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ABSTRACT

Mesenchymal stem cells (MSCs) loaded with oncolytic viruses are presently being investigated as a new modality of ad-
vanced/metastatic tumors treatment and enhancement of virotherapy. MSCs can, however, either promote or suppress tumor
growth. To address the critical question of how MSCs loaded with oncolytic viruses affect virotherapy outcomes and tumor
growth patterns in a tumor microenvironment, we developed and analyzed an integrated mathematical-experimental model.
We used the model to describe both the growth dynamics in our experiments of firefly luciferase-expressing Hep3B tumor
xenografts and the effects of the immune response during the MSCs-based virotherapy. We further employed it to explore the
conceptual clinical feasibility, particularly, in evaluating the relative significance of potential immune promotive/suppressive
mechanisms induced by MSCs loaded with oncolytic viruses. We were able to delineate conditions which may significantly
contribute to the success or failure of MSC-based virotherapy as well as generate new hypotheses. In fact, one of the most
impactful outcomes shown by this investigation, not inferred from the experiments alone, was the initially counter-intuitive fact
that using tumor-promoting MSCs as carriers is not only helpful but necessary in achieving tumor control. Considering the fact
that it is still currently a controversial debate whether MSCs exert a pro- or anti-tumor action, mathematical models such as this
one help to quantitatively predict the consequences of using MSCs for delivering virotherapeutic agents in vivo. Taken together,
our results show that MSC-mediated systemic delivery of oncolytic viruses is a promising strategy for achieving synergistic
anti-tumor efficacy with improved safety profiles.
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Description of the model interactions

In equation 1, the first term, aT
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)
, indicates that in the absence of immune response, the uninfected

tumor cells grow logistically with an intrinsic and/ or oAd-MSC-induced growth rates, aT and aT η , respectively. Of note, prior
to virotherapy (i.e., in the absence of oAd-MSCs within the tumor microenvironment, η = 0 in Eq.(8)), uninfected tumor cells
are modeled to have a constant proliferation rate, aT . In the absence of unequivocal data regarding the rate of tumor growth
promotion or suppression by an MSC, for simplicity, we assume that the rate of tumor growth promotion is the same as the
rate of tumor growth suppression by the MSC. Thus, the coefficient δp/s is the probability that local interactions between the
uninfected tumor cell and an MSC causes the tumor cell to grow or become suppressed. The parameter KT denotes the tumor
carrying capacity. The parameter hT M is the half-saturation constant for tumor cells that supports half the maximum interaction
with an MSC (leading to tumor growth or tumor suppression). The second term, −βT (ti)TuV , denotes infection of tumor cells
by oncolytic virions (V ) released at time ti within the tumor microenvironment. Note that the infection rate, βT (ti), depends
on the time of infection ti (i.e., the time when the oAd-MSCs arrive and, possibly, release the Adenovirus (Ad) within the
tumor microenvironment). Also notice that βT (ti) = 0 for [0, ti), and βT (ti)> 0 for [ti, t∗i ], where t∗i is the terminal time of the
experiment. The third term, −λT EKTu, represents a direct NK-induced tumor cell death, with the rate of tumor cell death
λT . This multiplication response term is usually employed when one assumes a continuous killing rate of both uninfected
and infected tumor cells by the innate immune system, mediated by NK cells. For simplicity, we only assumed mass-action
interaction kinetics between tumor and NK cells. This simplified interaction term has successfully been used to describe
the depletion of tumor cells by NK cells during oncolytic virotherapy1. The last term, −DTu, represents tumor cell lysis by
activated tumor-specific CTLs. The term D, defined in Eq.(7), represents a ratio-dependent CTL-induced tumor cell death. The
Holling response function for CTL, in Eq.(7), is usually employed when one assumes that the recruitment of CTLs occurs
outside the tumor microenvironment. Normally, T cells are activated to become CTLs in the spleen and traffic to tumor bed to
mount their antitumor attack. This function form of cell lysis is a novel term derived by de Pillis et al.2. More information and
justification of this ratio cell lysis can be found in2 and3. This term has successfully been employed in a number of models4, 5.

