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Abstract—A novel Knuth-like balancing method for runlength-
limited words is presented, which forms the basis of new variable-
and fixed-length balanced runlength-limited codes that improve
on the code rate as compared to balanced runlength-limited codes
based on Knuth’s original balancing procedure developed by
Immink et al. While Knuth’s original balancing procedure, as
incorporated by Immink et al., requires the inversion of each bit
one at a time, our balancing procedure only inverts the runs as a
whole one at a time. The advantage of this approach is that the
number of possible inversion points, which needs to be encoded
by a redundancy-contributing prefix/suffix, is reduced, thereby
allowing a better code rate to be achieved. Furthermore, this
balancing method also allows for runlength violating markers
which improve, in a number of respects, on the optimal such
markers based on Knuth’s original balancing method.

Index Terms—Knuth-like balancing method, balanced codes,
runlength-limited codes, random walk.

I. INTRODUCTION

Constrained codes endow random data with particular desir-
able properties which have important applications, for exam-
ple, in magnetic and optical storage media [1]–[3]. Runlength-
limited (RLL) and DC-free codes are examples of constrained
codes. RLL codes limit the length of a run, which is a maximal
sub-word consisting of like symbols, to lie between inclusive
lower and upper bounds. We will denote the inclusive lower
bound by d′ and the inclusive upper bound by k′ and refer
to a RLL code defined by these two parameters as a (d′, k′)-
RLL code. The lower bound d′ is used to limit inter-symbol
interference in bandwidth-limited channels, whereas the upper
bound k′ facilitates maintenance of synchronization. On the
other hand, DC-free codes possess the virtue that the power
spectral density (PSD) of the analogue signal representation
of binary words is zero at zero (DC) frequency and close to
zero for frequencies near zero frequency.

Given the importance of these two types of constrained
codes in their own right, it is natural that DC-free RLL codes,
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which combine both these properties concurrently, occupy
a prominent position in the family of constrained codes.
This is indicated by an entire chapter dedicated to DC-free
RLL codes in Immink’s book on constrained codes [1, Ch.
11]. Some of the various approaches to constructing DC-free
RLL codes include the use of merging sequences of different
weight parities for RLL block codes [4], guided scrambling [5]
and enumerative coding [6]. Enumerative coding is attractive
due to its high code rate efficiency, but as emphasized by
Immink et al. [7], they suffer from prohibitively large memory
requirements for growing codeword lengths and massive error
propagation.

A particular manifestation of DC-free codes are balanced
codes which consist of codewords containing an equal number
of the two symbols from some binary alphabet. Part of the
attractiveness of balanced codes stems from the existence of
a simple encoding/decoding method proposed by Knuth [8].
This method consists of sequentially inverting (complement-
ing) one bit at a time for a binary sequence. Knuth proved
that there exists at least one index such that the resulting
sequence is balanced. This index, referred to as a balancing
index, which is required at the decoder to extract the original
sequence, is encoded by means of a balanced prefix/suffix
which is concatenated with the partially complemented bal-
anced sequence. This method provides an efficient means of
encoding and decoding very large word lengths and scales well
with growing word length. This is the prime motivation why
Immink et al. [7] utilized Knuth’s balancing method in their
construction of balanced RLL codes. This approach yields very
efficient codes in terms of code rate. Various refinements and
improvements to Knuth’s method for balanced codes can be
found in [9]–[13].

Kurmaev [14] presented an enumerative coding procedure
for charge-constrained RLL codes (of which balanced RLL
codes are a special case). Although these codes have a high
code rate efficiency, they are not suitable for long codeword
lengths due to mounting computational complexity/memory
requirements for growing codeword lengths.

Although the capacity of DC-free RLL codes has been
known for some time [15], it was only recently shown that
the capacity of balanced RLL codes is in fact equal to the
capacity of the corresponding RLL codes [16]. This result
means that the additional balancing constraint does not incur a
rate loss asymptotically. This is consistent with the observation
that balanced codes have a capacity of 1 [16, §II]. However,



2

as indicated in [17, §I], balanced codes are DC-free only for
finite word lengths, with the implication that capacity-reaching
balanced RLL codes are not DC-free. This is what motivated
the use of generating functions to count the number of bal-
anced RLL words of a specific, finite length as an alternative
to capacity in evaluating the performance of balanced RLL
codes in terms of code rate [17].

In this paper, we propose a novel Knuth-like balancing
method which allows the construction of balanced RLL codes
which improve on the code rates of the corresponding balanced
RLL code constructions by Immink et al. [7]. Our balancing
procedure sequentially inverts runs as a whole one at a time,
unlike the original method by Knuth, incorporated by Immink
et al. [7], which inverts each bit one at a time. The advantage
of this approach is that the number of possible balancing posi-
tions, which has to be encoded by a redundancy-contributing
prefix/suffix, is reduced, leading to a lower redundancy. Based
on this alternative balancing approach, variable- and fixed-
length balanced RLL codes are constructed. The proposed
variable-length balanced RLL codes improve on the code rate
of the codes by Immink et al. [7] for all finite d′ and k′ (with
the exception of d′ = 1 for smaller source word lengths), while
the proposed fixed-length codes have an improved code rate
with the exception when d′ = 1. The variable-length codes
have the best code rate performance and are also attractive as
they do not have certain restrictions on d′ and k′ inherent in
the fixed-length codes of this paper and of Immink et al. [7].
A disadvantage of our codes, both variable- and fixed-length,
as compared to that of Immink et al. [7], is that they are not
suited for the case where k′ =∞.

