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Abstract

Alternating-Time Temporal Logic (ATL), introduced by Alur, Henzinger and
Kupferman, is a logic involving coalitions of agents performing actions which cause
a state change in a turn-based time system. There have been game theoretic ex-
tensions on ATL, and they are very good at specifying systems of multiple agents
cooperating or competing in a game-like situation. Unfortunately neither ATL nor
its extensions are able to capture the idea of gradual change, or duration of actions
or events. The concurrent game model of ATL operates like a turn based game,
with sets of agents taking their turn, and then the environment changing based
on their actions, before they take their next turn. The fact that some actions
take longer than others, or that sometimes a state changes gradually, rather than
immediately, is not representable in ATL. As an example, take a train entering
a tunnel. Before the train enters the tunnel, it is outside the tunnel, after it has
entered the tunnel, it is inside the tunnel, but for the few seconds it takes the
train to enter the tunnel, it is neither inside nor outside the tunnel. ATL cannot
represent this basic intuitive truth.

A family of logics called Interval Logic (IL) use finite state sequences called
“intervals”, which allow it to describe a more continuous model of time, rather
than a discrete state based one such as ATL. This allows it to capture the idea of
gradual change, of a train entering a tunnel, and the fact that actions and events
have various durations. Most of the IL formulations do however not have any way
of distinguishing multiple agents acting at the same time.

Both of these logics - ATL and IL - are useful for specific things, but combining
them might produce new applications which are not possible when only using the
one or the other. In this dissertation we present one such possible combination,
called Agent Interval Temporal Logic (AITL). AITL combines the notion of agents,
coalitions and strategies from ATL with the interval based model of time from IL,
thus creating a new logic which might have some powerful applications in a wide
range of areas in which gradual change and multiple agents acting at the same
time can both be accommodated.
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Chapter 1

Introduction

This dissertation aims to contribute to the field of formal logic and knowledge
representation and reasoning by presenting a logic for reasoning about the strate-
gic abilities of agents. Specifically we consider agents in a multi-agent system
while incorporating aspects of interval time models. This new logic is an exten-
sion of Alternating-Time Temporal Logic (ATL) and will be called Agent Interval
Temporal Logic (AITL).

Before any agent can act, it must decide on what action to take. Before it
can make a decision on the best action to take, it must consider the possible
outcomes of the action, and try to predict what effect the action will have. While
in ordinary circumstances humans do not necessarily consider the process by which
they make decisions, in the context of Artificial Intelligence for instance, it becomes
necessary to have the ability to formally represent the decision making process for
the purposes of programming. One of the functions of logic is to enable us to
represent knowledge of a system and predict the outcomes of various events in
that system. This will be our main focus in this dissertation: to develop a formal
mechanism that allows correct prediction of some future state based on the current
state and events which occur to change it.

McCarthy and Hayes (1981) state that: “A computer program capable of acting
intelligently in the world must have a general representation of the world in terms of
which its inputs are interpreted... More specifically, we want a computer program
that decides what to do by inferring in a formal language that a certain strategy will
achieve its assigned goal. This requires formalising concepts of causality, ability,
and knowledge”. While the field of AI has since moved from knowledge-based to
data-driven platforms, the need for formal mechanisms to accurately represent the
essence of these concepts remains.

A very important aspect of acting in the world is time. Shoham (1987) states
that: “It is hard to think of a research area within Artificial Intelligence (AI)
that does not involve reasoning about time in one way or another”. Temporal
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logic (the logic of time) has been very successful at allowing reasoning about time
and has had “numerous important applications not only to philosophy, but also
to computer science, artificial intelligence, and linguistics” (Goranko and Galton,
2015).

Alternating-Time Temporal Logic (ATL), introduced by Alur et al. (2002), is
a very popular temporal logic for reasoning about the strategic abilities of agents
Goranko et al. (2018), and will be fundamental to this dissertation. ATL is however
restricted to a turn-based time model, where the agents and the system are in a
back and forth game with each other. This discrete time model makes it difficult to
represent various real time problems in ATL. Any change that takes place does so
over a period of time, and reasoning about what effect a certain behaviour might
have also means reasoning about the time during which that effect takes place. We
will therefore extend ATL by modifying its time model to allow for overlapping
intervals of time.

This dissertation is structured as follows: chapter 2 will give a brief overview of
the main achievements in the historical development of logic from propositional to
temporal logic, and will introduce various concepts and characteristics of temporal
logic which will be used in later chapters. Chapter 3 will introduce three illustrat-
ing problems with reasoning about cases relating to time intervals and multiple
actions: the Banker Algorithm (Dijkstra, 1982) and Sleeping Barber (Dijkstra,
1968), as well as a unique train problem created for this dissertation. These prob-
lems will be considered repeatedly throughout the dissertation, as different logics
will be used to represent them. This will allow us to see the strengths and limita-
tions of various logics. Chapter 4 will introduce Alternating-Time Temporal Logic,
its syntax and semantics, related logics and extensions. Chapter 5 will consider
various logics which use intervals. It will discuss some concepts which are im-
portant to intervals and compare different interval logics. There will be a strong
focus on Allen and Ferguson’s logic of actions and events, since it is one of the
very few logics which use pure intervals (Allen and Ferguson, 1994). Chapter 6
will introduce the new Agent Interval Temporal Logic (AITL) which is the main
contribution of this dissertation, followed by a conclusion in chapter 7.
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Chapter 2

Background

All formal languages include two kinds of notation. Firstly there is a set of
symbols, and rules for combining the symbols in various ways, this is called
the syntax. Secondly, there is a system of some sort allowing us to interpret a
combination of symbols (called a formula) and determine if this formula is true
or false, this is called the semantics. The simplest example we can define would
be as follows:

The syntax of a formula, represented by ϕ, is defined by:

ϕ ∶∶= p ∣ ϕ1 ∨ ϕ2

where p is an atomic proposition.

Atomic propositions are the smallest building blocks of a logical language. They
cannot be further broken up and are merely true or false. This syntax provides us
with a recursive rule for building up a well formed formula. A formula is either
an atomic proposition, or it is two formulas tied together by this symbol ∨. We
might build a formula p1∨p2, which is well formed, since we used the first rule two
times and the second rule once. We cannot build the formula p1p2 since nowhere
do we have a rule which allows us to place two atomic propositions next to each
other. This is only syntax, we don’t yet know what p1 or p2 or ∨ means, they
are merely symbols. To give meaning, we must introduce the semantics. The
semantics involves a mapping function or evaluation, which for any given well-
formed formula can tell us if that formula is true or false. For this example we will
just give an informal intuitive semantics 1.

1This is of course an over simplification for the sake of a clear explanation. The semantics
involves an interpretation of the language at issue, which is a set (D,f) where D is a nonempty
set called the domain of interpretation (or universe or domain of discourse) and f is a denotation
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2.1. HISTORICAL DEVELOPMENT

We know that an atomic proposition by itself can be either true or false, we
now want to know if a larger well formed formula would be true. We will do this
with one simple rule:

The formula ϕ1 ∨ ϕ2 is true if either ϕ1 is true or ϕ2 is true.

Thus the formula p1∨p2 is true when either p1 or p2 is true. Atomic propositions
represent some value in the world. We might say that p1 means the cat is brown,
and p2 means it is raining. The formula p1 ∨ p2 then means “The cat is brown or
it is raining”, which would be true if either of the two disjuncts are true. Later on
we will see formal definitions of semantics for much more complicated models.

Building from here, this chapter will cover prerequisite concepts which will be
required for later chapters in this dissertation. We start with a brief overview
of the history of the development of logic from Aristotle to modern temporal
logic, stopping along the way to consider various formulations and concepts. We
then move on to discuss some properties of temporal logic, which can be used to
distinguish various formulations. Finally we end this chapter with a brief look at
some philosophical problems which haunt our efforts in logic to reliably predict
outcomes.

2.1 Historical Development

2.1.1 Classical Logic

Formalised logic can be traced back to classical Greece. The Greeks were very
interested in correct reasoning, and it was Aristotle who first formalised a way
in which correct and incorrect inferences can be made. In so doing, he created
a “systematic treatment of the principles of correct reasoning, the first logic”
(Shields, 2016).

A very important contribution was his two principles, the law of excluded mid-
dle, that every statement is either true or false, and the law of contradiction, that
no statement is both true and false (Kent, 2019).

A key part of Aristotle’s logic is that of the perfect deduction or syllogism
(Shields, 2016). A syllogism is a type of argument, in which a conclusion is
derived from two assumed premises. The structure of a syllogism guarantees
that if the premises are true, the conclusion will be true. The classic three line
syllogism example is as follows:

function. f assigns to each element in the vocabulary of the language a member of D or a subset
of Dn

2

 
 
 



2.1. HISTORICAL DEVELOPMENT

All men are mortal.
Socrates is a man.
Therefore, Socrates is mortal.

It was the stoic philosophers who looked more closely at operators like and, or
and if...then.... They studied sentences and rules for deduction to build sentences,
and though a lot of their work was lost, some of it survived. A famous stoic was
Chrysippus, who created a list of rules for valid inferences (Kent, 2019).

• If the first, then the second; but the first; therefore the second.

• If the first, then the second; but not the second; therefore, not the first.

• Not both the first and the second; but the first; therefore, not the second.

• Either the first or the second [and not both]; but the first; therefore, not the
second.

• Either the first or the second; but not the second; therefore the first.

During the middle ages many gradual improvements were made, but it was
only in the 19th century with the work of DeMorgan and Boole in symbolic logic
that propositional logic became fully formed. Boole provided an algebra to re-
place Aristotle’s syllogistic form. Finally in 1879 Frege created the first modern
axiomatic calculus for logic in his work Begriffsschrift (Kent, 2019). From here we
get modern propositional and predicate (or first order) logic.

Propositional logic consists of a set of atomic propositions and a set of logical
operators (¬,∧,∨,→,↔). These operators are, in order, negation (not), conjunc-
tion (and), disjunction (or), implication (if...then) and equivalence (if and only if).
Formulæ (syntax) are then built from these similar to how we saw it done at the
start of this chapter. Propositional logic also contains rules for determining the
truth value of a formula based on the truth values of the atomic propositions and
the operators used(semantics), similar to the ∨ rule we saw in our earlier simple
example.

First order logic has both terms and formulæ. Terms can be variables, often
denoted by alphabet letters like x or y, or terms can also contain function symbols
together with variables as arguments. Formulæ can be built recursively as follows:

• Predicate symbols. If P is an n-ary predicate symbol and t1,...,tn are terms
in the argument of the predicate symbol, then P (t1, ..., tn) is a formula.

• Operators. The logical operators ¬, ∧, ∨, →, and ↔ can be used as before
on formulæ to build additional formulæ.

3

 
 
 



2.1. HISTORICAL DEVELOPMENT

• Equality. If the equality symbol is considered part of logic, and t1 and t2 are
terms, then t1 = t2 is a formula.

• Quantifiers ∃ and ∀. If ϕ is a formula, and x is a variable, then ∃xϕ (there
exists an x such that ϕ) and ∀xϕ (for all x, it is the case that ϕ) are formulæ.

Using these, first order formulæ can be built up. The truth of a formula
focuses on a domain of variables, and a set of n-ary relationships on the domain
(see footnote 1). For each relationship there is an n-ary predicate function that for
each variable in the domain returns true if it is in that relationship. For example,
Brown(Cat) is true if the cat is indeed brown, while Brown(Dog) is false if the
dog is grey. 2 See Bellini et al. (2000).

Together these logics are called the classical logics, and are useful for repre-
senting and reasoning about static situations.

2.1.2 Modal Logic

Situations are not static, and things in the real world constantly change. Classical
logic can represent the situation where it is raining and the cat is brown, but as
soon as it stops raining or we paint the cat, those assertions need to be changed.
If we want to predict future states, we must be able to model the changing values
of states.

In the 1950’s Saul Kripke introduced the idea that the truth of an assertion is
dependent on which one of multiple possible worlds that assertion belonged to. As
is already the case in classical logic, we have one actual world among many possible
worlds, created by different combinations of truth values, and all assertions have
their specific true and false values in that world. If we have a cat and a dog, and
they can be either black or white, we can have four different worlds. One world in
which both are black, one where both are white, and two where one is white and
the other black. If we look outside and see the dog and cat playing, we can conclude
we are currently in this or that world. Things can change though, and if we take
out the paintbrushes we prepare to move to a different world. Truth is no longer
a static thing in a system, a formula can evaluate to true in one world and false in
the next. For example, the statement “The light is either on or off” is true in all
worlds, since it is a tautology, while the statement “It is raining” is true only in
those worlds where rain is falling. Kripke presented a formal syntax and semantics
to more accurately capture the notion of possible worlds, where the operator ◻
denoted necessarily (the assertion is true for all worlds) and ◇ denoted possibly
(the assertion is true in at least one of the worlds) (Kripke, 1963). These operators

2In this example we imply that there is a variable, and that the formula is false when it is set
to Dog and true when it is set to Cat.
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2.1. HISTORICAL DEVELOPMENT

function in much the same way as the universal and existential quantifiers from
first order logic.

This is where modal logic was first formalised, starting with the logic called
K (after Kripke). K has three symbols: ¬ for not, → for if then, and ◻ for it is
necessary that. Additional operators (∧, ∨, ↔, and ◇) can be derived from these.
For more on K see Garson (2018).

K adds the following to the principles of propositional logic:

• The Necessitation Rule: If ϕ is a theorem of K, then so is ◻ϕ.

• The Distribution Axiom: ◻(ϕ1 → ϕ2) → (◻ϕ1 → ◻ϕ2).
A theorem is a formula which can be proven using only other theorems and

axioms, it is thus not dependent on any assumptions aside from axioms. An
example of a theorem is a tautology, a tautology is provably true without relying
on any assumptions aside from axioms. The necessitation rule thus states that if a
formula is a theorem, such as a tautology, it is not only true, but necessarily true.

Another notion Kripke defined in the same paper was what is known as a
Kripke structure. Kripke structures are used to define the semantics for various
modal logics, since a formula is interpreted over a specific Kripke structure and
is true or false locally in a possible world of that structure. Before discussing
Kripke structures however, let us discuss the concept of a state. A state is
simply a collection of assertions or atomic propositions which are true. A state
is essentially a possible world, one line of a truth table in propositional logic for
instance. The world where the cat is black and the dog is white is a state, and
when we paint the dog black we transition to a new state (of the real system at
issue) where now both are black. This concept of states, and transitions from one
state to another, is called a transition system. A Kripke structure is a transition
system, which is defined as follows:

Let Π be a set of atomic propositions, then a Kripke structure is a tuple M =
(S, I,R,L) where:

• S is a set of states.

• I is a set of initial states, I ⊆ S.

• R is a binary transitional relation between states.

• L is a labelling function L ∶ S → Π

There are states, transitions between states, and a labelling function mapping
atomic propositions to states. There is also a set of initial states, which are the
starting states of the system. We start with the initial state as the current state,
but once the paintbrushes come out we transition into other states.

5

 
 
 



2.1. HISTORICAL DEVELOPMENT

Figure 2.1: Example of a Kripke structure with 4 states

2.1.3 Temporal Logic

Bellini et al. (2000) states that: “Classical logic can express only atemporal
(nontime-dependent) formulæ whose validity and satisfiability do not depend on
the instant in which they are evaluated. In other words, time has no role in clas-
sical logic; when a proposition presents a value that changes over time, the time
must be modelled as an explicit variable”. One needs a logic that can take time
into account if one wants to describe a system which is dynamic (Bulling et al.,
2015), since the truth values of assertions will change as time goes on (Alur et al.,
2002).

It is only a small jump from considering the truth values of assertions in dif-
ferent worlds to considering the truth values of assertions at different times. This
gives us temporal logic, a sub type of modal logic where the different worlds are
all instants on a timeline.

Reasoning about time can already be seen in Aristotle and other ancient
thinkers, with examples found in Zeno’s classical paradox about infinite time in-
tervals of infinitesimal size, Aristotle claiming that statements about future con-
tingent propositions could not be ascribed any truth values, and Diodorus Cronus
distinguishing between possible and necessary future truths (Goranko and Galton,
2015). Modern temporal logic was pioneered by Arthur Prior, who called it tense
logic. Prior suggested a temporal interpretation of ◻ as always rather than neces-
sarily and ◇ as sometimes rather than possibly (Prior, 1957). In addition to the
classical operators, temporal logic adds four new unary operators (Prior, 1967):

• G - it will always be that (Future always).
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2.1. HISTORICAL DEVELOPMENT

• H - it always was that (Past always).

• F - it will be the case that (Future eventually).

• P - it was the case that (Past eventually).

Temporal logic also inherits the two rules from K, along with axioms to govern
interaction between past and future (Garson, 2018):

• The Necessitation Rule: If ϕ is a theorem of the language, then so is Gϕ and
Hϕ.

• Distribution Axiom: G(ϕ1 → ϕ2) → (Gϕ1 → Gϕ2) and H(ϕ1 → ϕ2) →
(Hϕ1 →Hϕ2).

• Interaction Axioms: ϕ→ GPϕ and ϕ→HFϕ.

Another operator quite common in temporal logic is the binary until operator,
represented with U . A formula ϕ1Uϕ2 would be interpreted as ϕ1 is true from
now until ϕ2 becomes true in the future, and ϕ2 will become true at some point in
the future. Sometimes the operator since is also included, which is the opposite
of until. A formal definition of until will be provided in the next section.

It is interesting to note that, as Bellini et al. (2000) points out, the basic four
temporal operators can be defined in terms of until and since as follows:

• Fϕ ≡ ⊺ until ϕ

• Pϕ ≡ ⊺ since ϕ

• Gϕ ≡ ¬F¬ϕ

• Hϕ ≡ ¬P¬ϕ
Where ⊺ means true.

The last two common temporal operators are the unary operators next and
prev, represented by # and  respectively. These operators indicate that the
formula is true in the next or previous state of the model. The Next operator is
also often written as X, which is how we will use it for the rest of this dissertation.

Operators such as next and eventually and until all assume some sort of se-
quence or path. We can define a path as an infinite sequence of states that can
result from subsequent transitions in the model, represented as λ. A single state
in this path can be referred to by writing λ[3] to mean the third state on the path.
A successor state in a path is any state q′ which can be reached from the current
state q in a single transition.

Probably the best known and most taught temporal logics are Linear Time
Temporal Logic (LTL) and Computational Tree Logic (CTL). In the next section
we will consider both, as well as their merger CTL*.
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2.1.4 LTL, CTL, and CTL*

Linear Time Temporal Logic (LTL) was introduced by Pnueli (1977) and is the
“most popular and widely used temporal logic in computer science” (Goranko and
Galton, 2015). Formulas in LTL are interpreted over a path λ, which consists of
an infinite sequence of states of a Kripke structure. It is interesting to note that
in the original paper, Pnueli (1977) used a dynamic discrete system instead of a
Kripke structure, which is essentially the same except without a labelling function.

A well formed formula in LTL is obtained as follows:

ϕ ∶∶= p∣¬ϕ∣ϕ1 ∨ ϕ2∣Xϕ∣ϕ1Uϕ2

where p is an atomic proposition p ∈ Π, X is the next operator and U is the
until operator.

These formulæ are interpreted over an infinite path λ for a Kripke structure,
where the satisfaction relation ⊧ indicates that a path satisfies a formula, in other
words the formula is true for that path. The semantics for LTL is defined as
follows:

• λ ⊧ p, for all propositions p ∈ Π, iff p ∈ L(λ[0]).

• λ ⊧ ¬ϕ, iff λ ⊭ ϕ.

• λ ⊧ ϕ1 ∨ ϕ2, iff λ ⊧ ϕ1 or λ ⊧ ϕ2.

• λ ⊧ Xϕ, iff λ[1] ⊧ ϕ, where λ[1] is the successor state (next state in the
path) to λ[0].

• λ ⊧ ϕ1Uϕ2, iff there exists an i such that λ[i] ⊧ ϕ2 and for all k such that
0 ≤ k < i we have λ[k] ⊧ ϕ1.

In order to write neat and concise formulæ some additional operators are
needed. These are the operators ∧, →, ↔, F and G, which can all be defined
in terms of what has already been defined in the discussion of temporal logic in
the above section. Specifically:

• ϕ1 ∧ ϕ2 ≡ ¬(¬ϕ1 ∨ ¬ϕ2)

• ϕ1 → ϕ2 ≡ ¬ϕ1 ∨ ϕ2

• ϕ1↔ ϕ2 ≡ (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1)

• Fϕ ≡ ⊺Uϕ

• Gϕ ≡ ¬F¬ϕ
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As mentioned, only the essential parts are defined in the syntax and semantics
of a logic, and other operators can then be derived and used from these. This will
be seen in most of the logics in the rest of this dissertation, such as only negation
and disjunction being included in the syntax, from which conjunction, implication
and equivalence can be derived.

Not long after the introduction of LTL, a new logic was proposed by Emerson
and Clarke (1982) called Computational Tree Logic (CTL). While LTL formulæ
are interpreted over a path, a sequence of states, a CTL formula is interpreted
over a computational tree, a set of branching paths representing various future
possibilities. Computational trees are described by Goranko and Galton (2015) as
“naturally obtained as tree unfoldings of discrete transition systems, hence they
naturally represent the tree of all infinite computations arising in such systems”.
The discrete transition system used is specifically a Kripke structure.

CTL was introduced by Emerson and Clarke (1982), based on synchronisation
skeletons of programs. Synchronisation skeletons are finite state abstractions of
programs, represented as flow graphs where each node represents a piece of code
to be executed. Relevant pieces of code are put together into a single node. For
example, a program which performs some sequential steps on its own variables,
then accesses a shared resource (critical section), and then performs some more
steps on its own variables, can be divided into three code sections, each represented
as a node on the synchronisation skeleton. The internal steps of each section is
not relevant for synchronisation, only that the program is in a critical section or
not, so that it can be guaranteed that two programs do not both access the same
shared resource at the same time, if this shared resource can only be accessed by
a single process at a time.

Alternating-Time Temporal Logic (ATL), which we will investigate in depth
in a later chapter, is a generalisation of CTL (Alur et al., 2002), while ATL* is
a multi-agent extension of CTL* (Goranko et al., 2018). CTL is also related to
unified branching time.

3

The syntax for CTL was originally defined as follows (Emerson and Clarke,
1982):

Let p refer to an atomic proposition, and ϕ1 and ϕ2 refer to sub-formulæ.

• Each of p, ϕ1 ∧ ϕ2 and ¬ϕ is a formula.

• EXϕ is a formula which intuitively means that there is an immediate suc-
cessor state reachable by executing one step of process P in which formula
ϕ holds. (Similar to a Next operator)

3Unified branching time is very similar, but does not have the U operator, for more refer to
Ben-Ari et al. (1983).
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• A[ϕ1Uϕ2] is a formula which intuitively means that for every computation
path, there is some state along the path where ϕ2 holds, and ϕ1 holds at
every state along the path until ϕ2. (Similar to a Universal Until operator)

• E[ϕ1Uϕ2] is a formula which intuitively means that for some computation
path, there is some state along the path where ϕ2 holds, and ϕ1 holds at every
state along the path until φ2. (Like the previous formula, but existential
instead of universal)

where E refers to the existential quantifier ∃ and A refers to the universal
quantifier ∀.

The semantics of CTL are defined in (Emerson and Clarke, 1982) over a struc-
ture M = (S,A1, ...,Ak, L) which consists of:

• S - a set of states.

• Ai - ⊆ S ×S, a binary relation on S giving the possible transitions by process
i.

• L - a labelling function mapping each state to those atomic propositions true
in that state.

The states here represent the nodes of the synchronisation skeleton. Let A =
A1∪...∪Ak. A fullpath (M) is defined as an infinite sequence of states (s0, s1, s2, ...)
such that ∀i(si, si+1) ∈ A. The semantics are defined as follows:

• s0 ⊧ p iff p ∈ L(s0).

• s0 ⊧ ¬ϕ iff not (s0 ⊧ ϕ).

• s0 ⊧ ϕ1 ∧ ϕ2 iff s0 ⊧ ϕ1 and s0 ⊧ ϕ2.

• s0 ⊧ EXjϕ iff for some state t, (s0, t) ∈ Aj and t ⊧ ϕ.

• s0 ⊧ A[ϕ1Uϕ2] iff for all M ∃i[i ≥ 0 ∧ si ⊧ ϕ2 ∧ ∀j(0 ≤ j ∧ j < i→ sj ⊧ ϕ1)].

• s0 ⊧ E[ϕ1Uϕ2] iff for some M ∃i[i ≥ 0∧ si ⊧ ϕ2 ∧∀j(0 ≤ j ∧ j < i→ sj ⊧ ϕ1)].
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Other logical connectives can be derived as before.
CTL*, or full computational tree logic, was introduced by Emerson and Halpern

(1985). It is an extension of CTL. Here the distinction between path formulæ and
state formulæ is introduced. A state formula is some proposition which is true or
false at some time, while a path formula shows the existence of such a state. For the
notation, p is a proposition, and X,F and G are state quantifiers, which indicate
when the proposition will be true. The universal and existential quantifiers (A and
E in the original formulation) are path quantifiers. A formula in CTL is always a
pairing of a path quantifier with a single state quantifier. So, if we interpret p to
mean “the house is on fire”, a formula in CTL might be EXp which means that
there exists a path which will cause the house to be on fire during the next state.
The fundamental change in CTL* is allowing more than one state quantifier to be
paired with a path quantifier, so for example allowing the formula E(¬Xp ∧ Fp)
which means that there exists a path where during the next state the house will
not be on fire, but it is going to be on fire at some stage in the future. This is done
by introducing state and path formulae into the syntax as Emerson and Halpern
(1985) do in the following way:

• Each proposition p is a state formula.

