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This paper proposes a generalized modified iterative scheme where the composed self-mapping driving can have distinct step-
dependent composition order in both the auxiliary iterative equation and the main one integrated in Ishikawa’s scheme. The self-
mapping which drives the iterative scheme is a perturbed 2-cyclic one on the union of two sequences of nonempty closed subsets{𝐴𝑛}∞𝑛=0 and {𝐵𝑛}∞𝑛=0 of a uniformly convex Banach space. As a consequence of the perturbation, such a driving self-mapping can
lose its cyclic contractive nature along the transients of the iterative process. These sequences can be, in general, distinct of the
initial subsets due to either computational or unmodeled perturbations associated with the self-mapping calculations through the
iterative process. It is assumed that the set-theoretic limits below of the sequences of sets {𝐴𝑛}∞𝑛=0 and {𝐵𝑛}∞𝑛=0 exist. The existence
of fixed best proximity points in the set-theoretic limits of the sequences to which the iterated sequences converge is investigated
in the case that the cyclic disposal exists under the asymptotic removal of the perturbations or under its convergence of the driving
self-mapping to a limit contractive cyclic structure.

1. Introduction

The problem of existence of best proximity points in uni-
formly convex Banach spaces and in reflexive Banach spaces
as well as the convergence of sequences built via cyclic
contractions or cyclic 𝜑-contractions to such points has been
focused on and successfully solved in some classic pioneering
works. See, for instance, [1–5].

A relevant attention has been recently devoted to the
research of existence and uniqueness of fixed points of self-
mappings as well as to the investigation of associated relevant
properties like, for instance, stability of the iterations. The
various related performed researches include the cases of
strict contractive cyclic self-mappings and Meir-Keeler type
cyclic contractions [3, 4, 6, 7]. Some contractive conditions
and related properties under general contractive conditions

including some ones of rational type have been also inves-
tigated. See, for instance, [8–10] and some of the references
therein. The study of existence, uniqueness of best proximity
points, and the convergence to them has been studied in [11–
14] and some references therein. In [15–18], a close research
is performed for proximal contractions. Fixed point theory
has also been applied to the investigation of the stability of
dynamic systems including the case of fractional modelling
[19, 20] and references therein. See also [21] for some recent
solvabilitymethods in the fractional framework.On the other
hand, some links of fractals structures and fixed point theory
with some applications have been investigated in [22, 23]. In
particular, collage and anticollage results for iterated function
systems are proved in [23].

The basic objective of this paper is the presentation of a
generalized modified Ishikawa’s iterative equation which is
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driven by an auxiliary 2-cyclic self-mapping on the union of
pairs of sequences of closed convex subsets of a uniformly
convex Banach space. As a result, the iterative schemes also
generate sequences which take alternated values on each
subsequence of subsets in the cyclic disposal. The general-
ization of the modified Ishikawa’s iterative scheme consists
basically in the fact that the iteration powers of the auxiliary
self-map can be modulated depending on the iteration
step. Furthermore, the modulation powers are, in general,
distinct in the main and the auxiliary equation of Ishikawa’s
iterative scheme. It is assumed that such a self-mapping is
subject to computational and/or unmodeled errors while it
satisfies a contractive-like cyclic condition. Such a condition
is contractive in the absence of computational uncertainties.
In the case when such sequences of subsets are monotoni-
cally nonincreasing with nonempty set-theoretic limits, the
convergence of the sequences to best proximity points of
the set-theoretic limits is proved. The paper is organized
as follows. Section 2 develops a simple motivating example
which emphasizes that an Ishikawa’s scheme can stabilize the
solution under certain computational errors of the auxiliary
self-mapping even if this one loses its contractive nature.
On the other hand, Section 3 formulates some preliminary
results about distances under perturbations under perturbed
cyclic maps satisfying extended contractive-like conditions
which become contractive in the absence of errors. It is
assumed, in general, that the sets involved in the cyclic
disposal and their mutual distances can be also subject to
point-dependent perturbations so that the self-mapping is
defined on the union of pairs of sequences of subsets of
a normed space. Section 4 gives a generalization of the
modified Ishikawa’s iterative scheme where the composition
orders of the auxiliary self-map can be modulated along
the iteration procedure. Afterwards, some relevant results
on the contractive-like cyclic self-mappings of Section 3 are
correspondingly reformulated for the sequences generated
via the generalized modified Ishikawa’s iterative procedure
when driven by such an auxiliary cyclic self-mapping. Finally,
Section 5 deals with the convergence of distances to best
proximity points of the set-theoretic limits of the involved
sequences of sets on which the cyclic self-mapping is defined.

2. Motivating Example

The following example emphasizes the feature that an iter-
ative modified Ishikawa’s-type scheme [24–26] can recover
the asymptotic convergence properties and the equilibrium
stability [27], in the case when certain computational pertur-
bations on its driving self-mapping can lose its contractive
(or asymptotic stability) properties. Now, assume real positive
scalar sequences {𝑥𝑛}∞𝑛=0 generated as follows by the linear
discrete equation:

𝑥𝑛+1 = 𝑡𝑥𝑛 = 𝑘𝑥𝑛 + 𝑘̃𝑛 (𝑥𝑛) 𝑥𝑛; 𝑛 ≥ 0 (1)

for any given 𝑥0 ≥ 0, where 𝑘 ∈ [0, 1) and {𝑘̃𝑛(𝑥)}∞𝑛=0 ⊂ R0+
for any 𝑥 ∈ R. Note that

(i) if sup𝑛≥0sup𝑥∈R0+ 𝑘̃𝑛(𝑥) < 1 − 𝑘 then the self-mapping𝑡 : R0+ 󳨀→ R0+ is a strict contraction whose unique fixed

point is 𝑥 = 0 and all sequences {𝑥𝑛}∞𝑛=0(⊆ R0+) 󳨀→ 0 and are
bounded for any given finite 𝑥0 ≥ 0,

(ii) if sup𝑛≥0sup𝑥∈R0+ 𝑘̃𝑛(𝑥) ≤ 1 − 𝑘 then 𝑡 : R0+ 󳨀→ R0+ is
nonexpansive, 𝑥 = 0 is a fixed point of 𝑡 : R0+ 󳨀→ R0+, and
all sequences {𝑥𝑛}∞𝑛=0(⊆ R0+) are bounded for any given finite𝑥0 ≥ 0,

(iii) if lim inf𝑛󳨀→∞𝑘̃𝑛(𝑥) > 1 − 𝑘, ∀𝑥 ∈ R0+ then 𝑡 :
R0+ 󳨀→ R0+ is asymptotically expansive, 𝑥 = 0 is still a fixed
point of 𝑡 : R0+ 󳨀→ R0+ but any sequence {𝑥𝑛}∞𝑛=0 diverges as𝑛 󳨀→ ∞ if 𝑥0 ̸= 0 so that the only converging sequence to
the fixed point is the trivial solution.

We can interpret this simple discussion in the following
terms. We have at hand a “nominal” (i.e., disturbance-
free) discrete one-dimensional linear time-varying positive
difference equation 𝑥0𝑛+1 = 𝑡0𝑥0𝑛; 𝑛 ≥ 0 under any arbitrary
finite initial condition 𝑥00 ≥ 0. This nominal solution is
globally asymptotically stable to its unique stable equilibrium
point 𝑥 = 0 which is also the unique fixed point of the
strictly contractive mapping 𝑡0 : R0+ 󳨀→ R0+ which defines
the iteration which generates the solution sequence. If we
have additive (in general, solution-dependent) disturbance
sequences {𝑘̃𝑛(𝑥𝑛)𝑥𝑛}∞𝑛=0 which make the “current” solution
to be defined by 𝑥𝑛+1 = 𝑡𝑥𝑛, 𝑛 ≥ 0 for any arbitrary
finite initial condition 𝑥0 ≥ 0 then the above property of
strictly contractivemapping and associated global asymptotic
stability still holds if the disturbance is sufficiently small as
under the conditions (i) which lead to {𝑥𝑛+1 − 𝑥0𝑛+1}∞𝑛=0 󳨀→0. The mapping defining the current solution is guaranteed
to be nonexpansive if the disturbance amount increases
moderately. The solution is still globally (but nonasymptot-
ically) stable since any solution sequence is bounded for any
finite initial condition. See conditions (ii). However, if the
disturbance is large enough exceeding a certain minimum
threshold [see conditions (iii)] then the solution diverges and
the difference equation is unstable since the mapping which
defines it is asymptotically expansive.

It is now discussed the feature that if the Ishikawa
iterative scheme is used then the conditions under which the
asymptotic stability is kept leading to a convergence to the
solution sequence of the same fixed point𝑥 = 0 are improved.
The Ishikawa iterative scheme becomes for this case:

𝑥𝑛+1 = 𝑡𝐼𝑥𝑛 = (1 − 𝛼𝑛 + 𝛼𝑛𝑡 + 𝛼𝑛𝛽𝑛𝑡 (𝑡 − 1)) 𝑥𝑛 = (1
− 𝛼𝑛 + 𝛼𝑛 (𝑘 + 𝑘̃𝑛 (𝑥𝑛))
+ 𝛼𝑛𝛽𝑛 (𝑘 + 𝑘̃𝑛 (𝑥𝑛)) (𝑘 + 𝑘̃𝑛 (𝑥𝑛) − 1)) 𝑥𝑛; 𝑛 ≥ 0

(2)

for a given 𝑥0 ≥ 0. Note that
𝑥𝑛+1 − 𝑥𝑛 = −𝛼𝑛 [1 − (𝑘 + 𝑘̃𝑛 (𝑥𝑛)) (1 − 𝛽𝑛)

− 𝛽𝑛 (𝑘 + 𝑘̃𝑛 (𝑥𝑛))2] 𝑥𝑛 < 0; 𝑛 ≥ 0, all𝑥𝑛 ̸= 0 (3)
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so that {𝑥𝑛}∞𝑛=0(⊆ R0+) 󳨀→ 0 and the solution is strictly
monotonically decreasing if {𝑘̃𝑛(𝑥)}∞𝑛=0 ⊂ R0+ provided that

lim inf
𝑛󳨀→∞

𝛼𝑛 > 0;
lim sup
𝑛󳨀→∞

(𝛽𝑛 − sup
𝑥∈R0+

1(𝑘 + 𝑘̃𝑛 (𝑥𝑛)) (𝑘 + 𝑘̃𝑛 (𝑥𝑛) − 1))
< 0

(4)

so that there are conditions of asymptotic convergence of the
iterative scheme to the zero fixed point of 𝑡 : R0+ 󳨀→ R0+
in some cases that conditions [(ii)-(iii)] fail for the iteration𝑥𝑛+1 = 𝑡𝑥𝑛; 𝑛 ≥ 0 for given 𝑥0. Furthermore, {𝑡𝐼(𝑥𝑛) −𝑡0(𝑥0𝑛)}∞𝑛=0 󳨀→ 0.
3. Preliminary Results on Distances in
Iterated Sequences Built under Perturbed
2-Cyclic Self-Maps

This section gives some preliminary results related to dis-
tances between points of sequences generated with 2-cyclic
self-maps subject to computational or unmodeled errors
and 2-cyclic contractive-like constraints. The precise cyclic
contractive nature might become lost due to such errors. It
is assumed, in general, that the sets involved in the cyclic
disposal and their mutual distances can be also subject to
point-dependent perturbations so that the relevant feature is
that one deals with pairs of sequences of subsets (rather than
with two iteration-independent subsets) of a normed space
when constructing the relevant sequences. In the sequel, we
simply refer to 2-cyclic self-maps and 2-cyclic contractions
as cyclic self-maps and cyclic contractions, respectively, since
the discussion in this paper is always concerned with cyclic
self-maps on the union of two sets.

Let 𝐴∗( ̸= ⌀), 𝐵∗( ̸= ⌀), 𝐴 and 𝐵, fulfilling 𝐴∗ ⊆ 𝐴 and𝐵∗ ⊆ 𝐵, subsets of a linear space and let 𝑇 : 𝐴 ∪ 𝐵 󳨀→ 𝐴 ∪ 𝐵
be a mapping fulfilling 𝑇(𝐴∗) ⊆ 𝐵∗, 𝑇(𝐵∗) ⊆ 𝐴∗, 𝑇(𝐴) ⊆ 𝐵,𝑇(𝐵) ⊆ 𝐴 which satisfies the subsequent condition:

󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦󵄩󵄩󵄩󵄩 ≤ (𝑘0 + 𝑘̃ (𝑥, 𝑦)) 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩
+ (1 − 𝑘0 − 𝑘̃ (𝑥, 𝑦))𝐷 (𝑥, 𝑦) ;

∀𝑥, 𝑦 ∈ 𝐴 ∪ 𝐵
(5)

where 𝑘0 ∈ [0, 1), 𝑘̃(𝑥, 𝑦) ∈ [𝑘̃00, 𝑘̃10] ⊆ [−𝑘0, 𝑘̃10]; ∀𝑥, 𝑦 ∈𝐴 ∪ 𝐵,
𝐷 = 𝑑 (𝐴, 𝐵) = inf

𝑥∈𝐴,𝑦∈𝐵

󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 ∈ [𝐷1, 𝐷2] ⊆ [0, 𝐷2] , (6)

and

𝐷(𝑥, 𝑦) = 0 if 𝑥, 𝑦 ∈ 𝐴 or if 𝑥, 𝑦 ∈ 𝐵,
𝐷 (𝑥, 𝑦) = 𝐷

if 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵 or if 𝑥 ∈ 𝐵 and 𝑦 ∈ 𝐴.
(7)

Note that 𝐷∗ = 𝑑(𝐴∗, 𝐵∗) = inf𝑥∈𝐴∗,𝑦∈𝐵∗‖𝑥 − 𝑦‖ ≥ 𝐷2 ≥ 𝐷
since 𝐴∗ ⊆ 𝐴 and 𝐵∗ ⊆ 𝐵.

The amount 𝑘̃(𝑥, 𝑦) is a point-dependent uncertainty
functionwhich accounts for the computational perturbations
through the self-mapping 𝑇 on 𝐴 ∪ 𝐵.

Assume that 𝑇∗ : 𝐴∗ ∪ 𝐵∗ 󳨀→ 𝐴∗ ∪ 𝐵∗ is a nominal
mapping fulfilling𝑇∗(𝐴∗) ⊆ 𝐵∗,𝑇∗(𝐵∗) ⊆ 𝐴∗, which satisfies
the subsequent nominal cyclic contractive condition:

󵄩󵄩󵄩󵄩𝑇∗𝑥∗ − 𝑇∗𝑦∗󵄩󵄩󵄩󵄩 ≤ 𝑘0 󵄩󵄩󵄩󵄩𝑥∗ − 𝑦∗󵄩󵄩󵄩󵄩
+ (1 − 𝑘0)𝐷∗ (𝑥∗, 𝑦∗) ;

∀𝑥∗, 𝑦∗ ∈ 𝐴∗ ∪ 𝐵∗
(8)

and

𝐷∗ (𝑥, 𝑦) = 𝐷∗ if 𝑥 ∈ 𝐴∗ and 𝑦 ∈ 𝐵∗,
𝐷 ∗ (𝑥, 𝑦) = 0 if either 𝑥, 𝑦 ∈ 𝐴∗ or 𝑥, 𝑦 ∈ 𝐵∗. (9)

It is not assumed, in general, that 𝑇(𝐴∗) = 𝑇(𝐴) and 𝑇(𝐵∗) =𝑇(𝐵). The nominal cyclic contraction (8) implies (5) under a
class of perturbations of the nominal self-mapping 𝑇∗ : 𝐴∗ ∪𝐵∗ 󳨀→ 𝐴∗∪𝐵∗ leading to a perturbed one𝑇 : 𝐴∪𝐵 󳨀→ 𝐴∪𝐵.
Proposition 1. Assume that𝑇(𝐴∗) ⊆ 𝑇(𝐴) and𝑇(𝐵∗) ⊆ 𝑇(𝐵)
and that

𝑘̃ (𝑥, 𝑦)
≥ 󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇∗𝑥󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑇𝑦 − 𝑇∗𝑦󵄩󵄩󵄩󵄩 + (1 − 𝑘0) (𝐷∗ (𝑥, 𝑦) − 𝐷 (𝑥, 𝑦))󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 − 𝐷 (𝑥, 𝑦)

(10)

for any 𝑥, 𝑦 ∈ 𝐴∗ ∪ 𝐵∗ such that ‖𝑥 − 𝑦‖ ̸= 𝐷(𝑥, 𝑦). Then, the
nominal cyclic contractive condition (8) implies condition (5)
under perturbations subject to (10).

