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Abstract 

Objective  

To determine the association between the fecal microbiota diversity of the infants with 

different disease conditions, and vitamin A supplementation, antibiotic, and deworming 

therapies.  

Study design 

In this case-control study, the bacterial community variations and the potential pathogens 

were identified through 16S ribosomal RNA gene-based amplicon sequencing and 

quantitative insights into microbial ecology (QIIME) pipeline in fecal samples. The 

participants were South African infants (Mean age: 16 ± 8 months; 17 male and 17 female) 

hospitalized and diagnosed with gastrointestinal, respiratory and other diseases. 

Results 

The top phyla of the infants with respiratory disease were Proteobacteria, followed by 

Firmicutes, which were equally abundant in gastrointestinal disease. A significant difference 

in Shannon (alpha) diversity index (95% CI, 2.6 – 4.4; P = .008), among the microbiota of 

the fecal samples categorized by disease conditions, was observed. In beta diversity analysis 

of fecal microbiota, remarkable variations were found within the groups of deworming 

therapy (95% CI, 0.40 – 0.90; P = .033), disease conditions (95% CI, 0.44 – 0.86; P < .012) 

through unweighted and antibiotic therapy (95% CI, 0.20 – 0.75; P = .007), vitamin A intake 

(95% CI, 0.10 – 0.80; P < .033) and disease conditions (95% CI, 0.10 – 0.79; P = .006) 

through weighted UniFrac distances. The candidate pathogen associated with the disease 

groups were identified through analysis of the composition of microbiomes analysis.  

Conclusions  

This study provides preliminary evidence for the fecal microbiome-derived dysbiosis 

signature and pathobiome concept that may be observed in young children during illness. 

Keywords: pathobiome, microbiome, QIIME, taxonomy, Sub-Saharan Africa 
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Introduction 

The global burden of child death, especially under the age of 5 mortality rate 

(U5MR), remains a challenge, and the highest U5MR was found in sub-Saharan Africa 

countries between 1990 and 2015. If this trend continues, 53% of the children under the age 

of 5 will die in the next 15 years in these countries.1 Despite the global progress in U5MR 

scenario, an estimated 5.4 million children under 5 died in 2017, roughly half of which lived 

in sub-Saharan Africa countries.2 One of the Sustainable Development Goals - 2019 targets is 

to end all forms of under-five child mortality globally by the year 2025.3 The leading causes 

of U5MR in sub-Saharan Africa are respiratory and gastrointestinal diseases.4 In critically ill 

pediatric patients, the gut and lung microbiome undergo profound changes.5 The impact of 

the metabolites produced by the gut microbial community might modulate immunity and 

cause disorders in distant organs such as the upper and lower respiratory system.6  

The gut microbiota dysbiosis is directly associated with intestinal disorders and 

numerous extra-intestinal diseases such as respiratory and neurological illness. The ratio of 

Firmicutes and Bacteroidetes is significantly lesser in infants with inflammatory bowel 

diseases.7 Lower abundances of Lachnospiraceae, Faecalibacterium, Veillonellaceae, and 

Ruminococcaceae, which all belongs to Firmicutes phylum were observed in the fecal 

samples of the infants at the risk of asthma.6 A non-invasive method in the assessment of 

diseases in the gut-lung axis among the infants under five years is typing the biomarker 

proteins and pathogens of their stool samples.8  

These findings propel the hypothesis that the fecal microbiota composition and its 

variations pattern could represent the infant’s disease conditions. The “one pathogen per 

disease” postulated by Robert Koch has been replaced by the pathobiome hypothesis, which 

states that human diseases are outcomes of a complex, interconnected network of disease-

promoting microbial communities.7 The identification of distinct pathobiome profiles 



4 

corresponding to a specific disease, therefore, serve as a novel therapeutic tool.9 There is no 

study deciphering the fecal microbiota pattern in sub-Saharan Africa infants affected by 

respiratory and gastrointestinal diseases. Overall, this study aimed to identify and compare 

the fecal microbiome of 34 hospitalized South African infants diagnosed with respiratory 

disease (RD), gastrointestinal disease (GD) and other diseases (OD) using the 16s rRNA 

amplicon sequencing and quantitative insights into microbial ecology (QIIME) package.  