In equation 2, an instantaneous transfer of a population of uninfected tumor cells to infected cell population is represented
by the first term, βT (ti)TuV . The oncolytic lysis of infected tumor cells is denoted by the second term, −lv(ti,MOI)Ti, with
lysis rate lv(ti,MOI). The lysis rate, lv(ti,MOI), depends on the time of infection, ti, and the multiplicity of infection, MOI.
We assume that the death of the infected cells occurs very rapidly following the viral infection; hence, the intrinsic growth of
infected cells is neglected. The oncolytic viral infections often foster infected tumor cells to express tumor antigens which
are recognised by NK cells6, 7. Hence, the rate at which NK cells lyse infected tumor cells is represented by the third term,
−λT EKTi, where λT is the rate of NK-induced tumor death. The last term, DTi, denotes the tumor cell death induced by CTLs
(assumed to be similar the cell lysis of uninfected tumor cells by activated CTLs).

In equation 3, the first term, ξMuM(t), represents a pulse infusion of oAd-MSCs into the tumor microenvironment, where
ξM is a “switch” boolean constant defined in Eq (9). In the experiment described above, the oAd-MSCs were intravenously
injected on days 9 and 13 post-implantation of 1×106 firefly luciferase-expressing Hep3B cells into the left lobe of the liver in
athymic nude mice. Mathematically, we represent these oAd-MSC injections as uM(t) = uM0(δ (t−9)+δ (t−13)), where
uM0 = 1×106 cells, ξM = 1 or ξM = 0 if oAd-MSCs are used as delivery vehicles or not as delivery vehicles, respectively.
Thus, here uM(t) is the rate at which new oAd-MSCs are injected into the tumor microenvironment at time t and δ (t) is the
Dirac delta function. The last term, −lv(ti,MOI)Mi, represents lysis of MSC carrier cells within the tumor microenvironment
by the pre-loaded replication-competent oncolytic Ad.

In equation 4, ξV uV (t), denotes a pulse intravenous injection of oncolytic Ads into the system, where ξV is a “switch”
boolean constant defined in Eq (9). In the experiment described above, the oncolytic Ads were intravenously injected on days 9
and 13 post-implantation of 1×106 firefly luciferase-expressing Hep3B cells into the left lobe of the liver in athymic nude mice.
We represent these oncolytic Ads injections as uM(t) = uV 0(δ (t−9)+δ (t−13)), where uV 0 = 5×108 virus particles (VP) of
oncolytic Ad. Note that ξV = 1 if oncolytic Ads are directly injected into the system (e.g., oncolytic Ads were directly into
the mice in the experiment above) or ξV = 0 if not directly injected into the system. The term lv(ti,MOI)bMMi represents the
production of new virions from the lysed oAd-MSCs, where lv(ti,MOI) is the lysing rate of an MSC carrier. During oncolytic
virus propagation (or upon lysis) within an infected cell, new infectious virions are released from each infected cell. Thus,
bM is the burst size for viruses from the MSC carriers. The release virons can, immediately, infect tumor cells in the vicinity
of the release point. After successful virus replication within infected tumor cells, Ti, new virus particles are further released
and continue to infect the neighbouring uninfected tumor cells. Hence, the term lv(ti,MOI)bT Ti represents the production of
new virions from the lysed infected tumor cells, with the lysis rate lv(ti,MOI), and the burst size bT . An immune induced
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virus inactivation and elimination is represented by the last term, ωV , where ω is the virus clearance rate within the tumor
microenvironment. Note that in the tumor microenvironment, free viruses are susceptible to neutralization by circulating
antibodies and/or other antiviral immune cells.

As part of the innate immunity, NK cells are always present at the tumor site8, and have been shown to play a vital role
in immunosurveillance of tumors9. Thus, in equation 5, the first term, SEK (t), represents a constant supply of NK cells into
the tumor microevironment, as in previous models2, 10. The second term −rKλT EK(Tu +Ti) represents the inactivation of NK
cells as a result of their interaction with tumor cells. The proportion of NK cells that are inactivated during tumor-NK cell
interactions is represented by rK , and λT is the rate of NK-induced tumor death. Note that this inactivation occurs when an NK
cell encounters a tumor cell several times and consequently ceases to be cytotoxic, and undergoes apoptosis8. This mass-action
term has successfully been employed in previous models of tumor-immune interactions2, 4, 10, 11. The natural death of NK cells
is represented by the last term, −µKEK , where µK is the rate of NK cell death.