Proof. Take 𝑥, 𝑦 ∈ 𝐴∗ ∪𝐵∗and assume that (8) and (10) hold.
Then,

󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩𝑇∗𝑥 − 𝑇∗𝑦󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇∗𝑥󵄩󵄩󵄩󵄩
+ 󵄩󵄩󵄩󵄩𝑇𝑦 − 𝑇∗𝑦󵄩󵄩󵄩󵄩

≤ 𝑘0 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 + (1 − 𝑘0)𝐷∗ (𝑥, 𝑦)
+ 󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇∗𝑥󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑇𝑦 − 𝑇∗𝑦󵄩󵄩󵄩󵄩
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≤ 𝑘0 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 + (1 − 𝑘0)𝐷∗ (𝑥, 𝑦)
+ 𝑘̃ (𝑥, 𝑦) (󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 − 𝐷 (𝑥, 𝑦))
+ (1 − 𝑘0) (𝐷 (𝑥, 𝑦) − 𝐷∗ (𝑥, 𝑦))

≤ (𝑘0 + 𝑘̃ (𝑥, 𝑦)) 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩
+ (1 − 𝑘0 − 𝑘̃ (𝑥, 𝑦))𝐷 (𝑥, 𝑦)

(11)

Some technical properties on limiting upper-bounds derived
from (5) are given in the next result.

Proposition 2. Assume that 𝑇(𝐴∗) ⊆ 𝑇(𝐴) and 𝑇(𝐵∗) ⊆𝑇(𝐵). Assume also that

max
0≤𝑗≤𝑛−1

sup
𝑥∈𝐴∗ ,𝑦∈𝐵∗

𝑘̃ (𝑇𝑗𝑥, 𝑇𝑗𝑦) 󵄩󵄩󵄩󵄩󵄩𝑇𝑗𝑥 − 𝑇𝑗𝑦󵄩󵄩󵄩󵄩󵄩
≤ 𝑚𝑇𝑘̃ (0, 𝑛) .

(12)

Then,

lim sup
𝑛󳨀→∞

( sup
𝑥∈𝐴∗ ,𝑦∈𝐵∗

󵄩󵄩󵄩󵄩𝑇𝑛𝑥 − 𝑇𝑛𝑦󵄩󵄩󵄩󵄩
− 11 − 𝑘0 ((1 − 𝑘̃00 − 𝑘̃10)𝐷 + 𝑚𝑇𝑘̃ (0, 𝑛))) ≤ 0

(13)

under condition (5). Furthermore, if 𝑘̃10 = −𝑘0 and
lim supℓ,𝑛󳨀→∞𝑚𝑇𝑘̃(ℓ, ℓ + 𝑛) = 0 then
lim sup
ℓ,𝑛󳨀→∞

( sup
𝑥∈𝑇ℓ(𝐴∗),𝑦∈𝑇ℓ(𝐵∗)

󵄩󵄩󵄩󵄩󵄩𝑇𝑛+ℓ𝑥 − 𝑇𝑛+ℓ𝑦󵄩󵄩󵄩󵄩󵄩 − 𝐷∗1 − 𝑘0)
≤ lim sup
ℓ,𝑛󳨀→∞

( sup
𝑥∈𝑇ℓ(𝐴∗),𝑦∈𝑇ℓ(𝐵∗)

󵄩󵄩󵄩󵄩𝑇𝑛𝑥 − 𝑇𝑛𝑦󵄩󵄩󵄩󵄩 − 𝐷1 − 𝑘0)
≤ 0

(14)

Proof. It follows from (5) that

󵄩󵄩󵄩󵄩𝑇𝑛𝑥 − 𝑇𝑛𝑦󵄩󵄩󵄩󵄩 ≤ 𝑘𝑛0 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 + 𝑛−1∑
𝑗=0

𝑘𝑛−𝑗−10 [(1 − 𝑘0)𝐷 + 𝑘̃ (𝑇𝑗𝑥, 𝑇𝑗𝑦) (󵄩󵄩󵄩󵄩󵄩𝑇𝑗𝑥 − 𝑇𝑗𝑦󵄩󵄩󵄩󵄩󵄩 − 𝐷 (𝑇𝑗𝑥, 𝑇𝑗𝑦))]
≤ 𝑘𝑛0 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 + 1 − 𝑘𝑛01 − 𝑘0 [(1 − 𝑘0)𝐷 + max

0≤𝑗≤𝑛−1
sup
𝑥∈𝐴∗ ,𝑦∈𝐵∗

(𝑘̃ (𝑇𝑗𝑥, 𝑇𝑗𝑦) (󵄩󵄩󵄩󵄩󵄩𝑇𝑗𝑥 − 𝑇𝑗𝑦󵄩󵄩󵄩󵄩󵄩 − 𝐷 (𝑇𝑗𝑥, 𝑇𝑗𝑦)))]
≤ 𝑘𝑛0 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 + 𝐷 − 𝑘11 − 𝑘0 max

0≤𝑗≤𝑛−1
sup
𝑥∈𝐴∗,𝑦∈𝐵∗

(𝑘̃ (𝑇𝑗𝑥, 𝑇𝑗𝑦) (󵄩󵄩󵄩󵄩󵄩𝑇𝑗𝑥 − 𝑇𝑗𝑦󵄩󵄩󵄩󵄩󵄩 − 𝐷 (𝑇𝑗𝑥, 𝑇𝑗𝑦))) ;
(15)

∀𝑥 ∈ 𝐴∗, ∀𝑦 ∈ 𝐵∗. Since 𝑘̃(𝑥, 𝑦) ∈ [𝑘̃10, 𝑘̃20] ⊆ [−𝑘0, 𝑘̃20]
then 𝑘0𝐷 ≥ −𝑘̃10𝐷 ≥ −𝑘̃(𝑥, 𝑦)𝐷 ≥ −𝑘̃20𝐷; ∀𝑥, 𝑦 ∈ 𝐴∗ ∪𝐵∗. Since max0≤𝑗≤𝑛−1sup𝑥∈𝐴∗ ,𝑦∈𝐵∗ 𝑘̃(𝑇𝑗𝑥, 𝑇𝑗𝑦)‖𝑇𝑗𝑥 − 𝑇𝑗𝑦‖ ≤𝑚𝑇𝑘̃(0, 𝑛) and since max0≤𝑗≤𝑛−1sup𝑥∈𝐴∗ ,𝑦∈𝐵∗𝐷(𝑇𝑗𝑥, 𝑇𝑗𝑦) = 𝐷
one gets that (13) holds. On the other hand, note that if 𝑘1 =−𝑘0 and lim sup𝑛󳨀→∞𝑚𝑇𝑘̃(𝑛) = 0 then (14) holds.

Now, assume that the existence of perturbation in the
calculation of the sequences through 𝑇 implies that the sets
of the cyclic mapping depend on the iteration under the
following constraints. Define the following nonempty sets𝐴0 = 𝐴∗, 𝐵0 = 𝐵∗ 𝐴𝑛+1 = 𝑇(𝐵𝑛), 𝐵𝑛+1 = 𝑇(𝐴𝑛); 𝑛 ≥ 0,
where 𝑇∗(𝐴∗) ⊆ 𝐵∗, 𝑇∗(𝐵∗) ⊆ 𝐴∗. The interpretation is
that 𝐴∗ and 𝐵∗ are the nominal sets to which any initial
value of a built sequence belongs and the self-mapping 𝑇
on ⋃𝑛≥0(𝐴𝑛 ∪ 𝐵𝑛) is a perturbation of the (perturbation-
free) nominal cyclic self-mapping 𝑇∗on 𝐴∗ ∪ 𝐵∗. Assume
that 𝐷∗ = 𝐷0 = 𝑑(𝐴∗, 𝐵∗) and 𝐷𝑛 = max[𝐷𝑛𝐴, 𝐷𝑛𝐵] for𝑛 ≥ 0 with 𝐷𝑛𝐴 = 𝑑(𝐴𝑛, 𝐵𝑛+1), 𝐷𝑛𝐵 = 𝑑(𝐵𝑛, 𝐴𝑛+1) such
that 𝐷𝑛 = 𝐷𝑛 − 𝐷 ≥ −𝐷 for 𝑛 ≥ 0 with 𝐷 ≥ 0 being
some constant set distance of interest for analysis such as𝐷∗ = 𝑑(𝐴∗, 𝐵∗) or lim sup𝑛󳨀→∞𝐷𝑛 or lim inf𝑛󳨀→∞𝐷𝑛, or
eventually, lim𝑛󳨀→∞𝐷𝑛 if both of them coincide. In the same

way, wewill define a nonnegative real amount𝐷 as a reference
for the set distance error sequence {𝐷𝑛}∞𝑛=0 to obtain some
further results.

Condition (5) is nowmodified as follows for any sequence{𝑥𝑛}∞𝑛=0 with initial condition 𝑥0 ∈ 𝐴∗ ∪ 𝐵∗:󵄩󵄩󵄩󵄩󵄩𝑇𝑛+2𝑥0 − 𝑇𝑛+1𝑥0󵄩󵄩󵄩󵄩󵄩
≤ (𝑘0 + 𝑘̃ (𝑇𝑛+1𝑥0, 𝑇𝑛𝑥0)) 󵄩󵄩󵄩󵄩󵄩𝑇𝑛+1𝑥0 − 𝑇𝑛𝑥0󵄩󵄩󵄩󵄩󵄩
+ (1 − 𝑘0 − 𝑘̃ (𝑇𝑛+1𝑥0, 𝑇𝑛𝑥0))𝐷𝑛

(16)

for any 𝑛 ≥ 0 and any given 𝑥0 ∈ 𝐴∗ ∪ 𝐵∗, where 𝑘0 ∈ [0, 1),𝑘̃(𝑥, 𝑦) ∈ [𝑘̃10, 𝑘̃20] ⊆ [−𝑘0, 𝑘̃20]; ∀𝑥, 𝑦 ∈ 𝐴 ∪ 𝐵.
The following result is concerned with the derivation of

some asymptotic upper-bounds for the distances in-between
consecutive values of the sequences generated through a
cyclic self-mapping. Such a mapping is defined on the union
of two sequences of subsets of a normed space under a
contractive-like condition (which becomes cyclic contractive
in the absence of computational and modelling errors). It is
assumed that the distances in-between the pairs correspond-
ing members of the two sequences of sets can vary along the
iterative procedure.
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Theorem 3. Define the following nonempty sets in a normed
space (𝐸, ‖.‖) and associated set distances:

𝐴0 = 𝐴∗,
𝐵0 = 𝐵∗,

𝐴𝑛+1 ⊆ 𝑇 (𝐵𝑛) ,
𝐵𝑛+1 ⊆ 𝑇 (𝐴𝑛) ;

𝑛 ≥ 0,
𝐷𝑛 = 𝐷 + 𝐷𝑛 = max [𝐷𝑛𝐴, 𝐷𝑛𝐵] ;
𝐷𝑛𝐴 = 𝑑 (𝐴𝑛, 𝐵𝑛+1) ,
𝐷𝑛𝐵 = 𝑑 (𝐵𝑛, 𝐴𝑛+1) ;

𝑛 ≥ 0,

(17)

for some set distance prefixed reference constant 𝐷 ≥ 𝐷∗ with𝐷∗ = 𝑑(𝐴∗, 𝐵∗) and assume that 𝐷𝑛 ∈ [−𝑑00, 𝑑10] ∈ [−𝐷, 0];𝑛 ≥ 0 for some 𝑑00 ∈ [0, 𝐷] and 𝑑10 ≥ 0 (so that 𝐷𝑛 ≥ 0,𝑛 ≥ 0).
Consider the nominal and perturbed cyclic self-mappings𝑇∗ : 𝐴∗∪𝐵∗ 󳨀→ 𝐴∗∪𝐵∗ and𝑇 on⋃𝑛≥0(𝐴𝑛×𝐵𝑛+1∪𝐵𝑛×𝐴𝑛+1),

this last one subject to the condition:

󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦󵄩󵄩󵄩󵄩 ≤ (𝑘0 + 𝑘̃ (𝑥, 𝑦)) 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩
+ (1 − 𝑘0 − 𝑘̃ (𝑥, 𝑦))𝐷𝑛;
∀ (𝑥, 𝑦) ∈ 𝐴𝑛 × 𝐵𝑛+1 ∪ 𝐵𝑛 × 𝐴𝑛+1, 𝑛 ≥ 0

(18)

where 𝑘0 ∈ [0, 1), 𝑘̃(𝑥, 𝑦) ∈ [−𝑘̃00, 𝑘̃10] ⊆ [−𝑘0, 𝑘̃10] ⊆[−𝑘0, 1 − 𝑘0] for some 𝑘̃00, 𝑘̃10 ∈ R0+; ∀(𝑥, 𝑦) ∈ ⋃𝑛≥0(𝐴𝑛 ×𝐵𝑛+1∪𝐵𝑛×𝐴𝑛+1), the nominal𝑇∗ : 𝐴∗∪𝐵∗ 󳨀→ 𝐴∗∪𝐵∗ being
subject to (18) with 𝑘̃(𝑥, 𝑦) ≡ 0;∀(𝑥, 𝑦) ∈ 𝐴∗×𝐵∗∪𝐵∗×𝐴∗and𝐴𝑛 = 𝐴∗, 𝐵𝑛 = 𝐵∗; 𝑛 ≥ 0.