• If ϕ1, ϕ2 are state formulae, then so are (ϕ1 ∧ ϕ2) and ¬ϕ1

• If ϕ is a state formula, then Fϕ and Xϕ are path formulae.

• If ψ is a path formula then Eψ is a state formula.

• If ψ is a path formula then Aψ is a state formula.

• If ϕ1, ϕ2 are state formulae then (ϕ1Uϕ2) is a path formula.

• If ψ1, ψ2 are path formulae then so are ψ1 ∧ ψ2 and ¬ψ1.

Other logical connectives can be derived as before. The important change from
CTL to CTL* is the distinction between path and state formulæ which allows us to
pair more than one state quantifier with a single path quantifier. Or according to
Goranko and Galton (2015) compared to CTL, CTL* has “no syntactic restrictions
on the applications of temporal operators and path quantifiers, and [is] interpreted
on the class of computation trees”.

ATL/ATL* was introduced as a generalisation of CTL/CTL* to allow for open
systems (Alur et al., 2002). One can see CTL/CTL* as ATL/ATL* but with a
single agent. The existential path quantifier E is similar to ≪ i ≫ where i is the
single agent, while the universal path quantifier A is similar to ≪ ∅≫.

To get from CTL to ATL, we need to introduce the idea of agents and strategies,
which will be done in the next section.
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2.1.5 Agents and Strategies

The classical notion of a strategy is that of “a conditional plan that prescribes
what action a given agent (or, a coalition of agents) should take in every possible
situation” (Bulling et al., 2015). By this notion, every autonomous agent acting in
a situation can have a strategy by which it makes decisions. A strategy is always
aimed at some outcome, goal or objective that the agent would like to achieve.
These ideas have been studied extensively in the field of game theory, where a
situation is usually set up as a game with specific rules between rational agents, all
acting to achieve some purpose, sometimes cooperating and sometimes competing.
Ross describes game theory as “the study of the ways in which interacting choices
of economic agents produce outcomes with respect to the preferences (or utilities)
of those agents, where the outcomes in question might have been intended by none
of the agents” (Ross, 2019).

The simplest strategic game is where all agents make a single decision, indepen-
dently and simultaneously, and then an outcome is determined by the combination
of their decisions, like a vote. The agents all make their decisions only once, and
then the results play out, without the opportunity to change their decisions later
or influence each other for a next round of decisions. The prisoners’ dilemma is
an example of this, where two prisoners are held separately, and offered a deal
to testify against the other. If both testify, both get medium sentences, if both
remain silent, both get short sentences, but if one testifies and the other not, the
first goes free and the other receives a long sentence. The prisoners cannot discuss
it, and even if they could and both agree to remain silent, it would be in their
best interest to testify if they were able to convince the other to stay silent. What
makes this hard is that they both have a single chance, and must decide to testify
or not. They cannot later change their mind if they realise the other betrayed
them.

A basic strategic game like this, with multiple agents making a single decision
at the same time and then facing the consequences, can be formalised in a strate-
gic game form. One example of a strategic game form is from Bulling et al. (2015):

A strategic game form (SGF) is a tuple M = (Agt,{Acta∣a ∈ Agt},Out, out)
where:

• Agt is a nonempty finite set of agents.

• Acta is a nonempty finite set of actions which a can perform where a ∈ Agt.

• Out is a nonempty finite set of outcomes.

• out is an outcome function mapping the list of actions (called an action pro-
file) taken by the agents to a specific outcome, defined as out ∶ Πa∈AgtActa →
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Out.

To turn this into a strategic game, preference orders need to be added on the
outcomes for the various agents. This can be done by adding a payoff function
ua ∶ Out → R where some real value is assigned to each outcome for each agent
a. This might be the case in sports betting, where some monetary payout is
assigned to each possible bet after the result has played out, taking the odds into
consideration. Another more abstract way of showing preference is by ordering
the results for each agent in the form o ≤a o′ iff ua(o) ≤ ua(o′) where o, o′ ∈ Out.

Let us look at a simple example game played by a group of 10 people. Each
person pays R5 into the pot to play, and chooses either action Red or Blue. If the
majority of people choose Red, they lose, and those that chose Blue split the pot.
Similarly, if the majority choose Blue, they lose, and those that chose Red split
the pot. If all players choose the same colour, the pot is split between all, thus
everyone receives back their initial buy in.

This game can be represented as a strategic game form
M = ({a1, a2, a3, ..., a10},{xRed, xBlue},{oi∣1 ≤ i ≤ 1024}, out)
where:

• {a1, a2, a3, ..., a10} are the 10 agents playing the game.

• {xRed, xBlue} are the two options available to each agent, Red or Blue.

• {oi∣1 ≤ i ≤ 1024} are all possible outcomes to this game, a total of 210 unique
combinations.

• out is the outcome function, defined to map each combination of actions by
the agents to a unique outcome according to the above rules. So if the first
3 players chose Red, and the rest chose Blue, the action profile would be
RRRBBBBBBB, and this might map to outcome o896.

To finally make this a game, a payoff function needs to be added, defined
informally as:

ua(o) =
⎧⎪⎪⎨⎪⎪⎩

0 if choice is in majority

50/winners if choice is in minority

Where a ∈ Agt, o ∈ Out and winners is the number of agents who chose the minority
option.

Now that we know what a strategic game looks like, we can consider the strat-
egy from the perspective of an agent playing the game. A strategy is a conditional
plan that specifies what to do in each possible situation, written as Sa to refer to
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the strategy of agent a. A strategy can be for a single agent or for a coalition or
set of agents.

There are two types of strategies, memory-less and memory-based. Memory-
less, also known as positional, is represented by Sa ∶ St → Act where a ∈ Agt.
Memory-based, also known as perfect recall, is represented by Sa ∶ St+ → Act such
that Sa(⟨..., q⟩) ∈ acta(q), and where St+ is a set of histories, or finite sequences. So
the memory-based strategy takes in not just the current state as in memory-less,
but the sequence of states leading up to the current state. Memory-less strategies
have the agents considering only the current state, and making a move based on
that state, as would be appropriate in chess, where there mostly exists a best
move (or set of better moves) for any given position, regardless of the order of
events leading to that position. Memory-based strategies are used when the past
is important to a choice of action, such as when an agent must attempt an action
six times and then do something else. There also exist combined options, where
agents have bounded memory, see Ågotnes and Walther (2009).

We can talk about single agents, or about a coalition of agents. A coalition is
a set of agents working together, this can be defined as:

A = {a1, a2, ..., ar} where A ∈ Agt

A coalition of players may also have a joint strategy SA = {Sa1 , Sa2 , ..., Sak}.
The contribution of agent a to a joint strategy SA is denoted by SA[a].

All of these ideas of paths, action profiles, coalitions and strategies will be
revisited in the ATL chapter. For now, we move on to consider some characteristics
of temporal logics which can be used to distinguish them.

2.2 Characteristics of Temporal Logics

Many different temporal logics exist, the following are some characteristics which
distinguish different types.

2.2.1 Propositional or Predicate

Temporal logic can be based on either propositional or first order classical logic.
Higher order classical logic is not often used. Propositional temporal logics are
less expressive, but their decision procedures have a tractable complexity (Bellini
et al., 2000). First order temporal logics are often more expressive but also more
complex.
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2.2.2 Points or Intervals

An important issue to consider in temporal logic is the question of which entity
in the logic is primary, points or intervals. Time can be seen either as a collection
of instants, happening one after the other, or as a collection of various intervals,
which may overlap each other. Points or instants may also be used as a simplified
abstraction for certain systems, an example of which may be chess. In chess,
one player moves a piece, then the other moves a piece. The state of the board
changes after each move, and each move follows a previous move. A chess game
can be seen as a collection of moves. This is the case even though, in reality, one
player might take a few seconds longer on a move that their opponent, and a piece
might spend a second in the air while being moved from one location to another.
These events and durations are irrelevant to someone who is interested only in the
moves themselves, and the strategy behind them, for whom only a list of moves is
sufficient.

According to Bellini et al. (2000) interval logics: “are more expressive, since
they are capable of describing events in time intervals, and a single time instant is
represented with a time interval of one. Usually, interval-based logics permit one
to write formulæ with a greater level of abstraction, and so are more concise and
easy to understand than point-based temporal logics”.

Goranko and Galton (2015) state that: “Instant-based models are often not
suitable for reasoning about real-world events with duration, which are better
modelled if the underlying temporal ontology uses time intervals, rather than in-
stants, as the primitive entities” and he adds that “Interval-based temporal models
are ontologically richer than instant-based ones, as there are many more possible
relationships between time intervals than between time instants”.

We can approach this question from two different perspectives. Firstly, when
doing prediction, which is the most useful? When talking about a chess game,
a point based logic will obviously be simpler and sufficient, while in a problem
involving trains moving at different speeds and arriving at different stations at
various points in time, an interval logic might be needed. But there is a second
perspective: when trying to model reality, which better captures the true nature
of time? This is a deeper philosophical and scientific question, which doesn’t yet
have clear consensus. Is time made up of infinitesimally small instants culminating
into our continuous experience of time? Or can time be more accurately seen as
moments of various durations? A related idea is of absolute or relative time.
Newton’s classical mechanics uses an absolute model of time, independent from all
other space or matter. Meanwhile Leibniz proposed a more relational view where
time is dependent on events. Modern physics favours a more relative approach,
ever since Einstein’s theory of relativity (Goranko and Galton, 2015).

Goranko and Galton (2015) further state that: “the two types of temporal
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ontologies are closely related and technically reducible to each other: on the one
hand, time intervals can be determined by pairs of time instants (beginning–end);
on the other hand, a time instant can be construed as a degenerate ‘point interval’,
whose endpoints coincide” (Goranko and Galton, 2015).

Even when we decide on using intervals, there are two further sub types, pure
and non-pure. Pure interval logics view intervals as primary objects and formulæ
are evaluated with respect to intervals. Non-pure interval logics are really point or
instant based logics, which have intervals only as secondary or auxiliary entities,
defined with a starting point and ending point. Most interval temporal logics are
really non-pure interval logics, and pure interval logics are rare. Goranko states
“the single major challenge in the area of interval temporal logics is to identify
expressive enough, yet decidable, fragments and/or logics which are genuinely
interval-based, that is, not explicitly translated into point-based logics and not in-
voking locality or other semantic restrictions reducing the interval-based semantics
to the point-based one” (Goranko et al., 2004).

2.2.3 Duration

Some temporal logics use a metric for time duration, where an interval might have
an explicit duration of 3 seconds, or each state in a point based temporal logic
might represent a second or millisecond. Bellini et al. (2000) states, “Temporal
logics without a metric for time adopt a time model for which the events are those
that describe system evolution... Each formula expresses what the system does at
each event, events are referred to other events, and so on: this result in specifying
relationships of precedence and cause-effect among events. Temporal logics with
a metric for time allow the definition of quantitative temporal relationships - such
as distance among events and durations of events in time units”. We can see that
chess is an example where we might be interested only in events (or moves), and
not durations of events. Neither ATL nor any of the other logics we consider have
a metric for duration, so we will not pursue this further.

2.2.4 Properties of Time

The order of the logic (propositional or first order), instants or intervals, and
duration, are the largest properties which can differentiate temporal logics. Here
we consider a few smaller properties which time structures may or may not have.
These definitions, expressed in first order logic, are all taken from Goranko et al.
(2004), with x, y and other letters representing points in time, and the < and
≤ symbols representing the idea of one point occurring before another point in time.
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An interval structure is linear if every two points are comparable, that is to
say any two points can be found on a timeline and it can be seen which one occurs
before the other, specifically:

∀x∀y(x < y → ∀z1∀z2(x < z1 < y ∧ x < z2 < y → z1 < z2 ∨ z1 = z2 ∨ z2 < z1))

An interval structure which is not linear is branching, where two points on
different branches cannot always be compared to each other. Computational Tree
Logic is an example of a branching logic.

An interval structure is discrete if every point with a successor/predecessor
has an immediate successor/predecessor along every path starting/ending in it,
specifically:

∀x∀y(x < y → ∃z(x < z ∧ z ≤ y ∧ ∀w(x < w ∧w ≤ y → z ≤ w))) and
∀x∀y(x ≤ y → ∃z(x ≤ z ∧ z < y ∧ ∀w(x ≤ w ∧w < y → w ≤ z)))

An interval structure which is not discrete is continuous.

An interval structure is dense if for every pair of different comparable points
there exists another point in between, specifically:

∀x∀y(x < y → ∃z(x < z ∨ z < y))

An interval structure is unbounded above if every point has a successor, and
unbounded below if every point has a predecessor.

Note that these properties all refer to points, and thus one cannot directly talk
about these properties when using a pure interval logic which only talks about
intervals and not points. But we can see that a logic which uses only intervals and
not points is intuitively dense. The notion of linear can be understood in terms of
intervals as well, in that any two intervals will have some relation to each other,
and thus be comparable. Intervals may or may not be bounded above or below.
It does not make sense to speak of discreteness when we do not have any points,
rather we can describe a pure interval logic as being continuous.

Having gained a clearer understanding of temporal logic, and considered the
various characteristics which differentiate them, we now turn to a potential prob-
lem for the entire logical task of prediction.
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2.3 Problems with Prediction

Shoham (1987) points out three problems with prediction, known as the qual-
ification problem, the extended prediction problem and the persistence or frame
problem.

The qualification problem involves the vast amount of information required to
make truly accurate predictions. If I throw the ball into the air, I might predict
that it will rise a certain amount, then fall back down to the ground. However,
what if there is no gravity where I am? What if the ball explodes when it reaches its
highest point? What if the ball is filled with helium and continues to rise? These
seem like the kind of off-the-wall concerns of a philosopher, but the distinction
between such absurd concerns and more reasonable ones are not that clear. The
vast amount of things which might influence an outcome is just too much for any
real world prediction to be perfectly accurate. One can of course just not take
many of those pieces of information into account, and make a more conservative
prediction with only the most important information, though this has a higher
chance of being incorrect since possibly relevant information is left out of the
prediction. This relationship between the vast amount of information potentially
relevant to a prediction, and the accuracy of that prediction if information is left
out, is what Shoham calls the qualification problem.

There is also a problem involving the length of time over which predictions are
made, called the extended prediction problem. While we can make a relatively
safe prediction about what will happen in the next instant given the current state
of the world and the events taking place to change it, it becomes a lot harder to
make predictions about the world in longer periods of time from now. To make
a prediction about the world a long time from now, you first make a prediction
about the next instant, then the instant after that, and so on. We see this in chess,
where you can safely predict that if you move this knight to that square this turn,
it will be on that square and everything else will be in the same place at the start
of the next turn. However, it becomes almost impossible to predict the state of the
board 20 moves from now. Since the world is constantly changing, there are too
many unknowns to take into account. Instead you might start making predictions
over shorter and shorter time periods, and make an infinite number of predictions
to get to your long prediction.

A related problem is what Shoham calls the persistence problem, and is similar
to the frame problem of Situation calculus from McCarthy and Hayes (1981). 4

4There have been various formulations of situation calculus. Originally it was formulated by
McCarthy and Hayes (1981), based on the concept of a situation, which is a complete snapshot
of the universe at some instant in time. It is thus a point based logic. Additional discussion
of situation calculus and the frame problem can be found in Shoham (1987), Green (1969) and
Schubert (1990).
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This involves the assumption that something will stay the same over a lengthy
period of time. If I paint a house red, it is now red. If I then rearrange the
furniture, does the house stay red? If I add the rule that when the furniture
moves, the colour of the house remains unchanged, this is incorrect, since someone
might paint the house blue while I move the furniture. One would need an infinite
number of these rules: when the furniture moves it does not change the colour of
the sky, it does not change the value of gold, it does not change the shape of the
house, and so on.

It is clear there are challenges with using logic to try to predict the future. We
might run into these same problems when creating systems of artificial agents and
trying to reason about their strategic abilities. Logic always uses an abstraction of
the real world, a simplified model which can be reasoned about. These problems
come in when the model proves inadequate to fully capture some important aspect
of the real world. We then try to represent as best we can. But when designing
a logic, we must try to have it as expressive as possible, so that the real world
can be represented as accurately as possible, while also keeping it simple enough
for algorithms to work with. This is the challenge of logic, and what the rest of
this dissertation will focus on from the perspective of representing knowledge of
temporal and multi-agent contexts.

2.4 Conclusion

Logic allows us to reason correctly, temporal logic allows us to specifically reason
correctly about future and past events, and try to predict what the outcomes of
some events or strategies might be. We have seen different types of temporal logics,
and the problems one might face when designing such logics. In the next chapter
we will introduce some problems which can be represented with various kinds of
temporal logic, which we will use to compare various temporal logics.
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Chapter 3

Problems Illustrating Practical
Application of Temporal Logics

In order to compare the various logics examined in this dissertation, we will con-
sider a few problems or puzzles. The first two are a well known and a lesser known
puzzle by Edsger Dijkstra (1968) and (1982), while the third is a novel problem
created for this dissertation. The goal will be to use the various logics discussed
through the course of the dissertation to represent the aspects of the problem,
then see how each logic enables us to reason about changes happening over time.
While no single logic or formalism could properly represent any type of problem,
we are interested in exactly how and where the various logics fall short, so that
we may gain a better idea of how to combine them to try overcome some of these
shortcomings.

All three problems contain undesirable or dangerous states, situations that
should be avoided, as well as goal states that should be reached. The first prob-
lem, the banker’s algorithm, requires various ways in which multiple agents must
cooperate to achieve a goal. This will allow us to see the ways in which a logic
represents multiple agents and their various actions. The second problem, the
sleeping barber, involves overlappings of time, where a delay in the completion of
one action causes unexpected results for other actions. This will allow us to see the
ways in which a logic represents complex timing issues. The last problem involves
trains moving gradually along a track, with agents cooperating to influence where
the trains move to. This will allow us to see both multiple agents cooperating and
a complex timing issue of gradual change.

In this chapter the problems will be introduced and formalised, then at the
end of the following chapters these problems will be revisited in the context of
the logic discussed in that chapter. We are especially interested in the strategies
and decisions of multiple agents working together, as well as the structure of time
which best suits each puzzle.
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3.1. THE BANKER’S ALGORITHM

Note that the formal parts of the problems are very basic, and is purely for the
sake of clarifying the problem to the reader. These problems will be represented
in different ways by the different logics in later chapters.

3.1 The Banker’s Algorithm

The classic banker’s algorithm was introduced by Dijkstra (1982). It is based on
the idea of a banker lending out money to a group of people who need different
amounts to accomplish different things. The banker does not have enough to lend
out to everyone according to their need, so instead he chooses certain individuals
to lend to, until they complete their tasks and pay back the money, so that the
banker can then lend to the others, and so on, until everyone has accomplished
what they needed to and paid back to the banker. The puzzle is an analogy for
resource allocation on computer systems. The dangerous part comes when the
banker carelessly lends out only a bit to everyone, so that the banker runs out of
money, while no one has enough to accomplish their task and pay back.

More formally, we have a non-empty set of N processes P , where each process
pi is engaged in some task for which it needs a number of units from a shared pool
of resources to complete. All the processes share the same pool of resources, and
all units of the resource are equivalent. A process may borrow one or more units
from the pool and add it to their loan loan(pi), or a process may return one or
more units from their loan to the pool. A process may not borrow more than it
needs need(pi), nor return more than it has loaned. There is a limited number of
units in the pool. The total number of units in the system is called cap, while the
units currently in the pool is called cash, such that:

0 ≤ cash ≤ cap

Each process starts with some loan amount, which can be zero, and some need
amount, which must be less than or equal to the cap or else that process would
never be able to finish. Thus:

0 ≤ loan(pi) ≤ need(pi) ≤ cap

Once the process is able to loan up to its need, it completes its task and returns
the loan. The units in the pool (cash) is also given by:
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3.1. THE BANKER’S ALGORITHM

cash = cap −
N

∑
i=0

loan(pi)

An example of a potential dangerous state for two processes is as follows:

need loan
p0 2 1
p1 3 2

cap cash
banker 3 0

We see that none of the original 3 units are left in the pool. Process 0 needs 2
units, but has loaned only 1, while process 1 needs 3 units, but has loaned only 2.
Since neither of the two processes can complete their tasks to return their loans,
and since the banker is out of money, the system is stuck in this state. This is
called deadlock, and is an undesirable state. If the banker had loaned 2 units to
process 0, it would have been able to finish and return those 2. The banker could
also have loaned all 3 units to process 1, which would have finished and returned
those units.

Dijkstra (1982) defines a safe pattern of loans as when “a granting strategy
exists such that it can be guaranteed that all (current and future) requests can be
granted within a finite period of time”.

The banker’s algorithm involves the banker evaluating every possible loan and
only granting it in a safe order. We first introduce the idea of a claim, which is
the amount of units the process still needs before it can finish and return units:

claim(pi) = need(pi) − loan(pi)

If we put all the processes in some order, called a permutation, from 0 to N,
the key expression in the banker’s algorithm is then:

∀i ∶ 0 ≤ i < N ∶ claim(pi) ≤ cash +
i−1

∑
j=0

loan(pj)

If this expression holds for a specific permutation, the pattern is safe. The
expression claims that the need of any given process is less than or equal to the
units in the pool and the sum of all the loans of all the processes before it. If
the banker gives out loans in this order, starting with process p0 and ending with
process pN−1, each process will be given enough to finish its task and return its
loan.
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3.2. THE SLEEPING BARBER PROBLEM

The rest of the banker’s algorithm deals with reordering the processes until the
above expression holds (see Dijkstra, 1982). We will use this puzzle, but instead of
the banker making decisions, we will recast it as the processes helping themselves to
the pool, but making sure that they do not take so much that they cause a deadlock
1. We thus have multiple agents taking decisions on when to take resources and
how much to take. We have clear goal states, all agents accomplishing their tasks,
and clear deadlock states, when no one is able to accomplish their task and the
pool is empty. Time can be viewed as discrete, when in every state an agent can
decide to take resources, and once an agent has enough, it will return its loan on
the next state. Time can also be viewed as continuous, when an agent decides to
take a loan after another agent has returned their loan, or before another agent
takes a loan.

We now turn from a classic puzzle to a less known but also very interesting
one.

3.2 The Sleeping Barber Problem

The sleeping barber problem is first found in (Dijkstra, 1968), where Dijkstra
simply states:

“There is a barbershop with a separate waiting room... When the barber has
finished a haircut, he opens the door to the waiting room and inspects it. If the
waiting room is not empty, he invites the next customer, otherwise he goes to
sleep in one of the chairs in the waiting room. The complementary behaviour of
the customers is as follows: when they find zero or more customers in the waiting
room, they just wait their turn, when they find, however, the Sleeping Barber...
they wake him up.”

The problem seems simple enough, the barber will continue cutting people’s
hair until there are no more customers, then go to sleep until the next customer
arrives and wakes him. This is an analogy to certain systems in computer science,
which shut down when there are no further tasks, to save resources, and only wakes
again when the next task is received.

There exists some dangerous states. Take for example the situation where a
single customer checks and sees the barber cutting hair, then goes to take a seat,
but before he is able to take a seat the barber finishes and checks the seats, sees
they are empty, and goes to sleep. The customer will not wake the barber since
he is still watching the door waiting for the barber to finish and come call him,
while the barber will be sleeping next to him. If no new customers come in, the

1Recasting the problem in this way, where the banker is no longer a decision making entity,
makes it very similar to the Generalised Dining Philosophers problem, recently modelled and
studied in De Masellis et al. (2019).
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3.2. THE SLEEPING BARBER PROBLEM

single customer will be waiting forever, never getting his hair cut. This state is
called starvation, and similar to deadlock, should always be avoided. There are
a few such situations which might arise in our barbershop if the customers and
barber all follow their scripts perfectly and don’t look around. All these situations
are caused by events taking varying amounts of time, and some events finishing
before they were expected to finish. The barber finishing the haircut and checking
the chairs while the customer still walks to the chair is unexpected, but since we
don’t know the time any of these events take, we must design a system which will
avoid Starvation regardless of how fast or slow different events are.

The following figure shows the various states which the barber and customer
can be in. Note that the dangerous state occurs when the customer enters and sees
the barber is busy, and while transitioning to the Waiting state but before reaching
it, the barber finishes and sees there are no waiting customers. The barber then
transitions to the Sleeping state, and remains there while the customer remains in
the Waiting state.

Figure 3.1: The Sleeping Barber Problem

There have been numerous solutions suggested to the problem, some of which
may be found in Downey (2008). The most common solution is to restrict the
barber and customers to a system where only one of them may change state at a
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3.2. THE SLEEPING BARBER PROBLEM

time. Thus while the customer goes from “Seeing the barber is cutting hair” to
“sitting down on a chair”, the barber is not allowed to finish the haircut or do
anything else. Once the customer is seated, the barber may finish the haircut and
check for more customers. This kind of solution often uses a mutex lock, a sort of
mechanism that a process can acquire. There is only one lock, so only one process
can have it at a time, and must release it when done before another process can
acquire it. A process can only change state if they have the lock. So if the barber
wants to finish cutting hair, he must first try to grab the lock, and if the lock is
unavailable he must wait for it. Only once the lock becomes available can he grab
it and then finish up the haircut and check for more customers.