In equation 6, the CTL recruitment to the tumor microenvironment occurs due to the presence of tumor antigens or oncolytic
cell death that often exposes a plethora of tumor associated antigens. This antigenic recruitment is denoted by the first term,
−γEC, where γ is the recruitment rate of CTLs. Note that this term is negative because CTLs are present at the tumor site only
when tumor cells are present, as in2, 10. The second term −rCEC(Tu +Ti) represents CTL inactivation, at the rate rC, as a result
of their interaction with tumor cells. The last term,−µCEC, represents the natural death of CTLs, with the constant death rate µC.

Table of model parameters: The baseline parameter values for our model are given in Table S1.

Identification of key model parameters: Global sensitivity analysis results
In this study, most of the parameters have been sourced from the literature. There were, however, some parameters which
could not be obtained from the available literature due to lack of appropriate studies or experimental data. We performed
two most reliable global sensitivity analyses to assess how model outputs depend on all model parameters. In this way, we
hope to determine which model parameters are most influential on tumor cell population (Ttumor(t) = Tu(t)+Ti(t)) at days
9,13,70 and 200. Note that the first two time points correspond to the oAd-MSC injections as described in the experiments,
and the last two are ad hoc values which were chosen only for exploring the model sensitivity at later time points. The
implemented methods of sensitivity analyses were: the Pearson Rank Correlation Coefficients (PRCC) and extended Fourier
Amplitude Sensitivity Testing (eFAST)18, 19. PRCC is considered to be the most effective method when there is a nonlinear
but monotonic relationship between model inputs (or parameters) and outputs (or variables)20, while eFAST, a variance based
method, is considered to be the most reliable method whenever the relationship between the model inputs and outputs is
nonlinear and non-monotonic21. Even though each method can effectively be used individually, for a complete global sensitivity
analysis, it is often recommended to use both methods to capture any nonlinear relationships between model inputs and outputs18.

The Pearson Rank Correlation Coefficients (PRCC). We generated 1000 sample values for each parameter from a uniform
distribution. When sampling all the model parameters, we chose the range of each parameter to vary from 1/2 to twice its
baseline values listed in Table S1 in the Supplementary Material, except δp/s which is chosen from 0 and 1. In this choice of
parameter ranges, we allow the PRCC to take account of potentially large uncertainty in the model parameters. We then used
a Latin Hypercube sampling (LHS) method proposed in18, along with PRCC values and corresponding p-values, to assess
the sensitivity of the model output of interest (tumor cell population) to each parameter at the given time points (i.e., at days
9,13,70 and 200).

Note that the PRCC varies between 0 and 1. Here, the PRCC results for the tumor cell population are interpreted as follows:
(1) a negative PRCC value (indicating a negative correlation) with p-value smaller than 0.01 means that increasing the value of
that parameter under consideration will decrease the total tumor cell population and hence increase the (relative) efficacy of the
oAd-MSCs. (2) A positive PRCC with p-value smaller than 0.01 bears the counter-intuitive meaning of the negative PRCC
value, that is, it will diminish the efficacy of the oAd-MSCs. Note that the parameters with large absolute PRCC values greater
than 0.1 (i.e., PRCC > |0.1|), with corresponding small p-values < 0.05, are regarded as the most influential parameters in the
model22.

As depicted in Fig. 1, our sensitivity analysis reveals that parameter sensitivity varies with the growing tumor. For instance,
tumor cell population is highly sensitive to the relatively small changes in the tumor cell proliferation rate, aT , in the early
phases of the tumor growth, but becomes less and less sensitive as the tumor grows. On the other hand, the tumor cell population
is sensitive to the lysis rate, as revealed by the influence of the multiplicity of infection, MOI, half-saturation constant that
yields half maximum killing of tumor cells by the oncolytic virus, hn

v , and the Hill function coefficient, n, at all time points.
This particular result is consistent with the findings in23, where chimeric antigen receptor–engineered T cells when used as
oncolytic virus carriers. The results are further in agreement with the experimental findings in24, 25 (e.g, see fig. 1A in24, 25)
which showed that there was an increase in the numbers of infected cells with corresponding increase in MOI.
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Table S1. Baseline parameter values used in the model simulations and sensitivity analysis. Estimates from the
experimenatal data are taken at MOI 10, day 5 post-infection of MSCs.

