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Abstract Nonlinear chaotic finance systems are represented by nonlinear ordinary differential

equations and play a significant role in micro-and macroeconomics. In general, these systems do

not have exact solutions. As a result, one has to resort to numerical solutions to study their dynam-

ics. However, numerical solutions to these problems are sensitive to initial conditions, and a careful

choice of the suitable parameters and numerical method is required. In this paper, we propose a

robust spectral method to numerically solve nonlinear chaotic financial systems. The method relies

on spectral integration diagonal matrices coupled with a domain decomposition method to preserve

the high accuracy of our methodology on a long time period. In addition, we investigate stability of

chaotic finance systems using the Lyapunov theory, and a two sliding controller mode synchroni-

sation to regulate the synchronisation of these systems. Numerical experiments reveal the high accu-

racy and the robustness of our method and validate the synchronisation of chaotic finance systems.
� 2020 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Nonlinear chaotic systems have attracted many research works
in the sense that they can describe the evolution of more com-
plex systems in a reasonable manner. The presence of param-

eters is typical for many models of economic processes. For
example, in economic growth models, they may represent tools
for influencing the economy, while the aim of the analysis is to

find such quantities that would lead to the optimal path of
growth. However, if the analyzed model has chaotic dynamics,
the matter is essentially complicated. The high sensitivity of
chaotic system to a change in the initial conditions makes it
impossible to predict the effects of economic decisions in a

long time scale. Considering that government are usually inter-
ested in stimulating investment in order to cope with unem-
ployment rate, exports, etc. . ., this may cause a total new

trajectory for the system. Therefore, an effective and rapid
control method is very much needed when chaos appears in
order to avoid undesired trajectory and make suitable eco-
nomic adaptation and prediction possible, specially from gov-

ernment and investors side. Ma and Chen [11,12] provided a
practical way to analyse and predict the chaotic economic sys-
tems from a bifurcation approach.

By control, we refer to redesigning the system in which
parameters are added and controlled in order to eradicate
the chaotic behaviour of the system and reach a desired goal.

Lots of research has been conducted on the nonlinear chaotic
finance problem, mostly with the aim of achieving control and
synchronization. Several techniques are used for control of the
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chaotic system including sliding mode, feedback control [1],
integral sliding mode control [24], inverse optimal control [4],
passive control [17], adaptive control [23], backstepping con-

trol [22] to name these only.
In the synchronization process, we are given two identical

systems with different starting points. One initial system, also

called driving, and a second system called response, or slave,
similar to the driving system. The aim is that by adding some
parameters on the slave system we should match the driving

system after some time. In the world of finance, this means
from one chaotic finance system generated from a certain
economy we can add some parameters to it in order to match
another desired chaotic system generated by another economy.

Various synchronization methods have been introduced so far
and some with extension to fractional cases, namely, the pro-
jective synchronisation [27,29], sliding mode [21,13], and the

nonlinear control [15,28]. In this paper, a two sliding controller
mode synchronisation is used as it regulates synchronisation of
chaotic finance system more effectively than passive control,

while keeping also the system internally stable [13].
Analytical solutions for nonlinear chaotic systems are

almost nonexistent. Therefore, we rely on numerical methods

to study these systems. In the field of numerical methods for
solving differential equations, two main classes can be distin-
guished, classical methods and spectral methods. By classical
methods we refer to the class of finite difference, finite element

methods. These methods are very accurate, but computation-
ally costly.

However, spectral methods have the advantage of being

fast converging methods. Their truncation error decays as fast
as the global smoothness of the underlying solution permits.
Their definite integrals are calculated once by the quadrature

rule [8], see also [18,9] for more on spectral methods. For ordi-
nary differential equations in which some coefficient functions
or solutions are not analytic, Babolian [2] introduced a modi-

fied spectral method that is more efficient than the existing
spectral methods. Various quadrature and modified quadra-
ture rules can be found in the literature of spectral methods,
including quadrature based on Chebyshev polynomials.

Shifted Chebyshev polynomials for instance are used to solve
the Klein-Gordon equation, [10]. The method is referred to
as shifted Chebyshev-Tau method. An extension of this

method is applied in the case of fractional differential equa-
tions [6]. Two years later, Bhrawy [3] introduced an opera-
tional matrix to the shifted Chebyshev method to generate a

faster algorithm for fractional integration in the sense that
only a small number of shifted Chebyshev polynomials is
needed to obtain a satisfactory result. Liu [14] applies a
quasi-inverse technique to solve differential equations directly.

The method performs very well and shows obvious advantage
especially when it comes to multi-dimensional cases.

