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Abstract

Alternating-Time Temporal Logic (ATL), introduced by Alur, Henzinger and
Kupferman, is a logic involving coalitions of agents performing actions which cause
a state change in a turn-based time system. There have been game theoretic ex-
tensions on ATL, and they are very good at specifying systems of multiple agents
cooperating or competing in a game-like situation. Unfortunately neither ATL nor
its extensions are able to capture the idea of gradual change, or duration of actions
or events. The concurrent game model of ATL operates like a turn based game,
with sets of agents taking their turn, and then the environment changing based
on their actions, before they take their next turn. The fact that some actions
take longer than others, or that sometimes a state changes gradually, rather than
immediately, is not representable in ATL. As an example, take a train entering
a tunnel. Before the train enters the tunnel, it is outside the tunnel, after it has
entered the tunnel, it is inside the tunnel, but for the few seconds it takes the
train to enter the tunnel, it is neither inside nor outside the tunnel. ATL cannot
represent this basic intuitive truth.

A family of logics called Interval Logic (IL) use finite state sequences called
“intervals”, which allow it to describe a more continuous model of time, rather
than a discrete state based one such as ATL. This allows it to capture the idea of
gradual change, of a train entering a tunnel, and the fact that actions and events
have various durations. Most of the IL formulations do however not have any way
of distinguishing multiple agents acting at the same time.

Both of these logics - ATL and IL - are useful for specific things, but combining
them might produce new applications which are not possible when only using the
one or the other. In this dissertation we present one such possible combination,
called Agent Interval Temporal Logic (AITL). AITL combines the notion of agents,
coalitions and strategies from ATL with the interval based model of time from IL,
thus creating a new logic which might have some powerful applications in a wide
range of areas in which gradual change and multiple agents acting at the same
time can both be accommodated.
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Chapter 1

Introduction

This dissertation aims to contribute to the field of formal logic and knowledge
representation and reasoning by presenting a logic for reasoning about the strate-
gic abilities of agents. Specifically we consider agents in a multi-agent system
while incorporating aspects of interval time models. This new logic is an exten-
sion of Alternating-Time Temporal Logic (ATL) and will be called Agent Interval
Temporal Logic (AITL).

Before any agent can act, it must decide on what action to take. Before it
can make a decision on the best action to take, it must consider the possible
outcomes of the action, and try to predict what effect the action will have. While
in ordinary circumstances humans do not necessarily consider the process by which
they make decisions, in the context of Artificial Intelligence for instance, it becomes
necessary to have the ability to formally represent the decision making process for
the purposes of programming. One of the functions of logic is to enable us to
represent knowledge of a system and predict the outcomes of various events in
that system. This will be our main focus in this dissertation: to develop a formal
mechanism that allows correct prediction of some future state based on the current
state and events which occur to change it.

McCarthy and Hayes (1981)) state that: “A computer program capable of acting
intelligently in the world must have a general representation of the world in terms of
which its inputs are interpreted... More specifically, we want a computer program
that decides what to do by inferring in a formal language that a certain strategy will
achieve its assigned goal. This requires formalising concepts of causality, ability,
and knowledge”. While the field of Al has since moved from knowledge-based to
data-driven platforms, the need for formal mechanisms to accurately represent the
essence of these concepts remains.

A very important aspect of acting in the world is time. Shoham| (1987)) states
that: “It is hard to think of a research area within Artificial Intelligence (Al)
that does not involve reasoning about time in one way or another”. Temporal

vi
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logic (the logic of time) has been very successful at allowing reasoning about time
and has had “numerous important applications not only to philosophy, but also
to computer science, artificial intelligence, and linguistics” (Goranko and Galton,
2015).

Alternating-Time Temporal Logic (ATL), introduced by |Alur et al.| (2002), is
a very popular temporal logic for reasoning about the strategic abilities of agents
Goranko et al.| (2018]), and will be fundamental to this dissertation. ATL is however
restricted to a turn-based time model, where the agents and the system are in a
back and forth game with each other. This discrete time model makes it difficult to
represent various real time problems in ATL. Any change that takes place does so
over a period of time, and reasoning about what effect a certain behaviour might
have also means reasoning about the time during which that effect takes place. We
will therefore extend ATL by modifying its time model to allow for overlapping
intervals of time.

This dissertation is structured as follows: chapter 2 will give a brief overview of
the main achievements in the historical development of logic from propositional to
temporal logic, and will introduce various concepts and characteristics of temporal
logic which will be used in later chapters. Chapter 3 will introduce three illustrat-
ing problems with reasoning about cases relating to time intervals and multiple
actions: the Banker Algorithm (Dijkstral [1982)) and Sleeping Barber (Dijkstral,
1968)), as well as a unique train problem created for this dissertation. These prob-
lems will be considered repeatedly throughout the dissertation, as different logics
will be used to represent them. This will allow us to see the strengths and limita-
tions of various logics. Chapter 4 will introduce Alternating-Time Temporal Logic,
its syntax and semantics, related logics and extensions. Chapter 5 will consider
various logics which use intervals. It will discuss some concepts which are im-
portant to intervals and compare different interval logics. There will be a strong
focus on Allen and Ferguson’s logic of actions and events, since it is one of the
very few logics which use pure intervals (Allen and Ferguson) 1994)). Chapter 6
will introduce the new Agent Interval Temporal Logic (AITL) which is the main
contribution of this dissertation, followed by a conclusion in chapter 7.

vil
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Chapter 2

Background

All formal languages include two kinds of notation. Firstly there is a set of
symbols, and rules for combining the symbols in various ways, this is called
the syntax. Secondly, there is a system of some sort allowing us to interpret a
combination of symbols (called a formula) and determine if this formula is true
or false, this is called the semantics. The simplest example we can define would
be as follows:

The syntax of a formula, represented by ¢, is defined by:

pu=p| 1V

where p is an atomic proposition.

Atomic propositions are the smallest building blocks of a logical language. They
cannot be further broken up and are merely true or false. This syntax provides us
with a recursive rule for building up a well formed formula. A formula is either
an atomic proposition, or it is two formulas tied together by this symbol v. We
might build a formula p; v ps, which is well formed, since we used the first rule two
times and the second rule once. We cannot build the formula p;py since nowhere
do we have a rule which allows us to place two atomic propositions next to each
other. This is only syntax, we don’t yet know what p; or p, or v means, they
are merely symbols. To give meaning, we must introduce the semantics. The
semantics involves a mapping function or evaluation, which for any given well-
formed formula can tell us if that formula is true or false. For this example we will
just give an informal intuitive semantics [[]

IThis is of course an over simplification for the sake of a clear explanation. The semantics
involves an interpretation of the language at issue, which is a set (D, f) where D is a nonempty
set called the domain of interpretation (or universe or domain of discourse) and f is a denotation
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2.1. HISTORICAL DEVELOPMENT

We know that an atomic proposition by itself can be either true or false, we
now want to know if a larger well formed formula would be true. We will do this
with one simple rule:

The formula ¢; v ¢ is true if either ¢, is true or ¢, is true.

Thus the formula p; vp, is true when either p; or p, is true. Atomic propositions
represent some value in the world. We might say that p; means the cat is brown,
and p, means it is raining. The formula p; v ps then means “The cat is brown or
it is raining”, which would be true if either of the two disjuncts are true. Later on
we will see formal definitions of semantics for much more complicated models.

Building from here, this chapter will cover prerequisite concepts which will be
required for later chapters in this dissertation. We start with a brief overview
of the history of the development of logic from Aristotle to modern temporal
logic, stopping along the way to consider various formulations and concepts. We
then move on to discuss some properties of temporal logic, which can be used to
distinguish various formulations. Finally we end this chapter with a brief look at
some philosophical problems which haunt our efforts in logic to reliably predict
outcomes.

2.1 Historical Development

2.1.1 Classical Logic

Formalised logic can be traced back to classical Greece. The Greeks were very
interested in correct reasoning, and it was Aristotle who first formalised a way
in which correct and incorrect inferences can be made. In so doing, he created
a ‘“systematic treatment of the principles of correct reasoning, the first logic”
(Shields, [2016)).

A very important contribution was his two principles, the law of excluded mid-
dle, that every statement is either true or false, and the law of contradiction, that
no statement is both true and false (Kent|, 2019).

A key part of Aristotle’s logic is that of the perfect deduction or syllogism
(Shields, 2016). A syllogism is a type of argument, in which a conclusion is
derived from two assumed premises. The structure of a syllogism guarantees
that if the premises are true, the conclusion will be true. The classic three line
syllogism example is as follows:

function. f assigns to each element in the vocabulary of the language a member of D or a subset
of D™
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2.1. HISTORICAL DEVELOPMENT

All men are mortal.
Socrates is a man.
Therefore, Socrates is mortal.

It was the stoic philosophers who looked more closely at operators like and, or
and if...then.... They studied sentences and rules for deduction to build sentences,
and though a lot of their work was lost, some of it survived. A famous stoic was
Chrysippus, who created a list of rules for valid inferences (Kent| 2019)).

o If the first, then the second; but the first; therefore the second.

If the first, then the second; but not the second; therefore, not the first.

Not both the first and the second; but the first; therefore, not the second.

Either the first or the second [and not both]; but the first; therefore, not the
second.

Either the first or the second; but not the second; therefore the first.

During the middle ages many gradual improvements were made, but it was
only in the 19th century with the work of DeMorgan and Boole in symbolic logic
that propositional logic became fully formed. Boole provided an algebra to re-
place Aristotle’s syllogistic form. Finally in 1879 Frege created the first modern
axiomatic calculus for logic in his work Begriffsschrift (Kent, 2019). From here we
get modern propositional and predicate (or first order) logic.

Propositional logic consists of a set of atomic propositions and a set of logical
operators (-, A,V,—,<>). These operators are, in order, negation (not), conjunc-
tion (and), disjunction (or), implication (if...then) and equivalence (if and only if).
Formule (syntax) are then built from these similar to how we saw it done at the
start of this chapter. Propositional logic also contains rules for determining the
truth value of a formula based on the truth values of the atomic propositions and
the operators used(semantics), similar to the v rule we saw in our earlier simple
example.

