifts in the process. 

However, based on the results obtained in this chapter, the CUSUM-TBE chart outperforms the 

EWMA-TBE chart in detecting shifts in the process under the gamma distribution. The performance 

between these charts under the exponential distribution will be discussed later in this section.  

 

Table 3.5. 𝑨𝑹𝑳𝟎 and 𝑨𝑹𝑳𝟏 values for the DGWMA-TBE, GWMA-TBE, CUSUM-TBE and 

EWMA-TBE chart when 𝒌 = 𝟐 and 𝑨𝑹𝑳𝟎
∗ = 370 under the gamma distribution 

𝛿 DGWMA-TBE GWMA-TBE CUSUM-TBE EWMA-TBE 

1.000 370.18 370.59 370.80 370.16 

0.975 216.67 236.86 245.96 256.15 

0.950 141.35 170.85 160.28 200.80 

0.925 101.38 116.36 64.10 131.96 

0.900 77.36 88.63 41.20 99.40 

0.850 51.14 56.56 26.60 61.10 

0.800 37.12 39.42 17.80 41.32 

0.700 23.65 23.16 12.60 23.58 

0.500 13.71 11.29 9.40 11.98 

0.250 9.04 6.11 7.30 7.32 
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Figure 3.20. Comparison between the DGWMA-TBE, GWMA-TBE, CUSUM-TBE and 

EWMA-TBE charts 

The above plot demonstrated a comparative study between the DGWMA-TBE, GWMA-TBE, 

CUSUM-TBE and EWMA-TBE charts when 𝑘 = 2. Also, in order to make the comparison more sen-

sible and reliable, different values are selected for the parameters of the time-weighted charts under 

consideration. From the above plot, one can conclude that, the DGWMA-TBE chart outperformed all 

its counterparts in detecting small shifts in the process, i.e., 𝛿 ≥ 0.925. Also, the performance of the 

DGWMA-TBE chart is competitive in detecting medium shifts in the process. The GWMA-TBE charts 

outperforms the CUSUM-TBE chart in detecting small shifts i.e., 𝛿 ≥ 0.925. Also, the GWMA-TBE 

chart outperforms the EWMA-TBE chart in detecting all shift sizes in the process. Further, the CUSUM-

TBE chart outperforms the EWMA-TBE chart for all shift sizes and outperforms the DGWMA-TBE 

and the GWMA-TBE charts in detecting large shifts in the process.  

b. Exponential distribution 

In this part, the performance of the DGWMA-TBE chart is compared with the GWMA-TBE and 

CUSUM-TBE charts when the underlying process distribution is exponential. Note that, the values for 

the CUSUM-TBE chart are extracted from Shafae et al. (2014). Also, the parameter values for the 

DGWMA-TBE chart and the GWMA-TBE chart are obtained from tables available in the Appendix. 

The shift size in this case is considered as 𝛿 = 1.0, 0.975, 0.950, 0.9, 0.850, 0.5, 0.25.  
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CUSUM-TBE 370.80 245.96 185.28 125.87 94.20 54.60 29.80 18.60 9.40 7.30

EWMA-TBE 370.16 256.15 200.80 131.96 99.40 61.10 41.32 23.58 11.98 7.32
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Table 3.6. 𝑨𝑹𝑳𝟎 and 𝑨𝑹𝑳𝟏 values for the DGWMA-TBE, GWMA-TBE, CUSUM-TBE and 

EWMA-TBE chart when 𝒌 = 𝟏 and 𝑨𝑹𝑳𝟎
∗ = 100 under the exponential distribution 

𝛿 DGWMA-TBE GWMA-TBE CUSUM-TBE EWMA-TBE 

1.000 99.92 98.72 101.10 100.20 

0.975 46.35 50.73 64.10 75.64 

0.950 26.90 30.33 41.20 55.23 

0.900 18.30 21.89 26.60 35.82 

0.850 11.15 10.40 12.60 18.55 

0.5 9.87 8.30 9.40 12.25 

0.25 8.24 6.20 7.30 9.81 

 

 

Figure 3.21 Comparison between the DGWMA-TBE, GWMA-TBE, CUSUM-TBE and EWMA-

TBE charts 

From Figure 3.21, one can conclude that, for small shifts 0.95 ≤ 𝛿 ≤ 0.975, the proposed DGWMA-

TBE chart outperforms the CUSUM-TBE, GWMA-TBE and EWMA-TBE charts under the exponential 

distribution. For medium shifts, the performance of the DGWMA-TBE chart is competitive with its 

counterparts. Also, the GWMA-TBE chart outperforms the CUSUM-TBE charts in detecting small 

shifts in the process. The CUSUM-TBE chart also outperforms the EWMA-TBE chart when the under-

lying process distribution is exponential.  

c. Weibull distribution 

In this part, the performance of the proposed DGWMA-TBE chart is compared with the GWMA-TBE 

and CUSUM-TBE charts when the underlying process distribution is Weibull. Note that, the values for 

the CUSUM-TBE chart are extracted from Shafae et al. (2014). The shift size in this case is considered 

as 𝛿 = 1.0, 0.975, 0.950, 0.9, 0.850, 0.5, 0.25. Note that, in this chapter, the DGWMA-TBE and the 
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GWMA-TBE charts are constructed under the gamma distribution. In order to provide a reliable com-

parison with equivalent CUSUM-TBE chart, the results for these charts are recalculated by replacing 

the gamma distribution with the Weibull distribution. Shafae et al. (2014) discussed the CUSUM-TBE 

chart when the underlying process distribution is Weibull. The results are provided in Table 3.7.  

Table 3.7. 𝑨𝑹𝑳𝟎 and 𝑨𝑹𝑳𝟏 values for the DGWMA-TBE, GWMA-TBE, CUSUM-TBE and 

EWMA-TBE chart when 𝑨𝑹𝑳𝟎
∗ = 100 under the Weibull distribution 

Shift DGWMA-TBE GWMA-TBE CUSUM-TBE EWMA-TBE 

1.000 101.20 100.62 96.40 99.80 

0.9 35.70 40.76 50.40 60.89 

0.8 17.80 22.90 26.30 35.45 

0.7 10.30 13.31 14.20 22.91 

0.5 8.10 7.80 5.50 12.87 

0.4 6.32 5.67 4.10 8.77 

0.3 5.08 4.63 3.40 5.34 

 

 

Figure 3.22. Comparison between the DGWMA-TBE, GWMA-TBE, CUSUM-TBE and 

EWMA-TBE charts 

The performance between the DGWMA-TBE chart with its counterparts under consideration in this 

study is illustrated in Figure 3.22 when the underlying process distribution is Weibull. The DGWMA-

TBE chart outperforms the CUSUM-TBE, GWMA-TBE and EWMA-TBE charts in detecting small 

shifts in the process, i.e., 0.95 ≤ 𝛿 ≤ 0.975. The GWMA-TBE charts outperforms the CUSUM-TBE 
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chart in detecting small shifts and the EWMA-TBE chart in detecting all shift sizes in the process. Also, 

the CUSUM-TBE chart outperforms the EWMA-TBE chart in detecting all shift sizes in the process. 

The CUSUM-TBE chart outperforms the GWMA-TBE and DGWMA-TBE charts in detecting large 

shifts in the process.  

From the results provided in this section to compare the performance of the DGWMA-TBE chart with 

the CUSUM-TBE, GWMA-TBE and EWMA-TBE charts, one can conclude that the DGWMA-TBE 

chart outperformed its main counterparts in detecting small shifts in the production processes under the 

exponential, gamma, and Weibull distribution. For medium to large shifts, the CUSUM-TBE chart out-

performed other charts. Also, the CUSUM-TBE chart outperforms the EWMA-TBE chart for all shift 

sizes.  

3.11 The optimal design 

For the DGWMA-TBE chart (Case 2), the optimal design required the magnitude of the shift (𝛿) as 

well as the specification of the desired 𝐴𝑅𝐿0 and 𝐴𝑅𝐿1 values, with the combination of design param-

eters (𝑞, 𝛼, 𝐿) then being selected that provides the desired 𝐴𝑅𝐿 performance. On the other hand, the 

“near optimal” design consists of the combination of the design parameters (𝑞, 𝛼, 𝐿) that yield the small-

est 𝐴𝑅𝐿1 for a specified shift size (𝛿) given the 𝐴𝑅𝐿0 = 370. The “near optimal” combinations of the 

parameters (𝑞, 𝛼, 𝐿) as well as the 𝐴𝑅𝐿1 values for different 𝛿, and 𝑘 = 1, 2, 3, 4, 5 are provided in Table 

3.1.  

Table 3.8. Near optimal (𝒒, 𝜶, 𝑳) combinations with corresponding 𝑨𝑹𝑳 values for the 

DGWMA-TBE chart 

      𝒌 = 1 𝒌 = 2 𝒌 = 3 𝒌 = 4 𝒌 = 5 

No con-

straint 
𝑨𝑹𝑳𝟏 𝒒 𝜶 𝑳 𝑨𝑹𝑳𝟏 𝒒 𝜶 𝑳 𝑨𝑹𝑳𝟏 𝒒 𝜶 𝑳 𝑨𝑹𝑳𝟏 𝒒 𝜶 𝑳 𝑨𝑹𝑳𝟏 𝒒 𝜶 𝑳 

0.975 199.25 0.95 0.5 0.595 168.20 0.95 0.5 0.608 145.30 0.95 0.5 0.601 128.67 0.95 0.5 0.600 122.11 0.95 0.5 0.613 

0.95 128.47 0.95 0.5 0.595 101.69 0.95 0.5 0.608 83.98 0.95 0.5 0.601 73.05 0.95 0.5 0.600 68.13 0.95 0.5 0.613 

0.925 92.49 0.95 0.5 0.595 72.06 0.95 0.5 0.608 58.25 0.95 0.5 0.601 50.04 0.95 0.5 0.600 46.48 0.95 0.5 0.613 

0.9 72.32 0.95 0.5 0.595 54.89 0.95 0.5 0.608 44.16 0.95 0.5 0.601 37.92 0.95 0.5 0.600 34.81 0.95 0.5 0.613 

0.85 49.61 0.95 0.5 0.595 36.73 0.95 0.5 0.608 29.23 0.95 0.5 0.601 25.43 0.95 0.5 0.600 23.02 0.95 0.5 0.613 

0.8 37.64 0.95 0.5 0.595 27.24 0.95 0.5 0.608 21.74 0.95 0.5 0.601 18.87 0.95 0.5 0.600 17.12 0.95 0.5 0.613 

0.7 24.97 0.95 0.5 0.595 17.98 0.95 0.5 0.608 14.25 0.95 0.5 0.601 12.32 0.95 0.5 0.600 11.21 0.95 0.5 0.613 

0.5 14.66 0.95 0.5 0.595 10.43 0.7 0.9 2.041 7.6 0.6 0.9 2.121 6.20 0.6 1.0 2.169 5.17 0.5 1.0 2.202 

0.25 7.46 0.6 1 1.813 4.37 0.5 1.3 1.923 3.40 0.5 1.3 2.046 3.08 0.5 1.3 2.124 2.85 0.5 1.3 2.180 
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This table reveals that, for smaller shifts values (𝛿 closer to 1), a larger value of the parameter 𝑞 (closer 

to 1) and a smaller value of the parameter 𝛼 (closer to 0.5) works best. On the other hand, for larger 

shifts, a smaller value of 𝑞 (closer to 0.5) and larger value of 𝛼 (≥1) works best.  

Chan and Zhang (2000) investigated the standard deviation relativeness to the 𝐴𝑅𝐿, to find the “near 

optimal” combinations of an EWMA chart. Hence, the near optimal design for the proposed DGWMA-

TBE chart (Case 2) subject to the constraint that 𝑆𝐷𝑅𝐿 ≤ 𝐴𝑅𝐿 is also provided in Table 3.9. 

Table 3.9. Near optimal (𝒒, 𝜶, 𝑳) combinations with corresponding 𝑨𝑹𝑳 values for the 

DGWMA-TBE chart when 𝑺𝑫𝑹𝑳 ≤ 𝑨𝑹𝑳 

      𝒌 = 1 𝒌 = 2 𝒌 = 3 𝒌 = 4 𝒌 = 5 

𝑺𝑫𝑹𝑳
≤ 𝑨𝑹𝑳 

𝑨𝑹𝑳𝟏 𝒒 𝜶 𝑳 𝑨𝑹𝑳𝟏 𝒒 𝜶 𝑳 𝑨𝑹𝑳𝟏 𝒒 𝜶 𝑳 𝑨𝑹𝑳𝟏 𝒒 𝜶 𝑳 𝑨𝑹𝑳𝟏 𝒒 𝜶 𝑳 

0.975 199.25 0.95 0.5 0.595 168.20 0.95 0.5 0.608 183.80 0.95 0.7 0.805 177.89 0.9 0.6 1.288 157.21 0.95 0.7 0.803 

0.95 128.47 0.95 0.5 0.595 101.69 0.95 0.5 0.608 96.42 0.95 0.6 0.623 73.05 0.95 0.5 0.600 68.13 0.95 0.5 0.613 

0.925 92.49 0.95 0.5 0.595 72.06 0.95 0.5 0.608 58.25 0.95 0.5 0.601 50.04 0.95 0.5 0.600 46.48 0.95 0.5 0.613 

0.9 72.32 0.95 0.5 0.595 54.89 0.95 0.5 0.608 44.16 0.95 0.5 0.601 37.92 0.95 0.5 0.600 34.81 0.95 0.5 0.613 

0.85 49.61 0.95 0.5 0.595 36.73 0.95 0.5 0.608 29.23 0.95 0.5 0.601 25.43 0.95 0.5 0.600 23.02 0.95 0.5 0.613 

0.8 37.64 0.95 0.5 0.595 27.24 0.95 0.5 0.608 21.74 0.95 0.5 0.601 18.87 0.95 0.5 0.600 17.12 0.95 0.5 0.613 

0.7 24.97 0.95 0.5 0.595 17.98 0.95 0.5 0.608 14.25 0.95 0.5 0.601 12.32 0.95 0.5 0.600 11.21 0.95 0.5 0.613 

0.5 14.66 0.95 0.5 0.595 10.43 0.7 0.9 2.041 7.6 0.6 0.9 2.121 6.20 0.6 1.0 2.169 5.17 0.5 1.0 2.202 

0.25 7.46 0.6 1 1.813 4.37 0.5 1.3 1.923 3.40 0.5 1.3 2.046 3.08 0.5 1.3 2.124 2.85 0.5 1.3 2.180 

3.12 Alternative discrete distributions for the weights 

In Section 2.5, a brief discussion was provided for the behaviour and shape of the weights for the time-

weighted charts. There is a connection between the shape for the weights and the detection capability 

of charts in detecting small or tiny shifts in the process. A distribution is characterized by different 

measures that will provide different information about its structure. Some of the well-known measures 

include, but not limited to, scale, location, dispersion, symmetry, among others. The weighting structure 

for time-weighted charts contain specific information about the shape of a distribution. The shape for 

the weights is dependent on the type of p.m.f. under consideration. This implies that different choices 

for the p.m.f. impact the chart’s performance in detecting shifts in the production processes. To the best 

of our knowledge, the discrete Weibull distribution is the only distribution considered for the weights 

of the GWMA and the DGWMA charts in the SPC literature. A two-parameter discrete Weibull distri-

bution is proposed by Nakagawa and Osaki (1975) and it referred to as type I discrete Weibull. Stein 

and Dattero (1984) proposed a type II discrete Weibull distribution. Padgett and Spurrier (1985) devel-

oped a type III discrete Weibull distribution. Barbiero (2013) mentioned that the discrete Weibull dis-

tribution can be used in reliability analysis for modelling failure data such as the number of cycles or 

runs a component can overcome before failing.  
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The p.m.f. for the two-parameter discrete Weibull distribution is given by Nakagawa and Osaki (1975) 

as follows: 

𝑃(𝑋 = 𝑥; 𝑞1, 𝛼1) = 𝑞1
(𝑥−1)𝛼1

− 𝑞1
𝑥𝛼1     for   𝑥 = 1, 2, … ; 

where 0 < 𝑞1 < 1 and 𝛼1 > 0, referred to as the scale and shape parameters, respectively.  

By assuming 𝛼1 = 1, the geometric distribution, which is the discrete analogue of the exponential dis-

tribution is obtained. The p.m.f. for the geometric distribution is as follows: 

𝑃(𝑋 = 𝑥; 𝑞1) = 𝑞1
𝑥−1 − 𝑞1

𝑥 = 𝑞1
𝑥(1 − 𝑞1)  for   𝑥 = 1, 2, … . 

Note that, for 𝛼1 = 1, the GWMA chart is also reduced to the EWMA chart as its special case. Note 

that, the EWMA chart is a limiting case of the DGWMA chart.  

Also, by assuming 𝛼1 = 2, the discrete version of the Rayleigh distribution proposed by Roy (2004) is 

obtained and its p.m.f. is as follows:  

𝑃(𝑋 = 𝑥; 𝑞1) = 𝑞1
(𝑥−1)2

− 𝑞1
𝑥2    for   𝑥 = 1, 2, … . 

Krishna and Pundir (2009) mentioned that the discretization of a continuous lifetime distribution re-

tains the same functional form of the survival function, hence, many reliability characteristics and 

properties shall remain unchanged.  

Krishna and Pundir (2009) introduced the discrete analogue of the continuous Burr distribution, namely 

as the discrete Burr distribution and denoted by DBD (𝜑1,  𝛽1). The probability mass function (p.m.f.) 

is defined in their paper as: 

𝑃(𝑋 = 𝑥; 𝜑1,  𝛽1) = 𝜑1
log(1+𝑥  𝛽1)

− 𝜑1
log(1+(1+𝑥) 𝛽1)

;     𝑥 = 0, 1, 2, … 

where 0 < 𝜑1 < 1 and  𝛽1 > 0 are the parameters. 

AL-Huniti and AL-Dayian (2012) proposed the discrete Burr Type III distribution by implementing the 

general approach of discretization of a continuous distribution and denoted by DBDIII (𝜑2,  𝛽2). The 

p.m.f. of this distribution is defined as: 

𝑃(𝑋 = 𝑥; 𝜑2,  𝛽2) = 𝜑2
log(1+(1+𝑥)− 𝛽2)

− 𝜑2
log(1+𝑥− 𝛽2)

;     𝑥 = 0, 1, 2, … 

where 0 < 𝜑2 < 1 and  𝛽2 > 0 are the parameters. 

AL-Huniti and Al-Diyan (2012) concluded that if 𝑋~𝐷𝐵𝐷𝐼𝐼𝐼(𝜑2,  𝛽2), then 𝑌 = [𝑙𝑜𝑔(1 +

𝑥−𝜑2)−1]~𝐺𝑒𝑜(
1

 𝛽2
). Also, if 𝑋~𝐷𝐵𝐷𝐼𝐼𝐼(𝜑2,  𝛽2), then 𝑌 = [√𝑋] follows a discrete Rayleigh distribu-

tion. Further, when  𝛽2 = 1, the discrete Burr type III distribution is reduced to the discrete Pareto 

distribution. Hence, the discrete Weibull distribution, the geometric distribution, and the Rayleigh dis-

tribution are the special cases of the discrete Burr type III distribution considered in this thesis. 

The relationship between these discrete distributions is demonstrated in the following figure: 
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Figure 3.23. The relationship between discrete type III distribution and its special cases 

The main objective of assuming alternative discrete distributions for the weights is aiding practition-

ers in finding the optimal discrete distribution and ultimately finding an optimal design for a time-

weighted chart to detect a tiny shift in the process. 

 Note that, to the best of our knowledge, there are no scholarly works available in the SPC literature 

that consider alternative discrete distributions for the weights and investigate the effect of the weights 

on increasing the performance of a time-weighted chart. Hence, the discussion and study provided in 

this thesis can be considered as a pioneer research. Two discrete distributions namely, the discrete Burr 

distribution proposed by Krishna and Pundir (2009) and the discrete Burr Type III distribution devel-

oped by Al-Huniti and Al-Diyan (2012) are considered as possible candidates. The Burr distribution is 

proposed by Burr (1942) in the distribution theory literature and it includes the exponential and Weibull 

distribution as limiting cases. The plots for weights between the discrete Weibull distribution and the 

discrete Burr distributions are discussed next.  

Discrete Type III Burr  𝑋~𝐷𝐵𝐷𝐼𝐼𝐼(𝜑2,  𝛽2), 
𝑋~𝐷𝐵𝐷𝐼𝐼𝐼(𝜑2,  𝛽2), 

Discrete Rayleigh  

𝒀 = [√𝑿] 

Discrete Weibull 

𝜶𝟏 = 𝟐 
Discrete Exponential 

𝜶𝟏 = 𝟏 

𝒀 = [𝐥𝐨𝐠(𝟏 + 𝒙−𝝋𝟐)−𝟏] 
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Figure 3.24. Weights for the discrete Burr Distribution  

 

Figure 3.25. Weights for the discrete Burr Type III Distribution 
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Figure 3.26. Weights for the discrete Weibull Distribution  

For the above plots, see Figures 3.24 to 3.26, the value for the parameters 𝜑1, 𝜑2, 𝑞1 is selected as 0.2, 

0.4, 0.6 and 0.8 and the value 𝛽1, 𝛽2, 𝛼1 is selected as 1. Hence, the main objective is to observe the 

influence of the first set of parameters on the weights when the second set of parameters is constant. 

The weights are plotted for the discrete Burr distribution, discrete Burr Type III distribution and discrete 

Weibull distributions, respectively. All the weights sum to one, hence the weights possess one of the 

properties of a valid p.m.f. For large values of 𝜑1, the discrete Burr distributions assigns more weights 

to the initial observations. This means that the memory-saving feature (mixture of past and present 

information) for the weights of the discrete Burr distribution enables this distribution to result an opti-

mal design of a GWMA chart in comparison to the Weibull distribution for the DGWMA chart in 

detecting small shifts in the process.  
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Figure 3.27. Weights for the discrete Burr distribution 

 

Figure 3.28. Weights for the discrete Burr Type III distribution 
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Figure 3.29. Weights for the discrete Weibull distribution 

For the above plots, see Figures 3.27 to 3.29, the value for the parameters 𝜑1, 𝜑2, 𝑞1 is selected 0.5 and 

the value for the parameters 𝛽1, 𝛽2, 𝛼1 is selected as 0.8, 1.2, 1.6 and 2.0. Hence, the main objective is 

to observe the influence of the second set of parameters, i.e., 𝛽1, 𝛽2, 𝛼1 on the weights when the first 

set of parameters, i.e., 𝜑1, 𝜑2, 𝑞1  is constant. The weights are plotted for the discrete Burr distribution, 

discrete Burr Type III distribution and discrete Weibull distributions, respectively. All the weights sum 

to one, hence the weights possess one of the properties of a valid p.m.f.  

Hence, in summary, from the performance comparison conducted in terms of weights structure between 

these three discrete distributions, the motivation and advantage of using the discrete Burr distribution 

from practitioners’ point of view and be summarized as follows: 

1) The tails for the distributions converge to zero, however, the rate of convergence is faster for 

the discrete Weibull distribution in comparison to the discrete Burr distribution. In other words, 

tails of the discrete Burr distribution have some information that impact the performance of a 

chart. Note that, tails or extreme values contain specific information about the shape of a dis-

tribution (in this case the weights structure for time-weighted charts). The behaviour of these 

values can be measured by the concept of tail weight to classify distributions into high tail and 

low tail weight. The tail weight is out of scope of this thesis; however, the concept is applicable 

in different practical scenarios such as telecommunications network analysis (Heyde and Kou, 
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2004), stock returns (Peiro, 1992), among others. Several studies propose different measure to 

quantify the tail weight in a distribution, for example, Hoaglin et al. (1983) proposed the index 

of tail weight, Schuster (1984) and Haas and Pigorsch (2011) considered the tail exponent 

measure and the references therein.  

2) The discrete Burr distribution can be considered as a generalized case or the general form of 

distributions for the weights of time-weighted charts. Krishna and Pundir (2009) and Al-Huniti 

and Al-Diyan (2012) stated the same conclusion in their research papers. This discrete distri-

bution includes the discrete Weibull distribution, the discrete Pareto distribution, the discrete 

exponential (geometric) distribution and the discrete Rayleigh distribution as special cases. 

Note that, although the main comparison in this thesis is conducted between the discrete Burr 

and the discrete Weibull distribution, however, we concluded that other discrete distributions 

such as the discrete exponential, discrete Pareto and discrete Rayleigh can also be considered 

as alternatives to the Weibull distribution. The discrete exponential is already considered in this 

chapter, and the same procedure can be followed to design a chart when the weights follow the 

discrete Rayleigh or the discrete Pareto distribution.  

3) There is a necessity in the SPC literature to provide hints or recommendations that encourage 

practitioners to consider advanced charts, e.g., GWMA, DGWMA, in practice. By replacing 

the discrete Weibull distribution with the Burr distribution, we provide a new methodology or 

path for the optimal design of a GWMA chart that outperforms the DGWMA chart. This means 

that, by changing the distribution of the weights, one can design a GWMA chart with optimal 

parameters to be applied in practice by practitioners that outperforms the DGWMA chart with-

out the implementation of double exponential smoothing technique. Tadikamalla (1980) men-

tioned that the Burr distribution can be used to fit almost any given unimodal lifetime data 

because of its two shape parameters and tail weights and the results obtained in the next section 

also supports the applicability of Burr distribution because of its tail weights and rate of con-

vergence.  

3.12.1 GWMA-TBE chart under the discrete Burr distribution 

Krishna and Pundir (2009) introduced and proposed the discrete analogue of the continuous Burr dis-

tribution, namely as the discrete Burr distribution and denoted by DBD (𝜑1,  𝛽1). The p.m.f. is defined 

as: 

𝑃(𝑋 = 𝑥; 𝜑1,  𝛽1) = 𝜑1
log(1+𝑥  𝛽1)

− 𝜑1
log(1+(1+𝑥) 𝛽1)

;     𝑥 = 0, 1, 2, … 

(3.21) 

where 0 < 𝜑1 < 1 and  𝛽1 > 0 are the parameters. 
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By replacing (3.21) into equation (2.2), the plotting statistic for the GWMA-TBE can be written as: 

 

 

𝑍𝑡
1 = ∑ 𝑣𝑖

𝑡
𝑖=1 𝑇𝑡−𝑖+1 + 𝑣0𝑘𝜃0 ;         

(3.22) 

where 𝑣𝑖 = 𝜑1
log(1+𝑖  𝛽1)

− 𝜑1
log(1+(1+𝑖) 𝛽1)

 are the weights. The GWMA-TBE chart constructed under 

the discrete Burr distribution is denoted by GWMA-TBE-DBD (𝜑1,  𝛽1). 

3.12.2 GWMA-TBE chart under the discrete Burr Type III distribution 

Al-Huniti and Al-Diyan (2012) proposed the discrete Burr Type III distribution by implementing the 

general approach of discretization of a continuous distribution and denoted by DBDIII (𝜑2,  𝛽2). The 

p.m.f. is defined as: 

𝑃(𝑋 = 𝑥; 𝜑2,  𝛽2) = 𝜑2
log(1+(1+𝑥)− 𝛽2)

− 𝜑2
log(1+𝑥− 𝛽2)

;     𝑥 = 0, 1, 2, … 

(3.23) 

where 0 < 𝜑2 < 1 and  𝛽2 > 0 are the parameters. 

By replacing (3.23) into equation (2.2), the plotting statistic for the GWMA-TBE can be written as: 

 

 

𝑍𝑡
1 = ∑ 𝑣𝑖

𝑡
𝑖=1 𝑇𝑡−𝑖+1 + 𝑣0𝑘𝜃0;          

(3.24) 

where 𝑣𝑖 = 𝜑2
log(1+(1+𝑖)− 𝛽2)

− 𝜑2
log(1+𝑖− 𝛽2)

 are the weights. The GWMA-TBE chart constructed un-

der the discrete Burr Type III distribution is denoted by GWMA-TBE-DBDIII (𝜑2,  𝛽2). 

3.12.3 The IC design 

For the GWMA-TBE chart, the IC design consists of the calculation for the charting constant (𝐿 > 0) 

based on a chosen value for the shape parameter 𝑘, and a combination of the GWMA-TBE design 

parameters. For the GWMA-TBE-DBD the design parameters are (𝜑1,  𝛽1, 𝐿) and for the GWMA-TBE-

DBDIII the design parameters are (𝜑2,  𝛽2, 𝐿). The design parameters are selected so that the attained 

𝐴𝑅𝐿 is close to the pre-specified value 𝐴𝑅𝐿0
∗ . The pre-specified value is selected as 370. The parameters 

are selected from the following intervals: 𝜑1, 𝜑2 = 0.5, 0.7, 0.9, 0.95 and  𝛽1,  𝛽2 = 0.5, 0.7, 0.9, 1.0. 