Driscoll [7] presents a fast algorithm based on operational

matrices in which the matrices have a lower density. In integral
form, large condition numbers associated with differentia-
tion matrices in high-order problems are avoided. The

Chebfun package of Matlab [19] is used in the algorithm, as
it exploits results from approximation theory, spectral meth-
ods, and object-oriented software design to reduce the distance

between analytical expressions and numerical solutions for
one-dimensional problems. Like the Matlab Differentiation
Matrix Suite (DMS) package [26], Chebfun also suffers from
the fact that the differentiation matrix gets full (while it is

sparse for the finite difference or the finite element method)
and, more importantly, it is very sensitive to rounding errors.
Reason being that these two packages are based on the spectral

collocation method where the approach focuses more on the
physical space generated from the quadrature.

Following the same matrix based operational approach, an

improvement of these packages is brought by Trif [20] in intro-
ducing the chebpack package that is based on the Chebyshev-
Tau method where the focus is more on the spectral space of
coefficients rather than the physical space. This approach takes

advantage of the spectral properties of Chebyshev polynomials
resulting in avoiding full matrices. Actually the obtained
matrices are sparse upper triangular and for the particular case

of constant coefficient in the system, the matrices become diag-
onal almost everywhere. Hence a tremendous gain in computa-
tion is achieved.

In this paper we intend to solve the chaotic finance system
by means of the robust spectral integral method (RSIM), to
compute the solution of three dimensional and four dimen-

sional problems. In addition, a splitting method is used in
order to achieve fast convergence without compromising on
the accuracy over a long time period.

This paper is organised as follows, Section 2 presents the

chaotic finance system with a brief analysis on the stability.
In Section 3 we introduce the robust spectral integral method
In Section 4, we present numerical results and conduct an error

analysis as well as a synchronisation via sliding mode. The last
section is devoted to the conclusion.

2. Chaotic finance systems

The chaotic finance system, under study, is driven by the inter-
action of three main variables influencing the market economy.

This interaction is modeled in the form of three nonlinear
simultaneous ordinary differencial equations (ODEs) as fol-
lows (see [11])

_x ¼ zþ y� að Þx
_y ¼ 1� by� x2

_z ¼ �x� cz:

8><
>: ð2:1Þ

where x component stands for the interest rate dynamics which

is defined as the percentage amount of the principal a borrower
promises to pay the lender, y is the investment demand which
is the desired capital and inventories by firms, and z represents

the price index of a stock. The positive constant parameters
a; b; c are the saving, the per-investment cost and the elasticity
of the demand, respectively.

By applying some appropriate change of coordinate system
and settings, different views of the chaotic finance system can
be presented [5]. In this paper we shall stick to the presentation
given in (2.1). The system admits three equilibrium points

X0 ¼ ð0; 1b ; 0Þ, X1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ba� b

c

q
; aþ 1

c
;� 1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ba� b

c

q� �
and X2 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ba� b

c

q
; aþ 1

c
; 1
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ba� b

c

q� �
. The Jacobian

matrix is
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Jx ¼
y� a x 1

�2x �b 0

�1 0 �c

2
64

3
75; ð2:2Þ

and at the equilibrium point X0,

Jx0 ¼
1
b
� a 0 1

0 �b 0

�1 0 �c

2
64

3
75:

The characteristic polynomial is

PðkÞ ¼ k3 � 1

b
� a� b� c

� �
k2 � c

b
� ab� ac� bc

� �
k

� ðc� b� abcÞ: ð2:3Þ
According to the Routh-Hurwitz criterion for polynomial

of order 3, the real parts of the three eigenvalues are all nega-
tive if the following simultaneous inequalities hold:

� 1

b
� a� b� c

� �
> 0; ð2:4Þ

� c� b� abcð Þ > 0; ð2:5Þ
1

b
� a� b� c

� �
c

b
� ab� ac� bc

� �
þ ðc� b� abcÞ > 0: ð2:6Þ

In addition, we also see that the root k ¼ �b of the charac-
teristic polynomial (2.3) has a negative real part if b > 0. Now,

if we arbitrarily consider b ¼ 0:1; c ¼ 1 and if we take a to be
our control parameter, then the above set of conditions is writ-
ten as:

a > 89
10
;

a > 9;

a� 89
10

� �
11a�99

10

� �� a�9
10

> 0:

This means for a > 9 all the eigenvalues will have a negative
real part. As a result, X0 is asymptotically stable.