First order logic has both terms and formulse. Terms can be variables, often
denoted by alphabet letters like x or y, or terms can also contain function symbols
together with variables as arguments. Formulae can be built recursively as follows:

e Predicate symbols. If P is an n-ary predicate symbol and t4,...,t,, are terms
in the argument of the predicate symbol, then P(ty,...,t,) is a formula.

e Operators. The logical operators —, A, v, -, and <> can be used as before
on formulee to build additional formulse.
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2.1. HISTORICAL DEVELOPMENT

e Equality. If the equality symbol is considered part of logic, and ¢; and ¢, are
terms, then t; =t is a formula.

e Quantifiers 3 and V. If ¢ is a formula, and x is a variable, then Jz¢ (there
exists an z such that ¢) and Y (for all z, it is the case that ¢) are formulze.

Using these, first order formulee can be built up. The truth of a formula
focuses on a domain of variables, and a set of n-ary relationships on the domain
(see footnote 1). For each relationship there is an n-ary predicate function that for
each variable in the domain returns true if it is in that relationship. For example,
Brown(Cat) is true if the cat is indeed brown, while Brown(Dog) is false if the
dog is grey. | See Bellini et al.| (2000).

Together these logics are called the classical logics, and are useful for repre-
senting and reasoning about static situations.

2.1.2 Modal Logic

Situations are not static, and things in the real world constantly change. Classical
logic can represent the situation where it is raining and the cat is brown, but as
soon as it stops raining or we paint the cat, those assertions need to be changed.
If we want to predict future states, we must be able to model the changing values
of states.

In the 1950’s Saul Kripke introduced the idea that the truth of an assertion is
dependent on which one of multiple possible worlds that assertion belonged to. As
is already the case in classical logic, we have one actual world among many possible
worlds, created by different combinations of truth values, and all assertions have
their specific true and false values in that world. If we have a cat and a dog, and
they can be either black or white, we can have four different worlds. One world in
which both are black, one where both are white, and two where one is white and
the other black. If we look outside and see the dog and cat playing, we can conclude
we are currently in this or that world. Things can change though, and if we take
out the paintbrushes we prepare to move to a different world. Truth is no longer
a static thing in a system, a formula can evaluate to true in one world and false in
the next. For example, the statement “The light is either on or off” is true in all
worlds, since it is a tautology, while the statement “It is raining” is true only in
those worlds where rain is falling. Kripke presented a formal syntax and semantics
to more accurately capture the notion of possible worlds, where the operator O
denoted necessarily (the assertion is true for all worlds) and ¢ denoted possibly
(the assertion is true in at least one of the worlds) (Kripke, |1963]). These operators

2In this example we imply that there is a variable, and that the formula is false when it is set
to Dog and true when it is set to Cat.
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2.1. HISTORICAL DEVELOPMENT

function in much the same way as the universal and existential quantifiers from
first order logic.

This is where modal logic was first formalised, starting with the logic called
K (after Kripke). K has three symbols: - for not, — for if then, and O for it is
necessary that. Additional operators (A, v, <>, and ¢) can be derived from these.
For more on K see (Garson| (2018]).

K adds the following to the principles of propositional logic:

e The Necessitation Rule: If ¢ is a theorem of K, then so is Op.

e The Distribution Axiom: O(y; = 2) = (O — Ops).

A theorem is a formula which can be proven using only other theorems and
axioms, it is thus not dependent on any assumptions aside from axioms. An
example of a theorem is a tautology, a tautology is provably true without relying
on any assumptions aside from axioms. The necessitation rule thus states that if a
formula is a theorem, such as a tautology, it is not only true, but necessarily true.

Another notion Kripke defined in the same paper was what is known as a
Kripke structure. Kripke structures are used to define the semantics for various
modal logics, since a formula is interpreted over a specific Kripke structure and
is true or false locally in a possible world of that structure. Before discussing
Kripke structures however, let us discuss the concept of a state. A state is
simply a collection of assertions or atomic propositions which are true. A state
is essentially a possible world, one line of a truth table in propositional logic for
instance. The world where the cat is black and the dog is white is a state, and
when we paint the dog black we transition to a new state (of the real system at
issue) where now both are black. This concept of states, and transitions from one
state to another, is called a transition system. A Kripke structure is a transition
system, which is defined as follows:

Let IT be a set of atomic propositions, then a Kripke structure is a tuple M =
(S,I,R, L) where:

e S is a set of states.

e [ is a set of initial states, I ¢ S.

e R is a binary transitional relation between states.

e [ is a labelling function L:S - II

There are states, transitions between states, and a labelling function mapping
atomic propositions to states. There is also a set of initial states, which are the
starting states of the system. We start with the initial state as the current state,
but once the paintbrushes come out we transition into other states.
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Black Cat
White Dog

White Cat
White Dog

Paint Cat

Paint Dog

Paint Dog

Paint Cat

Black Cat
Black Dog

White Cat
Black Dog

Figure 2.1: Example of a Kripke structure with 4 states

2.1.3 Temporal Logic

Bellini et al.| (2000)) states that: “Classical logic can express only atemporal
(nontime-dependent) formulee whose validity and satisfiability do not depend on
the instant in which they are evaluated. In other words, time has no role in clas-
sical logic; when a proposition presents a value that changes over time, the time
must be modelled as an explicit variable”. One needs a logic that can take time
into account if one wants to describe a system which is dynamic (Bulling et al.
2015)), since the truth values of assertions will change as time goes on (Alur et al.
2002).

It is only a small jump from considering the truth values of assertions in dif-
ferent worlds to considering the truth values of assertions at different times. This
gives us temporal logic, a sub type of modal logic where the different worlds are
all instants on a timeline.

Reasoning about time can already be seen in Aristotle and other ancient
thinkers, with examples found in Zeno’s classical paradox about infinite time in-
tervals of infinitesimal size, Aristotle claiming that statements about future con-
tingent propositions could not be ascribed any truth values, and Diodorus Cronus
distinguishing between possible and necessary future truths (Goranko and Galton),
2015)). Modern temporal logic was pioneered by Arthur Prior, who called it tense
logic. Prior suggested a temporal interpretation of O as always rather than neces-
sarily and o as sometimes rather than possibly (Prior, |1957). In addition to the
classical operators, temporal logic adds four new unary operators (Prior} [1967)):

e G - it will always be that (Future always).
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e H - it always was that (Past always).
e [ - it will be the case that (Future eventually).

e P - it was the case that (Past eventually).

Temporal logic also inherits the two rules from K, along with axioms to govern
interaction between past and future (Garson, 2018):

e The Necessitation Rule: If ¢ is a theorem of the language, then so is G and
Hop.

e Distribution Axiom: G(p; — p2) = (Gy1 = Ggo) and H(p; — ) —
(Hep1 — Hepo).

e Interaction Axioms: ¢ - GPy and ¢ - HFp.

Another operator quite common in temporal logic is the binary until operator,
represented with U. A formula ¢;Upy would be interpreted as ¢ is true from
now until g5 becomes true in the future, and ¢ will become true at some point in
the future. Sometimes the operator since is also included, which is the opposite
of until. A formal definition of until will be provided in the next section.

It is interesting to note that, as |Bellini et al.| (2000) points out, the basic four
temporal operators can be defined in terms of until and since as follows:

e Fip=Tuntil ¢
e Py =T since
o Gp=-F-yp
e Hp=-P-p

Where T means true.

The last two common temporal operators are the unary operators next and
prev, represented by O and @ respectively. These operators indicate that the
formula is true in the next or previous state of the model. The Next operator is
also often written as X, which is how we will use it for the rest of this dissertation.

Operators such as next and eventually and until all assume some sort of se-
quence or path. We can define a path as an infinite sequence of states that can
result from subsequent transitions in the model, represented as A. A single state
in this path can be referred to by writing A[3] to mean the third state on the path.
A successor state in a path is any state ¢’ which can be reached from the current
state ¢ in a single transition.

Probably the best known and most taught temporal logics are Linear Time
Temporal Logic (LTL) and Computational Tree Logic (CTL). In the next section
we will consider both, as well as their merger CTL*.
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2.1. HISTORICAL DEVELOPMENT

2.1.4 LTL, CTL, and CTL*

Linear Time Temporal Logic (LTL) was introduced by Pnueli (1977) and is the

“most popular and widely used temporal logic in computer science” (Goranko and

Galton) 2015)). Formulas in LTL are interpreted over a path A, which consists of

an infinite sequence of states of a Kripke structure. It is interesting to note that

in the original paper, Pnueli (1977) used a dynamic discrete system instead of a

Kripke structure, which is essentially the same except without a labelling function.
A well formed formula in LTL is obtained as follows:

@ == pl=pler V o] Xl U,

where p is an atomic proposition p € II, X is the next operator and U is the
until operator.

These formulee are interpreted over an infinite path A for a Kripke structure,
where the satisfaction relation F indicates that a path satisfies a formula, in other
words the formula is true for that path. The semantics for LTL is defined as
follows:

A E p, for all propositions p € I1, iff p € L(A[0]).

)\IZﬂQO,lﬂ‘)\PﬁQO

o A= Vi, iff A= or AE .

A E X, iff \[1] E ¢, where A[1] is the successor state (next state in the
path) to A[0].

A E p1Ugy, iff there exists an ¢ such that A[i] E ¢y and for all k such that
0 <k <i we have \[k] E ¢.

In order to write neat and concise formulse some additional operators are
needed. These are the operators A, —, <, F' and G, which can all be defined
in terms of what has already been defined in the discussion of temporal logic in
the above section. Specifically:

® V1 APy =(p1V )
® ] —> P2 =PV P

o 01 < 3= (1 = v2) A(p2 = 1)

Fo=1U¢p

G@EﬁFﬂQ@
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As mentioned, only the essential parts are defined in the syntax and semantics
of a logic, and other operators can then be derived and used from these. This will
be seen in most of the logics in the rest of this dissertation, such as only negation
and disjunction being included in the syntax, from which conjunction, implication
and equivalence can be derived.

Not long after the introduction of LTL, a new logic was proposed by [Kmerson
and Clarke (1982) called Computational Tree Logic (CTL). While LTL formulae
are interpreted over a path, a sequence of states, a CTL formula is interpreted
over a computational tree, a set of branching paths representing various future
possibilities. Computational trees are described by (Goranko and Galton| (2015) as
“naturally obtained as tree unfoldings of discrete transition systems, hence they
naturally represent the tree of all infinite computations arising in such systems”.
The discrete transition system used is specifically a Kripke structure.

