

278 J. Math. Fund. Sci., Vol. 51, No. 3, 2019, 278-293

Received January 31st, 2019, Revised August 30th, 2019, Accepted for publication October 28th, 2019.
Copyright © 2019 Published by ITB Journal Publisher, ISSN: 2337-5760, DOI: 10.5614/j.math.fund.sci.2019.51.3.6

Optimal Scheduling Policy for a Multi-upgraded Software
System under Fuzzy Environment

Adarsh Anand1, Subhrata Das1*, Mohini Agarwal2 & V.S.S. Yadavalli3

1Department of Operational Research, University of Delhi, Delhi-110007, India
2Amity School of Business, Amity University Uttar Pradesh, Noida, UP-201313, India

3Department of Industrial and Systems Engineering,
University of Pretoria, Republic of South Africa

*E-mail: shus.das@gmail.com

Abstract. Many reliability growth models related to the concept of multi up-
gradation have recently been proposed. This concept has helped software
developers to develop a competitive edge over competitors by regularly
introducing their software upgrades in the market at the optimal moment. The
software reliability literature offers many different release-time policies, both
under crisp and fuzzy environment. This paper presents a generic model of a
multi-upgraded software system. The optimal scheduling policy for software
under a fuzzy environment was determined. The proposed model was examined
on a real-life failure data set of four software releases. The results obtained are
encouraging.

Keywords: fault removal; multi up-gradation; testing phase; fuzzy environment;
release time.

1 Introduction

Software is an integral part of all activities performed on digital platforms,
giving it an influence on each and every sector of modern society. The
applicability of software has led to enormous growth in the day-to-day workings
of business processes [1]. This makes it critical to have software that offers
consistent performance and at the same provides highly reliable execution.
Ample of cases exist where software was not able to deliver the task assigned,
leading to serious damage [2]. Seeing the high dependence of mankind on
software and its functionality, it is the foremost responsibility of software
developers to create software that is optimally effective and efficient. Thus,
testers are hired whose primary task it is to debug the software and make it bug-
free before it is provided to end-users. The testing team will try to fix any flaws
in order to enhance the quality of the software. Reliability, which is the
probability of the failure-free operation of a product for a specific period of time
under predefined conditions, is an important aspect of quality [1,3]. Software
firms acknowledge the importance of testing their products in the operational
phase and provide regular upgrades of their software products in order to

 Optimal Scheduling for a Multi Up-graded Software System 279

maintain their competitive position. Software up-gradation is a survival strategy
for firms that helps in maintaining and increasing market share by providing
advanced versions with enhanced functionality to users [4]. To a certain extent,
publishing several versions is beneficial for firms but under certain
circumstances increasing a piece of code may result in the introduction of new
faults making the software prone to failure. Firms should focus on adapting
techniques capable of identifying and removing a maximum number of faults. It
is evident that all potential faults cannot be removed in one go, thus leftover
bugs from previous versions can result in software failure. Therefore, getting a
clear picture of error removal should be a main priority for software developers
[5].

Multi up-gradation cannot be discussed without discussing the release-time
problem. The optimal time to release software is an other important concern for
software developers, as releasing prematurely will degrade the quality and
releasing too late impacts market entry, the cost of software testing and poses
many other challenges as well. In the literature, several attempts have been
made to formulate and compute the optimal time for launching software based
on goals set by management [1]. This can be minimization of costs and other
resources, or maximization of reliability, failure intensity and market share
subject to various sets of constraints. These sets of constraints have been
formulated both under crisp and fuzzy environments. The present study focused
on the fuzzy release time decision (FRTD) problem due to its capability of
modeling qualitative information of decision-makers and to directly work on
fuzzy information [6].

A generic model is proposed to determine bugs that have been removed in each
release based on the impact of leftover bugs from the previous release and faults
generated as a result of up-gradation. Moreover, a fuzzy release time decision
based optimization analysis was performed to determine the release time of
software under the influence of the attributes cost and reliability.

This paper is organized as follows. Section 2 presents the background and an
overview of the literature on software reliability growth modeling and the fuzzy
release time decision problem. The generalized modeling framework for
determining faults in respective software releases is discussed in Section 3. Cost
modelling is discussed in Section 4.The optimal launch time problem is
discussed in Section 5. Validation and a numerical illustration are presented in
Sections 6 and 7. Lastly, the conclusion is given in Section 8.