This problem is interesting since it involves many agents making decisions as
well as unknown periods of time, where the relations between the periods of time
are very important. In a discrete system, each action may take multiple states.
Thus it might take 4 states for the customer to see the barber is busy and take a
seat, while the barber might finish the haircut in the next state and then take 2
states to check outside and see the chairs are empty.

Formally the problem for N number of waiting chairs can be represented by
N +1 variables indicating the state of a chair, and one Boolean variable indicating
the state of the barber. The N waiting chair variables, numbered 1 to N , are
written in the form Chair1 = Alice or Chair2 = Empty. The barber may also
sleep in a chair, written as Chair3 = Barber. A special chair is the barber’s
chair, where the customer sits when getting a haircut, numbered as 0 and written
Chair0 = Bob, thus the N+1 chairs in total. One last variable is a Boolean showing
the state of the barber, called BarberBusy. If the barber is busy cutting hair it
is true, otherwise it is false.

A new customer walking in would check BarberBusy and if true, take the next
seat from 1 to N which is empty. If BarberBusy is false, the customer will search
the chairs for the barber and wake him, then go get their hair cut. If the barber
finishes a haircut, he will look at the first chair and if it is empty he will pick a
random chair and go to sleep, if it is not empty he will take the next person for a
cut and all customers shift one chair on.

The dangerous state then comes when the customer sees BarberBusy = true
and chair1 = empty, and goes to sit down on the first chair. Before the customer
finishes this, while chair1 = empty, the barber finishes, sets BarberBusy = false
and checks the chairs, sees they are all empty, then goes to sleep in one of the
other chairs. After this the customer sits down in the first chair, and never gets a
haircut.

Having considered two classical Dijkstra problems, we now turn to a unique
problem involving trains.
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3.3. THE TRAINS PROBLEM

3.3 The Trains Problem

This scenario involves trains of different colours, running on the same track, each
train heading for the station of its own colour, and not the stations of other
colours.2 A group of agents run around changing the settings on various crossroads
to try to facilitate this. The trains have a common starting point, a tunnel, from
which they emerge one after the other, with some time period in between, and
then start moving along the track. The trains have no steering ability, and simply
follow the track at a constant speed hoping to arrive at the destination. The tracks
connect on crossroads, and each crossroad is in a specific setting. The setting on a
crossroad will determine which way the train goes when it heads over the crossroad.
The agents have to manually run to a crossroad and pull a switch to change the
setting. This becomes hard when the red train needs to go left, the blue train
right, then the green train left again, and all three are right behind one another.
The conductor would need to make sure the crossroad is in a left setting, then
pull the switch as soon as the red train has crossed and before the blue train does,
and then pull the switch again once the blue train has passed and before the green
train. If there are more crossroads than agents, it becomes necessary for the agents
to plan ahead and work together so that there is always someone at the crossroad
when there needs to be.

Formally we have a set T of n trains ti, and a corresponding set S of n stations
sj, where each train must go to the station where i = j. We have a set R of rail
pieces rk and a set C of crossroads cl. We also have a set A of agents. We have
five mapping functions:

• location ∶ t ∈ T → r ∈ R ∪ c ∈ C ∪ s ∈ S which maps each train to its current
location on either a piece of rail, a crossroad or a station.

• agentLocation ∶ a ∈ A → c ∈ C which maps each agent to the crossroad it is
currently at.

• connection ∶ (r ∈ R) → (r ∈ R) ∪ (c ∈ C) ∪ (s ∈ S) which maps each piece of
rail to the next piece of rail, crossroad or station which it connects to.

• crossConnection ∶ c ∈ C → P(R) which maps each crossroad to all the rail
pieces it can potentially connect to, where P denotes the power set.

• setting ∶ c ∈ C → r ∈ R which maps each crossroad to its current setting for a
single rail piece.

2This puzzle was inspired by the entertaining Train of Thought game by Lumosity on
www.lumosity.com.
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3.3. THE TRAINS PROBLEM

Note that this very basic formalisation would allow multiple trains on a single
track, and would have no way of ordering them for that track. The different
logics in later chapters have different ways of addressing this problem, so it is not
addressed here.

The following figure shows one possible layout for a situation involving four
trains and four stations, two agents (Alice and Bob), three crossroads and seven
pieces of railroad. Note that the triangles pointing up are trains, while the triangles
pointing down are agents. This convention will be kept to for other figures of the
train problem in this dissertation.

Figure 3.2: Example of a Train Problem

A train reaching the end of a rail will arrive on the next rail as determined
by connection(currentrail). Note that a rail only ever connects to a single other
rail, crossroad or station, while a crossroad can potentially connect to every rail.
A rail only runs in one direction, we do not have to be concerned with head on
collisions. However the possibility exists of a crossroad connection to an earlier
rail and forming a circular route. Agents are only ever at crossroads, and take a
period of time to move from one crossroad to the next. An agent has to be at a
crossroad to change the setting for that crossroad. When a train finally arrives at
a station, it remains there until the end.

The timing of how long it takes a train to move to the next rail piece, and

27

 
 
 



3.3. THE TRAINS PROBLEM

how long it takes an agent to move from one crossroad to the next, is all for the
respective logics to represent. This will also influence how the issue of multiple
trains on a single track is addressed. The dangerous states we must avoid is when
a train arrives at the wrong station, while the goal state is that every train arrives
at its station.

A continuous time model seems most natural here, since we are reasoning
about trains gradually travelling along variable length tracks. A discrete time
model will involve breaking up the rail pieces into smaller pieces, so that in every
state transition, a train may advance one piece, and an agent may take some set
amount of state transitions to move from one crossroad to the next.

With these three puzzles, we will be able to compare the logics and see how
they represent various situations, and how easy or hard it is to reason effectively
about a situation in each logic.
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Chapter 4

Alternating-time Temporal Logic

ATL was introduced by Alur et al. (2002) for temporal reasoning about open
multi-agent systems. The semantics of ATL is defined over multi-agent transition
systems, which are systems consisting of at least two agents, each with its own goals
and action types, who must cooperate or compete, and whose actions advance the
state of the system. The system has many states, and a transition from one state
to another occurs when the agents carry out their chosen actions. The agents all
take their actions at the same time.

In the original paper (Alur et al., 2002), ATL is introduced as an alternative to
linear-time temporal logic which has universal quantification over all possible paths,
and branching-time temporal logic which uses existential and universal quantifiers
for the paths. The concurrent game model of ATL is presented as a game between
the system (agents taking actions), and the environment (the states, effects of
those actions), where the system and environment alternate turns. ATL and its
extension ATL* have “gradually become the most popular logical formalism for
reasoning about strategic abilities of agents in synchronous multi-agent systems”
(Goranko et al., 2018).

This chapter will start by considering the syntax and semantics of ATL, fol-
lowed by a section looking at the problems from the previous chapter from the
perspective of ATL. Following this will be a chapter covering a related logic and a
chapter covering the extensions of ATL.

4.1 Syntax and Semantics

4.1.1 Concurrent Game Models

While logics like LTL and CTL are interpreted over Kripke structures, ATL uses
a different model called a concurrent game model. Recall the strategic game from
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4.1. SYNTAX AND SEMANTICS

section 2.1.5, where each of the agents chose an action which then led to a payoff.
One can decide to play this game multiple times, where each time the combined
actions of the agents lead to the next state instead of ending the game and de-
termining winners and losers. As before, every agent chooses an action, and the
corresponding action profile determines the outcome. Now instead of stopping
the game there, the outcome determines the state in which the next turn starts,
where agents now repeat the process. Depending on the outcome of the previous
turn, new actions might now be available to agents, and some old actions might no
longer be valid. This game can then go through many turns before finally ending,
or never end. An example of this is the classic board game Diplomacy, where all
players take their turns simultaneously by writing their moves in secret on pieces
of paper, which are then revealed at the same time and all moves made according
to the papers. There is also a variant of chess, called Simultaneous Chess, which
follows the same principle. Concurrent game structures (CGS) and concurrent
game models (CGM) allow us to represent these kinds of situations. Bulling et al.
(2015) provides a definition of both a CGS and a CGM, which we can see here:

A concurrent game structure (CGS) is defined as a tuple M =
(Agt,St,Act, act, out) where:

• Agt is a nonempty finite set of agents.

• St is a nonempty finite set of states, the system is in one state per turn.

• Act is a nonempty finite set of actions which can be performed.

• act is a function which assigns to each agent the list of actions available to
that agent in a specific state, since not all actions are available to every agent
in every state. It is defined as act ∶ Agt × St→ P(Act) ∖ {∅}

• out is an outcome function out(q, x1, x2, ..., xk) that assigns a new succes-
sor state in St to each combination of current state q and action profile
(x1, x2, ..., xk), defined as

out ∶ St × ∏
a∈Agt

xa → St

where the Pi notation signifies the Cartesian product of the set of actions,
one for each agent.

A concurrent game model (CGM) is defined in a similar way, but with the
addition of a set of atomic propositions Prop and a labelling function V ∶ St →
P(Prop), which maps each state to the set of atomic propositions which are true
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4.1. SYNTAX AND SEMANTICS

in that state. This is according to Bulling et al. (2015), but there are variations
on this. Two variations to take note of will also be presented here.

In the original paper, Alur et al. (2002) define a concurrent game structure in a
similar way to Bulling et al.’s concurrent game model. There are some differences
though. The Alur et al. (2002) definition for a concurrent game structure is as
follows:

M = (k,Q,Π, π, d, δ)
where:

• k is the natural number of players or agents, numbered 1 to k. This is similar
to Bulling et al.’s Agt, but is simply a number instead of a set of agents. This
changes some of the formal definitions for the other functions, but works in
a similar way.

• Q is the set of states similar to St.

• Π is set of propositions similar to Prop.

• π is the labelling function similar to V .

• d is called the move function, but is similar to Bulling et al.’s act.

• δ is the transition function similar to out.

One can note that the CGS from Alur et al. (2002) does not have the set of
available actions Act which the CGM from Bulling et al. (2015) has.

Another important formulation of a CGM comes from Goranko et al. (2018)
where such a model is defined as follows:

M = (Agt,St,Π,Act, d, o, v)

where:

• Agt,St,Act are the same as in Bulling et al.’s CGS.

• Π is the same as in Alur et al.’s CGS and similar to Prop in Bulling et al.’s
CGM.

• d is similar to act from Bulling et al.’s CGS.

• o is similar to out from Bulling et al. and δ from Alur et al.

• v is similar to V from Bulling et al. and π from Alur et al. Though it is
defined v ∶ Π→ P(St) which is the reverse of how it is defined by Bulling et
al..
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4.1. SYNTAX AND SEMANTICS

Thus there are many ways of defining a concurrent game structure and a con-
current game model. The principles are the same however. A list of agents and
a list of states are given. In each state the agents all take actions simultaneously
which affect what the next state will be. Going forward in this chapter, a CGM
with the following formulation will be used:

M = (Agt,St,Π, π,Act, act, δ)

where:

• Agt is a nonempty finite set of agents.

• St is a nonempty finite set of states.

• Π is a nonempty finite set of atomic propositions.

• π is a labelling function mapping each state to the set of atomic propositions
which are true in that state, formally π ∶ St→ P(Π).

• Act is a nonempty finite set of actions.

• act is a function which for a given agent and a given state returns the actions
available to that agent in that state, formally act ∶ Agt×St→ P(Act) ∖ {∅}.

• δ is a transition function which for a state and set of actions (x1, x2, ..., xk)
taken by the agents returns the next state.

δ ∶ St × ∏
a∈Agt

xa → St

Where the Pi notation signifies the product of the set of actions, one for each
agent.

As a clarifying example of the usage of the CGM, consider two cats, Alice and
Bob, sitting on either ends of a table, with an expensive pot standing between
them. Alice is sitting on the left and Bob on the right of the table, where left and
right is seen from the perspective of a viewer from the front and not relative to
the cats. The cats have the option to either sit still, or swipe at the pot, which
will move it. A cat can swipe to the left or to the right, moving the pot to the left
or to the right, all still relative to the viewer from the front. The pot can be in
one of four states, near Alice, near Bob, in the centre of the table, or on the floor,
broken into many pieces. If the pot is near Alice, she can swipe it left to make it
fall to the floor, or swipe right to move it to the centre, while Bob cannot reach it
that turn, and vice versa. If the pot is in the middle, either cat can push it to the
other cat if they swipe towards it, but have no effect if they swipe away from it.
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Figure 4.1: CGM Example with Two Cats

If both cats swipe at a central pot, it remains in position. Once the pot is on the
floor, neither cat can do anything.

Formalised as a CGM, it would look like the following:
M = (Agt,St,Π, π,Act, act, δ)

• Agt = {Alice,Bob} the two cats.

• St = {Left,Centre,Right,F loor} indicating the position of the pot.

• Π = {PotF loor,PotCentre,PotRight,PotLeft} where one will be true and
the other three will be false for any given state.

• π(Left) = {PotLeft,¬PotRight,¬PotCentre,¬PotF loor} is an example of
the labelling for the Left state, with similar definitions for the other three
states.

• Act = {SwipeLeft, SwipeRight,DoNothing} the actions which the cats can
do.

• act(Alice,Centre) = {SwipeRight,DoNothing} is an example of the actions
which Alice can do if the pot is to the right of Alice (in the centre of the table).
She can only swipe right to push it further, not left. Similar definitions for
all other combinations of agents and states.

• δ(Left,{SwipeLeft,DoNothing}) = Floor is an example of the transition
when the pot is in front of Alice and she swipes it left off the table and Bob
does nothing. In this case, in the next state the pot will be in pieces on the
floor. Note that the chosen action for Alice is first, followed by the chosen
action for Bob. Similar definitions for all other combinations of states and
action profiles.

Having considered the CGM over which a formula is interpreted, we now turn
to the formulæ themselves.
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4.1.2 Syntax

Let Π be a set of atomic propositions with p ∈ Π and let Agt be a set of agents
with A ⊆ Agt being a coalition. Then the syntax of an ATL formula ϕ is given as:

ϕ ∶∶= p ∣ ¬ϕ ∣ ϕ1 ∨ ϕ2 ∣ ≪ A≫Xϕ ∣ ≪ A≫ Gϕ ∣ ≪ A≫ ϕ1Uϕ2

where ≪ A ≫ is the path quantifier, and is read as “the coalition A has a
strategy”. TheX symbol is the next operator, whileG is the always operator. Note
that Alur et al. (2002) represents the next operator with ◯ and the always operator
with ◻, but we will use X and G to be consistent with most other formulations.
The U symbol is the until operator. The path quantifier (≪ A≫) together with a
temporal operator (X, G or U) indicate that the coalition has a strategy to make
that formula true at that time.

Similarly to CTL, the eventually operator F (called ◇ by Alur et al. (2002))
can be derived as follows:

≪ A≫ Fϕ ∶= ≪ A≫ ⊺ U ϕ

Where ⊺ means true.

4.1.3 Semantics

The evaluation of an ATL formula ϕ on a state q of M , where M =
(Agt,St,Π, π,Act, act, δ) is a concurrent game model, written as q ⊧ ϕ, is in-
ductively defined as follows (this semantics is based on Alur et al. (2002), but
symbols have been changed for consistency with the syntax above):

• q ⊧ p, for all propositions p ∈ Π, iff p ∈ π(q).

• q ⊧ ¬ϕ, iff q ⊭ ϕ.

• q ⊧ ϕ1 ∨ ϕ2, iff q ⊧ ϕ1 or q ⊧ ϕ2.

• q ⊧≪ A ≫ Xϕ, iff there exists a set of strategies SA, one for each player in
A, such that for all computations λ ∈ δ(q, SA), we have λ[1] ⊧ ϕ.

• q ⊧≪ A≫ Gϕ, iff there exists a set of strategies SA, one for each player in A,
such that for all computations λ ∈ δ(q, SA) and all positions i ≥ 0, we have
λ[i] ⊧ ϕ.

• q ⊧≪ A ≫ ϕ1Uϕ2, iff there exists a set of strategies SA, one for each player
in A, such that for all computations λ ∈ δ(q, SA), there exists a position i ≥ 0
such that λ[i] ⊧ ϕ2 and for all positions 0 ≤ j < i, we have λ[j] ⊧ ϕ1.
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Recall from chapter 2 that λ is called a path, and refers to a sequence of states.
Also recall that a strategy Sa is a function which for every state and for a specific
agent a returns an action that agent will do in that state, while SA is similar but
for the coalition A.

4.1.4 ATL*

It is important to note that there also exists a version called ATL*, where a
distinction is made between state formulae and path formulae. A state formula is
evaluated on a specific state, while a path formula is evaluated on an entire path
or play. The syntax is as follows:

State Formula: ϕ ∶∶= p∣¬ϕ∣ϕ ∨ ϕ∣ ≪ A≫ ϕ
Path Formula: Φ ∶∶= ϕ∣¬Φ∣Φ ∨Φ∣XΦ∣ΦUΦ

ATL is a simpler fragment of ATL* which uses only state formulae.
To see how this syntax and semantics are used in practice, the following section

represents our three problems in ATL.

4.2 Problems

4.2.1 The Banker’s Algorithm

This problem will be approached from the perspective of the agents who are bor-
rowing resources, rather than from the perspective of the banker. The agents
must decide among themselves when and how much to borrow, and come up with
a strategy for avoiding deadlock. Each turn, an agent can either take the bor-
row action, for a specific amount, or the waiting action. It would be helpful to
represent numbers here, such as the need or loan, but in keeping with the CGM
formulation, this must be represented as atomic Boolean propositions. We will
have propositions for loan(Alice)=5 and loan(Alice)=4 and loan(Alice)=3, and so
on for each possible value. These mean that Alice has taken a loan of 5, 4, and
3 respectively. Only one of these propositions should be true at a time. Three
agents will be taking loans, Alice, Bob and Charlie. I am not aware of any other
representations of the banker’s algorithm in ATL.

The concurrent game model will be as follows:

M = (Agt,St,Π, π,Act, act, δ)

where:

• Agt = {Alice, Bob, Charlie} are the three agents.
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• St = {q0, q1, q2, ..., qn} to represent all possible states, specifically St = P(Π).

• Π = {cash=6, cash=5, ..., loan(Alice)=6, loan(Alice)=5, ..., loan(Alice)=0,
loan(Bob)=6, ..., loan(Charlie)=6, ..., need(Alice4), need(Bob6),
need(Charlie3)} are our propositions, where cash and loan are vari-
ables, which can change after every round, and thus need a proposition for
every possible value. All the loan propositions start as false except for the
loan(agent)=0 ones, while all the cash propositions start as false except
for cash=6, the starting amount in the bank. The three need propositions
start out true, but will become false once an agent has borrowed enough
to complete their task. For convenience we have included the amount each
agent needs in the name, thus Alice needs 4 units, Bob needs 6 units and
Charlie needs 3 units.

• π = the labelling function.

• Act = {Borrow(1), Borrow(2), Borrow(3), ..., Borrow(6), Wait} are our
possible actions. For each turn, each agent may choose to borrow an amount
or to wait.

• act= the function mapping for each state and each agent the actions available
to that agent in that state. For this problem, no restrictions will be imposed
here, as agents attempting to borrow more than what is in the pool will be
dealt with by the transition function, where that attempt simply fails.

• δ = the transition function. If all agents wait, nothing changes. If agents
attempt to borrow cash from the pool, if the sum of all attempts is less than
the total in the pool, all agents succeed, and the system advances to a state
where the cash proposition is now less by the appropriate amount, and each
agent’s loan is more by the appropriate amount. If the agents attempt to
borrow more than what is in the pool, they all fail, and instead the system
advances as if they had chosen wait, and nothing changes. If an agent’s loan
equals their need, in the next state that agent’s need proposition becomes
false, and they only take the wait action afterword, their loan becomes 0,
and what was borrowed is added again to the cash proposition, thus the loan
is returned.

Here are some examples of formulæ that can be written:

• G ¬(loan(Alice) = 6 ∧ loan(Bob) = 6) Both Alice and Bob will never be
able to borrow 6 units each at the same time, as the total pool contains only
6 units.
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• (loan(Alice) = 4 ∧ need(Alice4)) → (X(loan(Alice) = 0 ∧ ¬need(Alice4))
If Alice has loaned the amount she needs, immediately thereafter she will
return the loan and no longer need anything.

• ≪ A≫ (loan(Alice) = 2 ∧ loan(Bob) = 2 ∧ loan(Charlie) = 2) The coalition
A consisting of Alice, Bob and Charlie has a strategy to ensure they each get
a loan of 2 units. This is a simple strategy involving them each attempting
to borrow 2 units, and thus all succeeding. It is a dangerous strategy though,
which will result in deadlock.

Deadlock must be avoided, which is when the pool has been depleted and there
are still agents which have needs and no agents able to finish their tasks. The pool
might become depleted in one turn, and the agent only completes their task and
returns the resources in the next turn. If there is a depleted pool, and in the
next turn the pool is still depleted, then the system must be in deadlock, since no
agents completed their tasks. Or in an ATL formula:

cash = 0 ∧ Xcash = 0

If the agents can avoid this formula from becoming true, they can avoid dead-
lock. Technically for the banker algorithm deadlock also includes the state where
there are some resources left in the pool, but not enough for any agent to borrow
and complete their task, but for simplicity a stricter definition will be used here
which requires the pool to be empty for two consecutive turns. If there are still
units left in the pool, the agents can still attempt to borrow, even though it won’t
be enough. The goal of the banker’s algorithm is to allocated resources among the
agent in such a way that they may all finish their work, which can be represented
by the following formula:

¬need(Alice) = 4 ∧ ¬need(Bob) = 6 ∧ ¬need(Charlie) = 3

The discrete time model of ATL is well suited to this problem, since the time it
takes to make a loan or the time to pay back a loan is not relevant, instead events
are instant and we only care about the order in which they happen. The multiple
agents working together can also very naturally be represented in ATL.

4.2.2 The Sleeping Barber

This time Alice, Bob and Charlie will be getting a haircut. The main problem with
ATL and the Sleeping Barber problem, is the time model. The Sleeping Barber
problem depends on the fact that certain processes might be faster or slower than
others, and finish at certain times. This cannot accurately be represented in ATL,
since it was not made for such problems. A random feature will be added to the
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transition function, where an action has a chance to fail and instead the agent
only takes the wait action for that turn, and in the next turn attempts that action
again. This will allow some agents to finish actions and move on before others.
There will be a few positions each agent can occupy. There are 3 waiting chairs,
called c1, c2 and c3. There are the enter and cut positions, an agent entering the
shop will be in the enter position from where they will check the status of the
barber, while an agent getting a haircut and the barber giving a haircut will both
be in the cut position. There are also the goToCut, goToWait and goToSleep
positions, which involves going to the barber’s chair, or going to wait or sleep in
either of c1, c2 or c3. It is in these goTo positions where an agent might randomly
stay for 2 or 3 turns before succeeding, and where various agent can overtake each
other, thus leading to the Sleeping Barber problem.

The concurrent game model will be as follows:

M = (Agt,St,Π, π,Act, act, δ)

Where:

• Agt = {Alice, Bob, Charlie, Barber} are our four agents.

• St = {q0, q1, q2, ..., qn} to represent all possible states, specifically St = P(Π).

• Π = {barberSleepC1, barberSleepC2, barberSleepC3, barberCut,
barberGoToSleep, barberGoToCut, aliceEnter, aliceWaitC1,
aliceWaitC2, aliceWaitC3, aliceCut, aliceGoToWait, aliceGoToCut,
aliceOutside, bobEnter, ... charlieEnter, ...} are our propositions. Only
one of the barber statements, and one of each agent statement, can be
true at a time. These all indicate the current position of that agent. All
customers start outside and enter at random times.

• π = the labelling function.

• Act = {Cut, GoToCut, Wait, GoToWait, Sleep, GoToSleep, WakeBarber,
GoToWakeBarber} are our possible actions. For example, if the barber is
done cutting hair, and there are no more customers waiting in the chairs, he
takes the GoToSleep action, which in the next state makes barberGoToSleep
true and barberCut false. After this he continues to take the GoToSleep
action each turn until it succeeds, which might be a few turns, and then
barberGoToSleep becomes false and barberSleepC2 becomes true (an empty
chair is randomly chosen once the GoToSleep action succeeds).

• act the function mapping for each state and each agent the actions available
to that agent in that state. Agent actions are predetermined according to the
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rules laid out in the introduction for this problem, and there are no choices
to be made by the agents. This function will thus return the one action
available to that agent, and that agent will take it.

• δ the transition function. The key here is the randomness which can cause
agents to be out of sync with each other. Before an agent can take an action,
it must take the associated GoTo action to get into a position where it can
take that action, and this might take a few tries. While in the goTo state,
the agent is not looking around and changing strategy, but is continuing to
attempt that action each turn. Some actions also require randomness when
they succeed, such as which chair to wait or sleep on.