Assume also that the sequence {𝑀𝑛}∞𝑛=0 ⊂ R is bounded,
where

𝑀𝑛 = 𝑀𝑛 (𝑥0) = (1
− 𝑘0) 𝑑10( ∑

𝑗∈𝐼𝑁+(𝑛)

𝑘𝑛−𝑗0 − ∑
𝑗∈𝐼𝑁−(𝑛)

𝑘𝑛−𝑗0 )
+ 𝐷𝑘̃00( ∑

𝑗∈𝐼𝑁𝑘̃−(𝑛)

𝑘𝑛−𝑗0 − ∑
𝑗∈𝐼𝑁𝑘̃+(𝑛)

𝑘𝑛−𝑗0 )

+ 𝑘̃00( ∑
𝑗∈𝐼𝑁+(𝑛)∩𝐼𝑁𝑘̃−(𝑛)

𝑘𝑛−𝑗0 𝑑10
− ∑
𝑗∈𝐼𝑁+(𝑛)∩𝐼𝑁𝑘̃+(𝑛)

𝑘𝑛−𝑗0 𝑑00)

+ 𝑘̃10( ∑
𝑗∈𝐼𝑁−(𝑛)∩𝐼𝑁𝑘̃+(𝑛)

𝑘𝑛−𝑗0 𝑑00
− ∑
𝑗∈𝐼𝑁−(𝑛)∩𝐼𝑁𝑘̃−(𝑛)

𝑘𝑛−𝑗0 𝑑10) , 𝑛 ≥ 0
(19)

where

𝐼𝑁− (𝑛) = {𝑗 ≥ 0 : 𝑗 ≤ 𝑛, 𝐷𝑗 ∈ [−𝑑10, 0]} ,
𝐼𝑁+ (𝑛) = {𝑗 ≥ 0 : 𝑗 ≤ 𝑛, 𝐷𝑗 > 0} ;

𝑛 ≥ 0
𝐼𝑁𝑘̃+ (𝑥0, 𝑛) = {𝑗 ≥ 0 : 𝑗 ≤ 𝑛, 𝑘̃𝑗 (𝑇𝑗+1𝑥0, 𝑇𝑗𝑥0) > 0}
𝐼𝑁𝑘̃− (𝑥0, 𝑛)

= {𝑗 ≥ 0 : 𝑗 ≤ 𝑛, 𝑘̃𝑗 (𝑇𝑗+1𝑥0, 𝑇𝑗𝑥0) ≤ 0} ;
𝑛 ≥ 0

(20)

are indicator integer sets for nonpositive and positive incre-
mental set distance while the members of the real weighting
sequences {𝑑𝑛}∞𝑛=0 and {𝑑𝑛}∞𝑛=0 are defined for all 𝑛 ≥ 0 by𝑑𝑛 = 𝐷𝑛/𝐷 > 0 if 𝐷 > 0 and 𝑑𝑛 = 0, otherwise. Then, the
following properties hold:

(i) {‖𝑇𝑛+2𝑥0 − 𝑇𝑛+1𝑥0‖}∞𝑛=0 is bounded, an upper-bound
being ((1 − 𝑘0)/(1 − 𝑘0 − 𝑘̃10))(‖𝑇𝑥0 − 𝑥0‖ +max𝑛≥0𝑀𝑛).

(ii) lim sup𝑛󳨀→∞sup𝑥0∈𝐴∗∪𝐵∗(‖𝑇𝑛+2𝑥0 − 𝑇𝑛+1𝑥0‖ − 𝐷 −∑𝑛𝑗=0 𝑘𝑛−𝑗0 𝑘̃(𝑇𝑗+1𝑥0, 𝑇𝑗𝑥0)(‖𝑇𝑗+1𝑥0 − 𝑇𝑗𝑥0‖ − 𝑑𝑗𝐷).
− (1 − 𝑘0)( ∑

𝑗∈𝐼𝑁+(𝑛)

𝑘𝑛−𝑗0 𝑑𝑗 − ∑
𝑗∈𝐼𝑁−(𝑛)

𝑘𝑛−𝑗0 󵄨󵄨󵄨󵄨󵄨𝑑𝑗󵄨󵄨󵄨󵄨󵄨)) ≤ 0 (21)

(iii) If {𝑘̃(𝑇𝑛+1𝑥0, 𝑇𝑛𝑥0)}∞𝑛=0 󳨀→ 0 and {𝑀𝑛(𝑥0)}∞𝑛=0 󳨀→ 0,∀𝑥0 ∈ 𝐴∗ ∪ 𝐵∗, then
lim sup
𝑛󳨀→∞

sup
𝑥0∈𝐴
∗∪𝐵∗

󵄩󵄩󵄩󵄩󵄩𝑇𝑛+2𝑥0 − 𝑇𝑛+1𝑥0󵄩󵄩󵄩󵄩󵄩 ≤ 𝐷. (22)

(iv) Assume that lim sup
𝑛󳨀→∞

𝑘̃(𝑇𝑛+1𝑥0, 𝑇𝑛𝑥0) = 𝑘̃∞(𝑥0) ∈
[−𝑘̃00, 𝑘̃10], ∀𝑥0 ∈ 𝐴∗ ∪ 𝐵∗. Then,

lim sup
𝑛󳨀→∞

󵄩󵄩󵄩󵄩󵄩𝑇𝑛+2𝑥0 − 𝑇𝑛+1𝑥0󵄩󵄩󵄩󵄩󵄩
≤ (1 − 𝑘0) (𝐷 +𝑀0∞ (𝑥0))1 − 𝑘0 − 𝑘̃∞ (𝑥0)
≤ (1 − 𝑘0) (𝐷 +𝑀∞ (𝑥0))1 − 𝑘0 − 𝑘̃10 ; ∀𝑥0 ∈ 𝐴∗ ∪ 𝐵∗

(23)
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where𝑀∞(𝑥0) = lim sup𝑛󳨀→∞𝑀𝑛(𝑥0), with𝑀𝑛(𝑥0) defined
in (19),∀𝑥0 ∈ 𝐴∗∪𝐵∗, and𝑀0∞(𝑥0) = lim sup𝑛󳨀→∞𝑀0𝑛(𝑥0),
with𝑀0𝑛(𝑥0) defined for all 𝑥0 ∈ 𝐴∗ ∪ 𝐵∗ by
𝑀0𝑛 (𝑥0) = (1 − 𝑘0)( ∑

𝑗∈𝐼𝑁+(𝑛)

𝑘𝑛−𝑗0 󵄨󵄨󵄨󵄨󵄨𝐷𝑗󵄨󵄨󵄨󵄨󵄨)
− (1 − 𝑘0)( ∑

𝑗∈𝐼𝑁−(𝑛)

𝑘𝑛−𝑗0 󵄨󵄨󵄨󵄨󵄨𝐷𝑗󵄨󵄨󵄨󵄨󵄨)
− 𝑛∑
𝑗=0

𝑘𝑛−𝑗0 𝑘̃ (𝑇𝑗+1𝑥0, 𝑇𝑗𝑥0)𝐷
− ∑
𝑗∈𝐼𝑁+(𝑛)

𝑘𝑛−𝑗0 𝑘̃ (𝑇𝑗+1𝑥0, 𝑇𝑗𝑥0) 󵄨󵄨󵄨󵄨󵄨𝐷𝑗󵄨󵄨󵄨󵄨󵄨
+ ∑
𝑗∈𝐼𝑁−(𝑛)

𝑘𝑛−𝑗0 𝑘̃ (𝑇𝑗+1𝑥0, 𝑇𝑗𝑥0) 󵄨󵄨󵄨󵄨󵄨𝐷𝑗󵄨󵄨󵄨󵄨󵄨 ;
∀𝑥0 ∈ 𝐴∗ ∪ 𝐵∗

(24)

Proof. It follows from (16) that any sequence {𝑇𝑛𝑥0}∞𝑛=0 with𝑥0 ∈ 𝐴∗ ∪ 𝐵∗ satisfies from (18) the condition:

󵄩󵄩󵄩󵄩󵄩𝑇𝑛+2𝑥0 − 𝑇𝑛+1𝑥0󵄩󵄩󵄩󵄩󵄩 ≤ 𝑘𝑛+10 󵄩󵄩󵄩󵄩𝑇𝑥0 − 𝑥0󵄩󵄩󵄩󵄩
+ 𝑛∑
𝑗=0

𝑘𝑛−𝑗0 𝑘̃ (𝑇𝑗+1𝑥0, 𝑇𝑗𝑥0) 󵄩󵄩󵄩󵄩󵄩𝑇𝑗+1𝑥0 − 𝑇𝑗𝑥0󵄩󵄩󵄩󵄩󵄩
+ 𝑛∑
𝑗=0

𝑘𝑛−𝑗0 [(1 − 𝑘0 − 𝑘̃ (𝑇𝑗+1𝑥0, 𝑇𝑗𝑥0)) (𝐷 + 𝐷𝑗)]
≤ 𝑘𝑛+10 󵄩󵄩󵄩󵄩𝑇𝑥0 − 𝑥0󵄩󵄩󵄩󵄩 + (1 − 𝑘𝑛+10 )𝐷 + (1 − 𝑘0)
⋅ ( 𝑛∑
𝑗=0

𝑘𝑛−𝑗0 𝐷𝑗) + 𝑛∑
𝑗=0

𝑘𝑛−𝑗0 𝑘̃ (𝑇𝑗+1𝑥0, 𝑇𝑗𝑥0)
⋅ [󵄩󵄩󵄩󵄩󵄩𝑇𝑗+1𝑥0 − 𝑇𝑗𝑥0󵄩󵄩󵄩󵄩󵄩 − 𝐷𝑗] ≤ 𝑘𝑛+10 󵄩󵄩󵄩󵄩𝑇𝑥0 − 𝑥0󵄩󵄩󵄩󵄩 + (1
− 𝑘𝑛+10 )𝐷 + 𝑛∑

𝑗=0

𝑘𝑛−𝑗0 𝑘̃ (𝑇𝑗+1𝑥0, 𝑇𝑗𝑥0) (󵄩󵄩󵄩󵄩󵄩𝑇𝑗+1𝑥0
− 𝑇𝑗𝑥0󵄩󵄩󵄩󵄩󵄩 − 𝑑𝑗𝐷) + (1 − 𝑘0)( ∑

𝑗∈𝐼𝑁+(𝑛)

𝑘𝑛−𝑗0 𝑑𝑗
− ∑
𝑗∈𝐼𝑁−(𝑛)

𝑘𝑛−𝑗0 󵄨󵄨󵄨󵄨󵄨𝑑𝑗󵄨󵄨󵄨󵄨󵄨) ≤ 𝑘𝑛+10 󵄩󵄩󵄩󵄩𝑇𝑥0 − 𝑥0󵄩󵄩󵄩󵄩 + (1
− 𝑘𝑛+10 )𝐷 + 1 − 𝑘𝑛+101 − 𝑘0
⋅ max
0≤𝑗≤𝑛

sup
𝑥0∈𝐴
∗∪𝐵∗

(𝑘̃ (𝑇𝑗+1𝑥0, 𝑇𝑗𝑥0)
⋅ (󵄩󵄩󵄩󵄩󵄩𝑇𝑗+1𝑥0 − 𝑇𝑗𝑥0󵄩󵄩󵄩󵄩󵄩)) + (1 − 𝑘0)

⋅ ( ∑
𝑗∈𝐼𝑁+(𝑛)

𝑘𝑛−𝑗0 󵄨󵄨󵄨󵄨󵄨𝐷𝑗󵄨󵄨󵄨󵄨󵄨) − (1 − 𝑘0)
⋅ ( ∑
𝑗∈𝐼𝑁−(𝑛)

𝑘𝑛−𝑗0 󵄨󵄨󵄨󵄨󵄨𝐷𝑗󵄨󵄨󵄨󵄨󵄨) − 𝑛∑
𝑗=0

𝑘𝑛−𝑗0 𝑘̃ (𝑇𝑗+1𝑥0, 𝑇𝑗𝑥0)
⋅ 𝐷 − ∑

𝑗∈𝐼𝑁+(𝑛)

𝑘𝑛−𝑗0 𝑘̃ (𝑇𝑗+1𝑥0, 𝑇𝑗𝑥0) 󵄨󵄨󵄨󵄨󵄨𝐷𝑗󵄨󵄨󵄨󵄨󵄨
+ ∑
𝑗∈𝐼𝑁−(𝑛)

𝑘𝑛−𝑗0 𝑘̃ (𝑇𝑗+1𝑥0, 𝑇𝑗𝑥0) 󵄨󵄨󵄨󵄨󵄨𝐷𝑗󵄨󵄨󵄨󵄨󵄨 ≤ 𝑘𝑛+10 󵄩󵄩󵄩󵄩𝑇𝑥0
− 𝑥0󵄩󵄩󵄩󵄩 + (1 − 𝑘𝑛+10 )𝐷 + 1 − 𝑘𝑛+101 − 𝑘0
⋅ max
0≤𝑗≤𝑛

sup
𝑥0∈𝐴
∗∪𝐵∗

(𝑘̃ (𝑇𝑗+1𝑥0, 𝑇𝑗𝑥0)
⋅ (󵄩󵄩󵄩󵄩󵄩𝑇𝑗+1𝑥0 − 𝑇𝑗𝑥0󵄩󵄩󵄩󵄩󵄩)) + (1 − 𝑘0)
⋅ ( ∑
𝑗∈𝐼𝑁+(𝑛)

𝑘𝑛−𝑗0 󵄨󵄨󵄨󵄨󵄨𝑑𝑗󵄨󵄨󵄨󵄨󵄨) − (1 − 𝑘0)
⋅ ( ∑
𝑗∈𝐼𝑁−(𝑛)

𝑘𝑛−𝑗0 󵄨󵄨󵄨󵄨󵄨𝑑𝑗󵄨󵄨󵄨󵄨󵄨)
− ∑
𝑗∈𝐼𝑁𝑘̃+(𝑥0 ,𝑛)

𝑘𝑛−𝑗0 󵄨󵄨󵄨󵄨󵄨𝑘̃ (𝑇𝑗+1𝑥0, 𝑇𝑗𝑥0)󵄨󵄨󵄨󵄨󵄨 𝐷
+ ∑
𝑗∈𝐼𝑁𝑘̃−(𝑥0 ,𝑛)

𝑘𝑛−𝑗0 󵄨󵄨󵄨󵄨󵄨𝑘̃ (𝑇𝑗+1𝑥0, 𝑇𝑗𝑥0)󵄨󵄨󵄨󵄨󵄨 𝐷
− ∑
𝑗∈𝐼𝑁+(𝑛)∩𝐼𝑁𝑘̃+(𝑥0 ,𝑛)

𝑘𝑛−𝑗0 󵄨󵄨󵄨󵄨󵄨𝑘̃ (𝑇𝑗+1𝑥0, 𝑇𝑗𝑥0)󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨𝑑𝑗󵄨󵄨󵄨󵄨󵄨
+ ∑
𝑗∈𝐼𝑁+(𝑛)∩𝐼𝑁𝑘̃−(𝑥0 ,𝑛)

𝑘𝑛−𝑗0 󵄨󵄨󵄨󵄨󵄨𝑘̃ (𝑇𝑗+1𝑥0, 𝑇𝑗𝑥0)󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨𝑑𝑗󵄨󵄨󵄨󵄨󵄨
+ ∑
𝑗∈𝐼𝑁−(𝑛)∩𝐼𝑁𝑘̃+(𝑥0 ,𝑛)

𝑘𝑛−𝑗0 󵄨󵄨󵄨󵄨󵄨𝑘̃ (𝑇𝑗+1𝑥0, 𝑇𝑗𝑥0)󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨𝑑𝑗󵄨󵄨󵄨󵄨󵄨
− ∑
𝑗∈𝐼𝑁−(𝑛)∩𝐼𝑁𝑘̃−(𝑥0 ,𝑛)

𝑘𝑛−𝑗0 󵄨󵄨󵄨󵄨󵄨𝑘̃ (𝑇𝑗+1𝑥0, 𝑇𝑗𝑥0)󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨𝑑𝑗󵄨󵄨󵄨󵄨󵄨 ;
∀𝑥0 ∈ 𝐴∗ ∪ 𝐵∗

(25)

Note that

if 𝑘̃ (𝑥, 𝑦) > 0
then 󵄨󵄨󵄨󵄨󵄨𝑘̃ (𝑥, 𝑦)󵄨󵄨󵄨󵄨󵄨 ≤ 𝑘̃10 and − 󵄨󵄨󵄨󵄨󵄨𝑘̃ (𝑥, 𝑦)󵄨󵄨󵄨󵄨󵄨 ≤ 𝑘̃00,

if 𝑘̃ (𝑥, 𝑦) ≤ 0
then 󵄨󵄨󵄨󵄨󵄨𝑘̃ (𝑥, 𝑦)󵄨󵄨󵄨󵄨󵄨 ≤ 𝑘̃00 and − 󵄨󵄨󵄨󵄨󵄨𝑘̃ (𝑥, 𝑦)󵄨󵄨󵄨󵄨󵄨 ≤ 𝑘̃10,
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if 𝑑𝑛 > 0 then 󵄨󵄨󵄨󵄨󵄨𝑑𝑛󵄨󵄨󵄨󵄨󵄨 ≤ 𝑑10 and − 󵄨󵄨󵄨󵄨󵄨𝑑𝑛󵄨󵄨󵄨󵄨󵄨 ≤ 𝑑00,
if 𝑑𝑛 ≤ 0 then 󵄨󵄨󵄨󵄨󵄨𝑑𝑛󵄨󵄨󵄨󵄨󵄨 ≤ 𝑑00 and − 󵄨󵄨󵄨󵄨󵄨𝑑𝑛󵄨󵄨󵄨󵄨󵄨 ≤ 𝑑10.