Methods 

Thirty-four South African infants (mean age, 16 ± 8 months; 17 male and 17 female) were 

recruited at the Cecilia Maki-wane Hospital, East London, South Africa.  The infants were 

hospitalized for respiratory (n = 16 [47%]), gastrointestinal (n = 11 [33%]), and other 

diseases (n = 7 [20%]). Basic demographic information, medical history, blood parameters, 

and fecal samples were collected from each infant. Fecal samples were categorized and 

grouped based on the disease diagnosis report and the medical history from the hospital 

(Table I and Table II)10,11. Written consent was obtained from one of the parents or guardians 

of each infant.  The study was approved by research ethics committees at the Faculty of 

Health Sciences (256/2016) and the Faculty of Natural and Agricultural Sciences (EC 

160504-025), University of Pretoria, South Africa. Formal permission was also obtained from 

the Cecilia Makiwane Hospital, Eastern Cape, South Africa. 

The baseline characteristics of the infants were derived through descriptive statistics using 

IBM SPSS statistics version 25 (SPSS Inc, Chicago, Illinois), and the categorical variables 

were summarized as a median, percentage, and IQR owing to a skewed distribution (a = 

0.05). The clinical parameter ranges were adapted from commonly used cut-offs for pediatric 

patients based on the unweighted normal ranges of biochemical parameters by sex and race-

standardized by Laboratory Reference Intervals in Africa, 2012.12
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Fecal sample collection and metagenomics analysis 

Fecal samples were collected through a standardized protocol at the time of 

hospitalization in a sterile 13 ml stool tube with DNA/RNA shield. The samples were frozen 

(−20 °C) immediately after collection. The frozen stool samples were shipped with dry ice to 

Inqaba Biotechnical Industries (Pty) Ltd., South Africa, where the microbiota was identified 

and characterized via the V3-V4 16S rRNA gene fragments through Illumina Miseq 

sequencing platform. 

Taxonomic composition and 16s rRNA sequence diversity analysis through QIIME 

software 

The fecal microbiome data were processed through the software package “QIIME2” 

version 2018.11.13 Using the ribosomal database project classifier algorithm in QIIME, the 

16S rRNA gene sequence-based taxonomy was classified. Briefly, the paired-end cassava 

format sequences were imported into QIIME prior to quality filtering. A total of 3,00,019 

valid sequences were generated from the 34 infants fecal DNA samples, and after filtering 

and trimming, 2,56,429 high-quality reads were obtained. The sequences were demultiplexed 

and clustered using the dada2 plugin14.  A sequencing depth cut-off value of 2600 sequences 

from each sample was set and designed into OTUs. The alpha diversity (microbial diversity 

within samples) and richness indices of the samples were measured by observed species 

OTUs and the Shannon diversity index and were statistically tested using the Kruskal-Wallis 

method. The beta diversity (community diversity divergence between samples) was evaluated 

using the UniFrac principal coordinate analysis (PCoA) to explore the potential factors that 

could explain the grouping pattern of similar communities15 and tested through non-

parametric permutational multivariate analysis of variance (PERMANOVA). Analysis of the 

composition of microbiomes (ANCOM) test was run among the disease conditions to 

determine for any significant differences in the relative abundance of any taxa. 



7 

Results 

Study population and baseline characteristics  

Study subjects were grouped into three groups: the respiratory disease group (n = 16), 

the gastrointestinal disease group (n = 11) and the other diseases group (n = 7) according to 

the criteria defined in Table 1. Table III shows the baseline characteristic data for each 

participant group. Among the three disease groups, the occurrence of diarrhea in the GD 

group (64%) was higher than in the RD group (12%) and the OD group (14%). In line with 

the concept that the gut microbiota and its metabolites are playing a role on the gut-lung axis, 

around 36% of the GD group infants also reported with upper and lower respiratory tract 

infection. Mean C-reactive protein (CRP) level was higher, with 7.7 mg/dL in the GD group 

and a maximum value of 27.3 mg/dL.  