The shape parameter is selected as 𝑘 = 1 and the size for the shift is selected as  

𝛿 = 0.975, 0.950, 0.925, 0.9, 0.85, 0.8, 0.7, 0.5, 0.25. 

By implementing the grid search method in the simulation algorithm, the charting constant 𝐿 > 0 are 

obtained for the chosen combination of the parameters, and the value of the shape parameter 𝑘 has been 

specified, so that the attained 𝐴𝑅𝐿0 is approximately equal to the desirable value of 𝐴𝑅𝐿0
∗ = 370. The 
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values of 𝐿 determined through this approach are presented in Tables A.3.28 and A.3.29, see Appendix 

for Chapter 3. 

The value for the charting statistic (𝐿 > 0) for the GWMA-TBE-DBD chart (see Table A.3.28) is gen-

erally larger than the charting statistic for the GWMA-TBE-DBDIII chart (see Table A.3.29). For the 

DGWMA-TBE and the GWMA-TBE charts, the value for the charting statistic is larger than the 

GWMA-TBE-DBD and the GWMA-TBE-DBDIII charts when  𝛽1,  𝛽2 = 0.5 and irrespective of the 

values for the parameters 𝜑1 and 𝜑2. As the value for the parameters  𝛽1,  𝛽2 starts increasing, the chart-

ing statistic values for the GWMA-TBE-DBD and the GWMA-TBE-DBDIII are larger than the ones 

for the GWMA-TBE and the DGWMA-TBE charts. Note that, the charting statistics values for the 

GWMA-TBE and the DGWMA-TBE charts are presented in Table A.3.1 when 𝑘 = 1. 

3.12.4 The OOC performance 

The main objective is to detect a sustained downward shift in the process. The magnitude of the shifts 

is selected as 𝛿 < 1. The GWMA-TBE charts constructed under the discrete Burr and the discrete Burr 

Type III distributions are compared with the GWMA-TBE chart proposed by Chakraborty et al. (2016) 

and the DGWMA-TBE chart proposed in this chapter. To ensure that all the charts are on an equal 

footing, the 𝐴𝑅𝐿0s for all the competing charts are set close to 370 (𝛿 = 1). The IC ARL (i.e., 𝐴𝑅𝐿0) 

and the OOC ARL (i.e., 𝐴𝑅𝐿1) values are presented in Tables A.3.30 and A.3.31. 

Note that the notation for the parameters is excluded from Tables A.3.30 and A.3.31 since each of the 

TBE charts presented have different parameter notation. The range of the parameters for these charts 

are the same to make a fair comparison. Further, the values for the charting constant (i.e., 𝐿 > 0) are 

not presented since for each combination of parameters and different control chart there will be different 

values. However, these values can be obtained from Tables A.3.28 and A.3.29 for the GWMA-TBE-

DB and the GWMA-TBE-DBIII charts, and for the GWMA-TBE and the DGWMA-TBE charts the 

results are presented in Table A.3.1. 

The OOC performance is divided into three different parts. The performance comparison between the 

GWMA-TBE-DB chart and the GWMA-TBE and the DGWMA-TBE charts is considered in the first 

part. The performance comparison between the GWMA-TBE-DBDIII and the GWMA-TBE and the 

DGWMA-TBE charts is conducted in the second part. The last part includes the performance compar-

ison between the GWMA-TBE-DB and the GWMA-TBE-DBDIII charts. Note that for all the compar-

isons performed in this section, the IC ARL values are set equal so that the charts are at an equal footing. 

The results presented in Tables A.3.30 and A.3.31 reveal the following: 

(i) GWMA-TBE-DB chart versus GWMA-TBE and DGWMA-TBE charts 

i. For small shifts (𝛿 ≥ 0.925), the GWMA-TBE-DB chart outperforms the GWMA-TBE 

and the DGWMA-TBE charts. For example, from Table A.3.30, when 𝜑1 = 0.5, 𝛽1 = 
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0.7, and L= 1.704, the OOC ARL, i.e., 𝐴𝑅𝐿1 is equal to 280.76 for the GWMA-TBE-DB 

chart. For the GWMA-TBE chart and when 𝑞1 = 0.5, 𝛼1 = 0.7, and L= 1.414, the 𝐴𝑅𝐿1 

is equal to 319.59. For the DGWMA-TBE chart, when 𝑞 = 0.5, 𝛼 = 0.7, and L= 1.747, 

the 𝐴𝑅𝐿1 is equal to 315.36. 

ii. For medium shifts (0.8 ≤ 𝛿 ≤ 0.9), the GWMA-TBE-DB chart outperforms the 

GWMA-TBE and the DGWMA-TBE charts. For example, from Table A.3.31, when 

𝜑1 = 0.9, 𝛽1 = 1.0, and L= 1.770, the OOC ARL, i.e., 𝐴𝑅𝐿1 is equal to 58.95 for the 

GWMA-TBE-DB chart. For the GWMA-TBE chart and when 𝑞1 = 0.9, 𝛼1 = 1.0, and 

L= 1.909, the 𝐴𝑅𝐿1 is equal to 74.86. For the DGWMA-TBE chart, when 𝑞 = 0.9, 𝛼 = 

1.0, and L= 1.713, the 𝐴𝑅𝐿1 is equal to 65.56. 

iii. For large shifts (0.25 ≤ 𝛿 ≤ 0.7), the DGWMA-TBE chart outperforms the GWMA-

TBE-DB and the GWMA-TBE charts. For example, from Table A.3.31, when 𝜑1 = 

0.95, 𝛽1 = 0.5, and L= 1.737, the OOC ARL, i.e., 𝐴𝑅𝐿1 is equal to 16.38 for the GWMA-

TBE-DB chart. For the GWMA-TBE chart and when 𝑞1 = 0.95, 𝛼1 = 0.5, and L= 1.552, 

the 𝐴𝑅𝐿1 is equal to 16.23. For the DGWMA-TBE chart, when 𝑞 = 0.95, 𝛼 = 0.5, and 

L= 0.595, the 𝐴𝑅𝐿1 is equal to 14.66. 

iv. The DGWMA-TBE chart outperforms the GWMA-TBE and GWMA-TBE-DB charts 

when 𝑞 = 0.95 and 𝛼 = 0.5 and 0.7, for all the shift sizes. 

v. The performance of the GWMA-TBE chart under the discrete Weibull distribution is 

increased by considering the discrete Burr distribution for the weights. This improvement 

effects the detection ability of the GWMA-TBE chart as well as providing alternatives 

in finding an optimal design of a chart. 

vi. As a result, by changing the type of distribution for the weights in the GWMA-TBE 

chart, the performance of the chart increase significantly. This implies that without im-

plementing the double exponential smoothing technique, one can construct a GWMA-

TBE chart that outperforms the DGWMA-TBE chart in detecting small shifts in the pro-

cess. Hence, the type of discrete distribution for the weights plays a major role in im-

proving the detection capability of a chart and aiding in finding an optimal design for a 

chart. 
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(ii) GWMA-TBE-DBDIII chart versus GWMA-TBE and DGWMA-TBE charts 

i. For small shifts (𝛿 ≥ 0.925), the GWMA-TBE-DBDIII chart outperforms the GWMA-

TBE and the DGWMA-TBE charts. For example, from Table A.3.30, when 𝜑2 = 0.5, 

𝛽2 = 0.7, and L= 1.620, the OOC ARL, i.e., 𝐴𝑅𝐿1 is equal to 290.46 for the GWMA-

TBE-DBDIII chart. For the GWMA-TBE chart and when 𝑞1 = 0.5, 𝛼1 = 0.7, and L= 

1.414, the 𝐴𝑅𝐿1 is equal to 319.59. For the DGWMA-TBE chart, when 𝑞 = 0.5, 𝛼 = 

0.7, and L= 1.747, the 𝐴𝑅𝐿1 is equal to 315.36. 

ii. For medium shifts (0.8 ≤ 𝛿 ≤ 0.9), the DGWMA-TBE chart outperforms the GWMA-

TBE-DBDIII and the GWMA-TBE charts. For example, from Table A.3.31, when 𝜑2 = 

0.9, 𝛽2 = 1.0, and L= 1.475, the OOC ARL, i.e., 𝐴𝑅𝐿1 is equal to 87.55 for the GWMA-

TBE-DBIII chart. For the GWMA-TBE chart and when 𝑞1 = 0.9, 𝛼1 = 1.0, and L= 

1.909, the 𝐴𝑅𝐿1 is equal to 74.86. For the DGWMA-TBE chart, when 𝑞 = 0.9, 𝛼 = 1.0, 

and L= 1.713, the 𝐴𝑅𝐿1 is equal to 65.56. 

iii. For large shifts (0.25 ≤ 𝛿 ≤ 0.7), the DGWMA-TBE chart outperforms the GWMA-

TBE-DBDIII and the GWMA-TBE charts. For example, from Table A.3.31, when 𝜑2 = 

0.95, 𝛽2 = 0.5, and L= 1.620, the OOC ARL, i.e., 𝐴𝑅𝐿1 is equal to 17.68 for the GWMA-

TBE-DBDIII chart. For the GWMA-TBE chart and when 𝑞1 = 0.95, 𝛼1 = 0.5, and L= 

1.552, the 𝐴𝑅𝐿1 is equal to 16.23. For the DGWMA-TBE chart, when 𝑞 = 0.95, 𝛼 = 

0.5, and L= 0.595, the 𝐴𝑅𝐿1 is equal to 14.66. 

iv. As a result, the GWMA-TBE-DBDIII chart outperforms the GWMA-TBE and the 

DGWMA-TBE charts in detecting small shifts. For the medium and large shifts, the 

DGWMA-TBE chart outperforms the GWMA-TBE and the GWMA-TBE-DBDIII 

charts. 

(iii) GWMA-TBE-DB chart versus GWMA-TBE-DBIII chart 

The GWMA-TBE-DB chart outperforms the GWMA-TBE-DBDIII chart in most of the cases 

irrespective of the values for the parameters. The only case where the GWMA-TBE-DBDIII chart 

outperforms the GWMA-TBE-DB chart is when 𝜑2 = 0.5 and 𝛽2 = 0.5 and 1 and for shift size 

0.5, i.e., 𝛿 = 0.5. 

Next, different comparative graphs are provided to compare the performance between the charts dis-

cussed in this section. These graphs will provide better insights than numerical results presented in 

Tables A.3.30 and A.3.31, since these tables are too informative, whereas a visual presentation always 

provide better guidelines to select the best performing control chart. Different values are selected for 

the chart’s parameters. 
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Figure 3.30. Comparative graph between the DGWMA-TBE, GWMA-TBE (under discrete 

Weibull distribution) and GWMA-TBE-DBD, and the GWMA-TBE-DBDIII (under discrete 

Burr distribution) 

 

The chart parameters are selected as follows: 𝑞 = 0.5 and 𝛼 = 0.7 for the DGWMA-TBE chart, 𝑞1 = 

0.5, 𝛼1 = 0.7 for the GWMA-TBE chart,  𝜑1 = 0.5, 𝛽1 = 0.7 for the GWMA-TBE-DBD chart, and 

𝜑2 = 0.5, 𝛽2 = 0.7 for the GWMA-TBE-DBDIII chart. From the above plot one can conclude that the 

GWMA-TBE-DBD chart outperforms other time-weighted charts in detecting tiny shifts in the process 

and is competitive in detecting moderate to large shifts in the process. Note that, there is no need to 

implement the double exponential smoothing to enhance the detection capability of the GWMA-TBE 

chart and by changing the type of the distribution for the weights, one can design a GWMA-TBE chart 

that outperforms the DGWMA-TBE chart. 

1 0.975 0.95 0.925 0.9 0.85 0.8 0.7 0.5 0.25

DGWMA-TBE 370.31 315.36 266.05 225.33 191.55 138.22 100.4 54.58 19.31 7.67

GWMA-TBE 369.18 319.59 277.22 241.07 209.02 156.13 116.85 66.43 23.03 7.96

GWMA-TBE-DBD 370.52 280.76 216.5 171.33 138.42 94.5 68.13 37.46 17.25 8.18

GWMA-TBE-DBDIII 369.36 290.46 230.08 185.59 151.11 105.14 75.84 42.88 17.99 8
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Figure 3.31. Comparative graph between the DGWMA-TBE and GWMA-TBE (under discrete 

Weibull distribution) and GWMA-TBE-DBD, and the GWMA-TBE-DBDIII (under discrete 

Burr distribution) 

 

The chart parameters are selected as follows: 𝑞 = 0.7 and 𝛼 = 0.9 for the DGWMA-TBE chart, 𝑞1 = 

0.7, 𝛼1 = 0.9 for the GWMA-TBE chart,  𝜑1 = 0.7, 𝛽1 = 0.9 for the GWMA-TBE-DBD chart, and 

𝜑2 = 0.7, 𝛽2 = 0.9 for the GWMA-TBE-DBDIII chart. From the above plot one can conclude that the 

GWMA-TBE-DBD chart outperforms other time-weighted charts in detecting tiny shifts in the process 

and is competitive in detecting moderate to large shifts in the process. Also, the GWMA-TBE-DBDIII 

outperforms the DGWMA-TBE and the GWMA-TBE charts in detecting tiny shifts in the process. The 

DGWMA-TBE chart proposed in this chapter outperforms the GWMA-TBE chart for tiny shifts and its 

competitive in detecting medium to large shifts. 

1 0.975 0.95 0.925 0.9 0.85 0.8 0.7 0.5 0.25

DGWMA-TBE 371.01 307.86 257.3 213.29 179.57 125.29 88.41 47.42 17.46 8.14

GWMA-TBE 371.23 316.79 271.06 232.56 199.12 145.64 106.46 58.53 20.33 7.65

GWMA-TBE-DBD 370.29 273.21 210.48 163.44 131.7 89.54 64.59 37.46 16.96 8.31

GWMA-TBE-DBIII 372.12 302.82 248.04 204.15 169.58 119.57 86.55 48.51 19.29 7.91
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Figure 3.32. Comparative graph between the DGWMA-TBE and GWMA-TBE (under discrete 

Weibull distribution) and GWMA-TBE-DBD, and the GWMA-TBE-DBDIII (under discrete 

Burr distribution) 

 

The chart parameters are selected as follows: 𝑞 = 0.9 and 𝛼 = 1.0 for the DGWMA-TBE chart, 𝑞1 = 

0.9, 𝛼1 = 1.0 for the GWMA-TBE chart,  𝜑1 = 0.9, 𝛽1 = 1.0 for the GWMA-TBE-DBD chart, and 

𝜑2 = 0.9, 𝛽2 = 1.0 for the GWMA-TBE-DBDIII chart. From the above plot one can conclude that the 

GWMA-TBE-DBD chart outperforms other time-weighted charts in detecting tiny shifts in the process 

and is competitive in detecting moderate to large shifts in the process. Also, the DGWMA-TBE chart 

outperforms the GWMA-TBE and the GWMA-TBE-DBDIII charts in detecting tiny shifts in the pro-

cess.  

3.13 Phase II DGWMA-TBE chart 

Control chart process monitoring works under two different phases; Phase I (retrospective phase) and 

Phase II (prospective phase). Practitioners estimate the unknown parameters from the reference sample 

(calibration sample) that is time-ordered in Phase I. Then, the determination of the design parameter(s) 

and the assessment of a process’s stability are considered in Phase I. Phase II focuses on the monitoring 

of the process using estimated control limits obtained from Phase I, which is known as Case U. For the 

1 0.975 0.95 0.925 0.9 0.85 0.8 0.7 0.5 0.25

DGWMA-TBE 370.13 285.48 222.06 175.85 140.1 93.64 65.56 37.42 18.5 12.35

GWMA-TBE 369.83 297.48 240.32 193.5 157.74 106.08 74.86 40.48 16.88 8.87

GWMA-TBE-DBD 371.33 260.62 193.8 149.85 119.07 81 58.98 35.17 16.54 8.55

GWMA-TBE-DBDIII 371.9 307.96 256.07 214 178.63 127.48 92.88 52.08 20.2 7.94
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DGWMA-TBE chart, the point estimate of the scale parameter denoted by 𝜃 is used to estimate the 

Phase II LCL denoted by 𝐿𝐶�̂�, and the starting value 𝑍0
2 that is equal to; 𝑍0

2 = 𝑘𝜃. Hence, for a one-

sided DGWMA-TBE chart (Case U), the plotting statistic and estimated LCL are defined as: 

 Zt
2 = ∑ 𝑤𝑖

𝑡
𝑖=1 Xt−i+1 + (1 − ∑ 𝑤𝑖

𝑡
𝑖=1 )𝑘𝜃;  (3.25) 

 

and: 

 
𝐿𝐶�̂� = 𝑘𝜃 − 𝐿√𝑘𝜃2𝑄′. 

 

(3.26) 

The process is declared OOC if a point falls on or below the 𝐿𝐶�̂� defined in equation (3.26), which is 

an indication of the deterioration in the process. 

For the retrospective phase, the main assumption is that an IC Phase I reference sample is available. An 

informative literature review on univariate control charts in Phase I is provided by Chakraborti et al. 

(2009). For the broader review on different types of Phase I charts, refer to the work of Jones-Farmer 

et al. (2014). To estimate the unknown value of the scale parameter 𝜃, the MLE method is used. The IC 

Phase I reference sample is denoted as 𝑋1, 𝑋2, … , 𝑋𝑚~𝑖. 𝑖. 𝑑 𝐺𝑎𝑚𝑚𝑎 (𝑘. 𝜃). 𝑚 ≥ 1. Then, the MLE 

estimator for the unknown scale parameter is 𝜃 = ∑ 𝑋𝑖/𝑘𝑚
𝑚
𝑖=1 , which follows a gamma distribution 

with the scale parameter of 𝑘𝑚 and the shape parameter of 
𝜃

𝑘𝑚
 denoted as 𝐺𝑎𝑚𝑚𝑎(𝑘𝑚,

𝜃

𝑘𝑚
). The esti-

mated values of the IC parameters depend on the number of observations available for a Phase I analy-

sis. Zhang et al. (2013) concluded that the size of the Phase I sample must often be quite large to be 

confident that the performance of the control chart will achieve the performance under the assumption 

of known IC parameters. 

For the DGWMA-TBE control chart Case U, the starting value and the lower control limit are random 

variables. Hence, it is extremely important to evaluate the effects of parameter estimation on the Phase 

II run length distribution. This is a valid criteria robustness of the proposed DGWMA-TBE chart using 

the design parameters of Case K. The conditional Phase II run length is defined as the run length distri-

bution conditional on a given point estimate 𝜃, the performance is evaluated under a specific IC Phase 

I sample. Since Phase I’s IC sample is different for each practitioner, the conditional performance does 

not provide suitable information on the overall performance of the chart. Hence, the unconditional run 

length distribution is considered to gain more insight about the effects of parameter estimation. The 

unconditional average run length is defined as: 

 𝑈𝐴𝑅𝐿 = 𝐸�̂� (𝐸(𝑁|𝜃)) = ∫ 𝐸(𝑁|𝜃)𝑓(𝜃)𝑑𝜃
∞

0
 ; (3.27) 

where 𝐸(𝑁|𝜃) denotes the conditional 𝐴𝑅𝐿 given a point estimate 𝜃, and 𝑓(𝜃) denotes the distribution 

of estimated parameter 𝜃. 
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3.13.1 Performance analysis 

For the Phase II DGWMA-TBE chart, a simulation study is performed to calculate the IC and OOC 

𝐴𝑅𝐿 to test the validity of the design parameters obtained in Case K. The IC Phase I sample is generated 

from a gamma distribution with the shape parameter 𝑘 = 1, 2, and the scale parameter 𝜃 = 1. The val-

ues for the reference sample 𝑚 are set as 50, 100, 500, 1000, and two sets of design parameters were 

considered: 

a) (𝑘 = 1, 𝑞 = 0.95, 𝛼 = 0.5, 𝐿 = 0.595) 

b) (𝑘 = 2, 𝑞 = 0.95, 𝛼 = 0.5, 𝐿 = 0.608) 

The graphs for these sets of design parameters consist of a vertical axis that represent the 𝐴𝑅𝐿, and a 

horizontal axis that represent the magnitude of the shift (𝛿). The 𝐴𝑅𝐿 values for Case K are compared 

with the 𝐴𝑅𝐿 values obtained for Case U. These graphs are displayed in Figures 3.32 and 3.33 for the 

set of design parameters presented in a) and b), respectively. 

 

 
 

Figure 3.33. 𝑨𝑹𝑳 values for the Phase II DGWMA-TBE chart (Case U) for unknown 𝜽 when 

𝒌 = 𝟏, 𝒒 = 0.95, 𝜶 = 0.5, and 𝑳 = 0.595 

 

 

1 0.975 0.95 0.925 0.9 0.8 0.7 0.5 0.25

50 1078.682 912.387 750.487 606.038 487.316 146.691 42.861 15.375 9.67

100 948.040 739.344 554.946 410.725 293.136 66.249 28.484 15.061 9.621

500 631.149 383.502 223.611 137.377 91.594 39.925 25.512 14.772 9.579

1000 527.435 293.984 168.325 110.926 80.993 38.984 25.345 14.729 9.574

Case K 369.85 199.25 128.47 92.49 72.32 37.64 24.97 14.66 9.58
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Figure 3.34. 𝑨𝑹𝑳 values for the Phase II DGWMA-TBE chart (Case U) for unknown 𝜽 when 

𝒌 = 𝟐, 𝒒 = 0.95, 𝜶 = 0.5, and 𝑳 = 0.608 

 

The following is worth mentioning concerning the above figures: 

i. For larger values of shifts (𝛿 ≤0.5), the charts for Case K and Case U perform similarly. 

However, for other magnitude of shifts, the IC and OOC 𝐴𝑅𝐿 in Case U are larger than the 

corresponding 𝐴𝑅𝐿s in Case K. 

ii. In terms of the value for the reference sample 𝑚, to get a similar performance for Case U 

and Case K. more than 1.000 Phase I observations are required. Zhang et al. (2013) noted 

that since the event of interest is rare with the TBE data, the requirement for Phase II sample 

sizes can be prohibitively large. 

3.13.2 The IC design 

For the Phase II DGWMA-TBE chart, the IC design requires the implementation of equation (3.26) and 

the width of the 𝐿𝐶�̂� so that the IC 𝑈𝐴𝑅𝐿 is equal to 370. For some combinations of (𝑞, 𝛼), the value of 

the charting constant (𝐿 > 0) is obtained by implementing a grid search technique that satisfies 

1

𝑁
∑ 𝐸(𝑁|𝜃, 𝐼𝐶)𝑁
𝑗=1 ≈370. Table 3.3, displays these values along with the value of 𝐿 for Case K. It is 

observed that the value of 𝐿 converges to the Case K value as the number of observations increases. 

The values for the parameters 𝑞 and 𝛼 are selected as 𝑞 = 0.5, 0.6, 0.7, 0.95, 𝛼 = 0.5, 0.6, 0.7, 0.8, 0.9, 

1 and 1.3, and the shape parameter is chosen as 𝑘 = 1, 2, 3. The charting constant (𝐿 > 0) for the 

1 0.975 0.95 0.925 0.9 0.8 0.7 0.5 0.25

50 1226.743 1042.44 860.5851 702.4999 551.0412 167.7586 34.4563 10.973 6.8879

100 1095.36 864.8617 659.02 477.557 331.6886 57.0018 20.9316 10.7471 6.8639

500 763.5491 431.3816 232.1856 128.5338 76.4314 28.3193 18.0034 10.5047 6.8166

1000 631.5617 308.268 155.1694 88.7422 60.3888 27.6459 17.8648 10.4779 6.8109

Case K 370.01 168.2 101.69 72.06 54.89 37 24.94 15.73 11.2
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DGWMA-TBE chart and Case K are obtained from Tables A.3.8, A.3.9, and A.3.10 for 𝑘 = 1, 2, 3, 

respectively. 

Table 3.10. Design parameters for the Phase II DGWMA-TBE chart (Case 2) in Case U 

 

𝒎 
𝒌 𝒒 𝜶 𝟓𝟎 𝟏𝟎𝟎 𝟓𝟎𝟎 𝟏𝟎𝟎𝟎 Case K 

𝟏 

0.95 0.5 0.119 0.180 0.374 0.447 0.595 

0.95 0.8 0.118 0.326 0.806 0.920 1.037 

0.95 1 0.590 0.910 1.282 1.340 1.406 

0.6 1 1.743 1.770 1.802 1.808 1.813 

0.6 1.3 1.697 1.713 1.727 1.731 1.734 

𝟐 

0.95 0.5 0.172 0.273 0.425 0.585 0.608 

0.95 0.8 0.025 0.100 0.640 0.820 1.041 

0.95 1 0.158 0.553 1.167 1.288 1.418 

0.7 0.9 1.708 1.852 1.997 2.017 2.041 

0.5 1.3 1.845 1.885 1.908 1.913 1.923 

𝟑 

0.95 0.5 0.040 0.090 0.240 0.360 0.601 

0.95 0.6 0.015 0.045 0.190 0.300 0.623 

0.95 0.7 0.010 0.030 0.270 0.445 0.805 

0.6 0.9 1.810 1.945 2.080 2.097 2.121 

0.5 1.3 1.910 1.970 2.035 2.040 2.046 

 

3.14 Phase II DEWMA-TBE chart 

As discussed in the previous sections, the DEWMA-TBE chart, proposed and studied in this chapter, is 

known as the special case of the proposed DGWMA-TBE chart. Since this chart was constructed for 

both cases (Case 1 and Case 2) when the parameters of the underlying process distribution are known 

(Case K), there is a necessity to construct the DEWMA-TBE chart for Case U. In the current SPC 

literature, the majority of the researchers developed and proposed the DEWMA chart for Case K. How-

ever, in many practical situations, the parameters of interest are unknown, which emphasizes the im-

portant role of Case U charts. The procedure and general steps to obtain the design parameters for the 

DEWMA-TBE chart is exactly the same as the one explained in Section 3.11 for the DGWMA-TBE 

chart. Hence, only the design parameters for the DEWMA-TBE chart (Case 1 and Case 2) are presented 

in Tables 3.11 and 3.12. 
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Table 3.11. Design parameters for the Phase II DEWMA-TBE (Case 1) chart in Case U 

 

 𝒎 

𝒌 𝒒𝟏 𝒒𝟐 𝜶𝟏 𝜶𝟐 𝟓𝟎 𝟏𝟎𝟎 𝟓𝟎𝟎 𝟏𝟎𝟎𝟎 Case K 

𝟏 

0.9 0.95 1.0 1.0 0.900 1.180 1.468 1.516 1.569 

0.8 0.95 1.0 1.0 1.120 1.363 1.602 1.642 1.687 

0.7 0.95 1.0 1.0 1.208 1.437 1.665 1.700 1.742 

0.6 0.95 1.0 1.0 1.262 1.480 1.700 1.735 1.776 

0.5 0.95 1.0 1.0 1.296 1.511 1.725 1.756 1.800 

𝟐 

0.9 0.95 1.0 1.0 0.445 0.882 1.396 1.487 1.590 

0.8 0.95 1.0 1.0 0.710 1.118 1.563 1.638 1.729 

0.7 0.95 1.0 1.0 0.828 1.215 1.640 1.715 1.794 

0.6 0.95 1.0 1.0 0.900 1.272 1.688 1.755 1.835 

0.5 0.95 1.0 1.0 0.950 1.316 1.720 1.787 1.865 

𝟑 

0.9 0.95 1.0 1.0 0.212 0.654 1.322 1.433 1.595 

0.8 0.95 1.0 1.0 0.448 0.908 1.500 1.600 1.735 

0.7 0.95 1.0 1.0 0.578 1.015 1.585 1.680 1.807 

0.6 0.95 1.0 1.0 0.652 1.084 1.640 1.730 1.852 

0.5 0.95 1.0 1.0 0.706 1.132 1.677 1.767 1.887 

 

Table 3.12. Design parameters for the Phase II DEWMA-TBE chart (Case 2) in Case U 

 

 𝒎 
𝒌 𝒒𝟏 𝒒𝟐 𝜶𝟏 𝜶𝟐 𝟓𝟎 𝟏𝟎𝟎 𝟓𝟎𝟎 𝟏𝟎𝟎𝟎 Case K 

𝟏 

0.5 0.5 1.0 1.0 1.678 1.696 1.712 1.714 1.719 

0.6 0.6 1.0 1.0 1.746 1.776 1.804 1.808 1.813 

0.7 0.7 1.0 1.0 1.761 1.809 1.858 1.865 1.871 

0.8 0.8 1.0 1.0 1.660 1.754 1.845 1.856 1.873 

0.95 0.95 1.0 1.0 0.592 0.918 1.283 1.336 1.405 

𝟐 

0.5 0.5 1.0 1.0 1.852 1.908 1.952 1.957 1.965 

0.6 0.6 1.0 1.0 1.845 1.921 1.996 2.006 2.021 

0.7 0.7 1.0 1.0 1.760 1.883 1.998 2.015 2.032 

0.8 0.8 1.0 1.0 1.527 1.725 1.917 1.950 1.975 

0.95 0.95 1.0 1.0 0.148 0.553 1.165 1.280 1.418 

𝟑 

0.5 0.5 1.0 1.0 1.894 1.975 2.058 2.068 2.078 

0.6 0.6 1.0 1.0 1.844 1.960 2.075 2.091 2.111 

0.7 0.7 1.0 1.0 1.695 1.870 2.044 2.068 2.100 

0.8 0.8 1.0 1.0 1.390 1.636 1.927 1.965 2.020 

0.95 0.95 1.0 1.0 0.043 0.324 1.076 1.215 1.417 

3.15 Illustrative example 

3.15.1  Simulated data 

Zhang et al. (2007) simulated a dataset for a paper manufacturing process, where the defects in the 

formed paper are referred to high velocity and become unstable. The known value of the IC process 

failure rate of paper defects is maintained at 1/𝜃0 = 1/5000 = 0.0002 (𝑋~ Gamma(𝑘, 5000)) defects 

per square meter. Fifty random observations were simulated from a Gamma(𝑘 =  2, 4000) 
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distribution, which is an OOC process following a shift of 𝛿 = 4000/5000 = 0.8. This represents a 

deterioration in the process – i.e., the failure rate increases to 0.00025 defects per square meter. Since 

𝑘 = 2, the total time between two consecutive failures will be monitored. Two different sets of design 

parameters were used: (𝑞 = 0.5, 𝛼 = 0.9, 𝐿 = 1.975) and (𝑞1 = 0.5, 𝑞2 = 0.0, 𝛼1 = 0.9, 𝛼2 = 1.0, 𝐿 = 

1.736). The first set corresponds to a DGWMA-TBE chart, whereas the second one results in a GWMA-

TBE chart. Note that any other combination of the design parameters can be chosen, but these values 

were selected only for illustrative purposes. The IC 𝐴𝑅𝐿 (i.e., 𝐴𝑅𝐿0) for both charts are approximately 

370. From Table 3.12, it is observed that the DGWMA-TBE chart has an OOC 𝐴𝑅𝐿 of 78.35; while 

from Table 3.17, it can be seen that the GWMA-TBE chart has an OOC 𝐴𝑅𝐿 of 96.41. Therefore, the 

expectation is that the DGWMA-TBE chart will detect a shift in the process before the GWMA-TBE 

chart does. The LCLs are calculated using equation (3.7) and are equal to 0.854 and 0.607, respectively. 

