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Abstract

In this paper, a hierarchical control strategy for Venlo-type greenhouse climate control under South Africa
climate is proposed to improve energy efficiency and reduce operating cost. The proposed hierarchical control
architecture includes two layers. The upper layer is to generate set points by solving different optimization
problems. Three different strategies with different optimization objectives are studied. The meteorological
data of a typical winter day is used. Strategy 1 is to minimize the energy consumption. Strategy 2 is to
minimize the energy cost under the time-of-use (TOU) tariff. Strategy 3 is to minimize the total cost of
energy consumption, ventilation and carbon dioxide (CO2) supply. The lower layer is to track the trajectories
obtained from the upper layer. A closed-loop model predictive control (MPC) strategy is introduced to address
model plant mismatch and reject system disturbances. Two performance indices, relative average deviation
(RAD) and maximum relative deviation (MRD), are introduced to compare the tracking performance of the
proposed MPC and an open loop control under three different levels of system disturbances (2%, 5%, 10%).
Simulation results show that the proposed strategy can effectively reduce the operating cost while keeping the
temperature, relative humidity and CO2 concentration within required ranges. Compared with Strategy 1 and
Strategy 2, the total cost of Strategy 3 is reduced by 72.07% and 71.41% respectively. Moreover, the proposed
MPC has better tracking performance than the open loop control. Therefore, the proposed hierarchical MPC
strategy could be an effective way to improve greenhouse energy efficiency and achieve sustainable cleaner
production.

Keywords: Hierarchical control, Greenhouse climate, Energy efficiency, Operating cost, Model predictive
control

1. Introduction

With the increase of population and the decrease
of cultivable lands, the problem of food shortage is be-
coming more and more serious in some countries (Has-
sanien et al., 2016; Yano & Cossu, 2019). In addi-
tion, in some arid regions, freshwater demand is in-
creasingly difficult to meet (Liu et al., 2020, 2019).
Greenhouse cultivation is an effective way to solve
these problems. Crops grown in the greenhouse can
get higher yields than that grown outdoor (Esen &
Yuksel, 2013). Moreover, greenhouse cultivation con-
sumes less water than outdoor planting mode (Garg
& Dadhich, 2014). Therefore, the research on agri-
cultural greenhouse can help to solve the problem of
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food shortage and effectively alleviate the current wa-
ter crisis.

A Venlo-type greenhouse is a commonly used green-
house in agricultural production. Farmers can adjust
the greenhouse climate according to their preferences
with controllers, to keep the temperature, humidity,
CO2 concentration, and light intensity within desired
ranges (Van Henten, 1994; Yang & Rhee, 2013).
However, due to the problems of operation strategy,
some greenhouses have low energy efficiency and high
production cost.

The greenhouse climate control process consumes
lots of energy to keep greenhouse climatic conditions
within required ranges (Fox et al., 2019). The main
energy sources include electricity energy, coal, fuel
oil, natural gas, and clean energy such as wind energy
and solar energy (Vadiee & Martin, 2014; Cuce et al.,
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2016). Coal and fuel oil can be used as backup en-
ergy to power greenhouses during power outages. The
high energy consumption will increase both green-
house production cost and greenhouse gas emissions
(Van Henten & Bontsema, 2009). For example, in
the United States, greenhouse energy consumption
accounts for 16% of agricultural energy consumption
(Bozchalui et al., 2014). In some cases, energy costs
account for 50% of the total cost of greenhouse pro-
duction (Shen et al., 2018). Some approaches have
been proposed to solve this problem. For instance, a
fuzzy control strategy for greenhouse climate to min-
imize production cost is proposed in (Lafont & Bal-
mat, 2002). A robust control method is proposed
in (Bennis et al., 2008). A PID controller for green-
house climate system is designed in (Hu et al., 2011).
An adaptive fuzzy control strategy is studied in (Su
et al., 2016). Under these control strategies, the green-
house climatic factors such as temperature and hu-
midity can be kept within required ranges. However,
energy efficiency is still low due to the lack of energy
optimization processes.

Some control strategies considered energy opti-
mization. For instance, a control method to reduce
the energy consumption of greenhouse heating is pro-
posed in (Chen et al., 2015). In (Ramı́rez-Arias
et al., 2012), a multi-objective control strategy for
greenhouse crop growth is proposed to maximize profit,
fruit quality and water-use efficiency. In (Blasco
et al., 2007), a model-based predictive control strat-
egy is proposed to reduce the energy and water con-
sumption of the greenhouse. However, these stud-
ies only considered the cost of energy consumed for
greenhouse control. The cost of ventilation and CO2

supply, which accounts for a large part of production
costs, is ignored. Moreover, the time-of-use (TOU)
tariff was not considered in these studies.

Greenhouse modelling is also challenging because
of the complexity of the greenhouse environment. For
example, the controlled variables (temperature and
humidity) are correlated and sensitive to the outside
weather (Chen et al., 2016; Du et al., 2012). In addi-
tion, the growth of crops has a strong impact on cli-
mate change inside the greenhouse (Rodŕıguez et al.,
2008). For example, the transpiration of crops can
affect greenhouse humidity (Su et al., 2017). There-
fore, it is difficult to accurately model the dynamic
process of greenhouse climate.