Codes using markers with deliberate runlength violations to
signify the balancing index obtained using Knuth’s original
method have been proposed for balanced RLL codes [18].
The length of such markers, which equal the total redundancy
of the code, is fixed and independent of source word length.
Thus, these codes, for a sufficiently large codeword length,
have better code rates than the codes presented by Immink
et al. [7] and the codes presented in this paper. Weber et
al. [19] studied optimal runlength-violating markers based on
Knuth’s original balancing method in terms of marker length
and cumulative violation, determining the minimum violation
of markers with the smallest possible length and the smallest
length of unit violation markers. Based on the novel Knuth-
like balancing method, we present a variable-length runlength-
violating marker that improves, in a number of respects, on the
optimal markers based on Knuth’s original balancing method
presented in [19]. Therefore, the novel Knuth-like balancing
method presented in this paper improves on both existing
balanced RLL codes with stringent runlength constraints (i.e.
where runlength violations are not tolerable) and runlength-
violating markers based on Knuth’s original balancing method.

This paper is organized as follows. Section II introduces
the notation and gives a succinct overview of pertinent con-
cepts. A modification of Knuth’s balancing method for RLL
words and relevant proofs are presented in Section III. The
various generating functions pertinent to the determination of
the code’s redundancy are derived in Section IV, while the
encoding and decoding algorithms for both the variable- and

fixed-length versions of the code are formalized in Section V.
Section VI contains a performance comparison in terms of
code rate between the codes proposed in this paper and those
from [7]. Concluding remarks are contained in Section VII.

II. NOTATION AND BACKGROUND

This section serves to introduce the notation employed in
this paper and provides an overview of the pertinent literature.
Apart from defining balanced codes and describing Knuth’s
balancing method, it also introduces the various runlength-
limited sequence representations as applicable to this paper
and overviews existing balanced RLL codes based on Knuth’s
balancing method.

A. Balanced Codes
For a bipolar word x = (x1, x2, . . . , xm) ∈ {−1,+1}m of

length m, define σ(x) as

σ(x) ,
m∑
i=1

xi.

A word x, where m is even, is said to be balanced if, and
only if, σ(x) = 0, i.e., it consists of an equal number of the
symbols ‘−1’ and ‘+1’. A code is said to be balanced if each
word in the code is balanced.

B. Knuth’s Balancing Method
For a bipolar word x = (x1, x2, . . . , xm) ∈ {−1,+1}m,

let x[i] denote x with the first i symbols inverted, i.e.,
x[i] , (−x1,−x2, . . . ,−xi, xi+1, xi+2, . . . , xm). It is clear
that x[0] = x and x[m] = −x. Then, Knuth’s method iterates
over i, 0 ≤ i ≤ m, starting at i = 0, until the first σ(x[i]) = 0
is found. Any i such that x[i] is balanced is referred to as a
balancing index. It is guaranteed that for any word x there
exists at least one balancing index i [8, pp. 51-52]. This can
be demonstrated by considering the random walk (i, σ(x[i])),
0 ≤ i ≤ m, of x. By noting that for even m, σ(x) is also
even, σ(x[m]) = −σ(x[0] = x) and σ(x[i])−σ(x[i−1]) = ±2,
it follows that random walk of x has to pass through (i, 0) for
at least one i, 0 ≤ i ≤ m.

C. Runlength-Limited Sequence Representations
A run is formally defined as the maximal sub-sequence con-

sisting of like symbols. As already indicated, a (d′, k′)-RLL
code is a code where each codeword consists of runlengths
of at least d′ and at most k′. A code is said to be a (d, k)-
constrained code if the number of zeros between consecutive
ones is at least d and at most k for each codeword. These
are alternative representations of runlength-limited sequences
as can be shown by the mapping f : y = (y1, y2, . . . , ym) ∈
{0, 1}m → z = (z1, z2, . . . , zm) ∈ {−1,+1}m. We assume
that y represents a (d, k)-constrained sequence of length m
and that z represents the corresponding (d′, k′)-RLL sequence
over the bipolar alphabet {−1,+1} of the same length. Then,
for z = f(y)

ẑi = ẑi−1 ⊕ yi,
zi = 2ẑi − 1,
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where 1 ≤ i ≤ m, ẑ0 = 1 and ⊕ denotes modulo 2 addition.
For the inverse operation y = f−1(z), yi = (−zi−1zi+1)/2.
Note that a one in y corresponds to a transition in z, i.e., yi =
1 implies that zi = −zi−1, while a zero in y corresponds to a
non-transition in z, i.e., yi = 0 implies that zi = zi−1. Hence,
it is easy to see that a (d, k)-constrained code corresponds to
a (d+ 1, k + 1)-RLL code, i.e., d′ = d+ 1 and k′ = k + 1.

Now we introduce another representation for RLL se-
quences. First, let L(d′,k′) denote the set of permissible run-
lengths, i.e.,

L(d′,k′) , {d′, d′ + 1, . . . , k′}.

Also, aL(d′,k′) , {al : l ∈ L(d′,k′)} and a + L(d′,k′) =

L(d′,k′) + a , {a + l : l ∈ L(d′,k′)}. Assume that z =
(z1, z2, . . . , zm) ∈ {−1,+1}m is a (d′, k′)-RLL word where
the first and last runs also satisfy the runlength constraint.
Let n(z) denote the number of runs in z and let ρ(z) =
(ρ1, ρ2, . . . , ρn(z)) be a sequence which denotes the runlengths
in z, i.e., ρi ∈ L(d′,k′) is the length of the ith run in z. Note
that

m =

n(z)∑
i=1

ρi.