CTL was introduced by Emerson and Clarke| (1982)), based on synchronisation
skeletons of programs. Synchronisation skeletons are finite state abstractions of
programs, represented as flow graphs where each node represents a piece of code
to be executed. Relevant pieces of code are put together into a single node. For
example, a program which performs some sequential steps on its own variables,
then accesses a shared resource (critical section), and then performs some more
steps on its own variables, can be divided into three code sections, each represented
as a node on the synchronisation skeleton. The internal steps of each section is
not relevant for synchronisation, only that the program is in a critical section or
not, so that it can be guaranteed that two programs do not both access the same
shared resource at the same time, if this shared resource can only be accessed by
a single process at a time.

Alternating-Time Temporal Logic (ATL), which we will investigate in depth
in a later chapter, is a generalisation of CTL (Alur et al. 2002), while ATL* is
a multi-agent extension of CTL* (Goranko et al., 2018). CTL is also related to
unified branching time.

el

The syntax for CTL was originally defined as follows (Emerson and Clarke,
1982):

Let p refer to an atomic proposition, and ¢, and ¢, refer to sub-formulee.

e Each of p, v1 Ay and -y is a formula.

e E Xy is a formula which intuitively means that there is an immediate suc-
cessor state reachable by executing one step of process P in which formula
¢ holds. (Similar to a Next operator)

3 Unified branching time is very similar, but does not have the U operator, for more refer to
Ben-Ari et al.| (1983).
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o A[p1Ugps] is a formula which intuitively means that for every computation
path, there is some state along the path where ¢y holds, and ¢; holds at
every state along the path until ,. (Similar to a Universal Until operator)

o E[p1Ugys] is a formula which intuitively means that for some computation
path, there is some state along the path where @5 holds, and ¢; holds at every
state along the path until ¢,. (Like the previous formula, but existential
instead of universal)

where E refers to the existential quantifier 3 and A refers to the universal
quantifier V.

The semantics of CTL are defined in (Emerson and Clarke, [1982)) over a struc-
ture M = (S, Ay, ..., Ay, L) which consists of:

e S - a set of states.

e A;-cSxS, abinary relation on S giving the possible transitions by process
1.

e [ - alabelling function mapping each state to those atomic propositions true
in that state.

The states here represent the nodes of the synchronisation skeleton. Let A =
AjU...UAg. A fullpath (M) is defined as an infinite sequence of states (s, s1, S2, --.)
such that Vi(s;,s;41) € A. The semantics are defined as follows:

e so=piff pe L(sg).

e 50 = -y iff not (so E ).

® s E 1 Ay iff 5o @1 and sg E @o.

e so E EX,p iff for some state ¢, (so,t) € A; and t = ¢.

o so=Alp1Ups] iff for all M Fi[i >0As; 5 paAVj(0<jAj<i—>s;E@r)]

o S50k E[p1Ugps] iff for some M Ji[i 2 0As; = paAVJ(0<jAG<i—sjEp1)]

10
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Other logical connectives can be derived as before.

CTL*, or full computational tree logic, was introduced by |[Emerson and Halpern
(1985). It is an extension of CTL. Here the distinction between path formulee and
state formulee is introduced. A state formula is some proposition which is true or
false at some time, while a path formula shows the existence of such a state. For the
notation, p is a proposition, and X, F' and G are state quantifiers, which indicate
when the proposition will be true. The universal and existential quantifiers (A and
E in the original formulation) are path quantifiers. A formula in CTL is always a
pairing of a path quantifier with a single state quantifier. So, if we interpret p to
mean “the house is on fire”, a formula in CTL might be £ Xp which means that
there exists a path which will cause the house to be on fire during the next state.
The fundamental change in CTL* is allowing more than one state quantifier to be
paired with a path quantifier, so for example allowing the formula E(-Xp A Fp)
which means that there exists a path where during the next state the house will
not be on fire, but it is going to be on fire at some stage in the future. This is done
by introducing state and path formulae into the syntax as Emerson and Halpern
(1985)) do in the following way:

e Each proposition p is a state formula.

o If 1, gy are state formulae, then so are (p1 A o) and —pq
o If ¢ is a state formula, then F'¢ and X are path formulae.
e If 7 is a path formula then E% is a state formula.

e If ¢ is a path formula then A is a state formula.

e If 1,y are state formulae then (¢;Ups) is a path formula.
e If 11,1 are path formulae then so are 1, A Yy and —1);.

Other logical connectives can be derived as before. The important change from
CTL to CTL* is the distinction between path and state formulae which allows us to
pair more than one state quantifier with a single path quantifier. Or according to
Goranko and Galton! (2015)) compared to CTL, CTL* has “no syntactic restrictions
on the applications of temporal operators and path quantifiers, and [is| interpreted
on the class of computation trees”.

ATL/ATL* was introduced as a generalisation of CTL/CTL* to allow for open
systems (Alur et al 2002). One can see CTL/CTL* as ATL/ATL* but with a
single agent. The existential path quantifier £ is similar to < ¢ > where i is the
single agent, while the universal path quantifier A is similar to < @ >.

To get from CTL to ATL, we need to introduce the idea of agents and strategies,
which will be done in the next section.

11
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2.1.5 Agents and Strategies

The classical notion of a strategy is that of “a conditional plan that prescribes
what action a given agent (or, a coalition of agents) should take in every possible
situation” (Bulling et al.,|2015). By this notion, every autonomous agent acting in
a situation can have a strategy by which it makes decisions. A strategy is always
aimed at some outcome, goal or objective that the agent would like to achieve.
These ideas have been studied extensively in the field of game theory, where a
situation is usually set up as a game with specific rules between rational agents, all
acting to achieve some purpose, sometimes cooperating and sometimes competing.
Ross describes game theory as “the study of the ways in which interacting choices
of economic agents produce outcomes with respect to the preferences (or utilities)
of those agents, where the outcomes in question might have been intended by none
of the agents” (Ross, 2019).

The simplest strategic game is where all agents make a single decision, indepen-
dently and simultaneously, and then an outcome is determined by the combination
of their decisions, like a vote. The agents all make their decisions only once, and
then the results play out, without the opportunity to change their decisions later
or influence each other for a next round of decisions. The prisoners’ dilemma is
an example of this, where two prisoners are held separately, and offered a deal
to testify against the other. If both testify, both get medium sentences, if both
remain silent, both get short sentences, but if one testifies and the other not, the
first goes free and the other receives a long sentence. The prisoners cannot discuss
it, and even if they could and both agree to remain silent, it would be in their
best interest to testify if they were able to convince the other to stay silent. What
makes this hard is that they both have a single chance, and must decide to testify
or not. They cannot later change their mind if they realise the other betrayed
them.

A basic strategic game like this, with multiple agents making a single decision
at the same time and then facing the consequences, can be formalised in a strate-
gic game form. One example of a strategic game form is from Bulling et al.| (2015):

A strategic game form (SGF) is a tuple M = (Agt,{Act,|a € Agt}, Out,out)
where:

e Agt is a nonempty finite set of agents.
e Act, is a nonempty finite set of actions which a can perform where a € Agt.
e Out is a nonempty finite set of outcomes.

e out is an outcome function mapping the list of actions (called an action pro-
file) taken by the agents to a specific outcome, defined as out : Hgeag Act, -

12
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Out.

To turn this into a strategic game, preference orders need to be added on the
outcomes for the various agents. This can be done by adding a payoff function
ug : Out - R where some real value is assigned to each outcome for each agent
a. 'This might be the case in sports betting, where some monetary payout is
assigned to each possible bet after the result has played out, taking the odds into
consideration. Another more abstract way of showing preference is by ordering
the results for each agent in the form o <, o iff u,(0) < uy(0") where 0,0’ € Out.

Let us look at a simple example game played by a group of 10 people. Each
person pays R5 into the pot to play, and chooses either action Red or Blue. If the
majority of people choose Red, they lose, and those that chose Blue split the pot.
Similarly, if the majority choose Blue, they lose, and those that chose Red split
the pot. If all players choose the same colour, the pot is split between all, thus
everyone receives back their initial buy in.

This game can be represented as a strategic game form
M = ({a1,a9,a3, ...,a10}, {TRed> TBIue }, {0:]1 <1 < 1024}, out)
where:

e {aj,as,as,...,ajp} are the 10 agents playing the game.
o {TRed; T} are the two options available to each agent, Red or Blue.

e {0;]1 <i<1024} are all possible outcomes to this game, a total of 21 unique
combinations.

e out is the outcome function, defined to map each combination of actions by
the agents to a unique outcome according to the above rules. So if the first
3 players chose Red, and the rest chose Blue, the action profile would be
RRRBBBBBBB, and this might map to outcome oggg.

To finally make this a game, a payoff function needs to be added, defined
informally as:

0 if choice is in majority
ta(0) = 50/winners if choice is in minority
Where a € Agt, o € Out and winners is the number of agents who chose the minority
option.
Now that we know what a strategic game looks like, we can consider the strat-
egy from the perspective of an agent playing the game. A strategy is a conditional
plan that specifies what to do in each possible situation, written as S, to refer to

13
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the strategy of agent a. A strategy can be for a single agent or for a coalition or
set of agents.

There are two types of strategies, memory-less and memory-based. Memory-
less, also known as positional, is represented by S, : St - Act where a € Agt.
Memory-based, also known as perfect recall, is represented by S, : St* — Act such
that S,((...,q)) € act,(q), and where St* is a set of histories, or finite sequences. So
the memory-based strategy takes in not just the current state as in memory-less,
but the sequence of states leading up to the current state. Memory-less strategies
have the agents considering only the current state, and making a move based on
that state, as would be appropriate in chess, where there mostly exists a best
move (or set of better moves) for any given position, regardless of the order of
events leading to that position. Memory-based strategies are used when the past
is important to a choice of action, such as when an agent must attempt an action
six times and then do something else. There also exist combined options, where
agents have bounded memory, see |Agotnes and Walther| (2009).

We can talk about single agents, or about a coalition of agents. A coalition is
a set of agents working together, this can be defined as:

A={ay,as,...,a,} where A e Agt

A coalition of players may also have a joint strategy Sa = {Sq,,Say; -+, Say }-
The contribution of agent a to a joint strategy S, is denoted by Sa[a].