In the field of greenhouse climate modelling, there
are different methods in the literature. In (Ferreira

et al., 2002; Frausto & Pieters, 2004), a black box
model is presented by analyzing the input and output
data of the greenhouse system. However, this mod-
elling method generally requires lots of data to en-
sure the accuracy of the model. Moreover, the model
built may not be suitable for greenhouses with dif-
ferent configurations (Tap, 2000). Some modelling
processes are based on first principles by analyzing
the physical, chemical and biological laws involved in
the process. For example, a dynamic model based on
energy and mass balances is proposed in (Van Bev-
eren et al., 2015a,b). This modelling method gives
a detailed description of the climate control process.
Both the effects of crop transpiration and the inter-
ference of external conditions are taken into consid-
eration. The experimental results show that the pro-
posed model has a good performance regarding green-
house climate control.

The accuracy of traditional control strategies is
low due to system disturbances and model uncertain-
ties. The climatic conditions outside the greenhouse
such as temperature, humidity, solar radiation, wind
speed have a great impact on the climate in the green-
house (Chen et al., 2018). In order to solve this
problem, different control methods are proposed. A
robust control strategy for greenhouse temperature
and CO2 concentration control is proposed in (Linker
et al., 1999). An adaptive fuzzy control strategy is
presented in (Su et al., 2015). Some research studied
the application of model predictive control (MPC) for
greenhouse climate control, such as (Coelho et al.,
2005; Gruber et al., 2011). The greenhouse control
system can react before any deviation of the con-
trolled variables occurs, thus avoiding the response
delay. However, the proposed MPC is only used for
greenhouse temperature control, not for humidity and
CO2 concentration control.

MPC uses the model of the plant to predict the
future response over a finite horizon. A control se-
quence is obtained by solving an optimization prob-
lem online. Only the first value of the response se-
quence is applied to the next sampling interval, the
rest values are discarded (Wu et al., 2015; Zhu et al.,
2014). Due to the closed-loop nature of MPC, it
can effectively address system disturbances and is
widely used in process control such as urban house-
hold water management (Wanjiru et al., 2016), in-
dustrial fermentation process control (Mohd & Aziz,
2016), building performance optimization (Cao et al.,
2019), heavy-haul train control (Zhang & Zhuan,
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2013, 2015) and air conditioning system optimization
(Mei & Xia, 2017; Sayadi et al., 2019).

In South Africa, the food shortage problem is se-
rious. About 35% of South Africa’s population does
not have access to adequate food (Erna du Plessis
et al., 2015). One reason is that many lands are not
suitable for traditional outdoor planting. Crop yields
are vulnerable to climate change. Moreover, the en-
ergy shortage problem is also very serious in South
Africa (Menyah & Wolde-Rufael, 2010; Kohler, 2014).
In 2019, a stage 4 load shedding was implemented to
prevent the collapse of the power system, which has
a negative impact on people’s lives.

In this paper, the climate control of a Venlo-type
greenhouse under South Africa climate is studied.
The main objective of this paper is to analyze dif-
ferent control strategies for a typical modern green-
house system to improve energy efficiency and reduce
production cost. The dynamic model presented in
(Van Beveren et al., 2015a,b) is adopted. A hier-
archical control strategy is proposed. The proposed
hierarchical control architecture is divided into two
layers. On the upper layer, three different strategies
with different optimization objectives are proposed to
find the optimal operation trajectories. Strategy 1 is
to minimize the energy consumption for greenhouse
heating and cooling. Strategy 2 is to minimize the en-
ergy cost under the TOU tariff. Strategy 3 is to min-
imize the total cost which includes energy cost, venti-
lation cost and CO2 supply cost. On the lower layer,
a model predictive controller is designed to track the
trajectories obtained from the upper layer.

The main contributions of this paper are as fol-
lows: 1) A hierarchical control architecture for green-
house climate control is adopted. The proposed hi-
erarchical control strategy can effectively reduce the
computational complexity of optimization problems.
2) Three different optimal strategies are studied to
reduce greenhouse cost. Not only energy cost but
also ventilation and CO2 supply cost are taken into
consideration for the optimization of operating cost.
Compared with traditional control methods, the pro-
posed control strategy can greatly reduce greenhouse
operating costs. 3) An MPC strategy is used to re-
duce the influence of system disturbance and model
plant mismatch. The system control accuracy is im-
proved.

The rest of this paper is organized as follows: Sys-
tem description is presented in Section 2. The hi-
erarchical control strategy is described in Section 3.

The climate controller design is conducted in Section
4. The simulation results are discussed in Section 5.
Section 6 is the conclusion.