(26)

Thus, one gets from (25) that

󵄩󵄩󵄩󵄩󵄩𝑇𝑛+2𝑥0 − 𝑇𝑛+1𝑥0󵄩󵄩󵄩󵄩󵄩 ≤ 𝑘𝑛+10 󵄩󵄩󵄩󵄩𝑇𝑥0 − 𝑥0󵄩󵄩󵄩󵄩 + (1 − 𝑘𝑛+10 )𝐷
+ 1 − 𝑘𝑛+101 − 𝑘0 max

0≤𝑗≤𝑛
sup
𝑥0∈𝐴
∗∪𝐵∗

(𝑘̃ (𝑇𝑗+1𝑥0, 𝑇𝑗𝑥0)
⋅ (󵄩󵄩󵄩󵄩󵄩𝑇𝑗+1𝑥0 − 𝑇𝑗𝑥0󵄩󵄩󵄩󵄩󵄩)) + (1
− 𝑘0) 𝑑10( ∑

𝑗∈𝐼𝑁+(𝑛)

𝑘𝑛−𝑗0 − ∑
𝑗∈𝐼𝑁−(𝑛)

𝑘𝑛−𝑗0 )

+ 𝐷𝑘̃00( ∑
𝑗∈𝐼𝑁𝑘̃−(𝑛)

𝑘𝑛−𝑗0 − ∑
𝑗∈𝐼𝑁𝑘̃+(𝑛)

𝑘𝑛−𝑗0 )

+ 𝑘̃00( ∑
𝑗∈𝐼𝑁+(𝑛)∩𝐼𝑁𝑘̃−(𝑛)

𝑘𝑛−𝑗0 𝑑10
− ∑
𝑗∈𝐼𝑁+(𝑛)∩𝐼𝑁𝑘̃+(𝑛)

𝑘𝑛−𝑗0 𝑑00)

+ 𝑘̃10( ∑
𝑗∈𝐼𝑁−(𝑛)∩𝐼𝑁𝑘̃+(𝑛)

𝑘𝑛−𝑗0 𝑑00
− ∑
𝑗∈𝐼𝑁−(𝑛)∩𝐼𝑁𝑘̃−(𝑛)

𝑘𝑛−𝑗0 𝑑10) ; ∀𝑥0 ∈ 𝐴∗ ∪ 𝐵∗
(27)

and one gets Property (iii) from (25) which also leads from
(27) to

lim sup
𝑛󳨀→∞

sup
𝑥0∈𝐴
∗∪𝐵∗

(󵄩󵄩󵄩󵄩󵄩𝑇𝑛+2𝑥0 − 𝑇𝑛+1𝑥0󵄩󵄩󵄩󵄩󵄩 − 𝐷 − 11 − 𝑘0max
0≤𝑗≤𝑛

sup
𝑥0∈𝐴
∗∪𝐵∗

(𝑘̃ (𝑇𝑗+1𝑥0, 𝑇𝑗𝑥0) (󵄩󵄩󵄩󵄩󵄩𝑇𝑗+1𝑥0 − 𝑇𝑗𝑥0󵄩󵄩󵄩󵄩󵄩))

− (1 − 𝑘0) 𝑑10( ∑
𝑗∈𝐼𝑁+(𝑛)

𝑘𝑛−𝑗0 − ∑
𝑗∈𝐼𝑁−(𝑛)

𝑘𝑛−𝑗0 ) − 𝐷𝑘̃00( ∑
𝑗∈𝐼𝑁𝑘̃−(𝑥0 ,𝑛)

𝑘𝑛−𝑗0 − ∑
𝑗∈𝐼𝑁𝑘̃+(𝑥0 ,𝑛)

𝑘𝑛−𝑗0 )

− 𝑘̃00( ∑
𝑗∈𝐼𝑁+(𝑛)∩𝐼𝑁𝑘̃−(𝑥0 ,𝑛)

𝑘𝑛−𝑗0 𝑑10 − ∑
𝑗∈𝐼𝑁+(𝑛)∩𝐼𝑁𝑘̃+(𝑥0 ,𝑛)

𝑘𝑛−𝑗0 𝑑00)

− 𝑘̃10( ∑
𝑗∈𝐼𝑁−(𝑛)∩𝐼𝑁𝑘̃+(𝑥0 ,𝑛)

𝑘𝑛−𝑗0 𝑑00 − ∑
𝑗∈𝐼𝑁−(𝑛)∩𝐼𝑁𝑘̃−(𝑥0 ,𝑛)

𝑘𝑛−𝑗0 𝑑10)) ≤ 0

(28)

∀𝑥0 ∈ 𝐴∗ ∪ 𝐵∗. Proceed by contradiction to prove that{‖𝑇𝑛+2𝑥0 − 𝑇𝑛+1𝑥0‖}∞𝑛=0 is bounded. Assume that {‖𝑇𝑛+2𝑥0 −𝑇𝑛+1𝑥0‖}∞𝑛=0 is unbounded, ∀𝑥0 ∈ 𝐴∗ ∪ 𝐵∗. Then, there is
a subsequence {‖𝑇𝑛𝑘+2𝑥0 − 𝑇𝑛𝑘+1𝑥0‖}∞𝑘=0 of it, with {𝑛𝑘} ⊂
Z0+being strictly increasing, which then diverges as 𝑘 󳨀→ ∞,
and one gets from (27) that

󵄩󵄩󵄩󵄩󵄩𝑇𝑛𝑘+2𝑥0 − 𝑇𝑛𝑘+1𝑥0󵄩󵄩󵄩󵄩󵄩 < 󵄩󵄩󵄩󵄩󵄩𝑇𝑛𝑘+1+2𝑥0 − 𝑇𝑛𝑘+1+1𝑥0󵄩󵄩󵄩󵄩󵄩
≤ 𝑘min(𝑛𝑘+1+1,𝑛𝑘+1)
0

󵄩󵄩󵄩󵄩𝑇𝑥0 − 𝑥0󵄩󵄩󵄩󵄩 + (1
− 𝑘max(𝑛𝑘+1+1,𝑛𝑘+1)
0 𝐷) + 1 − 𝑘max(𝑛𝑘+1+1,𝑛𝑘+1)

0 1 − 𝑘0
× max
0≤𝑗≤max(𝑛𝑘+1 ,𝑛𝑘+1)

sup
𝑥0∈𝐴
∗∪𝐵∗

(𝑘̃ (𝑇𝑗+1𝑥0, 𝑇𝑗𝑥0)

⋅ (󵄩󵄩󵄩󵄩󵄩𝑇𝑗+1𝑥0 − 𝑇𝑗𝑥0󵄩󵄩󵄩󵄩󵄩)) +max (𝑀𝑛𝑘+1 ,𝑀𝑛𝑘+1)
≤ 󵄩󵄩󵄩󵄩󵄩𝑇𝑛𝑘+1+2𝑥0 − 𝑇𝑛𝑘+1+1𝑥0󵄩󵄩󵄩󵄩󵄩 ≤ 𝑘min(𝑛𝑘+1+1,𝑛𝑘+1)

0
󵄩󵄩󵄩󵄩𝑇𝑥0

− 𝑥0󵄩󵄩󵄩󵄩 + (1 − 𝑘max(𝑛𝑘+1+1,𝑛𝑘+1)
0 𝐷)

+ 1 − 𝑘max(𝑛𝑘+1+1,𝑛𝑘+1)
0 1 − 𝑘0

× max
0≤𝑗≤max(𝑛𝑘+1 ,𝑛𝑘+2)

sup
𝑥0∈𝐴
∗∪𝐵∗

(𝑘̃ (𝑇𝑗+1𝑥0, 𝑇𝑗𝑥0)
⋅ (󵄩󵄩󵄩󵄩󵄩𝑇𝑗+1𝑥0 − 𝑇𝑗𝑥0󵄩󵄩󵄩󵄩󵄩)) +max (𝑀𝑛𝑘+1 ,𝑀𝑛𝑘+2)

(29)

for 𝑘 ≥ 0, ∀𝑥0 ∈ 𝐴∗ ∪ 𝐵∗, where𝑀𝑛 for 𝑛 ≥ 0 is defined in
(19). Thus,
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(1 − 1 − 𝑘max(𝑛𝑘+1+1,𝑛𝑘+1)
01 − 𝑘0 𝑘̃10)󵄩󵄩󵄩󵄩󵄩𝑇𝑛𝑘+2𝑥0 − 𝑇𝑛𝑘+1𝑥0󵄩󵄩󵄩󵄩󵄩

≤ 𝑘min(𝑛𝑘+1+1,𝑛𝑘+1)
0

󵄩󵄩󵄩󵄩𝑇𝑥0 − 𝑥0󵄩󵄩󵄩󵄩
+ (1 − 𝑘max(𝑛𝑘+1+1,𝑛𝑘+1)

0 𝐷)
+max (𝑀𝑛𝑘+1 ,𝑀𝑛𝑘+2) ,

𝑘 ≥ 0; ∀𝑥0 ∈ 𝐴∗ ∪ 𝐵∗

(30)

so that

(1 − 𝑘0 − 𝑘̃101 − 𝑘0 +max [󵄨󵄨󵄨󵄨󵄨𝑜 (𝑘𝑛𝑘+1+10 )󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑜 (𝑘𝑛𝑘+10 )󵄨󵄨󵄨󵄨󵄨])
⋅ 󵄩󵄩󵄩󵄩󵄩𝑇𝑛𝑘+2𝑥0 − 𝑇𝑛𝑘+1𝑥0󵄩󵄩󵄩󵄩󵄩 ≤ 𝑀0 < +∞;

∀𝑥0 ∈ 𝐴∗ ∪ 𝐵∗
(31)

and {‖𝑇𝑛𝑘+2𝑥0 − 𝑇𝑛𝑘+1𝑥0‖}∞𝑘=0 is bounded, a contradiction.
Thus, {‖𝑇𝑛+2𝑥0 − 𝑇𝑛+1𝑥0‖}∞𝑛=0 is bounded as claimed. Now,
one gets from (27), (28), and (19) that

𝑀𝑇 = 𝑀𝑇 (𝑥0) = max
𝑛≥0

sup
𝑥0∈𝐴
∗∪𝐵∗

(󵄩󵄩󵄩󵄩󵄩𝑇𝑛+2𝑥0 − 𝑇𝑛+1𝑥0󵄩󵄩󵄩󵄩󵄩
≤ 󵄩󵄩󵄩󵄩𝑇𝑥0 − 𝑥0󵄩󵄩󵄩󵄩 + 𝐷 + 𝑘̃101 − 𝑘0𝑀𝑇 +max

𝑛≥0
𝑀𝑛;

∀𝑥0 ∈ 𝐴∗ ∪ 𝐵∗
leading to 𝑀𝑇 ≤ 1 − 𝑘01 − 𝑘0 − 𝑘̃10 (󵄩󵄩󵄩󵄩𝑇𝑥0 − 𝑥0󵄩󵄩󵄩󵄩

+max
𝑛≥0

𝑀𝑛) ; ∀𝑥0 ∈ 𝐴∗ ∪ 𝐵∗.

(32)

Property (i) is fully proved. Property (iii) is proved as follows.
Take any integers𝑁 ≥ 0, 𝑛 ≥ 𝑁, and 𝑚 ≥ 𝑁 + 1 so that one
gets from (27)

󵄩󵄩󵄩󵄩󵄩𝑇𝑛+𝑚+2𝑥0 − 𝑇𝑛+𝑚+1𝑥0󵄩󵄩󵄩󵄩󵄩
≤ 𝑘𝑛+10 󵄩󵄩󵄩󵄩󵄩𝑇𝑚𝑥0 − 𝑇𝑚−1𝑥0󵄩󵄩󵄩󵄩󵄩 + (1 − 𝑘𝑚+𝑚+10 )𝐷
+ 1 − 𝑘𝑚+𝑚+101 − 𝑘0 𝜀𝑛+𝑚 (𝑥0, 𝑘̃) 󵄩󵄩󵄩󵄩󵄩𝑇𝑗+𝑚+1𝑥0 − 𝑇𝑗+𝑚𝑥0󵄩󵄩󵄩󵄩󵄩
+ 𝑀𝑛+𝑚 (𝑥0)

(33)

∀𝑥0 ∈ 𝐴∗ ∪ 𝐵∗ with 𝜀𝑛+𝑚(𝑥0, 𝑘̃) > max(|𝑘̃(𝑇𝑛+1𝑥0,𝑇𝑛𝑥0)|,𝑀𝑛+𝑚(𝑥0)) for all 𝑛 ≥ 𝑁 and 𝑚 ≥ 𝑁 + 1. Since the
sequences {𝑘̃(𝑇𝑛+1𝑥0, 𝑇𝑛𝑥0)}∞𝑛=0 󳨀→ 0 and {𝑀𝑛(𝑥0)}∞𝑛=0 󳨀→

0, they are Cauchy sequences, since convergent, so that{𝜀𝑛+𝑚(𝑥0, 𝑘̃)}∞𝑛=0 󳨀→ 0 can be chosen as an upper-bounding
vanishing sequence; that is, for any given 𝜀 > 0, there is𝑁 ≥ 0 such that 𝜀𝑛+𝑚(𝑥0, 𝑘̃) ≤ 𝜀 for any integers 𝑛 ≥𝑁 and 𝑚 ≥ 𝑁 + 1. Furthermore, {𝜀𝑛+𝑚(𝑥0, 𝑘̃)‖𝑇𝑗+𝑚+1𝑥0 −𝑇𝑗+𝑚𝑥0‖}∞𝑛=0 󳨀→ 0 for any given integers 𝑚, 𝑗 ≥ 0 since{‖𝑇𝑗+1𝑥0 − 𝑇𝑗𝑥0‖}∞𝑛=0 is bounded. Then, it follows from
(33) that lim sup𝑛󳨀→∞sup𝑥0∈𝐴∗∪𝐵∗‖𝑇𝑛+2𝑥0 − 𝑇𝑛+1𝑥0‖ ≤ 𝐷.
Property (iii) has been proved. Property (iv) follows from the
given assumptions, (25) and (33) since

(1 − 𝑘̃101 − 𝑘0)(lim sup
𝑛󳨀→∞

󵄩󵄩󵄩󵄩󵄩𝑇𝑛+2𝑥0 − 𝑇𝑛+1𝑥0󵄩󵄩󵄩󵄩󵄩)
≤ (1 − 𝑘̃∞ (𝑥0)1 − 𝑘0 )(lim sup

𝑛󳨀→∞

󵄩󵄩󵄩󵄩󵄩𝑇𝑛+2𝑥0 − 𝑇𝑛+1𝑥0󵄩󵄩󵄩󵄩󵄩)
≤ 𝐷 +𝑀0∞ (𝑥0) ≤ 𝐷 +𝑀∞ (𝑥0) ;

∀𝑥0 ∈ 𝐴∗ ∪ 𝐵∗.