All of these ideas of paths, action profiles, coalitions and strategies will be
revisited in the ATL chapter. For now, we move on to consider some characteristics
of temporal logics which can be used to distinguish them.

2.2 Characteristics of Temporal Logics

Many different temporal logics exist, the following are some characteristics which
distinguish different types.

2.2.1 Propositional or Predicate

Temporal logic can be based on either propositional or first order classical logic.
Higher order classical logic is not often used. Propositional temporal logics are
less expressive, but their decision procedures have a tractable complexity (Bellini
et al., [2000). First order temporal logics are often more expressive but also more
complex.

14
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2.2.2 Points or Intervals

An important issue to consider in temporal logic is the question of which entity
in the logic is primary, points or intervals. Time can be seen either as a collection
of instants, happening one after the other, or as a collection of various intervals,
which may overlap each other. Points or instants may also be used as a simplified
abstraction for certain systems, an example of which may be chess. In chess,
one player moves a piece, then the other moves a piece. The state of the board
changes after each move, and each move follows a previous move. A chess game
can be seen as a collection of moves. This is the case even though, in reality, one
player might take a few seconds longer on a move that their opponent, and a piece
might spend a second in the air while being moved from one location to another.
These events and durations are irrelevant to someone who is interested only in the
moves themselves, and the strategy behind them, for whom only a list of moves is
sufficient.

According to Bellini et al. (2000) interval logics: “are more expressive, since
they are capable of describing events in time intervals, and a single time instant is
represented with a time interval of one. Usually, interval-based logics permit one
to write formulee with a greater level of abstraction, and so are more concise and
easy to understand than point-based temporal logics”.

Goranko and Galton (2015)) state that: “Instant-based models are often not
suitable for reasoning about real-world events with duration, which are better
modelled if the underlying temporal ontology uses time intervals, rather than in-
stants, as the primitive entities” and he adds that “Interval-based temporal models
are ontologically richer than instant-based ones, as there are many more possible
relationships between time intervals than between time instants”.

We can approach this question from two different perspectives. Firstly, when
doing prediction, which is the most useful? When talking about a chess game,
a point based logic will obviously be simpler and sufficient, while in a problem
involving trains moving at different speeds and arriving at different stations at
various points in time, an interval logic might be needed. But there is a second
perspective: when trying to model reality, which better captures the true nature
of time? This is a deeper philosophical and scientific question, which doesn’t yet
have clear consensus. Is time made up of infinitesimally small instants culminating
into our continuous experience of time? Or can time be more accurately seen as
moments of various durations? A related idea is of absolute or relative time.
Newton’s classical mechanics uses an absolute model of time, independent from all
other space or matter. Meanwhile Leibniz proposed a more relational view where
time is dependent on events. Modern physics favours a more relative approach,
ever since Einstein’s theory of relativity (Goranko and Galton| 2015)).

Goranko and Galton (2015) further state that: “the two types of temporal
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ontologies are closely related and technically reducible to each other: on the one
hand, time intervals can be determined by pairs of time instants (beginning—end);
on the other hand, a time instant can be construed as a degenerate ‘point interval’,
whose endpoints coincide” (Goranko and Galton, 2015)).

Even when we decide on using intervals, there are two further sub types, pure
and non-pure. Pure interval logics view intervals as primary objects and formulae
are evaluated with respect to intervals. Non-pure interval logics are really point or
instant based logics, which have intervals only as secondary or auxiliary entities,
defined with a starting point and ending point. Most interval temporal logics are
really non-pure interval logics, and pure interval logics are rare. Goranko states
“the single major challenge in the area of interval temporal logics is to identify
expressive enough, yet decidable, fragments and/or logics which are genuinely
interval-based, that is, not explicitly translated into point-based logics and not in-
voking locality or other semantic restrictions reducing the interval-based semantics
to the point-based one” (Goranko et al., 2004)).

2.2.3 Duration

Some temporal logics use a metric for time duration, where an interval might have
an explicit duration of 3 seconds, or each state in a point based temporal logic
might represent a second or millisecond. Bellini et al| (2000) states, “Temporal
logics without a metric for time adopt a time model for which the events are those
that describe system evolution... Each formula expresses what the system does at
each event, events are referred to other events, and so on: this result in specifying
relationships of precedence and cause-effect among events. Temporal logics with
a metric for time allow the definition of quantitative temporal relationships - such
as distance among events and durations of events in time units”. We can see that
chess is an example where we might be interested only in events (or moves), and
not durations of events. Neither ATL nor any of the other logics we consider have
a metric for duration, so we will not pursue this further.

2.2.4 Properties of Time

The order of the logic (propositional or first order), instants or intervals, and
duration, are the largest properties which can differentiate temporal logics. Here
we consider a few smaller properties which time structures may or may not have.
These definitions, expressed in first order logic, are all taken from |Goranko et al.
(2004), with x, y and other letters representing points in time, and the < and
< symbols representing the idea of one point occurring before another point in time.
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An interval structure is linear if every two points are comparable, that is to
say any two points can be found on a timeline and it can be seen which one occurs
before the other, specifically:

VaVy(r <y > VoV (2 < 21 KYAT <29 <y > 21 <23V 21 = 2V 22< z1))

An interval structure which is not linear is branching, where two points on
different branches cannot always be compared to each other. Computational Tree
Logic is an example of a branching logic.

An interval structure is discrete if every point with a successor/predecessor
has an immediate successor/predecessor along every path starting/ending in it,
specifically:

VaVy(z <y - Iz(z<zArz<yaVw(z<wArw<y - z<w))) and
VaVy(e <y - z(x<zaz<yaVw(z <wArw<y > w<z2)))

An interval structure which is not discrete is continuous.

An interval structure is dense if for every pair of different comparable points
there exists another point in between, specifically:

VaVy(x <y - z(x<zvz<y))

An interval structure is unbounded above if every point has a successor, and
unbounded below if every point has a predecessor.

Note that these properties all refer to points, and thus one cannot directly talk
about these properties when using a pure interval logic which only talks about
intervals and not points. But we can see that a logic which uses only intervals and
not points is intuitively dense. The notion of linear can be understood in terms of
intervals as well, in that any two intervals will have some relation to each other,
and thus be comparable. Intervals may or may not be bounded above or below.
It does not make sense to speak of discreteness when we do not have any points,
rather we can describe a pure interval logic as being continuous.

Having gained a clearer understanding of temporal logic, and considered the
various characteristics which differentiate them, we now turn to a potential prob-
lem for the entire logical task of prediction.
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2.3 Problems with Prediction

Shoham| (1987) points out three problems with prediction, known as the qual-
ification problem, the extended prediction problem and the persistence or frame
problem.

The qualification problem involves the vast amount of information required to
make truly accurate predictions. If I throw the ball into the air, I might predict
that it will rise a certain amount, then fall back down to the ground. However,
what if there is no gravity where I am? What if the ball explodes when it reaches its
highest point? What if the ball is filled with helium and continues to rise? These
seem like the kind of off-the-wall concerns of a philosopher, but the distinction
between such absurd concerns and more reasonable ones are not that clear. The
vast amount of things which might influence an outcome is just too much for any
real world prediction to be perfectly accurate. One can of course just not take
many of those pieces of information into account, and make a more conservative
prediction with only the most important information, though this has a higher
chance of being incorrect since possibly relevant information is left out of the
prediction. This relationship between the vast amount of information potentially
relevant to a prediction, and the accuracy of that prediction if information is left
out, is what Shoham calls the qualification problem.

There is also a problem involving the length of time over which predictions are
made, called the extended prediction problem. While we can make a relatively
safe prediction about what will happen in the next instant given the current state
of the world and the events taking place to change it, it becomes a lot harder to
make predictions about the world in longer periods of time from now. To make
a prediction about the world a long time from now, you first make a prediction
about the next instant, then the instant after that, and so on. We see this in chess,
where you can safely predict that if you move this knight to that square this turn,
it will be on that square and everything else will be in the same place at the start
of the next turn. However, it becomes almost impossible to predict the state of the
board 20 moves from now. Since the world is constantly changing, there are too
many unknowns to take into account. Instead you might start making predictions
over shorter and shorter time periods, and make an infinite number of predictions
to get to your long prediction.

A related problem is what Shoham calls the persistence problem, and is similar
to the frame problem of Situation calculus from McCarthy and Hayes| (1981). [f

4There have been various formulations of situation calculus. Originally it was formulated by
McCarthy and Hayes| (1981)), based on the concept of a situation, which is a complete snapshot
of the universe at some instant in time. It is thus a point based logic. Additional discussion
of situation calculus and the frame problem can be found in [Shoham)| (1987)), |Green| (1969)) and
Schubert| (1990).
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This involves the assumption that something will stay the same over a lengthy
period of time. If I paint a house red, it is now red. If I then rearrange the
furniture, does the house stay red? If I add the rule that when the furniture
moves, the colour of the house remains unchanged, this is incorrect, since someone
might paint the house blue while I move the furniture. One would need an infinite
number of these rules: when the furniture moves it does not change the colour of
the sky, it does not change the value of gold, it does not change the shape of the
house, and so on.

It is clear there are challenges with using logic to try to predict the future. We
might run into these same problems when creating systems of artificial agents and
trying to reason about their strategic abilities. Logic always uses an abstraction of
the real world, a simplified model which can be reasoned about. These problems
come in when the model proves inadequate to fully capture some important aspect
of the real world. We then try to represent as best we can. But when designing
a logic, we must try to have it as expressive as possible, so that the real world
can be represented as accurately as possible, while also keeping it simple enough
for algorithms to work with. This is the challenge of logic, and what the rest of
this dissertation will focus on from the perspective of representing knowledge of
temporal and multi-agent contexts.

2.4 Conclusion

Logic allows us to reason correctly, temporal logic allows us to specifically reason
correctly about future and past events, and try to predict what the outcomes of
some events or strategies might be. We have seen different types of temporal logics,
and the problems one might face when designing such logics. In the next chapter
we will introduce some problems which can be represented with various kinds of
temporal logic, which we will use to compare various temporal logics.
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Chapter 3

Problems Illustrating Practical
Application of Temporal Logics

In order to compare the various logics examined in this dissertation, we will con-
sider a few problems or puzzles. The first two are a well known and a lesser known
puzzle by Edsger Dijkstra (1968) and (1982), while the third is a novel problem
created for this dissertation. The goal will be to use the various logics discussed
through the course of the dissertation to represent the aspects of the problem,
then see how each logic enables us to reason about changes happening over time.
While no single logic or formalism could properly represent any type of problem,
we are interested in exactly how and where the various logics fall short, so that
we may gain a better idea of how to combine them to try overcome some of these
shortcomings.