8 

Taxonomic analysis of infant fecal microbiota 

The 16s rRNA OTU clustering analysis showed that Proteobacteria was the most abundant 

phyla across all samples, followed by Firmicutes (Figure 1, A). Alphaproteobacteria, Bacilli, 

Clostridia, Gammaproteobacteria, Betaproteobacteria, Mammalia, Deinococci, Chloroflexi, 

Sphingobacteria, Liliopsida, Bryopsida, Deltaproteobacteria, Gymnostomatea, and Thermotogae were 

found at the class level. The phyla level distribution of OTUs across the categories of diseases is 

given in Table IV (available at www.jpeds.com). The dominant phyla in the order of Proteobacteria, 

Firmicutes, Bacteroidetes, and Actinobacteria were found in the respiratory disease infants group, and 

Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes were found in the gastrointestinal 

disease infants group. In the other diseases group, Proteobacteria followed by Firmicutes were the 

dominant phyla. Comparing with the other groups, the other diseases group have a greater relative 

abundance of Bacteroidetes (11%) and Actinobacteria (7%), which are 5% and 4% in the respiratory 

disease group and 0.2% and 2.0% in the gastrointestinal disease group, respectively. Although 

observable fluctuations were low in the relative abundance of phyla in the disease categorized group, 

results from the ANCOM tests indicated that at the genus level, Escherichia (W = 231), Klebsiella 

(W = 250), and Enterococcus (W = 222) differed significantly in its abundance levels among the 

groups (Figure 1, B). 
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Figure 1. A, Bar chart showing percentage relative abundance of phylum in the infants with respiratory 

(respiratory disease), gastrointestinal (gastrointestinal disease), and other diseases (other diseases). B, The 

ANCOM differential abundance volcano plot. The centered log-ratio (clr) transformed the OTU table at the 

genus level with 0 values modified to 1 was used. The number of times the null hypothesis (all groups have an 

equal abundance of species) was rejected. Only species which reject the null hypothesis more than 200 times are 

labelled. 
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Figure 2. Alpha diversity boxplots between infant fecal microbiota and disease conditions. A, Observed species 

OTUs and B, Shannon index. The boxes denote IQRs. The P and H values between the group categories 

(gastrointestinal disease, respiratory disease, and other diseases) are indicated below each boxplot. The dotted 

line inside the box represents the median. Outliers are shown with open circles. 

Diversity of the infant fecal microbiota 

There were no significant variations in the observed OTU richness from 16s rRNA 

gene sequencing data among the infant fecal microbiota (IFM) of the categorized disease 

groups (P > .05, Figure 2A). However, in the Shannon diversity analysis, the greater 
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diversity, including better evenness, was observed between the category of disease conditions 

and the IFM (95% CI, 2.6 – 4.4; P = .008, Figure 2B). The H value was 9.60, which indicated 

varying microbial diversity among the samples in the cohort of infants. In the alpha diversity 

comparison of groups based on deworming, diarrhea, vitamin A, and antibiotic intake, there 

were no significant differences at an alpha level of 0.05. 

To understand if disease conditions, antibiotic therapies, and vitamin A intake 

influenced the infant’s microbial ecosystem, we analyzed the IFM community through the 

beta diversity UniFrac distance analysis. A one-way PERMANOVA test through unweighted 

UniFrac analysis at 95% CI showed significant differences between the IFM of infants 

among the disease conditions (95% CI, 0.44 – 0.86; P < .012) (Figure 3A) and deworming 

therapy (95% CI, 0.40 – 0.90; P = .033) (Figure 3B). However, no other comparisons 

significantly differed.  

Figure 3. Two-dimensional principal coordinate analysis (PCoA) plots of beta diversity based on the 

unweighted UniFrac distance matrix of the 34 infant fecal microbiota. Each dot represents a sample point. Box 

plot next to the principal coordinate analysis graph shows the significance. A, Groups categorized by disease 

conditions (gastrointestinal disease, respiratory disease, and other diseases). B, Groups categorized based on 

deworming therapy. 
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In the case of weighted UniFrac distance matrix analysis at 95% CI, the significant 

difference was observed among the IFM in regards to antibiotic therapy (95% CI, 0.20 – 

0.75; P = .007), vitamin A intake (95% CI, 0.10 – 0.80; P < .033), and disease conditions 

(95% CI, 0.10 – 0.79; P = .006) (Figure 4). All other categorical comparisons were 

insignificant (data not shown here). These observations provide significant insights into the 

influence of deworming therapy, vitamin A supplementation, and disease conditions on IFM 

and their potential underlying causes of the variations.  

