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Abstract

The observation of an existing structure supporting a particular maximal load provides a direct constraint on the possible range
of values its resistance capacity may take. The implied update of structural reliability allows monitoring and maintenance planning
to be done from a risk optimal perspective. Existing proof load-based reliability updating techniques require multiple numerical
computations which are often too cumbersome for routine use. By building on the assumptions of the first order reliability method,
this study develops and validates a first order reliability updating approach which is computationally efficient. The resulting formu-
lation is shown to be applicable to reliability problems tractably considered using the first order reliability method. This method is
illustrated for two example structures: a reinforced concrete beam forming part of a highway bridge to which traffic loading data
is applied, and a granular embankment forming a seawall on a shoreline mining operation for which the phreatic surface level is
monitored.
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1. Introduction

Risk plays a principal role in the balance of safety and econ-
omy at the core of structural and geostructural engineering. Un-
derstood as the probability-weighted equivalent financial losses
that would result from failure, it allows the aggregate effects
of good design and maintenance practices to be expressed in
financial terms that are useful in managing maintenance of in-
frastructure assets.

In the design of new structures, this balance is captured in an
approximate sense by means of the target reliability embodied
in the calibration of design standards [e.g. 1, 2, 3]. Existing
structures are commonly assessed using these same techniques
and standard calibrations, despite the fact that there is notable
potential for reducing the uncertainty about performance limits
through measurements of response to loading [4, 5] and com-
parison of these values to the design model predictions [6].

Knowledge of the change in reliability with time allows
maintenance planning to be done from a risk optimal perspec-
tive [7], and is also of value when a structure is repurposed for
a use in a different risk class [2, 4, 5].

The classification of uncertainty as epistemic versus aleatory
[8, 9, 10], suggests a key perspective on time dependence in
structural reliability problems. Loading parameters are pre-
dominantly aleatory and time varying, with uncertainty stem-
ming from the inability to predict the future. Material parame-
ters are mostly epistemic and spatially varying, with the possi-
bility of reducing uncertainty by more representative sampling
strategies.

To the extent that material deterioration can be accounted for,

the lack of time-dependent variability in material parameters
allows the lower bound on structural resistance capacity implied
by its ability to resist a severe loading event observed in the
past to be applied at the present time, albeit with a degree of
uncertainty stemming from factors such as measurement error
and the description of deterioration. Such a loading event can
take the form of a controlled proof load test [e.g. 11, 12], or
occur during the service life of the structure [e.g. 13, 14].

The first order reliability method (FORM) [15, 16] has been
extensively applied to obtain reliability estimates for many
common structural and geostructural design problems, and
forms an integral part of standards calibration [1, 2]. The source
of the utility and economy of the method is its simple geo-
metrical formulation, by which it effectively reduces a many-
dimensional integration problem to a one-dimensional standard
normal probability determination.

Previous work on updating of structural reliability for ex-
isting structures using the lower bound on resistance capac-
ity implied by severe loading or proof load-testing rely on a
Bayesian updating formulation, in which the distribution of the
structural resistance is truncated at the limit implied by the ob-
served load [17, 18]. Updated reliability values are then ob-
tained either by integration of the posterior distribution function
[18, 19, 20, 21], or by updating the failure probability using the
probability of the implied resistance bound conditional on the
structure surviving the loading event [11, 22].

In the former approach, the irregular distribution shape due
to truncation, coupled with the fact that typical structural and
geostructural design problems involve resistance terms with
multiple parameters with a variety of non-normal distribution
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types, results in a strongly non-linear limit state function in
standard normal space [17]. As a result, the updated reliability
index cannot be directly determined using FORM, and instead
needs to be obtained by numerical integration via a variant of
the Monte-Carlo technique [e.g. 23]. Similarly, the latter ap-
proach requires evaluation of the conditional bound probability,
again requiring Monte-Carlo integration.