All three problems contain undesirable or dangerous states, situations that
should be avoided, as well as goal states that should be reached. The first prob-
lem, the banker’s algorithm, requires various ways in which multiple agents must
cooperate to achieve a goal. This will allow us to see the ways in which a logic
represents multiple agents and their various actions. The second problem, the
sleeping barber, involves overlappings of time, where a delay in the completion of
one action causes unexpected results for other actions. This will allow us to see the
ways in which a logic represents complex timing issues. The last problem involves
trains moving gradually along a track, with agents cooperating to influence where
the trains move to. This will allow us to see both multiple agents cooperating and
a complex timing issue of gradual change.

In this chapter the problems will be introduced and formalised, then at the
end of the following chapters these problems will be revisited in the context of
the logic discussed in that chapter. We are especially interested in the strategies
and decisions of multiple agents working together, as well as the structure of time
which best suits each puzzle.
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Note that the formal parts of the problems are very basic, and is purely for the
sake of clarifying the problem to the reader. These problems will be represented
in different ways by the different logics in later chapters.

3.1 The Banker’s Algorithm

The classic banker’s algorithm was introduced by Dijkstra (1982)). It is based on
the idea of a banker lending out money to a group of people who need different
amounts to accomplish different things. The banker does not have enough to lend
out to everyone according to their need, so instead he chooses certain individuals
to lend to, until they complete their tasks and pay back the money, so that the
banker can then lend to the others, and so on, until everyone has accomplished
what they needed to and paid back to the banker. The puzzle is an analogy for
resource allocation on computer systems. The dangerous part comes when the
banker carelessly lends out only a bit to everyone, so that the banker runs out of
money, while no one has enough to accomplish their task and pay back.

More formally, we have a non-empty set of N processes P, where each process
p; is engaged in some task for which it needs a number of units from a shared pool
of resources to complete. All the processes share the same pool of resources, and
all units of the resource are equivalent. A process may borrow one or more units
from the pool and add it to their loan loan(p;), or a process may return one or
more units from their loan to the pool. A process may not borrow more than it
needs need(p;), nor return more than it has loaned. There is a limited number of
units in the pool. The total number of units in the system is called cap, while the
units currently in the pool is called cash, such that:

0 < cash < cap

Each process starts with some loan amount, which can be zero, and some need
amount, which must be less than or equal to the cap or else that process would
never be able to finish. Thus:

0 < loan(p;) < need(p;) < cap

Once the process is able to loan up to its need, it completes its task and returns
the loan. The units in the pool (cash) is also given by:
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N
cash = cap - ) loan(p;)
i=0

An example of a potential dangerous state for two processes is as follows:

need | loan
Do 2 1
P1 3 2
cap | cash
banker 3 0

We see that none of the original 3 units are left in the pool. Process 0 needs 2
units, but has loaned only 1, while process 1 needs 3 units, but has loaned only 2.
Since neither of the two processes can complete their tasks to return their loans,
and since the banker is out of money, the system is stuck in this state. This is
called deadlock, and is an undesirable state. If the banker had loaned 2 units to
process 0, it would have been able to finish and return those 2. The banker could
also have loaned all 3 units to process 1, which would have finished and returned
those units.

Dijkstral (1982) defines a safe pattern of loans as when “a granting strategy
exists such that it can be guaranteed that all (current and future) requests can be
granted within a finite period of time”.

The banker’s algorithm involves the banker evaluating every possible loan and
only granting it in a safe order. We first introduce the idea of a claim, which is
the amount of units the process still needs before it can finish and return units:

claim(p;) = need(p;) — loan(p;)

If we put all the processes in some order, called a permutation, from 0 to N,
the key expression in the banker’s algorithm is then:

i-1
Vi:0<i< N :claim(p;) < cash + ) loan(p;)
=0

If this expression holds for a specific permutation, the pattern is safe. The
expression claims that the need of any given process is less than or equal to the
units in the pool and the sum of all the loans of all the processes before it. If
the banker gives out loans in this order, starting with process py, and ending with
process py_1, each process will be given enough to finish its task and return its
loan.
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The rest of the banker’s algorithm deals with reordering the processes until the
above expression holds (see Dijkstra, [1982). We will use this puzzle, but instead of
the banker making decisions, we will recast it as the processes helping themselves to
the pool, but making sure that they do not take so much that they cause a deadlock
[ We thus have multiple agents taking decisions on when to take resources and
how much to take. We have clear goal states, all agents accomplishing their tasks,
and clear deadlock states, when no one is able to accomplish their task and the
pool is empty. Time can be viewed as discrete, when in every state an agent can
decide to take resources, and once an agent has enough, it will return its loan on
the next state. Time can also be viewed as continuous, when an agent decides to
take a loan after another agent has returned their loan, or before another agent
takes a loan.

We now turn from a classic puzzle to a less known but also very interesting
one.

3.2 The Sleeping Barber Problem

The sleeping barber problem is first found in (Dijkstral 1968|), where Dijkstra
simply states:

“There is a barbershop with a separate waiting room... When the barber has
finished a haircut, he opens the door to the waiting room and inspects it. If the
waiting room is not empty, he invites the next customer, otherwise he goes to
sleep in one of the chairs in the waiting room. The complementary behaviour of
the customers is as follows: when they find zero or more customers in the waiting
room, they just wait their turn, when they find, however, the Sleeping Barber...
they wake him up.”

The problem seems simple enough, the barber will continue cutting people’s
hair until there are no more customers, then go to sleep until the next customer
arrives and wakes him. This is an analogy to certain systems in computer science,
which shut down when there are no further tasks, to save resources, and only wakes
again when the next task is received.

There exists some dangerous states. Take for example the situation where a
single customer checks and sees the barber cutting hair, then goes to take a seat,
but before he is able to take a seat the barber finishes and checks the seats, sees
they are empty, and goes to sleep. The customer will not wake the barber since
he is still watching the door waiting for the barber to finish and come call him,
while the barber will be sleeping next to him. If no new customers come in, the

'Recasting the problem in this way, where the banker is no longer a decision making entity,
makes it very similar to the Generalised Dining Philosophers problem, recently modelled and
studied in |De Masellis et al.| (2019)).
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single customer will be waiting forever, never getting his hair cut. This state is
called starvation, and similar to deadlock, should always be avoided. There are
a few such situations which might arise in our barbershop if the customers and
barber all follow their scripts perfectly and don’t look around. All these situations
are caused by events taking varying amounts of time, and some events finishing
before they were expected to finish. The barber finishing the haircut and checking
the chairs while the customer still walks to the chair is unexpected, but since we
don’t know the time any of these events take, we must design a system which will
avoid Starvation regardless of how fast or slow different events are.

The following figure shows the various states which the barber and customer
can be in. Note that the dangerous state occurs when the customer enters and sees
the barber is busy, and while transitioning to the Waiting state but before reaching
it, the barber finishes and sees there are no waiting customers. The barber then
transitions to the Sleeping state, and remains there while the customer remains in
the Waiting state.

Next Customer

No Next
Customer

Sleeping

Woken Up

Barber Asleep
Wake Up

Leave

Barber

Busy Free

Figure 3.1: The Sleeping Barber Problem

There have been numerous solutions suggested to the problem, some of which
may be found in |Downey| (2008). The most common solution is to restrict the
barber and customers to a system where only one of them may change state at a
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time. Thus while the customer goes from “Seeing the barber is cutting hair” to
“sitting down on a chair”, the barber is not allowed to finish the haircut or do
anything else. Once the customer is seated, the barber may finish the haircut and
check for more customers. This kind of solution often uses a mutex lock, a sort of
mechanism that a process can acquire. There is only one lock, so only one process
can have it at a time, and must release it when done before another process can
acquire it. A process can only change state if they have the lock. So if the barber
wants to finish cutting hair, he must first try to grab the lock, and if the lock is
unavailable he must wait for it. Only once the lock becomes available can he grab
it and then finish up the haircut and check for more customers.

This problem is interesting since it involves many agents making decisions as
well as unknown periods of time, where the relations between the periods of time
are very important. In a discrete system, each action may take multiple states.
Thus it might take 4 states for the customer to see the barber is busy and take a
seat, while the barber might finish the haircut in the next state and then take 2
states to check outside and see the chairs are empty.

Formally the problem for N number of waiting chairs can be represented by
N +1 variables indicating the state of a chair, and one Boolean variable indicating
the state of the barber. The N waiting chair variables, numbered 1 to N, are
written in the form Chairl = Alice or Chair2 = Empty. The barber may also
sleep in a chair, written as Chair3 = Barber. A special chair is the barber’s
chair, where the customer sits when getting a haircut, numbered as 0 and written
Chair0 = Bob, thus the N+1 chairs in total. One last variable is a Boolean showing
the state of the barber, called Barber Busy. If the barber is busy cutting hair it
is true, otherwise it is false.

A new customer walking in would check Barber Busy and if true, take the next
seat from 1 to N which is empty. If Barber Busy is false, the customer will search
the chairs for the barber and wake him, then go get their hair cut. If the barber
finishes a haircut, he will look at the first chair and if it is empty he will pick a
random chair and go to sleep, if it is not empty he will take the next person for a
cut and all customers shift one chair on.

The dangerous state then comes when the customer sees Barber Busy = true
and chairl = empty, and goes to sit down on the first chair. Before the customer
finishes this, while chairl = empty, the barber finishes, sets Barber Busy = false
and checks the chairs, sees they are all empty, then goes to sleep in one of the
other chairs. After this the customer sits down in the first chair, and never gets a
haircut.