2 Background and Literature Review

A large amount of progress has been made in the study of multi up-gradation.
The most basic approach is to compute the reliability of a software product

280 Adarsh Anand, et al.

based on the effect of leftover faults from all of its preceding releases [7,8]. It
was soon realized that this approach is not very effective and the influence on
the reliability of the software is not very significant [9]. Thus, practitioners
started taking into account only the impact of the previous version on the
reliability of the present release. Another observation that researchers have
made was that the testing team is not always able to remove all faults
completely, which can lead to an imperfect debugging environment when only
considering faults from the previous release, as modeled by Aggarwal, et al.
[10]. Some researchers have studied the concept of stochasticity in multi up-
gradation [5]. Several experts have analyzed the debugging environment and
uncertainty to study the severity of faults and the distribution environment to
simulate market scenarios [10,11]. The issues encountered in both the testing
and the operational phase were given equal weight [3,12].

The study by Singh, et al. [13] considered the effect of a Weibull type testing
effort function (TEF) on the detection of faults in multiple versions of a
software application. They further explain that TEF for each release follows an
exponential and S-shaped curve. Kapur, et al. [14] developed an optimal cost
model to find out the testing stop time for each release. They considered the
accumulation of various costs incurred during the testing phase of new releases
and the removal of leftover faults in the operational phase of the ongoing
version and in the testing phase of the upcoming release. Singh, et al. [15] have
proposed a unified approach to model successive releases of software under the
influence of imperfect debugging. Numerous studies exist in the literature
describing the fault removal phenomenon for multi up-gradation software
versions and the associated cost analysis.

Several release-time policies have been proposed in the field of software
reliability. The first ever release policy was given by Goel and Okumoto [16] to
determine release time based on unconstrained cost minimization and reliability
maximization as two separate sets of problems. Later, several release policies
have been presented with different sets of optimization problems, for example:
Yamada and Osaki [17] considered the joint impact of cost and reliability on the
determination of optimal time to introduce the software on the market. Yun and
Bai [18] focused on software with a random lifecycle and cost-based modeling
for the determination of the optimal release time. Other researchers who have
worked under same umbrella of cost analysis are: Huang [19]; Huang and Lyu
[20]; Pham and Zhang [21]; Ramik [22]; Rommelfanger [23]; Tang and Wang
[24];Ukimoto and Dohi [25] Xie and Yang [26]; and Yang, et al. [27].

All of the aforementioned scholars have worked on finding the optimal release
time for a single software version. Very few attempts have been made to model
and find the optimal software release time for multi up-graded software

 Optimal Scheduling for a Multi Up-graded Software System 281

systems. Something similar has been done by Kapur, et al. [14], who applied
the concept of multi-attribute utility theory. However, these attempts were all
done under a crisp environment. The field of cost optimization also deals with
cases involving vagueness or fuzziness. This is an appealing topic in the field of
software reliability, based on which a number of FRTD problems have been
proposed. Models defined by utilizing fuzzy theory represent the conversion of
subjective information and can help in incorporating vagueness in traditional
crisp optimization problems. Kapur, et al. [28] formulated a fuzzy environment
based on the cost minimization problem under constraint of failure intensity.
Working from a similar starting-point, Jha, et al. [29] proposed a discrete
SRGM-based FRTD problem by considering the cost and reliability objectives
subject to budgetary constraints under a crisp scenario. Later, Jha, et al. [30]
extended their work on the FRTD problem under the concept of imperfect
debugging and an error generation software reliability growth model. Kumar, et
al. [6] proposed an FRTD problem based on testing cost under the impact of
warranty period. Recently, Kumar and Gupta [31] looked at an FRTD problem
incorporating the effect of learning functions for fault detection and correction.
However, none of these efforts were related to multi-upgraded software
systems. As discussed above, and as per our available knowledge, this is the
first attempt to model multi up-gradation under a fuzzy environment.