Parameter Description Value Source

aT Intrinsic tumor growth rate 0.315 day−1 Estimate
δp/s Prob of promotive or suppressive interaction 0.5 Estimate

between tumor cells and oAd-MSCs
η Tumor growth promotive/suppressive constant 4 day−1 Estimate

by oAd-MSCs
hT M Half-saturation constant that supports 500 Estimate

half-maximum tumor growth or suppression
KT Tumor carrying capacity 1.47×1012 cells 12, 13

ξM “Switch” parameter for oAd-MSC therapy 0 or 1 dimensionless Estimate
ξV “Switch” parameter for direct oncolytic Ad therapy 0 or 1 dimensionless Estimate
βT Infection rate of tumor cells 12.8×10−4 virion−1 day−1 Estimate
λT Rate of NK-induced tumor death 8.68×10−10 cell−1 day−1 14

α Maximum proportional tumor kill by CTLs 7
20 day−1 4

l Immune strength scaling exponent 2
3 dimensionless 4

n Scaling exponent in function lv which defines 2 dimensionless Estimate
cell lysis by oncolytic Ad virions

hv Half-saturation constant that 20 Estimate
supports half-maximum cell lysis by Ad virions

hEC Activated CTL toxicity constant that 1.4 4

supports half maximum CTL killing rate
lv Rate of death by lysis (MOI=10) 2.0×10−1 day−1 Estimate
bM Number of virions released from 100 Estimate

the MSC carriers
bT Number of virions released from 1000 Estimate

an infected tumor cell
ω Virus clearance rate 2.3 day−1 15

SEK Constant external source of NK cells 1.30×104 cells·day−1 3

rK Fraction of inactivated NK cells 1.0×10−7 cell−1 day−1 3

during NK-tumor interactions
µK Natural death rate of NK cells 4.12×10−2 day−1 3, 10, 16

γ Recruitment rate of CTLs 9.0×10−3 day−1 5, 17

rC Fraction of inactivated CTLs 3.42×10−10 cell−1 day−1 3

during CTL-tumor interactions
µC Natural death rate of CTLs 2.0×10−2 day−1 3, 10, 16

To affirm the sensitivity results we obtained with PRCC method, we further performed the model sensitivity using the
eFAST method by implementing a MATLAB code developed by Kirschner and colleagues. For a given parameter i, we
calculated the First-order (Si) and total-order (STi) sensitivity indices. The First-order sensitivity index indicates the fraction of
model output variance that can be explained by the variance of a given parameter (input), while the total-order sensitivity index
for a given input indicates the variance of the given model output that remains when all variances caused by other inputs, and
covariances between all combinations of inputs, is removed. In eFAST, all model parameters (inputs) are varied within specific
ranges at different frequencies, and the model solutions (outputs) are calculated. As in PRCC method, the model parameter
values were allowed to vary from 1/2 to twice its baseline values listed in Table S1 in the Supplementary Material, except for
δp/s which is should be chosen from 0 and 1. To determine which parameter has a greatest influence in the model solutions, the
Fourier transform of the model solutions is computed with respect to the amplitude of each parameter’s frequency. Of note,
the total-order sensitivity index is used as a measure of the global sensitivity, which accounts for the second and higher-order
interactions between multiple model parameters. To test the statistical significance of each parameter, eFAST compares the
significance of each parameter to a dummy variable (which is not included in the model equations, and does not affect model
predictions in any way). Parameters that have a total-order sensitivity index that is less than or equal to that of the dummy
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Figure 1. Tumor cell population sensitivity using PRCC. PRCC values for the model parameters using the tumor cell
population as the variable (output) of interest. Statistically significant PRCC values (PRCC > |0.5|) for tumor cell population
(Ttumor(t) = Tu(t)+Ti(t)) at days 9,13,70 and 200

variable are regarded not significantly different from zero. The eFAST indices for our model parameters are shown in Fig. 2.
Fig. 2(A), the first-order index Si, reveals that the multiplicity of infection (MOI) is the most significant parameter during

the early stages (at days 9 and 13) of tumor growth, whereas the virus clearance, ω , and the rate of CTLs recruitment, γ , are
most significant at latter time points. We also note that while other parameters have large eFAST total-order indices, STi, at
latter tumor growth stages, the MOI is the most consistently influential parameter at all time points (Fig. 2(B)).