An example formula that will be true during a busy day at the barbershop
might be:

barberCut ∧ aliceCut ∧ bobWaitC3 ∧ charlieWaitC1

Perhaps in the quiet afternoon, the barber goes to sleep, thus:

barberSleepC1 ∧ aliceOutside ∧ bobOutside ∧ charlieOutside

An example of a starvation situation will be if the barber is sleeping and a customer
is waiting:

barberSleepC1 ∧ charlieWaitC3

Generally a customer will starve if they are waiting forever to be cut, or:

G charlieWaitC1 ∨ G charlieWaitC2 ∨ G charlieWaitC3

The goal then is to avoid starvation of any of the agents, or to avoid the following:

(G(AliceWaitC1 ∨AliceWaitC2 ∨AliceWaitC3) ∨
G(BobWaitC1 ∨BobWaitC2 ∨BobWaitC3) ∨
G(CharlieWaitC1 ∨CharlieWaitC2 ∨CharlieWaitC3))

or alternatively

F (AliceCut) ∧ F (BobCut) ∧ F (CharlieCut)

The idea of a coalition strategy does not really come up here, since there is
only ever one action available to each agent, and thus they cannot have strategies.
A difficulty here is also the randomness, which makes it much harder to predict
certain outcomes. The randomness is needed however to ensure agents can overtake
each other, something not possible in ATL otherwise. The formula XBobCut
does not follow from BobGoToCut, but FBobCut does, since the action should
eventually randomly succeed, but it is not known when. ATL does not seem to be
designed for these types of problems.
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4.2.3 The Trains Problem

Figure 4.2: An Example of the Trains Problem

The figure shows a train track, divided into 20 sections, T01-T20. On the track
there are 4 trains of different colours, each on its own piece of track, and 4 stations
of matching colours. There are 3 crossroads, C1, C2 and C3 connecting pieces
of track together. Lastly there are 2 agents, Alice and Bob, who are standing at
different crossroads. A crossroad can be in of two settings, C2 for example can
connect T14 to either T15 or T16. The initial settings for crossroads are shown by
the filled section of the crossroad, T08 to T12, T14 to T16 and T17 to T19. The
agents can only be at crossroads, and only at one crossroad at a time.

In this example, the trains will be moving, one piece of track every state change,
or turn. If a train is on a piece of track just before a crossroad, in the next state it
will be on the next piece of track that crossroad is connecting to. Trains can only
move forward and cannot stop. Alice and Bob can pull levers to switch the setting
for a crossroad, or they can move to another crossroad, both actions taking one
state change. The idea is that each train should eventually reach the station of
its colour, and not a station of a different colour. The agents Alice and Bob must
work together to move between crossroads and pull levers to get the trains to the
right places.
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The concurrent game model will be as follows:

M = (Agt,St,Π, π,Act, act, δ)

• Agt = {Alice,Bob} are our two agents.

• St = {q0, q1, q2, ..., qn} to represent all possible states, specifically St = P(Π).

• Π = {yellowTrainT01, yellowTrainT02, ..., yellowTrainT20,
blueTrainT01, ..., blueTrainT20, redTrain..., greenTrain..., aliceC1,
aliceC2, aliceC3, bobC1, bobC2, bobC3, T08C1T12, T08C1T09, T14C2T15,
T14C2T16, T17C3T18, T17C3T19} are our propositions. The train
propositions refer to their current positions on a piece of track, the alice
and bob propositions refer to their current positions on one of the three
crossroads, the T..C..T.. propositions refer to the setting of the crossroads,
so T14C2T16 will mean that T14 is connected to T16 through crossroad
C2. These are all the possible propositions in this example, a set will be
made out of a set of these propositions which are true in that state.

• π = The labelling function.

• Act = {FlipSwitch, TravelToC1, TravelToC2, TravelToC3} are our possible
actions.

• act the function mapping for each state and each agent the actions available
to that agent in that state. FlipSwitch will always be available regardless of
the state, but only 2 of the 3 TravelTo actions will be available depending on
which crossroad an agent are currently at. For example, if Alice is at C1, it
is represented as actalice(q) = {FlipSwitch, TravelToC2, T ravelToC3} with
aliceC1 ∈ π(q).

• δ the transition function. In producing the next state, each train will be
moved one track section forward. If a train was on T05 it will be on T06
in the next state. If a train is at the track just before a crossroad, it will be
on a track just after the crossroad depending on the current setting of the
crossroad. If a train is on the track just before a station, it will remain there
forever, since it has arrived. If Alice or Bob attempt to TravelTo a crossroad,
they will be at that crossroad during the next state. If Bob or Alice attempt
to FlipSwitch, the crossroad will be in a different setting during the next
state. Since every crossroad only has 2 settings, there is no need to specify
to what setting the switch is flipped.

41

 
 
 



4.3. EXTENSIONS OF ATL

From here ATL formulæ can be written. If we take the coalition ≪ A ≫=
{Alice,Bob}, we can write:

≪ A≫X blueTrainT08

meaning that the coalition has a strategy to move the blue train to track 8,
which will be true in the initial state q0 regardless of what Bob and Alice decide
to do since the blue train will move into that space in the next turn.

≪ A≫ G bobC2

which might be true in q1 if Bob decides first to travel to C2 during q0, and
then to stay there forever. The goal will be

≪ A≫ (F blueTrainT15 ∧ F greenTrainT20 ∧ F redTrainT11 ∧ F yellowTrainT18)

We see that ATL allows us to represent a dynamic system. The concurrent
game model of ATL was originally introduced as a game between the system
(agents) and the environment, alternating moves between each other (Alur et al.,
2002). This is where the Alternating-Time part of the name comes from. On the
one side we have a system of agents who can take actions to move themselves to
a different location or move the switch on a crossroad. On the other side we have
the environment moving the trains along each turn. This problem would of course
be very easy if the trains could stop, in which case they would simply stop in front
of a crossroad and wait until it can be changed correctly. The challenge of this
game lies in the fact that the agents have a limited amount of time, and if they
are unable to change a crossroad in time, a train would be on the wrong track.
While we can represent the agents and their strategies, we cannot capture the
gradual nature of smooth movement along a track. We had to divide each track
into segments to accommodate the discrete nature of the ATL time model.

We will now consider some extensions of ATL. 1

4.3 Extensions of ATL

While ATL is an expressive logic, it has some shortcomings. Over the years many
extensions of ATL have been introduced to attempt to address these. Bulling
et al. (2015) discusses three limitations and how they have been addressed. Firstly

1The interested reader might also want to have a look at Coalition Logic, introduced by Pauly
(2002) around the same time as ATL. It has been shown by Goranko (2001) that the semantics
of Pauly’s Coalition Logic and ATL are equivalent, and that Coalition Logic can be embedded
in ATL.
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there is the issue of strategic commitment, where an agent may have a strategy
to achieve some goal, yet not be bound by that strategy. Secondly, there is the
issue of strategies not being explicit entities in the logic which relies so heavily on
strategies. Thirdly, there is the issue of incomplete information, and agents not
necessarily having full knowledge of the entire system. We would point out that
an additional possible issue is the inability to reason about gradual changes in
the system or about overlapping actions. Future chapters will explore the logic of
intervals and how it might be combined with notions from ATL in order to address
this last issue. The rest of this section will focus on the various extensions to ATL
which seek to address the three issues pointed out by Bulling et al. (2015). By
considering the various ways in which ATL has been extended in the past, we gain
a better idea of how we might extend it in future.

4.3.1 Strategic Commitment

The semantics of ATL/ATL* does not commit an agent to its strategies. A formula
may be evaluated and it is seen that in the current state the coalition A has a
strategy to make p true at some stage, yet A may never take the actual actions
which will end up making p true. This can become a problem in some situations,
like the following example from Bulling et al. (2015):

Figure 4.3: Example from Bulling et al. (2015)

Consider this single agent system, where 1, 2 and 3 are states and a and b
are actions. Now while in state 1 the agent can take action a to remain in the
same state, or action b to transition to state 2. If it is given that p is true only
at state 2, consider the formula ⟨⟨A⟩⟩Xp, and see that it is true at state 1, since
if the agent A takes action b, p will become true in the next state. Consider also
the formula ⟨⟨A⟩⟩G ⟨⟨A⟩⟩Xp, which states that A has a strategy to always ensure
that it has a strategy to make p true in the next turn, notice that this is also true
at 1, since ⟨⟨A⟩⟩Xp is true at 1 and the agent can choose to take action a each
turn, thus remaining forever in 1. But this is a contradiction, since the agent can
always remain in a state where p is possible the next turn, so long as the agent
never actually takes the action to make p true. As soon as the agent takes action b,
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and transitions to 2, the formula ⟨⟨A⟩⟩Xp is no longer true. Bulling et al. (2015)
remarks: “However, this system does not have exactly the property we had in
mind because by following that strategy, agent [A] dooms itself to never access the
resource [set p to true] - in other words, [A] can ensure that it is forever able to
access the resource, but only by never actually accessing it. Indeed, while [A] can
force the possibility of achieving p to be true forever, the actual achievement of p
destroys that possibility”.

There are two alternatives to deal with this issue:

1. Irrevocable Strategies, which forces commitment to a strategy by not al-
lowing the agent to revoke a chosen strategy. The model is updated when
agents choose a strategy, thus locking them into that strategy. Two exten-
sions of ATL use this method, MATL and IATL, for both memory-based and
memoryless strategies, see Ågotnes et al. (2007) and Ågotnes et al. (2008).

2. Strategy Contexts, proposed by Brihaye et al. (2009), do not change the
model but instead keep track of all the strategies currently selected. Agents
may select strategies, which are added to the context, but can change their
strategies later, which then updates the context. Formulæ are evaluated
with respect to the strategy contexts, thus in a nested formula, if the agent
chooses one strategy in one part and a different strategy in a different part,
the context is updated with only one of the two strategies for that formula.
For more see Troquard and Walther (2012).

Strategy contexts are thus more flexible than irrevocable strategies, and do not
require a change to the model, but add an additional element to keep track of.
Irrevocable strategies require only a simple change to the model, but completely
commit agents to a strategy.

We see that contradictions can arise when agents are not committed to their
strategies. We saw two possible solutions, one modifies the Concurrent Game
Model of ATL, while the other adds the notion of strategic contexts. Part of why
problems arise from the agent’s strategies is that in ATL the notion of strategy is
not explicit. The next section explores this issue further.

4.3.2 Explicit Strategies

Strategies are not explicit entities in ATL, but instead are indirectly included with
⟨⟨A⟩⟩. The concept of a strategy is fundamental to ATL though, as it is the path
quantifier. In most situations which are represented in ATL we are interested in
whether or not some property of the system can be satisfied, which is the core
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purpose of model checking 2. In ATL this is done through talking about the
existence of a strategy of the system. Considering the importance of strategies in
ATL, it therefore makes sense that one might extend ATL by adding strategies as
explicit parts. Many of the extensions to ATL do exactly this. The four extensions
considered by Bulling et al. (2015) will be presented here:

1. Counterfactual ATL (CATL), proposed by van der Hoek et al. (2005),
extends ATL by adding counterfactual operators of the form Ci(σ,ϕ) where
the agent i has a strategy σ which will make a formula ϕ true.

2. ATL with Intentions (ATLI), proposed by Jamroga et al. (2005), is very
similar to CATL, but uses operators of the form (striσ)ϕ where the agent i
has an intention σ which will make a formula ϕ true if acted upon. Intentions
are similar to strategies, but without any commitment and which can be
changed. Another richer variant of this is ATLP (ATL with Plausibility),
proposed by Bulling et al. (2008).

3. ATL with Explicit Strategies (ATLES), proposed by Walther et al.
(2007), is a revised version of CATL which uses a partial function of the
form ρ = {a1 ↦ σ1, ..., ak ↦ σk} where each agent a of k many agents, has a
strategy σ which it must play. The focus here is on the coalition having a
strategy to achieve a certain outcome if each agent in the coalition commits
to its part of the strategy.

4. ATEL with Actions (ATEL-A), proposed by Ågotnes (2006), is an ex-
tension of ATEL which is an epsitemic extension of ATL considered in the
next section. ATEL-A allows reasoning about both agents’ knowledge and
their strategies.

As we can see, making a strategy explicit often also addresses the first issue of
strategic commitment. We also saw that there are many different approaches to
making strategies explicit in ATL. CATL and ATLI add operators, while ATLES
adds a function. CATL and ATLES involve commitment to strategies while the
intentions of ATLI are more flexible, allowing agents to change. ATEL-A not only
makes strategies explicit but also reasons about the often incomplete knowledge
that agents have. The next section will consider more extensions which also involve
agent knowledge.

2Model checking is described by Emerson (2008) as follows: “The model checking problem
is an instance of the verification problem. Model checking provides an automated method for
verifying concurrent (nominally) finite state systems that uses an efficient and flexible graph
search, to determine whether or not the ongoing behavior described by a temporal property
holds of the system’s state graph. The method is algorithmic and often efficient because the
system is finite state, despite reasoning about infinite behavior.”
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4.3.3 Incomplete Information

An unstated assumption in ATL/ATL* is that agents have complete information
on the entire structure of the game and the current state, and with memory-based
strategies it is further assumed that agents have perfect recall of all the past states.
One might want to model a system where this is not the case, where players lack
certain information or have an imperfect recall of past states.

A simple extension to do this, is to add indistinguishability relations to ATL,
which is written as q ∼a q′ to show that agent a is unable to distinguish between
state q and state q′. This allows us to have an agent be unable to distinguish
between a whole set of different states, thus following the same strategy for any of
those states, unaware that something has changed. For memory-based strategies,
if the previous couple of states were all indistinguishable to the agent, the agent
would still be attempting the same strategy it was a few turns ago, unaware of
perhaps major changes taking place in the system. The agent’s knowledge or
awareness of certain propositions can also be indirectly modelled. It can be said
that an agent knows a property p is true in the current state q if p is also true
in all states indistinguishable from q for that agent. Likewise if a proposition p
changes between true and false in a set of indistinguishable states, then the agent
must not be aware of that property, else it would be able to use that proposition
to distinguish between the states.

An extension of ATL which uses indistinguishability relations, is Alternating-
time Temporal Epistemic Logic (ATEL), introduced by van der Hoek and
Wooldridge (2003) as a combination of ATL and Epistemic Logic, in order to
formalise the reasoning about interactions between agents’ knowledge and agents’
strategies.

ATEL is built on the basic relation Kaϕ which means that agent a knows that
ϕ is true. Using indistinguishability relations, the semantics for this can be defined
as follows:

M,q ⊧Kaϕ iff M,q′ ⊧ ϕ for all q′ such that q ∼a q′

In addition we can also have various relations for coalitions of agents. We have
mutual knowledge EAϕ meaning all agents in coalition A know that ϕ is true. We
have common knowledge CAϕ meaning all agents in coalition A know that ϕ is
true and they all know that they all know it. We also have distributed knowledge
DAϕ meaning that if all the agents in coalition A were to share their knowledge
they would be able to figure out that ϕ is true. For more on epistemic logic refer
to Fagin et al. (1995).

ATEL combines epistemic logic with ATL by using a Concurrent Epistemic
Game Model (CEGM) which is simply a Concurrent Game Model used in ATL
with the indistinguishability relations added for each agent.
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ATEL has some problems however, one of which is pointed out by Brihaye et al.
(2009), which is that an agent having the ability to achieve some state should also
imply that it has the knowledge to identify a strategy to achieve that state, yet this
is not expressible in ATEL. Some solutions have been proposed relying on uniform
strategies (strategies specifying the same actions in indistinguishable states). For
more on ATEL refer to Jamroga (2003).

For more extensions of ATL using ideas of incomplete information, refer to
van der Hoek and Wooldridge (2003), Jamroga and van der Hoek (2004), Jamroga
and Ågotnes (2007), and Schobbens (2004). For a detailed comparison and analysis
of various such logics, refer to Bulling and Jamroga (2014).

4.4 Conclusion

ATL is a powerful logic, and has proven very useful, spawning many extensions
and a large literature surrounding it. The model-theoretic approach is elegant and
ATL formulæ are easy to read. We can reason about multiple agents carrying
out various different actions, and transitions to new states based on their actions.
The only downside of ATL is that all agents must act at the same time, and their
actions and the transitions resolve instantly. There is no notion of gradual change.
There is no way for agents to interrupt each others’ actions. There is no way for
actions to overlap, or for two actions to have two separate effects when carried out
separately, but a third synergistic effect when carried out at the same time. To do
any of this, we must turn from instants to intervals.
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Chapter 5

The Logic of Intervals

ATL uses the idea of states, where a formula is true or false at a specific state.
States are essentially instants in time, a snapshot of a moment. The transitions
from one state to another are also instantaneous. There are many situations where
this is inadequate to represent the true nature of what is happening, like overlap-
ping actions, or events taking various amounts of times to finish. With intervals,
events happen inside time periods of various lengths, which might or might not
overlap. An example might be a football game, where a player might take 3.2
seconds to get to the ball, 0.3 seconds to kick it, and then 1.45 seconds might
pass before it reaches the goal. In this time other players are running around
and changing direction at different times. Halpern and Shoham (1991) point to
examples where “‘the liquid level increased by three inches’,‘the robot carried out
the task’ and ‘I solved the problem while jogging to the ocean and back’ may be
true at certain intervals but at no time instant”.

This chapter will focus on the idea of intervals as opposed to instants, and
discuss various logics which use intervals. We will start by considering some pre-
liminary concepts which are essential to interval logics, then move on to discussing
and comparing various interval logic formulations. We will then discuss a specific
interval logic, introduced by Allen and Ferguson (1994). We end this chapter by
applying Allen and Ferguson’s logic to the three example problems from earlier.

5.1 Preliminaries

In this section we consider two core concepts, intervals and relations. Intervals are
the primary elements of an interval logic, replacing states. Relations exist between
intervals, and indicate their positions relative to each other. Where states are
simply in a sequence one after another, intervals can overlap in all kinds of way.
Two intervals might start at the same time but one end before the other, or one
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might start as soon as the other has ended, and so on.

5.1.1 Intervals

Allen and Ferguson (1994) (p.8) defines a time period (interval) intuitively as the
“time associated with some event occurring or some property holding in the world”.
An interval thus has a start and an end, and therefore also a duration, which may
or may not be explicitly expressed. Intervals can be defined in terms of their start
and end points, as in Goranko et al. (2004), Moszkowski’s ITL and most non-pure
interval logics, or intervals can be defined in terms of other intervals, such as in
Allen and Hayes (1985) and Allen and Ferguson (1994).

Propositions are true or false at different intervals, representing how things
change over time. There are many ways to do this. For a propositional logic,
such as that defined by Halpern and Shoham (1991), one might use a valuation
function assigning to each set of intervals a set of atomic propositions which are
true at that interval. For first-order logics, the simplest solution is to add an extra
argument to each predicate, as is done in Allen and Ferguson (1994), which will
be discussed later in this chapter.

There are two important principles to take note of regarding truth and intervals:

• Locality Principle - An atomic proposition is true at an interval if and only
if it is true at the beginning point of that interval, even if it becomes false
later during the interval.

• Homogeneity Principle - The truth of a formula at an interval implies the
truth of that formula at every sub interval of it, thus it has to remain true
throughout the interval.

An interval-based logic will usually follow either the locality or the homogeneity
principle.

Intervals can be seen as events, since events have a duration during which
something is changing. Events are things that seem to happen in the world when
some change occurs. Allen and Ferguson (1994) point out that events are primarily
linguistic or cognitive constructs, and do not really exist in the world. They
claim that: “Rather, events are the way by which agents classify certain useful
and relevant patterns of change” (Allen and Ferguson, 1994, p. 3). Something
can happen in the world, leading to some change, and observers can look at the
change and describe it in different ways. This is all one event, even if it is described
differently from different perspectives and using different vocabulary. The key idea
is that some change occurs in the world, and this change is the event.

Change is almost always gradual. What looks like an instant event to the
observer is really just a change over a short time period. Events therefore have to
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have duration. Some events, like building a cathedral, can take a hundred years,
while other events, like a firework exploding, can happen in milliseconds. Events
therefore are some change occurring in the world over some interval of time.

In logic, events only come up when representing time-based knowledge. A
temporal logic will have some current state, usually based on a set of atomic
propositions, and over time the state will change. Whatever is causing the state
to change, is the event. A logic like ATL has the concept of events built into the
transition function, which changes the state of the system at the end of each turn.
Interval logics have to have a more explicit notion of events, since things do not
automatically change at the end of each turn, as there are no turns. Instead events
are defined in various ways which can allow atomic propositions to be changed over
intervals. This way, a long time can pass where nothing happens, then a lot can
happen all at once, then a long silence again, or different combinations of these.
Explicitly defining events allows for those events to happen at any place, or not to
happen. Events can happen at the same time, overlap in various ways or interact
to have additional synergistic effects. We will now consider some ways in which
intervals (event) can overlap and be related to each other.

5.1.2 Relations

Two points in time a and b can have one of three possible relations with each other:
either a is before b, or b is before a, or they are the same point a = b. Intervals can
have many more possible relations with each other, overlapping in various ways.
Additionally, when defining an interval, a non-pure interval can simply be defined
by its end-points, such as the interval “Seminar” being defined as beginning at
point 13:00 and ending at point 14:30. Pure intervals (which do not consist of a
set of points) are a bit trickier. Since they are not tied to any points or an external
clock, pure intervals need to be defined in terms of each other, or their relations
with each other. To do this, we need to consider the relations which might hold
between various intervals.

Allen and Hayes (1985) distinguish 6 possible relations between any two dif-
ferent intervals, namely Before, Meets, Overlaps, Starts, Finishes, and During.
Each of these relations also have an inverse relation, namely After, MetBy, Over-
lappedBy, StartedBy, FinishedBy and Contains. Lastly there is also the symmet-
rical Equality relation, bringing us to a total of 13 relations. Figure 5.1 gives a
graphical representation of these relations.

A very important relation is the Meets relation, defined in Allen and Ferguson
(1994) as:

Two periods i and j meet if and only if i precedes j, yet there is no time between
i and j, and i and j do not overlap.

All of the other relations can also be defined in terms of the Meets relation (:)
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Figure 5.1: The 13 Interval Relations as Defined in Allen and Hayes (1985)

as follows:
Before(i,j): ∃ k. i:k:j
Overlaps(i,j): ∃ a,b,c,d,e. a:i:d:c ∧ a:b:j:c ∧ b:c:d
Starts(i,j): ∃ a,b,c. a:i:b:c ∧ a:j:c
During(i,j): ∃ a,b,c. a:b:i:c ∧ a:j:c
Finishes(i,j): ∃ a,b,c,d. a:b:i:c:d ∧ a:j:d

The inverses are similarly defined.
Having covered the notions of intervals and relations, let us look at the various

ways they have been approached.
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5.2 Interval Logics

This section will analyse and compare different formulations of interval logics.

5.2.1 Propositional Modal Logic of Time Intervals

Halpern and Shoham (1991) have introduced a logic of time intervals which extends
point-based modal temporal logic with a simple syntax and semantics. Instead of
a formula being satisfied by a state, it is here satisfied by an interval, where an
interval is a partially ordered set of states. Following the convention from Goranko
et al. (2004), I will refer to this logic as HS.

Intervals are not primitive objects in HS, but rather are viewed as being con-
structed out of points (specifically states), thus HS is a non-pure interval logic
1. Recall that in a pure interval logic intervals are primary objects, while in a
non-pure interval logic intervals are made up of other objects, like points. In HS,
an interval is defined as an ordered pair ⟨s, t⟩ consisting of a start and end point
s and t.

All the operators in HS are unary, and have the implicit notion of a current
interval, similar to how many point based logics have a notion of a current state. A
unary operator together with an interval shows that interval’s relationship to the
current interval. As mentioned before, two intervals can have any of 13 different
relations with each other. Halpern and Shoham were able to express all these
relations using only six modal operators: B (begin), E (end), A (after), B (begun
by), E (ended by), and A (before). Venema (1990) later showed that all the
relations can be expressed using only B, E, B, and E.

A notable feature of HS is that it remains uncommitted to specific temporal
structures or connections between truth values and intervals. The logic only as-
sumes that a set of points between any two points is totally ordered, thus allowing
branching or linear, bounded or unbounded and dense or discrete time structures
(refer to section 2.2.4). It also allows either homogeneity or locality for the rela-
tionship between truth values and intervals.

The following syntax of HS is from Halpern and Shoham (1991):

Given a set of atomic propositions Φ0, a well formed formula ϕ is as follows:

ϕ ∶∶= p ∣ ¬ϕ ∣ ϕ1 ∧ ϕ2 ∣ ⟨A⟩ϕ ∣ ⟨B⟩ϕ ∣ ⟨E⟩ϕ ∣ ⟨A⟩ϕ ∣ ⟨B⟩ϕ ∣ ⟨E⟩ϕ

For the semantics, Halpern and Shoham (1991) define an interpretation as a
pair ⟨S,V ⟩. S is a temporal structure ⟨T,≤⟩ where T is a set of time points and

1I admit that there can be some debate here. I take the position that HS is a non-pure
interval logic since the intervals consist of two points. But one might also take the position that
the formulæ of HS are evaluated over interval objects, thus it should be a pure interval logic.

52

 
 
 



5.2. INTERVAL LOGICS

≤ is a partial order on T . V is a function which maps the primitive propositions
to the set of intervals where that proposition is true. Formulæ are interpreted
over pairs ⟨t1t2⟩ such that t1, t2 ∈ T and t1 ≤ t2, thus formulæ are interpreted over
intervals defined by their endpoints t1 and t2. Given an interpretation M and
an interval ⟨t1t2⟩, a formula ϕ is either true or false in that interval, written as
⟨t1t2⟩ ⊧ ϕ or ⟨t1t2⟩ /⊧ ϕ.

The evaluation of a formula ϕ over an interval ⟨t1t2⟩, written as ⟨t1t2⟩ ⊧ ϕ, is
defined as follows:

• ⟨t1t2⟩ ⊧ p, iff ⟨t1t2⟩ ∈ V (p).

• ⟨t1t2⟩ ⊧ ¬ϕ, iff ⟨t1t2⟩ /⊧ ϕ.

• ⟨t1t2⟩ ⊧ ϕ1 ∧ ϕ2, iff ⟨t1t2⟩ ⊧ ϕ1 and ⟨t1t2⟩ ⊧ ϕ2.