3 Modeling Methodology

The notation used in this paper is the following:

𝑖 : number of versionsሺ𝑖 ൌ 1,2,3,4ሻ
𝑚௜ሺ𝑡ሻ : mean value function for fault removal
𝑎௜ : total count of faults present in the software
𝑏௜ : rate of fault debugging
𝛽௜ : learning parameter

Supposing the case of multi-upgraded software and assuming that the first
version of the software was initially launched at time point ′𝑡ଵ ൌ 0′ and the
launch time of the succeeding 𝑖௧௛ release will be 𝑡௜. The actual count of faults
debugged in the 𝑖௧௛ release of the software can be obtained as follows:

    ()i i im t Y t F t (1)

Eq. (1) tries to elucidate the fraction 𝐹௜ሺ𝑡ሻof the total number of faults 𝑌௜ሺ𝑡ሻ that
can be debugged from the total fault count of any particular release. Also note
that 𝐹௜ሺ𝑡ሻ represents the fraction of faults in the 𝑖௧௛version of the software that
will be debugged in the 𝑖௧௛release of the software until the time period ′𝑡′,
whereas 𝑌௜ሺ𝑡ሻ represents the number of bugs in the 𝑖௧௛ release, consisting of
both the faults generated due to the addition of new features and bugs remaining

282 Adarsh Anand, et al.

from the preceding release. The fraction of faults has the following
mathematical form:

     2

2

0

1

i

i i i i i

i

t t

F t F t t t t t

t t





   
 

 (2)

In Eq. (2), it is important to note that if 𝑡 ൏ 𝑡௜ it means that the 𝑖௧௛ release has
not been tested yet, while if 𝑡 ൌ 𝑡௜ it means that the software has been given to
testing team to begin debugging. Thus, in both cases the count of bugs
discovered will be zero. If 𝑡 ൐ 𝑡௜ାଶ then the fraction of bugs discovered will be
exactly one. Further, if 𝑡௜ ൏ 𝑡 ൏ 𝑡௜ାଶ then there is a positive fraction of faults
being debugged for the 𝑖௧௛ release at time point ′𝑡′.

The 𝑌௜ሺ𝑡ሻ represents the number of bugs generated in the 𝑖௧௛ release of the
software with addition of the leftover faults from the ሺ𝑖 െ 1ሻ௧௛ release. Thus
(for 𝑖 ൐ 1), 𝑌௜ሺ𝑡ሻ can be defined as:

    1 11i i i i iY t Y F t a      (3)

where 𝑎ଵ represents the faults in the first release (for 𝑖 ൌ 1 we define 𝑌ଵሺ𝑡ሻ ൌ
𝑎ଵ) and thereafter the faults of the succeeding releases are denoted by 𝑎ଵ, 𝑖 ൐ 1.
The present proposal focuses on the case of four releases of the software.

Primary Release: Substituting ′𝑖 ൌ 1′ in Eqs. (1), (2) and (3) yields:

    1 1 1()m t Y t F t (4)

where  1 1Y t a and    1 1 1F t F t t 

First Upgraded Version: Substituting ′𝑖 ൌ 2′ in Eqs. (1), (2) and (3), the fault
removal process for the first upgraded version can be given as follows:

    2 2 2()m t Y t F t (5)

where    2 1 1 2 1 21Y t a F t t a       and    2 2 2F t F t t 

By substituting we get:

       2 2 1 1 2 1 2 2. 1m t a a F t t F t t       (6)

Second Upgraded Version: By considering 𝑖 ൌ 3 in Eqs. (1), (2) and (3), we
have:

 Optimal Scheduling for a Multi Up-graded Software System 283

      3 3 3m t Y t F t (7)

where    3 2 2 3 31Y t a F t a      and    3 3 3F t F t t 

By substituting we get:

       3 3 2 2 3 2 3 31m t a a F t t F t t       (8)

Similarly, the results for the third upgraded version can be obtained:

     4 4 3 3 4 4 4() 1m t a a F t F t t      (9)

4 Cost-Modeling for Multi Upgraded Software

The formulation of the optimal time of successive software releases determined
by an optimization model is based on the objectives set by management. Firstly,
management would move in a direction where there is minimum aggregate cost
of debugging during the testing and the operational phase. Secondly, they may
set the reliability level that is to be attained until the release time of the software
on the market.

Release I: The general cost model distinguishes costs in three phases. The
testing phase per unit cost of testing; the testing phase cost of debugging; and
the operational phase cost of debugging can be given as:

    

1 per unit testing cost debugging costin testingphase

debugging costin operationalphase

10 11 1 1 12 1 1

()

. 1

C t C C

C

C t C a F t C a F t

 



   

 (10)

Release II: The expenditure incurred for a new release comprises cost of testing
of upcoming version, cost of debugging during the operational phase and cost of
elimination of passed-on bugs from the prior version during both the testing and
the operational phase of the present release.

