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Abstract 

Introduction: Manifestations of fatigue range from chronic fatigue up to a severe syndrome 
and myalgic encephalomyelitis. Fatigue grossly affects the functional status and quality of 
life of affected individuals, prompting the World Health Organization to recognize it as a 
chronic non-communicable condition. 

Objectives: Here, we explore the potential of urinary metabolite information to 
complement clinical criteria of fatigue, providing an avenue towards an objective measure 
of fatigue in patients presenting with the full spectrum of fatigue levels. 

Methods: The experimental group consisted of 578 chronic fatigue female patients. The 
measurement design was composed of (1) existing clinical fatigue scales, (2) a hepatic 
detoxification challenge test, and (3) untargeted proton nuclear magnetic resonance (1H-
NMR) procedure to generate metabolomics data. Data analysed via an in-house Matlab 
script that combines functions from a Statistics and a PLS Toolbox. 

Results: Multivariate analysis of the original 459 profiled 1H-NMR bins for the low (control) 
and high (patient) fatigue groups indicated complete separation following the detoxification 
experimental challenge. Important bins identified from the 1H-NMR spectra provided 
quantitative metabolite information on the detoxification challenge for the fatigue groups. 

Conclusions: Untargeted 1H-NMR metabolomics proved its applicability as a global profiling 
tool to reveal the impact of toxicological interventions in chronic fatigue patients. No clear 
potential biomarker emerged from this study, but the quantitative profile of the phase II 
biotransformation products provide a practical visible effect directing to up-regulation of 
crucial phase II enzyme systems in the high fatigue group in response to a high xenobiotic-
load. 

Keywords: Chronic fatigue; Detoxification challenge test; Piper fatigue scale; 1H-NMR 
metabolomics; Phase II biotransformation 
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Introduction 

Fatigue is one of the most common conditions reported by patients in primary care 
practice. Fatigue frequently co-occurs with pain, sleep disturbances and depression 
prompting medical practitioners to use diverse definitions and diagnostic labels to describe 
possible underlying causes of these manifestations. Thus, fatigue appears as a symptom of 
idiopathic conditions, at the one end of the fatigue spectrum, towards chronic fatigue 
syndrome (CFS) and myalgic encephalomyelitis (ME), at the other end. In its more 
persistent form, fatigue is now recognized by the World Health Organization (WHO) as one 
of the chronic non-communicable conditions, which are rapidly becoming endemic 
worldwide, recognizing that fatigue is associated with a significant decline in the functional 
status and quality of life (QOL) of affected individuals. 

Although a diagnosis is essential for providing appropriate care, there is no established 
diagnostic test for any of the manifestations of fatigue. To this end, various wellness and 
health institutions in the United States (US) tasked the Institute of Medicine (IOM) to 
develop evidence-based clinical diagnostic criteria at least for ME/CFS and to recommend 
whether new terminology for ME/CFS should be adopted (Clayton 2015). Following 
extensive research involving patients and clinicians, the IOM committee proposed redefined 
diagnostic criteria to facilitate timely diagnosis and to improve understanding of the illness 
among healthcare professionals and the public (Clayton 2015). The diagnostic criteria 
indicative of CFS/ME specify: (1) a substantial reduction or impairment in the ability to 
engage in pre-illness levels of activity (occupational, educational, social or personal life); (2) 
symptoms that present for more than 6 months; (3) episodes of profound fatigue; (4) 
symptoms of new onset and not resulting from on-going or unusual excessive exertion; and 
(5) symptoms that are nor substantially alleviated by rest. From this descriptive, it is clear 
that clinical criteria, though relatively subjective, remain key in the diagnosis of chronic 
fatigue seen in CFS/ME and that no objective measure for fatigue in general has been 
proposed—the issue that is addressed in this paper. 