(34)

Note from Theorem 3(iv) that 𝑀0∞(𝑥0) ≥ −𝐷, ∀𝑥0 ∈𝐴∗ ∪ 𝐵∗.
Remark 4. Note that if the sets of the cyclic mapping are not
uncertain along the iteration via 𝑇, then its mutual distance
is identical to 𝐷∗ along the iteration. If, furthermore, such
a mapping is contractive with 𝑘̃(𝑥0) = 0, ∀𝑥0 ∈ 𝐴∗ ∪ 𝐵∗,
then, Theorem 3 (iv) yields 𝐷∗ = lim𝑛󳨀→∞ sup ‖𝑇𝑛+2𝑥0 −𝑇𝑛+1𝑥0‖ ≤ 𝐷∗, ∀𝑥0 ∈ 𝐴∗ ∪ 𝐵∗. Thus, there exists the limit
lim𝑛󳨀→∞‖𝑇𝑛+2𝑥0 − 𝑇𝑛+1𝑥0‖ = 𝐷∗. As a result, if 𝐴∗𝑏𝑝 ⊆ 𝐴∗
and 𝐵∗𝑏𝑝 ⊆ 𝐵∗are the nonempty sets of best proximity points
of 𝐴∗ to 𝐵∗and of 𝐵∗ to 𝐴∗, respectively, it follows that for
any 𝑥0 ∈ 𝐴∗ ∪ 𝐵∗, one has

lim
𝑛󳨀→∞

(𝑇2𝑛𝑥0 − 𝑧𝐴𝑛) = lim
𝑛󳨀→∞

(𝑇2𝑛+1𝑥0 − 𝑧𝐵𝑛) = 0 (35)

with {𝑧𝐴𝑛}∞𝑛=0 ⊆ 𝐴∗𝑏𝑝 and {𝑧𝐵𝑛}∞𝑛=0 ⊆ 𝐵∗𝑏𝑝 if 𝑥0 ∈ 𝐴∗ and{𝑧𝐴𝑛}∞𝑛=0 ⊆ 𝐵∗𝑏𝑝 and {𝑧𝐵𝑛}∞𝑛=0 ⊆ 𝐴∗𝑏𝑝 if 𝑥0 ∈ 𝐵∗.
Remark 5. The existence of lim𝑛󳨀→∞‖𝑇𝑛+2𝑥0 − 𝑇𝑛+1𝑥0‖ is
not guaranteed in the general uncertain case of Theorem 3.
However, provided that lim inf𝑛󳨀→∞𝐷𝑛 = 𝐷 ≥ 0, then it
follows fromTheorem 3(ii) that

𝐷 ≤ lim inf
𝑛󳨀→∞

inf
𝑥0∈𝐴
∗∪𝐵∗

󵄩󵄩󵄩󵄩󵄩𝑇𝑛+2𝑥0 − 𝑇𝑛+1𝑥0󵄩󵄩󵄩󵄩󵄩 ≤ lim sup
𝑛󳨀→∞

𝑛󳨀→∞

⋅ sup
𝑥0∈𝐴
∗∪𝐵∗

󵄩󵄩󵄩󵄩󵄩𝑇𝑛+2𝑥0 − 𝑇𝑛+1𝑥0󵄩󵄩󵄩󵄩󵄩 ≤ 𝐷.
(36)

If {𝑘̃(𝑇𝑛+1𝑥0, 𝑇𝑛𝑥0)}∞𝑛=0 󳨀→ 0 and {𝑀𝑛(𝑥0)}∞𝑛=0 󳨀→ 0, ∀𝑥0 ∈𝐴∗ ∪ 𝐵∗,
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𝐷 ≤ lim inf
𝑛󳨀→∞

󵄩󵄩󵄩󵄩󵄩𝑇𝑛+2𝑥0 − 𝑇𝑛+1𝑥0󵄩󵄩󵄩󵄩󵄩
≤ lim sup
𝑛󳨀→∞

󵄩󵄩󵄩󵄩󵄩𝑇𝑛+2𝑥0 − 𝑇𝑛+1𝑥0󵄩󵄩󵄩󵄩󵄩
≤ (1 − 𝑘0) (𝐷 +𝑀0∞ (𝑥0))1 − 𝑘0 − 𝑘̃∞ (𝑥0)
≤ (1 − 𝑘0) (𝐷 +𝑀∞ (𝑥0))1 − 𝑘0 − 𝑘̃10 ; ∀𝑥0 ∈ 𝐴∗ ∪ 𝐵∗

(37)

fromTheorem 3 (iv) with𝐷 ≥ lim sup𝑛󳨀→∞sup𝑥0∈𝐴∗∪𝐵∗((1 −𝑘0 − 𝑘̃∞(𝑥0))/(1−𝑘0))𝐷−𝑀0∞. The above formulas quantify
the bounds of the limiting reachable distances between
consecutive points of the sequences calculated from the
iterations performed via the self-mapping 𝑇 on ⋃𝑛≥0(𝐴𝑛 ×𝐵𝑛+1 ∪ 𝐵𝑛 × 𝐴𝑛+1) with initial conditions in 𝐴∗ ∪ 𝐵∗.
Proposition 6. Any sequence of {𝑇𝑛𝑥0}∞𝑛=0 is bounded for any
given 𝑥0 ∈ 𝐴∗ ∪ 𝐵∗ under all the given general assumptions
of Theorem 3 provided that lim sup𝑛󳨀→∞𝑘̃(𝑇𝑛+1𝑥0, 𝑇𝑛𝑥0) =𝑘̃∞(𝑥0) ∈ [−𝑘̃00, 𝑘̃10].
Proof. If all the given general assumptions of Theorem 3
and, furthermore, lim sup𝑛󳨀→∞𝑘̃(𝑇𝑛+1𝑥0, 𝑇𝑛𝑥0) = 𝑘̃∞(𝑥0) ∈[−𝑘̃00, 𝑘̃10], thenTheorem 3(iv) holds. Thus, one has

lim sup𝑛󳨀→∞‖𝑇𝑛+2𝑥0 − 𝑇𝑛+1𝑥0‖ ≤ 𝐿 < +∞, ∀𝑥0 ∈ 𝐴∗ ∪𝐵∗, where 𝐿 = (1−𝑘0)(𝐷+𝑀0∞(𝑥0))/(1−𝑘0−𝑘̃∞(𝑥0)). Since
it is assumed that 𝑘̃(𝑥, 𝑦) ∈ [−𝑘̃00, 𝑘̃10], ∀(𝑥, 𝑦) ∈ ⋃𝑛≥0(𝐴𝑛 ×𝐵𝑛+1 ∪𝐵𝑛 ×𝐴𝑛+1), then the above constraint also holds in the
form lim sup𝑛󳨀→∞‖𝑇𝑛+2𝑦0 − 𝑇𝑛+1𝑥0‖ ≤ 𝐿 < +∞, ∀(𝑥0, 𝑦0) ∈𝐴∗×𝐵∗and∀(𝑥0, 𝑦0) ∈ 𝐵∗×𝐴∗,∀(𝑥0, 𝑦0) ∈ 𝐴∗×(⋃𝑛≥0 𝐵𝑛) and∀(𝑥0, 𝑦0) ∈ 𝐵∗ × (⋃𝑛≥0 𝐴𝑛). So, if 𝑦0 = 𝑇2𝑚+1𝑥0 for any given
nonnegative integer 𝑚 and any given 𝑥0 ∈ 𝐴∗ ∪ 𝐵∗, one has
that lim sup𝑛󳨀→∞‖𝑇𝑛+2𝑦0 − 𝑇𝑛+1𝑥0‖ ≤ 𝐿 < +∞. Proceed by
contradiction by assuming that {𝑇𝑛𝑥0}∞𝑛=0 is unbounded for
some 𝑥0 ∈ 𝐴∗∪𝐵∗.Then, for any given real positive constants𝑀 and 𝜀 and any given 𝑥0 ∈ 𝐴∗∪𝐵∗, there exists some integer𝑁 ≥ 0, infinitely many strictly sequences of positive integers{𝑛𝑘}∞𝑘=0, and some sequences of real constants {𝜆0𝑘}∞𝑘=0, with𝑛𝑘 ≥ 𝑁 and 𝜆0𝑘 = 𝜆0𝑘(𝑥0, 𝜀,𝑀, 𝑛𝑘) > 1; 𝑘 ≥ 0, such that,
for any arbitrary real sequence {𝜆𝑘}∞𝑘=0 satisfying 𝜆𝑘 ≥ 𝜆0𝑘,𝑘 ≥ 0, one has that any unbounded sequence {𝑇𝑛𝑘𝑥0}∞𝑘=0 of{𝑇𝑛𝑥0}∞𝑛=0 satisfies
𝐿 + 𝜀 ≥ 󵄩󵄩󵄩󵄩𝑇𝑛𝑘+1𝑥0 − 𝑇𝑛𝑘𝑥0󵄩󵄩󵄩󵄩

= 󵄩󵄩󵄩󵄩󵄩𝑇𝑛𝑘+1 (𝑇𝑛𝑘+1−𝑛𝑘−1𝑥0) − 𝑇𝑛𝑘𝑥0󵄩󵄩󵄩󵄩󵄩≥ 󵄩󵄩󵄩󵄩𝑇𝑛𝑘+1𝑥0 − 𝑥0󵄩󵄩󵄩󵄩 − 󵄩󵄩󵄩󵄩𝑇𝑛𝑘𝑥0 − 𝑥0󵄩󵄩󵄩󵄩 ≥ (𝜆𝑘 − 1)𝑀
≥ (𝜆0𝑘 − 1)𝑀

(38)

implying that 𝜆𝑘 ∈ [𝜆0𝑘, 1 + (1/𝑀)(𝐿 + 𝜀)], 𝑘 ≥ 0. But since{𝑇𝑛𝑘𝑥0}∞𝑘=0 is unbounded, the sequence of integers {𝑛𝑘}∞𝑘=0
can be chosen such that 𝑛𝑘+1(𝑛𝑘) > 𝑛𝑘; {𝑛𝑘}∞𝑘=0 satisfies
that 𝜆𝑘 is large enough to satisfy 𝜆𝑘 > 1 + (1/𝑀)(𝐿 + 𝜀),
hence a contradiction.Then, any subsequence of {𝑇𝑛𝑥0}∞𝑛=0 is

bounded for any given 𝑥0 ∈ 𝐴∗∪𝐵∗, so {𝑇𝑛𝑥0}∞𝑛=0 is bounded
for any given 𝑥0 ∈ 𝐴∗ ∪ 𝐵∗.
4. Some Properties of Approximate
Convergence of a Generalized Modified
Ishikawa’s Iterative Scheme Based on Cyclic
Self-Mappings

A generalization of the modified Ishikawa’s iteration in a
normed real space (𝐸, ‖.‖) is as follows:

𝑦𝑛 = (1 − 𝛽𝑛) 𝑥𝑛 + 𝛽𝑛𝑇𝑛+𝑚(𝑛)𝑥𝑛
𝑥𝑛+1 = (1 − 𝛼𝑛) 𝑥𝑛 + 𝛼𝑛𝑇𝑛+𝑞(𝑛)𝑦𝑛 (39)

for integers 𝑚(𝑛) ≥ 0, 𝑞(𝑛) ≥ 0 and all 𝑛 ≥ 0, ∀𝑥0 ∈𝐴∗ ∪𝐵∗ under parameterizing sequences {𝛼𝑛}∞𝑛=0 ⊂ [0, 1] and{𝛽𝑛}∞𝑛=0 ⊂ [0, 1] provided that 𝑇 is an uncertain cyclic self-
mapping defined on⋃𝑛≥0(𝐴𝑛 ×𝐵𝑛+1 ∪𝐵𝑛 ×𝐴𝑛+1). The choice
of the integer 𝑚(𝑛) ≥ 0, 𝑞(𝑛) ≥ 0, in general depending on𝑛, is relevant for the allocation of the elements of the solution
sequence {𝑥𝑛}∞𝑛=0 in the subset sequences {𝐴𝑛}∞𝑛=0 or {𝐵𝑛}∞𝑛=0
depending on the integers 𝑛+𝑚(𝑛), 𝑛+𝑞(𝑛) being even or odd.
The subsequent auxiliary result will be then used by linking
it to some of the results of Section 3.

Lemma 7. The following properties hold when the generalized
modified Ishikawa’s iteration (39) is used:

(i) The subsequent incremental relations hold for each
integer𝑚(𝑛) ≥ 0, 𝑞(𝑛) ≥ 0 and 𝑛 ≥ 0, ∀𝑥0 ∈ 𝐴∗ ∪ 𝐵∗:

𝑥𝑛 = 𝑥𝑛+1 − 𝑥𝑛 = 𝛼𝑛 (𝑇𝑛+𝑞(𝑛)𝑦𝑛 − 𝑥𝑛)
= 𝑥𝑛−1
+ 𝛼𝑛−1 (𝑇𝑛+𝑞(𝑛)𝑦𝑛 − 𝑇𝑛−1+𝑞(𝑛−1)𝑦𝑛−1)
+ 𝛼̃𝑛−1 (𝑇𝑛+𝑞(𝑛)𝑦𝑛 − 𝑥𝑛−1)

𝑦𝑛 − 𝑥𝑛+1 = (𝛼𝑛 − 𝛽𝑛) 𝑥𝑛
+ (𝛽𝑛𝑇𝑛+𝑚(𝑛)𝑥𝑛 − 𝛼𝑛𝑇𝑛+𝑞(𝑛)𝑦𝑛)

𝑦𝑛 = 𝑦𝑛+1 − 𝑦𝑛
= (1 − 𝛽𝑛) 𝑥𝑛 − 𝛽𝑛𝑥𝑛+1
+ 𝛽𝑛 (𝑇𝑛+1+𝑚(𝑛+1)𝑥𝑛+1 − 𝑇𝑛+𝑚(𝑛)𝑥𝑛)
+ 𝛽𝑛𝑇𝑛+1+𝑚(𝑛+1)𝑥𝑛+1

(40)

where 𝛼̃𝑛 = 𝛼𝑛+1 − 𝛼𝑛 and 𝛽𝑛 = 𝛽𝑛+1 − 𝛽𝑛; 𝑛 ≥ 0.
(ii) If {𝛼𝑛}∞𝑛=0 󳨀→ 𝛼 then {𝑥𝑛−𝛼(𝑇𝑛+𝑞(𝑛)𝑦𝑛−𝑥𝑛)}∞𝑛=0 󳨀→ 0;

that is, {𝑥𝑛+1 − (1 − 𝛼)𝑥𝑛 + 𝛼𝑇𝑛+𝑞(𝑛)𝑦𝑛}∞𝑛=0 󳨀→ 0, equivalently,{𝑥𝑛 − 𝑥𝑛−1 + 𝛼(𝑇𝑛+𝑞(𝑛)𝑦𝑛 − 𝑇𝑛−1+𝑞(𝑛−1)𝑦𝑛−1)}∞𝑛=0 󳨀→ 0.
(iii) If {𝛽𝑛}∞𝑛=0 󳨀→ 𝛽 then {(1 − 𝛽)𝑥𝑛 − 𝑦𝑛 −𝛽(𝑇𝑛+1+𝑚(𝑛+1)𝑥𝑛+1 − 𝑇𝑛+𝑚(𝑛)𝑥𝑛)}∞𝑛=0 󳨀→ 0.
(iv) If {𝛼𝑛 − 𝛽𝑛}∞𝑛=0 󳨀→ 0 then {𝑦𝑛 − 𝑥𝑛+1 + 𝛼𝑛𝑇𝑛+𝑞(𝑛)𝑦𝑛 −𝛽𝑛𝑇𝑛+𝑚(𝑛)𝑥𝑛}∞𝑛=0 󳨀→ 0.