2 per unit testing cost debugging cost in testingphase

debugging costof remaining faults from previous release

debugging cost in operationalphase

()

C t C C

C

C

 





 (11)

      

  
  

20 21 2 2 1 22 1 1 1 2 1

2 1 1 1

23 1

2 1

. 1 .

. 1
. ;

1

C t C a F t t C a F t F t t

a a F t
C t t

F t t

     

      
   

284 Adarsh Anand, et al.

Release III: It is assumed that the remaining faults in Release II will either be
removed during the testing phase or during the operational phase of Release III.
Thus, the total expected cost to debug the faults can be modeled as follows:

      

  
  

3 30 31 3 3 2 32 2 2 2 3 2

3 2 2 2

33 2

3 2

() 1 .

. 1
. ;

1

C t C t C a F t t C a F t F t t

a a F t
C t t

F t t

     

      
   

 (12)

where 𝐶ଷ଴represents the testing cost per unit incurred in Release III; 𝐶ଷଵ
denotes the cost due to debugging done in the testing phase; 𝐶ଷଶ represents the
cost incurred in dealing with the leftover faults of the previous release; 𝐶ଷଷ is
the cost incurred for the debugging done in the operational phase.

Similarly, the total cost linked with Release IV can be given as follows:

        

  
  

4 40 41 4 4 3 42 3 3 3 4 3

4 3 3 3

43 3

4 3

. 1 .

. 1
. ;

1

C t C t C a F t t C a F t F t t

a a F t
C t t

F t t

     

      
   

 (13)

where 𝐶ସ଴ is the testing cost per unit incurred in Release IV; 𝐶ସଵ is the cost due
to debugging done during the testing phase of the release; 𝐶ସଶ denotes the cost
of dealing with the leftover faults of Release III; 𝐶ସଷ is the cost incurred for the
debugging done in the operational phase of the fourth release.

5 Optimal Release-Time Problem

All the above mentioned sets of costs, Eq. (10) to (13), are used in order to
determine the release time of the respective releases of the software, for which
the decision-making problem can be defined as follows:

  0

()

| ; 1,2,3,4
i

i i

Min C t

Subject to R x t R i  (14)

The solution to Eq. (14) can be obtained by using the fuzzy optimization
approach given by Zimmermann [32]. The first step is to convert the problem
by adding a fuzzifier in the objective function as a limit to the constraint [33].
Thus, the restated problem may have the following structure:

 Optimal Scheduling for a Multi Up-graded Software System 285

  
 

0

0 ; 0; 1,2,3,4

i i

i i

Find t

Subject to C t C

R x t R t i



  




 (15)

Further, the membership functions  ; 1,2,3, 4ij t i  and 1,2j  for each of the

fuzzy inequalities can be defined as:

  

 
   

 

0

*
*

1 0*
0

*

1 ;

;

0 ;

i i

i i
i i i i

i i

i i

C t C

C C t
t C C t C

C C

C t C



 



  


 

 (16)

  

 
   

 

0

*
*

2 0*
0

*

1 ;

;

0 ;

i i

i i
i i i i

i i

i i

R x t R

R x t R
t R R x t R

R R

R x t R



 

   


 

 (17)

In Eq. (16), 𝐶଴௜ and 𝐶௜
∗ represent the available budget and the maximum

tolerance value for the budget. In Eq. (17), 𝑅଴௜ and 𝑅௜
∗ represent the maximum

level of reliability to be maintained and the minimum tolerance value of
reliability. Subsequently, the principle of Bellman and Zadeh [34] is used to
recognize the fuzzy decision by solving the fuzzy set of inequalities for the
corresponding problem. The resultant crisp optimization problem can be given
as follows:

   1,2,3,4; 1,2;

0, 0

i

ij i

i

Maximize

Subject to t i j

t



 



  

 

 (18)

After solving Eq. (18) and incorporating the parameter values, we can calculate
the optimal time to release for each particular version of the software on the
market.