We also introduce a bipolar sequence β(z) =
(β1, β2, . . . , βn(z)) ∈ {−1,+1}n(z) to represent the polarity
of the runs, where β1 , z1. In fact, β(z) is totally defined
by β1 as βi = −βi−1, 2 ≤ i ≤ n(z). β(z) is defined in this
manner because the polarity alternates between adjacent runs.
We will refer to β(z) as a polarity word. Then, it is clear
that

σ(z) = σ(β(z)� ρ(z)),

where � represents the Hadamard product, i.e., β(z)�ρ(z) =
(β1ρ1, β2ρ2, . . . , βn(z)ρn(z)), and

σ(β(z)� ρ(z)) =

n(z)∑
i=1

βiρi.

For example, with − ≡ −1 and + ≡ +1, if z = (−−++++
−−−), then n(z) = 3, ρ(z) = (2, 4, 3) and β(z) = (−+−),
and hence σ(z) = σ(β(z)� ρ(z)) = −2 + 4− 3 = −1.

In the sequel, for notational convenience, we are going to
drop the argument z from n, ρ and β, and simply represent
the equivalence between z and ρ, β (recall that β is fully
characterized by β1) as

z ⇔ ρ(β1).

This equivalence can also be characterized by

z = (βρ11 , βρ22 , . . . , βρnn ),

where for some symbol s, si , (s, s, . . . , s) is a word of length
i consisting only of the repeating symbol s. Note, furthermore,
that the inversion (complementation) of z is equivalent to the
inversion (complementation) of the polarity word β, i.e., if
z ⇔ ρ(β1), then −z ⇔ ρ(−β1).

D. Balanced Runlength-Limited Codes based on Knuth’s Bal-
ancing Method

Immink et al. [7] exploited Knuth’s balancing method
to construct efficient balanced RLL codes. To a (d, k)-
constrained word y = (y1, y2, . . . , ym) ∈ {0, 1}m produced
by some prior art method, Knuth’s balancing method is
applied to f(y) until a balanced word f(y)[i] is obtained.
However, since the balancing index i can occur within a run,
the inversion applied during Knuth’s balancing method can
lead to runlength constraint violations, requiring the use of a
judiciously chosen interfix, which is inserted immediately after
the balancing index, to ensure the maintenance of the run-
length constraints. In the process of preserving the runlength
constraints, the interfix may introduce a limited unbalance
to the balanced word produced by Knuth’s procedure. In
addition to this fixed-length interfix, a fixed-length suffix is
also needed to encode the balancing index i. Apart from
encoding the balancing index, the suffix has an unbalance
equal in magnitude, but opposite in polarity, to that introduced
by the interfix, resulting in an overall balanced word. The
redundancy of the code is the sum of the lengths of the interfix
and suffix.

There exists some bijective mapping from each possible
balancing index i to a distinct suffix word which possesses
certain desirable characteristics (these characteristics are elab-
orated on in Sec. IV). The decoder, which is cognizant of
this bijective mapping, first extracts the suffix, from which it
can deduce the balancing index. Once the balancing index is
known, the fixed-length interfix can be removed and inversion
of Knuth’s procedure undone, resulting in the original (d, k)-
constrained word.

Immink et al. [7] presented four constructions, each consid-
ering different cases based on values of d and k. Constructions
1 and 2 are for the case where there is no upper constraint
(i.e. k = ∞), Construction 3 is for the general case where
d (d > 0) and k are finite with the restriction that k ≥ 2d,
and Construction 4 is for the case where there is no lower
constraint (i.e. d = 0) and k is finite. Construction 1’s interfix
length is 2(d + 1), Construction 2 and 3’s is d + 1, while
Construction 4’s is 1. Construction 1 is the only construction
where the modified y (through Knuth’s balancing method) plus
interfix and the suffix are both balanced, while for the other
constructions the unbalanced of the modified y plus interfix
is compensated for by the unbalance of the suffix.

A limitation of the codes presented in [7] is that the
balanced RLL codewords produced by the code cannot be
freely cascaded. This is because, although the constructions
ensure that the runlength constraints are maintained internally
within the codeword, there is no mechanism which ensures
that the runlength constraints are not violated at codeword
boundaries. This limitation of the codes from [7] will be
further elaborated on in Sec. VI.

An alternative method to indicating the balancing index
was proposed by Ferreira et al. [18]. Immediately after the
balancing index is inserted a fixed-length marker (conceptually
similar to the interfix from [7]) whose first run deliberately
violates the k constraint. The decoder can then use this
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violation to identify the balancing index. This deliberate and
controlled violation is motivated by advances in phase-lock
loops and the associated greater tolerance for occasional
violations. While the marker has to be balanced and maintain
the runlength constraints at the balancing index which affect
its length, this approach has the virtue that the marker length
is independent of codeword length. Therefore, for sufficiently
large codeword lengths, they have a better code rate than the
balanced RLL codes from [7]. Subsequently, Weber et al. [19]
studied such markers and formalized their desirable properties.
They demonstrated that the shortest possible length of such
markers is 2k + 2, which have a minimum possible violation
of k+ 1 (here violation is defined as the cumulative violation
size of all the marker violations, where the size of a violation
is the amount that a runlength exceeds k), and that for the
smallest possible violation of 1, the minimum marker length
is 2k+4d+6. They also gave examples of optimal fixed- and
variable-length markers which achieve these bounds.

In the next section, we present a novel Knuth-like bal-
ancing method for RLL words, which forms the basis of
balanced RLL codes which improve on the balanced RLL
codes from [7] and markers which improve on the optimal
markers based on Knuth’s original balancing method presented
in [19].