At the equilibrium point

X1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ba� b

c

q
; aþ 1

c
;� 1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ba� b

c

q� �
, the Jacobian is

given by

Jx1 ¼
1
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ba� b

c

q
1

�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ba� b

c

q
�b 0

�1 0 �c

2
6664

3
7775:

Therefore, the corresponding characteristic polynomial is
obtained in Eq. (2.7)

PðkÞ ¼ k3 þ bþ c� 1

c

� �
k2 þ 2þ bc� 2ab� 3b

c

� �
k

þ ð2c� 2b� 2abcÞ: ð2:7Þ
Accordingly, the real parts of all the eigenvalues are all neg-

ative if

bþ c�1

c
> 0; ð2:8Þ

2c�2b�2abc> 0; ð2:9Þ

bþ c�1

c

� �
2þbc�2ab�3b

c

� �
�ð2c�2b�2abcÞ> 0: ð2:10Þ

Choosing the constants b ¼ 0:1; c ¼ 1, the above set of con-
ditions result to
a < 9;

a > 9

implying X1 cannot be stable no matter the value of a. The
same analysis can also be conducted for the equilibrium point

X2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ba� b

c

q
; aþ 1

c
; 1
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ba� b

c

q� �
. Elouahab et al.

[1] proved the existence of a chaotic behaviour of problem
(2.1) for the constants b ¼ 0:1; c ¼ 1 and 0 < a < 7 from the

Lyapunov theory.
In the next section, we present a pseudo-spectral method

used to solve the system of ODEs (2.1). The main advantage

of this method is that it can handle large time values while pre-
serving high accuracy.

3. Chebyshev polynomials

The Chebyshev polynomial TnðxÞ of 1st kind is a polynomial
in x 2 ½�1; 1� of degree n > 0 defined by the relation:

TnðxÞ ¼ cos nh; for x ¼ cos h;

ie: TnðxÞ ¼ cosðn arccosðxÞÞ:
Note that the definition of the Chebyshev polynomials can
easily be extended to any interval ½a; b� by just applying a shift

mapping s : x! sðxÞ ¼ 2
b�a x� bþa

b�a. For this reason, we shall

work on the interval ½�1; 1� then applying the inverse shift
mapping we can always get back to any interval ½a; b�. From
the trigonometric relation.

cosðnhÞ þ cosðn� 2Þh ¼ 2 cos h cosðn� 1Þh; ð3:11Þ
we get

T0ðxÞ ¼ 1; ð3:12Þ
T1ðxÞ ¼ x; ð3:13Þ
TnðxÞ ¼ 2xTn�1ðxÞ � Tn�2ðxÞ; n ¼ 2; 3; . . . ð3:14Þ
which in turn can be expressed in a matrix form as:

1

�2x 1

1 �2x 1

. .
. . .

. . .
.

1 �2x 1

2
6666664

3
7777775

T0ðxÞ
T1ðxÞ
T2ðxÞ

..

.

TnðxÞ

2
66666664

3
77777775
¼

1

�x
0

..

.

0

2
6666664

3
7777775
: ð3:15Þ

The zeros of Tn are the points

xk ¼ � cos
ðk� 1

2
Þp

n
; k ¼ 1; 2; . . . ; n: ð3:16Þ

The set fxkgk is termed as collocation points, also called Che-

byshev points of first kind. For any point x, the set

fT0ðxÞ;T1ðxÞ; . . .g is an orthogonal basis according to the
weighted inner product defined by:

< f; g >¼
Z 1

�1

fðxÞgðxÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p dx; ð3:17Þ

for any continuous function f; g defined on ½�1; 1�. This means
that for any polynomial of degree n > 0, there exists a unique

set of coefficients fc1; c2; . . . ; cng such that

pnðxÞ ¼
Xn
k¼0

ckTkðxÞ: ð3:18Þ
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Considering the fact that polynomials are dense in
C ½�1; 1�ð Þ, and the set of Chebyshev polynomials is complete,
we can therefore have the following theorem

Theorem 3.1. Let u be a Lipschitz continuous function on the
interval [-1,1]. Then u admits a unique representation as a series
of the form:

uðxÞ ¼ c0
2
þ
X1
k¼1

ckTkðxÞ: ð3:19Þ

where TkðxÞ are Chebyshev polynomials,

ck ¼ 2

p

Z 1

�1

uðxÞTkðxÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p dx; k ¼ 0; 1; 2; 3; . . . ð3:20Þ

This series converges uniformly and absolutely.

A Chebyshev approximation of order n > 0 of a function u

continuous on an interval ½�1; 1� is defined by

unðxÞ ¼
Xn
k¼0

ckTkðxÞ ð3:21Þ

¼ c � TðxÞ ð3:22Þ
where c ¼ ðc0; c1; . . . ; cnÞ is the coefficient vector associated
with the approximation un. It is usually termed as the spectral
representation of un. The set of Chebyshev coefficient vectors

fcg of continuous functions on ½�1; 1� is referred to as the fre-
quency space.