6 Data Analysis

For the purpose of estimation, fault removal process 𝐹௜ሺtሻ was assumed to
follow Yamada logistic pattern [1], which can be given as follows:

286 Adarsh Anand, et al.

  
    

 

1 1 .
; 1,2,3,4

1 .

b t ti i
i i

i b t ti i
i

b t t e
F t i

e

 

 

  
 


 (19)

The proposed model was analyzed on four different releases of the data sets
given by Sun [35] using the SAS software package [36]. The estimated values
of the parameters of the proposed models were computed using the non-linear
least square method, as shown in Table 1 while the comparison criteria are
shown in Table 2. The estimated values of the parameters were quite close to
the actual values, which indicates the prediction capacity of the model.
Goodness of fit curves are represented in Figure 1.

Table 1 Parameter estimates for four releases.

Parameters Release 1 Release 2 Release 3 Release 4
𝑎 604.5 443.449 362.221 440.489
𝑏 0.434 0.449 0.845 0.591
𝛽 5.133 0.541 21.319 5.928

Table 2 Comparison criteria for four releases.

Criterion Release 1 Release 2 Release 3 Release 4
SSE 1220.2 1846.8 1565.5 2075.6
MSE 93.865 142.1 195.7 259.5

Root MSE 9.688 11.919 13.989 16.107
𝑅ଶ 0.998 0.993 0.991 0.992

AIC 119.708 118.818 79.559 90.018

Figure 1 Goodness of fit curves for four releases.

 Optimal Scheduling for a Multi Up-graded Software System 287

7 Numerical Illustration

For application of the proposed release-time policy, the parameters as obtained
in Table 1 were used.

Release I: Considering the parameters as 𝑎ଵ ൌ 604.5,𝑏ଵ ൌ 0.434 and 𝛽ଵ ൌ
5.133. Let us assume that the cost parameters are 𝐶ଵ଴ ൌ $18, 𝐶ଵଵ ൌ $21, and
𝐶ଵଶ ൌ $48. Also, the operational mission time is assumed as 𝑥 ൌ 1 CPU hour
and learning parameter 𝛾 ൌ 0.85. Further, it was assumed that the total budget
available for testing purpose 𝐶଴ ൌ $12,110 and the reliability requirement of
𝑅଴ଵ ൌ 0.95, with tolerance on cost and reliability 𝐶∗ ൌ $15,000 and 𝑅ଵ

∗ ൌ 0.75
(these assumed values may vary as they are set by management based on past
experience). The MVF for failure and the reliability function can be given as
follows:

 
  

 
0.434*

0.434*

604.5 1 1 0.434*

1 5.133

t

t

t e
m t

e





 



and       1m t m t

R x t e
  

.

Correspondingly the membership function pertaining to the fuzzy cost and the
reliability constraint can be defined as:

 

  
 

  
 

0.85

0.434*

0

0.434*

0.4

.434*

1

34*

18

21*604.5* 1 1 0.434*

15000

604.5

48* 604.5* 1 1 0.434*

/ 1 5.133

/ 1 5.133

t

t

t

t

e

e
t

t

t e

t e













  
 
  
 


 
 

  
  
  
  
  

     
 

  
  
  
  
  
  
  
     


  

 15000 12110






where  12110 15000C t 

 

    1

2

0.75

0.95 0.75

m t m t
e

t
   




where
    1

0.75 0.95
m t m t

e
   

On plotting both membership functions, an intersection point is obtained that
describes the optimal introduction time of software release, which can also be

288 Adarsh Anand, et al.

computed by solving the crisp optimization problem using an optimization
solver such as LINGO [37].

 

  
 

  
 

0.85

0.4

0.43

34*

0.4

4*

0.4

3

34

1

4*

*

18

21*604.5* 1 1 0.434*

15000

604.

/ 1 5.133

5 604.5* 1 1 0.

/ 1 5.1

434*
4

33
8*

t

t

t

t

Maximize

Su

t

t e

bject

t e

to

e

e
T















  
 
  
 



  
  
  
  
    
  
  
  
  
     

  
 
 
  




 

 
    1

2

0.75

0.95 0.75
0, 1

15000 12110

, 0

m t m t
e

T

t



 

 

  













 


  

Solving the above problem, we obtained optimal release time 𝑡∗ ൌ 23.64 and
𝛼∗ ൌ 0.7028.