2. System description

A greenhouse is a building structure with walls
and roofs that are made of transparent materials such
as glasses and plastics. The cover prevents energy loss
and keeps the indoor temperature higher than that
of the outside. The ventilation reduces humidity in
greenhouses and provides CO2 for crops. The sun-
light provides the light crops need. However, some-
times the greenhouse climate cannot be maintained
within the required range. For instance, when the
outdoor temperature is too low, additional heating is
needed. Moreover, in order to obtain higher yield and
better quality, extra CO2 and lighting should be sup-
plied. Therefore, a greenhouse climate control system
is essential to keep the internal climate within suit-
able ranges.

CO2 supply Heating Cooling

Ventilation fan Plant transpiration

Energy loss

Lighting system

Solar radiation

Figure 1: Greenhouse climate control system structure

The structure of the greenhouse climate control
system is shown in Figure 1. These systems can be
controlled by growers, or can automatically respond
to external conditions and manipulate internal cli-
mate accordingly. Figure 2 is the schematic diagram
of the greenhouse control process. Firstly, farmers set
control objectives and system constraints according
to their experience. Then, the controller calculates
the optimal control variables based on the electricity
price, climate data in the greenhouse, and outdoor
weather data. Finally, actuators regulate the green-
house climate according to the control signal obtained
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Nomenclature
Tair air temperature in the greenhouse, ◦C RHair relative humidity in the greenhouse, %
Tout air temperature outside the greenhouse, ◦C Irad solar radiation power, W/m2

Qsun incoming radiation power, W/m2 α1 transmission coefficient
Qlamp lamp heating power, W/m2 α2 heat transfer coefficient, W/◦Cm2

Qcov heat transfer through the cover, W/m2 ge transpiration conductance, m/s
Qtrans transpiration endothermic power, W/m2 L energy needed to evaporate
Qvent heat loss through ventilation power, W/m2 water from a leaf, J/g
Qc controlled heating or cooling power, W/m2 LAI leaf area index
Hair humidity in the greenhouse, g/m3 ε ratio of latent to sensible heat content
Htrans vapour evaporated by the crop, g/m2s of saturated air
Hcov vapour condensation to the cover, g/m2s rb boundary layer resistance parameter, s/m
Hcrop vapour concentration at crop level, g/m3 rs stomatal resistance, s/m
Hout humidity outside the greenhouse, g/m3 γ crop specific parameter
Hvent vapour flux due to ventilation, g/m2s PE artificial lighting power, W/m2

RHair relative humidity in the greenhouse, % η lighting thermal conversion coefficient
Cair CO2 concentration in the greenhouse, g/m3 gv ventilation rate, m/s
Cout CO2 concentration outside the greenhouse, g/m3 s the greenhouse area, m2

Cinj CO2 injection into the greenhouse, g/m2s ρair density of air, kg/m3

Cass CO2 assimilation by the crop, g/m2s h average height of greenhouse, m
Cvent effect of ventilation on CO2 concentration, g/m2s gc the condensation conductance, m/s
Ccap heat capacity of the greenhouse, J/◦Cm2 pgc parameter related to the properties

Cp,air heat capacity of the air, J/kg◦C of the condensation surface, m◦C− 1
3 s−1

from the controller.

Power grid

Greenhouse Weather station

Controller

Electricity price
Meteorological 

data

Greenhouse climate 

data 

Electricity supply

Control signal

Farmer

System settings

Figure 2: Schematic diagram of greenhouse control process

2.1. Greenhouse climate model

Greenhouse climate control is a multi-input multi-
output (MIMO) system. Greenhouse climate control
generally includes temperature control, relative hu-
midity control, CO2 concentration control and light-
ing control. In this paper, the greenhouse climate
control system studied includes three inputs (heat-
ing, ventilation and CO2 injection) and three outputs

(temperature, relative humidity and CO2 concentra-
tion).

The dynamic model about temperature, humidity
and CO2 concentration control presented in (Van Bev-
eren et al., 2015a,b) is adopted, and briefly introduced
in the following. Please note that the model is based
on the energy and mass balances of the greenhouse
per unit area.

2.1.1. Temperature model

Greenhouse temperature modeling is based on the
energy balance of the greenhouse. The temperature
is governed by:

dTair
dt

=
1

Ccap
(Qsun +Qlamp −Qcov

−Qtrans −Qvent +Qc),

(1)

where Tair is the temperature inside the greenhouse,
Ccap is the heat capacity of the greenhouse, Qsun is
the incoming radiation from the sun, Qlamp is the
lamp heating power. Qcov is the heat transfer through
the cover, Qtrans is the energy absorption of crop
transpiration. Qvent is the energy exchange through
ventilation. Qc is the heating or cooling power.

Qsun can be calculated by:

Qsun = α1Irad, (2)

where α1 is the transmission coefficient of the cover
material and Irad is the solar radiation power.
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Qcov can be described by:

Qcov = α2(Tair − Tout), (3)

where α2 is the heat transfer coefficient of the cover,
Tout is the outside temperature.