This paper develops an efficient methodology for updating
structural reliability following observations of severe loading.
The method builds on the geometrical simplicity of FORM, re-
ducing the multi-dimensional reliability updating problem to
a two-dimensional combination of two related FORM solu-
tions. The theoretical basis for this first order reliability up-
dating method is developed in the following section, followed
by validation and assessment of its performance for limit state
functions with curvature at the design point. The method is
then implemented for two example structures: firstly, a rein-
forced concrete beam forming part of a highway bridge with
weigh-in-motion traffic loading measurements, and secondly a
granular seawall embankment with piezometric records of the
time variation in the phreatic surface.

2. Theoretical Development

2.1. Geometrical interpretation of reliability updating

Consider a simple performance function expressing the bal-
ance between the resistance capacity R and an applied load ef-
fect S . That is

g1 = R − S , (1)

for which the requirement that g1 ≥ 0 implies R ≥ S . Load ef-
fect S is the result of a time-varying random process; R reflects
a function of inherent properties of the structure and material,
known only from a set of sample characterisations.

In a reliability context, g1 = 0 represents a single limit state
function delimiting the domain of parameter values associated
with structural failure (Figure 1(a)), for which the probability is

p f =

∫
g1<0

f (R, S )dRdS =

∫
g1<0

φ2(uR, uS )duRduS , (2)

where uX is the standard normal conjugate of random variable
X, determined as uX = Φ−1 (F(X)), and φ2 is the bivariate stan-
dard normal distribution function. Graphically, p f corresponds
to the integral of φ2 over the area bounded by line ABC in Fig-
ure 1(a), and is associated with design point u∗1.

For any measured value S = qt, the observation that the
structure remains standing implies a lower bound on the asso-
ciated range of values which R may take,

Rt ≥ qt, (3)

with t denoting the fact that the observation is made at a specific
time during the lifetime of the structure.

This inequality provides the essential basis for updating re-
liability based on the observation that the structure was able to

resist a measured load. Defining a supplementary performance
function

g2 = R − qt, (4)

with associated design point u∗2, the updated probability of fail-
ure implied by this observation is then

p f =

∫
g1<0∩ g2≥0

φ2(uR, uS )duRduS , (5)

that is, an integral over the area delimited by line ABD in Figure
1(a). Note that in the geometry of Figure 1 structural resistance
R increases towards the origin on the uR axis.

The updated reliability index is then

β = Φ−1
(
1 − p f

)
. (6)

To avoid ambiguity due to the problem geometry, the reliability
index is defined in terms of the failure probability, rather than
the definition β = min {u · u | g1 = 0} [15, 16, 17].

For general problems in which the limit state function is non-
linear, Equation 5 must be numerically integrated, normally us-
ing a Monte-Carlo technique. However, following a similar set
of assumptions to that forming the basis of FORM, the two-
dimensional geometry of the problem allows Equation 5 to be
easily evaluated by numerical integration of φ2 over the wedge
ABD, which is described by the conditions

uS sin θ12 + uR cos θ12 > |u∗1| and uR ≤ |u∗2|, (7)

where

cos θ12 =
u∗1 · u

∗
2

|u∗1||u
∗
2|
. (8)

The updating method just described therefore makes the same
assumption of limit state function linearity that underlie the first
order reliability method (FORM).

2.2. Accounting for measurement error

Let ε be the independent random measurement error on qt,
so that g2 becomes

g2 = R − qt − ε. (9)

Limit state functions g1 = 0 and g2 = 0 now represent planes
in the three-dimensional geometry shown in Figure 1(b), with
design points u∗1 and u∗2|ε, respectively.