Having considered two classical Dijkstra problems, we now turn to a unique
problem involving trains.
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3.3 The Trains Problem

This scenario involves trains of different colours, running on the same track, each
train heading for the station of its own colour, and not the stations of other
coloursP| A group of agents run around changing the settings on various crossroads
to try to facilitate this. The trains have a common starting point, a tunnel, from
which they emerge one after the other, with some time period in between, and
then start moving along the track. The trains have no steering ability, and simply
follow the track at a constant speed hoping to arrive at the destination. The tracks
connect on crossroads, and each crossroad is in a specific setting. The setting on a
crossroad will determine which way the train goes when it heads over the crossroad.
The agents have to manually run to a crossroad and pull a switch to change the
setting. This becomes hard when the red train needs to go left, the blue train
right, then the green train left again, and all three are right behind one another.
The conductor would need to make sure the crossroad is in a left setting, then
pull the switch as soon as the red train has crossed and before the blue train does,
and then pull the switch again once the blue train has passed and before the green
train. If there are more crossroads than agents, it becomes necessary for the agents
to plan ahead and work together so that there is always someone at the crossroad
when there needs to be.

Formally we have a set T" of n trains ¢;, and a corresponding set S of n stations
s;, where each train must go to the station where ¢ = j. We have a set R of rail
pieces 1 and a set C of crossroads ¢;. We also have a set A of agents. We have
five mapping functions:

e location :tel - re Ruce(CuseS which maps each train to its current
location on either a piece of rail, a crossroad or a station.

e agentLocation : a € A - ¢ € C' which maps each agent to the crossroad it is
currently at.

e connection : (r € R) - (r e R)u (ce C)u (s e S) which maps each piece of
rail to the next piece of rail, crossroad or station which it connects to.

e crossConnection : ¢ € C' - P(R) which maps each crossroad to all the rail
pieces it can potentially connect to, where P denotes the power set.

e setting : c € C' - r e R which maps each crossroad to its current setting for a
single rail piece.

2This puzzle was inspired by the entertaining Train of Thought game by Lumosity on
www.lumosity.com.
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Note that this very basic formalisation would allow multiple trains on a single
track, and would have no way of ordering them for that track. The different
logics in later chapters have different ways of addressing this problem, so it is not
addressed here.

The following figure shows one possible layout for a situation involving four
trains and four stations, two agents (Alice and Bob), three crossroads and seven
pieces of railroad. Note that the triangles pointing up are trains, while the triangles
pointing down are agents. This convention will be kept to for other figures of the
train problem in this dissertation.

AN

cl r2 sl

r3

s3 iy} c3 r5 c2 r4 s2

r7

s4

Figure 3.2: Example of a Train Problem

A train reaching the end of a rail will arrive on the next rail as determined
by connection(currentrail). Note that a rail only ever connects to a single other
rail, crossroad or station, while a crossroad can potentially connect to every rail.
A rail only runs in one direction, we do not have to be concerned with head on
collisions. However the possibility exists of a crossroad connection to an earlier
rail and forming a circular route. Agents are only ever at crossroads, and take a
period of time to move from one crossroad to the next. An agent has to be at a
crossroad to change the setting for that crossroad. When a train finally arrives at
a station, it remains there until the end.

The timing of how long it takes a train to move to the next rail piece, and
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how long it takes an agent to move from one crossroad to the next, is all for the
respective logics to represent. This will also influence how the issue of multiple
trains on a single track is addressed. The dangerous states we must avoid is when
a train arrives at the wrong station, while the goal state is that every train arrives
at its station.

A continuous time model seems most natural here, since we are reasoning
about trains gradually travelling along variable length tracks. A discrete time
model will involve breaking up the rail pieces into smaller pieces, so that in every
state transition, a train may advance one piece, and an agent may take some set
amount of state transitions to move from one crossroad to the next.

With these three puzzles, we will be able to compare the logics and see how
they represent various situations, and how easy or hard it is to reason effectively
about a situation in each logic.
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Chapter 4

Alternating-time Temporal Logic

ATL was introduced by |Alur et al. (2002)) for temporal reasoning about open
multi-agent systems. The semantics of ATL is defined over multi-agent transition
systems, which are systems consisting of at least two agents, each with its own goals
and action types, who must cooperate or compete, and whose actions advance the
state of the system. The system has many states, and a transition from one state
to another occurs when the agents carry out their chosen actions. The agents all
take their actions at the same time.

In the original paper (Alur et al.; 2002), ATL is introduced as an alternative to
linear-time temporal logic which has universal quantification over all possible paths,
and branching-time temporal logic which uses existential and universal quantifiers
for the paths. The concurrent game model of ATL is presented as a game between
the system (agents taking actions), and the environment (the states, effects of
those actions), where the system and environment alternate turns. ATL and its
extension ATL* have “gradually become the most popular logical formalism for
reasoning about strategic abilities of agents in synchronous multi-agent systems”
(Goranko et al., 2018).

This chapter will start by considering the syntax and semantics of ATL, fol-
lowed by a section looking at the problems from the previous chapter from the
perspective of ATL. Following this will be a chapter covering a related logic and a
chapter covering the extensions of ATL.

4.1 Syntax and Semantics

4.1.1 Concurrent Game Models

While logics like LTL and CTL are interpreted over Kripke structures, ATL uses
a different model called a concurrent game model. Recall the strategic game from
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section 2.1.5, where each of the agents chose an action which then led to a payoff.
One can decide to play this game multiple times, where each time the combined
actions of the agents lead to the next state instead of ending the game and de-
termining winners and losers. As before, every agent chooses an action, and the
corresponding action profile determines the outcome. Now instead of stopping
the game there, the outcome determines the state in which the next turn starts,
where agents now repeat the process. Depending on the outcome of the previous
turn, new actions might now be available to agents, and some old actions might no
longer be valid. This game can then go through many turns before finally ending,
or never end. An example of this is the classic board game Diplomacy, where all
players take their turns simultaneously by writing their moves in secret on pieces
of paper, which are then revealed at the same time and all moves made according
to the papers. There is also a variant of chess, called Simultaneous Chess, which
follows the same principle. Concurrent game structures (CGS) and concurrent
game models (CGM) allow us to represent these kinds of situations. Bulling et al.
(2015) provides a definition of both a CGS and a CGM, which we can see here:

A concurrent game structure (CGS) is defined as a tuple M =
(Agt, St, Act, act, out) where:

e Agt is a nonempty finite set of agents.
e St is a nonempty finite set of states, the system is in one state per turn.
e Act is a nonempty finite set of actions which can be performed.

e act is a function which assigns to each agent the list of actions available to
that agent in a specific state, since not all actions are available to every agent
in every state. It is defined as act : Agt x St - P(Act) ~ {@}

e out is an outcome function out(q,x1,zs,...,x;) that assigns a new succes-
sor state in St to each combination of current state ¢ and action profile
(z1, %9, ..., 71), defined as

out : St x H T, > St

acAgt

where the Pi notation signifies the Cartesian product of the set of actions,
one for each agent.

A concurrent game model (CGM) is defined in a similar way, but with the

addition of a set of atomic propositions Prop and a labelling function V : St —
P(Prop), which maps each state to the set of atomic propositions which are true
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in that state. This is according to Bulling et al. (2015]), but there are variations
on this. Two variations to take note of will also be presented here.

In the original paper, Alur et al. (2002)) define a concurrent game structure in a
similar way to Bulling et al.’s concurrent game model. There are some differences
though. The |Alur et al| (2002) definition for a concurrent game structure is as
follows:

M = (k,Q,11,m,d, o)
where:

e [ is the natural number of players or agents, numbered 1 to k. This is similar
to Bulling et al.’s Agt, but is simply a number instead of a set of agents. This
changes some of the formal definitions for the other functions, but works in
a similar way.

@ is the set of states similar to St.

IT is set of propositions similar to Prop.

7 is the labelling function similar to V.

d is called the mowve function, but is similar to Bulling et al.’s act.

0 1s the transition function similar to out.

One can note that the CGS from Alur et al.|(2002) does not have the set of
available actions Act which the CGM from Bulling et al.| (2015) has.

Another important formulation of a CGM comes from (Goranko et al.| (2018)
where such a model is defined as follows:

M = (Agt, St, 11, Act, d, 0, v)
where:
o Agt, St, Act are the same as in Bulling et al.’s CGS.

e Il is the same as in Alur et al.’s CGS and similar to Prop in Bulling et al.’s

CGM.

d is similar to act from Bulling et al.’s CGS.

o is similar to out from Bulling et al. and § from Alur et al.

v is similar to V' from Bulling et al. and 7 from Alur et al. Though it is
defined v : IT - P(.St) which is the reverse of how it is defined by Bulling et
al..
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Thus there are many ways of defining a concurrent game structure and a con-
current game model. The principles are the same however. A list of agents and
a list of states are given. In each state the agents all take actions simultaneously
which affect what the next state will be. Going forward in this chapter, a CGM
with the following formulation will be used:

M = (Agt, St,I1, 7, Act, act, )
where:
e Agt is a nonempty finite set of agents.
e St is a nonempty finite set of states.
e II is a nonempty finite set of atomic propositions.

e 7 is a labelling function mapping each state to the set of atomic propositions
which are true in that state, formally 7 : St - P(II).

e Act is a nonempty finite set of actions.

e act is a function which for a given agent and a given state returns the actions
available to that agent in that state, formally act : Agt x St - P(Act) ~ {@}.

e § is a transition function which for a state and set of actions (x1, s, ..., )
taken by the agents returns the next state.

0:Stx H T, —> St

aeAgt

Where the Pi notation signifies the product of the set of actions, one for each
agent.

As a clarifying example of the usage of the CGM, consider two cats, Alice and
Bob, sitting on either ends of a table, with an expensive pot standing between
them. Alice is sitting on the left and Bob on the right of the table, where left and
right is seen from the perspective of a viewer from the front and not relative to
the cats. The cats have the option to either sit still, or swipe at the pot, which
will move it. A cat can swipe to the left or to the right, moving the pot to the left
or to the right, all still relative to the viewer from the front. The pot can be in
one of four states, near Alice, near Bob, in the centre of the table, or on the floor,
broken into many pieces. If the pot is near Alice, she can swipe it left to make it
fall to the floor, or swipe right to move it to the centre, while Bob cannot reach it
that turn, and vice versa. If the pot is in the middle, either cat can push it to the
other cat if they swipe towards it, but have no effect if they swipe away from it.
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Bob

pot

| table |

Figure 4.1: CGM Example with Two Cats

If both cats swipe at a central pot, it remains in position. Once the pot is on the

floor,

neither cat can do anything.