Release II: Proceeding in the same manner as for Release I, the parameter
values for the second release were: 𝑎ଶ ൌ 443.44, 𝑏ଶ ൌ 0.434 and 𝛽ଶ ൌ 0.541.
Assuming the cost parameters to be 𝐶ଶ଴ ൌ $25, 𝐶ଶଵ ൌ $30, 𝐶ଶଶ ൌ $45,
and 𝐶ଶଷ ൌ $48. The operational mission time and value for the learning
parameter were kept the same. Further, it was assumed that the total budget
available for the purpose of testing 𝐶଴ ൌ $10,000 and the reliability
requirement 𝑅଴ଶ ൌ 0.95, with tolerance on cost and reliability 𝐶∗ ൌ $15,000
and 𝑅ଶ

∗ ൌ 0.75. Solving the problem, the optimal time to release the software
𝑡∗ ൌ 19.56 with 𝛼∗ ൌ 0.2058.

Release III: Proceeding in the same manner as for Release I, the parameter
values for the second upgraded version (the third release) were: 𝑎ଷ ൌ 362.221,
𝑏ଷ ൌ 0.845 and 𝛽ଷ ൌ 21.319. Assuming the cost parameters to be 𝐶ଷ଴ ൌ $15,
𝐶ଷଵ ൌ $19, 𝐶ଷଶ ൌ $30, and 𝐶ଷଷ ൌ $65. The operational mission time and value
for learning parameter were kept the same. Further, it was assumed that the total
budget available for the purpose of testing 𝐶଴ ൌ $1,500 and the reliability
requirement 𝑅଴ଷ ൌ 0.95, with tolerance on cost and reliability 𝐶∗ ൌ $10,000

 Optimal Scheduling for a Multi Up-graded Software System 289

and 𝑅ଷ
∗ ൌ 0.75. Solving the problem, the optimal time to release the software

𝑡∗ ൌ 12.86 with 𝛼∗ ൌ 0.3346.

Release IV: Following the same procedure as for Release I, the parameter
values for the third upgraded version (the fourth release) were: 𝑎ସ ൌ 440.48,
𝑏ସ ൌ 0.591 and 𝛽ସ ൌ 5.928. Assuming the cost parameters to be 𝐶ସ଴ ൌ $15,
𝐶ସଵ ൌ $26, 𝐶ସଶ ൌ $38, and 𝐶ସଷ ൌ $48. The operational mission time and value
for the learning parameter were kept the same. Further, it was assumed that the
total budget available for purpose of testing 𝐶∗ ൌ $11,000 and the reliability
requirement 𝑅଴ସ ൌ 0.95, with tolerance on cost and reliability 𝐶∗ ൌ $15,000
and 𝑅ସ

∗ ൌ 0.75. Solving the problem, the optimal time to release the software
𝑡∗ ൌ 17.77 with 𝛼∗ ൌ 0.8198.

Figure 2 Membership function of cost and reliability for four releases.

Both membership functions corresponding to cost and reliability were plotted
for all releases, as shown in Figure 2. There is a clear intersection point of both
curves, indicating the optimal launch time for the software. The obtained results
corresponding to each release of the software can be summarized in tabular
form as given in Table 3.

Table 3 Optimal release time for all releases.

Releases 𝒕∗ 𝜶∗ Actual release time
Release-I 23.64 0.7028 16
Release-II 19.56 0.2058 15
Release-III 12.86 0.3346 10
Release-IV 17.77 0.8198 11

290 Adarsh Anand, et al.

From Table 3 it can be clearly seen that each software release was subjected to
under-testing. Thus it is wise to assume that for achieving the threshold value of
reliability, the software should be tested for a longer duration.

8 Conclusion

To make the software bug free and enhance its operational capability, firms
keep testing and trying to fix them by issuing consecutive upgrades. With this in
mind, an alternative mathematical framework was presented in this paper that
can capture the faults generated due to addition of certain novel features and
leftover faults from its immediately preceding release. The set of proposed
models was analyzed on real-life data sets of four different releases. Further,
fuzzy release time problems were constructed for the four versions of the
software and the optimal time to launch of each version was computed.

Acknowledgments

The work reported in this paper was supported by grants to the first author from
the Department of Science and Technology, India through DST PURSE PHASE
II scheme, India; and to the second author from the Rajiv Gandhi National
Fellowship from University Grants Commission, New Delhi, India and fourth
author would like to be thankful to National Research Foundation (South
Africa) for the financial support.