As shown in Figure 1(b) and (c), u∗1 and u∗2|ε span a two-
dimensional subspace which is orthogonal to both g1 = 0 and
g2 = 0, with axial variables u′R and u′S . The geometry of this
planar subspace is identical to that in Figure 1(a), so that the
problem of determining p f therefore reduces to that described
in Equations 5-6, with design point vectors u∗1 and u∗2|ε. This is
the geometrical essence of the first order updating methodology
presented here.
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2.3. Incorporating capacity decay

In the preceding discussion, the observation that qt1 at time
t = t1 implied a corresponding lower bound Rt1 on the re-
sistance capacity (Equation 3). However, if a period of time
∆t12 = t2 − t1 has since elapsed to reach the present time t2, the
material may have weakened somewhat due to material decay
(corrosion, alkali-silica reaction, fatigue, etc.), so that the lower
bound Rt1 is no longer valid at t2.

Let material decay be described by a model relation L(t)
[11], such that

R(t) = RL(t). (10)

The performance functions describing the updated structural re-
liability at t = t1 are then

g1(t1) = RL(t1) − S , (11)

and
g2(t1) = RL(t1) − qt1 − ε. (12)

The effect of deterioration on R(t1) during ∆t12 can be ac-
counted for by expanding R(t) about t1. A first order estimate
of R(t2) then follows as

R(t2)′ = RL(t1) + ∆t12R
dL(t)

dt

∣∣∣∣∣∣
t1

. (13)

Noting from g2(t1) = 0 that RL(t1) = qt1 + ε, the extrapolated
supplementary performance function is then derived given by

g2(t2)′ = RL(t2) − ∆t12R
dL(t)

dt

∣∣∣∣∣∣
t1

− qt1 − ε, (14)

which combined with g1(t2) gives an extrapolated reliability up-
date β ′ at time t2. An observed value qt2 at t2 would be the new
recorded maximum resisted load if g2(t2) gives β ≥ β ′ (even if
qt2 < qt1 ).

2.4. Multi-dimensional problems

Equation 7 is general and applicable for design point vec-
tor pairs with any number of random variables ≥ 2, provided
that the parameter space is Hermitian. Because it reduces the
problem to a two-dimensional subspace spanned by u∗1 and
u∗2|ε, the formulation is therefore general for multidimensional
problems, provided that all aleatory random variables (i.e. non-
boundable) are evaluated from measurements. Limits cannot
be placed on individual material parameters, but the resistance
term as a whole can be bounded. Note that this includes model
uncertainty factors.

Parameter dependencies due to correlation are accounted for
in the transformation to uncorrelated standard normal space [8],
before the geometrical reduction to two dimensions is made. As
a result, the method is general with respect to correlation among
variables, provided that this is limited to pairs of aleatory or
pairs of epistemic variables.

For a given generalised performance function

g(R1, . . . ,Rn, S 1, . . . , S m), (15)

in which the Ri denote the variety of possible parameters con-
tributing to the structural resistance and S i the set of loading
parameters, the limit state functions corresponding to u∗1 and
u∗2|ε are then

g1(R1, . . . ,Rn, S 1, . . . , S m, ε1 = 0, . . . , εm = 0) = 0, and
g2(R1, . . . ,Rn, S 1 = q1t, . . . , S m = qmt, ε1, . . . , εm) = 0,

(16)

respectively .

3. Validation

Integration for the updated probability of failure via the lin-
earised limit state function in Equation 7 is based directly on
FORM, and assumes the limit state function (g = 0) to be linear
in standard normal space. Although this is almost never truly
the case for real structural problems, FORM remains tractable
because the part of the parameter domain where the difference
between g = 0 and its linear approximation at the design point
becomes significant, fall predominantly in regions of very low
probability density. The first order reliability updating formu-
lation developed in Section 2 relies on a larger domain of the
limit state function than that in the neighbourhood of the de-
sign point, and would therefore be somewhat more sensitive to
curvature in g = 0.

To validate the formulation and explore the extent to which
the method compares to the accuracy FORM, the first order re-
liability updating methodology is applied to a test performance
function

gu =


cosh

( ũS − ũR

2
√
κdβ0

)
−

ũS + ũR

2
, if 0 ≤ κd,

2 − cosh
( ũR − ũS

2
√
−κdβ0

)
−

ũS + ũR

2
, if − 1/β0 < κd < 0.