Seeing the multifactorial nature of chronic fatigue, it seems highly unlikely that an objective 
measure, as a verified a single biomarker or biosignature comprised of a limited number of 
biomarkers, will be found for fatigue conditions, unless the essence of this disorder, its 
causes and pathophysiology becomes clearly delineated. However, it has recently been 
shown (Erasmus et al. 2019) that data from a battery of conventional tests provided some 
objective indicators to complement clinical and lifestyle data which enabled the classi-
fication of a cohort of patients into eleven subgroups, ranging from low to high fatigue. In 
addition, metabolomics research has provided insights into disorders of comparable 
complexity to chronic fatigue, like fibromyalgia syndrome (Hackshaw et al. 2018; Malatji et 
al. 2017), chronic widespread pain (Freidin et al. 2018; Hadrévi et al. 2015) and irritable 
bowel syndrome (Fourie et al. 2016; Ponnusamy et al. 2011). Likewise, metabolomics 
approaches using intervention studies proved to provide valuable insights into experi-
mental studies on nutrition (Wittwer et al. 2011), detoxification (Irwin et al. 2016) and 
acute alcohol consumption (Irwin et al. 2018). Here we propose a laboratory approach to 
facilitate an objective evaluation of fatigue in a clinically selected group of chronic fatigue 
patients. The approach is compiled of: (1) existing clinical scales to score (Piper et al. 1998); 
(2) a known hepatic detoxification challenge test (Cordts et al. 2001) and (3) untargeted
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proton nuclear magnetic resonance (1H-NMR) procedure to generate metabolomics 
data. 

The selection of cases used for the laboratory assessment was made from 576 females 
identified by clinicians as suffering from chronic fatigue, supported by information from 
two known assessment scales. Based on exclusion criteria, the control (low fatigue) and 
patient (high fatigue) groups were selected from this cohort for the metabolomics study. 
Fatigue in our patient group was scored based on the Piper Fatigue Scale (PFS) (Piper et al. 
1998) developed for fatigue prevailing in oncology patients. The information from the PFS 
was supplemented with that from a general Medical Symptoms Questionnaire (MSQ) used 
by the Departments of Medicine, Mercy Hospital and Maine Medical Center, Portland, for 
comprehensive profiling of patients with idiopathic conditions. 

The hepatic detoxification test probes the gut-liver function through a hepatic detoxifi-
cation challenge with acetaminophen and acetylsalicylic acid (Cordts et al. 2001). The 
laboratory instrument used for the objective measurement of fatigue is based on the 
biotransformation profile derived from these hepatic challenge tests. The underlying 
physiological assumption is that fatigue is a symptom of energy depletion (e.g. as indicated 
by the PFS). Based on the presumed causal relationship between exogenous stimuli, 
biotransformation responses and fatigue, we speculated that the response to the highly 
energy dependent hepatic challenge test (that is, ATP required for the in vivo synthesis of 
biotransformation products) should be more pronounced in controls than in fatigue 
patients supposed to suffer from energy depletion. 

In this exploratory study we followed a holistic approach to determine the response to an 
intervention by using metabolomics technology in the generation and analysis of 
untargeted 1H-NMR spectral data, produced prior to and following the intervention. 
Important bins identified from the 1H-NMR spectra provided qualitative information to 
compare the effect of the challenge tests on control and fatigue cases and used to identify 
and quantify biotransformation markers associated with fatigue. 

The IOM’s report on fatigue emphasized the need for increased focus on the complex 
phenomenon of fatigue, paving the way to learn more on conditions covering the full 
spectrum of fatigue conditions and to diagnose and treat patients suffering from a disease 
that severely affects their QOL. The outcomes of the present metabolomics study suggest 
that the intervention used can provide an objective measure to distinguished the response 
of patients with low and high fatigue, and has the potential, given further refinement, to 
benefit patients suffering from fatigue conditions. 

Materials and methods 

Objective, ethical approval and case selection 

The primary objective of the study was to propose a laboratory-based procedure that 
could pave the way towards an objective indicator of fatigue in patients observed as such 
by physicians in general clinical practice. The point of departure for the design of the 
study was thus to enrol a large number of patients suffering from chronic fatigue. Next, all 
prospective participants were informed of the objective of the study, which complied with 
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the requirements of the appropriate Ethics Committee of North-West University 
(Reference no. NWU-00102-12-A1). All participants provided written consent (see 
Supplementary Information (SI) for Informed consent forms) to participate and for 
eventual publication of anonymized results in accordance with the ethical requirements of 
the university. 