Figure 3.11 displays the DGWMA-TBE and GWMA-TBE charts. It is concluded that the DGWMA-

TBE chart signals at time 22, whereas the GWMA-TBE chart signals at time 39. 

 

 
(a) DGWMA-TBE chart 



 146 

 
(b) GWMA-TBE chart 

 

Figure 3.35. The DGWMA-TBE (a) and GWMA-TBE (b) charts for the simulated data 

3.15.2    Real-life data 

To illustrate the application and implementation of the proposed DGWMA-TBE chart in Phase II, a 

real data set on coal mining accidents is considered. The coal mining accidents data set in Jarrett (1979) 

is taken to show the construction of the proposed chart. The data set can be obtained from Maguire et 

al. (1952). The data consist of the time intervals in days between successive coal mining accidents (in 

days) which involve more than ten men were killed between in Great Britain. Yen et al. (2013) men-

tioned that the time between accidents has been shown to be exponentially distributed which is the 

special case of the gamma distribution. The data have been used extensively in the literature for the 

TBE data, see, for example, Barnard (1953), Cox and Lewis (1966), Jarrett (1979), Gan (1998), and 

Yang et al. (2016). The mean of the time between accidents is estimated based on the first 50 observa-

tions (like Gan (1998)) as 121.64. Thus, the estimated IC mean time between accidents is 𝜃0̂ = 121.64. 

The estimated lower control limits for the DGWMA-TBE and GWMA-TBE charts are calculated and 

are equal to 187.53 and 203.25, respectively. For observation number 51 to observation number 120, 

the estimated control limits obtained from Phase I sample are used to monitor the process in Phase II. 

Hence, the figures only include Phase II sample. In Figure 3.36, a process deterioration occurs at the 

18th sample number. The proposed DGWMA-TBE chart triggered the OOC shift at sample number 30, 

whereas for the GWMA-TBE chart the OOC point is detected at sample number 32. 
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(a) DGWMA-TBE chart 

 
(b) GWMA-TBE chart 

Figure 3.36. The DGWMA-TBE (a) and GWMA-TBE (b) charts for the coal mining acci-

dents 
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3.16 Additional remarks 

In this section, some additional remarks that  have not been addressed in this chapter are dis-

cussed. The contamination for the DGWMA-TBE chart when the shift not occurred at the initial stage 

is addressed with a simulated example. Also, the performance of one-sided and two-sided DGWMA-

TBE charts in terms of the biasdness term is addressed and the shortcomings and obstacles of two-sided 

DGWMA-TBE chart are outlined.  

3.16.1 Contamination for the DGWMA-TBE 

The 𝐴𝑅𝐿1 values calculated based on the Monte Carlo simulation are called the zero-state ARL’s and 

based on the assumption that the shift occurs at the start-up, i.e., at time 𝑡 = 1. However, it is also of 

interest to observe whether a DGWMA-TBE chart deigned for optimal performance at start-up performs 

well for a shift that occurs later in the process, i.e., 𝑡 = 50, 100, 300, etc. This is called the steady-state 

performance and the ARL is referred to as the steady-state ARL; the assumption is that a stable process 

has been operating IC for some time before the shift occurs. The steady-state ARL for some (𝑞, 𝛼, 𝐿) 

combination when 𝑘 = 1,2 is calculated and compared to the zero-state ARL. The results are provided 

in the following table: 

Table 3.13. Zero-state versus steady-state for the DGWMA-TBE chart 

     𝛿 

𝑘 
time of a 

shift 
𝑞 𝛼 𝐿 0.975 0.950 0.925 0.9 0.85 0.8 0.7 0.5 0.25 

𝑘 = 1 

t =1 0.95 0.9 1.243 263.62 193.61 148.74 116.94 79.12 58.30 37.85 23.49 17.13 

t = 50 0.95 0.9 1.243 266.06 195.72 151.34 120.66 82.75 62.32 41.76 25.73 16.92 

t =100 0.95 0.9 1.243 267.65 194.48 150.65 121.88 80.25 61.10 41.68 24.57 17.45 

t = 150 0.95 0.9 1.243 267.43 193.10 152.65 117.02 81.25 60.52 42.96 23.25 16.82 

t = 300 0.95 0.9 1.243 268.70 196.82 151.96 119.68 82.52 63.98 41.88 22.30 17.30 

𝑘 = 2 

t =1 0.95 0.9 1.250 232.53 156.89 113.35 86.60 56.71 41.86 27.87 18.16 13.54 

t = 50 0.95 0.9 1.250 229.88 158.80 116.62 87.65 55.65 43.82 30.80 20.03 14.76 

t =100 0.95 0.9 1.250 230.85 157.60 115.85 88.20 55.45 42.25 28.58 19.84 13.05 

t = 150 0.95 0.9 1.250 231.37 156.30 115.65 87.75 56.32 43.45 29.23 18.50 14.18 

t = 300 0.95 0.9 1.250 230.35 157.25 114.30 86.86 56.45 42.26 28.30 19.96 13.80 

 

The zero-state and steady-state ARL are the same for all practical purposes. The minor difference that 

are observed in the above table are due to the inherent simulation variability. Hence, a DGWMA-TBE 

chart designed for optimal performance at start-up works well for a shift that occurs later in the process. 

Note that, the plotting statistics for the Shewhart-TBE chart are mutually independent, irrespective of 

the time the shift occurs, and hence, the time of shift can always be taken as 𝑡 = 1 when calculating the 

𝐴𝑅𝐿1. Human (2009) stated that their proposed chart has a hitch at start-up and most likely give a 
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“delayed” or a “late” OOC signal instead. Since this glitch is possible, we need to stress an important 

assumption: the design and implementation of all the charts that are proposed in this chapter are based 

on an IC process at start-up. In other words, the process is IC at start-up; hence, we want to ensure that 

the process is IC before we start monitoring the process. To summarize the above discussion, we can 

state that: 

i) The proposed DGWMA-TBE chart has a hitch at start-up but, since the OOC ARL values 

for the zero-state (shift occurs at time 𝑡 = 1) are close to the OOC ARL values for the 

steady-state (shift occurs at the later stage, 𝑡 = 50, 100, etc), the odds of a hitch at start-up 

are typically small as mentioned by Human (2009); this should be reassuring for the prac-

titioner. 

ii) The OOC ARL performance of the charts are almost identical and if a shift in the process 

occurs after start-up i.e., from time 𝑡 ≥ 1, both the charts i.e., the zero-state and steady-

state can signal a shift/change in the process.  

iii) We recommend that practitioners use either zero-state or steady-state charts, but we suggest 

that they familiarize themselves with the inherent risk associated with the selected chat. 

Based on the above discussion, it was decided to focus on the proposed DGWMA-TBE 

chart based on the zero-state ARL.  

3.16.2 One-sided and two-sided DGWMA-TBE  

A well-designed chart should ensure that the ARL curves reach their maximum or nominal values at 

their IC occurrence rates. In other words, the chart is set in such a way that the ARL curves attains a 

maximum in the IC situation, i.e., the chart is ARL-unbiased when the IC ARL (denoted by 𝐴𝑅𝐿0) or 

attained ARL is equal to or close to a pre-specified or nominal value (denoted by 𝐴𝑅𝐿0
∗ ). The pre-spec-

ified value is typically selected as 370 or 500 in practice as recommended by several researchers, for 

example, Chakraborty et al. (2016) and the references therein. 

In SPC, for some charts constructed based on symmetrically placed limits, their ARL curves will not 

reach their maximum values at their pre-specified value which is not desirable for any control chart. 

Using the parallel between a control chart and a hypothesis test, this corresponds to the case where the 

power of the corresponding test is smaller than the size of the test, which is undesirable. In the testing 

literature, such tests are called biased and such charts are called ARL-biased charts in the SPC literature.  

The following table illustrates that, a two-sided DGWMA-TBE chart, for 𝛼 = 1 vs. 𝛼 ≠ 1, encounters 

bias which puts a concern on their applicability for detecting small shifts in the process. It has been 
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observed in SPC that for heavy-tailed distribution, a two-sided chart encounters biasdness. Zhang et al. 

(2006) discussed the proof for a Shewhart-type charts under the exponential and the gamma distribution.  

Note that the values inside the parentheses in the following table correspond to the following: 𝑞, 𝛼 

(DGWMA-TBE parameters) and 𝐿 > 0 (charting constant), respectively. The values for the shift are 

selected as 0.2, 0.3, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.975, 1.0, 1.025, 1.05, 1.1, 1.2, 1.3, 1.4 and 1.5. Note 

that when 𝛿 = 1, the process declares to be IC. The results for the two-sided DGWMA-TBE chart are 

presented in the following table: 

Table 3.14. 𝑨𝑹𝑳𝟏 values for the one-sided and two-sided DGWMA-TBE chart 

𝜹 =
𝜽𝟏
𝜽𝟎

 DGWMA (0.95,0.7,1.397) DGWMA (0.95,0.8,1.566) DGWMA (0.95,1.856) 

0.2 16.40 16.58 15.33 

0.3 26.34 28.77 30.14 

0.5 400.60 705.13 800.43 

0.6 1563.39 1678.25 1753.80 

0.7 1923.80 1940.43 1957.20 

0.8 1640.91 1638.98 1652.56 

0.9 988.78 987.65 1008.67 

0.95 690.39 670.34 675.39 

0.975 475.09 480.05 483.35 

1.0 370.20 369.80 370.40 

1.025 270.75 270.20 274.75 

1.05 209.61 208.10 210.33 

1.1 128.62 126.54 130.20 

1.2 61.20 60.30 62.50 

1.3 35.85 36.32 35.32 

1.4 23.22 23.80 22.90 

1.5 18.53 18.41 18.79 

 

For the shift values in the following interval, 0.5 ≤ 𝛿 ≤ 0.975, the two-sided DGWMA-TBE chart is 

ARL-biased. Hence for a one-sided chart DGWMA-TBE chart developed in this chapter, an important 

characteristic is that unlike the two-sided DGWMA-TBE, the one-sided chart is an is ARL-unbiased 

chart. Note that, Chakraborty et al. (2016) and Chakraborti et al. (2009) concluded similar findings.   
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3.17 Concluding remarks 

Advancements in technological tools available in the present information era led to so-called high-

quality or high-yielded processes, where the number of detects are very small – i.e., one in a million or 

billion. The Shewhart-type attribute charts are effective in detecting large shifts in the process, but in-

efficient in detecting small shifts in the process. To overcome the drawback of these charts, a general-

ized time-weighted chart, which sequentially accumulates information from past to present to monitor 

the TBE data, is proposed. More precisely, a one-sided DGWMA-TBE chart is developed under the 

gamma distribution and is denoted by DGWMA-TBE. This chart includes a one-sided GWMA-TBE, a 

one-sided EWMA-TBE, and a one-sided Shewhart-type-TBE charts as limiting cases. Further to this, 

the special case of the proposed chart that is the DEWMA-TBE chart is also developed and studied. 

Two cases of the DEWMA-TBE chart depend on the equality and/or inequality of the smoothing pa-

rameters, namely as Case 1 (two smoothing parameters) and Case 2 (a single smoothing parameter) are 

considered in detail. Both cases of the DGWMA-TBE chart, which are based on four parameters (Case 

1) and two parameters (Case 2), are investigated and the pros and cons for each are discussed in detail. 

A relationship graph is provided in Figure 3.1, for the different cases of the DGWMA-TBE and the 

DEWMA-TBE charts. Alternative discrete distributions are considered for the weights of the GWMA-

TBE chart and the performance of the new constructed charts is compared with the DGWMA-TBE 

chart proposed in this chapter and the GWMA-TBE chart proposed by Chakraborty et al. (2016). The 

results confirm that one can design a time-weighted chart with different weighting distributions and 

without the implementation of the double exponential smoothing technique that is effective in detecting 

small shifts in the process. A detailed comparative study is conducted to measure the OOC performance 

of the proposed DGWMA-TBE chart (Case 1 and Case 2) and the DEWMA-TBE chart (Case 1 and 

Case 2) with their counterparts. Two cases exist in the context of the SPC literature dependent on the 

process parameters (known/unknown): Case K and Case U. In this chapter, both of these cases are 

developed and studied in detail for the DGWMA-TBE chart and its special case, the DEWMA-TBE 

chart. An extensive simulation study has been studied and the results reveal that the proposed DGWMA-

TBE chart outperforms its counterparts in detecting small or tiny changes in the process. 
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4.1 Introduction 

The monitoring of the location and dispersion measures often presupposes that the underlying process 

probability distribution is known. Control charts are usually constructed under the assumption of a 

known (i.e., normal) distribution for the underlying process, which in various applications is unknown 

or no information available. Hence, the statistical properties of commonly used charts, designed to per-

form under a distribution assumption, could be highly affected.  

Nonparametric control charts provide a robust alternative when there is lack of knowledge regarding 

the underlying process distribution. A chart is called distribution-free or nonparametric if its in-control 

(IC) run length distribution remains invariant for all continuous process distributions. However, in some 

cases, symmetry of the underlying process distribution is required for the chart to be nonparametric. 

In numerous practical scenarios, the true process median (location parameter) is unknown (Case U), 

which limits the applicability of the proposed distribution-free charts based on the well-known nonpar-

ametric statistics (e.g., the sign and Wilcoxon signed-rank statistics). Exceedance (EX) or precedence 

tests, are well-known and the most commonly used nonparametric two-sample tests that do not suffer 

from these limits. Precedence statistics are defined as the number of observations from one of the sam-

ples that exceed a specified (𝑟𝑡ℎ) order statistic of the other sample.  

Relatively little work has been done on nonparametric schemes in the context of a DGWMA chart, 

featuring the work of Lu (2018) which is solely focused on Case K and the parameter of interest is the 

process proportion. 

Motivated by these findings, a distribution-free (nonparametric) DGWMA chart based on an EXs for 

monitoring the unknown median of a process is constructed in this chapter. From the information avail-

able, it can be deduced that the proposed chart will be a pioneer work that investigates the performance 

of the DGWMA chart for Case U in the nonparametric context. This chart is referred to as the DGWMA 

exceedance (or DGWMA-EX) chart and integrates the virtues of both the GWMA and DEWMA charts, 

to achieve improved detection ability.  

 Chapter 4 A Double Generally Weighted Moving 

Average Exceedance Control Chart  
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The proposed chart can be viewed as a generalized nonparametric time-weighted chart, such that the 

GWMA-EX, EWMA-EX, and Shewhart-EX charts are limiting cases. Further to this, the nonparametric 

DEWMA-EX chart, which is a special case of the DGWMA-EX chart, will be proposed and discussed 

in detail.  

This chapter features a literature review on nonparametric charts for time-weighted charts in Section 

4.2. Section 4.3 presents the rationale for constructing the DGWMA-EX chart and the methodologies 

used in the entire thesis are discussed in detail in Section 4.4. A discussion on precedence or EXs and 

some fundamental results related to the distribution of the EXs is provided in Section 4.5. Also, Section 

4.5 provides the necessary theoretical framework for the DGWMA-EX chart. In Sections 4.6 and 4.7, 

two types of the DGWMA-EX chart and two types of the DEWMA-EX chart are discussed in detail, 

respectively. The run length distribution and its methods of calculation are discussed in Section 4.8 for 

the DGWMA-EX chart and its special case the DEWMA-EX chart. The design and implementation of 

the proposed chart, including the IC design and the OOC performance are discussed in Sections 4.9 and 

4.10, respectively. A discussion with respect to the optimal design and the near optimal design of the 

DGWMA-EX chart is provided in Section 4.11. Two illustrative examples in the form of simulated data 

and real-life data are provided in Section 4.12.  

4.2 Literature review 

There are two major nonparametric statistics adopted in SPC literature. One is the Wilcoxon signed-

rank statistic, and the other is the sign statistic. Nonparametric charts are based on either Wilcoxon 

signed-rank or rank-sum of the observations, such as Bakir (2004), Chakraborti and Eryilmaz (2007), 

Balakrishnan et al. (2009), Li et al. (2010), Graham et al. (2011) and Abid et al. (2016). Authors con-

cluded that the charts perform well in detecting mean shifts and perform better than parametric coun-

terparts when the underlying process distribution is not normal. The case of nonparametric charts based 

on the sign statistics include Amin et al. (1995), Amin and Widmaier (1999), Human et al. (2010) and 

Graham et al. (2010). These authors showed that the proposed sign chart has superior performance when 

the underlying process distribution is heavy-tailed or highly right skewed. Other recent research on 

nonparametric charts include, for example, Zhou et al. (2009) and Hawkins and Deng (2010) which 

developed the nonparametric change-point control charts that are capable of detecting changes in the 

distribution function that could be a result of changes in the location parameter or scale parameter or 

both, i.e., location-scale. Yang et al. (2011) established the nonparametric EWMA sign chart. Note that, 

in this section, only research articles related to nonparametric charts are discussed. For an overview of 

time-weighted charts and their weighting schemes, the reader is referred to the literature review pro-

vided in Section 1.3 
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Chakraborti et al. (2004) studied a class of nonparametric Phase II Shewhart-type charts based on the 

exceedance statistics, called the Shewhart-type exceedance charts. This paper is known as the pioneer 

work for several follow-up papers in this area. Mukherjee et al. (2013) developed a Phase II nonpara-

metric CUSUM charts based on the exceedance statistics, called the exceedance CUSUM chart. Graham 

et al. (2012) proposed a two-sided nonparametric Phase II EWMA chart based on the exceedance sta-

tistics, denoted by EWMA-EX for detecting a shift in the location parameter of a continuous distribu-

tion. Recently, Chakraborty et al. (2018) proposed a nonparametric GWMA exceedance chart, referred 

to as the GWMA-EX chart, which outperforms the EWMA-EX chart in detecting small shifts in process 

parameters.  

The Shewhart-type signed-rank charts were developed by Bakir (2004) as the pioneer work in the con-

text of nonparametric SPC. For more details, refer to Chakraborti et al. (2001) and Bakir (2006). More 

recently, Lu (2015) and Chakraborty et al. (2016) proposed nonparametric GWMA charts based on the 

sign statistic (denoted by GWMA-SN) and the Wilcoxon signed-rank (denoted by GWMA-SR), respec-

tively, for the case when the true process median is known (Case K). Lu (2018) developed a nonpara-

metric DGWMA chart (denoted by DGWMA-SN) for when the true process proportion is known (Case 

K). A class of nonparametric Shewhart-type charts, referred to as Shewhart-type precedence charts, 

were studied by Graham et al. (2012). Graham et al. (2014) proposed a Phase II nonparametric CUSUM 

chart (denoted by NPCUSUM) based on exceedance statistic for monitoring the unknown location pa-

rameter (Case U). The proposed nonparametric chart is compared with the NPCUSUM-Rank chart pro-

posed by Li et al. (2010) based on the Wilcoxon rank-sum statistic. The advantages of implementing 

CUSUM charts in practice is documented by Khoo and Teh (2009). Goel (2011) summarized the char-

acteristics and fundamentals of nonparametric CUSUM charts. McDonald (1990) proposed a CUSUM 

chart for individual observations based on the sequential rank statistics. Jones et al. (2004) investigated 

the run length distribution of the CUSUM chart with estimated parameters (Case U). Chatterjee and 

Qiu (2009) developed NPCUSUM chart through control limits obtained from bootstrap method. Lie et 

al. (2013) proposed a NPCUSUM chart for unknown shifts in the process location parameter. Yang and 

Cheng (2011) proposed a NPCUSUM chart to monitor the process location parameter. For more infor-

mation on nonparametric control charts, see the work of Chakraborti et al. (2011) 

4.3 Motivation 

Nonparametric methods have become a part of the toolkit for practitioners or researchers, it appears 

that this topic has not been fully embraced in the field of SPC for the DGWMA chart. To this end, 

Woodall and Montgomery (2014) mentioned that, “Despite their advantages in reducing the distribu-

tional assumptions required to design control charts with specified IC performance, it does not seem 

that nonparametric methods are gaining a foothold with practitioners. This could partially be due to a 
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lack of available statistical software for implementing the methods, a lack of familiarity, and a lack of 

textbook coverage. Nevertheless, this research is remaining active.”  

The exceedance or precedence test is a distribution-free (nonparametric) test based on one the number 

of observations from one of the samples exceeding or preceding a specified (𝑟𝑡ℎ) order statistic of the 

other sample. Exceedance tests have been found to be useful in numerous applications including relia-

bility analysis, quality control, amongst others. Balakrishnan and Ng (2006) noted that, “Under some 

positively skewed distributions such as the exponential distribution, gamma distribution, and lognormal 

distribution, the exceedance tests have higher power values than the Wilcoxon’s rank-sum test for small 

values of 𝑟”. The majority of research conducted in the SPC literature for nonparametric assumes that 

the parameters(s) of the underlying process distribution is (are) known (Case K) which is not applicable 

in numerous real-life applications. 

Also, the process mean is assumed frequently in the context of nonparametric SPC as the location pa-

rameter of interest. A research question that might be raised is the applicability of the process mean 

when the parameter of interest is unknown and constructed based on the exceedance statistic. One of 

the factors that have an impact on the effectiveness of a chart is the type of the reference sample being 

considered. An optimal design of a control chart is an important concept by itself when it comes to the 

performance of time-weighted charts. A research question could be raised about the robustness of non-

parametric charts under normal and skewed distributions  

In the current SPC environment, for the DGWMA chart, the nonparametric chart is only available for 

Case K based on the sign test and to monitor the process proportion. In numerous practical scenarios, 

the true process parameter(s) is (are) unknown (Case U), which limits the applicability of the available 

nonparametric DGWMA chart in the SPC literature. Also, Chakraborti et al. (2011) mentioned that, 

“The median is a robust estimator of the location and is preferred in situations, where ‘large’ measure-

ment errors are expected.” It would therefore be beneficial and helpful for practitioners and researchers 

to know what the present state of the art with nonparametric DGWMA charts and what challenges is 

still remain. 

Thus, motivated by such observations, the main objective has been to bring the DGWMA chart con-

structed under the nonparametric EX (denoted by DGWMA-EX) to the SPC development arena. The 

proposed nonparametric chart is a generalized time-weighted chart that includes the GWMA-EX and 

EWMA-EX charts as limiting cases, and the DEWMA-EX chart as a special case for Case U. This chart 

is useful since it combines the memory-saving (combination of the past and present information) prop-

erty of the time-weighted charts with the robustness gained from nonparametric statistic to monitor the 
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process location parameter, i.e., process median. Also, we addressed the question of which reference 

sample order statistic should be chosen for the design and implementation of the DGWMA-EX chart.  

4.4 Methodology  

We use a Markov chain approach (see e.g., Fu and Lou, (2003)) to derive the run length distributions, 

average run lengths, etc. for our proposed DGWMA-EX and DEWMA-EX charts. This approach pro-

vides a more unified and compact view of the derivations. Balakrishnan and Koutras (2004) stated that, 

“The Markov techniques possess a great advantage (over the classical combinatory methods) as they 

are easily adjustable to many problems; they often simplify the solutions to specific problems they are 

applied on and remain valid even for cases involving non-identical or dependent trials”. 

We use a two-step approach to derive the run length distribution which involve the method of condi-

tioning (see e.g., Chakraborti, (2000)). Firstly, the conditional run length distribution is derived and 

secondly, the unconditional run length distribution by averaging over the joint distribution is derived. 

The unconditional run length distribution reveals the overall performance of the chart and reflects the 

bigger picture.  

There is a lack of proper guidance to the practitioner on the design and implementation of time-weighted 

charts and more specifically the DGWMA chart which is the core part of the current research. We 

consider monitoring the location parameter of a process in the nonparametric setting. The location pa-

rameter could be the mean or the median or some percentiles of the distribution. The performance of 

the proposed DGWMA-EX chart is investigated based on the 25th, 50th and 75th percentiles. The median 

of the reference sample is chosen as a good representative of the reference data due to its robustness 

and applicability in practice.  

The exact approach utilizes mathematical derivations and combinatorics to obtain a closed-form ex-

pression of the run length distribution. This approach is commonly dismissed in the literature since the 

process of obtaining expressions is cumbersome or difficult to be evaluated numerically.  

The popularity of the Monte Carlo simulation stems from the fact that computer simulations can almost 

always be implemented to calculate the run length distribution fairly accurately, provided the simulation 

size is big enough. The run length distribution is significantly right skewed (see Barnard (1959)). Hence, 

the MDRL is a better alternative measure for the assessment of chart performance and will be considered 

as well in this chapter. For more information, the interested reader is referred to Khoo et al. (2011). 

However, the only practical disadvantage of using the MDRL is that finding the exact standard error is 

cumbersome which is out of scope of for the current thesis and can be considered as a topic for future 

research.  
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4.5 The DGWMA-EX chart 

4.5.1 Assumptions 

The exceedance test first proposed by Epstein (1954) for comparing two distributions based on exceed-

ances. Nelson (1963) proposed the precedence test defined as a distribution-free test which enables a 

robust and simple comparison of two distribution functions. 

A two-sample nonparametric test, known as the precedence or exceedance test, is defined as the number 

of observations from one of the samples exceeding or preceding a specified (𝑟𝑡ℎ) order statistic of the 

other sample. The precedence probability is defined as the probability that an order statistic from the 

second sample exceeds an order statistic from the first sample.  

Let 𝑋1, 𝑋2, … , 𝑋𝑚~i.i.d 𝐹𝑋(𝑥) denote a Phase I reference sample from an IC process with an unknown 

continuous c.d.f. 𝐹𝑋(𝑥), where −∞ < 𝜃 < ∞ denotes the unknown location parameter. Let 

𝑌𝑖1, 𝑌𝑖2, … , 𝑌𝑖𝑛. 𝑖 = 1.2. …. denote the 𝑖𝑡ℎ test sample in Phase II of size 𝑛 ≥ 1, with an unknown con-

tinuous c.d.f. 𝐺𝑌(𝑥) = 𝐹𝑋(𝑥 − 𝜃). The main intention is to design a control chart for monitoring the 

unknown process location. The unknown/true value of the location parameter is denoted by 𝜃0 and the 

shifted location parameter is denoted by 𝜃1 = 𝜃0 + 𝛿, where −∞ < 𝛿 < ∞ is the location shift. The 

process is declared to be IC when the unknown continuous c.d.f.’s 𝐹 and 𝐺 are equal (i.e., 𝐺 = 𝐹 or 

𝛿 = 0), and OOC when 𝐺 ≠ 𝐹 or 𝛿 ≠ 0. 