(17)
Here κd is the curvature at the design point u∗ = (u∗R, u

∗
S ), β0 =

|u∗|, ũR = uR/u∗R, and ũS = uS /u∗S . Figure 2(a) illustrates gu = 0
for a set of κd values. Note that for κd = 0, the limit state
function reduces to the linear form assumed in FORM.

Hall [18] introduced a Bayesian approach in which the poste-
rior distribution of the resistance, given observation S = qt ± ε,
is given by

f ′R(r) =
FN (r) fR(r)∫ ∞

−∞

FN (r) fR(r)dr
, (18)

where FN is the Gaussian cumulative distribution function with
µ = qt and σ = σε, and fR describes the distribution of resis-
tance random variable R. As with Equation 2, and assuming R
and S to be independent, the updated probability of failure is
then

p f =

∫
gu<0

f ′R(r) fS (s)drds, (19)

from which the updated reliability follows.
The Bayesian approach does not assume linearity, and so

gives the accurate updated p f when curvature is present. How-
ever, the integration in Equation 19 becomes non-trivial when
g is expensive to compute.

3



Figure 2(b) compares reliability indices determined using the
first order updating method (Equation 7) to values determined
using the Bayes equation (Equation 19), for the range of de-
sign point curvature values illustrated in Figure 2(a). Updating
calculations used σε = 0.1σR.

It can be seen that for a linear limit state function, the ge-
ometrical method yields identical results to the Bayesian ap-
proach of Hall [18]. That is, βFORM/β = 1.0 for κd = 0.

Figure 2(b) also compares the dependence of FORM on limit
state function curvature (labelled as “prior”) with updated reli-
abilities determined using the first order approach. The latter
show similar trends in curvature dependence to the prior re-
liabilities, although the magnitude of the resulting inaccuracy
increases for qt values away from the design point. As a gen-
eral rule of thumb, geometrically updated reliability values will
therefore be useful to the extent that the assumptions that un-
derlie FORM are valid for a given problem.

4. Implementation for Example Structures

4.1. Weigh-in-motion traffic loading applied to reinforced con-
crete bridge

As a first example implementation, recorded weigh-in-
motion data, in the form of point loads corresponding to the
measured axle loads of individual vehicles, are applied to the
moment influence line of a single supported beam. As simplifi-
cation, it is assumed that the beam is supporting a single traffic
lane and that a single vehicle governs the moment response.
The data is obtained from the Roosboom measurement station
in the left lane of the N3 toll route connecting Durban and Jo-
hannesburg [13], a primary route for freight transport from the
Durban port to the economic centre of Gauteng.

Using computed moments for 721,000 vehicles measured in
356 days (2025 vehicles per day), and assuming the moments to
be normally distributed [24, 25], synthetic data for 100 periods
of 50 years was generated, from which daily and 50-year max-
ima subsets were selected. The resulting mean and variance of
the daily maximum loading values was subsequently applied to
generate a synthetic 50-year traffic loading time series as 365 ×
50 = 18,250 Gumbel distributed random values. Parameters for
the 50-year maxima were used in the reliability analysis (Table
1). The choice of Gumbel distribution is illustrative in this con-
tribution; a detailed debate on the appropriate description to use
for extreme traffic loading is beyond the scope of this study.