Patients suffering from fatigue emanating from well-defined clinical conditions such as 
cancer and CFS/ME or other known conditions such as diabetes or hypertension were 
excluded from the study. Exclusions were based on the assessment of the physician and 
the outcome of the MSQ (see SI on Patient procedures and selection for full details). Next, 
participants were asked to complete a self-report questionnaire that included a demo-
graphic profile and an English version of the revised Piper Fatigue Scale (PFS). The PFS used 
consisted of 22 numerical items that assess fatigue experienced by the patients. All items 
were coded on a 0–10 numeric scale and resolve into four dimensions of subjective 
fatigue: behavior/severity, affective meaning, sensory, and cognitive/mood. In total, 673 
women with complaints of fatigue were assessed and of these 576 were found to be 
eligible for the study. The age, height, weight or BMI did not have a confounding effect on 
the biochemical data or on the classification of fatigue groups, indicated by a correlation 
analysis to indicate potential confounding effects (Erasmus et al. 2019). 

Having applied the PFS to a clinically different fatigue group than the instrument was 
designed for, required a re-evaluation of the fatigue dimension. To this end, various 
combinations of factor extraction methods (principal components and principal axis 
factoring) and rotation methods (varimax rotation and direct oblimin rotation) were 
employed. The different approaches all indicated two underlying factors in our data set. 
The first factor was seen to load mainly on items 2–17 and was termed Energy Fatigue, 
whereas the second factor loaded mainly on items 18–23 and was termed Mental Fatigue. 
The factor scores were calculated as based on average scores with Energy Fatigue score 
the mean of items 2–17 (16 items) and Mental Fatigue score the mean of items 18–23 (6 
items). The reliability of the measurement for the two factors was evaluated by means of 
Cronbach’s Alpha and proved to be high (0.974 and 0.971 for the 16 and 6 energy and 
mental fatigue factors, respectively). 

The MSQ contains 19 domains, most with four items, totalling 75 indicators to each of 
which the patient assigns a Likert scale numerical ranking from 0 (“never” or “seldom”) to 4 
(“frequently with severe effect”). Note that one question, found in the energy section 
about hyperactivity, was omitted to enhance the reliability (see SI for further details). For 
this data set, factor analysis rotation and extraction methods did not converge, while PCA 
did not provide useful outputs. It was therefore decided to calculate factor scores based 
on the sections and total since the MSQ was applied in a similar context to that in which it 
was developed. The MSQ domain scores were calculated as the mean of the items per 
domain, in addition the items were combined into an overall MSQ score. 

Two groups were selected for the hepatic challenge tests: (1) A low fatigue group consisted 
of 39 cases (control group), scoring lower than 4.0 on energy as well as mental fatigue 
factors and an overall score from the MSQ not exceeding 28. (2) A high fatigue group also 
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comprised 31 subjects (patient group), scoring above 7.0 on energy as well as mental 
fatigue factors and an overall score from the MSQ exceeding 147. The distribution of these 
patients within their fatigue categories (low and high) is shown in Fig. 1. 

Fig. 1. Distribution of all selected cases based on the individual’s scores on energy fatigue and mental fatigue 
factors derived from the PFS. The scores are categorized as low level fatigue (0 < score < 4), medium level of 
fatigue (4 ≤ score < 7) and high level of fatigue (score ≥ 7). The distribution of all 576 cases is shown as blue, 
green or red dots. The green dots indicate the group of 39 cases with low fatigue (PFS energy and mental < 4.0 
and overall MSQ ≤ 28). The red dots indicate the high fatigue group of also 31 subjects (PFS energy and 
mental > 7.0 and overall MSQ > 147). Box plots indicate the distribution of scores which each group as evident 
from the corresponding colours 

Laboratory methods: The challenge tests and metabolomics data generation 

The two hepatic challenge tests were performed simultaneously. Prior to the challenge, a 
base urine sample was collected from each individual, and stored as − 20 °C till analyses 
(pre-sample). The first challenge involved two aspirin (600 mg) and two acetaminophen 
(paracetamol) tablets (1000 mg) taken at 21h00 in the evening and overnight and early 
morning (ending at 7h00) urine samples collected in a special container provided in the test 
kit and stored at − 20 °C as well (post-sample). 

1H-NMR analysis 

A volume of 600 µL of urine was centrifuged at 12,000g for 5 min. Of the supernatant, 
540 µL was collected in a microcentrifuge tube, with 60 µL NMR buffer solution [1.5 M 
potassium phosphate solution in deuterium oxide with internal standard TSP (trimethylsilyl-
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2,2,3,3-tetradeuteropropionic acid); pH 7.4]. Sample was mixed under vortex to ensure 
completely homogenous and centrifuged again at 12,000g for 5 min. A volume of 540 µL of 
supernatant was transferred to a 5 mm NMR tube for analysis. 