For simplicity of notation, we shall write uðxÞ in place of
unðxÞ to denote the Chebyshev approximation of order n of

u at x. Another discrete representation of the function u is to
directly interpolate u at the collocation points x0ks. This means

u can be represented by a vector v of its values on the grid
x ¼ ðx0; x1; . . . ; xnÞ, that is v ¼ ðuðx0Þ; uðx1Þ; . . . ; uðxnÞÞ. We
shall call v the physical representation of u.

On the collocation point, one writes

vðxÞ ¼ TðxÞ:c; ð3:23Þ

vðx0Þ; . . . ; vðxnÞð Þ ¼
Xn
k¼0

ckTkðx0Þ; . . . ;
Xn
k¼0

ckTkðxnÞ;
 !

ð3:24Þ

where T is the matrix defined as follows

T ¼

T0ðx0Þ T1ðx0Þ . . . Tnðx0Þ
T0ðx1Þ T1ðx1Þ . . . Tnðx1Þ

..

. . .
. ..

.

T0ðxnÞ T1ðxnÞ . . . TnðxnÞ

2
66664

3
77775:

Since

v ¼ Tc;

this implies that c ¼ T�1v:

From the nature of T0ks, the matrix T is sparse and FFT

enables to get T�1.

3.1. Some useful properties

Consider two functions a and u of a variable x, with spectral
representation a and u respectively. Then the product
aðxÞ � uðxÞ admits also a spectral representation, denoted as

/ which is defined by
/ ¼ a:c ð3:25Þ
where a is termed as the matrix representation of the function

aðxÞ and c is the spectral representation of function u, see [7]
An efficient way of getting matrix a is to write the product

in its discrete form.

Since aðxÞuðxÞ ¼
Xn
k¼0

akTkðxÞ
" # Xn

k¼0
ckTkðxÞ

" #
; ð3:26Þ

then
Xn
k¼0

/kTkðxÞ ¼
Xn
k¼0

Xn
l¼0

aklakclTkTl ð3:27Þ

for some coefficients akl; 0 6 k; l 6 n. In addition, given the

following relation

TkðxÞTlðxÞ ¼ 1

2
TkþlðxÞ þ Tjk�ljðxÞ
	 


; forall k; l

¼ 0; 1; . . . n ð3:28Þ
and in rearranging terms properly, it brings to existence a
matrix a such that

Xn
k¼0

/kTkðxÞ ¼
Xn
k¼0

Xn
l¼0

aklcl

" #
TkðxÞ:

In the frequency space, this will written in the form

/ ¼ ac: ð3:29Þ
3.2. Differentiation and integration

In view of Eq. (3.21) and by differentiation, u0ðxÞ is given by

u0ðxÞ ¼
Xn
k¼0

ckT
0
kðxÞ: ð3:30Þ

The differentiation of relation (3.14) and (3.13) implies

T0 ¼ T01; ð3:31Þ

T1 ¼ T02
2
; ð3:32Þ

Tnþ1ðxÞ ¼ nT0n�1ðxÞ � 2ð1� x2ÞT0nðxÞ ð3:33Þ

ie: Tn ¼ T0nþ1
2ðnþ 1Þ �

T0n�1
2ðn� 1Þ ; n ¼ 2; 3; . . . : ð3:34Þ

Inserting this back into (3.30) shows the existence of a
matrix D ¼ ðdklÞ0<k;l<n such that

Xn
k¼0

c0kTkðxÞ ¼
Xn
k¼0

Xn
l¼0

dklclTkðxÞ ð3:35Þ

ie: c0 ¼ Dc ð3:36Þ
where c0 is the spectral representation of the derivative func-
tion u0 and moreover D is a sparse upper triangular matrix,
with the following properties

dkl ¼ 0; for k 6 l;

dkl ¼ 0; if l� k is even;

dkl ¼ 2k; if l� k is odd:

8><
>: ð3:37Þ

Applying the above result recursively, we get the spectral

representation cðpÞ of the derivative with order p of u stated by

cðpÞ ¼ Dpc: ð3:38Þ
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For the case of integration, we recall again the relation

