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Abstract. Polymer compounds are complex systems that typically involve many additives that tend to interact with each 
other. The system is further complicated by the fact that the additives tend to have an effect on multiple material 
properties. Hence, the effect of a particular ingredient on a certain material property should not be quantified in isolation. 
For instance, an important consideration in evaluating the effectiveness of an ingredient is not only how it effects the 
property it was designed to effect but how it effects other properties, such as the mechanical properties of the compound, 
in the context of the proportions of the other ingredients. This can be achieved by using the principles of statistical design 
of experiments. In this investigation the mechanical properties of a polymer nanocomposite, a PVC compound including 
a Layered Double Hydroxide (LDH) nano-additive, are modelled using 2nd degree Scheffe polynomials.  The proportions 
of all the ingredients (7 in total) are varied in a space filling experimental design. The mechanical properties of each 
formulation are tested using a tensile test on samples manufactured using injection molding. Injection molding is crucial 
because it produces homogenous test samples that give an accurate representation of the inherent mechanical properties 
of the material.  The models are determined using k-fold cross validation. The mechanical property models, in 
conjunction with models of other important material properties, allow for an analysis of the effects and interactions of all 
of the ingredients. For instance, the analysis shows the negative effect that the LDH has on the elongation at break which 
needs to be taken into account when considering the positive effects it has on the thermal stability of the compound. 
Importantly the models can also be used to optimize the system. 

INTRODUCTION 

Polymer compounds typically require a number of additives to be practically and commercially viable. This 
results in a mixture system which is complex for three specific reasons. The first is that the additives tend to interact 
with each other and the polymer; there are many examples of synergisms and antagonisms between polymer 
additives. Secondly, the additives tend to affect multiple material properties of the compound. Finally due to the fact 
that a polymer compound is a mixture system it is impossible to make an independent change in the relative 
proportion of a single ingredient. 

 
This means that it is important to evaluate the effectiveness of each ingredient in the context of the relative 

proportions of the other ingredients. It is also important when evaluating a certain ingredient to not only consider the 
property that a particular additive was designed to effect but also to consider how it effects other material properties 
such as, for instance, the mechanical properties of the compound. 

 
This can be achieved using the principles of statistical design of experiments. The purpose of the investigation 

was to empirically model the mechanical and other important material properties of a polymer nanocomposite as a 
function of the relative proportions (mass fractions) of the ingredients using statistical experimental design. A 
secondary aim of the investigation was to enable the optimization of the polymer compound. 
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In the investigation a flexible PVC compound including a Layered Double Hydroxide (LDH) nano-additive was 
used due to the significant number of additives typically required to make the compound practically and 
commercially viable and its consequent complexity. The basic mechanical properties were determined using a 
tensile test on injection molded tensile bars. In addition the thermal stability and fire retardancy properties were 
determined. The experimental design was done using JMP Statistical Software, the experiments were conducted in a 
laboratory environment and the data analysis was done using programs written in Python programming language 
using Jupyter (Kluyver 2016). 

EXPERIMENTAL DESIGN 

The aim of the statistical experimental design is to determine empirical models that can be used to describe the 
basic mechanical properties as well as the thermal stability and flame retardancy of the polymer nanocomposite as a 
function of the relative proportions of the ingredients which can be defined as the mass fractions of the ingredients. 

Selection of Response Variables 

The experimental methods used to determine the response variables are the tensile test for the mechanical 
properties, the torque rheometer for the thermal stability and the cone calorimeter for the fire retardancy. The tensile 
test is used because it covers the basic mechanical properties of the compound (Grellmann 2013). The torque 
rheometer is selected because it is the most realistic indicator of thermal stability during processing for the system 
(Wilkes 2005). Finally the cone calorimeter test is selected because it gives the most complete information 
concerning fire retardancy with the closest simulation of a real fire (Joseph 2016). 

Choice of Factors and Ranges 

The factors for the experiment (i.e. the variables) are the mass fractions of the 7 ingredients used in the polymer 
compound. The actual ingredients that are used (which are the PVC resin, thermal stabilizer, plasticizer, two types of 
fillers, fire retardant and LDH) are not varied. The ranges of the factors, or more generally the experimental space 
that will be used is a result of practical considerations of the testing methods which will be used to determine the 
response variables. 
 

For the tensile test a sample preparation step is required where the tensile bars are injection molded. This is used 
so that a test sample that is as homogenous as possible is manufactured which represents the intrinsic mechanical 
properties of the material. This means that the compound must be injection moldable which limits the experimental 
space. Considering this a set of limits for the experimental space is proposed. Ideally only compounds which are 
well within the processing limits should be used; however, in this case the experimental space needs to broad 
enough to make the models meaningful by minimizing the effect of variance.  

Choice of Experimental Design 

Since the system is a mixture and the experimental space is constrained there are a number of options for the 
experimental design such as the extreme vertices, D-optimal and space filling designs (Smith 2005, Montgomery 
2013). For this investigation the space filling design is used so that the experimental points are distributed evenly 
throughout the 6 dimensional experimental space. The number of experimental points that are used needs to be 
greater than the number of parameters of the model, but is limited by the time and resources available to execute the 
experiment. In this investigation enough experimental points will be used to fit a 2nd order Scheffe polynomial 
which has the form 
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where q is the number of factors in x, y is the response and β are the model parameters. A Scheffe polynomial is 

essentially an ordinary polynomial which has been derived to take into account the mixture constraint (i.e. that all 
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proportions must sum to 1). A special feature of the Scheffe polynomials is that the second order term βij is 
interpretable in that it quantifies interactions between ingredients i.e. synergism and antagonism (Scheffe 1958). 