Tumor growth in the absence of therapy and in the presence of strong immune response
Fig. 3 shows the dynamics of tumor growth in the absence of therapy and in the presence of strong immune response.
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Figure 2. Tumor cell population sensitivity using eFAST. The first-order (Si) index quantifies variance of the model
prediction (output) with respect to variance of each individual model parameter (inputs) (A). The total-order sensitivity index
quantifies the variance of the given model output that remains when all variances caused by other paramters, and covariances
between all combinations of inputs, is removed (B). Here, the tumor cell population is taken as the model variable (output
variable) of interest.

oAd-MSC promotive/suppressive-associated results
In this section, we further demonstrate how the oAd-MSC promotive/suppressive effects may impact treatment outcomes by
arbitrarily choosing η = 1,6 and 8 for demonstrative purposes. Fig. 4 shows the influence of increasing the absolute value of η

on model output.

Multiplicity of infection (MOI)-associated results
In this section, it is demonstrated that increasing the multiplicity of infection (MOI) on MSCs correlates with improved treatment
outcomes. Although the precise MOI values are often determined experimentally, Fig. 5 shows the impact of increasing MOI
on carrier cells (mesenchymal stem cells).

Comparison of oncolytic Ad-based therapies-associated results
From Fig. 5 in our main paper, we noted the following simulations results on day 35 of each therapy, summarized in Table S2.
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Figure 3. Tumor growth in the absence of therapy and in the presence of strong immune response. (A) Unperturbed
tumor growth in a representative initial population of Tu = 106 cells. (B) shows how each tumor grows over time under
immune response in the absence of oAd-MSC therapy, while (B) indicates tumor regression profile in the case where MSCs are
not used as delivery vehicles and the immune response is present within tumor micorenvironment. In (A) and (B) the model is
run for a long time-period of 400 days to reveal the longer-term behavior of the model dynamics, and the inset figure shows a
detailed view of the model dynamics for a short time period of 35 days, as in the experiments. (C) Simulated growth of
uninfected tumor cells in the presence of strong immune response within the tumor microenvironment. The initial conditions
were taken as Tu0 = 1×106 cells, EK0 = 9×103 cells, and EC0 = 1×103 cells.

Table S2. Comparison of oAd-MSC therapy and the direct dose of oncolytic Ad therapy. Total tumor cell population at
the end of therapy (day 35)

Probability (δp/s) Therapy Total tumor cells Total tumor cells
(Tumor promotion) (Tumor suppression)

0.1 No therapy 1.389759×108 1.389759×108

Naked oncolytic Ad 6.892915×106 6.892915×106

oAd-MSC 6.947258×106 5.975098×106

0.5 No therapy 1.389759×108 1.389759×108

Naked oncolytic Ad 6.892915×106 6.892915×106

oAd-MSC 8.355634×106 3.888177×106

0.9 No therapy 1.389759×108 1.389759×108

Naked oncolytic Ad 6.892915×106 6.892915×106

oAd-MSC 9.076734×106 2.199592×106

Appendix A: Initial conditions and parameter estimates
The initial conditions of the model follow the experimental protocol for the in vivo setting described in the Supplementary
section: Experiments and in Yoon et. al27. Since the virus replication of oncolytic Ads in MSCs was not assessed for the in
vivo setting, we shall use the assessment made in vitro to estimate the virus production at day 5 post-incubation with MSCs. We
denote by V ? the number of virions recovered at day 5 post-infection of the oAd-MSCs, at 10 MOI in vitro, and we assume
that this represents the tentative number of virions to be released into the tumor microenvironment. Note that an amount
of oAd-MSCs (1× 106 MSCs infected with 5× 108 VP of oncolytic Ad) is injected intravenously on day 9 and 13. This
is modelled according to the function u(t) = u0(δ (t−9)+ δ (t−13)), where u0 = 1× 106 cells and δ (t) is the Dirac delta
function. On the other hand, when the oncolytic Ads are directly injected into the system, we use the value of V0 = 5×108