Samples were measured, randomized, at 500 MHz on a Bruker Avance III HD NMR 
spectrometer equipped with a triple-resonance inverse (TXI) 1H{15N, 13C} probe head 
and x, y, z gradient coils. 1H spectra were acquired as 128 transients in 32 K data points 
with a spectral width of 12,000 Hz. The sample temperature was maintained at 300 K and 
the H2O resonance was presaturated by single-frequency irradiation during a relaxation 
delay of 4 s, with a 90° excitation pulse of 8 μs. Shimming of the sample was performed 
automatically on the deuterium signal. The resonance line widths for TSP and metabolites 
were < 1 Hz. Fourier transformation and phase and baseline correction were done 
automatically. Software used for NMR processing was Bruker Topspin (V3.5). Bruker 
AMIX (V3.9.14) was used for metabolite identification and quantification. Cases were 
quantified across 459 equally spaced bins. 

Statistical analysis 

To aid interpretation two-group comparisons were performed within high and low fatigue 
groups as pre vs post intervention pairs. The data were pre-processed in subsets associated 
with each two-group comparison. First, bins with 50% or more zero-valued observation in 
both groups were removed. Second, the remaining zero-valued observations were replaced 
by random numbers generated uniformly below the lowest non-zero observation. Finally, 
the data were scaled by first performing a log transformation to adjust for asymmetry in 
distribution, since metabolomics data are known to present with a positively skewed 
distribution. Following this transformation, the data were auto-scaled to adjust for the 
effect of differences in abundance, since bins in high abundance are not necessarily of 
greater importance. 

Univariate and multivariate methods were applied to allow for a comprehensive overview 
of results. The univariate method used to assess the statistical significance of differences 
between the dependent groups was the non-parametric Wilcoxon test. Effect sizes were 
used to assess the magnitude of significant differences or practical significance. Effect 
sizes were calculated as the respective test statistic scaled to the sample size. Scatter plots 
colour coded to show significance, often referred to as volcano plots, were used to 
summarize statistical and mean difference ratios or fold changes across bins. 

Unsupervised multivariate methods were used in support of supervised methods as a form 
of validation. Unsupervised PCA and cluster analysis were performed to project the data 
onto fewer more manageable dimensions and to show purely data driven associations 
between cases, respectively. Euclidean distance with Ward linkage was used to form 
hierarchical clusters. PCA scores plots were used to explore whether a large proportion of 
variation in the data can be associated with the group structure by overlaying confidence 
intervals for groups. These methods serve to support or caution against the interpretation 
of similar scores plots derived using partial least squares discriminant analysis (PLS-DA), a 
supervised method used to emphasize any differences between groups. Again, confidence 
intervals were used to assess discriminatory ability. 
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All pre-processing and statistical analysis were performed using an in-house Matlab script 
that serves to combine functions from the Statistics Toolbox [MATLAB with Statistics and 
Toolbox Release 2016b, The MathWorks, Inc., Natick, MA, USA)] and the PLS Toolbox as 
provided by EigenVector [PLS-Toolbox 8.2.1 (2016). Eigenvector Research. Software 
available at www.eigenvector.com.]. 

Fig. 2. Group separation between experimental groups through multivariate analysis based on equidistant 
binning data. PCA indicating a clear change between pre and post intervention profiles for low (a) and high (b) 
fatigue cases, similarly for PLS-DA models for low (c) and high (d) fatigue cases. e The PLS-DA models for the 
low and high fatigue groups for the post intervention data. f The PLS-DA models from each participant’s 
relative change before (pre) and after (post) the intervention, shown for the low and high fatigue groups. 
Coloured areas represent 90% confidence intervals (CI) for groups 

Results 

Qualitative metabolomics information following the hepatic challenges 
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The qualitative data was obtained from the original 459 1H-NMR profiled bins for the 
experimental groups before and after the intervention. Supposed changes in metabolite 
profiles from the two patients groups following the interventions were firstly established 
through two multivariate approaches. For the bin data, the group separations before and 
after the challenge were investigated using unsupervised PCA (Fig. 2a and b), and 
supervised PLS-DA (Fig. 2c and d). The PCA showed a virtual clear separation for the low 
fatigue group prior to and after the intervention. For the high fatigue group only a partial 
separation was detected. As expected, complete separation for both the low and high 
fatigue groups were detected through the PLS-DA. As this method of classification tends to 
overfits the data (Westerhuis et al. 2008), the PCA serves as some verification, but taken 
with the predictive accuracy R2(Y) of the PLS-DA models and its leave-one-out cross-
validated counterparts Q2(Y), some surety can be attainted. The R2(Y) and Q2(Y) values were 
90.1% and 79.8% for the high fatigue group model and 93.1% and 86.3% for the low, 
respectively. Interestingly, both the PCA and PLS-DA models appear to have a reduced 
ability to discriminate pre and post intervention measures in the high fatigue group, which 
may support the idea that fatigue hinders the ability to respond to a metabolic challenge. 
Similar findings were noted in the univariate analysis below. 