References

[1] Kapur, P.K., Pham, H., Gupta, A. & Jha, P.C., Software Reliability
Assessment with OR Applications, Springer, London, 2011.

[2] Charette, R.N., Why Software Fails, IEEE Spectrum, http://spectrum.
ieee.org/computing/software/why-software-fails, (21 June 2015).

[3] Malaiya, Y.K., Software Reliability: A Quantitative Approach, System
Reliability Management: Solutions and Technologies, 205, 2018.

[4] Anand, A., Singh, O. & Das, S., Fault Severity Based Multi Up-
Gradation Modeling Considering Testing and Operational Profile,
International Journal of Computer Applications, 124(4), 2015.

[5] Anand, A., Singh, A., Kapur, P.K. & Das, S., Modeling Conjoint Effect of
Faults Testified from Operational Phase for Successive Software
Releases, Proceedings of the 5thInternational Conference on Life Cycle
Engineering and Management (ICDQM), pp. 83-94, 2014.

[6] Kumar, A., Anand, A., Garg, P.K. & Agarwal, M., Optimal Release Time
Decision from Fuzzy Mathematical Programming Perspective,
arXiv:1509.08086, 2015.

 Optimal Scheduling for a Multi Up-graded Software System 291

[7] Kapur, P.K., Tandon, A. & Kaur, G., Multi Up-Gradation Software
Reliability Model, In Reliability, Safety and Hazard (ICRESH) 2010, 2nd
International Conference on IEEE, pp. 468-474, 2010.

[8] Das, S., Aggrawal, D. & Anand, A., An Alternative Approach to Model
Multi Up-gradations for Software Systems, Recent Advancements in
Software Reliability Assurance, CRC Press (Taylor & Francis Group),
pp. 93-105, 2019.

[9] Singh, O., Kapur, P.K., Khatri, S.K. & Singh, J.N.P., Software Reliability
Growth Modeling for Successive Releases, Proceeding of 4th International
Conference on Quality, Reliability and Infocom Technology (ICQRIT),
pp. 77-87, 2012.

[10] Aggarwal, A.G., Kapur, P.K. & Garmabaki, A.H.S., Imperfect
Debugging Software Reliability Growth Model for Multiple Releases,
Proceedings of the 5th National Conference on Computing for Nation
Development-INDIACOM, New Delhi, India, pp. 337-344, 2011.

[11] Singh, O., Kapur, P.K. & Anand, A., A Stochastic Formulation of
Successive Software Releases with Faults Severity, Industrial Engineering
and Engineering Management (IEEM), 2011 IEEE International
Conference on IEEE, pp. 136-140, 2011.

[12] Garmabaki, A.H.S., Kapur, P.K., Aggarwal, A.G. & Yadavali, V.S.S.,
The Impact of Bugs Reported from Operational Phase on Successive
Software Releases, International Journal of Productivity and Quality
Management, 14(4), pp. 423-440, 2014.

[13] Singh, O., Kapur, P.K. & Singh, J.N.P., Testing-Effort Based Multi
Upgradation Software Reliability Growth Model, Communications in
Dependability and Quality Management – An International Journal
(CDQM), 15(1), pp. 88-100, 2012.

[14] Kapur, P. K., Sachdeva, N. & Singh, J.N., Optimal Cost: A Criterion to
Release Multiple Versions of Software, International Journal of System
Assurance Engineering and Management, 5(2), pp. 174-180, 2014.

[15] Singh, O., Kapur, P.K., Shrivastava, A.K. & Das, L., A Unified Approach
for Successive Release of a Software Under Two Types of Imperfect
Debugging, Reliability, Infocom Technologies and Optimization
(ICRITO)(Trends and Future Directions), 2014 3rd International
Conference on IEEE, pp. 1-6, 2014.

[16] Goel, A.L. & Okumoto, K., Time-Dependent Error-Detection Rate Model
for Software Reliability and Other Performance Measures, IEEE
Transactions on Reliability, 28(3), pp. 206-211, 1979.

[17] Yamada, S. & Osaki, S., Optimal Software Release Policies with
Simultaneous Cost and Reliability Requirements, European Journal of
Operational Research, 31(1), pp. 46-51, 1987.