10 Journal of Mathematics

If {𝛼𝑛}∞𝑛=0 󳨀→ 𝛼 and {𝛽𝑛}∞𝑛=0 󳨀→ 𝛽 then {𝑦𝑛 − 𝑥𝑛+1 − (𝛼 −𝛽)𝑥𝑛 −(𝛽𝑇𝑛+𝑚(𝑛)𝑥𝑛 −𝛼𝑇𝑛+𝑞(𝑛)𝑦𝑛)}∞𝑛=0 󳨀→ 0 and, in particular,
if 𝛼 = 𝛽 then {𝑦𝑛 − 𝑥𝑛+1 + 𝛼(𝑇𝑛+𝑞(𝑛)𝑦𝑛 − 𝑇𝑛+𝑚(𝑛)𝑥𝑛)}∞𝑛=0 󳨀→ 0.

(v) If {𝛼𝑛}∞𝑛=0 󳨀→ 𝛼 and {𝑇𝑛+𝑞(𝑛)𝑦𝑛 − 𝑥𝑛}∞𝑛=0 󳨀→ 𝐿𝑦𝑥 then
{𝑥𝑛+1 − 𝑥𝑛}∞𝑛=0 󳨀→ 𝛼𝐿𝑦𝑥. (41)

If {𝛼𝑛}∞𝑛=0 󳨀→ 𝛼 and {𝑇𝑛+𝑞(𝑛)𝑦𝑛 − 𝑇𝑛−1+𝑞(𝑛−1)𝑦𝑛−1}∞𝑛=0 󳨀→ 𝐿𝑦
then

{𝑥𝑛+1 − 2𝑥𝑛 − 𝑥𝑛−1}∞𝑛=0 󳨀→ 𝛼𝐿𝑦. (42)

If {𝛽𝑛}∞𝑛=0 󳨀→ 𝛽 and {𝑇𝑛+1+𝑚(𝑛+1)𝑥𝑛+1 − 𝑇𝑛+𝑚(𝑛)𝑥𝑛}∞𝑛=0 󳨀→ 𝐿𝑥
then

{(1 − 𝛽) (𝑥𝑛+1 − 𝑥𝑛) − (𝑦𝑛+1 − 𝑦𝑛)}∞𝑛=0 󳨀→ 𝛽𝐿𝑥. (43)

If {𝛼𝑛}∞𝑛=0, {𝛽𝑛}∞𝑛=0 󳨀→ 𝛼 and {𝑇𝑛+𝑞(𝑛)𝑦𝑛 − 𝑇𝑛+𝑚(𝑛)𝑥𝑛}∞𝑛=0 󳨀→𝐿𝑥𝑦 then {𝑦𝑛 − 𝑥𝑛+1}∞𝑛=0 󳨀→ 𝛼𝐿𝑥𝑦.
Proof. Property (i) follows from (39) through simple direct
calculations. Properties (ii) to (iv) are a direct consequence
of Property (i). Finally, Property (v) follows directly from
Properties (ii) to (iv).

Note that the limits 𝐿𝑥, 𝐿𝑦, 𝐿𝑦𝑥, and 𝐿𝑥𝑦 might be, in
general, dependent on 𝑥0. Lemma 7 (v) can be reformulated
in the case when 𝐿𝑥, 𝐿𝑦, 𝐿𝑦𝑥, and 𝐿𝑥𝑦 are limit superiors
or upper-bounds of the limit superiors rather than limits as
follows.

Lemma 8. The following properties hold when the generalized
modified Ishikawa’s iteration (39) is used:

(i) If {𝛼𝑛}∞𝑛=0 󳨀→ 𝛼 and
lim sup𝑛󳨀→∞sup𝑥0∈𝐴∗∪𝐵∗(𝑇𝑛+𝑞(𝑛)𝑦𝑛 − 𝑥𝑛) ≤ 𝐿𝑦𝑥 then

lim sup
𝑛󳨀→∞

sup
𝑥0∈𝐴
∗∪𝐵∗

(𝑥𝑛+1 − 𝑥𝑛 − 𝛼𝐿𝑦𝑥) ≤ 0. (44)

(ii) If {𝛼𝑛}∞𝑛=0 󳨀→ 𝛼 and
lim sup𝑛󳨀→∞sup𝑥0∈𝐴∗∪𝐵∗(𝑇𝑛+𝑞(𝑛)𝑦𝑛 − 𝑇𝑛−1+𝑞(𝑛−1)𝑦𝑛−1) ≤ 𝐿𝑦
then

lim sup
𝑛󳨀→∞

sup
𝑥0∈𝐴
∗∪𝐵∗

(𝑥𝑛+1 − 2𝑥𝑛 − 𝑥𝑛−1 − 𝛼𝐿𝑦) ≤ 0. (45)

(iii) If {𝛽𝑛}∞𝑛=0 󳨀→ 𝛽 and
lim sup𝑛󳨀→∞sup𝑥0∈𝐴∗∪𝐵∗(𝑇𝑛+1+𝑚(𝑛+1)𝑥𝑛+1 − 𝑇𝑛+𝑚(𝑛)𝑥𝑛) ≤ 𝐿𝑥
then

lim sup
𝑛󳨀→∞

sup
𝑥0∈𝐴
∗∪𝐵∗

((1 − 𝛽) (𝑥𝑛+1 − 𝑥𝑛) − (𝑦𝑛+1 − 𝑦𝑛)
− 𝛽𝐿𝑥) ≤ 0. (46)

(iv) If {𝛼𝑛}∞𝑛=0, {𝛽𝑛}∞𝑛=0 󳨀→ 𝛼 and
lim sup𝑛󳨀→∞sup𝑥0∈𝐴∗∪𝐵∗(𝑇𝑛+𝑞(𝑛)𝑦𝑛 − 𝑇𝑛+𝑚(𝑛)𝑥𝑛) ≤ 𝐿𝑥𝑦
then lim sup𝑛󳨀→∞sup𝑥0∈𝐴∗∪𝐵∗(𝑦𝑛 − 𝑥𝑛+1 − 𝛼𝐿𝑥𝑦) ≤ 0.

The subsequent result links Lemma 8 withTheorem 3.

Theorem 9. Assume that all the general assumptions of The-
orem 3 and the assumption lim sup𝑛󳨀→∞𝑘̃(𝑇𝑛+1𝑥0, 𝑇𝑛𝑥0) =𝑘̃∞(𝑥0) ∈ [−𝑘̃00, 𝑘̃10] of Theorem 3(iv) hold and, furthermore,
that all the sets in the set sequences {𝐴𝑛}∞𝑛=0 and {𝐵𝑛}∞𝑛=0 in
the normed space (𝐸, ‖.‖) are nonempty and convex. Then,
the following properties hold when the generalized modified
Ishikawa’s iteration (39) is used:

(i) There exist real sequences {𝛼0𝑛}∞𝑛=0(⊆ [𝛼0𝑚, 1]) and{𝛽0𝑛}∞𝑛=0(⊆ [𝛽0𝑚, 1]), for some 𝛼0𝑚, 𝛽0𝑚 ∈ [0, 1], such that
the sequences {𝑦𝑛} and {𝑥𝑛} built from (39) by using any
parameterizing sequences {𝛼𝑛}∞𝑛=0(⊆ [0, 1]), {𝛽𝑛}∞𝑛=0(⊆ [0, 1])
being subject to 𝛼𝑛 ≥ 𝛼0𝑛 and 𝛽𝑛 ≥ 𝛽0𝑛, 𝑛 ≥ 0, are in⋃𝑛≥0(𝐴𝑛 × 𝐵𝑛+1 ∪ 𝐵𝑛 × 𝐴𝑛+1) for any given 𝑥0 ∈ 𝐴∗ ∪ 𝐵∗.

(ii) Assume, in addition, that 𝑞(𝑛) = 2ℓ(𝑛) + 1 − 𝑛 for
some arbitrary 𝑛-dependent integer ℓ(𝑛) ≥ (𝑛 − 1)/2, 𝑛 ≥ 0,{𝛼𝑛}∞𝑛=0 󳨀→ 𝛼. Then, one gets

lim sup
𝑛󳨀→∞

sup
𝑥0∈𝐴
∗∪𝐵∗

(󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛󵄩󵄩󵄩󵄩
− 𝛼 (1 − 𝑘0) (𝐷 +𝑀0∞ (𝑥0))1 − 𝑘0 − 𝑘̃∞ (𝑥0) ) ≤ 0.

(47)

(iii)Assume, in addition, that𝑚(𝑛) = 2𝑧(𝑛)−𝑛 and 𝑞(𝑛) =2ℓ(𝑛)+1−𝑛 for some arbitrary 𝑛-dependent integers 𝑧(𝑛) ≥ 𝑛/2,𝑛 ≥ 0 and ℓ(𝑛) ≥ (𝑛 − 1)/2, 𝑛 ≥ 0, {𝛼𝑛}∞𝑛=0 󳨀→ 𝛼, {𝛽𝑛}∞𝑛=0 󳨀→𝛽 = 𝛼. Then, one gets

lim sup
𝑛󳨀→∞

sup
𝑥0∈𝐴
∗∪𝐵∗

(󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥𝑛+1󵄩󵄩󵄩󵄩
− 𝛼 (1 − 𝑘0) (𝐷 +𝑀0∞ (𝑥0))1 − 𝑘0 − 𝑘̃∞ (𝑥0) ) ≤ 0.

(48)

Proof. First note from (39) that if 𝛼𝑛 = 𝛽𝑛 = 1 for all 𝑛 ≥ 0
then

𝑦𝑛 = 𝑇𝑛+𝑚(𝑛)𝑥𝑛;
𝑥𝑛+1 = 𝑇𝑛+𝑞(𝑛)𝑦𝑛 = 𝑇2𝑛+𝑚(𝑛)+𝑞(𝑛)𝑥𝑛;

𝑛 ≥ 0
(49)

for any 𝑥0 ∈ 𝐴∗ ∪ 𝐵∗. Thus, one has
(a) if 𝑛 + 𝑞(𝑛) is odd then 𝑦𝑛 and 𝑥𝑛+1 are either in

some 𝐴𝑗(𝑛) ∈ ⋃∞𝑛=0 𝐴𝑛 and in some 𝐵ℓ(𝑛+𝑞(𝑛)) ∈ ⋃∞𝑛=0 𝐵𝑛,
respectively, or in some𝐵𝑗(𝑛) ∈ ⋃∞𝑛=0 𝐴𝑛 and some𝐴ℓ(𝑛+𝑞(𝑛)) ∈⋃∞𝑛=0 𝐵𝑛. If 𝑛+𝑞(𝑛) is even then𝑥𝑛+1 and𝑦𝑛 are in some𝐴𝑗(𝑛) ∈⋃∞𝑛=0 𝐴𝑛 and in some 𝐴ℓ(𝑛+𝑞(𝑛)) ∈ ⋃∞𝑛=0 𝐴𝑛, respectively, or
in some 𝐵𝑗(𝑛) ∈ ⋃∞𝑛=0 𝐵𝑛 and in some 𝐵ℓ(𝑛+𝑞(𝑛)) ∈ ⋃∞𝑛=0 𝐵𝑛,
respectively.

(b) If 𝑛 + 𝑚(𝑛) is odd then 𝑥𝑛 and 𝑦𝑛 are either in
some 𝐴𝑗(𝑛) ∈ ⋃∞𝑛=0 𝐴𝑛 and in some 𝐵ℓ(𝑛+𝑚(𝑛)) ∈ ⋃∞𝑛=0 𝐴𝑛,
respectively, or in some 𝐵𝑗(𝑛) ∈ ⋃∞𝑛=0 𝐵𝑛 and in some
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𝐴ℓ(𝑛+𝑚(𝑛)) ∈ ⋃∞𝑛=0 𝐵𝑛, respectively. If 𝑛 + 𝑚(𝑛) is even then𝑥𝑛 and 𝑦𝑛 are either in some 𝐴𝑗(𝑛) ∈ ⋃∞𝑛=0 𝐴𝑛 and in some𝐴ℓ(𝑛+𝑚(𝑛)) ∈ ⋃∞𝑛=0 𝐴𝑛, respectively, or in some 𝐵𝑗(𝑛) ∈ ⋃∞𝑛=0 𝐵𝑛
and in some 𝐵ℓ(𝑛+𝑚(𝑛)) ∈ ⋃∞𝑛=0 𝐵𝑛, respectively.

(c) If 2𝑛 + 𝑚(𝑛) + 𝑞(𝑛) is odd then 𝑥𝑛 and 𝑥𝑛+1 are
either in some 𝐴𝑗(𝑛) ∈ ⋃∞𝑛=0 𝐴𝑛 and in some 𝐵𝑗(2𝑛+𝑚+𝑞) ∈⋃∞𝑛=0 𝐵𝑛, respectively, or in some 𝐵𝑗(𝑛) ∈ ⋃∞𝑛=0 𝐵𝑛 and in some𝐴𝑗(2𝑛+𝑚+𝑞) ∈ ⋃∞𝑛=0 𝐴𝑛, respectively. If 2𝑛+𝑚(𝑛)+𝑞(𝑛) is even
then 𝑥𝑛 and 𝑥𝑛+1 are either in some 𝐴𝑗(𝑛) ∈ ⋃∞𝑛=0 𝐴𝑛 and in
some 𝐴𝑗(2𝑛+𝑚+𝑞) ∈ ⋃∞𝑛=0 𝐴𝑛, respectively, or in some 𝐵𝑗(𝑛) ∈⋃∞𝑛=0 𝐵𝑛 and in some 𝐵𝑗(2𝑛+𝑚+𝑞) ∈ ⋃∞𝑛=0 𝐵𝑛, respectively.

Then, {𝑥𝑛}, {𝑦𝑛} ⊂ ⋃𝑛≥0(𝐴𝑛 × 𝐵𝑛+1 ∪ 𝐵𝑛 × 𝐴𝑛+1) if 𝛼𝑛 =𝛽𝑛 = 1 for all 𝑛 ≥ 0 since {𝐴𝑛}∞𝑛=0 and {𝐵𝑛}∞𝑛=0 are convex
for any given 𝑥0 ∈ 𝐴∗ ∪ 𝐵∗. It turns out that there exist
real sequences {𝛼0𝑛}∞𝑛=0(⊆ [𝛼0𝑚, 1]) and {𝛽0𝑛}∞𝑛=0(⊆ [𝛽0𝑚, 1]),
for some 𝛼0𝑚, 𝛽0𝑚 ∈ [0, 1], such that the sequences {𝑦𝑛} and{𝑥𝑛} built from (39) by using any parameterizing sequences{𝛼𝑛}∞𝑛=0(⊆ [0, 1]), {𝛽𝑛}∞𝑛=0(⊆ [0, 1]) subject to 𝛼𝑛 ≥ 𝛼0𝑛 and𝛽𝑛 ≥ 𝛽0𝑛, 𝑛 ≥ 0, are in ⋃𝑛≥0(𝐴𝑛 × 𝐵𝑛+1 ∪ 𝐵𝑛 × 𝐴𝑛+1) for any
given 𝑥0 ∈ 𝐴∗ ∪ 𝐵∗. Property (i) has been proved.