III. KNUTH-LIKE BALANCING METHOD FOR RLL WORDS

The novel Knuth-like balancing method for RLL words is
based on the idea of inverting (or complementing) complete
runs as a whole rather than inverting bits individually. An
advantage of this approach is the reduction in the number of
possible balancing indices. Furthermore, since the inversions
occur at run boundaries, the interfix can be a single run,
simplifying the process of maintaining the runlength constraint
at the balancing index.

The balancing method can be described as follows.
Given z ⇔ ρ(β1), we wish to balance z, which is a
(d′, k′)-RLL word. For β = (β1, β2, . . . , βn), let β[i] de-
note β with the first i symbols inverted, i.e., β[i] ,
(−β1,−β2, . . . ,−βi, βi+1, . . . , βn). Note that since β[0] = β
and β[n] = −β, σ(β[n] � ρ) = −σ(β[0] � ρ). The balancing
procedure consists of inverting the symbols in β one at a time,
i.e., iterating over i, 0 ≤ i ≤ n. Associated with this balancing
procedure, we introduce the random walk{

(i, σ(β[i] � ρ)) : i = 0, 1, . . . , n
}
.

We will refer to such a random walk as a RLL random walk.
For notational convenience, we are going to denote σ(β[i]�ρ)
simply as σi.

Example 1: Consider the (d′ = 2, k′ = 4)-RLL word

z = (−−−−+ + +−−+ + + +−−−).

Then for z ⇔ ρ(−), n = 5, ρ = (4, 3, 2, 4, 3) and β =
(− + − + −). Then the random walk (i, σi), 0 ≤ i ≤ 5, is

−2

−4

2

4

σ0 = −2

σ1 = 6

σ2 = 0

σ3 = 4

σ4 = −4

σ5 = 2

i

Fig. 1. The RLL random walk (i, σi), 0 ≤ i ≤ 5, of z ⇔ ρ(−), where
ρ = (4, 3, 2, 4, 3).

(0,−2)→ (1, 6)→ (2, 0)→ (3, 4)→ (4,−4)→ (5, 2) since

i = 0 : β[0] = (−+−+−), σ0 = −4 + 3− 2 + 4− 3 = −2

i = 1 : β[1] = (+ +−+−), σ1 = 6

i = 2 : β[2] = (+−−+−), σ2 = 0

i = 3 : β[3] = (+−+ +−), σ3 = 4

i = 4 : β[4] = (+−+−−), σ4 = −4

i = 5 : β[5] = (+−+−+), σ5 = 2.

Underlining signifies the inverted portions of β[i]. The random
walk (i, σi) is shown in Fig. 1.

Now we introduce and define useful terminology related to
the random walk (i, σi). First, we define the meaning of an
ascent and descent at σi, 1 ≤ i ≤ n:
• Ascent at σi: the transition σi−1 → σi is such that σi >
σi−1. This occurs when βi = −1.

• Descent at σi: the transition σi−1 → σi is such that σi <
σi−1. This occurs when βi = +1.

From Fig. 1, it can be seen that σ1, σ3 and σ5 are ascents,
while σ2 and σ4 are descents. Then a peak and valley at σi,
0 ≤ i ≤ n, can be defined as:
• Peak at σi:

1) 1 ≤ i ≤ n−1: σi is an ascent and σi+1 is a descent.
2) i = 0: σ1 is a descent.
3) i = n: σn is an ascent.

• Valley at σi:
1) 1 ≤ i ≤ n−1: σi is a descent and σi+1 is an ascent.
2) i = 0: σ1 is an ascent.
3) i = n: σn is a descent.

From Fig. 1, it can be seen that σ1, σ3 and σ5 are peaks, while
σ0, σ2 and σ4 are valleys. Since β consists of alternating ‘−1’
and ‘+1’ symbols, the corresponding random walk consists of
alternating ascents and descents, which in turn implies that the
random walk consists of alternating peaks and valleys.



5

The range of the random walk (i, σi) is partitioned into two
broad regions:
• Inner region: −k′ ≤ σi ≤ k′.
• Outer region: σi < −k′ and σi > k′.

Furthermore, the inner region is partitioned into three sub-
regions:
• Positive primary region: d′ ≤ σi ≤ k′.
• Secondary region: −d′ < σi < d′.
• Negative primary region: −k′ ≤ σi ≤ −d′.

The primary region is the union of the positive and negative
primary regions. This terminology is summarized in Fig. 2.

Note that inverting a symbol in β changes the polarity of
the corresponding run in ρ, thereby producing the inversion
of the entire run. Also, since β consists of alternating ‘−1’s
and ‘+1’s, at the inversion index i, −βi = βi+1, meaning
that the ith and (i+ 1)th runs are merged since they have the
same polarity, leading to a potential runlength violation. To
ensure the preservation of the runlength constraints, an interfix
consisting of a single run of length d′ ≤ ρ′ ≤ k′ is inserted
into ρ at index i+ 1, 0 ≤ i ≤ n, giving

ρ′ , (ρ1, ρ2, . . . , ρi, ρ
′, ρi+1, . . . , ρn). (1)

Note that ρ′ can be prepended to ρ (i = 0: insertion at index
1) or appended to ρ (i = n: insertion at “virtual” index n+1).
Similarly,

β′ , −(−βi) = βi = −βi+1 (2)

is inserted into β[i] at index i+ 1, 0 ≤ i ≤ n, giving

β′[i] = (−β1,−β2, . . . ,−βi, β′, βi+1, . . . , βn). (3)

If i = 0, then β′ , −β1, and if i = n, then β′ , −(−βn) =
βn. It is clear that β′[i], like β, consists of alternating ‘−1’
and ‘+1’ symbols. Therefore, it follows that z′ ⇔ ρ′(β

′
1) is a

(d′, k′)-RLL word, where β′1 is the first symbol in β′[i] (β′1 =
β′ if i = 0 and β′1 = −β1 if i > 0).