Figure 4. Two-dimensional principal coordinate analysis (PCoA) plots of beta diversity based on the weighted 

UniFrac distance matrix of the 34 infant fecal microbiota categorized by A, disease conditions (gastrointestinal 

disease, respiratory disease, and other diseases). B, Antibiotic intake and C, vitamin A supplementation. Each 

dot represents a sample point. Box plot next to the principal coordinate analysis plot given to show the 

significance. 
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Candidate pathogens based on OTU abundances in diseased infants 

The list of potentially pathogenic bacteria with top OTUs was identified through the 

relative abundance of the respective OTUs and ANCOM analysis. This test compares the 

significant differences in the abundances of genera among the disease groups. The “W” value 

in the volcano plot indicates the number of times the null hypothesis (abundance of species 

across the groups are same) is rejected. Hence, the genus “Escherichia” (W=229), 

“Klebsiella” (W=248), “Streptococcus” (W=250) and “Enterococcus” (W=220) were 

detected to be significantly different across the disease groups. A stacked bar diagram 

representing the pathobiome of the disease groups is given in Figure 5; online only. The OTU 

counts of Escherichia coli found abundant across all the groups. Next, to E. coli, Klebsiella 

pneumonia was the most abundant pathogen in RD group infants with a maximum of 33.06% 

and Enterococcus faecium with a maximum of 32.34% abundancy of OTUs in the GD group 

among the pathobiome. Interestingly, one of the rare pathogens Cronobacter condiment was 

found significant (11.27% relative abundance) in one of the GD infants. No common 

candidate pathogen associated with OD group was found. The mean relative abundance of 

E. coli (90%) OTUs was present in most of the OD subjects pathobiome. Also, the Listeria 

was identified in 10 IFM diagnosed with respiratory and gastrointestinal disease conditions. 

Based on the relative abundance of OTUs, the percentage of Listeria innocua (30.52% of the 

total bacteria in sample 1) is more compared to Listeria monocytogenes (maximum 2.49% in 

sample 1).  
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Figure 5. Pathobiome analysis of infants fecal microbiome with disease conditions. Pathogens with more than 

1% were picked, and the percentage of pathogen cluster was calculated from the OTUs of total microbiota. 
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Discussion 

This study assessed the fecal microbiota signature of infants under two years of age with 

different diseases in sub-Saharan Africa. This study hypothesized that shifts in composition, 

distribution, and diversity in infant fecal microbiota and distinct pathogens might represent 

specific disease conditions. The signature fecal microbiota, the marker pathogen based on the 

ANCOM, and the significant diversity between the clinical observation-based groups, 

supports the potential of microbiome-based interventions for treating diseases and monitoring 

the pediatric health. 

In the bacterial community structure analysis, overall, 14 phyla were recovered from 

the samples. However, 7 major bacterial phyla, which accounted for 90% of the total 

sequences are Firmicutes, Proteobacteria, Actinobacteria, Bacteroidetes, Verrucomicrobia, 

Fusobacteria, and Synergistetes. O'Dwyer et al., reported six key phyla that colonize healthy 

human gut cells in the order of Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, 

Fusobacteria, and Cyanobacteria.16 At the phylum level, the mean relative abundance 

percentage of Proteobacteria (54%) is higher than Firmicutes (34%) in the RD group, which 

were almost in the equal ratio in the GD group. Proteobacteria (52%), Firmicutes (30%), 

Bacteroidetes (11%) and Actinobacteria (7%) comprised most of the OD group. The low 

abundant phylum like Verrucomicrobia which constitutes Akkermansia muciniphila like 

mucus degrading bacteria17 and the Synergistetes which was investigated for inflammatory 

bowel disease18 were generally reported as fecal associated microbiota in diseased gut 

microbiota studies. Based on the ANCOM results on bacterial genera among the disease 

groups, it is confirmed that a few taxa contribute to the observed differences among the RD, 

GD, and OD groups. Klebsiella genus which belongs to Proteobacteria found significantly 

abundant in the RD group, which is in line with the overall taxonomical classification. The 

earlier report suggested that the infants with Bacteroides-dominant microbiota cluster 
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exhibited the lowest incidence of respiratory disease, and Proteobacteria-dominant profiles 

exhibited the highest incidence of respiratory disease.9

The significant outcomes of this study in alpha and beta diversity among the classified 

groups emphasized the importance of factors such as antibiotic intake and vitamin A 

supplementation history to consider prior to the treatment plan. In the comparison of IFM 

diversity through OTU richness, no significant difference was observed among the study 

groups, but a remarkable difference was seen within the subjects of disease category group 

through the Shannon index (95% CI 2.6 – 4.4; P = .008). This finding may be due to a 

constant level of microbiota immigration and elimination through host mucosal clearance in 

respiratory diseases such as bronchiolitis.16  

Interestingly, taking the phylogenetic distance into account, the beta-diversity through 