On the other hand, since 𝑞(𝑛) = 2ℓ(𝑛) + 1 − 𝑛 for some
arbitrary integer ℓ(𝑛) ≥ (𝑛−1)/2, 𝑛+𝑞(𝑛) is odd.Then, {𝑥𝑛+1}
and {𝑥𝑛} are in distinct convex unions ⋃𝑛≥0 𝐴𝑛 and ⋃𝑛≥0 𝐵𝑛.
Thus, the result follows from Lemma 8 (i) andTheorem 3(iv).
Property (ii) has been proved.

On the other hand, since 𝑚(𝑛) = 2𝑧(𝑛) − 𝑛 and 𝑞(𝑛) =2ℓ(𝑛) + 1 − 𝑛 for some arbitrary integers 𝑧(𝑛) ≥ 𝑛/2 andℓ(𝑛) ≥ (𝑛 − 1)/2, 𝑛 + 𝑚(𝑛) is even and 𝑛 + 𝑞(𝑛) is odd.
Then, {𝑥𝑛+1} and {𝑦𝑛}are in distinct convex unions ⋃𝑛≥0 𝐴𝑛
and⋃𝑛≥0 𝐵𝑛. Thus, the result follows from Lemma 8 (iv) and
Theorem 3(iv). Property (iii) has been proved.

If the computational disturbances are asymptotically
removed under the conditions ofTheorem 3(iii), one gets the
following results fromTheorem 9 and Remark 5.

Corollary 10. Assume that all the assumptions of Theorem 9
hold and, furthermore, 𝐷 ≥ 𝐷/𝛼, lim inf𝑛󳨀→∞𝐷𝑛 ≥ 𝐷, and{𝑘̃(𝑇𝑛+1𝑥0, 𝑇𝑛𝑥0)}∞𝑛=0 󳨀→ 0 and {𝑀𝑛(𝑥0)}∞𝑛=0 󳨀→ 0, ∀𝑥0 ∈𝐴∗ ∪ 𝐵∗. Then

𝐷 ≤ lim inf
𝑛󳨀→∞

inf
𝑥0∈𝐴
∗∪𝐵∗

(󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛󵄩󵄩󵄩󵄩)
≤ lim sup
𝑛󳨀→∞

sup
𝑥0∈𝐴
∗∪𝐵∗

(󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛󵄩󵄩󵄩󵄩) ≤ 𝛼𝐷
𝐷 ≤ lim inf

𝑛󳨀→∞
inf
𝑥0∈𝐴
∗∪𝐵∗

(󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑦𝑛󵄩󵄩󵄩󵄩)
≤ lim sup
𝑛󳨀→∞

sup
𝑥0∈𝐴
∗∪𝐵∗

(󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑦𝑛󵄩󵄩󵄩󵄩) ≤ 𝛼𝐷
(50)

if𝑚(𝑛) = 2𝑧(𝑛)−𝑛 and 𝑞(𝑛) = 2ℓ(𝑛)+1−𝑛 for some arbitrary𝑛-dependent integers 𝑧(𝑛) ≥ 𝑛/2 and ℓ(𝑛) ≥ (𝑛 − 1)/2, 𝑛 ≥ 0,{𝛼𝑛}∞𝑛=0 󳨀→ 𝛼 and {𝛽𝑛}∞𝑛=0 󳨀→ 𝛽 = 𝛼.
Proof. It follows from Theorem 3(iii), Remark 5, and Theo-
rem 9.

5. Generalized Modified Ishikawa’s Iterative
Scheme, Uncertain Cyclic Self-Mappings,
and Best Proximity Points

This section relies on the study of further properties con-
cerning the limit best positivity points under the generalized
modified Ishikawa’s iterative scheme studied in Section 4
being ran by the uncertain cyclic self-mapping of Section 3.
Some basic results are given in this section about limit best
proximity points and the convergence of sequences generated
by cyclic self-maps of Sections 3-4 to them. It is assumed that
the set-theoretic limits below of the sequences of sets {𝐴𝑛}∞𝑛=0
and {𝐵𝑛}∞𝑛=0 in the normed space (𝐸, ‖.‖) exist:

𝐴∞ = lim
𝑛󳨀→∞

⋃
𝑛≥1

⋂
𝑗≥𝑛

{𝐴𝑗} = lim inf
𝑛󳨀→∞

⋃
𝑛≥1

⋂
𝑗≥𝑛

{𝐴𝑗}
= lim sup
𝑛󳨀→∞

⋂
𝑛≥1

⋃
𝑗≥𝑛

{𝐴𝑗} ,
𝐵∞ = lim

𝑛󳨀→∞
⋃
𝑛≥1

⋂
𝑗≥𝑛

{𝐵𝑗} = lim inf
𝑛󳨀→∞

⋃
𝑛≥1

⋂
𝑗≥𝑛

{𝐵𝑗}
= lim sup
𝑛󳨀→∞

⋂
𝑛≥1

⋃
𝑗≥𝑛

{𝐵𝑗} .

(51)

We denote {𝐴𝑛}∞𝑛=0 󳨀→ 𝐴∞ and {𝐵𝑛}∞𝑛=0 󳨀→ 𝐵∞ and
the distance between the limit sets is 𝑑∞ = 𝑑(𝐴∞, 𝐵∞) =𝑑(𝑐𝑙𝐴∞, 𝑐𝑙𝐵∞), the distance between points 𝑥 and 𝑦 in 𝐸
being identified with the norm of 𝑧 = 𝑥 − 𝑦 in the linear
space 𝐸. The sets 𝐴∞ and 𝐵∞ are said to be the set-theoretic
limits of the respective sequences {𝐴𝑛}∞𝑛=0 and {𝐵𝑛}∞𝑛=0. It is
well known that a set-theoretic limit is not guaranteed to be
closed even if the involved set sequence consists of closed sets
(in fact, note that the union of infinitely many closed sets is
not necessarily closed). Consider a norm-induced distance𝑑 : 𝐸 × 𝐸 󳨀→ R0+ in (𝐸, ‖.‖) defined by 𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖,∀𝑥, 𝑦 ∈ 𝐸 such that for any nonempty subsets 𝐴 and 𝐵 of 𝐸,
one has𝑑(𝑥, 𝐴) = inf𝑦∈𝐴‖𝑥 − 𝑦‖, ∀𝑥 ∈ 𝐸 and 𝑑(𝐴, 𝐵) =
inf𝑥∈𝐴,𝑦∈𝐵‖𝑥 − 𝑦‖. Define

𝑃𝐸𝐴 (𝑥) = {𝑦 ∈ 𝐸 : 𝑑 (𝑥, 𝑦) = 𝑑 (𝑥, 𝐴)} ; ∀𝑥 ∈ 𝐸,
𝑃𝐴 (𝑥) = {𝑦 ∈ 𝐴 : 𝑑 (𝑥, 𝑦) = 𝑑 (𝑥, 𝐴)} ; ∀𝑥 ∈ 𝐸,

𝐴0 = {𝑦 ∈ 𝐴 : 𝑑 (𝑥, 𝑦) = 𝑑 (𝐴, 𝐵)} .
(52)

Then, 𝑃𝐴(𝐵0) = {𝑦 ∈ 𝐴 : 𝑑(𝑥, 𝑦) = 𝑑(𝐴, 𝐵0)}; ∀𝑥 ∈ 𝐸.
Similarly we can define 𝐵0 = {𝑦 ∈ 𝐵 : 𝑑(𝑥, 𝑦) = 𝑑(𝐴, 𝐵)}
and 𝑃𝐵(𝐴0) = {𝑦 ∈ 𝐵 : 𝑑(𝑥, 𝑦) = 𝑑(𝐵, 𝐴0)}; ∀𝑥 ∈ 𝐸. See [1, 5].
The sets𝐴0 and 𝐵0 are referred to as the sets of best proximity
points (or best proximity sets) of 𝐴 and 𝐵, respectively.
Lemma 11. Let (𝑋, ‖.‖) be a reflexive Banach space, let {𝐴𝑛}∞𝑛=0
and {𝐵𝑛}∞𝑛=0 be monotonically nonincreasing sequences of
nonempty, closed, bounded, and convex subsets of𝑋 (i.e.,𝐴 𝑖 ⊇𝐴 𝑖+1, 𝐵𝑖 ⊇ 𝐵𝑖+1; 𝑖 ≥ 0). Then, the set-theoretic limits 𝐴∞ and𝐵∞ exist; i.e., {𝐴𝑛}∞𝑛=0 󳨀→ 𝐴∞ and {𝐵𝑛}∞𝑛=0 󳨀→ 𝐵∞, and they
are nonempty, closed, bounded, and convex sets, and the limit
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best proximity sets 𝐴0∞ and 𝐵0∞ are nonempty and satisfy𝑃𝐵(𝐴0∞) ⊆ 𝐵0∞ and 𝑃𝐴(𝐵0∞) ⊆ 𝐴0∞.
Proof. It follows that 𝐴∞ and 𝐵∞ exist, are given by 𝐴∞ =⋂𝑛≥0 𝐴𝑛, 𝐵∞ = ⋂𝑛≥0 𝐵𝑛, from the identities (51), and are
nonempty closed, bounded, and convex sets since {𝐴𝑛}∞𝑛=0
and {𝐵𝑛}∞𝑛=0 are monotonically nonincreasing sequences of
nonempty, closed, bounded, and convex sets of a reflexive
Banach space. Then, it follows from Lemma 2.1 ([1], see also
[5]) that the sets of best proximity points 𝐴0∞ and 𝐵0∞ of
the set-theoretic limits𝐴∞ and 𝐵∞ are nonempty and satisfy𝑃𝐵(𝐴0∞) ⊆ 𝐵0∞ and 𝑃𝐴(𝐵0∞) ⊆ 𝐴0∞.

It turns out that if {𝐴𝑛}∞𝑛=0 and {𝐵𝑛}∞𝑛=0 are not monotoni-
cally nonincreasing sequences of nonempty, closed, bounded,
and convex subsets of 𝑋, it is not guaranteed that the
identities (51) hold and also that, even if they hold, so that the
set-theoretic limits 𝐴∞ and 𝐵∞ exist, such sets are bounded,
closed, and convex even if the members of the sequences of
sets are bounded, closed, and convex. Note that the unions of
infinitely many sets do not necessarily keep the properties of
boundedness, closeness, and convexity of the elements of the
sequences and such unions are invoked in the identities (51)
provided that they hold. Therefore, the assumption that the
limits𝐴∞ and 𝐵∞ exist and are bounded, closed, and convex
has to bemade explicitly as addressed in the subsequentmore
general result than Lemma 11.

Lemma 12. Let (𝑋, ‖.‖) be a reflexive Banach space, let {𝐴𝑛}∞𝑛=0
and {𝐵𝑛}∞𝑛=0 be sequences of nonempty bounded convex subsets
of 𝑋 such that the set-theoretic limits 𝐴∞ and 𝐵∞ exist; i.e.,
the identities (51) hold. Assume that𝐴∞and 𝐵∞ are nonempty,
bounded, and convex sets. Then, the limit best proximity sets𝐴0𝑐∞ and 𝐵0𝑐∞ of the closures of the set-theoretic limits 𝐴∞
and 𝐵∞, that is, 𝑐𝑙𝐴∞ and 𝑐𝑙𝐵∞, are nonempty and satisfy𝑃𝐵(𝐴0𝑐∞) ⊆ 𝐵0𝑐∞ and 𝑃𝐴(𝐵0𝑐∞) ⊆ 𝐴0𝑐∞.

The conditions of Lemma 11 for one of the sequences of
sets together with the less restrictive conditions of Lemma 12
for the other sequences lead to the subsequent result.

Lemma 13. Let (𝑋, ‖.‖) be a reflexive Banach space. Let{𝐴𝑛}∞𝑛=0 be a monotonically nonincreasing sequence of
nonempty, closed, bounded, and convex subsets of 𝑋. Let{𝐵𝑛}∞𝑛=0 be a sequence of nonempty, closed, and convex subsets
of 𝑋 which satisfies the second identity of (51). Then, the
nonempty set-theoretic limits 𝐴∞ (being nonempty, closed,
bounded, and convex) and 𝐵∞ exist. Then, if 𝐵∞ is nonempty,
closed, and convex, then the limit best proximity sets 𝐴0∞
and 𝐵0𝑐∞ are nonempty and satisfy 𝑃𝐵(𝐴0∞) ⊆ 𝐵0𝑐∞ and𝑃𝐴(𝐵0𝑐∞) ⊆ 𝐴0∞.

Proof. It follows from Lemmas 11 and 12 that 𝐴∞ exists
since {𝐴𝑛}∞𝑛=0 is monotonically nonincreasing and it is
nonempty, closed, bounded, and convex and 𝐵∞ exists and
it is nonempty, closed, bounded, and convex.

Conditions of nonemptiness of the best proximity sets𝐴0∞ and 𝐵0∞ are given in the next result.

Lemma 14. Let (𝐸, ‖.‖) be a normed space and {𝐴𝑛}∞𝑛=0 and{𝐵𝑛}∞𝑛=0 two sequences of sets of 𝐸. Then, the set-theoretic limits𝐴∞ and 𝐵∞ of the sequences {𝐴𝑛}∞𝑛=0 and {𝐵𝑛}∞𝑛=0 exist and
their sets of best proximity points 𝐴0∞ and 𝐵0∞ are nonempty
if any of the following constraints hold:

(1) {𝐴𝑛}∞𝑛=0 is monotonically nonincreasing sequence of
nonempty, closed, bounded, and convex subsets of 𝐸 and{𝐵𝑛}∞𝑛=0 is a sequence of nonempty subsets of𝐸which satisfies
the second identity of (51) with set-theoretic limit 𝐵∞ being
approximatively compact with respect to 𝐴∞.(2) {𝐵𝑛}∞𝑛=0 is monotonically nonincreasing sequence of
nonempty, closed, bounded, and convex subsets of 𝐸 and{𝐴𝑛}∞𝑛=0 is a sequence of nonempty subsets of𝐸which satisfies
the first identity of (51) with set-theoretic limit 𝐴∞ being
approximatively compact with respect to 𝐵∞.
Proof. Since {𝐴𝑛}∞𝑛=0 is a monotonically nonincreasing
sequence of nonempty, closed, bounded, and convex subsets
of 𝐸, then the set-theoretic limit 𝐴∞ of {𝐴𝑛}∞𝑛=0 exists; it
is nonempty and compact. Since {𝐵𝑛}∞𝑛=0 󳨀→ 𝐵∞ (i.e., the
second identity of (51) is satisfied) and the set-theoretic limit𝐵∞ of {𝐵𝑛}∞𝑛=0 is nonempty and approximatively compact
with respect to 𝐴∞ then any sequence {𝑥𝑛}∞𝑛=0 ⊂ 𝐵∞, such
that {‖𝑦−𝑥𝑛‖}∞𝑛=0 󳨀→ inf𝜎∈𝐵∞‖𝑦−𝜎‖ = 𝑑(𝑦, 𝐵∞) for 𝑦 ∈ 𝐴∞
has a convergent subsequence {𝑥𝑛𝑘}∞𝑘=0(⊂ 𝐵∞) 󳨀→ 𝑧, [1].
Then, 𝑦 ∈ 𝐴∞ can be chosen such that the limit 𝑧 of {𝑥𝑛𝑘}∞𝑘=0
is such that ‖𝑦 − 𝑧‖ = 𝑑(𝐴∞, 𝐵∞) = inf𝜇∈𝐴∞,]∈𝐵∞‖𝜇 − ]‖.
Therefore, 𝑦 ∈ 𝐴0∞ and 𝑧 ∈ 𝐵0∞ so that and 𝐴0∞ and 𝐵0∞
are nonempty. The result has been proved for the first set
of constraints. The proof under the second set of constraint
follows by duality.