This chapter’s main focus is on Phase II design and implementation of the DGWMA-EX control chart 

when the process parameter(s) is unknown. However, one can conduct research based on the steps and 

procedures involved in obtaining an IC Phase I reference sample, which is outside scope of this thesis. 

Consult the work by Chakraborti et al. (2008) for a detailed discussion on the design and implementa-

tion of Phase I charts. 

Let 𝑈𝑖𝑟 denote the number of 𝑌 observations in the 𝑖𝑡ℎ Phase II sample that exceeds the 𝑟𝑡ℎ order 

statistic  𝑋(𝑟), 𝑟 = 1,2.…, 𝑚 – i.e., from the Phase I sample of size 𝑚 ≥ 1. The statistic 𝑈𝑖𝑟 is called 

the EX, and the probability 𝑝𝑟 = 𝑃[𝑌 ≥ 𝑋(𝑟)|𝑋(𝑟)] is the exceedance probability. For inference pur-

poses, the exceedance and precedence tests are equivalent in the sense that the two statistics are linearly 

related and so can be used interchangeably. Hereafter, 𝑈𝑖 will be used to denote the EX for the 𝑖𝑡ℎ 

sample in Phase II.  Fundamental results from Balakrishnan and Ng (2006) related to the distribution 

of the EXs are discussed next. 
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Result 4.1. The exceedance statistics 𝑈𝑖, 𝑖 = 1,2, …. are independent and identically distributed bino-

mial random variables with parameters (𝑛, 𝑝𝑟), where 𝑛 is the sample size of Phase II and the probability 

is defined as 𝑝𝑟 = 1 − 𝐺(𝑥𝑟|𝑋(𝑟) = 𝑥𝑟), where 𝐺(. ) is the c.d.f. of the test sample (𝑌𝑖1, 𝑌𝑖2, … , 𝑌𝑖𝑛). 

Proof: 

Since every observation 𝑌, in a test sample has two possible outcomes (smaller or larger than 𝑋(𝑟)), 

then the order statistic 𝑋(𝑟) follows the properties of a Bernoulli trial. Note that for every Phase II 

sample, the number of observations – be it smaller or larger than the order statistic – are independent. 

Hence, the random variable 𝑈𝑖 referring to the number of exceedances given by the number of obser-

vations in the 𝑖𝑡ℎ test sample that exceed 𝑋(𝑟) follows a binomial distribution with parameters (𝑛, 𝑝𝑟), 

given 𝑋(𝑟), where the probability of success is 𝑝𝑟 = 𝑃[𝑌 > 𝑋(𝑟)|𝑋(𝑟) = 𝑥𝑟] = 1 − 𝐺(𝑥𝑟|𝑋(𝑟) = 𝑥𝑟). 

Result 4.2. The unconditional IC distribution of exceedance statistics 𝑈𝑖, for all 𝑖 = 1, 2, …. is distribu-

tion-free and is given by the p.m.f. 𝑃(𝑈𝑖 = 𝑢) =
(
𝑢+𝑚−𝑟

𝑢
)(
𝑛−𝑢+𝑟−1
𝑛−𝑢

)

(
𝑚+𝑛
𝑛

)
, 𝑢 = 0,1,2, … , 𝑛. 

Proof: 

From Result 4.1., the probability of EX, 𝑈𝑖 conditional on 𝑋(𝑟) can be written as: 

𝑃[𝑈𝑖 = 𝑢|𝑋(𝑟) = 𝑥𝑟] = (
𝑛
𝑢
) 𝑝𝑟

𝑢(1 − 𝑝𝑟)
𝑛−𝑢 = (

𝑛
𝑢
) (1 − 𝐺(𝑥𝑟))

𝑢
𝐺(𝑥𝑟)

𝑛−𝑢 ; 𝑢 = 0,1,2, … , 𝑛. 

By implementing the unconditional method, the above probability can be written as: 

𝑃[𝑈𝑖 = 𝑢] = 𝐸𝑋(𝑟)(𝑃[𝑈𝑖 = 𝑢|𝑋(𝑟) = 𝑥𝑟]) 

= ∫ (
𝑛
𝑢
) (1 − 𝐺(𝑥𝑟))

𝑢
𝐺(𝑥𝑟)

𝑛−𝑢 𝑚!

(𝑟−1)!(𝑚−𝑟)!

∞

−∞
𝐹(𝑥𝑟)

𝑟−1(1 − 𝐹(𝑥𝑟))
𝑚−𝑟

𝑓(𝑥𝑟)𝑑𝑥𝑟 ;  

where 𝑓(𝑥𝑟) is the p.d.f. of the order statistic 𝑋(𝑟). 

When the process is IC, it implies that 𝐺 = 𝐹. Therefore, the IC unconditional distribution of 𝑈𝑖 is: 

𝑃[𝑈𝑖 = 𝑢] = (
𝑛
𝑢
) 

𝑚!

(𝑟−1)!(𝑚−𝑟)!
∫ 𝐹(𝑥𝑟)

𝑛−𝑢+𝑟−1∞

−∞
(1 − 𝐹(𝑥𝑟))

𝑚+𝑢−𝑟
𝑓(𝑥𝑟)𝑑𝑥𝑟  

=
𝑛!

𝑢! (𝑛 − 𝑢)!

𝑚!

(𝑟 − 1)! (𝑚 − 𝑟)!

(𝑛 − 𝑢 + 𝑟 − 1)! (𝑚 + 𝑢 − 𝑟)!

(𝑚 + 𝑛)!
 

=
(
𝑢 +𝑚 − 𝑟

𝑢
) (
𝑛 − 𝑢 + 𝑟 − 1

𝑛 − 𝑢
)

(
𝑚 + 𝑛
𝑛

)
. 

Result 4.3. The unconditional IC expectation of 𝑈𝑖 is given by 𝐸(𝑈𝑖) = 𝑛 (1 −
𝑟

𝑚+1
). 

Proof: 

By implementing unconditional method, the following is true: 
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𝐸(𝑈𝑖) =  𝐸𝑋(𝑟) (𝐸(𝑈𝑖|𝑋(𝑟))) = 𝐸𝑋(𝑟)[∑ 𝑃[𝑈𝑖 = 𝑢|𝑋(𝑟)] 
𝑛
𝑢=0 ]   

If the process is IC, then 𝐺 = 𝐹 – see Result 5.3. from Chakraborty et al. (2017). Thus: 

𝐸(𝑈𝑖) = 𝐸𝑋(𝑟) (∑ 𝑢𝑛
𝑢=0 (

𝑛
𝑢
) (1 − 𝐹(𝑥𝑟))

𝑢
𝐹(𝑥𝑟)

𝑛−𝑢) = 𝑛𝐸𝑋(𝑟) (1 − 𝐹(𝑋(𝑟))). 

Then, 

𝐸𝑋(𝑟) (1 − 𝐹(𝑋(𝑟))) = ∫ (1 − 𝐹(𝑥𝑟)) 
𝑚!

(𝑟−1)!(𝑚−𝑟)!

∞

−∞
𝐹(𝑥𝑟)

𝑟−1(1 − 𝐹(𝑥𝑟))
𝑚−𝑟

𝑓(𝑥𝑟)𝑑𝑥𝑟  

=
𝑚!

(𝑟−1)!(𝑚−𝑟)!
∫ 𝐹(𝑥𝑟)

𝑟−1(1 − 𝐹(𝑥𝑟))
𝑚−𝑟+1

 
∞

−∞
𝑓(𝑥𝑟)𝑑𝑥𝑟  

By setting  𝑣 = 𝐹(𝑥𝑟), and using the probability integral transformation technique: 

𝐸𝑋(𝑟) (1 − 𝐹(𝑋(𝑟))) =
𝑚!

(𝑟−1)!(𝑚−𝑟)!
∫ 𝑣𝑟−1(1 − 𝑣)𝑚−𝑟+1 
∞

−∞
𝑑𝑣 =  

𝑚−𝑟+1

𝑚+1
.  

Hence, the unconditional IC expectation is: 

𝐸(𝑈𝑖) = 𝑛𝐸𝑋(𝑟) (1 − 𝐹(𝑋(𝑟))) = 𝑛 (1 −
𝑟

𝑚+1
). 

Result 4.4. The unconditional IC variance of the exceedance 𝑈𝑖 is given by 𝑣𝑎𝑟(𝑈𝑖) =

𝑛𝑟(𝑚−𝑟+1)(𝑚+𝑛+1)

(𝑚+1)2(𝑚+2)
. 

Proof: 

The unconditional IC variance of 𝑈𝑖 is defined as: 

 𝑣𝑎𝑟(𝑈𝑖) = 𝑣𝑎𝑟𝑋(𝑟)(𝐸(𝑈𝑖| 𝑋(𝑟))) + 𝐸𝑋(𝑟)(𝑣𝑎𝑟(𝑈𝑖| 𝑋(𝑟)))        (i) 

Since 𝑈𝑖𝑟|𝑋(𝑟)~ Bin (𝑛. 𝑝𝑟), the conditional expectation and variance of 𝑈𝑖𝑟 are: 

𝐸(𝑈𝑖| 𝑋(𝑟)) = 𝑛(1 − 𝐹(𝑥𝑟))    and    𝑣𝑎𝑟(𝑈𝑖| 𝑋(𝑟)) = 𝑛𝐹(𝑥𝑟)(1 − 𝐹(𝑥𝑟)). 

Hence, 

𝑣𝑎𝑟𝑋(𝑟)(𝐸(𝑈𝑖| 𝑋(𝑟))) = 𝑛
2𝑉𝑎𝑟𝑋(𝑟)(1 − 𝐹(𝑥𝑟)).   

The next step is to find an expression for 𝑣𝑎𝑟𝑋(𝑟)(1 − 𝐹(𝑥𝑟)) = 𝐸𝑋(𝑟)(1 − 𝐹(𝑥𝑟))
2
− 𝐸𝑋(𝑟)

2 (1 −

𝐹(𝑥𝑟)). 

Firstly, 

𝐸𝑋(𝑟)(1 − 𝐹(𝑥𝑟))
2
= ∫ (1 − 𝐹(𝑥𝑟))

2∞

−∞

𝑚!

(𝑟−1)!(𝑚−𝑟)!
𝐹(𝑥𝑟)

𝑟−1(1 − 𝐹(𝑥𝑟))
𝑚−𝑟

𝑓(𝑥𝑟) 𝑑𝑥𝑟  



 160 

=
𝑚!

(𝑟 − 1)! (𝑚 − 𝑟)!
∫ 𝐹(𝑥𝑟)

𝑟−1(1 − 𝐹(𝑥𝑟))
𝑚−𝑟+2

𝑓(𝑥𝑟) 𝑑𝑥𝑟 .
∞

−∞

 

By setting  𝑣 = 𝐹(𝑥𝑟), and implementing the probability integral transformation technique: 

𝐸𝑋(𝑟)(1 − 𝐹(𝑥𝑟))
2
=

𝑚!

(𝑟 − 1)! (𝑚 − 𝑟)!
∫ 𝑣𝑟−1(1 − 𝑣)𝑚−𝑟+2 
∞

−∞

𝑑𝑣. 

Therefore, 

𝐸𝑋(𝑟)(1 − 𝐹(𝑥𝑟))
2
=

(𝑚−𝑟+2)(𝑚−𝑟+1)

(𝑚+2)(𝑚+1)
.  

The expression for 𝐸𝑋(𝑟)(1 − 𝐹(𝑥𝑟)) =
𝑚−𝑟+1

𝑚+1
, (see Result 4.3). 

Thus, 

𝑣𝑎𝑟𝑋(𝑟)(1 − 𝐹(𝑥𝑟)) =
(𝑚−𝑟+2)(𝑚−𝑟+1)

(𝑚+2)(𝑚+1)
− (

𝑚−𝑟+1

𝑚+1
)
2
=

𝑟(𝑚−𝑟+1)

(𝑚+1)2(𝑚+2)
.  

Then. 

𝑣𝑎𝑟𝑋(𝑟)(𝐸(𝑈𝑖| 𝑋(𝑟))) = 𝑛
2𝑣𝑎𝑟𝑋(𝑟)(1 − 𝐹(𝑥𝑟)) =

𝑛2𝑟(𝑚−𝑟+1)

(𝑚+1)2(𝑚+2
.                                                     (ii) 

The next step is to calculate the second expression in equation (i) as follows: 

𝐸𝑋(𝑟)(𝑣𝑎𝑟(𝑈𝑖| 𝑋(𝑟))) = 𝑛 𝐸𝑋(𝑟) (𝐹(𝑋(𝑟)) (1 − 𝐹(𝑋(𝑟)))). 

As a result, 

𝐸𝑋(𝑟) (𝐹(𝑋(𝑟)) (1 − 𝐹(𝑋(𝑟)))) 

= ∫ 𝐹(𝑋(𝑟)) (1 − 𝐹(𝑋(𝑟)))
∞

−∞

𝑚!

(𝑟 − 1)! (𝑚 − 𝑟)!
𝐹(𝑥𝑟)

𝑟−1(1 − 𝐹(𝑥𝑟))
𝑚−𝑟

𝑓(𝑥𝑟) 𝑑𝑥𝑟 

=
𝑚!

(𝑟 − 1)! (𝑚 − 𝑟)!
∫ 𝐹(𝑥𝑟)

𝑟−1(1 − 𝐹(𝑥𝑟))
𝑚−𝑟+1

𝑓(𝑥𝑟) 𝑑𝑥𝑟

∞

−∞

 

=
𝑟(𝑚 − 𝑟 + 1)

(𝑚 + 2)(𝑚 + 1)
. 

Therefore, 

𝐸𝑋(𝑟)(𝑣𝑎𝑟(𝑈𝑖| 𝑋(𝑟))) = 𝑛𝐸𝑋(𝑟) (𝐹(𝑋(𝑟)) (1 − 𝐹(𝑋(𝑟)))) =
𝑛𝑟(𝑚−𝑟+1)

(𝑚+2)(𝑚+1)
.                                           (iii) 

When substituting equations (ii) and (iii) in equation (i), then: 

 𝑣𝑎𝑟(𝑈𝑖) = 𝑣𝑎𝑟𝑋(𝑟)(𝐸(𝑈𝑖| 𝑋(𝑟))) + 𝐸𝑋(𝑟)(𝑣𝑎𝑟(𝑈𝑖| 𝑋(𝑟))) =
𝑛2𝑟(𝑚−𝑟+1)

(𝑚+1)2(𝑚+2
+

𝑛𝑟(𝑚−𝑟+1)

(𝑚+2)(𝑚+1)
=

𝑛𝑟(𝑚−𝑟+1)(𝑚+𝑛+1)

(𝑚+1)2(𝑚+2)
. 
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Chakraborty et al. (2017) (Results 5.2 and 5.3) concluded that the joint and marginal p.m.f. for the t 

number of EXs – i.e., (𝑈1, 𝑈2, … , 𝑈𝑡) – are free from the underlying c.d.f. 𝐹(𝑥) when the process is IC. 

These results showed that the control chart based on the EX 𝑈𝑖 is distribution-free when the process is 

IC. An important property of a control chart is its IC robustness, which means that the EX 𝑈𝑖 is distri-

bution-free when the process is IC. In the next section, the DGWMA-EX plotting statistic constructed 

under the EXs and the control limits are defined. 

4.5.2 Plotting statistic 

The DGWMA-EX plotting statistic is defined as: 

 𝑍𝑡
2 = ∑ 𝑤𝑖

𝑡
𝑖=1 𝑈𝑡−𝑖+1 + (1 − ∑ 𝑤𝑖

𝑡
𝑖=1 )𝑍0

2     for   𝑡 = 1. 2.… ; (4.1) 

where 𝑍0
2 = 𝐸(𝑈𝑖) is the unconditional IC expectation of  𝑈𝑖 given by 𝑍0

2 = 𝑛 (1 −
𝑟

𝑚+1
). To calculate 

the conditional expectation and variance of the sample statistic 𝑈𝑖, the information regarding the under-

lying process distribution is required. Therefore, the unconditional IC expectation and variance of the 

plotting statistic 𝑍𝑡
2 will be derived first, and thereafter can then be used to determine the control limits 

of the proposed DGWMA-EX chart. 

The unconditional IC expectation of the plotting statistic 𝑍𝑡
2 can be derived as: 

𝐸(𝑍𝑡
2) = 𝐸𝑋(𝑟) (𝐸(𝑍𝑡

2|𝑋(𝑟))) = ∑ 𝑤𝑖
𝑡
𝑖=1 𝐸𝑋(𝑟) (𝐸 ((𝑈𝑡−𝑖+1|𝑋(𝑟)))) + (1 − ∑ 𝑤𝑖

𝑡
𝑖=1 )𝑛 (1 −

𝑟

𝑚+1
).  

Hence. 

𝐸(𝑍𝑡
2) = 𝑛 (1 −

𝑟

𝑚 + 1
).  

(4.2) 

The unconditional IC variance of 𝑍𝑡
2 is obtained as follows: 

𝑣𝑎𝑟(𝑍𝑡
2) = 𝑣𝑎𝑟𝑋(𝑟) (𝐸(𝑍𝑡

2|𝑋(𝑟))) + 𝐸𝑋(𝑟) (𝑣𝑎𝑟(𝑍𝑡
2|𝑋(𝑟))). 

Then, 

𝐸(𝑍𝑡
2|𝑋(𝑟)) = ∑ 𝑤𝑖

𝑡
𝑖=1 𝐸(𝑈𝑡−𝑖+1|𝑋(𝑟)) + (1 − ∑ 𝑤𝑖

𝑡
𝑖=1 )𝑛 (1 −

𝑟

𝑚+1
).  

Hence, 

𝑣𝑎𝑟𝑋(𝑟) (𝐸(𝑍𝑡
2|𝑋(𝑟))) = (∑ 𝑤𝑖

2𝑡
𝑖=1 )𝑣𝑎𝑟𝑋(𝑟) (𝐸(𝑈𝑡−𝑖+1|𝑋(𝑟))) = ∑ 𝑤𝑖

2𝑡
𝑖=1

𝑛2𝑟(𝑚−𝑟+1)

(𝑚+1)2(𝑚+2)
.  

After this, 

𝑣𝑎𝑟(𝑍𝑡
2|𝑋(𝑟)) = ∑ 𝑤𝑖

2𝑡
𝑖=1 𝑣𝑎𝑟(𝑈𝑡−𝑖+1|𝑋(𝑟))  
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and, 

𝐸𝑋(𝑟) (𝑣𝑎𝑟(𝑍𝑡
2|𝑋(𝑟))) = ∑ 𝑤𝑖

2𝑡
𝑖=1 𝐸𝑋(𝑟) (𝑣𝑎𝑟(𝑈𝑡−𝑖+1|𝑋(𝑟))) = ∑ 𝑤𝑖

2𝑡
𝑖=1

𝑛𝑟(𝑚−𝑟+1)

(𝑚+2)(𝑚+1)
  

Therefore, the unconditional IC variance of 𝑍𝑡
2 is: 

𝑣𝑎𝑟(𝑍𝑡
2) =

𝑛(
𝑟

𝑚+1
)(1 − 

𝑟

𝑚+1
)

𝑚+2
∑ 𝑤𝑖

2𝑡
𝑖=1 (𝑛 + 𝑚 + 1). 

4.5.3 Control limits 

4.5.3.1 Exact control limits 

The exact time-varying, symmetrically placed, control limits (denoted by 𝑈𝐶𝐿𝑒  and 𝐿𝐶𝐿𝑒) of the two-

sided DGWMA-EX chart are given by: 

 

𝐿𝐶𝐿𝑒 = 𝑛 (1 −
𝑟

𝑚+1
) − 𝐿√

𝑛(
𝑟

𝑚+1
)(1 − 

𝑟

𝑚+1
)

𝑚+2
∑ 𝑤𝑖

2𝑡
𝑖=1 (𝑛 + 𝑚 + 1)  

𝑈𝐶𝐿𝑒 = 𝑛 (1 −
𝑟

𝑚+1
) + 𝐿√

𝑛(
𝑟

𝑚+1
)(1 − 

𝑟

𝑚+1
)

𝑚+2
∑ 𝑤𝑖

2𝑡
𝑖=1 (𝑛 + 𝑚 + 1) ; 

 

 

 

(4.3) 

where 𝐿 > 0 is the distance of the control limits from the centerline, and the subscript “e” denotes the 

exact control limits. 

4.5.3.2 Steady-state control limits 

The steady-state control limits, which are based on the asymptotic unconditional variance of the plotting 

statistic, are given by: 

 

𝐿𝐶𝐿𝑠 = 𝑛 (1 −
𝑟

𝑚+1
) − 𝐿√

𝑛(
𝑟

𝑚+1
)(1−

𝑟

𝑚+1
)

𝑚+2
𝑄′(𝑛 + 𝑚 + 1)   

𝑈𝐶𝐿𝑠 = 𝑛 (1 −
𝑟

𝑚+1
) + 𝐿√

𝑛(
𝑟

𝑚+1
)(1−

𝑟

𝑚+1
)

𝑚+2
𝑄′(𝑛 + 𝑚 + 1) ,  

 

(4.4) 

with centerline 𝐶𝐿 = 𝑛 (1 −
𝑟

𝑚+1
), where the subscript “s” denotes the steady-state control limits, and 

𝑄′ = 𝑙𝑖𝑚
𝑡→∞

∑ 𝑤𝑖
2𝑡

𝑖=1 .  

The following points are worth mentioning: 

i. The main focus of this chapter is to construct a DGWMA-EX chart with control limits 

equidistance from the centerline. A one-sided chart can also be designed, depending on the 

purpose or application. 
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ii. Steady-state control limits are used to simplify the application and implementation of the 

DGWMA-EX chart. For a discussion on the preference of control limit use (exact versus 

steady-state), refer to Chapter 2. Hereafter, LCL and UCL are used to denote the steady-

state control limits defined in equation (4.4). 

iii. If any plotting statistic 𝑍𝑡
2 plots on or outside either of the control limits (steady-state) given 

in equation (4.4), the process is declared OOC and a search for assignable causes is started. 

Otherwise, the process is considered to be IC, which implies no location shift has occurred. 

4.6 Two types of the DGWMA-EX chart 

In Section 2.4, two different types of DGWMA chart have been discussed in detail. For the proposed 

nonparametric DGWMA-EX chart and based on the number of parameters involved, the chart can be 

classified as Case 1 (denoted by DGWMA-EX (𝑞1, 𝑞2, 𝛼1, 𝛼2)), and Case 2 (DGWMA-EX (𝑞, 𝛼)). The 

only nonparametric DGWMA chart currently available in the SPC literature has been introduced and 

studied by Lu (2018) for the process proportion. This thesis also investigates Case 1 of the proposed 

DGWMA-EX chart, where all four parameters are involved, and a performance comparison will be 

conducted to evaluate the aforementioned case with DGWMA-EX (Case 2) and other time-weighted 

counterparts. More details on the design and implementation as well as the OOC performance are pro-

vided in the forthcoming sections. 

The relationship between the DGWMA-EX chart and its special case, the DEWMA-EX chart is illus-

trated in Figure 4.1. Further, the connection between different cases of these charts are also presented. 

 

 

 

 

 

 

 

 

 

Figure 4.1. Relationship between the DGWMA-EX and the DEWMA-EX charts 

DGWMA-EX (𝒒, 𝜶) DGWMA-EX (𝒒𝟏, 𝒒𝟐, 𝜶𝟏, 𝜶𝟐) 
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The DEWMA-EX chart, a special case of the DGWMA-EX chart, is discussed in the ensuing section 

in more detail. The main difference between the DGWMA-EX and DEWMA-EX charts is the assump-

tions made for the chart parameters, i.e., 𝑞1, 𝑞2, 𝛼1, 𝛼2.  

4.7 DEWMA-EX chart as special case 

In Section 2.4, the special and limiting cases of the DGWMA chart were discussed in detail. The 

GWMA-EX and EWMA-EX charts are the limiting cases of the proposed DGWMA-EX chart, which 

are currently available and developed in the SPC literature. The special case of the DGWMA-EX chart 

– that is, the DEWMA-EX chart (Case 1 and Case 2) – is also introduced in this thesis. These two cases 

for the nonparametric DEWMA-EX chart are based on the inequality and/or equality of the smoothing 

parameters and are denoted as DEWMA-EX (1 = 1 − 𝑞1, 2 = 1 − 𝑞2)  for Case 1, and DEWMA-EX 

( = 1 − 𝑞) for Case 2. For the parametric DEWMA chart (Case K), Zhang and Chen (2005) concluded 

that the DEWMA chart with equal (or a single) smoothing parameters performs similarly to the 

DEWMA chart with different (or two) smoothing parameters. However, there is no research currently 

available in SPC that evaluates the performance of these two cases in the nonparametric paradigm and 

when the location parameter – i.e., median – is unknown (Case U). Hence, one of the contributions of 

this chapter and thesis is to study and investigate the behavior of the DEWMA-EX chart and provide 

the necessary recommendations for practitioners. These results are presented concurrently with the re-

sults for the DEWMA-EX chart in the following sections. 

4.8 Run length distribution 

The design of the DGWMA-EX chart typically involved the calculation of the chart parameters 

(𝑞1, 𝑞2, 𝛼1, 𝛼2, 𝐿) to obtain a pre-specified ARL (denoted by 𝐴𝑅𝐿0
∗ ) – i.e., one wants to solve for the 

values 𝑞1, 𝑞2, 𝛼1, 𝛼2 and 𝐿, such that 𝐴𝑅𝐿0 ≈ 𝐴𝑅𝐿0
∗ . For the DGWMA-EX chart, since 𝑋(𝑟) is a random 

variable, the computation of the run length distribution is not straightforward in comparison with the 

DGWMA-TBE chart proposed in Chapter 3. The first step is to calculate the conditional run length 

distribution, given the order statistic 𝑋(𝑟), and after that by unconditioning over the order statistic (i.e., 

𝑋(𝑟)), the run length distribution is obtained. Three standard methods to calculate the run length distri-

bution of the proposed DGWMA-EX chart are discussed next. 

4.8.1 Exact approach 

The notation for the run length random variable is redefined in this section to distinguish between the 

test sample size 𝑛, and the run length, which were defined as 𝑁 in the previous chapters. The run length 

random variable is defined as 𝐾 for the rest of this chapter. Suppose that the signaling event at the 𝑖𝑡ℎ 

sample is denoted by 𝐴𝑖. For ∀𝑖 ≥ 1, the event 𝐴𝑖
𝐶 = [𝐿𝐶𝐿 < 𝑍𝑖

2 < 𝑈𝐶𝐿] can be rewritten as 𝐴𝑖
𝐶 =

[𝐿𝐶𝑖 < 𝑈𝑖 < 𝑈𝐶𝑖]. 
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{
 
 

 
 
𝑈𝐶𝑖 =

𝑈𝐶𝐿 − ∑ 𝑤𝑗𝑈𝑖−𝑗+1 − (1 − ∑ 𝑤𝑗
𝑖
𝑗=1 )𝑛(1 −

𝑟
𝑚 + 1

)𝑖
𝑗=2

(1 − 𝑞1)(1 − 𝑞2)

𝐿𝐶𝑖 =
𝐿𝐶𝐿 − ∑ 𝑤𝑗𝑈𝑖−𝑗+1 − (1 − ∑ 𝑤𝑗

𝑖
𝑗=1 )𝑛(1 −

𝑟
𝑚 + 1

)𝑖
𝑗=2

(1 − 𝑞1)(1 − 𝑞2)

; 

 

 

 

(4.5) 

where 𝑈𝐶1 =
𝑈𝐶𝐿−(1−𝑤1)𝑛(1−

𝑟

𝑚+1
)

(1−𝑞1)(1−𝑞2)
 . 𝐿𝐶1 =

𝐿𝐶𝐿−(1−𝑤1)𝑛(1−
𝑟

𝑚+1
)

(1−𝑞1)(1−𝑞2)
, and 𝑈𝐶𝐿 and 𝐿𝐶𝐿 are the steady-state 

control limits defined in equation (4.4). 