• ⟨t1t2⟩ ⊧ ⟨A⟩ϕ, iff there exists t3 such that t2 < t3 and ⟨t2t3⟩ ⊧ ϕ.

• ⟨t1t2⟩ ⊧ ⟨B⟩ϕ, iff there exists t3 such that t1 ≤ t3 , t3 < t2 and ⟨t1t3⟩ ⊧ ϕ.

• ⟨t1t2⟩ ⊧ ⟨E⟩ϕ, iff there exists t3 such that t1 ≤ t3 , t3 < t2 and ⟨t3t2⟩ ⊧ ϕ.

• ⟨t1t2⟩ ⊧ ⟨A⟩ϕ, iff there exists t3 such that t3 < t1 and ⟨t3t1⟩ ⊧ ϕ.

• ⟨t1t2⟩ ⊧ ⟨B⟩ϕ, iff there exists t3 such that t2 < t3 and ⟨t1t3⟩ ⊧ ϕ.

• ⟨t1t2⟩ ⊧ ⟨E⟩ϕ, iff there exists t3 such that t3 < t1 and ⟨t3t2⟩ ⊧ ϕ.

Halpern and Shoham (1991) showed that for all but the simplest classes of
temporal structures, HS is undecidable. Venema (1990) showed that HS is more
expressive than any temporal logic based on points when interpreted over linear
orderings. Venema’s paper also contains a geometrical interpretation of HS which
results in a sound and complete axiomatic system. Goranko et al. (2004) claims
that HS is the “most expressive propositional interval logic with unary modal
operators”.

The logic HS is very simple and natural, while being very expressive. It is able
to capture all thirteen of Allen’s interval relations while using only a few unary
operators, six in the original formulation and four in Venema’s version. It does
however still define intervals as sets of two points, thus making points and not
intervals the primary objects in the logic, making it a non-pure interval logic. The
underlying structure of time in HS is still partially ordered sets of points, tied
together by various intervals.
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5.2.2 Interval Temporal Logic

While many temporal logics which deal with intervals are referred to as interval
temporal logics, there is one logic which claims the name Interval Temporal Logic
(ITL). This is why this chapter is called The Logic of Intervals, rather than Interval
Temporal Logic, to avoid confusion. ITL was described by Moszkowski (1983a) in a
PhD thesis and in a paper by Halpern et al. (1983). ITL is described in the thesis
as a formalism which “augments standard predicate logic with time-dependent
operators”.

More than just another logic, ITL aims to also be a programming language.
Moszkowski (1983b) showned how ITL can be used to represent various program-
ming language control structures, such as variable assignment, iteration (loops),
and sequential and parallel computations. Moszkowski also compared ITL with
programming languages Lucid and Prolog in his paper. Moszkowski (1984) also
makes the argument that it is redundant to use temporal logic such as ITL to
specify and prove properties about a program while writing the actual program in
a different programming language. Instead he suggests programming directly in
ITL, and presents an interpreter for ITL called Tempura, thus expanding ITL to
be a full programming language in addition to being a logic, able to both specify
and prove properties about systems, while also implementing the systems at the
same time. For more on Tempura, refer to Moszkowski (1996). Since the original
formulation, Moszkowski and others have been adding to and improving ITL and
the interpreter Tempura, making it a very well known and often used temporal
logic.

The key notion in ITL is that of an interval, defined as a finite sequence of
states, making it a non-pure interval logic. The length of an interval is equal
to one less than the number of states in the interval. Intervals can be joined
together to form larger intervals and decomposed into smaller intervals. Instead
of having explicit state transitions, changes in variables 2 are represented with
initial and final values for an interval. ITL is also a first order language, and as
such uses an interpretation to map to a domain, rather than just having a set of
propositions being true at some interval. The latest version of ITL can be found
at http://www.antonio-cau.co.uk/ITL/.

In ITL there are two types of formulæ, one called expressions and the other
called formulæ. The Syntax of ITL, from the original paper by Halpern et al.
(1983), is given here:

2In state transition systems one can show a chagne in a variable through a change in state.
For example, a door might be closed in one state and open in another, where the state transition
implies opening the door. In an interval system variables are more complex, and can change at
various points in an interval.
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A well formed expression e is as follows:
e ∶∶= V ∣ f(e1, ..., ek)

where V is a variable, f is a function, and e1 to ek are expressions with k ≥ 0.

A well formed formula f is as follows:
f ∶∶= e ∣ p(e1, ..., ek) ∣ e1 = e2 ∣ ¬f ∣ f1 ∧ f2 ∣ ∀V.f ∣ ◯f ∣ f1; f2

where p is a predicate, e1, e2 and ek are expressions, V is a variable, ∀ is the
universal quantifier and ◯ and ; are operators.

ITL also has a set of states Σ = s, t, ... and a domainD together with an interpre-
tation M mapping each variable V and interval s0...sn to some value Ms0...sn[[V ]]
in D.

For the semantics, also from Halpern et al. (1983), each function and predicate
symbol is given some meaning. A function f has an interpretation M[[f]] which
maps k elements in D to a single value:

M[[f]] ∈ (Dk →D)

Likewise predicates p have similar interpretations, but map to true or false:

M[[p]] ∈ (Dk → {true, false})

The semantics for a formula is as follows:

• Ms0...sn[[p(e1, ..., ek)]] =M[[p]](Ms0...sn[[e1]], ...,Ms0...sn[[ek]].

• Ms0...sn[[e1 = e2]] = true, iff Ms0...sn[[e1]] = Ms0...sn[[e2]].

• Ms0...sn[[¬f]] = true, iff Ms0...sn[[f]] = false.

• Ms0...sn[[f1 ∧ f2]] = true, iff Ms0...sn[[f1]] = true and Ms0...sn[[f2]] = true.

• Ms0...sn[[∀V.f]] = true, iff M ′

s0...sn[[f]] = true, for every interpretation M ′

that agrees withM on the assignments to all variables, function and predicate
symbols except possibly the variable V .

• Ms0...sn[[◯f]] = true, iff n ≥ 1 and Ms1...sn[[f]] = true.

• Ms0...sn[[f1; f2]] = true, iff Ms0...si[[f1]] = true and Msi...sn[[f2]] = true for
some 0 ≤ i ≤ n.

A extension of ITL can be found in Duan (1996) which includes infinite models
and infinite intervals, past operations such as ’previous’ and ’past chop’ and the
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projection operator for dealing with concurrent computation, synchronous com-
munication and framing in the context of temporal logic programming. Another
variant of ITL is what Goranko refers to as ITLD in Goranko et al. (2004), which
is Dutertre’s study of the fragment of ITL using only the chop operator (Dutertre,
1995), resulting in a sound and complete but undecidable logic.

Many years of work have gone into the ITL software Tempura. Looking at the
syntax and semantics, it is clear that ITL is not a simple nor natural logic. One
reason for this is that it is a first order logic, another is that it is meant to be a
programming language in addition to a logic. In order to represent all of Allen’s
thirteen relations, the user would have to specify each relation as a predicate, in
addition to all the syntax already present. But we do see here an instance of two
types of formulæ, something which we will use for our own combined logic in a
later chapter.

5.2.3 Neighbourhood Logic

The problem with a logic such as Moszkowski’s ITL, is that it has what are called
contracting modalities, which means one cannot express more abstract proper-
ties about intervals outside the current interval such as “eventually φ will hold”.
Expressing these kinds of properties are very important to proving liveness and
fairness in the logic, since those properties involve multiple intervals outside the
current interval. Chaochen and Hansen (1997) introduced a first order logic called
Neighbourhood Logic (NL), which is based on the idea of left and right modalities,
which refer to the before and after intervals. These modalities are represented by
◇l and ◇r respectively.

NL is an extension of ITL, adding only these two modalities to ITL. As such
the syntax for a well formed formula is similar to ITL, with the two new modalities
included:

A well formed formula f is as follows:

f ∶∶= e∣p(e1, ..., ek) ∣ e1 = e2 ∣ ¬f ∣ f1 ∧ f2 ∣ ∀V.f ∣ ◯f ∣ f1; f2 ∣ ◇l e ∣ ◇r e

The semantics of NL is exactly the same as in ITL, except for the two new
modalities, where the semantics are defined as follows:

• Ms0...si[[◇re]] = true, iff there exists sn such that si ≤ sn and Msi...sn[[e]] =
true.

• Ms0...si[[◇le]] = true, iff there exists sn such that sn ≤ si and Msn...s0[[e]] =
true.
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The addition of these two modalities makes NL a more expressive language,
able to express any of the thirteen Allen relations, and “can virtually express
all interesting properties of the underlying linear orderings, such as discreteness,
density, etc” Goranko et al. (2004).

For a completeness proof of NL, refer to Barua et al. (2000). For a discussion
of NL as it relates to Allen’s Interval Algebra, refer to Pujari (1997). For a propo-
sitional NL variant, refer to Goranko et al. (2003). Refer to Barua and Chaochen
(1997) for an extension of NL which adds two more modalities for up and down,
alongside the left and right of NL, allowing for a two dimensional NL.

Neighbourhood Logic extends ITL, and is able to express the thirteen interval
relations. It is a non-pure interval logic, similar to ITL.

5.2.4 Duration Calculus

Another extension of ITL is Duration Calculus (DC), introduced by Chaochen
et al. (1991). DC attempts to reason about time without explicitly mentioning
absolute time, instead using the integrals of durations of states. A unique feature
of DC is the state expression, which represents a state and has a duration for how
long the system is in that state. A state expression is thus similar to an interval.

Duration Calculus will not be presented in any depth, since being a logic of
intergrals of durations, it is far from the pure, non-duration intervals which we
wish to investigate. It is mentioned here simply because of its close relation to the
previous two logics.

The interested reader is referred to Guelev (1998) for a completeness proof
of DC. See also Roy and Chaochen (1997), where DC has been combined with
Neighbourhood Logic to create an undecidable logic called DC/NL. For even more
refer to Chaochen et al. (1993), Chaochen (1999), and Hansen and Chaochen
(1992).

We have considered a few non-pure logics, which keep the notion of states and
add intervals as secondary elements over those states. But a particular focus of
this dissertation is on pure interval logics, and unfortunately those are very rare.
A well known pure interval logic which is different from all of these others so
far considered, is Allen and Ferguson’s logic, which will be discussed in the next
section.

5.3 Allen’s Logic of Actions and Events

Allen and Ferguson introduced a logic of actions and events in interval logic. The
first line of the paper reads: “We present a representation of events and action
based on interval temporal logic that is significantly more expressive and more
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natural than most previous AI approaches” Allen and Ferguson (1994). Their
use of the term interval temporal logic seems to be a general term referring to
logics which use intervals. This can be deceiving, since their logic is not actually
a temporal logic, nor even a modal logic, but rather a type of first order logic.
Allen and Ferguson’s logic is a domain specific first order logic with a specific
interpretation of the Meets predicate, around which it is built. It is however, one
of the very few interval logics to use intervals as primary elements, and not contain
any states.

We mentioned in the background chapter that some languages can be defined
with a set of axioms and rules for deducing true formulas from those axioms, such
as propositional and first order logic, this is called the axiomatic approach, the
proof-theoretic approach or a deductive system. The alternative we have seen so
far is the model-theoretic approach of modal and temporal logic, where formulas
are evaluated semantically based on the states of the model. While we saw the
clean and elegant formulas of ATL in the previous chapter, we will now see how
much more cumbersome the axiomatic route can be.

It starts with a single primitive object, the Interval (which is referred to as
a time period), and one primitive relation, Meets. Allen’s concept of an interval
has already been discussed, as was the relation meets, and how the 13 possible
relations between intervals can be defined in terms of the meets relation. The
meets relation is represented by a predicate Meets(j, i) where j and i are intervals
such that j meets i.

Allen defines some axioms for the meets relation, the formal details of which
can be found in Allen and Ferguson (1994), but can be summarised as follows:

• There is no beginning or ending of time and there are no semi-infinite or
infinite intervals, thus every interval has an interval that meets it and another
that it meets. Thus ∀i.∃j, k.Meets(j, i) ∧Meets(i, k).

• Intervals can be concatenated into a larger interval, when two intervals meet,
there is a third interval that contains them both precisely (which begins at
the beginning of the first interval and ends at the end of the second interval).
Thus ∀i, j, k, l.Meets(i, j) ∧Meets(j, k) ∧Meets(k, l) → ∃m.Meets(i,m) ∧
Meets(m, l).

• Intervals uniquely define an equivalence class of periods that meet them,
in other words if an interval meets a pair of two different intervals, any
other interval that meets one of those pair must also meet the other. Thus
∀i, j, k, l.Meets(i, j) ∧Meets(i, k) ∧Meets(l, j) →Meets(l, k).

• These equivalence classes also uniquely define the intervals, thus if two inter-
vals both meet the same interval, and another interval meets both of them,
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the two intervals are equivalent. Thus ∀i, j, k, l.Meets(k, i) ∧Meets(k, j) ∧
Meets(i, l) ∧Meets(j, l) → i = j.

• Lastly, an ordering axiom: for any two pairs of intervals that meet each
other, either the two pairs meet at the same place, or the one pair meets
each other either before or after the other pair meets each other. Thus
(⊕ is the xor operator) ∀i, j, k, l.Meets(i, j) ∧Meets(k, l) → Meets(i, l) ⊕
(∃m.Meets(k,m) ∧Meets(m,j)) ⊕ (∃m.Meets(i,m) ∨Meets(m, l)).

As a first order logic, Allen and Ferguson’s logic uses predicates to build its for-
mulæ such as the formula Green(frog) meaning that the frog is green. They extend
this by adding a second argument, consisting of an interval, such as Green(frog,t3)
which lets us know that the frog is only green during interval t3. The logic is ho-
mogeneous, that is, if a proposition is true for some interval, it is also true for all
sub intervals of it. Allen distinguishes between strong negation and weak negation,
where strong negation says that if a formula is false for some interval, it is also
false in all sub intervals of that interval, while weak negation simply means that
the proposition is not true for all sub intervals of a specific interval. We can see
that a homogeneous truth structure allows for weak negation, thus if a formula is
true for all sub intervals of interval t it is true for t, but if it is not true for all sub
intervals of t it is false for t, which doesn’t mean it is not true somewhere in t.

The notion of an event occurring is represented by a predicate, with details
about the event in the arguments. As an example from Allen and Ferguson (1994),
the event where Jack lifts the ball can be written as:
LIFT (jack34, ball26, t1)
where t1 is the interval during which the lifting takes place.

There may of course always be more details about the event one might wish
to include, and continuing to add arguments to predicates is not an ideal solution,
since each argument in a predicate has to be defined. Our lift example has three
arguments, the one carrying out the event, the recipient of the event, and the time
during which the event takes place. If we want to say that Jack lifts the ball onto
the table, we might add as a fourth argument the position to which the second
argument is lifted, but then we need to have an empty argument when we simply
want to speak about him lifting it again. This becomes impractical when we want
to describe an event in great detail, using perhaps 20 arguments.

Allen instead uses an idea from Davidson (1967) involving reifying events,
where the event is an argument which can then have additional predicates if we
wish to have additional information for a specific event. As another example from
Allen and Ferguson (1994), we might have:

∃e.LIFT (jack34, ball26, t1, e) ∧ dest(e) = table5 ∧ instrument(e) = tongs1
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Thus the main event predicate lift has the same three arguments as before,
with a fourth argument e representing the event. We can then specify that the
destination dest of e is table5 and the tool instrument of e is tongs1. This tells
us that Jack is lifting the ball onto the table using the tongs. This is a much more
elegant way for representing additional information about an event.

We have three functions: pre, con, and eff , which represent the prerequisites,
conditions and effects of an event respectively. Prerequisites need to hold before
an event occurs, conditions hold during the event taking place, and effects hold
after the event has taken place. Using these, we can define the conditions for
an event to take place. As another example from Allen and Ferguson (1994),
consider a robot placing box x on box y. Both boxes need to be clear beforehand
(nothing on them), the robot will hold the box x while the event takes place, and
the effect is that x is on y. This is represented by:

∀x, y, t, e.STACK(x, y, t, e) →
Clear(x, pre1(e))∧Holding(x, con1(e))∧Clear(x, eff1(e))∧Clear(y, pre2(e))∧
On(x, y, eff2(e))

Adding to event definitions, action definitions are also needed. Allen draws
on Goldman (1970) and calls these basic actions. This is done with the Try(π, t)
predicate, where π is attempted during time t. A successful attempt (prerequisites
considered) will cause an event to happen.

On top of the usual syntax of first order logic, Allen and Ferguson add the
following three specific predicates to be used for actions and events:

Event definitions: ∀e.E(e) ∧ φ → ψ where E is an event predicate and φ
and ψ are conditional predicates.

Action definitions: ∀t, ....T ry(π, t)∧φ→ ∃e.∃E(e)∧t○time(e)∧ψ where φ is
the prerequisites for the try to succeed, leading to the event E taking place together
with the effect predicates ψ. The ○ symbol represents a temporal relationship
between the t interval in which the attempt takes place, and the time(e) function
which happens as a result of that attempt.

Event generation axioms: ∀e.E(e) ∧ φ → ∃e′.E′(e′) ∧ ψ where E and E′

are event type predicates while φ and ψ represents constraints on the events.
There is one more important concept tying together Allen and Ferguson’s ap-

proach which must be considered next, called explanation closure axioms.
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5.3.1 Explanation Closure Axioms

In a state based logic like ATL, transition from one state to the next is quite
simple. A single function maps the current state and the choices of the agents to a
new state. Intervals complicate matters, it is not always clear which results must
flow from which events, and which events from which actions. A logic like situation
calculus McCarthy and Hayes (1981) originally used frame axioms, which involved
explicitly stating which propositions did not change as a result of some event. The
problem with this has already been discussed in the introduction chapter, namely
the frame problem, where there are too many propositions to consider for every
possible action.

Allen and Ferguson use a different approach to this, where for every proposition
that can change, the events which may change it are defined. This reversal of
frame axioms is called explanation closure and was introduced by Haas (1987)
and Shoham (1987). Allen and Ferguson (1994) mention a few advantages of this
approach: “the resulting axioms can be interpreted with the standard semantics
of the first-order predicate calculus, meaning that there are well-defined notions of
entailment and proof. We can show that our representation handles a particular
class of examples by showing a proof of the desired consequences, without needing
to appeal to model-theoretic arguments in a non-standard semantics. In addition,
various forms of uncertainty are handled using the standard methods in logic with
disjunction and existential quantification. Finally, the assumptions that are made
appear explicitly as axioms in the system”.

This approach rests on two basic assumptions:

• No propositions change unless explicitly changed by an event occurring.

• No events take place except those explicitly caused by a successful action.

These two assumptions are defined formally in Allen and Ferguson (1994) as
follows (where ∶ represents the meets relation):

EXCP (Strong Closure on Properties) Every property (proposition)
change results from the occurrence of an instance of one of the event types de-
fined in the axioms. These axioms are of the form:

∀t, t′.P (t) ∧ ¬P (t′) ∧ t ∶ t′ → ∃e.(E1(e) ∧E2(e) ∧ ... ∧En(e)) ∧ time(e) ∶ t′

where the Ei are the event-type predicates that (possibly) affect the truth value
of P . These axioms are derived from the event definition axioms (EDEF).

EXCE (Strong Closure on Events) Every event that occurs does so as a
result of some action being attempted, possibly indirectly via event generation.
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These axioms are of the form:

∀e.E(e) → Φ1 ∧Φ2 ∧ ... ∧Φn

where Φi is either of the form:

∃t.T ry(π, t) ∧ t ○ time(e) ∧ ψ

or
∃e′.E′(e′) ∧ time(e) ○ time(e′) ∧ ψ

These axioms can be derived from the action and event generation axioms (ETRY
and EGEN).

Having discussed the important aspects of Allen and Ferguson’s logic, it will
now be applied to the example problems to further clarify how it might be used.

5.4 Problems - The Banker’s Algorithm

Presented here is a problem introduced in the introduction chapter, and how it
may be represented and reasoned about in Allen and Ferguson’s interval logic.

Since there is not a concept of agents in Allen and Ferguson’s interval logic,
this problem will be approached from the perspective of the system as a whole.
There are two types of action, borrow and return, which are represented here
as causing two types of events, also called BORROW and RETURN. There are
three agents, Alice, Bob and Charlie, though they are not explicitly represented
in the logic. Events are named in all UPPERCASE, actions in all lowercase, and
predicates in TitleCase. Similar to the ATL Banker’s Algorithm, we use Boolean
predicates to represent values, such as NeedAlice(4) and LoanBob(2), showing
Alice still needs 4 units to complete her task and that Bob currently has 2 units.
There are predicates for all possible values, and only one is true at a time. To not
make the axioms overly complicated and unnecessarily long, assume setting one
predicate to true, automatically sets all similar predicates to false. For example, if
LoanCharlie(4) is true, and then LoanCharlie(5) is set to true, this automatically
sets LoanCharlie(4) to false. This is trivial to include in each axiom. We also
have predicate values for the available cash. Remember that:

0 ≤ Loan(pi) ≤ Need(pi) ≤ Cap

and

∀i ∶ 0 ≤ i < N ∶ Claim(pi) ≤ Cash +
i−1

∑
j=0

Loan(pj)
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There are two event definition axioms for each agent, for a total of six. They
are defined as follows:

∀e, l,w, x, y, z.BORROWALICE(e, l,w, x, y, z) →
Cash(w,pre1(e)) ∧ SameEnd(pre1(e), time(e)) ∧ (w >= l)∧
LoanAlice(x, pre2(e)) ∧ SameEnd(pre1(e), time(e))∧
Cash(y, eff1(e)) ∧ time(e) ∶ eff1(e) ∧ (y = w − l)∧
LoanAlice(z, eff2(e)) ∧ time(e) ∶ eff2(e) ∧ (z = x + l) (EDEF1)

In other words, Alice attempts to take a loan of l amount, and has x already,
while there is w available. The only requirement is that the amount available is
larger than or equal to the loan. If successful, the available amount is now y, which
is y = w − l, while Alice now has a loan of z, which is z = x + l. The event axioms
EDEF2 and EDEF3 are similarly defined for predicates BORROWBOB and
BORROWCHARLIE.

∀e,w, x, y, z.RETURNALICE(e,w, x, y, z) →
LoanAlice(w,pre1(e)) ∧ SameEnd(pre1(e), time(e))∧

NeedAlice(y, pre2(e)) ∧ SameEnd(pre2(e), time(e)) ∧ (w >= y)
Cash(x, pre3(e)) ∧ SameEnd(pre3(e), time(e))∧
LoanAlice(0, eff1(e)) ∧ time(e) ∶ eff1(e)∧
NeedAlice(0, eff2(e)) ∧ time(e) ∶ eff2(e)∧
Cash(z, eff3(e)) ∧ time(e) ∶ eff3(e) ∧ (z = x +w) (EDEF4)

Alice can attempt to complete her task and return the resources. She only
succeeds when her borrowed amount w is more than or equal to her needed amount
y. If she succeeds, her need and loan becomes 0, and the available cash goes up by
her loan amount. The event axioms EDEF5 and EDEF6 are similarly defined
for RETURNBOB and RETURNCHARLIE

For each event axiom, there is an action axiom, showing the attempt that will
cause the event to take place:

∀t, x, l.T ry(borrowalice, t) ∧Cash(x, t) ∧ (x >= l)
→ ∃e.BORROWALICE(t, e) (ETRY1)

Where x is the amount of cash available and l is the size of the attempted loan.
Note that Allen and Ferguson are not clear on how to explicitly represent numbers
like x and l in this context, and some liberty has been taken. The action axioms
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ETRY2 and ETRY3 are similarly defined for Bob and Charlie to take loans.

∀t, x, y.T ry(returnalice, t) ∧LoanAlice(x, t) ∧NeedAlice(y, t) ∧ (x >= y) →
∃e.RETURNALICE(t, e) (ETRY4)

The action axioms ETRY5 and ETRY6 are similarly defined for Bob and
Charlie to return loans.

The last thing that is needed is a couple of explanation closure axioms.

∀t, t′, x, y.LoanAlice(x, t) ∧LoanAlice(y, t′) ∧ t ∶ t′ ∧ x < y
→ ∃e.BORROWALICE(e) ∧ time(e) ∶ t′ (EXCP1)

If the loan for an agent went up, it must be because that agent has taken a
loan. Defined similarly for LoanBob and LoanCharlie as EXCP2 and EXCP3.

∀t, t′, x.LoanAlice(x, t) ∧LoanAlice(0, t′) ∧ t ∶ t′

→ ∃e.RETURNALICE(e) ∧ time(e) ∶ t′ (EXCP4)

If an agent’s loan went down to zero, it must be because the agent returned the
loan. Defined similarly for LoanBob and LoanCharlie as EXCP5 and EXCP6.

∀t, t′, x, y.NeedAlice(x, t) ∧NeedAlice(y, t′) ∧ t ∶ t′ ∧ x > y
→ ∃e.BORROWALICE(e) ∧ time(e) ∶ t′ (EXCP7)

∀t, t′, x.NeedAlice(x, t) ∧NeedAlice(0, t′) ∧ t ∶ t′

→ ∃e.(BORROWALICE(e) ∨RETURNALICE(e)) ∧ time(e) ∶ t′
(EXCP10)

Similar for NeedBob and NeedCharlie as EXCP11 and EXCP12. EXCP7
to EXCP12 are similar to EXCP1 to EXCP6 but concerns the need predi-
cate rather than the loan predicate. Some axioms then are needed for the cash
predicate.