Material and loading parameters for the reinforced concrete
beam under consideration are summarised in Table 1. For illus-
trative purposes, material decay is represented via an exponen-
tial decay model for the area of reinforcing steel with charac-
teristic decay time τ, that is

L(t) = exp (−t/τ) . (20)

The performance function for the primary reliability problem
then follows its usual form,

g1 = Rt − S t (21)

with [e.g. 26, 25]

Rt = θRAs fy0.9(h − c) exp (−t/τ) , and (22)

S t = γcwhL2/8 + Q, (23)

where θR is the resistance model factor, As is the area of rein-
forcing steel, fy its yield strength, Q is the imposed moment
due to traffic, γc is the weight density of concrete, c is the cover
depth, and h, w, and L is the depth, width, and length of the
beam, respectively. As is adjusted to obtain βref = 3.8 (at t = 0),
in accordance with Eurocode recommendations for 50 year re-
liability target values [1].

For a given measurement of the imposed moment, Q = qt1 ,
made at time t1, the observation constraint performance func-
tion at at time t2 is then

g2 = Rt2 +
∆t12

τ
Rt1 − S t1 (24)

with
Rti = θRAs fy0.9(h − c) exp (−ti/τ) , and (25)

S t1 = γcbhL2/8 + qt1 + ε. (26)

Design points for g1 and g2 are computed at each locally
maximal observation, for which the resulting updated reliabil-
ity values are shown in Figure 3. Measurement error on qt is
estimated to be 5% [25]. Also shown is the updated reliability
trace in which maintenance is performed after 30 years. In the
absence of case-specific information, maintenance is assumed
to return the reliability to the original target value and also to
reset any evidence record of previously resisted loads.

Maximal observation events are seen to increase the struc-
tural reliability quite notably, with frequent updates in the relia-
bility balanced by consistent deterioration of the structure. Fig-
ure 4 illustrates the reliability update effected by the spectrum
of maximal observation values. In this example, the updated
reliability is relatively sensitive to the uncertainty in the obser-
vation value (ε), reflecting relatively large αε values of 0.2 seen
in the FORM analysis of g2.

Following a similar methodology to that used in Section 3,
accurate updated reliability values can be computed that do not
make any assumptions regarding the shape of the limit state
function. Comparison of updated reliability values computed
using the Monte-Carlo method via Equation 5 to values com-
puted using the first order reliability updating methodology,
(Figure 5) show that for the reinforced concrete beam the first
order method overestimates the updated reliability values by
about 3%, consistent with the use of FORM in reliability anal-
yses of concrete members.

4.2. Storm-induced surges in seawall embankment phreatic
surface levels

The second implementation considers the stability of seawall
embankments (landward slopes) at a mining operation along the
southern African Atlantic coast. For the slope in question, exca-
vation has progressed down to about 10 metres below the mean
seawater level, protected by seawall embankments constructed
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from locally excavated granular material that resist surging sea-
water levels during winter storms. In this illustrative example
the geometries of the slope and the phreatic surface are simpli-
fied, and a circular slip surface is assumed (Figure 6).

The depth of the phreatic surface within the embankment
is monitored using piezometric pressure transducers installed
in boreholes. For this example, daily measurements of the
phreatic surface height beneath the top shelf of the slope were
used (Figure 6). The water level above the base of the slope
(L + L0) is fit with a lognormal distribution (Figure 7). The
appropriate corresponding extreme value distribution for L in
reliability analysis is therefore Type II [8], for which parame-
ters were determined from the corresponding annual maxima
via the same methodology followed in Section 4.1. Note that
in this case daily values were assumed to have an autocorrela-
tion time of one week, reflecting the influence of moon phases
on the tides. Table 2 summarises the statistical parameters de-
scribing the data as well as the distribution parameters used in
the reliability analysis. Because of the relatively short time pe-
riod under consideration in this example, material decay is not
considered.

The stability of the slope is assessed via the factor of safety
F , determined using Spencer’s method [27, 28, 29], in which
two unknowns (F and λ) are found by solving the equations
(refer to Figure 6)∑

slices

ζ (∆x sin λ − ∆y cos λ) = 0, (27)

∑
slices

ζ = 0, (28)

with

ζ =
FT sinα − c′∆d/F − (FT cosα − w∆d) tan φ′/F

cos(α − λ) + sin(α − λ) tan φ′/F
. (29)

Here, w is the pore water pressure (found from slice geometry
and phreatic surface characterised via L), FT = W + FV , and ∆x
and ∆y are moment arms at the base of each slice. The slope
material is characterised by density γ, cohesion c′, and friction
angle φ′.