Formalised as a CGM, it would look like the following:
M = (Agt, St, 11,7, Act, act, )

Agt = {Alice, Bob} the two cats.
St = {Left,Centre, Right, Floor} indicating the position of the pot.

IT = {PotFloor, PotCentre, PotRight, PotLeft} where one will be true and
the other three will be false for any given state.

w(Left) = {PotLeft,~PotRight,~PotCentre,~PotFloor} is an example of
the labelling for the Left state, with similar definitions for the other three
states.

Act = {SwipeLe ft, SwipeRight, DoNothing} the actions which the cats can
do.

act(Alice, Centre) = { SwipeRight, DoNothing} is an example of the actions
which Alice can do if the pot is to the right of Alice (in the centre of the table).
She can only swipe right to push it further, not left. Similar definitions for
all other combinations of agents and states.

d(Left,{SwipeLeft, DoNothing}) = Floor is an example of the transition
when the pot is in front of Alice and she swipes it left off the table and Bob
does nothing. In this case, in the next state the pot will be in pieces on the
floor. Note that the chosen action for Alice is first, followed by the chosen
action for Bob. Similar definitions for all other combinations of states and
action profiles.

Having considered the CGM over which a formula is interpreted, we now turn
to the formulae themselves.
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4.1.2 Syntax

Let IT be a set of atomic propositions with p € II and let Agt be a set of agents
with A ¢ Agt being a coalition. Then the syntax of an ATL formula ¢ is given as:

o =plap|lorves | KA>Xp| <KA> G| <K A> pUpsy

where << A > is the path quantifier, and is read as “the coalition A has a
strategy”. The X symbol is the next operator, while GG is the always operator. Note
that |Alur et al.|(2002)) represents the next operator with O and the always operator
with O, but we will use X and G to be consistent with most other formulations.
The U symbol is the until operator. The path quantifier (<< A >) together with a
temporal operator (X, G or U) indicate that the coalition has a strategy to make
that formula true at that time.

Similarly to CTL, the eventually operator F' (called & by |Alur et al.| (2002))
can be derived as follows:

KA>Fp=<A>TU ¢

Where T means true.

4.1.3 Semantics

The evaluation of an ATL formula ¢ on a state ¢ of M, where M =
(Agt, St,11, 7, Act,act,d) is a concurrent game model, written as ¢ = ¢, is in-
ductively defined as follows (this semantics is based on Alur et al.| (2002)), but
symbols have been changed for consistency with the syntax above):

e ¢k p, for all propositions p € I1, iff p € 7(q).
e g -p it g# .
® qF @1V, iff g @1 or gk @

o ¢ =< A > Xy, iff there exists a set of strategies S, one for each player in
A, such that for all computations A € §(q,S4), we have A[1] E .

o ¢ =< A> G, iff there exists a set of strategies S4, one for each player in A,
such that for all computations A € 6(¢q,S4) and all positions i > 0, we have

Ali] E .

o (=< A> pUps, iff there exists a set of strategies Su, one for each player
in A, such that for all computations A € §(q, S4), there exists a position i > 0
such that A\[¢] £ ¢y and for all positions 0 < j < i, we have A[j] E ¢.
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Recall from chapter 2 that A is called a path, and refers to a sequence of states.
Also recall that a strategy 5, is a function which for every state and for a specific
agent a returns an action that agent will do in that state, while S4 is similar but
for the coalition A.

4.1.4 ATL*

It is important to note that there also exists a version called ATL*, where a
distinction is made between state formulae and path formulae. A state formula is
evaluated on a specific state, while a path formula is evaluated on an entire path
or play. The syntax is as follows:

State Formula: ¢ == p|-p|p Vv | < A> ¢
Path Formula: ® ::= ¢|-®|® v &| X |PUP

ATL is a simpler fragment of ATL* which uses only state formulae.
To see how this syntax and semantics are used in practice, the following section
represents our three problems in ATL.

4.2 Problems

4.2.1 The Banker’s Algorithm

This problem will be approached from the perspective of the agents who are bor-
rowing resources, rather than from the perspective of the banker. The agents
must decide among themselves when and how much to borrow, and come up with
a strategy for avoiding deadlock. Each turn, an agent can either take the bor-
row action, for a specific amount, or the waiting action. It would be helpful to
represent numbers here, such as the need or loan, but in keeping with the CGM
formulation, this must be represented as atomic Boolean propositions. We will
have propositions for loan(Alice)=5 and loan(Alice)=4 and loan(Alice)=3, and so
on for each possible value. These mean that Alice has taken a loan of 5, 4, and
3 respectively. Only one of these propositions should be true at a time. Three
agents will be taking loans, Alice, Bob and Charlie. I am not aware of any other
representations of the banker’s algorithm in ATL.

The concurrent game model will be as follows:

M = (Agt, St, 11,7, Act, act, )
where:

o Agt = {Alice, Bob, Charlie} are the three agents.
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o St={qo,q,q2,-.-,q,} to represent all possible states, specifically St = P(II).

o II = {cash=6, cash=35, ..., loan(Alice)=06, loan(Alice)=5, ..., loan(Alice)=0,
loan(Bob)=6, ..., loan(Charlie)=6, ..., need(Alice), need(Bobb),
need(Charlie3)} are our propositions, where cash and [loan are vari-
ables, which can change after every round, and thus need a proposition for
every possible value. All the loan propositions start as false except for the
loan(agent)=0 ones, while all the cash propositions start as false except
for cash=6, the starting amount in the bank. The three need propositions
start out true, but will become false once an agent has borrowed enough
to complete their task. For convenience we have included the amount each
agent needs in the name, thus Alice needs 4 units, Bob needs 6 units and
Charlie needs 3 units.

e 7 = the labelling function.

o Act = {Borrow(1), Borrow(2), Borrow(3), ..., Borrow(6), Wait} are our
possible actions. For each turn, each agent may choose to borrow an amount
or to wait.

e act = the function mapping for each state and each agent the actions available
to that agent in that state. For this problem, no restrictions will be imposed
here, as agents attempting to borrow more than what is in the pool will be
dealt with by the transition function, where that attempt simply fails.

e 0 = the transition function. If all agents wait, nothing changes. If agents
attempt to borrow cash from the pool, if the sum of all attempts is less than
the total in the pool, all agents succeed, and the system advances to a state
where the cash proposition is now less by the appropriate amount, and each
agent’s loan is more by the appropriate amount. If the agents attempt to
borrow more than what is in the pool, they all fail, and instead the system
advances as if they had chosen wait, and nothing changes. If an agent’s loan
equals their need, in the next state that agent’s need proposition becomes
false, and they only take the wait action afterword, their loan becomes 0,
and what was borrowed is added again to the cash proposition, thus the loan
is returned.

Here are some examples of formulee that can be written:

o G —(loan(Alice) =6 A loan(Bob) = 6) Both Alice and Bob will never be
able to borrow 6 units each at the same time, as the total pool contains only
6 units.
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o (loan(Alice) =4 A need(Aliced)) - (X (loan(Alice) =0 A —need(Aliced))
If Alice has loaned the amount she needs, immediately thereafter she will
return the loan and no longer need anything.

o < A> (loan(Alice) =2 A loan(Bob) =2 A loan(Charlie) = 2) The coalition
A consisting of Alice, Bob and Charlie has a strategy to ensure they each get
a loan of 2 units. This is a simple strategy involving them each attempting
to borrow 2 units, and thus all succeeding. It is a dangerous strategy though,
which will result in deadlock.

Deadlock must be avoided, which is when the pool has been depleted and there
are still agents which have needs and no agents able to finish their tasks. The pool
might become depleted in one turn, and the agent only completes their task and
returns the resources in the next turn. If there is a depleted pool, and in the
next turn the pool is still depleted, then the system must be in deadlock, since no
agents completed their tasks. Or in an ATL formula:

cash =0 A Xcash =0

If the agents can avoid this formula from becoming true, they can avoid dead-
lock. Technically for the banker algorithm deadlock also includes the state where
there are some resources left in the pool, but not enough for any agent to borrow
and complete their task, but for simplicity a stricter definition will be used here
which requires the pool to be empty for two consecutive turns. If there are still
units left in the pool, the agents can still attempt to borrow, even though it won’t
be enough. The goal of the banker’s algorithm is to allocated resources among the
agent in such a way that they may all finish their work, which can be represented
by the following formula:

-need(Alice) =4 A —need(Bob) =6 A -need(Charlie) =3

The discrete time model of ATL is well suited to this problem, since the time it
takes to make a loan or the time to pay back a loan is not relevant, instead events
are instant and we only care about the order in which they happen. The multiple
agents working together can also very naturally be represented in ATL.

4.2.2 The Sleeping Barber

This time Alice, Bob and Charlie will be getting a haircut. The main problem with
ATL and the Sleeping Barber problem, is the time model. The Sleeping Barber
problem depends on the fact that certain processes might be faster or slower than
others, and finish at certain times. This cannot accurately be represented in ATL,
since it was not made for such problems. A random feature will be added to the
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transition function, where an action has a chance to fail and instead the agent
only takes the wait action for that turn, and in the next turn attempts that action
again. This will allow some agents to finish actions and move on before others.
There will be a few positions each agent can occupy. There are 3 waiting chairs,
called ¢y, cy and c3. There are the enter and cut positions, an agent entering the
shop will be in the enter position from where they will check the status of the
barber, while an agent getting a haircut and the barber giving a haircut will both
be in the cut position. There are also the goToCut, goToWait and goToSleep
positions, which involves going to the barber’s chair, or going to wait or sleep in
either of ¢y, ¢ or c3. It is in these goTo positions where an agent might randomly
stay for 2 or 3 turns before succeeding, and where various agent can overtake each
other, thus leading to the Sleeping Barber problem.
The concurrent game model will be as follows:

M = (Agt, St,I1, 7, Act, act, )
Where:
o Agt = {Alice, Bob, Charlie, Barber} are our four agents.

e St={qo,q1,q2,-..,qn} to represent all possible states, specifically St = P(II).

o II = {barberSleepC1, barberSleepC2, barberSleepC3, barberCut,
barberGoToSleep, barberGoToCut, alice Enter, aliceW aitC'1,
aliceW aitC2, aliceW aitC3, aliceCut, aliceGoToW ait, aliceGoT oCut,
aliceOutside, bobEnter, ... charlieEnter, ...} are our propositions. Only
one of the barber statements, and one of each agent statement, can be
true at a time. These all indicate the current position of that agent. All
customers start outside and enter at random times.

e 7 = the labelling function.

o Act = {Cut, GoToCut, Wait, GoT oW ait, Sleep, GoT oSleep, W ake Barber,
GoToW akeBarber} are our possible actions. For example, if the barber is
done cutting hair, and there are no more customers waiting in the chairs, he
takes the GoToSleep action, which in the next state makes barberGoT oSleep
true and barberCut false. After this he continues to take the GoToSleep
action each turn until it succeeds, which might be a few turns, and then
barber GoT oSleep becomes false and barber SleepC2 becomes true (an empty
chair is randomly chosen once the GoToSleep action succeeds).

e act the function mapping for each state and each agent the actions available
to that agent in that state. Agent actions are predetermined according to the
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rules laid out in the introduction for this problem, and there are no choices
to be made by the agents. This function will thus return the one action
available to that agent, and that agent will take it.

e 0 the transition function. The key here is the randomness which can cause
agents to be out of sync with each other. Before an agent can take an action,
it must take the associated GoTo action to get into a position where it can
take that action, and this might take a few tries. While in the goTo state,
the agent is not looking around and changing strategy, but is continuing to
attempt that action each turn. Some actions also require randomness when
they succeed, such as which chair to wait or sleep on.