In order to obtain a balanced RLL word z′ ⇔ ρ′(β
′
1)

(σ(z′) = σ(β′[i] � ρ′) = 0), at least one index i, 0 ≤ i ≤ n,
needs to exist such that d′ ≤ σ(β[i] � ρ) ≤ k′ if β′ = −1
or −k′ ≤ σ(β[i] � ρ) ≤ −d′ if β′ = +1. Then by selecting
ρ′ = |σ(β[i] � ρ)|, z′ ⇔ ρ′(β

′
1) will be balanced. The first

case where d′ ≤ σ(β[i] � ρ) ≤ k′ if β′ = −1 corresponds to
a peak at σi in the positive primary region, as can be shown
by noting the following:
• According to (2), β′ = −1 requires that βi = β′ = −1

and βi+1 = −β′ = +1. βi = −1 produces an ascent at
σi (if i 6= 0), while βi+1 = +1 produces a descent at
σi+1 (if i 6= n), meaning that σi is a peak.

• Since d′ ≤ σi ≤ k′, the peak occurs in the positive
primary region.

Similarly, the second case where −k′ ≤ σ(β[i] � ρ) ≤ −d′ if
β′ = +1 corresponds to a valley at σi in the negative primary
region, as can be shown by noting the following:
• According to (2), β′ = +1 requires that βi = β′ = +1

and βi+1 = −β′ = −1. βi = +1 produces a descent at
σi (if i 6= 0), while βi+1 = −1 produces an ascent at
σi+1 (if i 6= n), meaning that σi is a valley.

• Since −k′ ≤ σi ≤ −d′, the valley occurs in the negative
primary region.

Therefore, it follows that if z ⇔ ρ(β1) is a (d′, k′)-RLL word,
then z′ ⇔ ρ′(β

′
1) can only be balanced for some i, 0 ≤ i ≤ n,

if the random walk (i, σi) contains at least one index i such
that σi is a peak in the positive primary region or a valley in
the negative primary region.

In the context of the random walk (i, σi) for some (d′, k′)-
RLL word z ⇔ ρ(β1), the index i, 0 ≤ i ≤ n, is said to be a
balancing index if
• σi is a peak in the positive primary region, i.e., σ(β[i] �
ρ) ∈ L(d′,k′) and βi = −1 for i > 0 or β1 = +1 for
i = 0, or

• σi is a valley in the negative primary region, i.e., σ(β[i]�
ρ) ∈ −L(d′,k′) and βi = +1 for i > 0 or β1 = −1 for
i = 0.

From Fig. 1 it can be seen that σ0 and σ4 are valleys in the
negative primary region and that σ3 and σ5 are peaks in the
positive primary region. Therefore, i = 0, 3, 4, 5 are balancing
indices. The balanced RLL words z′ ⇔ ρ′(β

′
1) corresponding

to these balancing indices are:
• i = 0: ρ′(+), ρ′ = (2, 4, 3, 2, 4, 3),
• i = 3: ρ′(+), ρ′ = (4, 3, 2, 4, 4, 3),
• i = 4: ρ′(+), ρ′ = (4, 3, 2, 4, 4, 3),
• i = 5: ρ′(+), ρ′ = (4, 3, 2, 4, 3, 2).
As is proven in Theorem 1, any RLL word is guaranteed to

have at least one balancing index provided that n, the number
of runs, is odd. Before presenting Theorem 1, we give the
following useful lemma.

Lemma 1: For a RLL random walk (i, σi) corresponding
to some (d′, k′)-RLL word z ⇔ ρ(β1), if there exist indices
h and j (0 ≤ h < h + 2 < j ≤ n) such that σh > k′

(σh < −k′) and σj < −k′ (σj > k′), then there exists at least
one balancing index i, h < i < j.

Proof: For i to be a balancing index, σi has to be a peak in
the positive primary region or a valley in the negative primary
region.

Since |σl − σl−1| ∈ 2L(d′,k′), 1 ≤ l ≤ n, it is impossible
to traverse the inner region in a single random walk step, i.e.,
for some l, h + 1 ≤ l ≤ j, if σl−1 > k′ (σl−1 < −k′) and
σl < −k′ (σl > k′), it follows that |σl−σl−1| > 2k′. However,
max |σl − σl−1| = 2k′. Therefore, the inner region can be
traversed in a minimum of three random walk steps (recall
that the random walk (i, σi) consists of alternating peaks and
valleys), hence h+ 2 < j.