An incomplete group separation in the PLS-DA models was observed between low and high 
fatigue subjects following the hepatic detoxification test, as shown in Fig. 2e. This obser-
vation suggests subtle differences in metabolite concentrations between low and high 
fatigue groups, following the intervention, which will be further investigated through a 
quantitative comparison of the biotransformation products, as will be shown below. Figure 
2f indicates the relative change before (pre) and after (post) exposure to the intervention 
stressors for the high and low fatigue groups. Relative change was computed in a similar 
manner to a fold change but based on the two observations of each participant. The 
relative change values were compared across fatigue groups using a PLS-DA model. The 
resulting scores plots indicate a difference in response of the individuals representing the 
low and high fatigue groups. 

Next, univariate analyses using Wilcoxon p-values and fold changes on the same bin data 
were determined and summarized in the volcano plots for the low (a) and high (b) fatigue 
groups (Fig. 3). The outcome of these analyses of the bin data indicate large-magnitude 
changes (fold change: |log2 FC| > 1.5) that are also statistically significant (Wilcoxon 
test: p ≤ 0.05), directing to several metabolites of importance that may cause the 
separation in both groups, following the challenge tests. Similar to the multivariate case, 
the number of perturbed bins was less in the high fatigue group, which may support the 
idea that fatigue hinders the ability to respond to a metabolic challenge, calling for a 
further comparison between the high and low group post-intervention bin values. For this, 
the perturbed bins, identified within the high and low fatigue groups when comparing 
profiles before and after the intervention, were identified, combined and quantified to 
understand if indicators of the challenge tests could also be associated with the severity of 
fatigue. Bins with PLS-DA VIP (variable importance in projection) scores exceeding 2, an 
absolute fold change exceeding 2 and p-values less than or equal to 0.05 (after correcting 
for multiple testing by controlling the false discovery rate) were selected to be quantified 
relative to creatinine. 
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Fig. 3. Statistical assessments of spectral bins indicative of the response following the hepatic challenges. 
Volcano plot mapped by the scaled fold change and p-values for the 1H-NMR bins observed for the low (a) and 
the high (b) fatigue groups. Bins with high FC and significant p-values among cases are indicated by red dots 

Metabolite profiles from a representative cases following the hepatic challenges 

Representative 1H-NMR spectra from a single fatigue patient, prior to (black) and following 
the challenge test (blue), is shown in Fig. 4, scaled according to the creatinine methyl peak 
at 3.04 ppm. Expanded regions, framed in red in the spectra, are the regions where varia-
bles associated with important bins are located. Also, indicated in Fig. 4, are other endo-
genous urinary metabolites: lactic acid, alanine, citric acid, carnitine, TMAO, and hippuric 
acid. Regarding the acetaminophen challenge, both the challenging substance 
(acetaminophen) as well as two conjugation products, acetaminophen-sulphate and 
acetaminophen-glucuronide, were detected in the urine samples following the challenge. 
These results firstly indicate that two of the three major phase II conjugation reactions of 
acetaminophen were functional as detoxification reactions following the challenge: (1) 
conjugation of glucuronic acid to the hydroxyl group of acetaminophen; (2) sulphation of 
the phenolic hydroxyl group of acetaminophen. Apparently, the combination of phase I and 
phase II conjugation between acetaminophen and glutathione, producing N-acetyl-p-
benzoquinone imine as final product, was not operative in the present experimental 
challenge. Secondly, no acetyl-salicylic acid was detected in the urine following the known 
high de-acylation following consumption of this challenge substance. This is related to the 
coupled de-acylation and glycination of the functional carboxylic group is catalysed by 
glycine-N-acyl transferase (GLYAT). Thus, two metabolites derived from the acetylsalicylic 
acid challenge could be detected: salicylic acid and salicyluric acid (2-hydroxyhippuric acid). 
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Fig. 4. epresentative 1H-NMR spectra from a single fatigue patient, prior to (black) and following the challenge 
test (blue), scaled according to the creatinine methyl peak at 3.04 ppm. Expanded regions, framed in red in the 
spectra, are the bin regions where variables important in projection (VIP) through the supervised PLS-DA are 
located. VIPs: A acetaminophen, A-G acetaminophen glucuronide, A-S acetaminophen sulfate, S salicylic acid, 
SAU salicyluric acid 