An example formula that will be true during a busy day at the barbershop
might be:
barberCut A aliceCut A bobW aitC'3 A charlieW aitC'1

Perhaps in the quiet afternoon, the barber goes to sleep, thus:
barber SleepC'1 A aliceOutside A bobOutside A charlieOutside

An example of a starvation situation will be if the barber is sleeping and a customer
is waiting:

barberSleepC1 A charlieW aitC3

Generally a customer will starve if they are waiting forever to be cut, or:
G charlieWaitC1 v G charlieWaitC2 v G charlieW aitC'3

The goal then is to avoid starvation of any of the agents, or to avoid the following:

(G(AliceW aitC1 v AliceW aitC2 v AliceW aitC3) v
G(BobW aitC1 v BobW aitC2 v BobW aitC3) v
G(CharlieW aitC1 v CharlieW aitC2 v CharlieW aitC3))

or alternatively
F(AliceCut) n F(BobCut) A F(CharlieCut)

The idea of a coalition strategy does not really come up here, since there is
only ever one action available to each agent, and thus they cannot have strategies.
A difficulty here is also the randomness, which makes it much harder to predict
certain outcomes. The randomness is needed however to ensure agents can overtake
each other, something not possible in ATL otherwise. The formula X BobC'ut
does not follow from BobGoToCut, but FBobCut does, since the action should
eventually randomly succeed, but it is not known when. ATL does not seem to be
designed for these types of problems.
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4.2.3 The Trains Problem

vellow Red Green Blue 'i

TO1 TO2 TO3 TO4 TO5 TO6 TO7 TO8 C1 TOS T10 Ti1 Red

N

T12

T13

T14

Yellow T18 C3 T17 T16 Cc2 T15 Blue

T19

T20

Green

Figure 4.2: An Example of the Trains Problem

The figure shows a train track, divided into 20 sections, T01-T20. On the track
there are 4 trains of different colours, each on its own piece of track, and 4 stations
of matching colours. There are 3 crossroads, C1, C2 and C3 connecting pieces
of track together. Lastly there are 2 agents, Alice and Bob, who are standing at
different crossroads. A crossroad can be in of two settings, C2 for example can
connect T14 to either T15 or T16. The initial settings for crossroads are shown by
the filled section of the crossroad, T08 to T12, T14 to T16 and T17 to T19. The
agents can only be at crossroads, and only at one crossroad at a time.

In this example, the trains will be moving, one piece of track every state change,
or turn. If a train is on a piece of track just before a crossroad, in the next state it
will be on the next piece of track that crossroad is connecting to. Trains can only
move forward and cannot stop. Alice and Bob can pull levers to switch the setting
for a crossroad, or they can move to another crossroad, both actions taking one
state change. The idea is that each train should eventually reach the station of
its colour, and not a station of a different colour. The agents Alice and Bob must
work together to move between crossroads and pull levers to get the trains to the
right places.
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The concurrent game model will be as follows:
M = (Agt, St, 11,7, Act, act, )
o Agt ={Alice, Bob} are our two agents.

o St={qo,q1,q2,.-,q,} to represent all possible states, specifically St = P(II).

e II = {yellowTrainT01, yellowTrainT02, .., yellowTrainT20,
blueTrainT01, ..., blueTrainT20, redIlrain..., greenTrain..., aliceC'l,
aliceC?2, aliceC'3, bobC'1, bobC2, bobC'3, TOSC1T12, TOSC1T09, T14C2T'15,
T14C27T16, T17C3T18, T17C3T19} are our propositions. The train
propositions refer to their current positions on a piece of track, the alice
and bob propositions refer to their current positions on one of the three
crossroads, the T..C..T.. propositions refer to the setting of the crossroads,
so T14C2T16 will mean that T14 is connected to 7716 through crossroad
C2. These are all the possible propositions in this example, a set will be
made out of a set of these propositions which are true in that state.

e m = The labelling function.

o Act = {FlipSwitch, TravelToC1, TravelToC2, TravelToC3} are our possible
actions.

e act the function mapping for each state and each agent the actions available
to that agent in that state. FlipSwitch will always be available regardless of
the state, but only 2 of the 3 TravelTo actions will be available depending on
which crossroad an agent are currently at. For example, if Alice is at C1, it
is represented as actyice(q) = { FlipSwitch, TravelToC2, TravelToC3} with
aliceC1l e m(q).

e 0 the transition function. In producing the next state, each train will be
moved one track section forward. If a train was on 705 it will be on T06
in the next state. If a train is at the track just before a crossroad, it will be
on a track just after the crossroad depending on the current setting of the
crossroad. If a train is on the track just before a station, it will remain there
forever, since it has arrived. If Alice or Bob attempt to TravelTo a crossroad,
they will be at that crossroad during the next state. If Bob or Alice attempt
to FlipSwitch, the crossroad will be in a different setting during the next
state. Since every crossroad only has 2 settings, there is no need to specify
to what setting the switch is flipped.
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From here ATL formulse can be written. If we take the coalition <« A >=
{Alice, Bob}, we can write:

< A > X blueTrainT08

meaning that the coalition has a strategy to move the blue train to track 8§,
which will be true in the initial state gy regardless of what Bob and Alice decide
to do since the blue train will move into that space in the next turn.

< A > G bobC2

which might be true in ¢; if Bob decides first to travel to C2 during ¢qq, and
then to stay there forever. The goal will be

< A> (FblueTrainT15 A F greenTrainT20 A F redTrainT11 A F yellowTrainT'18)

We see that ATL allows us to represent a dynamic system. The concurrent
game model of ATL was originally introduced as a game between the system
(agents) and the environment, alternating moves between each other (Alur et al.)
2002)). This is where the Alternating-Time part of the name comes from. On the
one side we have a system of agents who can take actions to move themselves to
a different location or move the switch on a crossroad. On the other side we have
the environment moving the trains along each turn. This problem would of course
be very easy if the trains could stop, in which case they would simply stop in front
of a crossroad and wait until it can be changed correctly. The challenge of this
game lies in the fact that the agents have a limited amount of time, and if they
are unable to change a crossroad in time, a train would be on the wrong track.
While we can represent the agents and their strategies, we cannot capture the
gradual nature of smooth movement along a track. We had to divide each track
into segments to accommodate the discrete nature of the ATL time model.

We will now consider some extensions of ATL. [

4.3 Extensions of ATL

While ATL is an expressive logic, it has some shortcomings. Over the years many
extensions of ATL have been introduced to attempt to address these. Bulling
et al.| (2015]) discusses three limitations and how they have been addressed. Firstly

!The interested reader might also want to have a look at Coalition Logic, introduced by [Pauly
(2002) around the same time as ATL. It has been shown by |Goranko| (2001) that the semantics
of Pauly’s Coalition Logic and ATL are equivalent, and that Coalition Logic can be embedded
in ATL.
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there is the issue of strategic commitment, where an agent may have a strategy
to achieve some goal, yet not be bound by that strategy. Secondly, there is the
issue of strategies not being explicit entities in the logic which relies so heavily on
strategies. Thirdly, there is the issue of incomplete information, and agents not
necessarily having full knowledge of the entire system. We would point out that
an additional possible issue is the inability to reason about gradual changes in
the system or about overlapping actions. Future chapters will explore the logic of
intervals and how it might be combined with notions from ATL in order to address
this last issue. The rest of this section will focus on the various extensions to ATL
which seek to address the three issues pointed out by [Bulling et al.| (2015). By
considering the various ways in which ATL has been extended in the past, we gain
a better idea of how we might extend it in future.

4.3.1 Strategic Commitment

The semantics of ATL/ATL* does not commit an agent to its strategies. A formula
may be evaluated and it is seen that in the current state the coalition A has a
strategy to make p true at some stage, yet A may never take the actual actions
which will end up making p true. This can become a problem in some situations,
like the following example from Bulling et al.| (2015)):

i [

Figure 4.3: Example from Bulling et al.| (2015)

Consider this single agent system, where 1, 2 and 3 are states and a and b
are actions. Now while in state 1 the agent can take action a to remain in the
same state, or action b to transition to state 2. If it is given that p is true only
at state 2, consider the formula ((A))Xp, and see that it is true at state 1, since
if the agent A takes action b, p will become true in the next state. Consider also
the formula ({(A))G ({A))Xp, which states that A has a strategy to always ensure
that it has a strategy to make p true in the next turn, notice that this is also true
at 1, since ({(A))Xp is true at 1 and the agent can choose to take action a each
turn, thus remaining forever in 1. But this is a contradiction, since the agent can
always remain in a state where p is possible the next turn, so long as the agent
never actually takes the action to make p true. As soon as the agent takes action b,
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and transitions to 2, the formula ({A))Xp is no longer true. Bulling et al.| (2015)
remarks: “However, this system does not have exactly the property we had in