virus particles (VP) of oncolytic Ad as in the experiments described above. Model parameters that are taken from the available
literature, in Table S1, were regarded as global free parameters for both model fitting and simulations, whereas the remaining
unknown parameters were estimated from related treated tumor growth data and oAd-MSC data in Yoon et. al27. As explained
earlier, the virus was administered on days t = 9 and t = 13, whereas the tumor was measured one week before. We set the
initial tumor size before treatment, Tu0, to the corresponding tumor size at t = 7, which is the predicted size of the untreated
tumor by the logistic equation, Eq. 1, in our model. Additionally, photon flux from the tumor is directly proportional to the
number of live cells expressing luciferase; thus, the bioluminescence signal intensity correlates with tumor size (indicated
by cell volume). We, therefore, assumed that the total tumor population Tu(t)+Ti(t) (total tumor volume) is the sum of the
volumes of each cell from regions of interest. We converted tumor volumes into tumor population (cells) by assuming that
1mm3 contains 1×106 tumor cells. The rest of the initial conditions are: Ti0 = 0 cells, EK0 = 0 cells, and EC0 = 0 cells.
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Figure 4. The simulated impact of tumor promotion or suppression by oAd-MSCs. A low dosage of 1×106 oAd-MSCs
is injected into the system on day 9 and 13. These results are obtained by varying the values of η , while other parameters
remained fixed in Table S1. (A) and (B) illustrate tumor growth for η = 1 in the case where oAd-MSCs promote or suppress
tumor proliferation. (C) and (D) respectively indicate tumor growth for η = 6 in the case where oAd-MSCs promote or
suppress tumor proliferation. The last two figures, (E) and (F), respectively demonstrate tumor growth trajectories for η = 8 in
the case where oAd-MSCs promote or suppress tumor proliferation.

Using our experimental datasets, we estimated the values of some unknown model parameters (for instance, see Figs. S7
and S8). We now describe the approaches we used to estimate the unknown parameters in our model. We determine the
unknown parameter values in the model by either fitting the appropriate model equation(s) to the available experimental data or
considering plausible biological ranges from several sources in the literature.

The uninfected tumor. We estimate that one oAd-MSC interacting with one tumor cell over one day prior to its lysis by
oncolytic viruses has a 50% chance of either promoting or suppressing tumor cell growth. Hence, the corresponding probability
coefficient, δp/s, is 0.5. The tumor growth promotive/suppressive constant, η = 0.45, and the half-saturation constant that
supports half-maximum tumor growth or suppression, hT M = 500, are ad hoc values and were chosen to give possible biological
outcomes.

The infected tumor. To estimate the net growth rate of tumor cells, we used control (PBS) data from Figure 5(B) from27, a
data set representing Hep3B cells treated with PBS on days 9 and 13. We fit Equation 1 of our model, logistic growth, that
describe tumor growth in the absence of treatment. All model parameters were set to zero, except for the net tumor growth
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Figure 5. The effect of loading MSCs with different MOIs on tumor cell lysis. Here, a high dosage of 1×108

oAd-MSCs is injected into the system on day 9 and 13 for each MOI. All simulations were conducted under the case where
oAd-MSCs are assumed to promote tumor cell proliferation. (A) indicates tumor growth at MOI 1. (B) shows the simulated
tumor growth at MOI 2. (C) elicits tumor growth profile at MOI 5. Tumor growth trajecties at MOI 10 are shown in (D). The
last two figures, (E) and (F), respectively illustrate tumor growth trajectories at MOI 20 and 50. The parameters chosen for
these simulations were as followings: aT = 0.03526, KT = 5.14×101126, and other parameters were unchanged from Table S1.

rate, aT , which was to be estimated from the data. We estimated aT using a non-linear least-squares fit of the log of the
tumor data. We obtained the fit aT = 0.315/day and retained this estimate for the remaining subsequent simulations. We also
estimated the infection rate of tumor cells (βT ) by oncolytic Ad using Equation 1 and treated tumor growth data, and obtained
βT = 12.8×10−4 virion−1 day−1. See Figure 3 in the main article.