Qtrans can be obtained by:

Qtrans = geL(Hcrop −Hair), (4)

where ge is the transpiration conductance, L is the
amount of energy needed to evaporate water from a
leaf. Hcrop is the absolute water vapour concentra-
tion at crop level. Hair is the absolute water vapour
concentration of the greenhouse air.

Hcrop can be calculated by:

Hcrop = Hair,sat + ε
rb

2LAI

Rn
L
, (5)

where Hair,sat is the saturated vapour concentration.
According to (Bontsema et al., 2008), Hair,sat can be
approximated by:

Hair,sat = 5.5638e0.0572Tair . (6)

ge is obtained using:

ge =
2LAI

(1 + ε)rb + rs
, (7)

where LAI is the leaf area index, ε is the ratio of
latent to sensible heat content of saturated air. rb
is the boundary layer resistance, rs is the stomatal
resistance.

ε and rs can be obtained by:

ε = 0.7584e0.0518Tair , (8)

rs = (82 + 570e−γ
Rn
LAI )(1 + 0.023(Tair − 20)2), (9)

where γ is a crop specific parameter, Rn is the net
radiation at crop level and given by:

Rn = 0.86(1− e−0.7LAI)(Qsun + PE), (10)

where PE is the rated electric power of artificial light-
ing installed.

Qlamp = ηPE , (11)

where η is the part of electric energy consumption of
the lamps that is converted into heat.

Qvent = gvρairCp,air(Tair − Tout), (12)

where gv denotes the specific ventilation rate, ρair
is the density of the air, Cp,air is the specific heat
capacity of the air.

2.1.2. Relative humidity model

The factors affecting the change of greenhouse
relative humidity include crop transpiration, vapour
condensation, and ventilation. The relative humidity
RHair can be obtained using:

RHair = Hair/Hair,sat, (13)

where Hair is the vapour concentration of the green-
house air. Hair can be calculated by:

dHair

dt
=

1

h
(Htrans −Hcov −Hvent), (14)

where Htrans is the vapour produced by plant transpi-
ration, Hcov is the vapour condensation to the cover,
Hvent is the vapour flux due to ventilation. h is the
average height of greenhouse.

Htrans is influenced by Hcrop and Hair, and it can
be described by:

Htrans = ge(Hcrop −Hair). (15)

Hcov can be modelled by the following equation:

Hcov = gc
[
0.2522e0.0485Tair(Tair − Tout)

−(Hair,sat −Hair)
]
,

(16)

where gc is the condensation conductance, and it can
be calculated by:

gc =

{
0 if Tair ≤ Tout,
pgc(Tair − Tcov)1/3 if Tair > Tout

(17)

where pgc is related to the properties of the conden-
sation surface.

Hvent is influenced by the ventilation and the hu-
midity both inside and outside greenhouse. The value
of Hvent can be obtained by:

Hvent = gv(Hair −Hout), (18)

where gv is the ventilation rate and controlled by the
power of fans.

2.1.3. CO2 concentration model

The CO2 concentration model based on mass bal-
ance is as follows.

dCair
dt

=
1

h
(Cinj − Cass − Cvent), (19)

where Cair is the CO2 concentration inside the green-
house, Cinj is the CO2 injection rate, Cass is the CO2
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assimilation, Cvent is the changes in CO2 concentra-
tion due to ventilation.

Cass and Cvent can be obtained by:

Cass = 2.2× 10−3 1

1 + 0.42
Cair

(1− e−0.003(Qsun+PE)),

(20)

Cvent = gv(Cair − Cout). (21)

2.1.4. Model performance analysis

The models proposed had been validated in (Van Bev-
eren et al., 2015a,b). Two performance indices, cor-
relation coefficient (r) and root mean square error
(RMSE), are calculated to analyze the model perfor-
mance. The greenhouse climate data of one whole
year is used for the model performance analysis. The
results show that the predicted values can follow the
actual values well in most cases. In some cases, there
is a big difference between the predicted value and
the actual measured value such as in February when
the outside temperature is very low. Similar results
can be found in (Su et al., 2018). The average winter
temperature in South Africa is much higher than that
in the Netherlands. For example, in Pretoria, the ad-
ministration capital of South Africa, the average tem-
perature of the winter is also above 10◦C. Therefore,
the proposed model in (Van Beveren et al., 2015a,b)
can be used for greenhouse control in South Africa.

2.2. System constraints

2.2.1. State constraints

Too high or too low temperature, relative humid-
ity and CO2 concentration will have a negative im-
pact on both crops yields and quality (Kläring et al.,
2007). For instance, too high relative humidity in
the greenhouse will accelerate the spread of pests and
diseases, too high or too low temperature will result
in crop wilting and even death. Therefore, the state
variables should be kept within appropriate ranges to
provide suitable growing conditions for crops. More-
over, for different type of crops, the ranges are dif-
ferent. The ranges are determined by farmers’ expe-
rience or the results obtained from the optimization
of crop growth control process. The state constraints
are represented by the following.