∀t, t′, x, y.Cash(x, t) ∧Cash(y, t′) ∧ t ∶ t′ ∧ x > y
→ ∃e.(BORROWALICE(e) ∨BORROWBOB(e)

∨BORROWCHARLIE(e)) ∧ time(e) ∶ t′ (EXCP13)
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∀t, t′, x, y.Cash(x, t) ∧Cash(y, t′) ∧ t ∶ t′ ∧ x < y
→ ∃e.(RETURNALICE(e) ∨RETURNBOB(e)

∨RETURNCHARLIE(e)) ∧ time(e) ∶ t′ (EXCP14)

If the amount of cash went down, then an agent must have borrowed. If the
amount of cash went up, then an agent must have returned their loan.

In total these 14 axioms are the closure on properties axioms, where for each
proposition which can change, the events are defined which can change it. Re-
member that a proposition cannot change unless changed in this way by one of
these events. Next are the closure on events properties, where for each event is
defined the actions which can cause it.

∀e.BORROWALICE(e) → ∃t.T ry(borrowalice, t) ∧ t = time(e) (EXCE1)

The successful action borrowalice results in the event BORROWALICE. Similar
definitions for Bob and Charlie as EXCE2 and EXCE3.

∀e.RETURNALICE(e) → ∃t.T ry(returnalice, t) ∧ t = time(e) (EXCE4)

The successful action returnalice results in the event RETURNALICE. Similar
definitions for Bob and Charlie as EXCE5 and EXCE6.

With that, all the necessary general axioms have been defined for the banker
algorithm. To create a more specific case, more axioms are added to describe it.
Here is one example (where the ≺ symbol is the before relation):

t0 ≺ t1 ≺ t2 ≺ t3 ≺ t4 ≺ t5 ≺ t6 ≺ t7 (AX0)

Cash(10, t0) (AX1)

LoanAlice(0, t0) (AX2)

LoanBob(0, t0) (AX3)

LoanCharlie(0, t0) (AX4)
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NeedAlice(7, t0) (AX5)

NeedBob(10, t0) (AX6)

NeedCharlie(4, t0) (AX7)

Try(borrowcharlie(4), t1) (AX8)

Try(borrowalice(7), t2) (AX9)

Try(returncharlie, t3) (AX10)

Try(borrowbob(10), t4) (AX11)

Try(returnbob, t5) (AX12)

Try(borrowalice(7), t6) (AX13)

Try(returnalice, t7) (AX14)

To see if this specific case works out, it must be shown that:

NeedAlice(0, t8) ∧NeedBob(0, t8) ∧NeedCharlie(0, t8) ∧ t7 ≺ t8

To prove this formula is true, each part of this conjunction can be proven in
turn. As a demonstration the first part, NeedAlice(0, t8) will be shown.

NeedAlice(7, t0) is given by AX5. The only events which can change this value
are BORROWALICE or RETURNALICE, by EXCP7 and EXCP10. AX9 gives
an action attempt, which does not succeed. It fails since it is given that cash(10, t0)
by and thus the action in AX8 Try(borrowcharlie(4), t1) succeeds.

From AX1, AX8, ETRY3 and EDEF3 follows AX15 Cash(6, t8) where
t1 ∶ t8. Thus Charlie successfully borrows 4 units. From AX9, AX15 and ETRY1
follows AX16 Cash(6, t9) where t2 ∶ t9. Alice tries to borrow 7 units but fails
to since there is not enough cash available, NeedAlice(7) thus stays unchanged.
Note that if t1 ≺ t2 and t1 ∶ t8 then t8 either starts, overlaps or or is before t2.
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Any value that is true during t8 and remains unchanged would then also be true
during t2.

From AX10, AX16, ETRY6 and EDEF6 follows AX17 Cash(10, t10)
where t3 ∶ t10. From AX11, AX17, ETRY2 and EDEF2 follows AX18
Cash(0, t11) where t4 ∶ t11. From AX12, AX18, ETRY5 and EDEF5 follows
AX19 Cash(10, t12) where t5 ∶ t12.

Finally Alice gets a second chance to attempt to borrow: From AX13, AX19,
ETRY1 and EDEF1 follows AX20 Cash(3, t13) where t6 ∶ t13. From AX13,
AX19, ETRY1 and EDEF1 follows AX21 NeedAlice(0, t14) where t6 ∶ t14.
Having successfully borrowed the amount needed, NeedAlice(0) is now finally
true. The last axiom, AX14, does not change this value.

Thus it is proven that NeedAlice(0, t8).
The deadlock state which must be avoided can be represented by the following

formula:

∀t,w, x, y, z.NeedAlice(x, t) ∧NeedBob(y, t) ∧NeedCharlie(z, t)
∧Cash(w, t) ∧ (w < x) ∧ (w < y) ∧ (w < z)

It can be seen that this representation is able to represent all that needs to be
represented about the scenario. Compared to the ATL representation, it requires a
lot more cumbersome writing. This representation can however represent scenarios
which ATL cannot, such as overlapping attempts at borrowing and returning.
Consider the above case but where t1, t2, t3 and t4 are not one after the other,
but overlapped. Such a case can be reasoned about with interval logic but not
with ATL. This is because states in ATL cannot overlap, but are discrete and
sequential.

It can be seen that this representation is cumbersome to write out, and diffi-
cult to read, requiring many axioms to represent simple situations. This banker
problem is enough to establish that and get an idea of how this logic works. To
save space and to spare the reader, the sleeping barber and trains problems have
been placed in Appendix A and are not included here.

5.5 Conclusion

It has been shown how problems can be represented in Allen and Ferguson’s logic.
It can be seen that this requires more work to represent than using ATL, and
some of the axioms are cumbersome compared to ATL. This is necessary because
the goal is to use the axioms to derive expressions, and so the axioms need to be
thoroughly defined. ATL simplifies the work by using a model-theoretic approach.
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Allen and Ferguson (1994) point out two common criticisms of this explanation
closure approach. Firstly, the process of writing down all of the axioms correctly
is difficult and secondly the approach is “cheating” because the solution is already
present in the axioms, nothing new has been added. To the first they respond
that these axioms contain vital information that is part of the agent’s knowledge
about the world, and are thus necessary. They also add that these axioms may be
generated by a computer, rather than manually created. To the second, they re-
spond as follows: “As for the issue of cheating, it doesn’t seem to us that explicitly
encoding the assumptions that make the representation work is any more cheating
than hiding the assumptions in a complex model theory. We must remember that
these really are assumptions, and that they may be wrong. If we are ever to reason
about cases where assumptions have been made and shown to be false, they need
to be explicit in the representation.” (Allen and Ferguson, 1994, p. 33).

It is clear that ATL is easier to work with, and encoding the assumptions in
a model cleans up the formulas a lot. ATL also allows us to talk about multiple
agents and their strategies, while ITL is restricted to the perspective of a single
agent. Yet Allen and Ferguson’s logic still offers us a treatment of pure intervals
which cannot be found in any other logic, and which allows us to talk about
situations which no other logic can describe, such as complex overlapping events.
If intervals can somehow be incorporated into ATL, while keeping the model simple
and the formulas elegant, we would have a powerful combination.
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Chapter 6

Agent Interval Temporal Logic

This chapter will introduce the new logic called Agent Interval Temporal Logic.
We saw in an earlier chapter that ATL was useful for talking about situations
where a group of agents were working together to achieve some goal. However,
it was not possible to represent situations where there was a complex relation
between the timing of various actions. ATL had no notion of duration. Actions
all happen at the same time, with no overlap of actions nor any interruptions. We
then considered various interval logics, to see how we might combine the notion of
an interval with the notions of agents and actions from ATL. This chapter will be
an attempt to bring together these ideas into a single new logic.

This chapter will start by considering the domain of the new logic, with a
discussion on all the concepts which one may or may not want to speak about.
After this the model is defined, followed by the syntax and semantics. This is all
brought together and illustrated by an example using an adapted dining philoso-
phers problem, followed by an application of the new logic to the three problems
which have been used throughout this dissertation.

6.1 Domain

Before we present the model, syntax and semantics, we need to discuss what
actually is present in our language, what our logic is about. We want to talk
about agents, and the things they do. We are interested in the actions taken by
the agents, and the order those actions are in. All of this happens in the context
of some scenario or situation or problem. The model of our logic will be called
a scenario model, which will contain agents, actions and restrictions, and from
which various strategies can be generated. In our syntax we will have two types
of formulæ, one interpreted over a scenario model, the other interpreted over a
strategy. These, along with related concepts, will now be informally discussed
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before being formally defined in the next section.
A note about terminology: in different disciplines, terms like model, domain,

interpretation, system and so on have various different and sometimes contradic-
tory meanings. This dissertation is in the field of knowledge representation, but
since a lot of the literature used is from the field of model checking, we have been
and will continue to use their terminology. The model is the mathematical struc-
ture which contains the things of the world, while a formula is interpreted over a
model. This means that a formula will be true or false for one or another model. If
the formula talks about something in a model which is the case, then that formula
is true for that model. We write this as M ⊧ f where M is the model and f is
some formula. This is different from the knowledge representation terminology,
which calls what is termed a model in the model checking context a domain of
discourse, and a denotation function (and other functions - such as assignments
- depending on whether it is a propositional or a predicate logic) together with a
domain of discourse which makes a formula true is called a model.

6.1.1 Scenario

The primary notion, used for representing knowledge about the system at issue, is
that of a scenario or situation. Recall the concurrent game model from ATL, and
how ATL was used to represent our three problems. The concurrent game model
used for the banker’s algorithm and the one used for the sleeping barber problem
were very different from each other. They contained different agents, different
actions, different propositions, and different states. While it was the same formal
concurrent game model, it was filled with different elements depending on the
scenario it attempted to represent. The scenario consists of the setup, what there
is, the specific agents and their specific actions. The scenario is the problem to be
solved. A scenario in ATL might be represented by a concurrent game structure,
or in CTL by a Kripke structure, or by any other formal structure for any other
logic. The model of AITL is called a scenario model, and will be defined as a tuple
containing all the other elements of the model.

6.1.2 States and Events

When we look at ATL, we see that it is fundamentally about states. A formula in
ATL is either about some proposition that is true in the current state, or about a
proposition which might become true in a later state. A state then is a way the
world is at a moment in time, with various propositions describing the world at
that moment.

It is then possible to move from one state to another, through a transition
function, which uses some input to determine which state to go to next. This
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transition will usually represent an event, since we think of events as things that
happen which change something in the world. The transition from one state to
the next, and thus a change in the state of the world, can then be thought of as
an event.

Since this transition function is deterministic (at least for ATL’s concurrent
game model), we can predict what state we may or may not end up in later on.
The logic of CTL was essentially made up of this: a collection of states, transitions
between them, and a syntax which allowed us to talk about which states we can
reach and when we can reach them. The key difference in ATL, which was an
extension of CTL, was simply to complicate the transition function by adding in
agents and actions. In AITL, we will not have a notion of state, but instead we
will have the notion of an event represented by an action. This is explained more
in the actions section.

6.1.3 Agents

Agents are the actors in the model, who cause changes to happen. Agents act, and
their actions change the state of the environment. ATL extended CTL by adding
the notion of agents. Where the transition in CTL was simply that a move from
this state to that state was possible, in ATL the transition became an alternating
turn “game” between the system and the environment. The system, is comprised
of a coalition of agents, that all choose their actions, and the combination of their
actions influence the environment. This allowed us to talk about the power an
individual agent had to choose an action such that no matter what the other
agents choose it could guarantee that some future state might be reached. Our
scenario model will also contain a set of agents.

6.1.4 Actions and Tasks

Together with agents we always have actions. An action is carried out by an agent,
and when carried out it changes the state of the world in ATL. Thus an action
and an event both change the state of the world. An action causes an event, and
an event changes the state of the world. Events and actions also have duration,
and can thus be thought of as intervals. We have already mentioned that events
will not be explicit elements in AITL. This is because everything about events
that we care about is already captured in the idea of an action, namely the idea of
causing some change in the world. Each action will have a unique interval during
which it takes place. Rather than having both intervals and actions in the logic,
with a one-to-one mapping between them, we will only have actions in AITL 1.

1Having both actions and intervals is redundant. We thus merge them and can call them
either actions or intervals. Calling them intervals allows us to speak naturally about interval
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Since actions are represented by intervals, we can have interval relations between
actions. This is similar to how we naturally talk, for example: “I pick up the ball
AFTER you drop it”, or “He sneezes DURING my speech”. Actions are treated
as intervals when referring to the relations between them.

The only events which will take place will be actions, and every action needs
an agent which carries it out. There are thus no natural events (like weather) in
the logic which are not caused directly by some agent. If one wishes to represent
a natural event, one may have nature as an agent which takes some action.

Each action entity will be a unique event, and cannot be repeated. If one
wishes to represent a “repeated action” one needs a different action entity for each
time that action is taken. Agents will take actions at different times, and can take
two or more actions at the same time, or no actions for a time. If we want to
represent an agent taking 2 or more actions at the same time, we can have those
multiple actions with the Equality relation between them, meaning the intervals
of those actions are all equal to each other.

An action may only be taken by a single agent however, two agents may not
take the same action. If one wishes two agents to work together, such as carrying
two sides of a coffin, one may create an action for the front carrier and an action
for the back carrier and formulate a rule that those two actions must happen at the
same time (such a rule is called a restriction and will be discussed later). What
this rule means is that the interval of the one action and the interval of the other
action must have the equality relation between them.

There is another closely related term which we must consider, that of a task.
We might speak of an agent performing a task, but what is the difference between
an action and a task? In the original ATL paper by Alur et al. (2002), the word
task is used to refer to something which a coalition of agents wishes to carry out,
almost like a goal. A task is therefore some larger activity which will achieve some
purpose, and may consist of numerous smaller actions by different agents or a
single agent. For example, the task of preparing dinner may consist of numerous
actions like washing the beans, peeling the banana and cooking the spinach. Tasks
are not explicit elements in the logic, only actions are, but in describing a problem
one may use the term task to refer to a collection of actions.

6.1.5 Intervals

An interval is some duration of time, as opposed to an instant. While states can
express the way the world is at some moment, intervals can express some event

relations among them, but we must speak unnaturally about agents doing intervals. Calling them
actions allows us to speak naturally about agents doing actions, but we must speak unnaturally
about interval relations among actions.
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taking place over some time. Something can happen during an interval, some
change can take place. We will represent intervals as actions in AITL.

Do we also need states? There are many ways to view the relationship between
intervals and states. A state might be at the end or beginning of an interval, in
which case the transition from one state to the next is an interval. Or an interval
might be a set of states, such as in the logic HS from Halpern and Shoham (1991).
For AITL, we are only interested in the action taken by the agents, and the timing
of those actions. We are thus not interested in any states, or propositions which
are true or false during states. As stated before, states will not be a part of AITL.
Instead we will reason about events happening, represented as actions.

This approach does have the drawback of not being able to represent complex
states at any one point in time. Instead if one wants to know the state of a specific
aspect of the world, one could consider the actions that would change that aspect,
and ask if those actions happened in a specific order which would change it. This
way, one could get an idea of the state of the world after a specific chain of events
(captured by an ordering of actions). But this reasoning happens at a higher level
when using the logic to represent a situation, it is not captured in the model.
This works well for actions that happen once, and change a certain variable, which
holds from then on. This approach is less able to represent a situation where one
wants to have an action which can be done repeatedly, changing a variable back
and forth between two values. Ideally one knows how many times an action must
take place, and then creates separate actions for each time.

Consider as an example the act of closing a door. With states, one might have
an open and a closed state, and with a transition move from the open state to the
closed state. There would be a doorOpen proposition, with a labelling function
mapping it to true and false in the two states. To find out if the door is closed, we
might ask what state we are in, and if in the current state the doorOpen proposition
is true or false. With intervals however, we might have an action called closeDoor.
This represents the action of closing the door, and the event of the door being
closed. Now we simply ask, has closeDoor taken place already or not?

6.1.6 Relations

When adding intervals, relations must naturally be added as well, since relations
always exist between intervals. Intervals can be placed in time relative to each
other, as we have seen in the work of Allen and Hayes (1985) in chapter 5. Rather
than tying intervals to an external clock or timeline, they can be arranged relative
to each other through their relations to each other.

In the scenario we will only have a list of actions without any relations. Recall
that the scenario is the raw situation, the list of tasks to be done, without any
specific order to do them in. The actions in a scenario are thus unordered, and do
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not yet have specific relations to each other. Relations are used when specifying
restrictions on how they can be ordered (next section), or when creating a strategy
by ordering all the actions in some specific way (the section thereafter).

As an example, consider baking a cake. We can have the following five actions
which must be carried out: Add Eggs, Add Milk, Add Flour, Stir, Bake. This is
the scenario, it contains only an unsorted set of actions, the things which must
be completed in this situation. Later we will see how strategies are generated by
arranging actions in a specific order using relations.

Recall from section 5.1.2 and figure 5.1 that between any two intervals there
exists one of 13 possible relations. These will be represented by the following
symbols, which have been adapted from Allen and Ferguson (1994):

• Equals is =

• Before is ≺ After is ≻

• Meets is ∶ MetBy is ⋅⋅

• Overlaps is ⪯ OverlappedBy is ⪰

• Starts is ▷ StartedBy is ◁

• During is ⊂ Contains is ⊃

• Finishes is † FinishedBy is ‡

These are the 13 core relations. From these we will define five additional
relations which are merely shorthand for some of the previous 13. These relations
are useful to keep formulæ short. The first three of these relations were derived
by Allen and Ferguson (1994).

The disjoint operator & is defined as follows:

i & j ≡ i ≺ j or i ≻ j or i ∶ j or i ⋅ ⋅j

The beforemeets operator ≺∶ is defined as follows:

i ≺∶ j ≡ i ≺ j or i ∶ j

The equalduring operator ⊆ is defined as follows:

i ⊆ j ≡ i = j or i ⊂ j

The aftermetby operator ≻ ⋅⋅ is defined as follows:

i ≻ ⋅ ⋅ j ≡ i ≻ j or i ⋅ ⋅j
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The equalcontains operator ⊇ is defined as follows:

i ⊇ j ≡ i = j or i ⊃ j

Note that the disjoint relation can also be derived using only beforemeets or
aftermetby.

6.1.7 Restrictions

For a specific scenario, some restrictions might apply on the relations between
actions. Perhaps one action must be completed before another can be attempted
(recall that actions are seen as intervals). For example, I must open the bottle
before I can pour out the liquid. In our scenario we must capture these restrictions,
so that we may know in what way actions may be arranged and in what way they
may not. From the cake example, we might have the restriction that the mixture
must be stirred before baking.

There are two types of restrictions, conditional and unconditional. Uncondi-
tional restrictions hold for the entire scenario, it can never be broken. An example
of an unconditional restriction is having to open the bottle before pouring out the
liquid. Conditional restrictions only hold if some other relations hold, and thus
only become relevant partway through generating a strategy. An example of a
conditional restriction is, if I put a cupcake on my small plate, I must first eat
it before I can put a muffin on the same plate. Suppose we have four actions,
putcupcake, putmuffin, eatcupcake, putmuffin. We will have unconditional restric-
tions about putting the treats on the plate before eating them, but we will need
a conditional restriction to say that when one treat has been put on the plate, it
must be eaten before the other can be placed on the plate.

Unconditional restrictions are in the form iRj where i and j are actions, and R
is a relation. This restriction is interpreted to mean that this relation must hold,
it is restricted to this relation, not restricted from it. We may also write a negated
restriction, in the form ¬iRj, which means that the relation may be anything but
that relation. Sometimes, two or more restrictions could be written for the same
two actions, such as i ≺ j and i ≻ j. This means that the relation can only be one of
those two. When generating a strategy, for two actions which have no restrictions
on their relation to each other, the relation can be any of the 13 relations. But
as soon as there is at least one restriction, then the relation can only be one of
those listed as a restriction. When a restriction is written as a negation, then the
relation can be any of the 13 except that one. Note that while the additional five
shorthand relations may be used while writing restrictions, when generating the
strategy (next section) and deciding on the actual relation between two actions,
only one of the 13 must be picked.
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Conditional restrictions are written in a similar format, but with the additional
introduction of the implication operator. If i, j, k, and l are actions, then a
conditional restriction is written as iRj → kQl, where R and Q are relations,
including the additional shorthand relations. This restriction says that if i is
in R relation to j, then k must be in Q relation to l. One may want to add
some conjunction operator to the consequent, so that it can be said that if some
relation holds, then another relation may be any of some group of possibilities.
But this is unnecessary since one may simply add multiple restrictions with the
same antecedent, which has the same meaning.

Using these restrictions, one may set up a complicated scenario with rules for
how the scenario may unfold. In practical use, we suspect the most time and ef-
fort would be spent on formulating restrictions if one is to use AITL. However, as
one adds more restrictions the computation for strategies later becomes computa-
tionally much easier to handle. As the number of actions increases, the possible
arrangements of those actions increases exponentially. Each added restriction cuts
down the number of possible arrangements.

6.1.8 Strategies and Goals

While ATL does not contain an explicit object representing the notion of a goal,
it is a natural part of talking about agents and actions, and a property of the
execution of a strategy in ATL. An agent carries out actions for some purpose
after all, it must have a goal in mind. ATL is not so concerned with the goal of
the agent, but rather with the power which the agent has to force the system into
a specific state 2. Though if the agent is forcing the system into a state, we can
speak about the agent having a goal to get the system into that state. This also
applies to avoiding a state. We saw examples of deadlock avoidance in ATL, here
the goal of the agents can be said to be avoiding deadlock. While ATL does not
have a notion of a goal, it does speak about the notion of a strategy.

An agent’s strategy in ATL was defined by Alur et al. (2002) to be a function
that for every element in a sequence of states determines a move for that agent.
A strategy then, is something that an agent has, a sort of plan to reach a certain
state. If the goal is to reach a state, the strategy is the plan on how to get there.
Strategies are an important part of ATL, and are explicitly defined, but are not a

2If an agent or coalition is able to make certain choices which guarantee that the system will
end up in a certain state, no matter what other parts of the system does, they are said to have the
power to force the system into that state. Alur et al. (2002) states that: “besides universal (do
all computations satisfy a property?) and existential(does some computation satisfy a property?)
questions, a third question arises naturally: can the system resolve its internal choices so that
the satisfaction of a property is guaranteed no matter how the environment resolves the external
choices?”.
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part of the concurrent game model. We saw in the ATL chapter various extensions
of ATL which made strategies an explicit part of the model.

From the AITL scenario model, one can generate many strategies. The scenario
is the problem, the strategies are the possible solutions. For example, if the scenario
contains the five actions of baking a cake, one can derive many strategies, such
as adding the flour first and then the egg, or the egg first and then the flour.
Specifically we must arrange all five actions with respect to each other, as well as
assign each action an agent carrying it out, before we have a strategy. A strategy
is only valid if it is within the restrictions of the scenario model. Some actions will
be restricted with respect to the relations they may have to each other, and some
actions may only be assigned to specific agents.

Having considered all the elements in AITL, we now move to formal definitions
of those elements.

6.2 Model

The model is called a scenario model, and for each scenario model a range of
strategies can be defined. We now define the scenario model and then we define a
strategy.

6.2.1 Scenario Model

Definition 6.1. A scenario model SM will be represented by a tuple in the
following form:

SM = (Agt,Act, tsk,Res)
where:

• Agt is a nonempty finite set of agents.

• Act is a nonempty finite set of actions.

• tsk is the tasking function, which assigns each action to a set of agents
tsk ∶ Act→ P(Agt)

• Res is a nonempty finite set of restrictions

We have discussed the notions of agents, actions, and restrictions. Res contains
both the conditional and unconditional restrictions.

The tsk function will indicate to us, for every action, which agents may carry
out that action. It might be possible that a certain action can be carried out by
any agent, or that only one agent may do so. The P symbol refers to the power
set.
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6.2.2 Strategies

A scenario model contains actions and agents, with restrictions on the relations
between actions (Res) and restrictions on which agents may carry out which ac-
tions (tsk). A strategy arranges all the actions in keeping with the restrictions, as
well as assigning those actions to agents, again in keeping with the restrictions of
the tasking function. One scenario model can give us many strategies.

Definition 6.2. A strategy Str, defined for a specific scenario model SM , consists
of a tuple in the following form:

Str = (tab, S1, S2, ..., Sk)

where:

• tab is a function which for every set of two actions gives the relation between
them, tab ∶ Act ×Act→ R where R is one of the 13 relations.

• Sa is a responsibility set for each agent a ∈ Agt. This set contains those
actions which have been assigned to agent a.

The tab function tells us how the actions have been arranged in this specific
strategy, it can be visualised as a table showing every relation for each two actions.
The responsibility sets tell us how the actions have been assigned to agents in
this specific strategy. Note that in a scenario there are many options for the
arrangements and assignment of actions, while a strategy is a single one of those
arrangements and assignments. Consider the following example timeline and table:

Each timeline can be partially described by a table (which agents carry out
which tasks is not represented).

i j k l m

i : ≺ ◁ ⪯
j .. ≺ ≻ ⊂
k ≻ ≻ ≻ ..
l ▷ ≺ ≺ :

m ⪰ ⊃ : ..
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To generate a strategy is to fill out such a table such that no contradictions
exist, as well as assigning responsibilities to agents. For this example the respon-
sibility sets would be as follows:

SAlice = (i, j, k)

SBob = (l,m)

Having defined the scenario model and the strategy, let us consider the syntax
for writing formulæ in AITL. Note that there are two different types of formulæ,
one interpreted over a scenario model and one interpreted over a strategy.