The oAd-MSC lysis. By minimizing the sum of squares error (SSE) between the oncolytic Ad loaded MSC (oAd-MSC) data
points and the lysis function estimates using the MATLAB function lsqcurvefit, we used a non-linear least-squares fitting
procedure to fit the oAd-MSC data for day 2,5 and 7, respectively. We proposed the exponential response function of the
form b(1)exp(b(2)x)+b(3), where b(1) and b(2) are parameters related to n and hvn of the Hill-function in equation 9, b(3)
is a constant, and x is the corresponding oAd-MSC data for days 2,5 and 7. Representative example fits to oAd-MSC data
for all MOIs are shown in Fig 6. In this fitting, we considered a constant initial administration of oAd-MSC (1×106 MSCs
infected with 5×108 VPs). However, comparison of the parameter estimates for oAd-MSC lysis shows that the Hill-coefficient,
n, is an important variable and determinant of the outcome of MSC viability (see Fig 6). Given the small variability in the
MOIs injected, it is unlikely that the MSC viability from the different mice had significant variability as a result of MSC
permissiveness to virus replication or Ad oncolysis. Thus, we expect the MSC lysis parameters to be similar for all days. In
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Figure 6. Fits to MSC cell viability data. oAd-MSC lysis is a MOI-dependent variable. For all plots, hvn = 20 is constant,
and the estimates for the Hill-coefficient, n, are 1,0.6,0.64 for day 2,5 and 7, respectively.

Fig 6, we also notice that there exists good agreement between the experimental data and lysis function prediction with respect
to the average decline in oAd-loaded MSCs, but as expected, different Hill-coefficients, n.

The oncolytic virus. The virus burst sizes, bM , is determined by dividing the infectious progeny viruses produced from all
infected cells by the initial number of cells28, 29. For example, at MOI 10, bM = V ?

Mi0
= 266385744

1×106 = 266 plaque forming units
(pfu), where V ? is the average virus yields recovered from all infected cells at day 5 post-infection of the oAd-MSCs, and Mi0
is the number of infected oAd-MSCs.

Appendix B: Tumor evolution in the absence of therapy but in the presence of the im-
mune response

In the absence of therapy (ξM = ξV = 0) but in the presence of the immune response, the system Eqs (1 - 6) in the main article
now reduces to three core equations:

dTu

dt
= aT Tu

(
1− Tu

KT

)
−λT EKTu−d

(
(EC/Tu)

l

hEC +(EC/Tu)l

)
Tu (1)

dEK

dt
= SEK (t)− rKλT EKTu−µKEK (2)

dEC

dt
= γEC

Tu

hT +Tu
− rCECTu−µCEC. (3)

We note that the exponent l, which represents how the lysis rate depends on the CTL/tumor ratio, may produce results which
may fail to preserve positivity of model solutions. This occurs whenever l > 1. Note also that in all our simulations we used
l = 2/3 < 1 as in4.
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Appendix C: Tumor evolution in both the presence of OVs (without MSCs as delivery
vehicle) and the immune response
In this case, oncolytic Ads are directly injected into the system (i.e., (ξM = 0,ξV = 1)). Thus, the system Eqs (1 - 6) in the
main article reduces to five equations:

dTu

dt
= aT Tu

(
1− Tu

KT

)
−λT EKTu−d

(
(EC/Tu)

l

hEC +(EC/Tu)l

)
Tu (4)

dTi

dt
= βT (ti)TuV − lv(ti,MOI)Ti−λT EKTi−d

(
(EC/Tu)

l

hEC +(EC/Tu)l

)
Ti (5)

dV
dt

= ξV uV (t)+ lv(ti,MOI)bT Ti−ωV (6)

dEK

dt
= SEK (t)− rKλT EKTu−µKEK (7)

dEC

dt
= γEC

Tu

hT +Tu
− rCECTu−µCEC. (8)
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