First consider the case σh > k′ and σj < −k′. Let h′ > h
be the smallest index such σh′−1 > k′ and σh′ ≤ k′, i.e.,
h′ is the first index after h that the random walk enters the
inner region. Then, there are three possible scenarios, which
are depicted in Fig. 3, Fig. 4 and Fig. 5. In the first scenario,
depicted in Fig. 3, the random walk enters the inner region
where −d′ < σh′ ≤ k′. Note that σh′ is a valley that is outside
the negative primary region. The next step in the random walk
then exits the inner region (σh′+1 > k′), and so we return
to the initial conditions. As result, we are going to ignore
this scenario by defining h′′ to be the smallest index greater
than h (h′′ > h) such that σh′′ is in the positive primary or
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−d′

−k′

d′

k′

σi−1

Valley

σi

Peak

σi+1

Valley

Ascent Descent

Positive primary region

Secondary region

Negative primary region

Inner region

Outer region

i

Fig. 2. A generic RLL random walk demonstrating the associated terminology.

secondary region and σh′′+1 is in the positive primary region,
i.e., σh′′−1 > k′, −d′ < σh′′ ≤ k′−2d′ and d′ < σh′′+1 ≤ k′,
or σh′′ is in the negative primary region, i.e., σh′′−1 > k′ and
−k′ ≤ σh′′ ≤ −d′. These two cases are depicted in Fig. 4 and
Fig. 5, respectively, with a change of h′ to h′′. Then

1) −d′ < σh′′ ≤ k′ − 2d′: Since σh′′ is a descent,
σh′′+1 must be an ascent. Furthermore, note that since
min |σh′′+1 − σh′′ | = 2d′, σh′′+1 > d′. Then, by the
definition of h′′, d′ < σh′′+1 ≤ k′, and so σh′′+1 is a
peak in the positive primary region and so i = h′′ + 1
is a balancing index. Also, note that i = h′′ + 1 < j
(h′′ − 1 + 2 < j).

2) −k′ ≤ σh′′ ≤ −d′: Since σh′ is a descent, σh′′+1 must
be an ascent. Therefore, σh′′ is a valley in the negative
primary region and hence i = h′′ is a balancing index.
Also, note that i = h′′ < j (h′′ − 1 + 2 < j).

By symmetry, the case σh < −k′ and σj > k′ is equivalent
to the case σh > k′ and σj < −k′. Therefore, there exists at
least one balancing index i, h < i < j.

Theorem 1: For a RLL random walk (i, σi) corresponding
to any (d′, k′)-RLL word z ⇔ ρ(β1), there exists at least one
balancing index i, 0 ≤ i ≤ n, if n is odd.

Proof: Firstly, note that σn = −σ0 because β[n] =
−β[0] = −β and so σ(β[n] � ρ) = −σ(β[0] � ρ). Secondly,
if n is odd, then the polarity word β, which is a sequence
of alternating ‘+1’s and ‘−1’s, starts and ends with the same
symbol, i.e., β1 = βn. Therefore, the corresponding random
walk (i, σi) starts and ends both with either an ascent (σ1 > σ0
and σn > σn−1) or a descent (σ1 < σ0 and σn < σn−1).

First consider the case σ0 ≥ 0 and split it into three sub-
cases: 0 ≤ σ0 < d′, d′ ≤ σ0 ≤ k′ and σ0 > k′. For each of
these cases, σ1 (σ0 → σ1) can be an ascent or a descent.
• 0 ≤ σ0 < d′: This case is depicted graphically in Fig. 6.

−d′

−k′

d′

k′

σh′−1

σh′

σh′+1

i

Fig. 3. First scenario when a random walk enters the inner region: −d′ <
σh′ ≤ k′ and σh′+1 > k′.

1) Initial descent (σ1 < σ0): σ0−2k′ ≤ σ1 ≤ σ0−2d′.
We split this into two further sub-cases:
a) −k′ ≤ σ1 ≤ σ0 − 2d′ < −d′: σ1 is a valley in

the negative primary region, therefore i = 1 is a
balancing index.

b) σ1 < −k′: the random walk has exited the inner
region. σn is a descent since σ1 is a descent.
Consider the following two cases for the final
descent:
i) d′ < σn + 2d′ ≤ σn−1 ≤ k′: σn−1 is a

peak in the positive primary region, therefore
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−d′

−k′

d′

k′

σh′−1

σh′

σh′+1
k′ − 2d′

i

Fig. 4. Second scenario when a random walk enters the inner region: −d′ <
σh′ ≤ k′ − 2d′ and d′ ≤ σh′+1 ≤ k′.

−d′

−k′

d′

k′

σh′−1

σh′

σh′+1

i

Fig. 5. Third scenario when a random walk enters the inner region: −k′ ≤
σh′ ≤ −d′.

i = n− 1 is a balancing index.
ii) σn−1 > k′: since σ1 < −k′, then by

Lemma 1, there exists at least one balancing
index i, 1 < i < n− 1.

2) Initial ascent (σ1 > σ0): σ0 + 2d′ ≤ σ1 ≤ σ0 + 2k′.
We split this into two further sub-cases:

a) d′ < σ0 + 2d′ ≤ σ1 ≤ k′: σ1 is a peak in
the positive primary region, therefore i = 1 is a
balancing index.

b) σ1 > k′: the random walk has exited the inner
region. σn is an ascent since σ1 is an ascent.
Consider the following two cases for the final
ascent:

i) −k′ ≤ σn−1 ≤ σn − 2d′ < −d′: σn−1
is a valley in the negative primary region,
therefore i = n− 1 is a balancing index.

ii) σn−1 < −k′: since σ1 > k′, then by
Lemma 1, there exists at least one balancing
index i, 1 < i < n− 1.

• d′ ≤ σ0 ≤ k′: This case is depicted graphically in Fig. 7.
1) Initial descent (σ1 < σ0): σ0 is a peak in the positive

primary region, so i = 0 is a balancing index.
2) Initial ascent (σ1 > σ0): σ0 + 2d′ ≤ σ1 ≤ σ0 + 2k′.