Tair,min ≤ Tair ≤ Tair,max, (22)

RHair,min ≤ RHair ≤ RHair,max, (23)

Cair,min ≤ Cair ≤ Cair,max, (24)

where Tair,min and Tair,max are the lower and upper
bounds of temperature, RHair,min and RHair,max are
the lower and upper bounds of relative humidity, and
Cair,min and Cair,max are the lower and upper bounds
of CO2 concentration.

2.2.2. Input constraints

There are also some input constraints, such as the
operational constraints and physical limits below.

Qc,min ≤ Qc ≤ Qc,max, (25)

gv,min ≤ gv ≤ gv,max, (26)

Cinj,min ≤ Cinj ≤ Cinj,max, (27)

where Qc,min and Qc,max are the lower and upper
bounds of heating or cooling power. gv,min and gv,max
are the lower and upper bounds of ventilation rate.
Cinj,min and Cinj,max are the lower and upper bounds
of CO2 injection rate.

To reduce the wear of actuators, extreme changes
should be prevented (Durand et al., 2016). There-
fore, the following input rate of change constraints
are adopted: ∣∣∣∣dQcdt

∣∣∣∣ ≤ k1, (28)∣∣∣∣dgvdt
∣∣∣∣ ≤ k2, (29)∣∣∣∣dCinjdt

∣∣∣∣ ≤ k3, (30)

where k1, k2 and k3 are the change rate limits of input
variables Qc, gv and Cinj respectively.

3. Hierarchical control strategy

The hierarchical control can effectively reduce the
computational complexity of complex problems by
decomposing them into different subproblems, which
is widely used in building energy optimization pro-
cesses (Mei et al., 2018). The hierarchical control
architecture of greenhouse climate is shown in Figure
3. On the upper layer, an optimization problem that
takes into account weather data and energy price is
solved to obtain the set points. On the lower layer,
a climate controller is designed to track the reference
trajectories obtained from the upper layer.
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Figure 3: Greenhouse climate hierarchical control architecture

3.1. Upper layer (Optimization layer)
The upper layer is to find the set points for green-

house climate controllers. In this paper, three differ-
ent strategies with different optimization objectives
are studied. For these optimization problems, the
control variables are the heating or cooling power Qc,
ventilation rate gv and CO2 injection rate Cinj . The
controlled variables are the temperature Tair, relative
humidity RHair and CO2 concentration Cair.

The objective of Strategy 1 is to minimize the
energy consumption for greenhouse heating and cool-
ing. Therefore, the optimization objective of Strategy
1 can be given by:

J1 =

∫ tf

ti

|Qc(t)| dt, (31)

where ti is the initial time, tf is the final time of
optimization.

The objective of Strategy 2 is to minimize the en-
ergy cost under the TOU tariff. The objective func-
tion of Strategy 2 is as follows.

J2 =

∫ tf

ti

|Qc(t)w(t)| dt, (32)

where w(t) is the electricity price at the time t. In
this study, the TOU tariff in South Africa is used and
given by:

w(t) =


wo t ∈ [0, 6] ∪ [22, 24]
ws t ∈ [9, 17] ∪ [19, 22],
wp t ∈ [6, 9] ∪ [17, 19]

(33)

where wo, ws, wp are the off-peak, standard, peak
tariff in R/kWh. R is the South Africa Currency,
Rand. The value of wo, ws, wp are 0.5157, 0.9446,
3.1047 respectively.

The objective of Strategy 3 is to minimize the to-
tal operating cost which includes the energy cost, ven-
tilation cost and CO2 supply cost. The energy cost
can be obtained from (32). The ventilation cost is the
cost of electricity consumed by the ventilation fan.
In this paper, the on-off control method is adopted
for ventilation fan operation. The CO2 cost is deter-
mined by the amount of the CO2 consumed and the
price of the CO2. The objective function of Strategy
3 can be obtained by:

J3 =

∫ tf

ti

(Qc(t)w(t)+gv(t)λw(t)+Cinj(t)pc)dt, (34)

where pc is the price of organic CO2. pc = R1000/ton.
λ is the conversion coefficient from the ventilation
rate (gv) to the ventilation fan power (Qv). λ =
0.06 W/m3.

The optimization problem (31), (32) and (34) are
subject to the constraints from (22) to (30).

3.2. Lower layer (Control layer)

The lower layer to track the reference trajecto-
ries obtained from the upper layer. In this paper,
a closed-loop model predictive controller is designed
and compared with the open loop controller. Two
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performance indices (relative average deviation and
maximum relative deviation) are introduced to com-
pare the tracking performance of the proposed model
predictive control and an open loop control under dif-
ferent levels of system disturbances.