The advantage of writing 𝐴𝑖
𝐶  (i.e., the nonsignaling event) in terms of the nonparametric EX statistic 

(i.e., 𝐴𝑖
𝐶 = [𝐿𝐶𝑖 < 𝑈𝑖 < 𝑈𝐶𝑖]) is that the joint distribution of a sequence of sample statistics 𝑈𝑖 are 

𝑈𝑖~𝑖. 𝑖. 𝑑 𝐵𝑖𝑛 (𝑛, 𝑝𝑟), given the 𝑟𝑡ℎ order statistic (𝑋(𝑟)), where 𝑛 is the sample size, and the probability 

is defined as 𝑝𝑟 = 1 − 𝐺(𝑥𝑟|𝑋(𝑟) = 𝑥𝑟). Hence, in comparison with the joint distribution of a sequence 

of plotting statistics 𝑍𝑡
2, which is based on the dependency of the plotting statistic, the joint distribution 

of the sample statistics is preferred. 

The run length is defined as 𝑃[𝐾 = 𝑘] = 𝐸𝑋(𝑟)(𝑃[𝐾 = 𝑘|𝑋(𝑟)]), hence the first step is to obtain an 

expression for 𝑃[𝐾 = 𝑘|𝑋(𝑟)]. 

The following expressions are valid from Chapter 2 (see equations (2.22) and (2.24)): 

 𝑃[𝐾 = 1|𝑋(𝑟)] = 𝑃[ 𝐴1] = 1 − 𝐼1 

𝑃[𝐾 = 𝑘|𝑋(𝑟)] = 𝐼𝑘−1 − 𝐼𝑘    for 𝑘 = 2,3, … 

 

 

 

 

(4.6) 

Since the sample statistic 𝑈𝑖 is 𝑈𝑖~𝑖. 𝑖. 𝑑 𝐵𝑖𝑛 (𝑛, 𝑝𝑟)) given 𝑋(𝑟), then 𝐼𝑘 can be written as: 

 𝐼𝑘 = ∑ ∑ …∑ (∏ 𝑃[𝑈𝑖 = 𝑢𝑖|
𝑘
𝑖=1

𝑈𝐶𝑘
𝐿𝐶𝑘

𝑈𝐶2
𝐿𝐶2

𝑈𝐶1
𝐿𝐶1

𝑋(𝑟)]);      

(4.7) 

where 𝑃[𝑈𝑖 = 𝑢𝑖|𝑋(𝑟)] is given in Result 4.1. Thus, the conditional ARL is 𝐴𝑅𝐿|𝑋(𝑟) = 1 + ∑ 𝐼𝑘
∞
𝑘=1 . 

The final step is to obtain an expression for the unconditional 𝐴𝑅𝐿 as follows: 

 𝐴𝑅𝐿 = 𝐸𝑋(𝑟)(𝐴𝑅𝐿|𝑋(𝑟)) = 1 + ∑ 𝐸𝑋(𝑟)(𝐼𝑘).
∞
𝑘=1   

 

(4.8) 

𝐸𝑋(𝑟)(𝐼𝑘) is obtained by using equation (4.7) as follows: 
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 𝐸𝑋(𝑟)(𝐼𝑘) = ∑ ∑ …∑ (∏ 𝐸𝑋(𝑟)(𝑃[𝑈𝑖 = 𝑢𝑖|𝑋(𝑟)]))
𝑘
𝑖=1

𝑈𝐶𝑘
𝐿𝐶𝑘

𝑈𝐶2
𝐿𝐶2

𝑈𝐶1
𝐿𝐶1

  

= ∑ ∑ …∑ (∏ (𝑃[𝑈𝑖 = 𝑢𝑖]))
𝑘
𝑖=1

𝑈𝐶𝑘
𝐿𝐶𝑘

𝑈𝐶2
𝐿𝐶2

𝑈𝐶1
𝐿𝐶1

.     

 

 

 

(4.9) 

 

By implementing Result 4.2, equation (4.9) can be re-written as: 

 
𝐸𝑋(𝑟)(𝐼𝑘) = ∑ ∑ …∑ (∏ (

(
𝑢𝑖+𝑚−𝑘

𝑢𝑖
)(
𝑛−𝑢𝑖+𝑘−1
𝑛−𝑢𝑖

)

(
𝑚+𝑛
𝑛

)
)𝑘

𝑖=1 ) .
𝑈𝐶𝑘
𝐿𝐶𝑘

𝑈𝐶2
𝐿𝐶2

𝑈𝐶1
𝐿𝐶1

  

 

 

 

(4.10) 

Finally, the closed-form expression of the unconditional ARL is: 

 
𝐴𝑅𝐿 = 1 + ∑ ∑ ∑ …∑ (∏ (

(
𝑢𝑖+𝑚−𝑘

𝑢𝑖
)(
𝑛−𝑢𝑖+𝑘−1
𝑛−𝑢𝑖

)

(
𝑚+𝑛
𝑛

)
)𝑘

𝑖=1 ) .
𝑈𝐶𝑘
𝐿𝐶𝑘

𝑈𝐶2
𝐿𝐶2

𝑈𝐶1
𝐿𝐶1

∞
𝑘=1   

 

 

 

 

(4.11) 

The advantage of equation (4.11) is that its evaluation does not require any prior knowledge regarding 

the distribution of the underlying process when the process is IC. However, the computation of equation 

(4.11) is cumbersome and complex. Also, the sum does not converge and hence the ARL given in equa-

tion (4.11) cannot be evaluated numerically.  

4.8.2 Markov chain approach 

The Markov chain approach is another method that is applied to evaluate the run length distribution and 

its characteristics through closed-form expressions. A detailed discussion is presented in Chapters 2 and 

3 for implementing the Markov chain method for the DGWMA chart and its special case, the DEWMA 

chart. Closed-form expressions were obtained for the DEWMA-TBE chart (Case 1) in Chapter 3, since 

this chart can be viewed as a first-order Markov chain. However, there were obstacles and challenges 

involved in approximating the run length distribution of the DGWMA-TBE chart. The closed-form 

expressions obtained for the DEWMA-TBE chart– see Chapter 3 – can be obtained for the DEWMA-

EX chart by implementing the same methodology. The main differences are highlighted as follows: 

(i) Since the DEWMA-EX chart is a nonparametric chart, the 𝑋𝑡 for the DEWMA-TBE chart 

is replaced with the nonparametric EX statistic me 𝑈𝑡. Hence, the transition probability can 

be written as follows: 

𝑃[𝑆𝑗 − 𝛾 < 𝑍𝑡 < 𝑆𝑗 + 𝛾|𝑍𝑡−1 = 𝐶𝑡−1 = 𝑆𝑖] 

= 𝑃[𝑆𝑗 − 𝛾 < 2𝐶𝑡 + (1 − 2)𝑍𝑡−1 < 𝑆𝑗 + 𝛾|𝑍𝑡−1 = 𝐶𝑡−1 = 𝑆𝑖]  

= 𝑃[𝑆𝑗 − 𝛾 < 2𝐶𝑡 + (1 − 2)𝑆𝑖 < 𝑆𝑗 + 𝛾|𝑍𝑡−1 = 𝐶𝑡−1 = 𝑆𝑖]  

= 𝑃[𝑆𝑗 − 𝛾 < 2(1𝑈𝑡 + (1 − 1)𝐶𝑡−1) + (1 − 2)𝑆𝑖 < 𝑆𝑗 + 𝛾|𝑍𝑡−1 = 𝐶𝑡−1 = 𝑆𝑖]  

= 𝑃[𝑆𝑗 − 𝛾 < 12𝑈𝑡 + 2(1 − 1)𝑆𝑖 + (1 − 2)𝑆𝑖 < 𝑆𝑗 + 𝛾|𝑍𝑡−1 = 𝐶𝑡−1 = 𝑆𝑖]  

= 𝑃 [
𝑆𝑗−𝛾−2(1−1)𝑆𝑖−(1−2)𝑆𝑖

12
< 𝑋𝑡 <

𝑆𝑗+𝛾−2(1−1)𝑆𝑖−(1−2)𝑆𝑖

12
]  
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= 𝑃 [
𝑆𝑗−𝛾−𝑆𝑖(1−12)

12
< 𝑈𝑡 <

𝑆𝑗+𝛾−𝑆𝑖(1−12)

12
].  

(ii) The great advantage of the Markov chain for the DEWMA-EX chart compared to the 

DEWMA-TBE chart is that the evaluation of the expressions does not require any distribu-

tional assumption. 

4.8.3 Monte Carlo simulation 

A numerical Monte Carlo simulation algorithm has been implemented in this chapter to estimate the 

unconditional run length distribution and its characteristics for the DGWMA-EX chart. Note that the 

algorithm is discussed in terms of the DGWMA-EX chart (Case 1), where all four parameters are con-

sidered. By modifying the algorithm and selecting specific values for the proposed DGWMA-EX chart, 

the algorithm is also applicable to the limiting cases (i.e., GWMA-EX and EWMA-EX) as well as the 

special case (i.e., DEWMA-EX – Case 1 and Case 2). The simulation algorithm includes the following 

steps: 

i. Select a combination of the design parameters (i.e., 𝑞1, 𝑞2, 𝛼1, 𝛼2, 𝐿), the shift to be detected 

(i.e., 𝛿), the reference and test sample sizes 𝑚 ≥ 1 and 𝑛 ≥ 1, and the IC distribution parameter 

𝜃0, then identify a process distribution 𝐹𝑋(𝑥). The latter is only used to investigate the OOC 

run length distribution. 

ii. Obtain the 𝑟𝑡ℎ order statistic 𝑋(𝑟) by generating a reference sample of size 𝑚 from the identified 

process distribution 𝐹𝑋(𝑥). 

iii. A test sample of size 𝑛 ≥ 1 is generated to calculate the EX 𝑈𝑖 by counting the number of 

observations 𝑌 in the 𝑖𝑡ℎ sample that met the constraint 𝑌 ≥ 𝑋(𝑟). The test sample is drawn 

from 𝐹𝑋(𝑥 − 𝜃1), and it must be noted that when an IC run length distribution is desired, then 

𝜃1 = 𝜃0; whereas 𝜃1 = 𝜃0 + 𝛿 is referred to as an OOC run length. 

iv. Calculate the steady-state control limits defined in equation (4.4) by using the design parame-

ters values (𝑞1, 𝑞2, 𝛼1, 𝛼2, 𝐿) obtained from step (i). 

v. Calculate the DGWMA-EX plotting statistic Zt
2 according to equation (4.1) with the starting 

value taken as Z0
2 = 𝑛 (1 −

𝑟

𝑚+1
), and compare each plotting statistic with the steady-state con-

trol limits obtained from step (iv). 

vi. After running 10,000 iterations of steps (i) to (v), the number of samples until the first plotting 

statistic falls on or outside the steady-state control limits, known as the run length, is calculated 
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for each of the interactions. These 10,000 empirical run length values are then used to calculate 

the average run length and other characteristics for the run length. 

4.9 The IC design 

The IC design of the proposed DGWMA-EX chart consists of obtaining the values for the charting 

constant – i.e., 𝐿 > 0 for chosen values of 𝑚 (known as the reference sample size), 𝑛 (known as the test 

sample size), and a certain range of values for each (𝑞, 𝛼) combination – so that the attained IC ARL is 

close to the desired value 𝐴𝑅𝐿∗, which is typically 370 or 500. Chakraborty et al. (2018) considered 

𝑚 = 49, 99 and 𝑛 = 5,10 as the values for the reference sample and test sample sizes, respectively; and 

the following range of values for the GWMA-EX parameters: 𝑞 = 0.8, 0.9,0.95 and 𝛼 =

0.7,0.8, 0.9, 1.0, 1.3. To make the comparison fair and reliable, this study also considered the same 

aforementioned values for 𝑚, 𝑛 and the chart parameters for the DGWMA-EX chart (Case 2). The chart 

parameters for the DGWMA-EX chart (Case 1) are selected as 𝑞1 = 0.8, 0.9, 𝑞2 = 0.9, 0.95, 𝛼1 = 0.7, 

0.8, 0.9, 1.0, and 𝛼2 = 0.8, 0.9, 1.0, 1.3. For the DEWMA-EX chart (Case 1), the parameters are chosen 

as 𝑞1 = 0.6, 0.7, 0.8, 0.9, 𝑞2 = 0.7, 0.8, 0.9, 0.95, and 𝛼1 = 𝛼2 = 1; while for the DEWMA-EX chart 

(Case 2), the parameters are selected as 𝑞1 = 𝑞2 = 𝑞 = 0.6, 0.7, 0.8, 0.9, 0.95. The grid search proce-

dure is discussed as follows: 

• Input: The chart parameters are selected as follows, 𝑞1: 0.8(0.1)0.9, 𝑞2: 0.9(0.05)0.95, 𝛼1: 

0.7(0.1)1, 𝛼2: 0.7(0.1)0.9, the reference sample is chosen as 𝑚 = 49(50)99 and the test sample 

is selected as 𝑛 = 5(5)10. , where the values given in the parentheses are representing the step 

size (grid size). The starting values for the parameters 𝑞1, 𝑞2,  𝛼1, and 𝛼2 are selected as 0.8, 

0.9, 0.7, and 0.7, respectively and incremented based on the given step size for other combina-

tions. The starting values for 𝑚 and 𝑛 are selected as 49 and 5, respectively.  

• Output: For the chosen (𝑞1, 𝑞2, 𝛼1, 𝛼2, 𝑚, 𝑛) as an input, the algorithm searches for the combi-

nation of ( 𝐿, 𝐴𝑅𝐿0) under the desired 𝐴𝑅𝐿0
∗ = 370. Thereafter, the charting constants 𝐿 > 0 

are obtained such that the attained 𝐴𝑅𝐿0 is approximately equal to the desirable value of 

𝐴𝑅𝐿0
∗ = 370. 

By implementing the simulation algorithm alongside a grid search method, the charting constant 𝐿 > 0 

for the chosen (𝑞1, 𝑞2, 𝛼1, 𝛼2,) combination and specified values of 𝑚 and 𝑛, based on the constraint 

that 𝐴𝑅𝐿0
∗ = 370, was obtained. The values of 𝐿 > 0 are reported for the DGWMA-EX chart (Case 2) 

in Tables A.4.1 and A.4.2, the DGWMA-EX chart (Case 1) in Tables A.4.3 to A.4.6, the GWMA-EX 

and EWMA-EX charts in Tables A.4.7 and A.4.8, and the DEWMA-EX chart (Case 1 and Case 2) in 

Tables A.4.9 and A.4.10 along with the attained 𝐴𝑅𝐿0 values. All the listed tables are included in the 

Appendix for Chapter 4. Note that, the results for the CUSUM-EX are embedded within text in this 

chapter and will be discussed in detail in Section 4.10.  
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To ensure the simulation yielded reasonable and consistent results and guarantee the validity of the 

algorithm developed in R, this study’s results were compared to those of Chakraborty et al. (2018). For 

instance, consider the two following scenarios: 

i. When 𝑚 = 49 and 𝑛 = 10, then 𝑞1 = 0.95, 𝑞2 = 0, 𝛼1 = 0.7 and 𝛼2 = 1, and it can 

be seen that a value of charting constant 𝐿 = 0.737 gives an attained 𝐴𝑅𝐿0 = 370.03. 

In Chakraborty et al. (2018), the GWMA-EX chart with 𝑞 = 𝑞1 = 0.95 and 𝛼 = 𝛼1 =

0.7, and 𝐿 = 0.738 has an attained 𝐴𝑅𝐿0 = 370.05. 

ii. When 𝑚 = 99 and 𝑛 = 5, then 𝑞1 = 0.9, 𝑞2 = 0, 𝛼1 = 0.7 and 𝛼2 = 1, and it can be 

observed that a value of charting constant 𝐿 = 1.805 gives an attained 𝐴𝑅𝐿0 =

370.49. In Chakraborty et al. (2018), the GWMA-EX chart with 𝑞 = 𝑞1 = 0.9 and 

𝛼 = 𝛼1 = 0.7, and 𝐿 = 1.807 has an attained 𝐴𝑅𝐿0 = 370.58. 

The charting constant values in Tables A.4.1 to A.4.10 (Appendix for Chapter 4) are useful for the 

design and implementation of the DGWMA-EX chart. This includes the design and implementation of 

the GWMA-EX, DEWMA-EX, and EWMA-EX charts. 

The main objective of this chapter is to focus on the median of the Phase I reference sample – i.e., where 

𝑋(𝑟) is the median of the Phase I sample. However, a performance analysis is also conducted for the 

proposed DGWMA-EX and its limiting and special cases using the 25th and 75th percentiles of the Phase 

I sample and is discussed in more detail in the ensuing section. Based on the results obtained for the 

selection of other percentiles, the recommendation would be to use the median of the Phase I sample 

for the DGWMA-EX chart, since the median is a robust measure of the central tendency of distributions, 

and practitioners are more interested in the median. Therefore, general guidelines are provided for prac-

titioners on the design of the generalized nonparametric DGWMA-EX chart. 

Note that, to construct the Phase I charts based on the median obtained from the Phase I sample, first 

the observations from the 𝑚 subgroups are combined into one sample size of 𝑁 = 𝑛𝑚 observations and 

arranged from the smallest to largest, where 𝑛 represents the test sample from Phase II. In this chapter, 

the values for the 𝑟𝑡ℎ order statistic are selected as 𝑟 = (𝑚 + 1)/2 when 𝑚 is odd, e.g., 49 and 99. 

However, Graham and Chakraborti (2019) discussed general case for the pooled median as follows: 

when 𝑁 is odd, the median is calculated as 𝑋(𝑟), where 𝑟 = (𝑚 + 1)/2, whereas when 𝑁 is even, the 

median is calculated as 
𝑋(𝑟1)+𝑋(𝑟2)

2
, where 𝑟1 =

𝑚

2
 and  𝑟2 =

𝑚+2

2
. In this thesis, only odd values for 𝑚 

are considered in order to make a reliable comparison with other charts available in the SPC literature 

constructed under this assumption. However, note that the index 𝑟 can be calculated as 𝑟 = (
𝑃

100
)𝑚, 

where 𝑃 denotes the percentiles of interest. If 𝑟 is an integer, the percentile of interest is the average of 
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the values in positions 𝑟 and 𝑟 + 1, whereas when 𝑟 is not an integer, then round up and the percentile 

of interest is the value in that position. This scheme is recommended in practice for calculation of per-

centiles. Calculations provided in this chapter for odd values of 𝑚 are close to the even values of 𝑚 that 

shows the results are fairly close. For example, the 𝐴𝑅𝐿0 for 𝑚 = 100 and 𝑚 = 99 are 369.40 and 

370.20, respectively. Note that, from a practical point of view, the practitioner will use the particular 

values of the reference sample 𝑚, in practice, even or odd. For more information, see Graham and 

Chakraborti (2019).  

4.10 The OOC performance  

The preliminary step to evaluating the OOC performance is to ensure that the 𝐴𝑅𝐿0 values are close to 

370 (when no shift occurs or the process is IC), so that all the charts are at an equal footing. Once 

different competing charts are designed with an equal 𝐴𝑅𝐿0, a chart with a smaller 𝐴𝑅𝐿1 provides a 

better performance for practical scenarios. 

The results for the OOC performance comparisons are shown in Tables A.4.1 to A.4.10 for multiple 

combinations of the parameters (𝑞1, 𝑞2, 𝛼1, 𝛼2, 𝐿), as well as for some chosen or specified values of the 

reference sample 𝑚, the test sample 𝑛, and the shift sizes 𝛿. Tables A.4.1 and A.4.2 correspond to the 

DGWMA-EX chart (Case 2), Tables A.4.3 to A.4.6 refer to the DGWMA-EX chart (Case 1), the results 

in Tables A.4.7 and A.4.8 represent the GWMA-EX and EWMA-EX charts, and Tables A.4.9 and 

A.4.10 illustrate the results for the DEWMA-EX chart (Case 1 and Case 2). The values for the reference 

sample are selected as 𝑚 = 49, 99, the test sample is chosen as 𝑛 = 5, 10, and the shift size is equal to 

𝛿 = 0.05, 0.1, 0.25, 0.5, 0.75, and 1.0. Note that all the tables are available in the Appendix for Chapter 

4.  

The OOC comparison is divided into different cases dependent on the type of time-weighted chart under 

consideration and a detailed discussion is provided for each. A quick comparison of the results advo-

cates the below points. 

(i) DGWMA-EX (Case 2) versus GWMA-EX and EWMA-EX  

The first comparison is conducted between the proposed DGWMA-EX chart (Case 2) and its limiting 

cases – i.e., the GWMA-EX and EWMA-EX charts – in detecting small or tiny changes in production 

processes. The OOC results reveal that: 

i. The DGWMA-EX chart typically outperforms the GWMA-EX chart when 𝛼 < 1 and for small 

to moderate shifts, i.e., 𝛿 ≤ 0.25. For example, to detect a shift of 𝛿 = 0.1, a DGWMA-EX 

chart with 𝑞 = 0.9, 𝛼 = 0.8, 𝐿 = 0.924 has an 𝐴𝑅𝐿1 = 330.57, whereas the GWMA-EX chart 

with 𝑞1 = 0.9, 𝑞2 = 0, 𝛼1 = 0.8 and 𝛼2 = 1, and 𝐿 = 1.596 has an 𝐴𝑅𝐿1 = 336.84 when 

𝑚 = 49 and 𝑛 = 5. Note that the values for the IC ARL (𝐴𝑅𝐿0) are equal to 375.32 and 371.98 
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for the DGWMA-EX and GWMA-EX charts, respectively, so that the charts are at an equal 

footing. Further to this, the results are obtained from Tables A.4.1 and A.4.7 for the DGWMA-

EX and GWMA-EX charts, respectively. Some cases, such as the DGWMA-EX chart with 𝑞 =

0.95 and 𝛼 = 0.7, 0.8, 0.9, are worse than the GWMA-EX chart when 𝑚 = 49 and 𝑛 = 5. 

ii. The DGWMA-EX chart generally performs better than the EWMA-EX chart for small shifts 

𝛿 ≤ 0.25. For example, to detect a shift of 𝛿 = 0.05, a DGWMA-EX chart with 𝑞 = 0.8, 𝛼 =

1.0, 𝐿 = 1.755 has 𝐴𝑅𝐿1 = 360.95 (Table A.4.1 in the Appendix); whereas the EWMA-EX 

chart with 𝑞1 = 0.8, 𝑞2 = 0, 𝛼1 = 1 and 𝛼2 = 1, and 𝐿 = 2.249 has 𝐴𝑅𝐿1 = 366.63 (Table 

A.4.7 in the Appendix) when 𝑚 = 49 and 𝑛 = 5. The IC ARL (𝐴𝑅𝐿0) equals 369.77 and 370.13 

for the DGWMA-EX and EWMA-EX charts, respectively. 

iii. Overall, for small to moderate shifts, the DGWMA-EX chart works better than the GWMA-

EX and EWMA-EX charts. For example, when 𝑞 = 0.8, 𝛼 = 0.8, 𝑚 = 49 and 𝑛 = 10, a com-

parative plot is illustrated in Figure 4.2 to compare the ARL performance and the detection 

capabilities between the DGWMA-EX, GWMA-EX, and EWMA-EX charts. One can clearly 

observe that the DGWMA-EX chart outperforms the other counterparts for small shifts, which 

is one of the main objectives of the proposed DGWMA-EX chart. 

 

Figure 4.2. Comparison between the DGWMA-EX, and GWMA-EX charts when 𝒒 =

𝟎. 𝟖, 𝜶 = 𝟎. 𝟗, 𝒎 = 49 and 𝒏 = 𝟓 
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DGWMA-EX 371.87 352.77 320.63 169.71 31.63 14.27 11.30 9.19

GWMA-EX 370.10 363.12 333.66 179.81 30.48 10.42 7.08 5.07

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

A
R

L

Shift



 172 

 

 

Figure 4.3. Comparison between the DGWMA-EX, GWMA-EX and EWMA-EX charts 

 

In Figure 4.3, the proposed DGWMA-EX chart is compared with the GWMA-EX and EWMA-EX 

chart. For small shifts, the DGWMA-EX chart outperforms the GWMA-EX and EWMA-EX chart. For 

medium to large shifts, the EWMA-EX chart outperforms the DGWMA-EX and GWMA-EX charts. 

Note that, the EWMA-EX chart is the special case of the GWMA-EX chart and is the limiting case of 

the DGWMA-EX chart.  

 

Figure 4.4. Comparison between the DGWMA-EX, GWMA-EX and EWMA-EX charts 

 

0 0.05 0.1 0.25 0.5 0.75 1 1.5

DGWMA-EX - q = 0.9 and alpha = 0.7 367.11 338.97 327.41 161.36 28.11 12.83 10.13 8.06

GWMA-EX - q = 0.8 and alpha = 1.3 372.48 373.53 335.21 185.60 26.17 5.84 3.68 2.77

EWMA-EX - q = 0.95 and alpha = 1.0 369.65 361.64 327.80 159.42 22.33 8.09 5.98 4.52
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DGWMA-EX - q = 0.95 and alpha = 1.0 369.38 346.96 297.90 87.25 19.67 14.62 12.55 10.74

GWMA-EX - q = 0.9 and alpha = 0.8 371.60 338.28 280.44 84.34 11.58 6.28 4.58 3.34

EWMA-EX - q = 0.95 and alpha = 1 373.73 347.44 285.55 85.54 12.38 7.24 5.57 4.30
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From Figure 4.4, one can conclude that for some parameter combinations, the GWMA-EX outperforms 

the DGWMA-EX chart in detecting small shifts in the process. However, for the majority of the param-

eters, the DGWMA-EX still outperforms the GWMA-EX and EWMA-EX charts in detecting small 

shifts in the process. 

(ii) DGWMA-EX (Case 1) versus DGWMA-EX (Case 2) 

Sheu and Hsieh (2009) mentioned that the parametric DGWMA chart with four parameters constructed 

under the assumption of the normal distribution does not perform better than the DGWMA chart with 

two parameters.  As discussed in Chapter 3, it was discovered that there is a DGWMA-TBE chart (Case 

1) that outperforms the DGWMA-TBE chart (Case 2). In this section, the performance between two 

types of DGWMA-EX charts in the nonparametric paradigm is investigated and discussed in detail. Lu 

(2018) mentioned that the performance of these two charts are identical. However, different conclusions 

and results are obtained in this chapter. The 𝐴𝑅𝐿0 for these two charts was first computed to ensure 

both are at an equal footing. The 𝐴𝑅𝐿0 of the DGWMA-EX chart (Case 1) is 370.47, and for the 

DGWMA-EX chart (Case 2) it is 371.34. The 𝐴𝑅𝐿1 was computed for 𝑞1 = 0.8, 0.9, 𝑞2 = 0.9, 0.95, 

𝛼1 = 0.7, 0.8, 0.9, 1, and 𝛼2 = 0.8, 0.9, 1, 1.3. To this end, for some combinations of parameters, the 

DGWMA-EX chart (Case 1) outperforms the DGWMA-EX chart (Case 2). This is due to the flexibility 

that is gained by using additional parameters. For example, from Table A.4.5, for 𝑞1 = 0.8, 𝑞2 = 0.9, 

𝛼1 = 0.7, 𝛼2 = 0.9 and L= 1.456, the OOC ARL is equal to 𝐴𝑅𝐿1 = 345.42 and 𝐴𝑅𝐿1 = 102.39, for 

shift sizes (𝛿) 0.05 and 0.25, respectively. From Table A.4.2, for 𝑞1 = 𝑞2 = 𝑞 = 0.8, 𝛼1 = 𝛼2 = 𝛼 =

0.9 and L= 1.925, the OOC ARL is equal to 𝐴𝑅𝐿1 = 364.05 and 𝐴𝑅𝐿1 = 111.66, for shift sizes (𝛿) 

0.05 and 0.25, respectively. The first set of design parameters refers to the DGWMA-EX chart (Case 

1), while the latter one alludes to the DGWMA-EX chart (Case 2). 
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Figure 4.5. Comparison between the DGWMA-EX (Case 1) and the DGWMA-EX (Case 2) 

charts when 𝒎 = 99 and 𝒏 = 𝟓 

 

The parameter values for the DGWMA-EX chart (Case 1) are selected as 𝑞1 = 0.8, 𝑞2 = 0.9, 𝛼1 = 0.8, 

𝛼2 = 0.9, and for the DGWMA-EX chart (Case 2) are selected as 𝑞 = 0.8 and 𝛼 = 0.9. The DGWMA-

EX chart (Case 1) outperforms the DGWMA-EX chart (Case 2) for tiny to moderate shifts. For large 

shifts, the DGWMA-EX chart (Case 2) outperforms the DGWMA-EX chart (Case 1). 
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Figure 4.6. Comparison between the DGWMA-EX (Case 1) and the DGWMA-EX (Case 2) 

charts when 𝒎 = 99 and 𝒏 = 𝟓 

 

In Figure 4.6, two different types of the  DGWMA-EX chart are compared with each other. For small 

shifts, the DGWMA-EX chart (Case 1) outperforms other DGWMA-TBE chart (Case 2). However, for 

medium to large shifts, the performance of the DGWMA-EX chart (Case 2) is better than the DGWMA-

EX chart (Case 1). Hence, unlike Lu (2018) which concluded that the performance of both DGWMA 

cases under nonparametric assumptions are identical, in this section we have shown that some cases 

exist where the DGWMA-EX chart with four parameters outperform the DGWMA-EX chart with two 

parameters due to flexibility added to the chart by adding extra parameters.  