6.3 Syntax

The two types of formulæ are called strategic formulæ (written as ϕ) and scenario
formulæ (written as ψ).

Strategic formulæ are interpreted over a strategy. The syntax for a well formed
strategic formula is as follows:

ϕ ∶∶= iRj ∣ τai ∣ ¬ϕ ∣ ϕ1 ∨ ϕ2

Where i and j are actions, a is an agent. The first formula, iRj will speak about
the relation between two actions in this specific strategy. The second formula, τai
is read as “Agent a is responsible for action i”, and will speak about the assignment
of actions in this specific strategy. The last two formulæ are the common logical
operators. Additional logical operators ∧, → and ↔ can be derived as before.

Scenario formulæ are interpreted over a scenario model. The syntax for a well
formed scenario formula is as follows:

ψ ∶∶= ∃ϕ ∣ ∀ϕ ∣ ¬ψ ∣ ψ1 ∨ ψ2

We see here the usage of the familiar symbols for the quantifiers from first order
logic. These operators are however redefined, i.e., they and are used in a different
way in AITL than the common usage in first order logic. This approach is similar
to the usage of quantifiers in CTL, which were redefined to talk about the existence
of paths which satisfied a formula. The ϕ here refers to a strategic formula. ∃ϕ is
read as “It is possible to construct a strategy which satisfies ϕ”, while ∀ϕ is read
as “For every possible strategy which we can construct, ϕ is satisfied”. The last
two rules are the common logical operators. Additional logical operators ∧, → and
↔ can be derived as before.
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Strategic formulæ speak about the actions and agents in a specific strategy,
while scenario formulæ speak about which kinds of strategies can be constructed
from them.

6.4 Semantics

The evaluation of a strategic formula ϕ on a strategy Str written as Str ⊧ ϕ, is
defined as follows:

• Str ⊧ iRj, iff tab(i, j) = R, where R is a relation and tab the tasking function.

• Str ⊧ τai, iff i ∈ Sa, where a is an agent and Sa is the reponsibility set of a.

• Str ⊧ ¬ϕ, iff Str ⊭ ϕ.

• Str ⊧ ϕ1 ∨ ϕ2, iff Str ⊧ ϕ1 or Str ⊧ ϕ2.

The first two rules are primitives, one about the relations between two actions
which is true if that relation is indeed given by the tab function, and the other
about the assignment of actions to agents which is true if that assignment is indeed
given by the responsibility sets. The last two rules are logical operators with their
usual meanings, to allow us to build up more complex formulæ from the primitives.

The evaluation of a scenario formula ψ on a scenario SM , written as SM ⊧ ψ,
is defined as follows:

• SM ⊧ ∃ϕ, iff a strategy Str can be generated such that Str ⊧ ϕ.

• SM ⊧ ∀ϕ, iff for every strategy Str that can be generated Str ⊧ ϕ.

• SM ⊧ ¬ψ, iff SM ⊭ ψ.

• SM ⊧ ψ1 ∨ ψ2, iff SM ⊧ ψ1 or SM ⊧ ψ2.

Here again the first two rules are primitives, and the second two are logical
operators on those primitives. As mentioned in the Syntax, additional operators
such as conjunction and implication can be derived from the operators here. Note
that the quantifiers do not speak about the existence of formulæ, but about the
existence of strategies in the model which can satisfy those formulæ. As we will
see soon, strategies are generated for a scenario, and so instead of speaking in the
formal semantics about the existence of strategies, we speak about the fact that
a strategy can be generated, though it has similar meaning. Sometimes we may
wish to speak about the existence of at least one strategy where some relation
between two actions holds. In that case we can use the existential quantifier.
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Other times, we may wish to speak about the fact that every possible strategy
will have a specific relation between two actions. In that case we can use the
universal quantifier. Any relation between two actions which was specified as a
restriction will have that relation be true in every possible strategy, since only
strategies generated in keeping with the restrictions are valid strategies.

6.5 Example

As a clarifying example, consider the following adaption of the classic dining
philosophers problem (Hoare, 1978).

Three philosophers are eating pasta, seated around a table. Three forks are
between them, one fork between each two philosophers. A philosopher will sit and
think, until they decide to eat. They need a fork in each hand to be able to eat.
Once they are done eating, they will put down the forks and go to sleep. They only
need to eat once for this example, so once they sleep they continue to sleep. We
want to avoid a deadlock situation where each philosopher has one fork in hand
at the same time, since they cannot put down a fork before having eaten. We will
try to find a strategy which ends up in all three philosophers being asleep, since
this means they all successfully ate.

We start by creating the scenario model which will represent the situation.

SM = (Agt,Act, tsk,Res)
We will define these fields as follows:

• Agt = {P1, P2, P3}

• Act is a set of actions consisting of the following elements:

– think1

– think2

– think3

– sleep1

– sleep2

– sleep3

– holdFork1left

– holdFork2left

– holdFork3left

– holdFork1right

81

 
 
 



6.5. EXAMPLE

– holdFork2right

– holdFork3right

• tsk is a function mapping each action to the agent which must carry out that
action as follows (note that in this scenario each action can only be carried
out by one agent, while in other scenarios for other problems an action might
have multiple candidates):

– tsk(think1) = P1

– tsk(think2) = P2

– tsk(think3) = P3

– tsk(sleep1) = P1

– tsk(sleep2) = P2

– tsk(sleep3) = P3

– tsk(holdFork1left) = P1

– tsk(holdFork2left) = P2

– tsk(holdFork3left) = P3

– tsk(holdFork1right) = P1

– tsk(holdFork2right) = P2

– tsk(holdFork3right) = P3

• Res is a set of restrictions consisting of the following elements. Note that
the inverses of all of these are implied and need not be included here, for
example if i is after j, that implies that j is before i.

– think1 ∶ holdFork1left
– think1 ≺ holdFork1left
– think1 ∶ holdFork1right
– think1 ≺ holdFork1right These four restrictions say that the agent will

think before picking up a fork, and will stop thinking once they picked
up the first fork

– holdFork1left ∶ sleep1
– holdFork1right ∶ sleep1 These two restrictions say that agent 1 sleeps

immediately after holding forks in both hands]

– The above six restrictions are repeated two more times for agents 2 and
3.
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– holdFork1left & holdFork3right
– holdFork2left & holdFork1right
– holdFork3left&holdFork2right These three restrictions say that there

can be no overlap between the actions where two agents grab the same
fork.

With the model defined, we can start to generate strategies and talk about
those strategies. Recall that a strategy can be generated from a scenario. A
strategy is defined as a tuple, and for this scenario with three agents it is written
as:

Str = (tab, S1, S2, S3)

where tab is the function giving the arrangement of actions and Sa is the
responsibility set for agent a.

The tab function can be represented as a table. For a specific generated strategy,
there will be only one relation between any two actions. We can however start
to partially complete a table with the restrictions. We make a table with all the
actions, and start filling in the restrictions and their inverses as follows:

t1 t2 t3 s1 s2 s3 h1l h2l h3l h1r h2r h3r

t1 : ≺ : ≺
t2 : ≺ : ≺
t3 : ≺ : ≺
s1 ⋅⋅ ⋅⋅
s2 ⋅⋅ ⋅⋅
s3 ⋅⋅ ⋅⋅
h1l ⋅⋅ ≻ : : ⋅⋅ ≺ ≻
h2l ⋅⋅ ≻ : : ⋅⋅ ≺ ≻
h3l ⋅⋅ ≻ : : ⋅⋅ ≺ ≻
h1r ⋅⋅ ≻ : : ⋅⋅ ≺ ≻
h2r ⋅⋅ ≻ : : ⋅⋅ ≺ ≻
h3r ⋅⋅ ≻ : : ⋅⋅ ≺ ≻

We can derive additional restrictions from those already provided. One such
restriction is that an agent’s thinking action will be before its sleeping action
(since thinking happens before taking forks, and sleeping happens after taking
forks). Another is that an agent’s two fork actions will either be equal or finish
each other (since they both meet the sleeping action). We can fill these into the
table.
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t1 t2 t3 s1 s2 s3 h1l h2l h3l h1r h2r h3r

t1 ≺ : ≺ : ≺

t2 ≺ : ≺ : ≺

t3 ≺ : ≺ : ≺

s1 ≻ ⋅⋅ ⋅⋅

s2 ≻ ⋅⋅ ⋅⋅

s3 ≻ ⋅⋅ ⋅⋅

h1l ⋅⋅ ≻ : = † ‡ : ⋅⋅ ≺ ≻

h2l ⋅⋅ ≻ : : ⋅⋅ ≺ ≻ = † ‡
h3l ⋅⋅ ≻ : : ⋅⋅ ≺ ≻ = † ‡
h1r ⋅⋅ ≻ : = † ‡ : ⋅⋅ ≺ ≻

h2r ⋅⋅ ≻ : = † ‡ : ⋅⋅ ≺ ≻

h3r ⋅⋅ ≻ : : ⋅⋅ ≺ ≻ = † ‡

We can keep deriving more restrictions until there are no more restrictions to be
derived. Using an automated algorithm, we could derive all possible restrictions.
For the sake of this example, we stop here. Each cell in the table now is either
blank, or has one or more relations on it. If there are relations in a cell, it means
that when creating a strategy, that relation can only be one of those relations in the
cell. If a cell is blank, it means that any one of the 13 relations are possible. The
set of all strategies in the scenario can now be obtained by taking every possible
combination of allowed relations in this table. Since the table is symmetrical (with
inverses across the blue diagonal line of cells), only less than half of the cells need to
be considered when generating the set of all possible strategies, since the other half
will be the inverse. The more restrictions are originally derived in the scenario, the
fewer possible strategies exist. When generating a strategy, for every cell which is
given a relation, additional relations can be derived for other cells, imposing more
restrictions. This process of filling out a table and generating possible strategies
could be automated. Also note that the number of possible strategies will be very
large, and exponentially more so for larger problems.

In order to derive more restrictions, we will use interval algebra from Allen
(1990). The detail of this algebra and the automated algorithm which would use
it is beyond the scope of this dissertation. The point is to keep deriving more
restrictions which are already implied by existing ones. For example, if we must
put on socks before putting on shoes, and if we must put on shoes before going
running, we can derive that we must put on shoes before going running. It is
important to derive as many restrictions as possible, since the more restrictions,
the less possible strategies. Once all the restrictions which can be derived, have
been derived, it is time to generate strategies.

To generate a strategy is to fill out the table in such a way that no contradictions
exist, such as an action being before another action but also after it. This is done
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by carefully following the interval algebra of Allen (1990) while filling out a table.
One simple brute force algorithm is to generate every possible combination of
relations between every two actions, and then cut out those combinations which
contain contradictions according to Allen’s interval algebra. A cell on the table
which contains no restrictions (such as cell t1 t2 in the above table), can have one
of a total of 13 possible values. A cell containing four restrictions (such as cell h3r
h1l in the above table) can have one of those four values.

To summarise, we first insert the restrictions into the table, then we derive
additional restrictions (already implied by the original restrictions) and insert those
into the table, then we start generating a strategy by filling in the rest of the table
without contradictions. All of this would of course be done by an automated
algorithm, probably in a brute force fashion, and be of high complexity.

Having seen how strategies may be generated, let us now consider the specific
strategy which may result in all the philosophers being asleep. This requires that
there is some overlap between the sleep actions of the philosophers. We can now
put this property into a well formed scenario formula F , using the shortened action
names from the table for ease of reading:

F = ∃(¬s1 & s2 ∧ ¬s2 & s3 ∧ ¬s1 & s3)

Let us look more closely at what the formula is saying. The very first symbol
∃ indicates that there exists a strategy which will make this formula true. The
rest is a conjunction of three negated statements, claiming the sleep times of all
three philosophers overlap each other, or specifically that they are not disjoint. If
the sleep times of 1 and 2 overlap, and 2 and 3 overlap, and 3 and 1 overlap, then
there must be a point at which all 3 overlap.

We must now show that this formula is well formed. Recall that the syntax of
a well formed scenario formula is as follows:

ψ ∶∶= ∃ϕ ∣ ∀ϕ ∣ ¬ψ ∣ ψ1 ∨ ψ2

Where ϕ is a strategic formula. Looking at our formula, we see that we have
the first rule, ∃ϕ. We must then show that the rest of the formula, everything
without ∃, is a strategic formula.

Recall that the syntax of a well formed strategic formula is as follows:

ϕ ∶∶= iRj ∣ τai ∣ ¬ϕ ∣ ϕ1 ∨ ϕ2

We will prove that our formula is well formed by constructing it from this
syntax. We start with the first rule, iRj, where i and j are two actions, and R is
one of the 13 relations, or R is the disjoint relation & which was derived from the
other relations. We generate three subformulæ using this rule:
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• ϕ1 := s1 & s2

• ϕ2 := s2 & s3

• ϕ3 := s1 & s3

Since for this task we are not interested in which agent carries out what action,
and since each action can only be carried out by one agent in this task anyway,
we will not be using the second rule. We generate the following three subformulæ
using the third negation rule:

• ϕ4 := ¬ϕ1 ≡ ¬s1 & s2

• ϕ5 := ¬ϕ2 ≡ ¬s2 & s3

• ϕ6 := ¬ϕ3 ≡ ¬s1 & s3

Next we will generate a sub formula using the conjunction operator:

• ϕ7 := ϕ4 ∧ ϕ5 ∧ ϕ6 ≡ ¬s1 & s2 ∧ ¬s2 & s3 ∧ ¬s1 & s3

Thus this section is a well formed strategic formula ϕ, which together with the
existential quantifier ∃ makes the scenario formula F , which states that a strategy
exists which will make this strategic formula true. To show that this formula is
true, we will generate a strategy where the three philosophers sleep at the same
time, and prove that it satisfies the formula F . This strategy is called Str and is
defined as follows:

Str = {tab, S1, S2, S3}

where tab is a function relating every action to every other action, and S1, S2,
and S3 are responsibility sets for each agent.

Recall that the function tab can be written as a table, which we do here 3:

3Note that this is but one of many possible strategies. We know a strategy is complete when
each cell contains only one value, since that specifies the relation between two actions. Many of
these values in this table could have been different, for different strategies. The important thing
is that any valid strategy has to be in line with the restrictions. The reader can compare this
complete table to the in progress tables from earlier and see that it does not voilate any of the
restrictions from earlier.
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t1 t2 t3 s1 s2 s3 h1l h2l h3l h1r h2r h3r

t1 ▷ ▷ ≺ ≺ ≺ : ≺ ≺ ≺ ≺ ≺

t2 ◁ ◁ : ≺ ≺ ‡ : ⪯ ‡ ≺ :

t3 ◁ ▷ ≺ ≺ ≺ ⪯ ≺ : ≺ ≺ ≺

s1 ≻ ⋅⋅ ≻ ‡ ‡ ⋅⋅ ◁ ⪰ ⋅⋅ ⊃ ◁

s2 ≻ ≻ ≻ † † ≻ ⋅⋅ ≻ ≻ ⋅⋅ ≻

s3 ≻ ≻ ≻ † ‡ ≻ ⪰ ⋅⋅ ≻ ⊃ ⋅⋅

h1l ⋅⋅ † ⪰ : ≺ ≺ : ⪯ ‡ ≺ :

h2l ≻ ⋅⋅ ≻ ▷ : ⪯ ⋅⋅ ⪰ ⋅⋅ ‡ ◁

h3l ≻ ⪰ ⋅⋅ ⪯ ≺ : ⪰ ⪯ ⊃ ≺ ‡
h1r ≻ † ≻ : ≺ ≺ † : ⊂ ≺ :

h2r ≻ ≻ ≻ ⊂ : ⊂ ≻ † ≻ ≻ ≻

h3r ≻ ⋅⋅ ≻ ▷ ≺ : ⋅⋅ ▷ † ⋅⋅ ≺

For the responsibility sets, we know the four actions each agent will take, so
for every strategy they will be the same, namely:

• S1 = {t1, h1l, h1r, s1}

• S2 = {t2, h2l, h2r, s2}

• S3 = {t3, h3l, h3r, s3}

Putting these together, we can draw a timeline for this strategy.

Note that this timeline is just for clarification in this example, it does not form
a part of the formal model of the logic. This timeline is implied by the tab function
and the responsibility sets of the strategy.
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We must now show that this strategy Str satisfies the strategic formula, or
that Str ⊧ Fs:

Fs = ¬s1 & s2 ∧ ¬s2 & s3 ∧ ¬s1 & s3
We start by considering the three subformulæ consisting only of primitives as

follows:

• ϕ1 = s1 & s2

• ϕ2 = s2 & s3

• ϕ3 = s1 & s3

Recall that i & j is true if either i ≺ j, i ≻ j, i ∶ j or i ⋅ ⋅j is true. Looking at our
table we see that s1‡s2, s2†s3 and s1‡s3, thus none of the above three subformulæ
are true for Str, or:

• Str ⊭ ϕ1 = s1 & s2

• Str ⊭ ϕ2 = s2 & s3

• Str ⊭ ϕ3 = s1 & s3

Next we consider the inverse of each subformula:

• ϕ4 = ¬ϕ1 = ¬s1 & s2

• ϕ5 = ¬ϕ2 = ¬s2 & s3

• ϕ6 = ¬ϕ3 = ¬s1 & s3

Since we saw that ϕ1, ϕ2 and ϕ3 were not true in Str, their inverses will be
true, or:

• Str ⊧ ϕ4 = ¬ϕ1 = ¬s1 & s2

• Str ⊧ ϕ5 = ¬ϕ2 = ¬s2 & s3

• Str ⊧ ϕ6 = ¬ϕ3 = ¬s1 & s3

Next we consider the conjunction of ϕ4, ϕ5 and ϕ6, which is true if each part
is true, or:

Str ⊧ Fs = ϕ4 ∧ ϕ5 ∧ ϕ6

Str ⊧ Fs = ¬s1 & s2 ∧ ¬s2 & s3 ∧ ¬s1 & s3
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Thus the strategy we generated does satisfy the formula, or Str ⊧ Fs. Note that
this was a strategic formula satisfied by a strategy. We can also have a scenario
formula of the form:

Fe = ∃Fs

= ∃(¬s1 & s2 ∧ ¬s2 & s3 ∧ ¬s1 & s3)

Which means that for scenario M , there exists at least one strategy which
satisfies Fs. Since we have generated a strategy which does satisfy Fs, we have
also proven that at least one such strategy does exist, and thus M ⊧ Fe. Now
consider a scenario formula of the form:

Fa = ∀Fs

= ∀(¬s1 & s2 ∧ ¬s2 & s3 ∧ ¬s1 & s3)

This states that for all possible strategies the philosophers sleep at the same
time. We cannot prove this without generating every single strategy, but with some
simple reasoning we can see that the philosophers will always end up sleeping: since
the timeline ends at the same point for all agents, and since agents sleep until the
end, the sleep actions will always either finish or be finished by each other, or in
rare cases be equal. This means that for every possible strategy the sleep actions
will be joint, thus making Fa true, or M ⊧ Fa. Note that this does not state that
deadlock is impossible in the dining philosophers problem as a whole, but rather
that for our scenario model, including specifically the restrictions which we have
specified, deadlock is impossible. If one wishes to avoid deadlock, or any other
undesirable state, one must put that into the restrictions, and any strategy that
can be generated would be deadlock (or other undesirable state) free.

Having seen an in depth example, we now turn to our three familiar problems
from previous chapters.

6.6 Problems

6.6.1 The Banker’s Algorithm

In order to show the amounts borrowed by each agent, we will have a unique action
for each unit borrowed, with the names of those action indicating the total amount
borrowed. Recall that an agent will borrow more and more over time until they
have enough, then they will return everything. For example, we might have action
AliceBorrow1, AliceBorrow2, AliceBorrow3, and so on, with restrictions ensuring
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2 is after 1, 3 is after 1 and 2, and so on. The difficulty here is keeping track of the
amount of units left in the bank, to ensure the agents do not borrow more than
what is available. This will be done with a complex combination of restrictions
ensuring there can be no amount of borrows at the same time which exceed the
available cash. For example, if the available cash is 6, and there are only two
agents, Alice and Bob, we must ensure that the following combinations are not
possible:

• AliceBorrow1 ∧BobBorrow6

• AliceBorrow2 ∧BobBorrow5

• AliceBorrow3 ∧BobBorrow4

• AliceBorrow4 ∧BobBorrow3

• AliceBorrow5 ∧BobBorrow2

• AliceBorrow6 ∧BobBorrow1

Once an agent has borrowed enough, they can go into an action called Alice-
Done until the end. This is similar to the philosophers sleeping at the end. To see
if a successful strategy exists, we see if the agents all end up being done.

For this specific example, let’s say the available cash is 6. We have our common
three agents. Alice needs to borrow 4, Bob needs to borrow 6, Charlie needs to
borrow 2. The scenario model will thus be as follows:

M = (Agt,Act, tsk,Res)

where:

• Agt = {Alice, Bob, Charlie}

• Act is a set of actions consisting of the following elements:

– aliceBorrow1

– aliceBorrow2

– aliceBorrow3

– aliceBorrow4

– aliceDone

– bobBorrow1

– bobBorrow2
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– bobBorrow3

– bobBorrow4

– bobBorrow5

– bobBorrow6

– bobDone

– charlieBorrow1

– charlieBorrow2

– charlieDone

• tsk is a function mapping each action to the agent which must carry out that
action. For this scenario each action can only be carried out by one single
agent:

– tsk(aliceBorrow1) = Alice
– tsk(aliceBorrow2) = Alice
– tsk(aliceBorrow3) = Alice
– tsk(aliceBorrow4) = Alice
– tsk(aliceDone) = Alice
– tsk(bobBorrow1) = Bob
– tsk(bobBorrow2) = Bob
– tsk(bobBorrow3) = Bob
– tsk(bobBorrow4) = Bob
– tsk(bobBorrow5) = Bob
– tsk(bobBorrow6) = Bob
– tsk(bobDone) = Bob
– tsk(charlieBorrow1) = Charlie
– tsk(charlieBorrow2) = Charlie
– tsk(charlieDone) = Charlie

• Res is a set of restrictions consisting of the following two types:

– Restrictions to ensure the borrows happen in the correct order, borrow
1 first then 2 and so on. Also the done actions must be only after the
last amount borrowed.
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Figure 6.1: Example of a Successful Borrowing Strategy

– Restrictions to ensure the total amount borrowed does not exceed the
amount available. This will be a very long list consisting of every pos-
sible combination which exceed the total.

From here strategies can be generated by arranging the actions in such a way
as to not exceed the total, and thus ensuring all the borrows are successfully
completed. We would try to generate a strategy where the done actions are all
overlapping, which means the agents all completed their borrows.

6.6.2 The Sleeping Barber

The challenge here is that we do not know how many times the barber will sleep.
The barber may cut the hair of one person after another with no sleep, or sleep
in between each cut. To solve this, we find that for 3 people the barber may sleep
a max of 3 times, since he will not wake himself. We can thus create 3 actions
firstSleep, secondSleep, thirdSleep. If the barber only sleeps once in between cutting
for example, we can put the second and third sleeps back to back at the end of
the workday. We will not keep track of which chair the barber is sleeping in.

We have a barber, a cutting chair, three waiting chairs, and three customers
Alice, Bob and Charlie. The scenario model will thus be as follows:

M = (Agt,Act, tsk,Res)
where:

• Agt = {Barber, Alice, Bob, Charlie}

• Act is a set of actions consisting of the following elements:

– enterAlice

– enterBob

– enterCharlie
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– waitAlice

– waitBob

– waitCharlie

– sitAlice

– sitBob

– sitCharlie

– cutAlice

– cutBob

– cutCharlie

– firstSleep

– secondSleep

– thirdSleep

Each customer will take the enter action, if the barber is sleeping while the
customer enters, the customer will wake up the barber, this is part of the
enter action. If the barber is busy while the customer enters, the customer
will take the wait action. Once the barber is done cutting hair, if there is a
customer waiting that customer will finish waiting and take the sit action.
While the customer sits, the barber takes the cut action. Once the barber
is done cutting, he either goes to sleep or cuts the next depending on if a
customer is waiting.

• tsk is a function mapping each action to the agent which must carry out that
action. For this scenario each action can only be carried out by one single
agent:

– tsk(enterAlice) = Alice
– tsk(enterBob) = Bob
– tsk(enterCharlie) = Charlie
– tsk(waitAlice) = Alice
– tsk(waitBob) = Bob
– tsk(waitCharlie) = Charlie
– tsk(sitAlice) = Alice
– tsk(sitBob) = Bob
– tsk(sitCharlie) = Charlie
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– tsk(cutAlice) = Barber
– tsk(cutBob) = Barber
– tsk(cutCharlie) = Barber
– tsk(firstSleep) = Barber
– tsk(secondSleep) = Barber
– tsk(thirdSleep) = Barber

• Res is a set of restrictions. These have to ensure the correct order of events
as described before. Many conditional restrictions will be needed here for
ensuring things like when the barber is done cutting, if a customer is waiting,
cut the hair, or if none are waiting, go to sleep.

Figure 6.2: Example of a Barbershop Strategy Where the Barber Sleeps Once

A strategy can be generated in keeping with the restrictions. The danger with
this problem, as we noted before, is when the barber finishes and notices no one
waiting, and goes to sleep, however a customer enters while he is on his way, the
customer sees he is not yet sleeping and goes to wait. This results in a forever
sleeping barber and forever waiting customer. If a strategy is successfully generated
with these restrictions, which contains all the actions in some order, and everyone
ends up getting a cut, then we do not run into that problem.