Tnþ1ðxÞ ¼ nTn�1ðxÞ � 2ð1� x2ÞTnðxÞ ð3:39ÞZ
TnðxÞdx ¼ 1

2

Tnþ1ðxÞ
nþ 1

� Tn�1ðxÞ
n� 1

� �
; n ¼ 2; 3; ð3:40ÞZ

T1ðxÞdx ¼ 1

4
T2ðxÞ; ð3:41ÞZ

T0ðxÞdx ¼ 1

2
T1ðxÞ: ð3:42Þ

As a linear operator, the integral of u will also be a contin-

uous Lipschitz function in ½�1; 1�, which will in turn have a
unique expansion series of the formZ

uðxÞdx ¼
Xn
k¼0

IkTkðxÞ; x 2 ½a; b�;

where Ik’s are coefficients of the integral of u, and similarly as
with differentiation there exists a n� n-matrix J such that

Ik ¼
Xn
l¼0

Jklcl; ð3:43Þ

or simply

I ¼ J � c; ð3:44Þ
where I is the spectral representation of the integral of u. In
fact,

R
uðxÞdx ¼ R XN�1

k¼0
ckTkðxÞ

i:e
XN�1
k¼0

IkTkðxÞ ¼
R XN�1

k¼0
ckTkðxÞdx

¼
XN�1
k¼0

ck
R
TkðxÞdx

XN�1
k¼0

XN�1
j¼2

JkjcjTkðxÞ ¼
Xn
k¼2

ck
1
2

Tkþ1
kþ1 � Tk�1

k�1

h i
:

Performing a smart multiplication and rearranging terms we
get the coefficients of J recursively as follows:

Jkk ¼ 0; J01 ¼ 1

2
; Jk;k�1 ¼ �Jkkþ1 ¼ 1

k
: ð3:45Þ

So then, the spectral representation of the integral of u is
the vector d ¼ J:c, and for any continuous function aðxÞ, the
corresponding spectral representation for the integral of the

product aðxÞuðxÞ is Jac where a is the matrix representation
of the function a. We shall writeZ

aðxÞuðxÞdx! Jac: ð3:46Þ

Consequently it can be seen with the help of elementary
technique of integration by parts thatR

a1ðxÞu0ðxÞdx! ðI � JDÞa1 cRR
a2ðxÞu00ðxÞdx! ðI � JDÞ2a2 c:R
a3ðxÞ d3udx3

ðxÞdx! ðI � JDÞ3a3 c
..
.R
. . .
R
amðxÞ dmudxm

ðxÞdx . . . dx! ðI � JDÞmam c
where I stands for the identity matrix. Thus, for a general lin-

ear differential operator L

L uðxÞ ¼
Xm
i¼0

aiðxÞ d
iu

dxi ðxÞ ð3:47Þ

we have

Z
. . .

Z
L uðxÞdxm !

Xm
i¼0

Jm�iðI � JDÞiai c: ð3:48Þ

The matrix

A ¼
Xm
i¼0

Jm�iðI � JDÞiai ð3:49Þ

is the spectral representation of the integral operator of L.

If we consider a general differential equation Au ¼ f of
order m for which the differential operator can be written as

A ¼ LþN where L and N are respectively the linear part
and the nonlinear part, then the differential equation then
writes as

LuðtÞ þN uðtÞ ¼ fðtÞ ð3:50Þ
LuðtÞ ¼ �N uðtÞ þ fðtÞ ð3:51ÞZ

. . .

Z
LuðtÞ ! Ac ¼ �nþ Jmf ð3:52Þ

Ac ¼ f ð3:53Þ
implying c ¼ A�1f ð3:54Þ

where n is the spectral representation of the integral of N u at
order m, and f ¼ �nþ Jmf is the spectral representation of

�N uþ fðtÞ. We use the following Algorithm 1:

Algorithm 1. Pseudo code
1:
 u0  initial solution
2:
 INITIALIZE L
3:
 Evaluate N , and f at u0

4:
 u :¼ L�1 � N þ fð Þ

5:
 while ku� u0k > � do
6:
 u0  u
7:
 Evaluate N , and f at u0

8:
 u ¼ L�1 � ðN þ fÞ

9:
 RETURN u
3.3. The robust spectral integral method

For this section we consider Ih to be a mesh on the interval
½0;T� and N be the number of subintervals and

Ih :¼ tn : 0 ¼ t0 < t1 < � � � < tN ¼ Tf g:
We denote by Kn ¼ ½tn�1; tn�; hn ¼ tn � tn�1 and unðtÞ the solu-

tion of (3.50) on the n-th element, namely

unðtÞ ¼ uðtÞ; 8t 2 Kn; 1 6 n 6 N:

Let Mn > 0 be an integer and consider PMn
to be the space of

polynomials of order at most Mn built on Kn. We apply the
spectral method as described in the Algorithm 1 to obtain a
numerical solution UMn

2 PMn
on Kn. The Robust Spectral

Integral Method on the interval ½0;T� consists of a successive
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application of the spectral method on each Kn to obtain a glo-

bal numerical solution UMðtÞ of (3.50) defined in such way that

UMðtÞ ¼ UMn
ðtÞ; t 2 Kn; 1 6 n 6 N:

where M is taken to be the smallest of the Mn’s. That is,

M ¼ inf
0<n6N

Mn;

For each subinterval ½ti; tiþ1�, Eq. (3.53) is applied.
AðiÞcðiÞ ¼ fðiÞ; i ¼ 0; . . . ;m� 1: ð3:55Þ
The overall matrix A of the entire problem is then a diagonal

of the block of matrices AðiÞ.