Auxiliary technical results to be then used are summa-
rized in the result which follows.

Theorem 15. Let (𝑋, ‖.‖) be a uniformly convex Banach
space, let {𝐴𝑛}∞𝑛=0 and {𝐵𝑛}∞𝑛=0 be monotonically nonincreasing
sequences of nonempty, closed, and convex subsets of 𝑋. Let{𝑥𝑛}∞𝑛=0 and {𝑧𝑛}∞𝑛=0 be sequences in𝐴∞ and {𝑦𝑛}∞𝑛=0, a sequence
in 𝐵∞. Then, the following properties hold:

(i) Assume that {‖𝑧𝑛 − 𝑦𝑛‖}∞𝑛=0 󳨀→ 𝑑(𝐴∞, 𝐵∞) and that
for every 𝜀 > 0 there exists 𝑁0 such that for all 𝑚 > 𝑛 ≥ 𝑁0,{‖𝑥𝑚 − 𝑦𝑛‖}∞𝑛=0 ≤ 𝑑(𝐴∞, 𝐵∞) + 𝜀. Then, for every 𝜀 > 0 there
exists𝑁1 such that for all𝑚 > 𝑛 ≥ 𝑁1, {‖𝑥𝑚 − 𝑦𝑛‖}∞𝑛=0 ≤ 𝜀.

(ii) If {‖𝑧𝑛−𝑦𝑛‖}∞𝑛=0 󳨀→ 𝑑(𝐴∞, 𝐵∞) and {‖𝑥𝑛−𝑦𝑛‖}∞𝑛=0 󳨀→𝑑(𝐴∞, 𝐵∞) then {‖𝑥𝑛 − 𝑧𝑛‖}∞𝑛=0 󳨀→ 0.
(iii) If {‖𝑥𝑛 − 𝑦‖}∞𝑛=0 󳨀→ 𝑑(𝐴∞, 𝐵∞) for some 𝑦 ∈𝐵∞ then {𝑑(𝑥𝑛, 𝑃𝐴∞(𝑦))}∞𝑛=0 󳨀→ 0, 𝑦 ∈ 𝐵0∞ and{𝑑(𝑥𝑛, 𝑃𝐴∞(𝐵0∞))}∞𝑛=0 󳨀→ 0 and {𝑑(𝑥𝑛, 𝐴0∞)}∞𝑛=0 󳨀→ 0.

Proof. Since (𝑋, ‖.‖) is a uniformly convex Banach space then
it is reflexive. From Lemma 11, the set- theoretic limits 𝐴∞
and 𝐵∞ exist, i.e., {𝐴𝑛}∞𝑛=0 󳨀→ 𝐴∞ and {𝐵𝑛}∞𝑛=0 󳨀→ 𝐵∞, and
they are nonempty, closed, and convex sets whose nonempty
best proximity sets 𝐴0∞ and 𝐵0∞ satisfy 𝑃𝐵(𝐴0∞) ⊆ 𝐵0∞, so
that𝐵0∞ is nonempty and𝑃𝐴(𝐵0∞) ⊆ 𝐴0∞ and𝑑(𝐴∞, 𝐵∞) =𝑑(𝐴0∞, 𝐵0∞). Now, Property (i), Property (ii), and Property
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(iii) follow, respectively, from Lemma 3.7, Lemma 3.8, and
Corollary 3.9 of [1].

Now, we address some convergence conditions of
sequences generated by the cyclic self-mapping 𝑇 on⋃𝑛≥0(𝐴𝑛 × 𝐵𝑛+1 ∪ 𝐵𝑛 × 𝐴𝑛+1) under condition (18),
which becomes contractive in the perturbation-free case,
provided that some limiting conditions are fulfilled by the
perturbations.

Theorem 16. Let (𝑋, ‖.‖) be a uniformly convex Banach
space and consider the monotonically nonincreasing sequences{𝐴𝑛}∞𝑛=0 and {𝐵𝑛}∞𝑛=0 of nonempty, closed, and convex subsets of𝑋 and let 𝑇 be a cyclic self-mapping on⋃𝑛≥0(𝐴𝑛 ×𝐵𝑛+1 ∪𝐵𝑛 ×𝐴𝑛+1) being subject to all the general assumptions ofTheorem 3
including the further assumption of Theorem 3 (iv).

Then, the following properties hold:
(i) It follows that

𝐷∞ ≤ lim inf
𝑛󳨀→∞

inf
𝑥0∈𝐴
∗∪𝐵∗

󵄩󵄩󵄩󵄩󵄩𝑇𝑛+2𝑥0 − 𝑇𝑛+1𝑥0󵄩󵄩󵄩󵄩󵄩
≤ lim sup
𝑛󳨀→∞

sup
𝑥0∈𝐴
∗∪𝐵∗

󵄩󵄩󵄩󵄩󵄩𝑇𝑛+2𝑥0 − 𝑇𝑛+1𝑥0󵄩󵄩󵄩󵄩󵄩 ≤ 𝐿𝑇 (53)

where 𝐿𝑇 = sup𝑥0∈𝐴∗∪𝐵∗((1 − 𝑘0)(𝐷 + 𝑀0∞(𝑥0))/(1 −𝑘0 − 𝑘̃∞(𝑥0))) with 𝑀∞(𝑥0) = lim sup𝑛󳨀→∞𝑀𝑛(𝑥0) and𝑀0∞(𝑥0) = lim sup𝑛󳨀→∞𝑀0𝑛(𝑥0), where 𝑀𝑛(𝑥0) and𝑀0𝑛(𝑥0) are defined in (19) and (24), respectively, for all 𝑛 ≥ 0.
Furthermore, the subsequent chain of inequalities is true:

𝐿𝑇 ≥ 𝐷 ≥ 𝐷∗ = 𝑑 (𝐴∗, 𝐵∗) = 𝑑 (𝐴0, 𝐵0) ≥ 𝐷∞
= 𝑑 (𝐴∞, 𝐵∞) (54)

(ii) Assume that

𝐷
= sup
𝑥0∈𝐴
∗∪𝐵∗

(𝐷∞ (1 − 𝑘0 − 𝑘̃∞ (𝑥0))1 − 𝑘0 −𝑀0∞ (𝑥0))
≥ 𝐷∗

(55)

and, furthermore, assume also that the assumptions of Theo-
rem 9 (ii) hold with {𝛼𝑛}∞𝑛=0 󳨀→ 𝛼(= 1) for the generalized
modified Ishikawa’s iterative scheme (39). Then, {‖𝑥𝑛+1 −𝑥𝑛‖}∞𝑛=0 󳨀→ 𝐷∞ and {‖𝑥2𝑛+2−𝑥2𝑛‖}∞𝑛=0 󳨀→ 0 for any𝑥0 ∈ 𝐴∗∪𝐵∗. If, in addition, the assumptions ofTheorem 9 (iii) hold with{𝛼𝑛}∞𝑛=0, {𝛽𝑛}∞𝑛=0 󳨀→ 𝛼(= 𝛽 = 1) then {‖𝑥𝑛+1−𝑦𝑛‖}∞𝑛=0 󳨀→ 𝐷∞
and {‖𝑦2𝑛+2 − 𝑦2𝑛‖}∞𝑛=0 󳨀→ 0 for any 𝑥0 ∈ 𝐴∗ ∪ 𝐵∗.
Proof. One has fromTheorem 3 (iv) that (53) holds.

𝐷∞ ≤ lim inf
𝑛󳨀→∞

inf
𝑥0∈𝐴
∗∪𝐵∗

󵄩󵄩󵄩󵄩󵄩𝑇𝑛+2𝑥0 − 𝑇𝑛+1𝑥0󵄩󵄩󵄩󵄩󵄩
≤ lim sup
𝑛󳨀→∞

sup
𝑥0∈𝐴
∗∪𝐵∗

󵄩󵄩󵄩󵄩󵄩𝑇𝑛+2𝑥0 − 𝑇𝑛+1𝑥0󵄩󵄩󵄩󵄩󵄩 ≤ 𝐿𝑇;
∀𝑥0 ∈ 𝐴∗ ∪ 𝐵∗.

(56)

Property (i) is proved as follows.The reference distance fulfils𝐷 ≥ 𝐷∗ by hypothesis of Theorem 3. 𝐷∗ = 𝑑(𝐴∗, 𝐵∗) =𝑑(𝐴0, 𝐵0) ≥ 𝑑(𝐴∞, 𝐵∞) since {𝐴𝑛}∞𝑛=0 and {𝐵𝑛}∞𝑛=0 are
monotonically nonincreasing sequences under set inclusion
of nonempty closed sets so that there exist the set- theoretic
limits 𝐴∞ = ⋂𝑛≥0 𝐴𝑛 and 𝐵∞ = ⋂𝑛≥0 𝐵𝑛 which are
nonempty and closed. The inequality 𝐿𝑇 ≥ 𝐷 holds always
for 𝐷 ̸= 0 and it is now proved by contradiction for the case𝐷 ̸= 0. Assume that 𝐷 ̸= 0 and 0 ≤ 𝐿𝑇 = sup𝑥0∈𝐴∗∪𝐵∗((1 −𝑘0)(𝐷 + 𝑀0∞(𝑥0))/(1 − 𝑘0 − 𝑘̃∞(𝑥0))) < 𝐷 and 𝑘̃∞(𝑥0) =
lim sup𝑛󳨀→∞𝑘̃(𝑇𝑛+1𝑥0, 𝑇𝑛𝑥0) ∈ [−𝑘̃00, 𝑘̃10], ∀𝑥0 ∈ 𝐴∗ ∪ 𝐵∗,
since 𝑘̃∞(𝑥0) ∈ [0, 1 − 𝑘0) for all 𝑥0 ∈ 𝐴∗ ∪ 𝐵∗and 𝑘0 ∈[0, 1). Then, there exists some 𝑥0 ∈ 𝐴∗ ∪ 𝐵∗ such that 0 ≤(1 − 𝑘0)𝑀0∞ < −𝑘̃∞(𝑥0) ≤ 0 leading to the contradiction0 < 0. Thus 𝐿𝑇 ≥ 𝐷 and Property (i) has been proved.
The proof of Property (ii) follows directly from Theorem 3
(iv) under the hypotheses of Theorem 9 [(ii)-(iii)], by using
the results ofTheorem 15 [(ii)-(iii)] since the upper-bound of
lim sup𝑛󳨀→∞‖𝑇𝑛+2𝑥0−𝑇𝑛+1𝑥0‖ becomes exactly a limit being
equal to𝐷∞(see (53)).

The following result is an “ad hoc” extension from
Theorem 3.10 of [1] for this problem under the given results
and the relevant related assumptions.

Theorem 17. Let (𝑋, ‖.‖) be a uniformly convex Banach
space and consider the monotonically nonincreasing sequences{𝐴𝑛}∞𝑛=0 and {𝐵𝑛}∞𝑛=0 of nonempty, closed, and convex subsets of𝑋 and let 𝑇 be a cyclic self-mapping on⋃𝑛≥0(𝐴𝑛 ×𝐵𝑛+1 ∪𝐵𝑛 ×𝐴𝑛+1) being subject to all the general assumptions ofTheorem 3
and the further assumption of Theorem 3 (iv). Assume also

(a) 𝐷 = sup𝑥0∈𝐴∗∪𝐵∗(𝐷∞(1 − 𝑘0 − 𝑘̃∞(𝑥0))/(1 − 𝑘0) −𝑀0∞(𝑥0)) ≥ 𝐷∗,
(b) the assumptions of Theorem 9 (ii) hold for the general-

ized modified Ishikawa’s iterative scheme (39) with {𝛼𝑛}∞𝑛=0 󳨀→𝛼(= 1).
Then,
(1) Any sequence {𝑥2𝑛}∞𝑛=0 generated from the generalized

modified Ishikawa’s iterative scheme (39) for any given 𝑥0 ∈𝐴∗ is convergent to 𝑥𝐴∞ which is the unique best proximity
point of 𝐴∞ (the set-theoretic limit of {𝐴𝑛}∞𝑛=0). Furthermore,{𝑥2𝑛+1}∞𝑛=0 󳨀→ 𝑥𝐵∞ the set-theoretic limit of {𝐵𝑛}∞𝑛=0).

(2) Any sequence {𝑥2𝑛}∞𝑛=0 generated from the generalized
modified Ishikawa’s iterative scheme (39) for any given 𝑥0 ∈ 𝐵∗
is convergent to 𝑥𝐵∞ and {𝑥2𝑛+1}∞𝑛=0 󳨀→ 𝑥𝐴∞.

(3) {𝑥2(𝑛+𝑚) − 𝑥2𝑛}∞𝑛=0 󳨀→ 0 for any positive integer𝑚 and
any given 𝑥0 ∈ 𝐴∗ ∪ 𝐵∗.
Proof. Under the assumptions, the set-theoretic limits 𝐴∞
and 𝐵∞ of the sequences {𝐴𝑛}∞𝑛=0 and {𝐵𝑛}∞𝑛=0 exist with𝑑(𝐴∞, 𝐵∞) = 𝐷∞ and are nonempty, closed, and convex
since they are the intersections of infinitely many sub-
sets ordered in a monotonically nonincreasing sequence
which are all nonempty, closed, and convex. Then, {‖𝑥𝑛+1 −𝑥𝑛‖}∞𝑛=0 󳨀→ 𝐷∞ and {‖𝑥2𝑛+2 − 𝑥2𝑛‖}∞𝑛=0 󳨀→ 0 for any 𝑥0 ∈𝐴∗∪𝐵∗ fromTheorem 16 (ii), ∀𝑥0 ∈ 𝐴∗∪𝐵∗. If 𝑥𝐴∞ and 𝑥𝐵∞
are best proximity points then {‖𝑥𝑛+1 − 𝑥𝑛‖}∞𝑛=0 󳨀→ ‖𝑥𝐴∞ −
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𝑥𝐵∞‖ and {‖𝑥2(𝑛+𝑚) − 𝑥2𝑛‖}∞𝑛=0 󳨀→ 0 for any given integer𝑚 ≥ 1 and 𝑥𝐴∞ and 𝑥𝐵∞ are the unique best proximity points
in 𝐴∞ and 𝐵∞ from the convexity of the set-theoretic limits
to some of them all the sequences {𝑥2𝑛}∞𝑛=0 depending on the
initial point being in 𝐴∗or in 𝐵∗.
Remark 18. Assume the hypotheses ofTheorem 17 except that
the sets of one of the sequences {𝐴𝑛}∞𝑛=0 or {𝐵𝑛}∞𝑛=0 are not
convex. Then, the uniqueness of the best proximity point
in the convex set-theoretic limit of one of the sequences
is guaranteed and it is a limit of the subsequences (with
either even or odd subscript), depending on the initial
point allocation, of any generated subsequence. Since the
self-mapping 𝑇 is single-valued the best proximity point,
the complementary subsequence (with either odd or even
subscript) also converges to a best proximity point of the
other eventually nonconvex set-theoretic limit even if such
a set has more than one best proximity point.
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