The primary performance function for reliability analysis is
then

g1 = θFF (c′, φ′, L, ε = 0) − 1, (30)

from which the observation constraint performance function for
a given observed value of L = `t, follows as

g2 = θFF (c′, φ′, L = `t, ε) − 1, (31)

with model uncertainty accounted for via θF [30].
Parameter values are summarised in Table 2. Based on previ-

ous work [29], c′ and φ′ are the only material parameters con-
sidered with meaningful random variation. Imposed load atop
the slope is not critical to the reliability analysis and is neglected
here, so that the level of the phreatic surface (L) represents the
time-dependent driver of failure uncertainty.

Design points for g1 = 0 and g2 = 0 are computed at each
maximal phreatic surface level observation, for which the up-
dated reliability values are shown in Figure 8. Figure 9 illus-
trates the reliability update effected by the range of maximal
observation values. The updated reliability is relatively insen-
sitive to the uncertainty in the observation value (ε), reflecting
small αε values of only 0.02 seen in the FORM analysis of
g2. Comparison of the first order reliability update values to
Monte-Carlo determinations via Equation 5 reveal (Figure 10)
that for the limit-equilibrium analysis of slope stability, the first
order method may underestimate the updated reliability values
by 2-4%.

The acceptability of β values is generally judged within the
context of the societal willingness to pay for increased safety
[31]. The reference reliability value of βref = 0.98 for this slope
is relatively low when compared to recommended values for
civil structures [2, 3], but is comparable to estimates for slopes
on active mines [32, 33]. Low β values for active mining slopes
are considered acceptable provided that these structures are in-
accessible to the public and are subject to continuous monitor-
ing and maintenance [32].

5. Discussion

In general, accurate reliability update values would require
numerical integration of Equation 5 or Equation 19. Direct nu-
merical integration [17, 18, 20] becomes prohibitive for mul-
tidimensional problems, so that such evaluations generally re-
quire the use of Monte-Carlo techniques [19, 34, 35], which still
represent a significant undertaking when numerical simulations
are required to evaluate the performance function. Similarly,
Bayesian updating of the probability of failure [11, 22] require
the probability of the observed load conditional on failure not
occurring to be evaluated, again involving repeated evaluation
of the performance function.

Because the first order updating method relies on a linear
limit state function, it can be readily used to extend reliability
analyses of structural and geostructural problems usually anal-
ysed using FORM. This includes the common failure modes
associated with structural members [e.g. 8, 36], as well as com-
monly encountered geostructures [e.g. 29, 37, 38].

The analyses performed in the present study assume that a
single failure mode dominates. In cases where multiple failure
modes are present, the probability of failure reflects the union of
all these modes. The reliability index reflects failure of a given
structural entity, without specific reference to the mode of fail-
ure. Observing a particular load implies bounds on a subset of
material properties via a given failure mode, properties that also
contribute to the resistance of another mode [18]. However, us-
ing this information to update reliability requires all the relevant
failure modes to be taken into account. Such a scenario would
require multiple g1 = 0 surfaces to be defined, and is beyond
the scope of the first order method presented.

The two example implementations in Section 4 illustrate the
effect of measured structural performance on the reliability of
existing structures. An observation in which the structure re-
sists a relatively large (though not unrealistic) load, eliminates
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a section of parameter space from the possible parameter com-
binations that can result in failure, and shifts the reliability up-
wards by a notable amount. A larger number of smaller load
measurements contribute to the updated reliability trace as the
characteristic deterioration time decreases, as well as following
maintenance, in which the lower bound history on resistance
capacity is reset.