UniFrac distance metrics across the study groups has led to the identification of surprising 

relationships between IFM and disease conditions and deworming therapy. Variation was 

significantly diverse through the PCoA plots of weighted (abundance of observed OTUs) 

distance matrix in IFM comparing to the disease, vitamin A supplementation and antibiotic 

therapy group categories. This finding was concordant with Fallani et al., that the antibiotic 

usage in infants younger than two years can cause rapid changes in the gut microbiota, which 

may also lead to antibiotic resistance.19 Likewise, in unweighted UniFrac (presence or 

absence) matrix, the association between the IFM, disease conditions, and deworming 

therapy was remarkable. It was reported that the deworming practice among the infants could 

shift the gut microbiota beneficial to the host and may influence the immune response, which 

was unclear.20 Overall, these diversity analysis results underscore the importance of 

considering these categorical factors such as deworming, antibiotic intake, and vitamin 

supplementation while designing the treatment strategy.  
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The pathobiome, the causative pathogen cluster for infectious disease, is gaining 

considerable attention to study and design broad antibiotic therapies for various diseases.21

The top pathogens of the fecal microbiome based on their increased abundance derived 

through the dominant OTU percentages in disease groups (Figure 5; online only) is explored 

to highlight the types of pathogen community in those pediatric diseases. Determination of 

candidate pathogens as a bioindicator for infectious diseases through gut bacterial OTU 

proportion is a successful approach in the pre-diagnosis process.22 In the current study, K. 

pneumonia, E. coli, K. variicola, and L. innocua were identified as dominant pathogens with 

highest OTU percentage in the RD group and clinically proven to cause similar symptoms in 

infants. In line with this study findings, it has been found that the leading bacterial species 

associated with respiratory disease were K. pneumonia, E. coli, and K. variicola.23 Likewise, 

the observation of E. faecium, E. faecalis, and E. coli as dominant pathogens in the GD group 

is in line with pathogens investigated in the gut microbiota of the infants with intestinal 

diseases.24 In the OD group, E. coli was the most common pathogen, and various pathogens 

were associated with different diagnosed diseases. Cronobacter condiment which found in 

GD group was reported to associate with neonatal meningitis of newborn.25 Work from this 

study has provided insights into signature pathogens in disease groups which is crucial to 

develop pathogenic biomarkers for designing an antibiotic or probiotic therapy strategy.26  

The presence of Listeria in fecal samples of many infants in Eastern Cape of South 

Africa might be due to the Listeriosis outbreaks in that area during the study period. L. 

ivanovii, L. monocytogenes, and a few L. innocua strains are pathogenic and cause 

abnormalities in the gastrointestinal tract.27 L. innocua has the most resistance to a selected 

group of antibiotics and has the potential to transfer resistance to the low-resistance L. 

monocytogenes.28 Hence, understanding the molecular mechanisms behind the L. innocua and 
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L. monocytogenes in the infant gut environment critical to developing targeted antimicrobial 

therapy.   

Several limitations of our study exist. First, the study subjects consisted of infants 

hospitalized with severe gastrointestinal, respiratory and other diseases and were categorized 

based on the disease diagnosed. Hence, our results might not be inferred to those with milder 

disease. Secondly, through the 16s rRNA sequencing platform, we were unable to explain the 

genetic and biochemical background behind the pathogenesis of the diagnosed candidate 

pathogens. Moreover, the very small sample size prevented us from adjusting for potential 

confounders.  

In this case-control study among South African infants, we showed potential links 

between the fecal microbiota and clinical parameters, disease-based signature microbiota and 

the marker pathogens. Our data may facilitate interventional investigations to disentangle the 

impacts of IFM with the complex web of the gastrointestinal and respiratory diseases, vitamin 

A supplementation, deworming therapy, and antibiotic medication. Although the causal 

assumptions remain premature, the identification of fecal microbiota, the dominant phylum 

(Firmicutes, Proteobacteria, Actinobacteria, Bacteroidetes) and pathogens with the previous 

medical history of the pediatric patients could help in inferring the prevalence of disease 

conditions and its treatment strategies. A detailed mechanistic investigation is needed to link 

the fecal microbial community with clinical outcomes, which may lead to the discovery of 

novel therapeutics.   
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