RESULTS AND DISCUSSION 

Model Selection 

For every response variable a Scheffe polynomial is required that can be used to predict it as a function of the 
design variables. To determine the ‘best’ Scheffe polynomial for each response variable requires that all possible 
variants of the Scheffe polynomial are tested using the data. The maximum number of terms in a 2nd degree Scheffe 
polynomial where q = 7 is 28. This means that for a model with a complexity of 1 (or in other words including only 
one term) there are 7 possible models taking into account the hierarchy principle (the hierarchy principle states that a 
higher order model term can only be included if the lower order terms it contains are also included in the model 
(Montgomery 2013)). If the model complexity is 2 the number of possible models increases to 21 and then to 56 for 
3 terms etc., increasing exponentially with increasing model complexity. In total there are 2.35 million different 
possible models for the 2nd degree Scheffe polynomial with q = 7.  

 
To validate all the possible models the data from the experiments is collected into a single data set where each 

row represents a sample, identified by its sample number, and each column represents a response variable. The data 
for each column is normalised to be between -1 and 1. The particular range of -1 to 1 for the normalisation is 
selected so that in the hypothetical situation where a response variable has no relation to the design variables, the 
true mean will be 0 and the resultant model parameters for the true Scheffe model will all be 0 as well. All of the 
possible models are then scored using k-fold cross validation (a validation technique that is used to evaluate the 
predictive ability of a model (Hastie 2009)) with k = 3. The scoring results can be illustrated by plotting the highest 
score for each level of model complexity as is shown in FIGURE 1. 

 

 
FIGURE 1. k-fold scores for the models fitted to the % elongation at break measured using a tensile test 

 
The k-fold score figures for the response variables that are predicted well tend to have a similar shape to the 

example shown in FIGURE 1. The score increases, plateaus and then eventually decreases due to overfitting. The 
model with the highest score is selected. 
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Model Analysis 

Statistical Significance of Model Terms 

Each of the specific models that are selected contain information about the relationship between the design 
variables and the response variable. The statistical significance of each term can be analyzed using the t-statistic. 
This is demonstrated again using the % elongation at break measured using a tensile test. The t-values for the terms 
of the selected model are shown in FIGURE 2.  

 

 
FIGURE 2. t-statistic for the model terms for % elongation at break measured using a tensile test 

 
From FIGURE 2 it is clear that the plasticizer and the polymer are very important when it comes to the 

elongation at break of the compound. It is also clear that the polymer and the LDH nano-additive interact 
synergistically whereas the thermal stabilizer and LDH have an antagonistic relationship. The analysis demonstrated 
above shows how statistical experimental design can be used to draw conclusions about the behavior of all the 
included design variables and their interaction with each other over the entire experimental space. A similar analysis 
can be conducted for every response variable. It is important however that the k-fold score of the model is 
considered. If the predictive ability of the model is very poor it is unlikely that conclusions made using the model 
parameters will be meaningful. For the example of the elongation at break the score for the selected model is 0.92 
which is very high (the highest possible score being 1). 

Sensitivity Analysis 

It is clear from the analysis above that the overall effect of a particular ingredient on a particular response 
variable can be dependent on the mass fractions of the other ingredients, due to the interaction terms. To determine 
the overall effect of each ingredient a sensitivity analysis of the response variable at a certain formulation can be 
used which can be determined by calculating the partial derivatives. The values of the partial derivatives at a certain 
formulation show the effect of making a very small independant increase in the relevant ingredient. This is 
interpreted as the sensitivity of the model and is a very useful method to analyze the effects of the individual 
ingredients on the different response variables. An example of this is shown in FIGURE 3. 

 
FIGURE 3 shows the negative effect that the LDH has on the elongation at break. It also shows the strong 

positive effect that the LDH has on the final thermal degradation time (measured using a torque rheometer) and the 
smoke reducing effect it has (measured using a cone calorimeter). The empirical models quantify the effects that the 
ingredients have on the material properties of the compound taking into account the relative proportions of the other 
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ingredients. This means that, as is illustrated in FIGURE 3, the negative effect that LDH has on the elongation can 
be taken into account when evaluating the positive effects it has on other material properties. 

 

 
FIGURE 3. Model sensitivities at an example formulation for selected material properties 

 
Finally it is important to mention that the mechanical and other material properties can be used to optimize the 

system. For instance the overall cost of the formulation can be minimized using a simple cost function as the 
objective function, where the cost of each ingredient is multiplied by its mass fraction, while using the material 
models as constraints. The material model constraints ensure that the desired material properties are achieved.  

CONCLUSIONS 

It can be concluded that the response variables describing the mechanical and other material properties as a 
function of the mass fractions of the polymer nanocomposite ingredients can be modelled effectively using 2nd order 
Scheffe polynomials. The particular empirical models for each response variable, selected and evaluated for 
predictive ability using k-fold cross validation, can be interpreted using statistics to make deductions about the 
relationship between the response variables and the formulation. The interaction terms in the 2nd order Scheffe 
polynomial are particularly useful in identifying synergistic and antagonistic relationships between ingredients. 
Sensitivity analysis can be used to determine the overall effect of an ingredient on a response variable at a given 
formulation. Finally it can be concluded that the empirical models can be used to optimize the system. 
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