4. Climate controller design

4.1. Open loop control

The continuous state-space model is as follows:

ẋ = f(x, u). (35)

In order to facilitate the controller, (35) is dis-
cretized to:

x(k + 1) = f(x(k), u(k)), (36)

where k is the current time kTs, Ts is the sampling
interval. x(k) = [T (k), RH(k), C(k)]T , T (k), RH(k)
and C(k) are the temperature, humidity and CO2

concentration at time k respectively. The objective
function that derives from (34) is adopted and given
by:

Jo =
N∑
k=1

|Pu(k)| , (37)

where N = T
Ts

. T is the total simulation time. u(k) =

[u1(k), u2(k), u3(k)]T , u(k) is the input variables at
the time k = 1, 2, 3, · · · , N . u1, u2 and u3 are the
heating/cooling power (Qc), ventilation rate (gv) and
CO2 injection rate (Cinj), respectively. For Strategy
1, P = [1, 0, 0]. For Strategy 2, P = [w, 0, 0]. For
Strategy 3, P = [w, λw, pc].

The open loop controller solves the optimization
problem:

u∗ref = arg min
u

Jo, (38)

subject to the constraints (22)−(30) and (36).

4.2. Closed-loop MPC

For closed-loop MPC, the input variables obtained
from (38) are taken as the inputs reference trajecto-
ries uref , and the corresponding state variables are
taken as the state variables reference trajectories xref .
The objective function is as follows:

Jm =

Np∑
i=1

(∆x(k + i|k))TQ(∆x(k + i|k))

+

Nc∑
i=1

(∆u(k + i− 1|k))TR(∆u(k + i− 1|k)),

(39)

where Np and Nc are optimization horizon and con-
trol horizon respectively. Q and R are the weighting
matrices. |k means that the predicted value is based
on the information up to time k. ∆x(k + i|k) is the
changes of state variables because of ∆u. ∆u is the
change of input variables, and it is used to compen-
sate model plant mismatch and system disturbances.
∆x(k + i|k) and ∆u are given by

∆x(k + i|k) = x(k + i|k)− xref (k + i), (40)

∆u(k) = u(k|k)− uref (k). (41)

Denote ∆U = [∆u(k|k),∆u(k+1|k),∆u(k+2|k),
· · · ,∆u(k +Nc − 1|k)]T . The MPC controller solves
the nonlinear optimization problem

∆U∗(k) = arg min
∆U

Jm(k), (42)

subject to the constraints (22)−(30) and (36). The
optimal control is implemented in a receding horizon
scheme that the first value of ∆U∗(k) is adopted and
the rest are discarded.

∆u(k) = ∆u∗(k|k), (43)

where ∆u∗(k|k) is the first entry of ∆U∗(k). Repeat
the above steps until k reaches the predefined value.
The final optimal inputs obtained by the MPC con-
troller is given by: u(k) = uref (k) + ∆u(k).

5. Simulation

5.1. Simulation parameters

In this paper, a Venlo-type greenhouse is studied.
The parameters of the greenhouse model are derived
from (Van Beveren et al., 2015a,b) and listed in Table
1.
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Table 1: Parameters of the greenhouse model

Variable Value Unit
α1 0.7 −
α2 10 −
γ 0.008 −
LAI 2.6 −
Ccap 30000 J/m2 ◦C
h 7 m
s 40709 m2

L 2450 J/g
rb 150 s/m
ρair 1.225 kg/m3

Cp,air 1003 J/kg◦C
pgc 1.8× 10−3 m◦C−1/3s−1

Tair,min 14 ◦C
Tair,max 26 ◦C
RHair,min 0 %
RHair,max 90 %
Cair,min 400 ppm
Cair,max 2000 ppm
Qc,min -200 W/m2

Qc,max 200 W/m2

gv,min 0 m/s
gv,max 0.05 m/s
Cinj,min 0 g/m2s
Cinj,max 0.05 g/m2s
k1 0.51 W/m2s
k2 5.1× 10−5 m/s2

k3 5.1× 10−5 g/m2s2

The greenhouse area s is 40709 m2 and the av-
erage height is 7 m. There are 4536 SON-T lamps
installed for providing artificial lighting. For each 80
m2, one air-to-water heat exchanger is installed for
heating and cooling. Fans and windows are used for
ventilation.

An OCAP (organic CO2 for assimilation by plants)
network is used to supply organic CO2. The price of
CO2 delivered by OCAP pipeline is R 1000 per ton.
An axial plate type fan is used for ventilation. The

power of each fan is 300 W. The air flow is 5000 m3

per hour. There are eight HortiMaXR© measurement
boxes for climate data measurement. To achieve a
uniform greenhouse climate state, the measurement
boxes and greenhouse climate control actuators are
uniformly distributed.

The meteorological data such as solar radiation,
outdoor temperature and outdoor relative humidity
are from a weather station at the University of Preto-
ria. The data for a typical winter day (July 13, 2016)
is used and shown in Figure 4 and Figure 5. Please
note that the light power is not a control variable.
For day time (07:00 to 18:00), the lighting power is
set to zero. For night time (19:00 to 06:00), the light-
ing power is set to 110 W/m2. The outdoor CO2

concentration is 407 ppm. The initial value needs to
be within a reasonable range of the greenhouse cli-
mate. In this paper, the initial value selected meet
the system state constraints. The initial values of the
temperature, relative humidity, and CO2 concentra-
tion in the greenhouse are set to 20 ◦C, 74%, and 500
ppm respectively. The greenhouse climate data sam-
pling interval Ts and the total simulation time T are
set to 300 seconds and 24 hours respectively.