[18] Yun, W.Y. & Bai, D.S., Optimum Software Release Policy with Random
Life Cycle, IEEE Transactions on Reliability, 39(2), pp. 167-170, 1990.

292 Adarsh Anand, et al.

[19] Huang, C.Y., Cost-Reliability-Optimal Release Policy for Software
Reliability Models Incorporating Improvements in Testing
Efficiency, Journal of Systems and Software, 77(2), pp. 139-155, 2005.

[20] Huang, C.Y. & Lyu, M.R., Optimal Release Time for Software Systems
Considering Cost, Testing-Effort, and Test Efficiency, IEEE Transactions
on Reliability, 54(4), pp. 583-591, 2005.

[21] Pham, H. & Zhang, X., A Software Cost Model with Warranty and Risk
Costs, IEEE Transactions on Computers, 48(1), pp. 71-75, 1999.

[22] Ramík, J., Soft Computing: Overview and Recent Developments in Fuzzy
Optimization, Ostravska Univerzita, Listopad, pp. 33-42, 2001.

[23] Rommelfanger, H., The Advantages of Fuzzy Optimization Models in
Practical Use, Fuzzy Optimization and Decision Making, 3(4), pp. 295-
309, 2004.

[24] Tang, J. & Wang, D., Modelling and Optimization for A Type of Fuzzy
Nonlinear Programming Problems in Manufacturing Systems,
In Decision and Control, 1996, Proceedings of the 35th IEEE Conference
on IEEE, (4), pp. 4401-4405, 1996.

[25] Ukimoto, S. & Dohi, T., A Software Cost Model with Reliability
Constraint Under Two Operational Scenarios, International Journal of
Software Engineering and Its Applications, 7(1), pp. 415-426, 2003.

[26] Xie, M. & Yang, B., A Study of the Effect of Imperfect Debugging on
Software Development Cost, IEEE Transactions on Software
Engineering, 29(5), pp. 471-473, 2003.

[27] Yang, B., Hu, H. & Jia, L., A Study of Uncertainty in Software Cost and
Its Impact on Optimal Software Release Time, IEEE Transactions on
Software Engineering, 34(6), pp. 813-825, 2008.

[28] Kapur, P.K., Pham, H., Gupta, A. & Jha, P.C., Optimal Release Policy
Under Fuzzy Environment, International Journal of Systems Assurance
Engineering and Management, 2(1), pp. 48-58, 2011.

[29] Jha, P.C., Singh, O., Indumati & Kapur, P.K., Bi-criterion Release Time
Problem Incorporating Effect of Two types of Imperfect Debugging under
Fuzzy Environment, Parkash, O., (Ed.), Advances in Information Theory
and Operations Research: Interdisciplinary Trends, 2010.

[30] Jha, P.C., Indumati, Singh, O. & Gupta, D., Bi-Criterion Release Time
Problem for A Discrete SRGM Under Fuzzy Environment, International
Journal of Mathematics in Operational Research, 3(6), pp. 680-696, 2011.

[31] Kumar, D. & Gupta, P., Fuzzy Software Release Problem with Learning
Functions for Fault Detection and Correction Processes, Software
Engineering, Springer, Singapore, pp. 655-661, 2019.

[32] Zimmermann, H.J., Applications of Fuzzy Set Theory to Mathematical
Programming, Information Sciences, 36(1-2), pp. 29-58, 1985.

[33] Lee, K.H., First Course on Fuzzy Theory and Applications, Vol. 27, 1st
Ed., Springer-Verlag Berlin Heidelberg, 2006.

 Optimal Scheduling for a Multi Up-graded Software System 293

[34] Bellman, R.E. & Zadeh, L.A., Decision-Making in A Fuzzy Environment,
Management Science, 17(4), pp. B-141, 1979.

[35] Sun, H.W., Analysis of Costs and Delivery Intervals for Multiple-release
Software, PhD Dissertation, Department of Industrial and Manufacturing
Engineering, New Jersey Institute of Technology, New Jersey, 2002.

[36] SAS, SAS/ETS User’s Guide version. 9.1, Ed. Cary, SAS Institute Inc.,
North Carolina, 2004.

[37] Thiriez, H., OR Software Lingo, European Journal of Operational
Research, 12, pp. 655-656, 2000.