6.6.3 The Trains Problem

This problem demonstrates a major shortcoming of the new logic AITL. While the
banker problem did not have any repeated actions, the barbershop did. Since the
barber could sleep multiple times, and we did not know how many, it presented
a challenge. However, since we knew the maximum number of times the barber
would sleep, we could create that number of actions, and put all unused actions at
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the end. For the trains problem, this challenge is much greater. The trains have
many different routes they can go, and the agents can run between crossroads an
unlimited number of times. Furthermore we cannot store the setting of a crossroad,
and will have to look at the most recent action which switched it to determine the
current setting. This problem demonstrates the sorts of problems for which this
logic is not suited.

One possible approach would be to divide the track into sections, as was done
for ATL. We can have an action for each train traversing each section, and put
unused actions at the end, as was done with unused naps for the barber. The agents
may be given a maximum number of times they may run around. Restrictions will
govern which traversal action is after which other based on the relation to the
most recent crossroad switching action. While all this may eventually allow us to
represent the problem, it will be very cumbersome and inelegant.

6.7 Conclusion

We have created a new logic to speak about the actions which agents take, and the
order they take them in. We did this by thinking about actions as intervals, and
ordering those actions relative to each other using relations. We created a scenario
model, which contains the agents and actions, as well as an assignment of agents
to actions, and a set of restrictions. The restrictions allow us to limit what is
possible with the relations, and to add rules of which actions have to have specific
relations to each other. From a scenario model we can derive a strategy, which is
simply a specific arrangement of actions and an assignment of actions to specific
agents. We have a syntax for formulæ to talk about properties of the strategies,
and about the existence of certain strategies for scenarios. We then applied this
new logic to various problems.

An interesting note about this new logic is that, with the correct restrictions,
undesirable strategies cannot be derived. For example in a problem which might
result in deadlock, with the correct restrictions, it becomes impossible to derive a
strategy which results in deadlock. Since all actions have to be in the strategy, and
have relations to all other actions, it is impossible to end up with a deadlock which
excludes various actions. Compare this to a logic like ATL, where a certain state
might be marked as a deadlock state, and we then look for a path or strategy which
is able to avoid that deadlock state. In AITL, we create restrictions which make
it impossible to derive a strategy which results in deadlock, and then if we derive
a strategy that strategy must be deadlock free. It may very well be impossible
to derive a strategy at all from some scenarios, if the scenario contains too many
restrictions. The real work of AITL is then in creating proper restrictions based
on what it is one wishes to prove, and then in deriving a strategy in keeping with
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those restrictions.
A mayor weakness of this logic is that each action may only happen once, and

must happen. For a real world action which may be repeatable, we must create
in our logic an action for every time that real world action may occur. For this,
we need to know beforehand exactly how many times an action will be taken.
Consider the example of a game of golf, we can have the action of playFirstHole
and playSecondHole and so on, with the action visitClubhouse. While a typical
day on the course might start with the first hole, then progress from there in order,
with a visit to the clubhouse after the ninth or eighteenth hole, we can play in
any order. The only restriction is that we cannot play two holes at the same time.
Various strategies can be generated for the order to play the holes in, and when
to visit the clubhouse. But we assume each hole is only played once, and the
clubhouse is only visited once. For any problems of this nature, where singular
actions must be arranged, AITL works well. When we need to start reasoning
about each individual stroke on a hole, we run into a problem, since we do not
know beforehand how many strokes will be played. One solution might be to allow
a maximum number of strokes, and have a sinkHole action happening after the
hole is finished. If the player takes five strokes to sink the hole, we can arrange
those strokes and afterwards have the sinkHole action. After this we may have
all the unused strokes, but know that since they are after sinkHole they were not
played. This is however an inelegant solution and such solutions do not always
exist. We saw an example of this problem in terms of a repeatable action which
had a maximum in the sleeping barber, as well as a repeatable action with no
maximum in the trains problem.

This logic also lacks propositions, which both ATL and Allen and Ferguson’s
interval logic have. Propositions allow us to talk about specific states of the world,
and properties of objects. With AITL, we lose this, but we gain a logic which
is simple, elegant, and very expressive when it comes to talking about the exact
order of events, of precisely what the relation is between all the actions which are
carried out.

96

 
 
 



Chapter 7

Conclusion

7.1 Summary and Contribution

In this dissertation we introduced a new logic called Agent Interval Temporal
Logic.

We started in chapter 2 by introducing preliminary concepts of logic, and look-
ing broadly at the history of development from classical logic, to modal and then
to temporal logic. We reviewed LTL and CTL, and covered concepts like agents,
paths and strategies. Then we looked at the many types of temporal logics, their
properties and how to distinguish them. We saw that we would have to choose
between propositional or predicate logic and points or intervals when designing
our logic. We also briefly reviewed the frame problem and similar problems with
predication.

In chapter 3 we introduced three problems, which were used throughout the
dissertation to illustrate the strengths and weaknesses of each logic. The first
problem was the banker algorithm, which involved reasoning about the distribution
of limited resources, and the careful allocation leading to a successful outcome. The
second problem was the sleeping barber, which involved situations of overlapping
events which might lead to infinite wait times. The last problem was a custom
problem involving trains and conductors. This problem required precise timing
by the agents to avoid trains going to incorrect destinations. All these problems
involved multiple agents, and required complex timing.

In chapter 4 we looked at Alternating-Time Temporal Logic (ATL). We con-
sidered the syntax and semantics, as well as the variant ATL∗. We represented
the three problems in ATL, and saw that while it could neatly represent all the
agents and their actions, it lacked the notion of overlapping actions or interrup-
tions. Next we looked at the related coalition logic, and some extensions of ATL
including explicit strategies, strategic commitment, incomplete information and
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epistemic extensions.
In chapter 5 we considered intervals. First we covered some preliminaries

around intervals and relations, before introducing a few formalisations of inter-
val logics. We looked at Halpern and Shoham’s logic, at Moskowsky’s ITL, at
neighbourhood logic, and duration calculus. Finally, we looked at Allen and Fer-
guson’s logic of actions and events, a first order logic involving pure intervals. We
covered it in a lot of depth, and then applied it to the three problems. We saw
that this logic was rather cumbersome, and involved a lot of axioms to represent
rather simple situations. It does however provide a logic of pure intervals, and
allows for some very complex timing to be represented.

In chapter 6 we finally introduced Agent Interval Temporal Logic, the main
contribution of this dissertation. This is a new logic, taking concepts of intervals
and concepts of agents and actions, and combining them together. The resulting
logic could speak about actions, and the ordering of actions over time, by repre-
senting actions as intervals. We could represent various scenarios which contained
actions to be done, and then we could derive various strategies of how to do those
actions. There were also some limitations to our logic, which will be expanded
upon in the next section.

This dissertation also contains an overview of the development of temporal
logic, as well as covering various temporal logics and their relations to each other,
which we believe can be very useful to a reader who is new to the field.

7.2 Applications

AITL is primarily a logic of arranging intervals while keeping to various restrictions
on the arrangement of those intervals. It would be useful to any activity which
involved the arrangement of actions. There are numerous fields in philosophy
where this could be applied.

Most planning activities involve the arrangement of tasks and the assigning of
responsibilities. Everything from self driving cars to social robots to automated
factories, from project management to timetable generation, involves arranging
intervals. As we have seen, AITL is not quite suited for situations where actions
are optional, but rather where all the actions to be carried out are known before-
hand. AITL would work well for a planning system, where a project is broken
down into tasks (which must all be carried out) which are then assigned to teams
and arranged on a timeline. Various applications in Artificial Intelligence involve
similar planning activities.

Prediction and explanation is also a large part of the field of Artificial Intel-
ligence. The arrangement of a set of past events can be used to determine cause
and effect, while arranging future events can help predict how the world may look
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if one thing is done before the other. Here again, AITL can be a useful formalism
for reasoning about the arrangement of such events.

In the field of moral reasoning, one of the concerns involves reasoning as a
group about moral questions. Richardson (2018) states that “such joint reasoning
is best pursued as a matter of working out together, as independent moral agents,
what they ought to do with regard to an issue on which they have some need
to cooperate.” If AITL were to be combined with some concepts from epistemic
logic, group discussions could be represented. Different agents involved in the
discussion could be represented, alongside their contributions to the conversation.
The arrangement of arguments, such as this argument being before that counter-
argument, could also be represented.

The field of mereology involves reasoning about “parthood relations: of the
relations of part to whole and the relations of part to part within a whole” (Varzi,
2019). We have seen how intervals can be broken up into smaller intervals, and
how smaller intervals can have relations to larger intervals and to other smaller in-
tervals. While mereology considers many different types of parts, such as attached
or detached, extended or unextended, spatial or temporal, AITL might be useful
for reasoning about temporal parts. Having a representation for various intervals,
and various parts of intervals, and relations between them, could contribute to the
work done in mereology.

Many potential philosophical applications for AITL exist, and many more so
when combined with elements from other logics. A lot more work can be done.

7.3 Future Work

While AITL could represent simple scenarios, and we could manually derive strate-
gies from it, with larger and more complex scenarios this would become too much.
There is still much potential for extending AITL to allow it to represent more
complex scenarios in simpler ways. Perhaps not requiring every interval to be in
the strategy, or having repeating intervals, or similar ideas, are all ideas still to be
explored.

An automated algorithm based on Allen’s interval algebra, which can be used
to derive restrictions and strategies, would be very useful.

While this dissertation focused on pure interval logics, where intervals are pri-
mary objects in the logic, there is much potential for non-pure interval logics. A
combination of ATL and HS, or ATL and ITL, are both interesting projects which
may have great potential. Since ATL is based on states, adding intervals over
those states and adding operators to be used on those intervals, could make ATL
a much richer and more expressive language. There is also much more literature
on non-pure interval logics, and it is computationally much simpler.
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This dissertation merely scratched the surface of an unexplored topic, much
more potential awaits in combining intervals with agents.
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Appendix A

In this appendix we represent the Sleeping Barber and Trains problems using Allen
and Ferguson’s logic of actions and events.

The Sleeping Barber

In this problem, the issue of overlapping timelines becomes very important. As
before, agents will not be directly represented, but their actions will be considered
as part of the actions of a single system. There are four agents, the customers Alice,
Bob and Charlie, and the Barber, and five chairs, numbered 0 to 4, as well as a
sixth special chair for cutting. There are four actions leading to four events. They
are cut, enter, next, nap and wake, leading to CUT, ENTER, NEXT, NAP and
WAIT. As before, events are named in all UPPERCASE, actions in all lowercase,
and predicates in TitleCase. Cut is where the barber cuts the hair of a customer.
Enter is where a customer enters the shop and checks the chairs, and consists of
three actions, one for each customer. Next is when the barber finishes a cut and
calls the next customer. Nap is when the the barber goes to take a nap. Wake is
when a customer tries to wake the barber, and three actions exist for each of the
three customers. The predicates in the introduction description of this problem
will be used, namely Chairi(a) for each of the five chairs i = 0to4, BarberChair(a)
for the customer receiving a haircut and BarberStand(a) for the barber in position
to cut.

The event definitions are as follows:

∀e.CUT (e) →
((BarberChair(Alice, pre1(e)) ∨ (BarberChair(Bob, pre1(e))

∨ (BarberChair(Charlie, pre1(e))) ∧ SameEnd(pre1(e), time(e))
∧BarberStand(Barber, pre2(e)) ∧ SameEnd(pre2(e), time(e))

∧BarberChair(Empty, eff1(e) ∧ time(e) ∶ eff1(e) (EDEF1)

101

 
 
 



7.3. FUTURE WORK

There needs to be a customer in the BarberChair and the barber needs to be in
position behind the chair for a successful cutting to take place. Once completed,
the customer walks out and disappears from the domain of discourse. The barber
remains in position and should soon attempt the next action.

∀e, i, j.ENTERALICE(e) →
(Chair0(Empty, pre1(e)) ∧ SameEnd(pre1(e), time(e))

∧BarberStand(Barber, pre2(e)) ∧ SameEnd(pre2(e), time(e))
∧Chair0(Alice, eff1(e)) ∧ time(e) ∶ eff1(e))

∨ (Chairi(Empty, pre1(e)) ∧ ¬Chairj(Empty, pre1(e))
∧ SameEnd(pre1(e), time(e)) ∧ i = j + 1

∧BarberStand(Barber, pre2(e)) ∧ SameEnd(pre2(e), time(e))
∧Chairi(Alice, eff1(e)) ∧ time(e) ∶ eff1(e)) (EDEF2)

Either the first chair is empty, in which case it is taken, or another chair is
empty which is after one that is not empty, in which case that one is taken. In
both cases the barber must be at the cutting chair, if not the action fails and the
customer tries the wake action instead. EDEF3 and EDEF4 are similarly defined
for Bob and Charlie.

∀e, a.NEXT (e) →
(BarberChair(Empty, pre1(e)) ∧ SameEnd(pre1(e), time(e))
∧BarberStand(Barber, pre2(e)) ∧ SameEnd(pre2(e), time(e))
∧Chair0(a, pre3(e)) ∧ a! = Empty ∧ SameEnd(pre3(e), time(e))

∧BarberChair(a, eff1(e) ∧ time(e) ∶ eff1(e) (EDEF5)

When the barber calls “Next!”, the cutting chair must be empty, the barber
must be at the cutting chair, and there must be someone in the first chair. If this
succeeds, the customer who was in the first chair will walk over and end up in the
cutting chair.

∀e, i.NAP (e) → BarberStand(Barber, pre1(e))∧
SameEnd(pre1(e), time(e)) ∧Chairi(Empty, pre2(e))∧
SameEnd(pre2(e)) ∧BarberStand(Empty, eff1(e))∧

time(e) ∶ eff1(e) ∧Chairi(Barber, eff2(e)) ∧ time(e) ∶ eff2(e) (EDEF6)
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If the next action fails, probably because the first chair is empty, the barber
then attempts to sleep. The barber must be at the cutting chair when attempting,
and end up in one of the empty chairs when done.

∀e, i.WAKEALICE(e) → Chairi(Barber, pre1(e)) ∧ SameEnd(pre1(e))
∧BarberStand(Barber, eff1(e)) ∧ time(e) ∶ eff1(e)

∧BarberChair(Alice, eff2(e)) ∧ time(e) ∶ eff2(e) (EDEF7)

Alice wakes up the barber, then she takes a seat in the cutting chair and the
barber stands at the cutting chair. EDEF8 and EDEF9 are similarly defined for
Bob and Charlie.

The action axioms leading to the above events are now defined:

∀t.T ry(cut, t) ∧ ¬BarberChair(Empty, t)
∧BarberStand(Barber, t) → ∃e.CUT (t, e) (ETRY1)

∀t.T ry(enteralice, t) ∧BarberStand(Barber, t) ∧ ∃i.Chairi(Empty, t)
→ ∃e.ENTERALICE(t, e) (ETRY2)

∀t.T ry(enterbob, t) ∧BarberStand(Barber, t) ∧ ∃i.Chairi(Empty, t)
→ ∃e.ENTERBOB(t, e) (ETRY3)

∀t.T ry(entercharlie, t) ∧BarberStand(Barber, t) ∧ ∃i.Chairi(Empty, t)
→ ∃e.ENTERCHARLIE(t, e) (ETRY4)

∀t.T ry(next, t) ∧BarberChair(Empty, t) ∧BarberStand(Barber, t)
∧ ¬Chair0(Empty, t) → ∃e.NEXT (t, e) (ETRY5)

∀t.T ry(nap, t) ∧BarberStand(Barber, t) ∧ ∃i.Chairi(Empty, t)
→ ∃e.NAP (t, e) (ETRY6)
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∀t.T ry(wakealice, t) ∧ ∃i.Chairi(Barber, t) → ∃e.WAKEALICE(t, e)

(ETRY7)

∀t.T ry(wakebob, t) ∧ ∃i.Chairi(Barber, t) → ∃e.WAKEBOB(t, e) (ETRY8)

∀t.T ry(wakecharlie, t) ∧ ∃i.Chairi(Barber, t) → ∃e.WAKECHARLIE(t, e)
(ETRY9)

Next the explanation closure axioms are defined.

∀t, t′, i.Chairi(Empty, t) ∧ ¬Chairi(Empty, t′) ∧ t ∶ t′

→ ∃e.(ENTERALICE(e) ∨ENTERBOB(e) ∨ENTERCHARLIE(e)
∨NAP (e)) ∧ time(e) ∶ t′ (EXCP1)

∀t, t′, i.¬Chairi(Empty, t) ∧Chairi(Empty, t′) ∧ t ∶ t′

→ ∃e.(NEXT (e)∨WAKEALICE(e)∨WAKEBOB(e)∨WAKECHARLIE(e))
∧ time(e) ∶ t′ (EXCP2)

∀t, t′.BarberChair(Empty, t) ∧ ¬BarberChair(Empty, t′) ∧ t ∶ t′

→ ∃e.NEXT (e) ∧ time(e) ∶ t′ (EXCP3)

∀t, t′.¬BarberChair(Empty, t) ∧BarberChair(Empty, t′) ∧ t ∶ t′

→ ∃e.CUT (e) ∧ time(e) ∶ t′ (EXCP4)

∀t, t′.BarberStand(Empty, t) ∧BarberStand(Barber, t′) ∧ t ∶ t′

→ ∃e.(WAKEALICE(e) ∨WAKEBOB(e) ∨WAKECHARLIE(e))
∧ time(e) ∶ t′ (EXCP5)
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∀t, t′.BarberStand(Barber, t) ∧BarberStand(Empty, t′) ∧ t ∶ t′

→ ∃e.NAP (e) ∧ time(e) ∶ t′ (EXCP6)

∀e.CUT (e) → ∃t.T ry(cut, t) ∧ t = time(e) (EXCE1)

∀e.ENTERALICE(e) → ∃t.T ry(enteralice, t) ∧ t = time(e) (EXCE2)

∀e.ENTERBOB(e) → ∃t.T ry(enterbob, t) ∧ t = time(e) (EXCE3)

∀e.ENTERCHARLIE(e) → ∃t.T ry(entercharlie, t) ∧ t = time(e) (EXCE4)

∀e.NEXT (e) → ∃t.T ry(next, t) ∧ t = time(e) (EXCE5)

∀e.NAP (e) → ∃t.T ry(nap, t) ∧ t = time(e) (EXCE6)

∀e.WAKEALICE(e) → ∃t.T ry(wakealice, t) ∧ t = time(e) (EXCE7)

∀e.WAKEBOB(e) → ∃t.T ry(wakebob, t) ∧ t = time(e) (EXCE8)

∀e.WAKECHARLIE(e) → ∃t.T ry(wakecharlie, t) ∧ t = time(e) (EXCE9)

With that, all the necessary general axioms have been defined for the sleeping
barber. Now a specific case is presented:

t0 ≺ t1 ≺ t2 ≺ t3 ≺ t4 ≺ t5 ≺ t6 ≺ t7 ≺ t8 ≺ t9 ≺ t10 (AX0)

Chair0(Alice, t0) (AX1)

Chair1(Empty, t0) (AX2)

Chair2(Empty, t0) (AX3)

105

 
 
 



7.3. FUTURE WORK

Chair3(Empty, t0) (AX4)

Chair4(Empty, t0) (AX5)

BarberChair(Empty, t0) (AX6)

BarberStand(Barber, t0) (AX7)

Try(next, t1) (AX8)

Try(enterbob, t2) (AX9)

Try(cut, t3) (AX10)

Try(next, t4) (AX11)

Try(cut, t5) (AX12)

Try(next, t6) (AX13)

Try(nap, t7) (AX14)

Try(entercharlie, t8) (AX15)

Try(wakecharlie, t9) (AX16)

Try(cut, t10) (AX17)

It is clear that this case will work out fine, with all actions succeeding except
for Try(next, t6) at AX13, which fails since there is no one next in the queue,
leading to the barber taking a nap during t7. The problem comes in when the
times for nap and enter actions overlap. As an example, here is a subsection of
axioms:
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Try(next, t1) (AX1)

Assume this attempt fails, as there are no customers waiting.

Try(nap, t2) (AX2)

Try(entercharlie, t3) (AX3)

If t2 starts before t3, but the two times overlap, this will lead to a problem. Since
nap requires that the barber is at their stand and that there is an open chair, it
will succeed. At the start of entercharlie, the barber is still at their stand, and
chair0 is open, so Charlie takes a seat at chair0, while the barber goes to nap on
chair2.

The sleeping barber problem has been represented in Allen and Ferguson’s
logic, and now the last problem, the trains problem, will be presented.

The Trains Problem

A simple example will be used, consisting of 3 trains (t0, t1, t2), 3 stations
(s0, s1, s2), 5 pieces of rail track (r0, r1, r2, r3, r4), 2 crossroads (c0, c1) and a sin-
gle agent (agent). The trains will arrive onto r0, which connects to crossroad c0,
which splits to r1 and r2. The rail r1 terminates in station s1, while r2 connects
to crossroad c1, which splits to r3 and r4. The rail r3 terminates in s2 while the
rail r4 terminates in s3. A useful function will be next(r) which returns the track,
crossroad or station which connects to the current track or crossroad r, taking into
account the current setting of a crossroad. For example, next(r2) = c1.

To represent the state of the system, the following predicates will be used:
Crossroadi(a) will indicate if an agent is at a crossroad, where a is either Agent
or Empty, CrossConnectioni(rj) will indicate the current setting of a crossroad,
where rj is a piece of railway, Oni(tj) will indicate the presence of a train on
a track i, which may be either rail tracks or a crossroad. Note that the agent
may only be at one of the two crossroads at a time, and must run between them,
and a crossroad may only be in one setting at a time, while a track may contain
many trains. For example, if Crossroad0(Agent) then Crossroad1(Empty), and
if CrossConnection1(r3) then ¬CrossConnection1(r4). However, it may be the
case that Onr2(t0) and Onr2(t1) at the same time.

The agent can take the actions switch to change a crossroad and run to get to
the other crossroad. When a train reaches the end of the current section of track
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or crossroad the system will take the advancei action, which will put the train on
the next track. There will be one advancei action for each i train.

The event axioms are as follows:

∀e, r, r‘.SWITCH(e) → ∃i.Crossroadi(Agent, pre1(e))
∧ SameEnd(pre1(e), time(e)) ∧CrossConnectioni(r, pre2(e))
∧ SameEnd(pre2(e), time(e)) ∧CrossConnectioni(r′, eff1(e))

∧ time(e) ∶ eff1(e) (EDEF1)

∀e, i, j.RUN(e) → Crossroadi(Agent, pre1(e)) ∧ SameEnd(pre1(e), time(e))
∧Crossroadj(Empty, pre2(e)) ∧ SameEnd(pre2(e), time(e))

∧Crossroadi(Empty, eff1(e)) ∧ time(e) ∶ eff1(e)
∧Crossroadj(Agent, eff2(e)) ∧ time(e) ∶ eff2(e)

∧ i! = j (EDEF2)

The agent can flip a switch at a crossroad or run across to the other crossroad.

∀e, c, i, j.ADV ANCEc(e) → Oni(tc, pre1(e)) ∧ SameEnd(pre1(e), time(e))∧
Onj(tc, eff1(e)) ∧ time(e) ∶ eff1(e) ∧ i! = j ∧ next(i) = j (EDEF3)

The train car c advances from i to j, keep in mind that i and j can be rail
track pieces, crossroads or stations.

The action axioms are as follows:

∀t.T ry(switch, t) ∧ ∃i.Crossroadi(Agent, t) → ∃e.SWITCH(t, e) (ETRY1)

∀t, i, j.T ry(run, t) ∧Crossroadi(Agent, t)
∧Crossroadj(Empty, t) → ∃e.RUN(t, e) (ETRY2)

∀t, i, c.T ry(advancec, t) ∧ Oni(c, t) → ∃e.ADV ANCEi(t, e) (ETRY3)
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The explanation closure axioms are as follows:

∀t, t′, i.Crossroadi(Agent, t) ∧Crossroadi(Empty, t′) ∧ t ∶ t′

→ ∃e.RUN(e) ∧ time(e) ∶ t′ (EXCP1)

∀t, t′, i.Crossroadi(Empty, t) ∧Crossroadi(Agent, t′) ∧ t ∶ t′

→ ∃e.RUN(e) ∧ time(e) ∶ t′ (EXCP2)

∀t, t′, i, r, r′.CrossConnectioni(r, t) ∧CrossConnectioni(r′, t′) ∧ t ∶ t′ ∧ r! = r′

→ ∃e.SWITCH(e) ∧ time(e) ∶ t′ (EXCP3)

∀t, t′, i, c.Oni(c, t) ∧ ¬Oni(c, t′) ∧ t ∶ t′ → ∃e.ADV ANCEc(e) ∧ time(e) ∶ t′
(EXCP4)

∀t, t′, i, c.¬Oni(c, t) ∧ Oni(c, t′) ∧ t ∶ t′ → ∃e.ADV ANCEc(e) ∧ time(e) ∶ t′
(EXCP5)

∀e.RUN(e) → ∃t.T ry(run, t) ∧ t = time(e) (EXCE1)

∀e.SWITCH(e) → ∃t.T ry(switch, t) ∧ t = time(e) (EXCE2)

∀e.ADV ANCE(e) → ∃t.T ry(advance, t) ∧ t = time(e) (EXCE3)

The failure condition, that a train ends up in the wrong station, can be repre-
sented by the following:

(Onsi = tj) ∧ i! = j
While the win condition is:
∀i.(Onsi = ti)
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