Að1Þ 0

0 Að2Þ 0

. .
. . .

.

0 AðmÞ

0
BBBB@

1
CCCCA

cð1Þ

cð2Þ

..

.

cðmÞ

0
BBBB@

1
CCCCA ¼

fð1Þ

fð2Þ

..

.

fðmÞ

0
BBBB@

1
CCCCA: ð3:56Þ

By inversion of the matrix AðiÞ on each domain Ki, we obtain

cðiÞ and therefore uMi
which is UM on Ki.

In this case a global error can arise and jeopardise the con-
vergence. However the following Theorem 3.2 still guarantees
an exponential convergence even after discretization.

Theorem 3.2. Assume that u belongs to the broken Sobolev

space: u 2 H1ð0;TÞ and ujKn
2 HrnðKnÞ; 1 6 n 6 N with inte-

gers 2 6 rn 6 Mn þ 1, and there exists a constant L P 0 such

that for any z1 and z2,

jfðz1; tÞ � fðz2; tÞj 6 Ljz1 � z2j: ð3:57Þ
Then for

2
ffiffiffiffiffiffi
2p
p

hmaxL 6 b < 1; ð3:58Þ
we have

ku�UMk2H1ð0;TÞ 6 cbT expðcbTÞ
XN
i¼1

h2ri�2i M2�2ri
i juj2Hri ðKÞ; ð3:59Þ

where cb is a positive constant depending only on b.

Where Kn ¼ ½tn�1; tn�; hn ¼ tn � tn�1 and the constant Mn is

of the order of the Chebyshev polynomial of approximation
un defined on Kn. The proof can be found in [11,25].

4. Applications and numerical results

In this section, we apply our method to different problems
found in financial economics and test the convergence, and

efficiency of the proposed method against the existing Chebfun
method [16]. In addition we provide an application of our
method for synchronization. Since the exact solution is not

available we choose the ODE15s with relative and absolute tol-

erance 10�14 to serve as the benchmark solution. The error E is
the maximal error given by:

kEk ¼ kSolBenchmark � SolNumericalk1: ð4:60Þ
Let us apply the above technique described in Section 3 to

the nonlinear chaotic problems stated in Section 2. First lets

recall the problem (2.1) in its initial form
_xþ ax� z ¼ xy

_yþ by ¼ 1� x2

_zþ xþ cz ¼ 0;

8><
>: ð4:61Þ

which can also be written as:

au0ðtÞ þ BuðtÞ ¼ fðtÞ; t 2 ½0;T� ð4:62Þ

where a ¼ ð1; 1; 1Þ; uðtÞ ¼ xðtÞ; yðtÞ; zðtÞ½ �; B ¼
a 0 �1
0 b 0
1 0 c

2
4

3
5

and fðtÞ ¼ ðxðtÞyðtÞ; 1� x2ðtÞ; 0Þ. Integrating (4.62) yields

auðtÞ þ B

Z T

0

uðtÞ dt ¼
Z T

0

fðtÞ dt: ð4:63Þ

The Chebyshev approximation of problem (4.63) at order n in

the space of Chebyshev polynomials yields the following simul-
taneous equations

ðI þ aJÞx� Jz ¼ f1

ðI þ bJÞy ¼ f2

ðI þ cJÞzþ Jx ¼ f3:

8><
>: ð4:64Þ

where I is the identity matrix of order 3, J is the integration
matrix as defined in (3.43) and (3.45), x; y; z are the spectral

representation of the unknown functions ½xðtÞ; yðtÞ; zðtÞ�
respectively, and similarly ½f1; f2; f3� which represent the coeffi-

cient vectors of the nonlinear part ½xy; 1� x2; 0� respectively.
In other words,

I þ aJ 0 �J
0 I þ bJ 0

J 0 I þ cJ

2
64

3
75

x

y

z

2
64
3
75 ¼ f1

f2

f3

2
64

3
75: ð4:65Þ

This problem is nonlinear, we will apply an iterative

method to Eq. (4.65) and the aim is to get the coefficient vector
c of uðtÞ ¼ ½xðtÞ; yðtÞ; zðtÞ�.