Simulations are carried out in MATLAB environ-
ment, and the ‘fmincon’ function is used to solve the
optimization problem with the sequential quadratic
programming algorithm.

5.2. Optimization results

5.2.1. Strategy 1

The optimization result of Strategy 1 is shown in
Figure 6. It can be seen that almost all the energy
consumed is used for greenhouse heating in the morn-
ing (from 6 am to 8 am). That is because the out-
door temperature is low during the night, the heat
exchange with the outside environment causes the
temperature in the greenhouse to gradually drops to
the lower limit. The heater must start working to
keep the temperature within the required range. The
greenhouse ventilation to reduce the humidity in the
greenhouse is mainly around noon time (from 10 am
to 3 pm). The reason is that the outdoor temperature
is higher during this period, the ventilation can re-
duce indoor humidity without causing energy losses.

5.2.2. Strategy 2

The comparison of optimization results between
Strategy 1 and Strategy 2 under the TOU tariff is
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Figure 6: Optimization results of Strategy 1

Figure 7: Comparison of optimization results between Strategy 1 and Strategy 2 under the TOU tariff
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Figure 9: Energy cost comparison

shown in Figure 7. The comparison of energy con-
sumption between Strategy 1 and Strategy 2 is shown
in Figure 8. The comparison of energy cost between
Strategy 1 and Strategy 2 is shown in Figure 9. It
can be seen that Strategy 2 consumes more energy
(4502 kWh) than Strategy 1 (3587 kWh). However,
the energy cost of Strategy 2 (R 9050) is less than the
energy cost of Strategy 1 (R 9942). That is because
Strategy 2 consumes less energy (2591 kWh) than
Strategy 1 (3112 kWh) during the peak period when
the energy price (R 3.1047/kWh) is much higher than
that during standard period (R 0.9446/kWh) and off-
peak period (R 0.5157/kWh).

5.2.3. Strategy 3

The optimization result of strategy 3 is shown in
Figure 10. The comparison of the energy and CO2

consumption of three different strategies is shown in
11. Figure 12 shows the comparison of the cost of
three different strategies. The optimization results
show that less CO2 supply are needed to keep the
CO2 concentration within the required range. The
CO2 consumption of Strategy 3 is reduced by 96.52%
(from 27.28 to 0.95 t) compared with Strategy 1 and
Strategy 2. The total cost of Strategy 1, Strategy 2
and Strategy 3 are R 39454, R 38540 and R 11018
respectively. Compared with Strategy 1 and Strat-
egy 2, Strategy 3 reduces total costs by 72.07% and
71.41%, respectively.

5.2.4. Optimization analysis

The previous optimization is based on the mete-
orological data of one typical winter day in Pretoria,
South Africa. In order to make the conclusions more
convincing, the proposed strategies were also ana-
lyzed based on the meteorological data of the other
two winter days (June 5, 2016 and August 3, 2016).
The meteorological data is shown in Figure 14 and
Figure 15.

Similar results to the optimization based on the
meteorological data of July 13, 2016 are obtained.
For June 5, 2016, the operation cost of Strategy 1,
Strategy 2 and Strategy 3 are R 41076, R 40576 and
R 13317 respectively. Compared with Strategy 1 and
Strategy 2, Strategy 3 can reduce operating cost by
67.58% and 67.18% respectively. For August 3, 2016,
the operation cost of Strategy 1, Strategy 2 and Strat-
egy 3 are R 37935, R 36687 and R 9966 respectively.
Compared with Strategy 1 and Strategy 2, Strategy

11
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Figure 10: Optimization results of Strategy 3
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Figure 12: Comparison of the cost of three different strategies

3 can reduce operating cost by 73.73% and 72.84%
respectively.

5.3. Model predictive control

In (Van Beveren et al., 2015a,b), an open loop
control strategy is proposed for greenhouse climate
control. Due to the disturbances in the greenhouse
system, the accuracy of open loop control is often not
high. In this paper, a closed-loop model predictive
control strategy is studied and compared with the
open loop control strategy.

In this paper, the optimization results of Strat-
egy 3 shown in Figure 10 are taken as the reference
trajectories. The reason for choosing the results of
Strategy 3 as the reference trajectory is that Strat-
egy 3 is superior to Strategy 2 and Strategy 1 in
improving greenhouse energy efficiency and reducing
production costs. The operating cost under Strat-
egy 3 is lower than that under Strategy 1 and Strat-
egy 2. The MPC parameter settings are as follows:
the predictive horizon Np = 10, the control horizon
Nc = Np, the sampling interval Ts = 60 s, the to-
tal simulation time T = 24 h, the weighting matrix
Q = diag(100, 100, 100), R = diag(1, 1, 1).