(iii) DGWMA-EX (Case 1) versus GWMA-EX and EWMA-EX 

 

i. For the DGWMA-EX chart (Case 1), there are some cases where the chart outperforms the GWMA-

EX chart. For example, from Table A.4.3, for 𝑞1 = 0.8, 𝑞2 = 0.9, 𝛼1 = 0.7, 𝛼2 = 0.9 and L= 1.179, 

the OOC ARL is equal to 𝐴𝑅𝐿1 = 357.37 and 𝐴𝑅𝐿1 = 322.12, for shift sizes (𝛿) 0.05 and 0.1, respec-

tively. From Table A.4.7, for 𝑞1 = 0.8, 𝑞2 =0, 𝛼1 = 0.9, 𝛼2 = 1.0 and L = 2.183, the OOC ARL is 

0 0.05 0.1 0.25 0.5 0.75 1 1.5

DGWMA-EX Case 1 367.8 332.25 275.7 87.93 15.3 10.78 9.23 7.99

DGWMA-EX Case 2 370.24 348.83 289.50 86.90 11.20 6.83 5.51 4.44
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equal to 𝐴𝑅𝐿1 = 358.99 and 𝐴𝑅𝐿1 = 330.36, for shift sizes (𝛿) 0.05 and 0.1, respectively. The latter 

case refers to the GWMA-EX chart, whereas the former is related to the DGWMA-EX chart. 

ii. For the DGWMA-EX chart (Case 1), various cases exist, where the chart outperforms the EWMA-EX 

chart. For example, from Table A.4.6, for 𝑞1 = 0.8, 𝑞2 = 0.95, 𝛼1 = 0.9, 𝛼2 = 1 and L = 1.110, the 

OOC ARL is equal to 𝐴𝑅𝐿1 = 336.33 and 𝐴𝑅𝐿1 = 84.99, for shift sizes (𝛿) 0.05 and 0.25, respectively. 

From Table A.4.8, for 𝑞1 = 0.8, 𝑞2 = 0.0, 𝛼1 = 1.0, 𝛼2 = 1.0 and L = 2.272, the OOC ARL is equal to 

𝐴𝑅𝐿1 = 355.02 and 𝐴𝑅𝐿1 = 103.15, for shift sizes (𝛿) 0.05 and 0.25, respectively. The former case 

corresponds to the DGWMA-EX chart, whereas the latter refers to the EWMA-EX chart. 

 

Figure 4.7. Comparison between the DGWMA-EX (Case 1) and the GWMA-EX charts when 

𝒎 = 99 and 𝒏 = 𝟓 

 

The parameter values for the GWMA-EX chart are selected as 𝑞1 = 0.8, 𝑞2 = 0.0, 𝛼1 = 1.0, 𝛼2 = 1.3, 

and for the DGWMA-EX chart (Case 1) are selected as 𝑞1 = 0.8, 𝑞2 = 0.9, 𝛼1 = 0.7, 𝛼2 = 1.3. The 

DGWMA-EX chart (Case 1) outperforms the GWMA-EX chart (Case 2) for tiny to moderate shifts. 

For large shifts, the GWMA-EX chart outperforms the DGWMA-EX chart (Case 1). 
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DGWMA-EX 373.2 350.39 299.87 105.5 17.76 10.1 7.91 6.47
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Figure 4.8. Comparison between the DGWMA-EX (Case 1) and the GWMA-EX charts when 

𝒎 = 99 and 𝒏 = 𝟓 

 

The EWMA-EX chart which is the special case of the GWMA-EX chart and the limiting case of the 

proposed DGWMA-EX is also included in the comparative study and illustrated in Figure 4.6. The 

DGWMA-EX chart outperforms the GWMA-EX and the EWMA-EX chart in detecting small shifts in 

the process. However, for medium to large shifts, the GWMA-EX chart outperforms the DGWMA-EX 

chart. Also, for large shifts, the EWMA-EX chart outperforms the GWMA-EX chart. 

(iv) DEWMA-EX (Case 1) versus GWMA-EX and EWMA-EX 

i. Zhang and Chen (2005) concluded that the performance of the DEWMA chart for Case 1 and 

Case 2 is similar for the parametric case. In this research, it was discovered that there are some 

combinations of the DEWMA-EX chart (Case 1) that outperform the DEWMA-EX chart (Case 

2). For example, from Table 4.9, for 𝑞1 = 0.7, 𝑞2 = 0.9, 𝛼1 = 1.0, 𝛼2 = 1.0 and L = 1.562, 

the OOC ARL is equal to 𝐴𝑅𝐿1 = 325.01 and 𝐴𝑅𝐿1 = 182.21, for shift sizes (𝛿) 0.1 and 0.25, 

respectively. From Table 4.9 for 𝑞1 = 0.7, 𝑞2 = 0.7, 𝛼1 = 1.0, 𝛼2 = 1.0 and L = 2.072, the 

OOC ARL is equal to 𝐴𝑅𝐿1 = 327.98 and 𝐴𝑅𝐿1 = 185.23, for shift sizes (𝛿) 0.1 and 0.25, 

respectively. The first set of design parameters corresponds to the DEWMA (Case 1), whereas 

the second set refers to the DEWMA (Case 2) chart. 
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ii. There are some combinations of parameters for the DEWMA-EX chart that outperform the 

GWMA-EX chart for detecting small shifts. For example, from Table A.4.7, for 𝑞1 = 0.8. 𝑞2 =

0.0, 𝛼1 = 0.9, 𝛼2 = 1.0 and L = 2.183, the OOC ARL is equal to 𝐴𝑅𝐿1 = 358.99 and 𝐴𝑅𝐿1 =

184.53, for shift sizes (𝛿) 0.05 and 0.25, respectively. From Table A.4.9, for 𝑞1 = 0.8. 𝑞2 =

0.95, 𝛼1 = 1.0, 𝛼2 = 1.0 and L = 1.148, the OOC ARL is equal to 𝐴𝑅𝐿1 = 357.72 and 𝐴𝑅𝐿1 =

175.72, for shift sizes (𝛿) 0.05 and 0.25, respectively. The former set refers to the GWMA-EX 

chart, while the latter case corresponds to the DEWMA-EX chart. 

iii. The DEWMA-EX chart outperforms the EWMA-EX chart for the small shifts for each and 

every combination of the reference sample size and the test sample size, irrespective of the 

value for the chart parameters, due to the flexibility added by implementing the double smooth-

ing technique. 

 

Figure 4.9. Comparison between the DEWMA-EX, GWMA-EX and EWMA-EX charts 

 

In Figure 4.9, the DEWMA-EX chart is compared with the GWMA-EX and EWMA-EX charts. For 

small shifts, the DEWMA-EX chart outperforms the GWMA-EX and EWMA-EX charts. For large 

shifts, the performance of the DEWMA-EX chart is competitive with the GWMA-EX and EWMA-EX 

chars. Also, the EWMA-EX chart outperforms the GWMA-EX chart in detecting large shifts in the 

process. 
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GWMA-EX 370.8 358.76 331.83 169.95 21.93 6.05 3.97 2.83

EWMA-EX 369.01 361.94 328.57 170.11 22.86 8.51 6.17 4.56
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(v) DGWMA-EX (Case 1 and Case 2) versus DEWMA-EX (Case 1 and Case 2) 

i.  For larger values of the parameter 𝑞 ≥ 0.9, the DEWMA-EX chart (Case 2) outperforms the 

DGWMA-EX chart (Case 2) for all the shift sizes. For example, from Table A.4.1, for 𝑞1 =

0.95, 𝑞2 = 0.95, 𝛼1 = 1.0, 𝛼2 = 1.0 and L = 0.682, the DEWMA-EX chart (Case 2) outper-

forms the DGWMA-EX chart (Case 2) for all the values of the parameter 𝛼 and all the shift 

sizes (𝛿). 

ii. For larger values of the parameter 𝑞 ≥ 0.9, the DEWMA-EX chart (Case 1) outperforms the 

DGWMA-EX chart (Case 1). For example, from Table A.4.5, for 𝑞1 = 0.9, 𝑞2 = 0.95, 𝛼1 =

1.0, 𝛼2 = 1.3 and L = 1.550, the OOC ARL is equal to 𝐴𝑅𝐿1 = 348.48 and 𝐴𝑅𝐿1 = 295.12, 

for shift sizes (𝛿) 0.05 and 0.1, respectively. From Table A.4.10, for 𝑞1 = 0.9, 𝑞2 = 0.95, 𝛼1 =

1.0, 𝛼2 = 1.0 and L = 1.018, the OOC ARL is equal to 𝐴𝑅𝐿1 = 338.84 and 𝐴𝑅𝐿1 = 292.94, 

for shift sizes (𝛿) 0.05 and 0.1, respectively. The second set of design parameters refers to the 

DEWMA-EX (Case 1), whereas the first is related to the DGWMA-EX (Case 1). 

 

Figure 4.10. Comparison between the DEWMA-EX and the DGWMA-EX charts 

 

The DEWMA-EX chart outperforms the DGWMA-EX chart for tiny or small shifts. For moderate to 

large shifts, the DGWMA-EX chart outperforms the DEWMA-EX chart. Note that, the parameter 
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values for the DEWMA-EX chart are selected as 𝑞 = 0.9, 𝛼 = 1.0, and for the DGWMA-EX chart, 

these values are 𝑞 = 0.9, 𝛼 = 1.3. 

 

Figure 4.11. Comparison between the DEWMA-EX and the DGWMA-EX charts 

 

In Figure 4.11, the DGWMA-EX chart is compared with two different cases of the DWMA-Ex chart 

when 𝑚 = 49 and 𝑛 = 10. The DGWMA-EX chart outperforms both cases of the DEWMA-EX charts 

in detecting small shifts in the process. Also, the performance of the DGWMA-EX chart is competitive 

with the DEWMA-EX chart in detecting medium to large shifts in the production processes.   

The visual presentations of the nonparametric charts discussed so far would provide more insight in 

terms of the detection capability and superiority of a chart in detecting different shift sizes, specifically 

the small or tiny shifts, which is the main objective of the current chapter. The design parameters se-

lected for illustration purposes are: 𝑞1 = 0.8, 𝑞2 = 0.8, 𝛼1 = 0.8, 𝛼2 = 0.8, L = 1.780 for the 

DGWMA-EX chart (Case 2) from Table 4.2; 𝑞1 = 0.8, 𝑞2 = 0, 𝛼1 = 0.8, 𝛼2 = 1.0, L = 2.397 for the 

GWMA-EX chart from Table A.4.8.; and 𝑞1 = 0.8, 𝑞2 = 0, 𝛼1 = 1.0, 𝛼2 = 1.0, L = 2.503 for the 

EWMA-EX chart from Table A.4.8. The comparative plot is illustrated in the following figure: 
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Figure 4.12. Comparative study between the DGWMA-EX (Case 2), the GWMA-EX, and 

the EWMA-EX charts 

From the above plot, one can easily observe that the proposed DGWMA-EX chart (Case 2) outperforms 

other time-weighted charts (i.e., GWMA-EX and EWMA-EX) in detecting small or tiny shifts. The 

DGWMA-EX chart (Case 2) is competitive in terms of the moderate shifts compared to its counterparts. 

To this end, the effects of the parameters 𝑞, 𝛼, and test sample size 𝑛 on the OOC performance of the 

DGWMA-EX chart are also investigated. The results are presented in Figures 4.13, 4.14 and 4.15.  
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Figure 4.13. The effect of the parameter 𝒒 on the performance of the DGWMA-EX chart (Case 

2) when 𝒎 = 99 and 𝒏 = 𝟓 

 

In Figure 4.13, for 𝛼 = 1.3, 𝑚 = 99 and 𝑛 = 5, three different values for 𝑞 (0.8, 0.9 and 0.95) are 

selected and, based on the results, larger value of 𝑞 has better OOC performance for the DGWMA-EX 

chart. 

 

Figure 4.14. The effect of the parameter 𝜶 on the performance of the DGWMA-EX chart (Case 

2) when 𝒎 = 99 and 𝒏 = 𝟏𝟎 
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In Figure 4.14, for 𝑞 = 0.8, 𝑚 = 99 and 𝑛 = 10, three different values for 𝛼 (0.7, 1.0 and 1.3) are 

considered and, based on the results, smaller values of 𝛼, lead to better OOC performance for the 

DGWMA-EX chart. 

 

Figure 4.15. The effect of the test sample size (𝒏) on the performance of the DGWMA-EX chart 

(Case 2) 

 

In Figure 4.15, for 𝑞 = 0.8, 𝛼 = 1.0, 𝑚 = 49, two different values are selected for the test sample size 

𝑛 (5 and 10) and based on the results, the larger the test sample size, the better the OOC performance 

of the DGWMA-EX chart. 

(vi) DGWMA-EX versus CUSUM-EX 

Janacek and Meikle (1997) proposed a nonparametric Shewhart-type chart where the plotting statistic 

is the median and the control limits are calculated based on two order statistic obtained from a reference 

sample in Phase I. Further, Chakraborti et al. (2004) extended the work by considering the 𝑟𝑡ℎ order 

statistic of a Phase II test sample as the plotting statistic and referred to as Shewhart-type precedence 

charts. Chakraborti and Van de Wiel (2008) developed a nonparametric Shewhart-type chart based on 

the Mann-Whitney statistic for monitoring the process location parameter. McDonald (1990) proposed 

a CUSUM chart based on the sequential ranks’ statistic for individual observations. Bakir (2006) pro-

posed a nonparametric CUSUM chart based on the signed-rank statistic for monitoring the unknown 
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process median (Case U). Chatterjee and Qiu (2009) developed a nonparametric CUSUM chart by im-

plementing bootstrap methodology to obtain control limits. Li et al. (2010) developed a nonparametric 

CUSUM chart based on the Mann-Whitney statistic for monitoring the process location parameter.  

The proposed DGWMA-EX chart is compared with the nonparametric counterpart of the CUSUM chart 

proposed by Graham et al. (2014) and denoted by NPCUSUM-EX. Note that, for the sake of brevity 

we use CUSUM-EX from now on in this thesis. The CUSUM-EX is chosen since this chart is a candi-

date to monitor small shifts in the process location parameter in the literature. Also, the nonparametric 

exceedance statistic is considered by Graham et al. (2014) when the location parameter of interest is 

unknown (Case U). Hence, this nonparametric CUSUM chart constructed based on the exceedance 

statistics to monitor the unknown location parameter of interest is equivalent to the DGWMA-EX chart 

proposed in this thesis. This comparison includes the normal distribution and a collection of non-normal 

distributions that are symmetric, heavy-tailed, and skewed. Specifically, the distribution considered in 

this part are: (i) the standard normal distribution (ii) the gamma distribution and its special case, the 

exponential distribution and (iii) the double exponential or Laplace distribution with mean 0 and vari-

ance 2. Note that, Graham et al. (2014) mentioned that the double exponential distribution is symmetric 

and has heavier tails. The reference sample and the test sample are selected as 𝑚 = 1000 and 𝑛 =

5, 25, respectively. The pre-specified value for the ARL is selected as 370. Note that, different scenarios 

are considered in this section to make the comparison sensible and reliable. The IC and OOC charac-

teristics of the run length are as follows: 

 

Table 4.1. The IC and OOC characteristics for the DGWMA-EX and CUSUM-EX charts when 

𝒏 = 𝟓, 𝟐𝟓, and 𝒎 = 𝟏𝟎𝟎𝟎 for the 𝑵(𝟎, 𝟏) distribution 

 

𝛿 DGWMA-EX (𝑛 =  5) DGWMA-EX (𝑛 =  25) CUSUM-EX (𝑛 =  5) CUSUM-EX (𝑛 =  25) 

0.00 369.40 368.80 394.68 369.96 

0.25 45.36 32.80 70.60 59.22 

0.50 20.77 21.45 36.38 25.32 

0.75 15.38 11.62 24.72 17.27 

1.00 10.34 7.67 19.08 12.08 
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Figure 4.16. Comparison between the DGWMA-EX chart and the CUSUM-EX chart under the 

standard normal distribution 

 

From the above plot one can conclude that when the underlying process distribution is standard normal, 

the proposed DGWMA-EX chart outperforms the CUSUM-EX chart proposed by Graham et al. (2014) 

in detecting small shifts in the process. Also, in terms of the medium and large shifts, the DGMWA-

EX chart is competitive with the CUSUM-EX chart. Further, Figure 4.16 includes different cases of the 

DGWMA-EX and the CUSUM-EX charts based on the test sample size, i.e., 𝑛. For the DGWMA-EX 

chart, the chart with larger test sample size outperforms the DGWMA-EX chart with smaller test sam-

ple. Also, for the CUSUM-EX chart, the larger the test sample size, the better the performance of the 

chart. Note that, the values for the CUSUM-EX chart are extracted from the results available in Graham 

et al. (2014) and the results for the DGWMA-EX chart are calculated when 𝑚 = 1000. 
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Table 4.2. The IC and OOC characteristics when 𝒏 = 𝟓, 𝟐𝟓, and 𝒎 = 𝟏𝟎𝟎𝟎 for the 𝑬𝒙𝒑 (𝟏) dis-

tribution 

𝛿 DGWMA-EX (𝑛 =  5) DGWMA-EX (𝑛 =  25) CUSUM-EX (𝑛 =  5) CUSUM-EX (𝑛 =  25) 

0.00 368.65 372.43 384.42 370.80 

0.25 42.88 30.79 54.58 44.17 

0.50 28.55 16.58 26.24 19.13 

0.75 18.98 9.43 16.67 12.01 

1.00 12.51 7.61 11.92 8.85 

 

 

Figure 4.17. Comparison between the DGWMA-EX chart and the CUSUM-EX chart under the 

exponential distribution 

 

The performance of the proposed DGWMA-EX for test sample size 𝑛 = 5 and 𝑛 = 25 is compared 

with CUSUM-EX chart for the same set of test sample. The DGWMA-EX chart outperformed the 

CUSUM-EX chart in detecting small shifts in the process, when the underlying process distribution is 

exponential. Note that, the definition of the small shift size is all the shifts in the following interval 

0.25 ≤ 𝛿 ≤ 0.5. Also, charts with large test sample size, i.e., 𝑛 = 25, performs better than small test 

sample size, i.e., 𝑛 = 5. 
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Table 4.3. The IC and OOC characteristics when 𝒏 = 𝟓, 𝟐𝟓, and 𝒎 = 𝟏𝟎𝟎𝟎 for the 

𝑮𝒂𝒎𝒎𝒂(𝟑, 𝟏) distribution 

𝛿 DGWMA-EX (𝑛 =  5) DGWMA-EX (𝑛 =  25) CUSUM-EX (𝑛 =  5) CUSUM-EX (𝑛 =  25) 

0.00 369.26 367.80 383.33 416.70 

0.25 61.67 38.85 72.56 54.68 

0.50 26.60 16.55 32.53 23.00 

0.75 16.13 9.70 21.68 14.87 

1.00 12.70 5.88 16.28 10.90 

 

 

Figure 4.18. Comparison between the DGWMA-EX chart and the CUSUM-EX chart under the 

gamma distribution 

 

For the gamma distribution as the underlying process distribution, the DGWMA-EX chart with 𝑛 = 25, 

outperforms the CUSUM-EX chart for both test sample sizes 𝑛 = 5 and 𝑛 = 25 in detecting small shifts 

in the process. However, the CUSUM-EX chart when 𝑛 = 25 outperforms the DGWMA-EX chart 

when 𝑛 = 5. Hence, unlike the standard normal and the exponential distribution, there is a case where 

the CUSUM-EX chart outperforms the DGWMA-EX chart in detecting small shifts in the process.  
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Table 4.4. The IC and OOC characteristics when 𝒏 = 𝟓, 𝟐𝟓, and 𝒎 = 𝟏𝟎𝟎𝟎 for the 𝑫𝑬(𝟎, 𝟏) 

distribution 

Shift DGWMA-EX (n = 5) DGWMA-EX (n = 25) CUSUM-EX (n = 5) CUSUM-EX (n = 25) 

0.00 370.27 366.54 385.70 370.72 

0.25 58.35 42.87 43.10 30.07 

0.50 32.68 28.23 23.99 14.37 

0.75 24.45 19.58 17.45 10.09 

1.00 18.76 13.56 14.07 7.83 

 

 

Figure 4.19. Comparison between the DGWMA-EX chart and the CUSUM-EX chart under the 

double exponential distribution 

 

From the above plot one can conclude that when the underlying process distribution is double exponen-

tial, the CUSUM-EX chart proposed by Graham et al. (2014) outperformed the DGWMA-EX chart in 

detecting small, medium, and large shifts in the process. Note that, the CUSUM-EX outperformed the 

DGWMA-EX chart for both test sample size 𝑛 = 5 and 𝑛 = 25.  

Also, since the run length distribution is significantly right skewed, researchers have advocated using 

other measures for the assessment of a chart’s performance, more specifically, the MDRL, which pro-

vides more insightful information in comparison to the ARL. In SPC, the idea of considering other 
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percentiles of the run length distribution, is discussed by Barnard (1959), Gan (1994), Chakraborti et 

al. (2007) and Khoo et al. (2011). The comparison is conducted between the DGWMA-EX chart (Case 

1 and Case 2) and the CUSUM-EX chart. The reference sample and the test sample are selected as 

𝑚 = 100 and 𝑛 = 5, respectively. Also, the CUSUM-EX charts included in the comparative 

study are based on three different values for the reference value, i.e., d. The pre-specified value 

for the MDRL is selected as 350. The IC and OOC characteristics of the run length are as follows: 

Table 4.5. The IC and OOC characteristics when 𝒏 = 𝟓, and 𝒎 = 𝟏𝟎𝟎 for the 𝑵(𝟎, 𝟏) distribu-

tion 

𝛿 
DGWMA-EX 

(C1) 

DGWMA-EX 

(C2) 

CUSUM-EX (𝑑 =
6.550) 

CUSUM-EX (𝑑 =
14) 

CUSUM-EX 

(𝑑 = 18) 

0 351.00 352.00 349.80 351.25 350.10 

0.25 197.10 184.65 236.00 203.00 218.00 

0.5 67.52 52.96 129.00 79.00 64.00 

0.75 44.45 35.31 73.00 41.00 30.00 

1 18.75 15.25 41.00 27.00 18.00 

 

 

Figure 4.20. Comparison between the DGWMA-EX chart and the CUSUM-EX chart under the 

standard normal distribution 
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From Figure 4.20, one can conclude that both cases of the DGWMA-EX chart outperform the CUSUM-

EX chart in detecting small shifts in the process. For the CUSUM-EX chart, for large reference value, 

i.e., 𝑑, the chart performs better in comparison with the small reference value. Note that, in this com-

parison, the MRL is used as the performance metric. 

Table 4.6. The IC and OOC characteristics when 𝒏 = 𝟓, and 𝒎 = 𝟏𝟎𝟎 for the 𝑬𝒙𝒑(𝟏) distribu-

tion 

𝛿 
DGWMA-EX 

(C1) 

DGWMA-EX 

(C2) 

CUSUM-EX (𝑑 =
6.550) 

CUSUM-EX (𝑑 =
14) 

CUSUM-EX (𝑑 =
18) 

0 353.00 350.00 353.50 355.20 351.22 

0.25 135.00 115.00 161.00 129.00 148.00 

0.5 32.00 24.00 65.00 34.00 36.00 

0.75 13.00 12.00 27.00 14.00 15.00 

1 7.82 7.00 10.00 7.00 8.00 

 

 

Figure 4.21. Comparison between the DGWMA-EX chart and the CUSUM-EX chart under the 

exponential distribution 

 

The DGWMA-EX chart (Case 2) outperforms the CUSUM-EX chart with reference values 𝑑 = 6.5 

and 𝑑 = 14, in detecting small shifts in the process when the underlying process distribution is expo-

nential. However, the CUSUM-EX chart outperforms the DGWMA-EX chart (Case 1) in detecting 
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small shifts in the process. Also, by increasing the value for the reference parameter for the CUSUM-

EX chart, the performance of the chart improves. 

Table 4.7. The IC and OOC characteristics when 𝒏 = 𝟓, and 𝒎 = 𝟏𝟎𝟎 for the 𝑮𝒂𝒎𝒎𝒂(𝟑, 𝟏) 

distribution 

𝛿 
DGWMA-EX 

(C1) 

DGWMA-EX 

(C2) 

CUSUM-EX (𝑑 =
6.550) 

CUSUM-EX (𝑑 =
14) 

CUSUM-EX (𝑑 =
18) 

0 349.00 352.00 358.35 351.29 350.00 

0.25 145.00 135.00 203.00 180.00 190.00 

0.5 37.50 40.00 104.00 60.00 52.00 

0.75 20.00 16.00 53.00 29.00 23.00 

1 13.00 14.00 27.00 17.00 13.00 

 

 

Figure 4.22. Comparison between the DGWMA-EX chart and the CUSUM-EX chart under the 

gamma distribution 
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In Figure 4.22, the performance of the DGWMA-EX chart (Case 1 and Case 2) is compared with the 

CUSUM-EX chart when the underlying process distribution is gamma. From the graph, one can con-

clude that, both cases of the proposed DGWMA-EX chart outperform the CUSUM-EX chart in detect-

ing small to medium shifts in the production processes. Further, the DGWMA-EX chart (Case 2) out-

performs the DGWMA-EX chart (Case 1) in detecting small shifts in the process. 

Table 4.8. The IC and OOC characteristics when 𝒏 = 𝟓, and 𝒎 = 𝟏𝟎𝟎 for the 𝑫𝑬(𝟎, 𝟏) distri-

bution 

𝛿 
DGWMA-EX 

(C1) 

DGWMA-EX 

(C2) 

CUSUM-EX (𝑑 =
6.550) 

CUSUM-EX (𝑑 =
14) 

CUSUM-EX (𝑑 =
18) 

0 350.00 350.10 352.55 350.00 351.90 

0.25 38.00 40.00 120.00 98.00 126.00 

0.5 16.00 20.50 54.00 29.00 32.00 

0.75 12.00 12.65 32.00 17.00 17.00 

1 12.00 10.00 18.00 12.00 11.00 

 

 

Figure 4.23. Comparison between the DGWMA-EX chart and the CUSUM-EX chart under the 

double exponential distribution 

 

The DGWMA-EX chart (Case 1 and Case 2) are compared with the CUSUM-EX chart when the un-

derlying process distribution is double exponential. From Figure 4.23, one can conclude that, the 
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proposed DGWMA-EX chart (Case 1) outperforms the CUSUM-EX chart in detecting small shifts in 

the process. Also, the DGWMA-EX chart (Case 2) outperforms the CUSUM-EX chart in detecting 

small shifts. 

As a conclusion and based on the results provided in this section, the proposed DGWMA-EX chart 

outperforms the CUSUM-EX chart in detecting small shifts in the process. Also, Lu (2018) whom de-

veloped the nonparametric DGWMA chart under sign statistic, concluded that the DGWMA chart not 

only perform quite favourably but provides a good alternative to the CUSUM mean chart when the 

underlying process distribution is unknown and in detecting small process shifts. Hence, our findings 

in the comparative study between the DGWMA-EX chart and the CUSUM-EX chart corresponds to 

the conclusions obtained by Lu (2018).  

Other characteristics of the run length distribution, including the standard deviation (denoted by SDRL) 

and percentile points (denoted by 𝑃𝑖), where 𝑖 = 5, 25, 50, 75, 95 might be of interest for the practition-

ers, are also calculated and available in the Appendix. 

In practice, one could select an 𝑟𝑡ℎ order statistic from the Phase I sample, other than considering the 

median. Hence, a comparative study was conducted for the DGWMA-EX chart (Case 1 and Case 2) 

and its limiting and special cases using the 75th and 25th percentiles. For 𝑋(𝑟) = 25th percentile, the run 

length distribution encounters bias, that is 𝐴𝑅𝐿1 is greater than 𝐴𝑅𝐿0, which makes the performance of 

the control chart worse than in the median case. For 𝑋(𝑟) = 75th percentile, there is a considerable im-

provement in terms of the run length distribution for each choice of design parameters (𝑞1, 𝑞2, 𝛼1, 𝛼2, 𝐿) 

and shift size 𝛿. The relative results are presented for the DGWMA-EX chart (Case 2) in Table A.4.11, 

the DGWMA-EX chart (Case 1) in Table A.4.12, the GWMA-EX and EWMA-EX charts in Table 

A.4.13, the DEWMA-EX chart (Case 1) in Table A.4.14, and the DEWMA-EX chart (Case 2) in Table 

A.4.15 when 𝑚 = 49 and 𝑛 = 5. All of tables listed here are presented in the Appendix for Chapter 4. 