Quantitative comparison of the two fatigue groups following the challenges 

As indicated in Fig. 4, all substances observed following the challenge tests were detected 
in more than one region in the 1H-NMR spectra. A summary of these areas (ppm values) 
and detected substances is summarized in Table 1. Apart for these five substances, bins 
associated with endogenous metabolites, tyrosine, creatine and glucose, were also selected 
as significantly perturbed during the challenge. We therefore quantified these eight 
substances for all low and high fatigue cases, followed by statistical analysis of these data. 
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The outcome of the univariate and multivariate analysis of the potential five diagnostic 
substances, derived from the challenge tests, are shown in Table 2. Firstly, the PLS-DA for 
the low and high fatigue groups when comparing substances before and after the challenge 
tests using the eight substances mentioned above, show complete separation, as expected 
(Fig. S1). An isolated peak for each identified VIP metabolite was selected, as indicated by 
the ‘reference bin’ in Table 2. Each selected peak was integrated and made relative to the 
creatinine methyl peak at 3.04 ppm, taking into account the number of protons represent-
ing each peak. The mean and standard deviations are given in Table 2 as mmol/mol 
creatinine concentrations. 
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The effect of the challenge is thus confirmed in the quantified data. The difference between 
the mean values of the low and high fatigue groups for these indicators of a challenge were 
however not statistically significant. Comparing the effect sizes (ES), based on Cohen’s d 
values, indicate to deliver a practical visible effect (ES ≥ 0.5) (Ellis and Steyn 2003) for 
glucuronide-acetaminophen (ES = 0.7) and acetaminophen (ES = 0.5). Neither of these 
correlations is of practical relevance (|r| < 0.5) and point to no more than a slight but 
consistent association between variables and their ranks, respectively. No correlation was 
observed between the biotransformation parameters and the mental fatigue scores. This 
leads one to conclude that an effect is visible, but greater statistical power is required to 
detect it. 

Discussion 

Against the background of the results shown here, what did the metabolomics approach 
revealed on the applicability of a regimen of challenge tests to objectively assess fatigue? 

Firstly, untargeted 1H-NMR metabolomics proved its well-established ability as a global 
profiling tool to reveal the impact of toxicological interventions (Griffin 2003). However, 
one of the big hurdles in metabolomics studies is validation, specifically regarding sample 
size, as recently reviewed by Johnson et al. 2016. Notwithstanding the large cohort of 500+ 
fatigue patients from which the control (low) and patient (high) fatigue groups were 
selected, the exclusion criteria resulted in cases for both groups of only 30+ cases. For such 
a group, the model as shown for example in Fig. 2e, f did not validate well. Within the 
limitation of validation, here specifically applied on the biotransformation of challenge 
substances, using data from spectra (Fig. 4) in conjunction with statistical pattern recog-
nition technique (Figs. 2 and 3) did provide a usable tool for profiling of the successive 
biotransformation metabolites. Biotransformation remains one of the most important 
defence mechanisms against xenobiotic insult (Xu et al. 2005). Occurring mainly in the 
liver, it entails initials the absorption of the xenobiotic compound, followed by Phase I 
functionalization and Phase II conjugation. The products of these reactions are often more 
hydrophilic and their final excretion from within the cell is facilitated by Phase III 
(transport mediated) biotransformation. 