The material decay model assumed in Section 4.1 is pur-
posely generic for illustration purposes; other simple forms
have been used in previous work [11]. More realistic descrip-
tions of material deterioration would be tailored to a specific set
of mechanisms, for example for alkali-silica reaction in con-
crete, fatigue in steel, or internal particle erosion in embank-
ments. Any of these mechanisms would by necessity involve
a number of additional parameters treated as random variables;
the formalism is general and can be applied in these cases pro-
vided that the time derivative of the resistance term (Equation
14) exists and can be evaluated.

Practical implementation of the method for real structures
must be done in the context of loads that the structure is known
to have been subjected to. Observations of such loading can
take the form of semi-continuous monitoring, as is the case in
the two examples discussed, or of controlled load tests.

As such, the observation that, despite deterioration of the
structure, reliability is sustained at higher values than the ref-
erence value of the original target reliability, should not be in-
terpreted as implying that maintenance is unnecessary. Any up-
dated reliability value carries the assumption that no failure (or
damage) occurred during the associated loading event, and the
lower reliability value prior to the update reflects the fact that
the probability of failure during severe loading is not negligible.

6. Conclusions

The observation of an existing structure supporting a partic-
ular maximal load provides a direct constraint on the possible
range of values its resistance capacity may take. The implied
update of the structural reliability allows monitoring and main-
tenance planning to be done from a risk optimal perspective.
Proof load-based reliability updating techniques require multi-
ple numerical computations which are often too cumbersome
for routine use.

By building on the assumptions of the first order reliability
method, a computationally efficient first order reliability updat-
ing approach is developed and validated. The formulation is
shown to be applicable to any reliability problem tractably con-
sidered using the first order reliability method.

Implementation for example structures using characteristic
loading histories illustrates the effect of measurements on the
uncertainty in resistance capacity. Updated reliability traces as-
sociated with these time histories indicate that decreases in the
probability of failure of two to three orders of magnitude can
be obtained by incorporating realistic maximal loading obser-
vations into reliability estimates for existing structures.

It is hoped that the technique can aid in planning opti-
mal infrastructure maintenance and monitoring programmes,

as well as calibration of partial factor-based standards for ex-
isting structures. In the framework of this objective, a num-
ber of questions should be considered in further work. Notable
among these are: the combination of loading and health mon-
itoring data into a single updating framework, including more
detailed material-specific deterioration models, generalising to
problems with multiple failure modes, and exploring how ob-
servation information can be transferred across maintenance in-
tervention events.
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Table 1: Parameters used in reliability analysis and updating of the reinforced
concrete beam in Section 4.1.

Measurements µ σ

MQ(daily) Gumbel 653 33.9 kNm
ε Normala 0 43.2 kNm

Actions µ σ

MQ(annual) Gumbel 864 21.6 kNm

Resistance Parameters µ σ

θR Lognormalb 1.1 0.11
As - 6.45 × 10−3 m2

fy Lognormalb 500 25 MPa
h Normalb 1.0 0.02 m
c Gammab 50 1.5 mm
L - 10 m
γc - 25 kN/m3

a – [25], b – [26]

Table 2: Parameters used in reliability analysis and updating of the seawall
slope in Section 4.2. Limit equilibrium calculations used 50 slices for the slip
section. Mean parameter values yield factor of safety F = 1.17.

Measurements µ σ

L(daily) Lognormal 3.01 0.92 m
ε Normal 0 0.2a m

Actions λ1 λ2

L(annual) Type II 5.75 0.83 m

Resistance Parameters µ σ

θF Lognormalb 1.19 0.32
φ′ Lognormalc 33d 3.3 degrees
c′ Lognormalc 2.0d 0.8 kPa
γ - 17.3d kN/m3

B - 35d m
H - 20d m
L0 - 4.7 m

a – estimate of borehole depth accuracy, b – [30], c – [29], d – [40]
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Figure 1: Geometrical basis for the first order reliability updating formulation.
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