A performance study for the DGWMA-EX chart based on the median run length (MDRL) is also per-

formed by taking 𝑋(𝑟) as the 75th, 50th and 25th percentiles. The reference sample size is taken as 𝑚 =

100, the test sample size is taken as 𝑛 = 5, and a typical value for the MDRL is taken as 𝑀𝑅𝐿0
∗ = 350. 

For 𝑚, 𝑛 and (𝑞, 𝛼). L values are obtained so that the attained 𝑀𝑅𝐿0
∗ = 350, when 𝑋(𝑟) is selected as 

the 75th, 50th and 25th percentiles. These results are reported in Table A.4.16 for the DGWMA-EX chart 

(Case 2), Table A.4.17 for the DGWMA-EX chart (Case 1), Table A.4.18 for the GWMA-EX and 

EWMA-EX charts, Table A.4.19 for the DEWMA-EX chart (Case 1), and Table 4.20 for the DEWMA-

EX chart (Case 2), and show similar results as the ARL study. When 𝑋(𝑟) is selected as the 25th percen-

tile, it has a poorer performance than 𝑋(𝑟) = 50th percentile, and the problem of bias in the run length 
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distribution remains a major issue. Hence, there is no significant improvement observed in the perfor-

mance of these nonparametric charts when the study is based on the MDRL. 

In conclusion, the median is known to be a better percentile whenever the direction of the shift to be 

detected is not specified and is thus recommended to practitioners. 

The DGWMA charts are more sensitive and detect a shift quicker than its main time-weighted counter-

part, the GWMA chart, in the case of a small or tiny shift – for examples, see Huang et al. (2014), Lu 

(2018), Sheu and Hsieh (2009), and the references therein. Therefore, it is logical to compare the OOC 

performance of the proposed DGWMA-EX chart with the DGWMA-�̅�, GWMA-�̅�, DGWMA-EX 

(Case 2), DEWMA-EX (Case 1), DEWMA-EX (Case 2), GWMA-EX and EWMA-EX charts under the 

normal and various non-normal distributions when the parameter of interest is unknown (Case U). To 

this end, three non-normal symmetric (around zero) process distributions are considered. which have 

heavier or lighter tails than the normal distribution. The logistic (0, √3/𝜋) distribution, the uniform (-

√3, √3) distribution, and the Laplace (0, 1/√2) distribution were considered. The parameters of these 

distribution are selected in such a manner that the variance is 1, which makes the results comparable 

across different distributions. For skewed distributions, the gamma distribution was considered with 

shape parameters 1, 2 and 3 and scale parameters set equal to 1 in each case. 

The OOC performance results are summarized in the following sections. 

(a) DGWMA-EX (Case 1 and Case 2) versus GWMA-EX, EWMA-EX, DEWMA-EX 

(Case 1 and Case 2), DGWMA-�̅� and GWMA-�̅� under symmetric distributions 

From the results in Tables A.4.1 to A.4.10 (see Appendix for Chapter 4), it is advocated that the 

DGWMA-EX chart generally outperforms the GWMA-EX and EWMA-EX under the standard normal 

distribution. However, the rigid assumption of normality might not hold in all cases, hence it is vital to 

evaluate the performance of the DGWMA-EX chart under non-normal distributions. For comparison 

purposes, the reference sample size is taken as 𝑚 = 49, the test sample size is 𝑛 = 5, and the design 

parameters are selected as 𝑞1 = 𝑞2 = 𝑞 = 0.8, 𝛼1 = 𝛼2 = 𝛼 = 0.7 and 𝐿 = 1.304 for the DGWMA-

EX chart (Case 2). Table A.4.19 illustrates that for the aforementioned combination, the DGWMA-EX 

chart (Case 1) performs better than the DGWMA-EX (Case 2), GWMA-EX, EWMA-EX and 

DEWMA-EX (Case 1 and Case 2) charts under the logistic distribution for the shift size 𝛿 = 0.1. For 

instance, when the process follows a logistic (0, √3/𝜋) distribution and shift size 𝛿 = 0.1, the 

DGWMA-EX chart (Case 2) with parameters 𝑞 = 0.8, 𝛼 = 0.7 and 𝐿 = 1.304 has 𝐴𝑅𝐿1 = 306.82; 

while the DGWMA-EX chart (Case 1) with parameters 𝑞1 = 0.8, 𝑞2 = 0.9, 𝛼1 = 0.8, 𝛼1 = 1.0 and 

𝐿 = 1.342 has 𝐴𝑅𝐿1 = 299.78; the GWMA-EX chart with parameters 𝑞1 = 0.8, 𝑞2 = 0.0, 𝛼1 = 0.7, 

𝛼2 = 1.0 and 𝐿 = 2.032 has 𝐴𝑅𝐿1 = 314.89; the EWMA-EX chart with parameters 𝑞1 = 0.8, 𝑞2 =

0.0, 𝛼1 = 1.0, 𝛼2 = 1.0 and 𝐿 = 2.249 has 𝐴𝑅𝐿1 = 316.07; the DEWMA-EX chart (Case 1) with 
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parameters 𝑞1 = 0.8, 𝑞2 = 0.9, 𝛼1 = 1.0, 𝛼2 = 1.0 and 𝐿 = 1.460 has 𝐴𝑅𝐿1 = 310.28; and the 

DEWMA-EX chart (Case 2) with parameters 𝑞1 = 0.8, 𝑞2 = 0.8, 𝛼1 = 1.0, 𝛼2 = 1.0 and 𝐿 = 1.755 

has 𝐴𝑅𝐿1 = 324.90. When the process follows a uniform (-√3, √3) distribution assuming a shift size 

of 𝛿 = 0.25, the DGWMA-EX chart (Case 2) with parameters 𝑞 = 0.8, 𝛼 =0.7 and 𝐿 = 1.304 has 

𝐴𝑅𝐿1 = 235.28; the DGWMA-EX chart (Case 1) with parameters 𝑞1 = 0.8, 𝑞2 = 0.9, 𝛼1 = 0.8, 𝛼2 =

1.0 and 𝐿 = 1.342 has 𝐴𝑅𝐿1 = 245.75; the GWMA-EX chart with parameters 𝑞1 = 0.8, 𝑞2 = 0.0, 

𝛼1 = 0.7, 𝛼2 = 1.0 and 𝐿 = 2.032 has 𝐴𝑅𝐿1 = 251.50; the EWMA-EX chart with parameters 𝑞1 =

0.8, 𝑞2 = 0.0, 𝛼1 = 1.0, 𝛼2 = 1.0 and 𝐿 = 2.249 has 𝐴𝑅𝐿1 = 255.67; the DEWMA-EX chart (Case 

1) with parameters 𝑞1 = 0.8, 𝑞2 = 0.9, 𝛼1 = 1.0, 𝛼2 = 1.0 and 𝐿 = 1.460 has 𝐴𝑅𝐿1 = 245.56; and 

the DEWMA-EX chart (Case 2) with parameters 𝑞1 = 0.8, 𝑞2 = 0.8, 𝛼1 = 1.0, 𝛼2 = 1.0 and 𝐿 =

1.755 has 𝐴𝑅𝐿1 = 258.60. For the Laplace (0, 1/√2) distribution and same set of parameters consid-

ered for the logistic and uniform distributions and shift size 𝛿 = 0.05, the OOC ARL (𝐴𝑅𝐿1) is 319.88, 

321.56, 327.60, 333.09, 328.95 and 327.45 for the DGWMA-EX (Case 2), DGWMA-EX (Case 1), 

GWMA-EX, EWMA-EX, DEWMA-EX (Case 1) and DEWMA-EX (Case 2) charts, respectively.  

Similarly, to Sheu and Lin (2003), a comparative study was conducted to compare the performance of 

the DGWMA-EX chart with the DGWMA-�̅� and GWMA-�̅� charts under the assumption of an under-

lying normal distribution specifically for Case U.  

The parameters for all of the time-weighted control charts included in the comparative analysis are 

taken to be the same, since the main intention is to see whether the same parameter combination pro-

vides similar robust performance under different non-normal symmetric distributions, when X̅ is re-

placed by the EX in the DGWMA chart. The mechanism for designing parametric control charts for 

Case U is to use an IC Phase I sample and obtaining the estimates for the unknown process parameters. 

Thereafter, these estimates will be used to calculate the control limits and studying the performance of 

the run length characteristics. Table 4.21 reveals that, under the normality assumption, the DGWMA-

�̅� chart outperforms the DGWMA-EX, GWMA-EX, EWMA-EX and DEWMA-EX charts. This is an 

expected outcome since the DGWMA-�̅� chart is designed under the normality assumption. However, 

when the process distribution departs from normality, the behavior of the DGWMA-�̅� chart is influ-

enced and its attained 𝐴𝑅𝐿0 starts moving further from the standard value of 370. This does not hold 

for the logistic distribution since the IC ARL does not depart that further from 370 when the underlying 

process distribution is not normal. For this specific distribution, the attained 𝐴𝑅𝐿0 for DGWMA-�̅� chart 

is 367.04; whereas for the uniform and the Laplace distributions, the attained 𝐴𝑅𝐿0 is 396.90 and 

391.43, respectively. On the contrary, the nonparametric counterpart proposed in this chapter, the 

DGWMA-EX chart is IC robust under non-normality. Hence, when the underlying process distribution 
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is either unknown or cannot be identified, the DGWMA-EX chart is a better alternative since it is IC 

robust under non-normality, whereas the DGWMA-�̅� chart is non-robust. 

Furthermore, the robust IC and OOC performances for the DGWMA-EX chart under the symmetric 

non-normal distributions, i.e., the logistic distribution, the uniform distribution, and the Laplace distri-

bution, as well as the standard normal distribution are presented in Figure 4.24.  

 

 

Figure 4.24. The DGWMA-EX chart under different symmetric distributions 

The parameter values for the DGWMA-EX chart are selected as 𝑞 = 0.8 and 𝛼 = 0.7. Note that the 

main logic behind the above plot is to illustrate the IC and OOC robustness for the DGWMA-EX chart 

under the standard normal and non-normal distributions. 

 

(b) DGWMA-EX (Case 1 and Case 2) versus GWMA-EX, EWMA-EX, DEWMA-EX 

(Case 1 and Case 2), DGWMA-�̅� and GWMA-�̅� under skewed distributions 

In this section, the performance of the DGWMA-EX, GWMA-EX, EWMA-EX, DEWMA-EX, 

DGWMA-�̅� and GWMA-�̅� charts are studied for the underlying skewed distributions. For this purpose, 

the Gamma (𝑘, 𝜃) distribution is considered as the underlying model and the p.d.f. is given in equation 

(3.1). 

0 0.05 0.1 0.25 0.5 1

Standard Normal distribution 368.93 358.68 317.48 163.35 28.39 8.41

Logistic distribution 369.68 345.1 306.82 135.01 20.97 7.81

Uniform distribution 368.59 352.68 334.87 235.28 75.06 11.06

Laplace distribution 368.04 319.88 235.92 54.32 12.37 7.34
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For a given value of the shape parameter 𝑘, the scale parameter 𝜃 would change in mean and variance. 

Hence, for the gamma distribution, it is not possible to assume mean 0 and variance 1 as in the compar-

ative study pertaining to symmetric distributions. 

The IC and OOC scale parameters are denoted as 𝜃0 and 𝜃1, respectively. Note that, the shift for the 

gamma distribution is defined as 𝛿 = 𝜃1/𝜃0, which is different from the symmetric distributions con-

sidered in the previous section. The reason is as follows: if X ~ Gamma (𝑘, 𝜃), then Y = X/(𝜃) ~ 

Gamma (𝑘, 1). In other words, the IC scale parameter can be taken as 1, hence the shift, which is defined 

as the ratio between 𝜃1 and 𝜃0 (i.e., 𝛿 = 𝜃1/𝜃0), is equal to the OOC scale parameter (𝛿 = 𝜃1). As a 

result, X/𝜃1 and Y/(𝛿) ~ Gamma(𝑘, 1/(𝛿)) have the same distribution as long as the ratio 𝛿 stays the 

same. However, for the absolute difference between the IC and OOC scale parameters, which is defined 

as |𝜃1 − 𝜃0|, the effect of the shift depends on the magnitude of 𝜃0. Therefore, considering 𝜃0 = 1 would 

make the chart applicable for any IC 𝜃0, whereas the OOC performance differs based on different values 

for 𝜃0 and 𝜃1. For the IC process, the shift value is considered as 1 (𝛿 = 1); and for the OOC, the values 

are chosen as 𝛿 = 0.975, 0.95, 0.9, 0.8, 0.7. Note that, as mentioned by Chakraborty et al. (2018) for 

the GWMA-�̅� chart, the control limits used for the normal distribution in the case of the DGWMA-�̅� 

chart (Case U) are inapplicable for the gamma distribution since the mean and the variance are no longer 

0 and 1, respectively. 

To calculate the control limits for the DGWMA-�̅� chart, the estimation of the process mean (𝜇) and the 

standard deviation (𝜎) from the IC Phase I sample is required. Thereafter, these estimates – denoted by 

�̂� and �̂� – can be used to calculate the estimated control limits. Results for the gamma distribution are 

presented in Table A.4.20, which reveals that the DGWMA-�̅� is not IC robust and the issue related to 

the bias of the run length distribution exists. For example, for the DGWMA-�̅� chart with 𝑞 = 0.8, 𝛼 = 

0.7, L = 2.992, 𝑚 = 49 and 𝑛 = 5 has 𝐴𝑅𝐿0 = 436.02 for Gamma (1,1) distribution, 𝐴𝑅𝐿0 = 441.70 

for Gamma (2,1) distribution, and 𝐴𝑅𝐿0 = 432.24 for Gamma (3,1) distribution. Furthermore, when 

the shape parameters 𝑘 = 1, 2, 3, the DGWMA-EX chart (Case 2) outperforms the DGWMA-EX chart 

(Case 1), GWMA-EX, EWMA-EX and DEWMA-EX (Case 1 and Case 2) charts for all shift 𝛿 ≥ 0.7. 

The only exception is for case of 𝑘 = 3 and 𝛿 = 0.7, where the DEWMA-EX chart (Case 1), which is 

the special case of the proposed DGWMA-EX chart and also introduced in this chapter, outperforms 

the DGWMA-EX (Case 1 and Case 2), GWMA-EX, EWMA-EX and DEWMA-EX (Case 1) charts. 

The IC and OOC ARL performance for the DGWMA-EX chart (Case 2) under the gamma distribution 

with different shape parameters is presented in Figure 4.25. Based on the illustration, the DGWMA-EX 

chart with a larger shape parameter performs better than others. 
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Figure 4.25. The DGWMA-EX chart under different skewed distributions 

4.11 The optimal design 

The optimal design for the proposed DGWMA-EX chart would consist of specifying the desired 𝐴𝑅𝐿0 

and 𝐴𝑅𝐿1 values, as well as the magnitude of the process shift and then selecting the combination of 

design parameters that provides the desired 𝐴𝑅𝐿0 with the minimum 𝐴𝑅𝐿1. For instance, in Table 4.1 

the combination (𝑞 = 0.8, 𝛼 = 0.7, 𝐿 = 1.304) has the minimum 𝐴𝑅𝐿1 = 317.48 among the chosen 

range of parameters for shift size 𝛿 = 0.1 when 𝑚 = 49 and 𝑛 = 5. Since the IC distribution of the EX 

is symmetric when 𝑋(𝑟) is selected as the median, only the positive shifts 𝛿 =

0.05, 0.1, 0.25, 0.5, 0.75, 1.0, 1.5 are considered for the OOC performance (𝐴𝑅𝐿1). The “near optimal” 

design consists of a combination of the design parameters (𝑞, 𝛼, 𝐿) that yield the smallest 𝐴𝑅𝐿1 for a 

specified shift size (𝛿) given the 𝐴𝑅𝐿0 = 370. The near optimal combinations of the parameters 

(𝑞, 𝛼, 𝐿) as well as the 𝐴𝑅𝐿1 values for different 𝛿, and 𝑚 = 49, 99 and 𝑛 = 5, 10 for the DGWMA-EX 

chart (Case 2) are provided in Table 4.3. For other nonparametric charts – i.e., the DGWMA-EX (Case 

1), GWMA-EX, EWMA-EX and DEWMA-EX charts– the near optimal values are provided in Tables 

4.9, 4.10, 4.11, 4.12 and 4.13. 
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Table 4.9. Near optimal (𝒒, 𝜶, 𝑳) combinations with corresponding 𝑨𝑹𝑳 values for the 

DGWMA-EX chart (Case 2) 

 

A quick summary of Table 4.9 reveals the following points: 

• For small and tiny shifts (𝛿 = 0.05, 0.1), the combination of (𝑞 = 0.9, 𝛼 = 0.9 and 𝐿 = 1.092) 

and (𝑞 = 0.8, 𝛼 = 0.7 and 𝐿 = 1.304) provides the near optimal design for the DGWMA-EX 

chart when 𝑚 = 49 and 𝑛 = 5. A similar interpretation can be made for other combinations of 

the reference sample size (i.e., 𝑚 = 49, 99) and the test sample size (i.e., 𝑛 = 5, 10). 

• The combination of (𝑞 = 0.8, 𝛼 = 0.7 and 𝐿 = 1.304) provides the near optimal design when 

the shift size (𝛿) is 0.25 and 0.5, respectively, when 𝑚 = 49 and 𝑛 = 5, 10. For the shift size 

𝛿 = 0.75, the (𝑞 = 0.8, 𝛼 = 1.0 and 𝐿 = 1.755) combination provides the near optimal design 

when 𝑚 = 49 and 𝑛 = 5. 

• For large shifts (𝛿 = 1.0, 1.5), the combination of (𝑞 = 0.8, 𝛼 = 1.3 and 𝐿 = 2.056) provides 

the near optimal design for all combinations of the reference sample and the test sample. 

• Different combinations of the following parameter values 𝑞 = 0.8, 0.9, and 𝛼 = 0.7, 0.8, 0.9, 

1.0, 1.3, provide the near optimal design for the DGWMA-EX chart dependent on the size for 

the reference sample and the test sample. 

Table 4.10. Near optimal (𝒒𝟏, 𝒒𝟐, 𝜶𝟏, 𝜶𝟐, 𝑳) combinations with corresponding 𝑨𝑹𝑳 values for 

the DGWMA-EX chart (Case 1) 

 
𝒎 = 49   𝒏 = 5   𝒎 = 49   𝒏 = 10  m = 99 n = 5 𝒎 = 99   𝒏 = 10 

 𝑨𝑹𝑳𝟏 𝒒𝟏, 𝒒𝟐 𝜶𝟏, 𝜶𝟐 𝑳 𝑨𝑹𝑳𝟏 𝒒𝟏, 𝒒𝟐 𝜶𝟏, 𝜶𝟐 𝑳 𝑨𝑹𝑳𝟏 𝒒𝟏, 𝒒𝟐 𝜶𝟏, 𝜶𝟐 𝑳 𝑨𝑹𝑳𝟏 𝒒𝟏, 𝒒𝟐 𝜶𝟏, 𝜶𝟐 𝑳 

0.05 344.88 0.9, 0.95 0.7, 0.8 0.627 333.94 0.8, 0.95 0.7, 1.0 0.790 339.95 0.9, 0.95 0.7, 1.3 1.198 332.25 0.9, 0.95 0.9, 1.3 1.180 

0.1 311.95 0.8, 0.95 0.8, 1.0 1.069 313.08 0.8, 0.9 0.7, 1.3 1.157 283.49 0.9, 0.95 0.7, 0.8 0.786 275.7 0.9, 0.95 0.9, 1.3 1.472 

0.25 165.13 0.8, 0.9 0.9, 1.0 1.118 155.14 0.8, 0.95 0.7, 0.1 0.790 98.04 0.8, 0.95 0.7, 0.9 1.133 82.58 0.8, 0.9 0.7, 0.8 1.313 

0.5 28.96 0.8, 0.9 0.7, 1.3 1.451 22.47 0.8, 0.9 0.9, 1.0 1.127 17.58 0.8, 0.9 0.9, 1.3 1.915 11.67 0.8, 0.9 1.0, 1.3 1.704 

0.75 10.77 0.8, 0.9 1.0, 1.3 1.701 8.13 0.8, 0.9 1.0, 1.3 1.394 9.7 0.8, 0.9 1.0, 1.3 1.979 7.36 0.8, 0.9 1.0, 1.3 1.704 

1.0 8.05 0.8, 0.9 1.0, 1.3 1.701 6.41 0.8, 0.9 1.0, 1.3 1.394 7.67 0.8, 0.9 1.0, 1.3 1.979 6.16 0.8, 0.9 1.0, 1.3 1.704 

1.5 6.51 0.8, 0.9 1.0, 1.3 1.701 5.32 0.8, 0.95 0.7, 0.8 0.628 6.36 0.8, 0.9 1.0, 1.3 1.979 5.18 0.8, 0.9 1.0, 1.3 1.704 

 
 

𝒎 = 49   𝒏 = 5 𝒎 = 49   𝒏 = 10 𝒎 = 99   𝒏 = 5 𝒎 = 99   𝒏 = 10 

𝜹 𝑨𝑹𝑳𝟏 𝒒 𝜶 𝑳 𝑨𝑹𝑳𝟏 𝒒 𝜶 𝑳 𝑨𝑹𝑳𝟏 𝒒 𝜶 𝑳 𝑨𝑹𝑳𝟏 𝒒 𝜶 𝑳 

0.05 352.77 0.9 0.9 1.092 338.97 0.9 0.7 0.579 344.78 0.8 0.7 1.611 344.40 0.8 0.8 1.472 

0.1 317.48 0.8 0.7 1.304 310.97 0.8 0.8 1.177 285.50 0.9 0.7 0.939 285.89 0.8 0.8 1.472 

0.25 163.35 0.8 0.7 1.304 149.35 0.8 0.7 1.031 101.78 0.9 0.8 1.152 82.13 0.8 0.7 1.313 

0.5 28.39 0.8 0.7 1.304 22.06 0.8 0.7 1.031 17.20 0.8 1.0 2.040 11.14 0.8 1.0 1.757 

0.75 10.14 0.8 1.0 1.755 6.95 0.8 1.3 1.750 8.63 0.8 1.3 2.300 6.01 0.8 1.3 2.069 

1.0 6.69 0.8 1.3 2.056 5.06 0.8 1.3 1.750 6.31 0.8 1.3 2.300 4.87 0.8 1.3 2.069 

1.5 5.27 0.8 1.3 2.056 4.17 0.8 1.3 1.750 5.18 0.8 1.3 2.300 4.11 0.8 1.3 2.069 
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A quick summary of Table 4.10 reveals the following points: 

• For small and tiny shifts (𝛿 = 0.05, 0.1), the combination of (𝑞1 = 0.9, 𝑞2 = 0.95, 𝛼1 = 0.7, 

𝛼2 = 0.8 and 𝐿 = 0.627) and (𝑞1 = 0.8, 𝑞2 = 0.95, 𝛼1 = 0.8, 𝛼2 = 1.0 and 𝐿 = 1.069) provides 

the near optimal design for the DGWMA-EX chart (Case 1) when 𝑚 = 49 and 𝑛 = 5. A similar 

interpretation can be made for other combinations of the reference sample size (i.e., 𝑚 = 49, 

99) and the test sample size (i.e., 𝑛 = 5, 10). 

• The combination of (𝑞1 = 0.8, 𝑞2 = 0.9, 𝛼1 = 1.0, 𝛼2 = 1.3 and 𝐿 = 1.701) provides the near 

optimal design when the shift size (𝛿) is 0.75, 1.0, and 1.5, respectively, when 𝑚 = 49 and 𝑛 = 

5. 

Table 4.11. Near optimal (𝒒𝟏, 𝒒𝟐, 𝜶𝟏, 𝜶𝟐, 𝑳) combinations with corresponding 𝑨𝑹𝑳 values for 

the GWMA-EX chart 

 
𝒎 = 49   𝒏 = 5   𝒎 = 49   𝒏 = 10  m = 99 n = 5 𝒎 = 99   𝒏 = 10 

 𝑨𝑹𝑳𝟏 𝒒𝟏, 𝒒𝟐 𝜶𝟏, 𝜶𝟐 𝑳 𝑨𝑹𝑳𝟏 𝒒𝟏, 𝒒𝟐 𝜶𝟏. , 𝜶𝟐 𝑳 𝑨𝑹𝑳𝟏 𝒒𝟏, 𝒒𝟐 𝜶𝟏, 𝜶𝟐 𝑳 𝑨𝑹𝑳𝟏 𝒒𝟏, 𝒒𝟐 𝜶𝟏, 𝜶𝟐 𝑳 

0.05 347.62 0.95, 0.0 0.8, 1.0 1.089 343.67 0.95, 0.0 0.8, 1.0 0.852 339.03 0.9, 0.0 0.7, 1.0 1.805 338.28 0.9, 0.0 0.8, 1.0 1.602 

0.1 310.26 0.95, 0.0 0.8, 1.0 1.089 317.31 0.95, 0.0 0.8, 1.0 0.852 287.91 0.9, 0.0 0.9, 1.0 2.038 276.48 0.9, 0.0 0.9, 1.0 1.715 

0.25 165.64 0.95, 0.0 0.9, 1.0 1.228 153.10 0.95, 0.0 0.7, 1.0 0.737 99.19 0.9, 0.0 0.8, 1.0 1.380 78.6 0.9, 0.0 0.9, 1.0 1.715 

0.5 29.67 0.9, 0.0 1.0, 1.0 1.820 19.23 0.9, 0.0 1.0, 1.0 1.478 17.14 0.9, 0.0 1.0, 1.0 2.132 10.77 0.8, 0.0 0.9, 1.0 2.213 

0.75 9.5 0.9, 0.0 1.3, 1.0 2.067 5.84 0.8, 0.0 1.3, 1.0 2.119 8.25 0.9, 0.0 1.3, 1.0 2.335 4.92 0.8, 0.0 1.3, 1.0 2.409 

1.0 5.81 0.8, 0.0 1.3, 1.0 2.381 3.68 0.8, 0.0 1.3, 1.0 2.119 5.18 0.8, 0.0 1.3, 1.0 2.589 3.49 0.8, 0.0 1.3, 1.0 2.409 

1.5 3.84 0.8, 0.0 1.3, 1.0 2.381 2.71 0.8, 0.0 0.7, 1.0 1.715 3.54 0.8, 0.0 1.3, 1.0 2.589 2.62 0.8, 0.0 1.3, 1.0 2.409 

 

A quick summary of Table 4.11 reveals the following points: 

• For small and tiny shifts (𝛿 = 0.05, 0.1), the combination of (𝑞1 = 0.95, 𝑞2 = 0.0, 𝛼1 = 0.8, 

𝛼2 = 1.0 and 𝐿 = 1.089) provides the near optimal design for the GWMA-EX chart when 𝑚 = 

49 and 𝑛 = 5. A similar interpretation can be made for other combinations of the reference 

sample size (i.e., 𝑚 = 49, 99) and the test sample size (i.e., 𝑛 = 5, 10). 