The present results are the first of its kind on using two xenobiotics in combination in a 
challenge test on hepatic function in cases of fatigue. The metabolomics information on 
the acetaminophen challenge clearly supports the existing views on the biotransformation 
of both xenobiotics. acetaminophen has a half-life of 1.5–3 h after a therapeutic dose, 
while the major part of the acetaminophen probe is reportedly excreted as the aceta-
minophen-glucuronide (50–70%) and acetaminophen (25–35%). A small percentage (5–
15%) of the administered acetaminophen is converted by a Phase I enzyme (CYP2E1) to 
NAPQI, a very reactive quinone, which is normally conjugated to glutathione and ulti-
mately excreted as a mercapturate conjugate. This conjugation product was not detected 
in any of the present cases studied, salicylic acid and salicylic uric acid, derived from each 
of the acetaminophen and acetyl-salicylic acid challenging substances respectively. The 
second xenobiotic used, acetylsalicylic acid, is rapidly deacetylated to salicylic acid. The 
conjugation product of salicylic acid with glycine produces salicyluric acid, the main phase II 
liver metabolite. The excretion of salicyluric acid normally ranges from 19.8 to 65% of the 
administered dose. The presence of the both conjugates in the urine of the patients who
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were subjected to the challenge tests corresponds with the expected metabolism of the 
administered of both challenge substances, confirming the value of metabolomics as a 
tool in the study of a xenobiotic challenges from more than one substance. Furthermore, 
the observations from the present untargeted metabolomics approach compare well to 
the complementary technique of targeted metabolomics that was previously described for 
a biotransformation, using p-aminobenzoic acid as exotoxin (Nortje et al. 2015). 

Secondly, the functionality of the biotransformation pathways may be affected by a 
number of factors: (1) Genetic diversity in the enzymes coding for biotransformation 
enzymes may affect the ability to up-regulate the production of the enzyme under 
inductive conditions (van der Sluis et al. 2015; van der Sluis 2018). (2) Conjugation 
substrates and cofactors are needed for maintaining an effective rate of biotransforma-
tion. If depleted, it may negatively impact on biotransformation capacity of both phase I 
and phase II biotransformation. (3) All of the Phase II reactions are heavily energy 
dependent and requires ATP for activation of xenobiotica to the corresponding CoA 
derivative. Although we did not address these factors influencing biotransformation, we 
observed some qualitative differences between the pre and post-challenge profiles of 
the low versus high fatigue cases. Both the PCA (Fig. 2a and b) and the PLSDA (Fig. 2c and 
d) suggest that the low fatigue group responded more to the challenge test than the high 
fatigue group. Likewise, the volcano plots (Fig. 3) indicated that the number of 1H-NMR-
spectral bins with significant fold-changes was less in the high than in the low fatigue 
group. These observations will be compatible with the view that the high fatigue group 
suffered from energy depletion due to up-regulated biotransformation related to 
endogenous or exogenous conditions causative for their symptoms of high fatigue. 
Thirdly, although no clear potential biomarker or biosignature for chronic fatigue emerged 
from this study, the different relative changes in the responses of the individuals comp-
rising the low and high fatigue groups, as well as the quantitative profile of metabolites 
from the challenges hold distinct promise for follow-up studies. The phase II biotrans-
formation of acetaminophen, as well as the urinary excretion of the parent substance 
proved to be a practical visible effect considering glucuronide-acetaminophen (ES = 0.7) 
and acetaminophen (ES = 0.5). Likewise, a somewhat related observation was seen in the 
excretion of salicyluric acid (VIP = 1.5 p =0.58) in the high fatigue group. This may be further 
supportive of the suggestion that the high fatigue group react to a higher xenobiotic-load 
by up-regulating of crucial phase II enzyme systems. 

These observations hold promise for further studies aimed at the development of an 
objective measurement of chronic fatigue. Directives for future research would be (1) the 
use of a control group without any signs of fatigue (PFS energy and mental ≤ 0.5, with no 
indications of any mental or clinical conditions), (2) doing a longitudinal analysis of urinary 
excretion of the diagnostic substances for optimizing an improved endpoint following the 
challenge and (3) eventually use an alternative experimental design and statistical 
approaches specifically directed to intervention studies, like ANOVA Simultaneous 
Component Analysis (or ASCA). 

14



Conclusion 

Our view still holds that it seems unlikely that an objective measure, as a verified a single 
biomarker or biosignature, will be found for fatigue, given the multifactorial nature of these 
conditions. The renewed emphasis on fatigue conditions may reveal the causes and 
pathophysiology underlying fatigue. Meanwhile we believe that the outcomes of the 
present metabolomics study indicates that intervention studies clearly provide for an 
avenue for an objective way for group differentiation towards a challenge provided for 
cases of low and high fatigue, which is a corner stone to pave the way towards an objective 
indicator or marker for fatigue. 
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