Lets then consider the fix point problem

Ac ¼ f: ð4:66Þ
We shall start with an initial guess coming out of the initial

condition ½1; 1; 1� then get the new c by c ¼ A�1f where the
old c is used to compute f in the iterations. Keeping in mind

that the chaotic finance (2.1) is also highly nonlinear on some
interval, and in order to speed up convergence, we suggest the
use of a splitting method on the interval ½0;T� into N-

subintervals 0 ¼ t0 < t1 < . . . < tN ¼ T and apply the robust
spectral integral method.

The results are implemented for a ¼ 0:9; b ¼ 0:2; c ¼ 1:2.
Fig. 1 shows the chaotic behaviour of the finance system as
expected. The solution functions xðtÞ; yðtÞ; zðtÞ are plotted in
Fig. 2 where a 4-domains decomposition has been used with
8 collocation points per domain.

As we vary the number of collocation points from
n ¼ 4; 8; 16; 32; 64; 128; 256 and 512, we record in Table 1 the
error on each variable x; y and z.

Given that Chebfun returns the solution in 1.05 s, we also
record the accuracy achieved as the running time increases
and with respect to the number of domains (here we consider

1, 2 and 4 subintervals), for a total number of Chebyshev col-
location points varying from 256, 512, 1024, 2048 and 4096.
Lets also record the error as well as the CPU running time

in the Table 2. Fig. 3 shows the efficiency, on one variable,



Table 1 Convergence of the error of the variables x; y and z fot T ¼ 1 with 1 domain only.

n ¼ 4 n ¼ 8 n ¼ 16 n ¼ 32 n ¼ 64 n ¼ 128 n ¼ 256 n ¼ 512

xðtÞ 2.390E�2 4.528E�4 1.992E�5 1.013E�6 5.844E�8 3.501E�9 2.145E�10 1.158E�11
yðtÞ 2.031E�2 4.484E�4 1.673E�5 9.079E�7 5.203E�8 3.139E�9 1.918E�10 1.0752E�11
zðtÞ 6.135E�3 1.001E�4 3.990E�6 2.2074E�7 1.182E�8 7.127E�10 4.361E�11 2.570E�12

Table 2 Convergence and Efficiency of RSIM with 1, 2 and 4 domains at T ¼ 5.

n ¼ 256 n ¼ 512 n ¼ 1024 n ¼ 2048 n ¼ 4096

N ¼ 1 CPU 0.271 0.746 2.543 10.593 40.02

Error 6.925E�9 4.304E�10 2.570E�11 3.431E�12 2.814E�12
N ¼ 2 CPU 0.128 0.344 0.998 3.823 15.508

Error 1.372E�8 8.429E�10 E�11 4.231E�12 2.961E�12
N ¼ 4 CPU 0.104 0.174 0.525 1.525 5.451

Error 3.646E�8 2.189E�9 1.348E�10 9.730E�12 2.762E�12

Fig. 1 Phase portraits for T ¼ 1000.

Fig. 2 Plot of the 3 variables for T ¼ 5 using 4-domains decomposition.
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of our method compare to Chebfun in solving the chaotic
finance system. The method is reliable on this problem.

Clearly the discretization of our interval ½0;T� is uniform,

that is, hN ¼ h ¼ T
N
, where N is the number of domains. In

addition we considerMN ¼M to be constant since we generate
the same number of Chebyshev points in each domain. More-

over, it is not difficult to see that our function f here adheres to
the Lipschitz conditions. Therefore we should expect an expo-
nential decay of the error as shown in Fig. 4b where we also

considered an additional case of N ¼ 8 domains.
Table 2 shows that as the number of collocation points get

larger (here n > 1000) on each subinterval, the method tends to

suffer in terms of rapidity. Indeed matrix A gets very large,
making inversion a complicated task. But if the structure of



Fig. 3 Convergence and efficiency RSIM vs Chebfun.
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A gets more porous (increase in sparsity) then the spectral
method would still be capable of handling an even larger prob-
lem without losing much in accuracy. This explains why in the

Table 2, our algorithm, RSIM, performs faster in larger time
scale when splitting is done (see Fig. 5).

As mentioned earlier, the chaotic finance system is highly

sensitive to the initial conditions, which can be a problem for
an economical system. Controlling such system is of great
importance in order to match a desired way of functioning.
This is achieved by means of synchronization.