• The combination of (𝑞1 = 0.9, 𝑞2 = 0.0, 𝛼1 = 1.3, 𝛼2 = 1.0 and 𝐿 = 2.067) provides the near 

optimal design when the shift size (𝛿) is 0.75 when 𝑚 = 49 and 𝑛 = 5. For shift sizes 1.0 and 

1.5, (𝑞1 = 0.8, 𝑞2 = 0.0, 𝛼1 = 1.3, 𝛼2 = 1.0 and 𝐿 = 2.381) provides the near optimal design. 
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Table 4.12. Near optimal (𝒒𝟏, 𝒒𝟐, 𝜶𝟏, 𝜶𝟐, 𝑳) combinations with corresponding 𝑨𝑹𝑳 values for 

the EWMA-EX chart 

 
𝒎 = 49   𝒏 = 5   𝒎 = 49   𝒏 = 10  m = 99 n = 5 𝒎 = 99   𝒏 = 10 

 𝑨𝑹𝑳𝟏 𝒒𝟏, 𝒒𝟐 𝜶𝟏, 𝜶𝟐 𝑳 𝑨𝑹𝑳𝟏 𝒒𝟏, 𝒒𝟐 𝜶𝟏, 𝜶𝟐 𝑳 𝑨𝑹𝑳𝟏 𝒒𝟏, 𝒒𝟐 𝜶𝟏, 𝜶𝟐 𝑳 𝑨𝑹𝑳𝟏 𝒒𝟏, 𝒒𝟐 𝜶𝟏, 𝜶𝟐 𝑳 

0.05 357.90 0.9, 0.0 1.0, 1.0 1.820 353.45 0.8, 1.0 1.0, 1.0 1.943 350.08 0.95, 0.0 1.0, 1.0 1.667 339.07 0.9, 0.0 1.0, 1.0 1.817 

0.1 330.96 0.95, 0.0 1.0, 1.0 1.365 324.07 0.9, 0.0 1.0, 1.0 1.478 295.54 0.95, 0.0 1.0, 1.0 1.667 284.37 0.9, 0.0 1.0, 1.0 1.817 

0.25 177.20 0.95, 0.0 1.0, 1.0 1.365 159.42 0.95, 0.0 1.0, 1.0 0.737 101.53 0.95, 0.0 1.0, 1.0 1.667 85.54 0.95, 0.0 1.0, 1.0 1.362 

0.5 29.67 0.9, 0.0 1.0, 1.0 1.820 19.23 0.9, 0.0 1.0, 1.0 1.478 17.14 0.9, 0.0 1.0, 1.0 2.132 10.96 0.9, 0.0 1.0, 1.0 1.817 

0.75 9.76 0.8, 0.0 1.0, 1.0 2.249 6.07 0.8, 0.0 1.0, 1.0 1.943 8.32 0.8, 0.0 1.0, 1.0 2.503 5.11 0.8, 0.0 1.0, 1.0 2.272 

1.0 5.95 0.8, 0.0 1.0, 1.0 2.249 3.89 0.8, 0.0 1.0, 1.0 1.943 5.58 0.8, 0.0 1.0, 1.0 2.503 3.67 0.8, 0.0 1.0, 1.0 2.272 

1.5 6.21 0.95, 0.0 1.0, 1.0 1.365 2.71 0.8, 0.0 1.0, 1.0 1.943 3.88 0.8, 0.0 1.0, 1.0 2.503 2.79 0.8, 0.0 1.0, 1.0 2.272 

 

A quick summary of Table 4.12 reveals the following points: 

• For small and tiny shifts (𝛿 = 0.05, 0.1), the combination of (𝑞1 = 0.9, 𝑞2 = 0.0, 𝛼1 = 1.0, 

𝛼2 = 1.0 and 𝐿 = 1.820) and (𝑞1 = 0.95, 𝑞2 = 0.0, 𝛼1 = 1.0, 𝛼2 = 1.0 and 𝐿 = 1.365) provide 

the near optimal design for the EWMA-EX chart when 𝑚 = 49 and 𝑛 = 5. A similar interpre-

tation can be made for other combinations of the reference sample size (i.e., 𝑚 = 49, 99) and 

the test sample size (i.e., 𝑛 = 5, 10). 

• The combination of (𝑞1 = 0.8, 𝑞2 = 0.0, 𝛼1 = 1.0, 𝛼2 = 1.0 and 𝐿 = 1.943) provides the near 

optimal design when the shift size (𝛿) is 0.75, 1.0, and 1.5 when 𝑚 = 49 and 𝑛 = 10.  

 

Table 4.13. Near optimal (𝒒𝟏, 𝒒𝟐, 𝜶𝟏, 𝜶𝟐, 𝑳) combinations with corresponding 𝑨𝑹𝑳 values for 

the DEWMA-EX chart (Case 1) 

 
𝒎 = 49   𝒏 = 5 𝒎 = 49   𝒏 = 10 m = 99 n = 5 𝒎 = 99   𝒏 = 10 

 𝑨𝑹𝑳𝟏 𝒒𝟏, 𝒒𝟐 𝜶𝟏, 𝜶𝟐 𝑳 𝑨𝑹𝑳𝟏 𝒒𝟏, 𝒒𝟐 𝜶𝟏, 𝜶𝟐 𝑳 𝑨𝑹𝑳𝟏 𝒒𝟏, 𝒒𝟐 𝜶𝟏, 𝜶𝟐 𝑳 𝑨𝑹𝑳𝟏 𝒒𝟏, 𝒒𝟐 𝜶𝟏, 𝜶𝟐 𝑳 

0.05 354.34 0.7, 0.9 1.0, 1.0 1.562 342.85 0.7, 0.9 1.0, 1.0 1.257 342.37 0.6, 0.95 1.0, 1.0 1.536 335.76 0.6, 0.8 1.0, 1.0 1.245 

0.1 319.09 0.7, 0.95 1.0, 1.0 1.211 318.07 0.9, 0.95 1.0, 1.0 0.806 291.61 0.6, 0.95 1.0, 1.0 1.536 284.05 0.7, 0.9 1.0, 1.0 1.563 

0.25 172.53 0.6, 0.95 1.0, 1.0 1.250 154.75 0.7, 0.95 1.0, 1.0 0.956 103.77 0.6, 0.95 1.0, 1.0 1.536 84.51 0.8, 0.95 1.0, 1.0 1.145 

0.5 28.97 0.7, 0.95 1.0, 1.0 1.211 20.02 0.7, 0.8 1.0, 1.0 1.577 17.27 0.7, 0.9 1.0, 1.0 1.859 10.92 0.6, 0.8 1.0, 1.0 1.998 

0.75 9.74 0.6, 0.7 1.0, 1.0 2.186 5.97 0.6, 0.7 1.0, 1.0 1.879 8.21 0.6, 0.7 1.0, 1.0 2.427 5.15 0.6, 0.7 1.0, 1.0 2.187 

1.0 5.90 0.6, 0.7 1.0, 1.0 2.186 4.1 0.6, 0.7 1.0, 1.0 1.879 5.52 0.6, 0.7 1.0, 1.0 2.427 3.89 0.6, 0.7 1.0, 1.0 2.187 

1.5 4.29 0.6, 0.7 1.0, 1.0 2.186 3.18 0.6, 0.7 1.0, 1.0 1.879 4.2 0.8, 0.7 1.0, 1.0 2.427 3.12 0.6, 0.7 1.0, 1.0 2.187 

 

A quick summary of Table 4.13 reveals the following points: 

• For small and tiny shifts (𝛿 = 0.05, 0.1), the combination of (𝑞1 = 0.7, 𝑞2 = 0.9, 𝛼1 = 1.0, 

𝛼2 = 1.0 and 𝐿 = 1.562) and (𝑞1 = 0.7, 𝑞2 = 0.95, 𝛼1 = 1.0, 𝛼2 = 1.0 and 𝐿 = 1.211) provide 

the near optimal design when 𝑚 = 49 and 𝑛 = 5. 

• The combination of (𝑞1 = 0.6, 𝑞2 = 0.7, 𝛼1 = 1.0, 𝛼2 = 1.0 and 𝐿 = 2.427) provides the near 

optimal design when the shift size (𝛿) is 0.75, 1.0, and 1.5 when 𝑚 = 99 and 𝑛 = 5.  
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Table 4.14. Near optimal (𝒒𝟏, 𝒒𝟐, 𝜶𝟏, 𝜶𝟐, 𝑳) combinations with corresponding 𝑨𝑹𝑳 values for 

the DEWMA-EX chart (Case 2) 

 
𝒎 = 49   𝒏 = 5 𝒎 = 49   𝒏 = 10 m = 99 n = 5 𝒎 = 99   𝒏 = 10 

 𝑨𝑹𝑳𝟏 𝒒𝟏, 𝒒𝟐 𝜶𝟏, 𝜶𝟐 𝑳 𝑨𝑹𝑳𝟏 𝒒𝟏, 𝒒𝟐 𝜶𝟏, 𝜶𝟐 𝑳 𝑨𝑹𝑳𝟏 𝒒𝟏, 𝒒𝟐 𝜶𝟏, 𝜶𝟐 𝑳 𝑨𝑹𝑳𝟏 𝒒𝟏, 𝒒𝟐 𝜶𝟏, 𝜶𝟐 𝑳 

0.05 355.64 0.9, 0.9 1.0, 1.0 1.255 352.81 0.7, 0.7 1.0, 1.0 1.750 346.03 0.95, 0.95 1.0, 1.0 1.075 346.96 0.95, 0.95 1.0, 1.0 0.862 

0.1 318.89 0.9, 0.9 1.0, 1.0 1.255 320.01 0.7, 0.7 1.0, 1.0 1.750 291.16 0.95, 0.95 1.0, 1.0 1.075 287.41 0.9, 0.9 1.0, 1.0 1.256 

0.25 170.47 0.95, 0.95 1.0, 1.0 0.866 164.02 0.9, 0.9 1.0, 1.0 1.002 102.01 0.9, 0.9 1.0, 1.0 1.529 87.25 0.95, 0.95 1.0, 1.0 1.145 

0.5 30.99 0.8, 0.8 1.0, 1.0 1.755 22.66 0.6, 0.6 1.0, 1.0 2.010 17.20 0.8, 0.8 1.0, 1.0 2.040 10.91 0.7, 0.7 1.0, 1.0 2.080 

0.75 9.54 0.7, 0.7 1.0, 1.0 2.072 5.81 0.6, 0.6 1.0, 1.0 2.010 8.26 0.7, 0.7 1.0, 1.0 2.332 5.45 0.7, 0.7 1.0, 1.0 2.080 

1.0 5.84 0.6, 0.6 1.0, 1.0 2.299 3.88 0.6, 0.6 1.0, 1.0 2.010 5.39 0.6, 0.6 1.0, 1.0 2.520 4.21 0.7, 0.7 1.0, 1.0 2.080 

1.5 3.87 0.6, 0.6 1.0, 1.0 2.299 3.08 0.6, 0.6 1.0, 1.0 2.010 3.81 0.6, 0.6 1.0, 1.0 2.520 3.32 0.7, 0.7 1.0, 1.0 2.080 

 

A quick summary of Table 4.14 reveals the following points: 

• For small and tiny shifts (𝛿 = 0.05, 0.1), the combination of (𝑞1 = 0.9, 𝑞2 = 0.9, 𝛼1 = 1.0, 

𝛼2 = 1.0 and 𝐿 = 1.255) provides the near optimal design when 𝑚 = 49 and 𝑛 = 5. (𝑞1 = 0.7, 

𝑞2 = 0.7, 𝛼1 = 1.0, 𝛼2 = 1.0 and 𝐿 = 1.750) provides the near optimal when 𝑚 = 49 and 𝑛 = 

10. 

• The combination of (𝑞1 = 0.6, 𝑞2 = 0.6, 𝛼1 = 1.0, 𝛼2 = 1.0 and 𝐿 = 2.299) provides the near 

optimal design when the shift size (𝛿) is 1.0, and 1.5 when 𝑚 = 49 and 𝑛 = 5.  

4.12 Illustrative example 

4.12.1 Simulated data 

In this section, a simulated example is presented to demonstrate the applicability of the proposed 

DGWMA-EX chart. A reference sample of size 𝑚 = 49 is drawn from a standard normal (N (0,1)) 

distribution as a Phase I dataset to estimate the process median. Thereafter, 200 Phase II random sam-

ples of size 𝑛 = 5 are drawn, from a N (0.25,1) distribution, which can be viewed as an OOC observa-

tion following a location shift of 𝛿 = 0.25. Two sets of design parameters are used: (𝑞 = 0.8, 𝛼 = 0.7, 

L = 1.304) and (𝑞1 = 0.8,  𝑞2 = 0, 𝛼1 = 0.7, 𝛼2 = 1, L = 2.032), as in Tables 4.1 and 4.7. The first 

set results in a DGWMA-EX chart, whereas the second one leads to a GWMA-EX chart. Any other 

combination can be chosen, although these values are chosen only for illustrative purposes. The IC 𝐴𝑅𝐿 

(𝐴𝑅𝐿0) for both charts are close to 370, which put them at an equal footing to perform a valid compar-

ison. From Table A.4.1, the DGWMA-EX chart has an OOC 𝐴𝑅𝐿 of 163.35; while from Table A.4.7, 

the GWMA-EX chart has an OOC 𝐴𝑅𝐿 of 182.06 when 𝛿 = 0.25. Control limits for the DGWMA-EX 

chart are obtained as UCL = 3.008 and LCL = 1.991, whereas for the GWMA-EX chart these limits are 

obtained as UCL = 3.437 and LCL = 1.562. The two control charts are displayed in Figure 4.26. As a 

conclusion, the DGWMA-EX chart detects the shift 𝛿 = 0.25 (small shift) earlier than the GWMA-EX 

chart, which provides similar results to those presented based on the comparative study. 
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Figure 4.26. The DGWMA-EX and the GWMA-EX charts for the simulated dataset 
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4.12.2    Real-life data 

A well-known dataset from Montgomery (2013, Table 6.3 and Table 6E.7) is considered to illustrate 

the application of the proposed DGWMA-EX chart. The same dataset is considered by Graham et al. 

(2012) and Mukherjee et al. (2013) for the nonparametric Phase II EWMA-EX and CUSUM-EX charts, 

respectively. This dataset is based on the inside diameters of piston rings for an automotive engine and 

are manufactured by a forging process. This data is also available in R software under “qcc” package 

(version 2.7). Twenty-five retrospective Phase I samples, each of size five, that were collected when 

the process was in IC is given in Table 6.3. Montgomery (2013) concluded that these data are from an 

IC process and hence can be assumed as Phase I reference sample. We assume that the underlying 

process distribution is symmetric (since a goodness of fit test for normality assumption is not rejected 

for this dataset). The reference sample has a median equal to 74.001. 

Table 6E.7 is used to calculate the Phase II exceedance charts. This table contains fifteen prospective 

or Phase II samples each of five observations (𝑛 = 5). The desired shift to be detected was taken to be 

small (𝛿 =0.25). For comparison purposes, the GWMA-EX and CUSUM-EX charts are included. For 

the CUSUM-EX chart we use 𝑑 = 0 and set ℎ = 7.5 for an 𝐴𝑅𝐿0 ≈ 370. The values for the parameters 

𝑑 and ℎ are given by Graham et al. (2012). The lower and upper control limits for the CUSUM-EX 

chart are given by Graham et al. (2012) as 4.25 (-4.25,4.25). For the GWMA-EX chart and the 

DGWMA-EX chart, the parameters are selected as 𝑞 = 0.95 and 𝛼 = 0.7. The control limits for the 

GWMA-EX chart is calculated as 𝐿𝐶𝐿 = 1.375 and 𝑈𝐶𝐿 = 3.715. The upper control limit and the 

lower control limit for the DGWMA-EX chart is calculated as 𝐿𝐶𝐿 = 1.105 and 𝑈𝐶𝐿 = 3.835. These 

charts for the Montgomery piston ring data are illustrated in the following figures:  
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(a) DGWMA-EX chart 

 
(b) GWMA-EX chart 
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(c) CUSUM-EX chart 

 

Figure 4.27. The DGWMA-EX (a), the GWMA-EX (b), and the CUSUM-EX (c) charts for the 

piston rings dataset 

 

From the above figures, it can be observed that the DGWMA-EX chart signals first at sample number 

10, whereas the CUSUM-EX chart and the GWMA-EX chart signals later at sample number 13 and 

sample number 12, respectively. Thus, the DGWMA-EX chart outperformed the GWMA-EX and the 

CUSUM-EX charts in detecting small shifts in the process.  

Note that due to access restrictions and a necessity for granting special permissions, we could not use a 

data set from other resources.  

4.13 Concluding remarks 

Nonparametric control charts offer an efficient technique to monitor a process, especially if the form of 

the underlying distribution is unknown or not exactly specified. A new distribution-free (nonparametric) 

control chart based on an EX (denoted as the DGWMA-EX chart) is introduced. This chart provides a 

method for monitoring when no information is available in connection with the process distribution to 

monitor an unknown (Case U) process location parameter (median). The main advantage of the pro-

posed nonparametric chart is that the DGWMA chart takes the sequential (time ordered) accumulation 

of all the information from the start until the most recent observation, and is known to be more efficient 

at detecting smaller shifts, as shown in this chapter. Both cases of the proposed DGWMA-EX chart 

(Case 1 and Case 2) are discussed and further investigated. The proposed chart can be viewed as a 
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generalized nonparametric time-weighted chart, which includes the GWMA-EX and EWMA-EX charts 

as limiting cases that already exist in the SPC literature. Further to this, the DEWMA-EX chart (Case 

1 and Case 2) which is known as a special case of the proposed DGWMA-EX chart is also introduced 

and studied in this chapter for Case U. The closed-form expressions for the run length distribution and 

its characteristics are obtained for the DGWMA-EX chart through the exact approach. Also, the closed-

form expressions for the run length distribution are obtained through the Markov chain method for the 

DEWMA-EX chart. A Monte Carlo simulation algorithm has been developed for the design and calcu-

lation of the run length distribution of the proposed DGWMA-EX chart, which can be modified for the 

special and limiting cases of the aforementioned chart. A comparative OOC performance analysis is 

performed for the proposed DGWMA-EX chart under some symmetric distributions, i.e., the logistic 

distribution, the Laplace distribution, the uniform distribution, and skewed distribution, i.e., the gamma 

distribution, and the necessary recommendations are provided for practitioners. The 25th and 75th per-

centiles have also been considered, instead of the 50th percentile, to further study and investigate the 

behavior of the ARL in terms of the biasness of a control chart. Moreover, the MDRL has been consid-

ered as an alternative to the ARL, which provides similar results. The DGWMA-EX chart outperforms 

the GWMA-EX and the EWMA-EX charts in detecting tiny shifts in the process and provides a robust 

performance when the underlying process distribution is not normal. 
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High-yield or high-quality processes are in more demand nowadays since the accessibility to new tech-

nology for manufacturing purposes is increasing. Thus, to maintain the quality of a process, efficient 

detection of small or tiny process shifts is becoming a top priority and a mission for the quality engineers 

and practitioners. Control charts are the most well-known and commonly used advanced tools to main-

tain and monitor the quality in a manufacturing process. The Shewhart-type (memory-less) charts are 

frequently used in practice due to their global performance and ease of implementation, and they have 

a vital standing amongst practitioners. However, these types of charts are inefficient and ineffective in 

detecting small or tiny sustained step shifts originating from the high-yield processes. To circumvent 

this drawback, time-weighted (memory-type or memory-based) charts have been proposed in the con-

text of the SPC literature. These charts sequentially accumulate information from past to present to 

monitor and detect a shift in the process. Sheu and Hsieh (2009) developed a generalized type of time-

weighted control chart under the normal distribution, often denoted as DGWMA chart, by implementing 

the double or dual exponential smoothing technique proposed by Brown (1962) to enhance the perfor-

mance of the GWMA chart proposed by Sheu and Lin (2003). Sheu and Hsieh (2009) conducted a 

comparative performance analysis and concluded that DGWMA charts have a better detection capabil-

ity than the GWMA and the DEWMA charts for small or tiny shifts when the underlying process dis-

tribution is normal. 

An increasing number of papers have been published in the past decade with the main focus on time-

weighted charts. A bibliometric analysis has been performed in Chapter 1 (Section 1.3). Results re-

vealed that out of the 366 articles published in this period (2009 to 2018), only 1.64% consider the 

DGWMA chart, which indicates the research opportunities and research gaps that exist within this do-

main. For recent developments of DGWMA charts, consult the work by Chiu and Lu (2015), Huang et 

al. (2014), Lu (2018), and Teh et al. (2011). Also, relatively very little work has been done on DGWMA 

control charts for Case U and when the underlying process distribution is unknown or little information 

is available. 

In this thesis, the DGWMA chart has been viewed as a generalized type of time-weighted chart that 

includes the GWMA, EWMA, and Shewhart-type charts as the limiting cases, and the DEWMA chart 

as a special case. The DGWMA chart introduced and developed in this work considers both parametric 

and nonparametric scenarios. A list of some of the main contributions of the research conducted in this 

thesis are provided, and possible research opportunities that could be persuade in future are discussed. 

Chapter 5 Concluding remarks and future re-

search 
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• Chapter 1 provides a brief literature review on the different types of weighting techniques 

available in the SPC literature, highlighting the scope and objectives of the thesis. A biblio-

metric metric analysis is also performed to illustrate the necessity of further research in the 

domain of the DGWMA chart. General guidelines and recommendations are provided for the 

practitioners in terms of how to use the developed charts in practice, and the chapter concludes 

by addressing some fundamental concepts and terminology in the SPC environment.  

• Chapter 2 consists of the preliminaries and statistical framework on the theory of the DGWMA 

chart as well as a detailed literature review on DGWMA charts. In general, the DGWMA chart 

can be classified as Case 1 and Case 2, depending on the number of parameters used in the 

design stage. If all four parameters of the DGWMA chart (i.e., 𝑞1, 𝑞2, 𝛼1, 𝛼2) are involved, 

then Case 1 is of interest; whereas when the parameters are assumed to be equal (i.e., 𝑞1 =

𝑞2 = 𝑞 and 𝛼1 = 𝛼2 = 𝛼), Case 2 is looked at. In the SPC literature, Case 1 is neglected and 

dismissed frequently by researchers due to the computational time and other complexities. 

However, in this chapter, both of these cases have been studied and discussed in detail. The 

weighting mechanism of time-weighted charts plays a vital role in allocating the weights to the 

past and present information. The weighting structure of the DGWMA chart and its limiting 

and special cases have been studied in detail. The shape of the weights for these charts has a 

direct impact in increasing the detection capability of time-weighted charts. The literature re-

view witnesses the obstacles and challenges involved in calculating the run length distribution 

for the DGWMA charts, as mentioned by various researchers. However, a comparative and 

detailed study in terms of the run length distribution is lacking from current SPC literature. This 

research has studied three approaches to calculate the run length distribution: (i) the exact ap-

proach, (ii) the Markov chain approach, and (iii) the Monte Carlo simulation. The closed-form 

expressions based are obtained for the DGWMA and the DEWMA chart. The major issue with 

the first two approaches is the lack of available software packages that can numerically evaluate 

these expressions.  

• In Chapter 3, a parametric DGWMA control chart is proposed to monitor the TBE in high-

yield processes. Shewhart attributes charts are inefficient in detecting nonconformities in the 

high-yield processes, where the number of failures is often very small (i.e., one in a million or 

billion). To overcome this shortcoming, more efficient types of time-weighted control charts 

based on the gamma distribution are suggested and referred to as TBE charts, denoted as the 

DGWMA-TBE chart. Furthermore, symmetrically placed control limits (i.e., two-sided chart) 

are only applicable if the plotting statistic has a symmetric distribution. However, in the case 

of the DGWMA-TBE, since the underlying process distribution is gamma (a skewed 
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distribution), then a linear combination of gamma random variables is used and, in such a case, 

a one-sided chart is constructed, as the two-sided chart is ARL-biased (i.e., 𝐴𝑅𝐿0 is less than 

𝐴𝑅𝐿1). A one-sided generalized parametric control chart (namely DGWMA-TBE) proposed in 

this chapter includes a one-sided GWMA-TBE chart, a one-sided EWMA-TBE chart, and a 

one-sided Shewhart-TBE chart as the limiting cases. Further to this, a one-sided DEWMA-TBE 

chart, which is the special case of the proposed DGWMA-TBE chart, is also proposed and 

studied in detail. Case 1 (one smoothing parameter) and Case 2 (two smoothing parameters) 

have been considered for the DEWMA-TBE chart. For a one-sided DEWMA chart, the Markov 

chain method is devised to find the closed-form expressions for the run length distribution and 

its other characteristics. The exact approach is devised to calculate the run length distribution 

of a one-sided DGWMA-TBE chart. A comparative performance analysis is conducted to com-

pare the above mentioned three methods for the run length distribution as well the CPU time. 

The design and implementation of the DGWMA-TBE and DEWMA-TBE charts for Phase II 

(Case U) are also detailed. The DGWMA-TBE chart proposed in this chapter, outperforms the 

GWMA-TBE, the EWMA-TBE, and the Shewhart-TBE charts in detecting tiny shifts in the 

process. Further to this, new GWMA-TBE charts are developed by considering alternative dis-

crete distributions for the weights. As a result, one can design an optimal GWMA-TBE chart 

that outperforms the DGWMA-TBE chart without the implementation of the double exponen-

tial smoothing technique. 

• In various applications, the assumption of a known (normal) distribution for the underlying 

process is not valid. Therefore, the statistical properties of commonly used charts designed to 

perform under the normal distribution could be highly affected. In Chapter 4, a nonparametric 

version of the DGWMA control chart (Case 1 and Case 2) based on the EXs, namely the 

DGWMA-EX control chart is proposed for Case U to monitor the location parameter. The pro-

posed chart can be viewed as a generalized nonparametric time-weighted chart that includes 

the GWMA-EX and EWMA-EX charts as limiting cases, which already exist in the context of 

the SPC literature. Moreover, the DEWMA-EX chart (Case 1 and Case 2) – that is, the special 

case of the DGWMA-EX chart – is also proposed in this chapter and the necessary results are 

provided. The closed-form expressions for the run length distribution and its characteristics are 

derived for the DGWMA-EX chart through the exact approach. The Monte Carlo simulation 

algorithm is developed to design and calculate the run length distribution and other character-

istics. The performance of the proposed DGWMA-EX chart has been evaluated under different 

symmetric and skewed distributions in comparison with its main counterparts, and the neces-

sary results and recommendations are provided for practitioners. 

In the next sections, a list of possible future research opportunities and limitations pertaining to the 

current work are discussed. 
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5.1 Future research 

i) From a theoretical perspective, more research needs to be conducted for the DGWMA chart 

in terms of monitoring the location and scale parameters simultaneously for the parametric 

and nonparametric cases. Currently, Teh et al. (2010) are the only researchers to have ad-

dressed this issue in their work. 

ii) One of the assumptions for the DGWMA-TBE chart proposed in Chapter 3 is that the var-

iable of interest is the time of the 𝑘𝑡ℎ failures in which 𝑘 is an integer and specified. One 

possible extension is to consider non-exponential inter-arrival process (e.g., gamma inter-

arrival process and Weibull inter-arrival process). For example, if a gamma inter-arrival 

process is considered, then the shape parameter of the gamma distribution is not necessarily 

an integer and it may be unknown. 

iii) From the information available, there are no multivariate TBE control charts in the context 

of the SPC literature, which can be considered in future research by extending the univariate 

DGWMA-TBE and DEWMA-TBE charts proposed in Chapter 3. 

iv) There are several articles available in the literature for monitoring the TBE and the magni-

tude of an event separately. Thus, one can design a control chart for simultaneously moni-

toring the time interval and magnitude.  

v) Relatively little work has been done on Phase I monitoring regarding the DGWMA chart 

for parametric and nonparametric cases. From the studies available, the only paper that 

considered Case U is that of Lu (2018), but the topic of Phase I monitoring has not been 

mentioned or studied by this author. 

vi) A detailed literature review on the developments of the DGWMA charts would be of inter-

est and great benefit for new researchers interested in conducting research within this do-

main. 

vii) The economical design of the proposed DGWMA charts in this chart would be of great 

interest and advantage to determine various design parameters that minimize total eco-

nomic costs. 

viii) The performance of the proposed nonparametric control chart in Chapter 4 (i.e., DGWMA-

EX) under Lehman alternatives would be of great interest for future research. 

ix) Further research is required for another special case of the DGWMA chart, known as the 

EGWMA chart.  
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x) The performance of the control chart methodologies proposed in this thesis depends on the 

choice of the weight function (a discrete probability distribution) and the parameters in-

volved in the weight function (i.e., 𝛼1, 𝛼2, 𝑞1, 𝑞2). Choosing a suitable weight function and 

specifying appropriate values of the parameters can be challenging in practical situations. 

Hence, one possible research direction is to consider a weight function with interpretable 

parameters so that the practitioners can easily specify the values of the parameters with a 

particular purpose. 

xi)  One of the limitations of the newly developed control charts is their accessibility to the 

quality engineers and practitioners. Software developers would provide great assistance by 

including the developed charts in the statistical packages, which are popular amongst prac-

titioners (e.g., SAS, R, etc.), and bridging the gap between the academics and researchers. 

xii) The closed-form expressions obtained in this thesis for the DGWMA charts through the 

exact approach are often time-consuming and numerically cumbersome to evaluate. There 

is a necessity to develop efficient algorithms that can evaluate and calculate the run length 

distribution through these expressions. 

5.2 R programming scripts 

For the sake of brevity, a selection of R scripts that has been used in the current research are 

available at: 

https://drive.google.com/open?id=1H8Zee8VY45kHJ4naV266if2Q_LKdCocl  

 

5.3 Appendix 

The results provided in this thesis in terms of supplementary tables can be found in the following link: 

https://drive.google.com/open?id=18RNg2woAbFJ49PkyPYeWS2kuskpUCvEJ   
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