We split this into two further sub-cases:
a) d′ < σ0 + 2d′ ≤ σ1 ≤ k′: σ1 is a peak in

the positive primary region, therefore i = 1 is a
balancing index.

b) σ1 > k′: the random walk has exited the inner
region. σn is an ascent since σ1 is an ascent.
Consider the following two cases for the final
ascent:
i) −k′ ≤ σn−1 ≤ σn − 2d′ < σn ≤ −d′: σn−1

is a valley in the negative primary region,
therefore i = n− 1 is a balancing index.

ii) σn−1 < −k′: since σ1 > k′, then by
Lemma 1, there exists at least one balancing
index i, 1 < i < n− 1.

• σ0 > k′: Since σn = −σ0 < −k′, by Lemma 1, there
exists at least one balancing index i, 0 < i < n.

By symmetry the cases −d′ < σ0 ≤ 0, −k′ ≤ σ0 ≤ −d′
and σ0 < −k′ are equivalent to 0 ≤ σ0 < d′, d′ ≤ σ0 ≤ k′ and
σ0 > k′, respectively. Therefore, for any (d′, k′)-RLL word,
there exists at least one balancing index i, 0 ≤ i ≤ n, if n is
odd.

Corollary 1: For a RLL random walk (i, σi) corresponding
to any (d′, k′)-RLL word z ⇔ ρ(β1), there exists at least one
index i, 0 ≤ i ≤ n, such that −(k′ − d′) ≤ σ(β′[i] � ρ′) ≤
k′ − d′, where ρ′ = d′, if n is odd.

Since a balancing index corresponds to a random walk
peak in the positive primary region or a valley in the neg-
ative primary region, for a balancing index i we have that
σ(β[i]�ρ) ∈ L(d′,k′) or σ(β[i]�ρ) ∈ −L(d′,k′), respectively.
If ρ′ = d′, in the first case we have σ(β′[i]�ρ′) ∈ L(d′,k′)−d′
and in the second σ(β′[i] � ρ′) ∈ −L(d′,k′) + d′. Therefore,
for a balancing index i, −(k′ − d′) ≤ σ(β′[i] � ρ′) ≤ k′ − d′.

Comment 1: When searching for a balancing index i, it
suffices to search in the range 0 ≤ i ≤ n−1 (or 1 ≤ i ≤ n), if
n is odd. This follows from the fact that if i = 0 is a balancing
index, then i = n is also a balancing index. Suppose that i = 0
is a balancing index, then σ(β′[0] � ρ′) = σ(β′ � ρ′) = 0,
where ρ′ = |σ0| and β′ = −β1. Hence, σ(β′ � ρ′) = ρ′β′ +
σ(β � ρ) = −|σ0|β1 + σ(β � ρ) = 0. But σ(β′[n] � ρ′) =
|σn|(−(−βn))+σ(β[n]�ρ) = |σn|βn+σ(β[n]�ρ) = |σ0|β1−
σ(β � ρ) = −|σ0|(−β1)− σ(β � ρ) = −(−|σ0|β1 + σ(β �
ρ)) = 0. Therefore i = n is also a balancing index.

The results of Theorem 1 and Corollary 1, which require n,
the number of runs, to be odd, are better suited to variable-
length codes (for a fixed n, for z ⇔ ρ(β1), the length of z, m,
varies depending on the runlengths in ρ). Since fixed-length
codes are desirable (for example, to limit error propagation),
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σn−1

k′ + σ0

d′ + σ0

0 n

Fig. 6. A RLL random walk where 0 ≤ σ0 < d′.

we are also interested in the case where m is fixed and n
is variable. Therefore, we would like to remove the constraint
that n is odd present in Theorem 1 and Corollary 1. This can in
fact be achieved for Corollary 1 by substituting the constraint
k′ ≥ 2d′ for the constraint that n is odd. This is proven in
Theorem 2.

Theorem 2: For a RLL random walk (i, σi) corresponding
to any (d′, k′)-RLL word z ⇔ ρ(β1), there exists at least one
index i, 0 ≤ i ≤ n, such that −(k′ − d′) ≤ σ(β′[i] � ρ′) ≤
k′ − d′, where ρ′ = d′, if k′ ≥ 2d′.

Proof: Any peak σi, 0 ≤ σi ≤ k′, corresponds to an
index i such that −(k′− d′) ≤ σ(β′[i]�ρ′) ≤ k′− d′, where
ρ′ = d′. In the case d′ ≤ σi ≤ k′, if ρ′ = d′, then 0 ≤
σi − d′ ≤ k′ − d′ or 0 ≤ σ(β′[i] � ρ′) ≤ k′ − d′. In the case
0 ≤ σi < d′, if ρ′ = d′, then −d′ ≤ σi − d′ < 0. However,
since k′ ≥ 2d′, k′−d′ ≥ d′ and so −(k′−d′) ≤ −d′. Therefore
−(k′ − d′) ≤ σi − d′ < 0 or −(k′ − d′) ≤ σ(β′[i] � ρ′) < 0.
A similar argument shows that any valley σi, −k′ ≤ σi ≤ 0,

corresponds to an index i such that −(k′ − d′) ≤ σ(β′[i] �
ρ′) ≤ k′ − d′, where ρ′ = d′. Hence, the desired index i,
0 ≤ i ≤ n, corresponds to a peak σi in the positive inner
region (union of the positive primary and positive secondary
regions) or a valley σi in the negative inner region (union of
the negative primary and negative secondary regions).