5. Synchronization

This section is devoted to the synchronization mentioned ear-

lier. The sliding mode is applied using two controller parame-
ters. We depart the section by considering our driving system
with variables ðx; y; zÞ to be the initial finance system (2.1)

and let the response system be defined with variables xs; ys; zs
in the following way:
Fig. 4 Convergence and efficiency as we va
_xs ¼ zs þ ys � að Þxs þu1ðtÞ
_ys ¼ 1� bys � x2

s þu2ðtÞ
_zs ¼ �xs � czs þu3ðtÞ:

8><
>: ð5:67Þ

where u ¼ ðu1; u2; u3Þ is a suitable sliding control function to be
determined in order to achieve synchronization. The error

function from solution e ¼ ðe1; e2; e3Þ is defined by

e1 ¼ xs � x

e2 ¼ ys � y

e3 ¼ zs � z:

8><
>: ð5:68Þ

The dynamics of the error is thus driven by

_e1 ¼ e3 � ae1 þ xsys � xyþ u1ðtÞ
_e2 ¼ �be2 � x2

s þ x2 þ u2ðtÞ
_e3 ¼ �e1 � ce3 þ u3ðtÞ:

8><
>: ð5:69Þ

From sliding mode control theory, Kocamaz et al. [13] show
that in order to achieve synchronization while maintain the
ry the number of domains on x-variable.



Fig. 5 Plots of the underlying matrix A for 1, 2, and 4-Domain RSIM vs Chebfun matrix.
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system stable, the required sliding control function u must

satisfy

u1ðtÞ ¼ �xsys þ xyþ mðtÞ
u2ðtÞ ¼ x2

s � x2 þ mðtÞ
u3ðtÞ ¼ 0;

8><
>: ð5:70Þ

where mðtÞ ¼ a1ðxs � xÞ � b1ðys � yÞ þ c1ðzs � zÞ� q sign
ð�1:75ðxs � xÞ þ 2:75ðys � yÞÞ and a1 ¼ 1:75ðk� aÞ;
b1 ¼ 2:75ðk� bÞ; c1 ¼ 1:75, and k; q are some parameters to
be adjusted. In other words, sliding mode control achieves syn-
chronisation only requires to act on interest rates and invest-
ment demand. Introducing all this back into (5.67) we obtain

_xs þ ða� a1Þxs þ b1ys � ð1þ c1Þzs ¼ �a1xþ b1y� c1zþ xy

�q signðð�1:75ðxs � xÞ þ 2:75ðys � yÞÞ
_ys þ a1xs þ ðbs þ bÞys þ c1zs ¼ �a1xþ b1y� c1zþ 1� x2

�q signð�1:75ðxs � xÞ þ 2:75ðys � yÞÞ
_zs þ xs þ czs ¼ 0:
Fig. 6 Drive and response system behav
Applying integration and expressing it in a matrix form as
in Section 4 yields

I þ ða� a1ÞJ b1J �ð1þ c1ÞJ
�a1J I þ ðbþ b1ÞJ �c1J
J 0 I þ cJ

2
64

3
75

x

y

z

2
64
3
75 ¼ f1

f2

f3;

2
64

3
75

ð5:71Þ
where f1 is coefficient vector of �a1xþ b1y� c1zþ
xy� q signð�1:75ðxs � xÞ þ 2:75ðys � yÞÞ and f2 is coefficient

vector of �a1xþ b1y� c1zþ 1� x2 � q signð�1:75ðxs � xÞþ
2:75ðys � yÞÞ.

With a driving system starting at initial condition

½1; 2;�0:5�, and a response system starting with initial condi-
tion ½�1; 1:7; 0:5�, and a time factor varying from 0 to 10, we
see from Fig. 6 that synchronization is achieved quite fast from
t ¼ 3:5 on all three variables x; y; z. In what follows we plot the

error dynamics function e1 ¼ xs � x; e2 ¼ ys � y and
e3 ¼ zs � z in Fig. 7. Again, we have a better confirmation of
that actually from t ¼ 4, the two systems behave the same.
iour for k ¼ 5; q ¼ 0:1 and 0 6 t 6 10.



Fig. 7 Error behaviour for k ¼ 5; q ¼ 0:1 and 0 6 t 6 10.
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In other words, the controller defined in (5.70) is switched
at time t ¼ 4. Making therefore the chaotic finance system
(2.1) rapidly controllable.

6. Conclusion

In this paper, we proposed a time multiple domain spectral
method based on integration matrices to solve chaotic finance

system. We first investigated the efficiency and the convergence
of our method for different number of domains. In all the
cases, the method displayed exponential convergence. We also

compared the performance our method to that of Chebfun.
We achieve good accuracy in very short time as result of using
integration in the frequency space. The method also proves to

be reliable for synchronization of chaotic finance system. We
are currently extending the method to tackle fractional chaotic
finance systems.
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