Please note that the disturbance is added to the
outputs as measurement disturbance. For example,
when the system disturbance is 2%, the actual value
ya = yp × (1 + e), where yp is the model predicted
value, e is a random variable between -2% and 2%.
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Figure 13: Comparison of open loop control and MPC under 2% system disturbances
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Figure 14: Meteorological data of June 05, 2016
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Figure 15: Meteorological data of August 03, 2016

The comparison results between open loop control
and MPC under 2% system disturbances are shown
in Figure 13. It can be seen that three green curves
(MPC results) fluctuate in a very small range near the
corresponding reference trajectories. However, three
red curves (open loop control results) fluctuate in a
relatively large range near the corresponding refer-
ence trajectories. Compared with open loop control,
MPC has better tracking performance.

To compare the tracking performance of open loop
control and MPC more accurately, the tracking per-
formance indices relative average deviation (RAD)
and maximum relative deviation (MRD) are intro-
duced. The RAD is to evaluate the overall tracking
effect while the MRD is to evaluate tracking effect of
the worst tracking point.

Denote the value of actual measurement as xmeas,
then the relative deviation (RD) of x is defined by:

RD(i) =

∣∣∣∣xmeas(i)− xref (i)

xref (i)

∣∣∣∣ . (44)

The RAD can be obtained by:

RAD =
1

N

N∑
i=1

RD(i), (45)

where N is the total sampling times. For the open
loop control, N = 288. For the MPC, N = 1440.
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Table 2: Tracking performance indices comparison between
open loop control and MPC under different system disturbances

Open loop control MPC
RAD MRD RAD MRD

T2 (%) 3.38 13.80 1.35 6.31
RH2 (%) 3.63 18.18 1.07 6.13
C2 (%) 4.57 19.27 1.00 2.06
T5 (%) 8.37 37.51 3.23 12.39
RH5 (%) 8.61 39.62 3.05 29.70
C5 (%) 11.48 50.40 2.49 6.38
T10 (%) 16.62 90.09 7.95 44.96
RH10 (%) 17.33 78.77 5.99 80.30
C10 (%) 23.07 124.92 4.97 11.15

The MRD can be calculated by:

MRD = max(RD) (46)

Table 2 is the tracking performance indices com-
parison between open loop control and MPC under
three different system disturbances. The subscripts 2,
5 and 10 in Table 2 denote the values are the results
under 2%, 5% and 10% system disturbance respec-
tively.

When the system disturbance is 2%, compared
with open loop control, MPC reduces 60.06% temper-
ature RAD (from 3.38% to 1.35%), 76.19% relative
humidity RAD (from 3.36% to 1.07%), and 78.12%
CO2 concentration RAD (from 4.57% to 1.00%). MPC
reduces 54.28% temperature MRD (from 13.80% to
6.31%), 66.28% relative humidity MRD (from 18.18%
to 6.13%), and 89.31% CO2 concentration MRD (from
19.27% to 2.06%).

When the system disturbances are 5% and 10%,
similar results are obtained. Both the RAD and MRD
of MPC are smaller than that of the open loop con-
trol. The results show that the MPC has better track-
ing performance compared with the open loop control
under different levels of system disturbances.

6. Conclusion

A hierarchical control strategy of a Venlo-type
greenhouse system is proposed to reduce greenhouse
cost while keeping greenhouse climatic conditions such
as the temperature, humidity and CO2 concentration
within required ranges. The hierarchical control ar-
chitecture includes two layers. On the upper layer,
three different strategies with different optimization

objectives are studied. Strategy 1 is to minimize
the energy consumption. Strategy 2 is to minimize
the energy cost under the time-of-use (TOU) tariff.
Strategy 3 is to minimize the total operating cost.
The optimization results are taken as the trajecto-
ries for the lower layer. On the lower layer, an MPC
controller is designed to track the reference trajecto-
ries obtained from the upper layer. Two performance
indices are calculated to compare the tracking perfor-
mance of the proposed MPC controller and an open
loop controller under different level of system distur-
bances. The simulation results show that compared
with Strategy 1 and Strategy 2, Strategy 3 reduces
total costs by 72.07% and 71.41%, respectively. In
addition, the MPC can track the reference trajecto-
ries better than the open loop control under three
different level system disturbances.

In future work, we will focus on the following as-
pects. 1) How to reduce greenhouse water consump-
tion. 2) How to use wind energy, solar energy and
other clean energy to power greenhouse systems. 3)
How to dispatch hybrid energy systems to operate in
a more efficient and clean way.
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Gruber, J., Guzmán, J., Rodŕıguez, F., Bordons, C., Berenguel,
M., & Sánchez, J. (2011). Nonlinear MPC based on a
volterra series model for greenhouse temperature control us-
ing natural ventilation. Control Engineering Practice, 19 ,
354–366.

Hassanien, R. H. E., Li, M., & Lin, W. D. (2016). Advanced
applications of solar energy in agricultural greenhouses. Re-
newable and Sustainable Energy Reviews, 54 , 989–1001.

Hu, H., Xu, L., Wei, R., & Zhu, B. (2011). Multi-objective
control optimization for greenhouse environment using evo-
lutionary algorithms. Sensors, 11 , 5792–5807.
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