The number of runs, n, can be even or odd. If n is odd,
the result follows from Corollary 1. We only need to prove
the result for even n. If n is even, an initial ascent (σ1 > σ0)
in the RLL random walk is accompanied by a final descent
(σn < σn−1), and vice versa. First consider the case 0 ≤ σ0 ≤
k′ (this scenario is depicted graphically in Fig. 8). If σ1 is a
descent, then σ0 is a peak in the positive inner region, and thus
for i = 0, −(k′− d′) ≤ σ(β′[0]�ρ′) ≤ k′− d′. Alternatively,
if σ1 is an ascent, then σn is a descent. Since σn = −σ0,
−k′ ≤ σn ≤ 0, and so σn is a valley in the negative inner
region, and thus for i = n, −(k′−d′) ≤ σ(β′[n]�ρ′) ≤ k′−d′.
If σ0 > k′, then σn < −k′, and so by Lemma 1, there exists
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Fig. 7. A RLL random walk where d′ ≤ σ0 ≤ k′.

at least one balancing index i, 0 < i < n. If ρ′ = d′, then
−(k′ − d′) ≤ σ(β′[i] � ρ′) ≤ k′ − d′.

By symmetry, the cases −k′ ≤ σ0 ≤ 0 and σ0 < −k′
are equivalent to 0 ≤ σ0 ≤ k′ and σ0 > k′, respectively.
Therefore, for any (d′, k′)-RLL word, there exists at least one
index i, 0 ≤ i ≤ n, such that −(k′ − d′) ≤ σ(β′[i] � ρ′) ≤
k′ − d′, where ρ′ = d′, if k′ ≥ 2d′.

For a (d′, k′)-RLL word, we will refer to any index i, 0 ≤
i ≤ n, such that −(k′−d′) ≤ σ(β′[i]�ρ′) ≤ k′−d′ after the
insertion of the interfix of length ρ′ = d′, as a near-balancing
index.

Theorem 1 and Corollary 1 form the basis of the variable-
length balanced RLL codes presented in Section V. Theorem 2
forms the basis of the fixed-length balanced RLL codes also
presented in Section V. Before presenting these codes and
their associated encoding and decoding algorithms, we derive
generating functions in the next section that are able to count
the number of RLL words that have a particular unbalance.
This is important in determining the minimum required suffix

lengths and hence the total redundancy of the proposed codes.

IV. GENERATING FUNCTIONS

In this section, we derive generating functions that count the
exact number of (d′, k′)-RLL words of a specific length that
have a particular unbalance. These derivations are based on a
modification of the approach used in [17] to count the number
of balanced RLL words. The presentation in this section is
based on the symbolic methods of analytic combinatorics. For
an excellent introduction to this topic, refer to Flajolet and
Sedgewick [20].

For a combinatorial class A consisting of all objects of all
sizes, let the corresponding generating function be denoted as

A(z) =

∞∑
r=0

arz
r,

where ar, the coefficient of zr, is the number of objects inA of
size r. The notation [zr]A(z) is used to extract the coefficient
of zr in A(z), i.e., [zr]A(z) = ar.
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Fig. 8. A RLL random walk where 0 ≤ σ0 ≤ k′ and n is even.

Let the generating function

L(d′,k′)(z) = zd
′
+ zd

′+1 + . . .+ zk
′

correspond to a combinatorial class consisting of objects
whose sizes are equal to the permissible lengths of runs in a
(d′, k′)-RLL word. Then, for a combinatorial class consisting
of objects constructed by any combination of objects whose
size is at least d′ and at most k′, the generating function is

R(d′,k′)(z) =
1

1− L(d′,k′)(z)
=

1

1− zd′ − zd′+1 − . . .− zk′ .

We use bivariate generating functions to count the number
of (d′, k′)-RLL words of length r that consist of n runs. A
bivariate generating function A(z, u) consists of two variables,
z and u. As in the univariate case, z marks the object size. On
the other hand, u is introduced to mark some auxiliary integer-

valued parameter. The bivariate generating function A(z, u) is
defined as

A(z, u) =
∑
r,n≥0

ar,nz
run.

In analogy with the univariate case, the notation
[zrun]A(z, u) extracts the coefficient of zrun in A(z, u), i.e.,
[zrun]A(z, u) = ar,n. We will use u to count the number
of occurrences of the runlength-limited objects and so the
bivariate generating function of interest is

R(d′,k′)(z, u) =
1

1− uL(d′,k′)(z)

=
1

1− u(zd′ + zd′+1 + . . .+ zk′)
.

The coefficient [zrun]R(d′,k′)(z, u) gives the number of
(d′, k′)-RLL words of length r that consist of n runs.

Given two generating functions B(z) =
∑
r≥0 brz

r

and C(z) =
∑
r≥0 crz

r, the Hadamard product A(z) =
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∑
r≥0 arz

r of B(z) and C(z), denoted as A(z) = B(z) �
C(z), has ar = brcr, i.e.,

A(z) =

∞∑
r=0

brcrz
r.

Similarly, for bivariate generating functions, the Hadamard
product A(z, u) =

∑
r,n≥0 ar,nz

run of B(z, u) =∑
r,n≥0 br,nz

run and C(z, u) =
∑
r,n≥0 cr,nz

run, denoted
as A(z, u) = B(z, u)� C(z, u), has ar,n = br,ncr,n, i.e.,

A(z, u) =
∑
r,n≥0

br,ncr,nz
run.

Let B+(d′, k′, r) (B−(d′, k′, r)) denote the number of
balanced (d′, k′)-RLL words of length r, where r is even,
that start with ‘+1’ (‘−1’). By inverting any balanced RLL
word starting with ‘+1’, a balanced RLL word starting with
‘−1’ is obtained, and vice versa. Therefore, B+(d′, k′, r) =
B−(d′, k′, r). For convenience, we will denote this entity as

B(d′, k′, r) , B+(d′, k′, r) = B−(d′, k′, r).

A balanced RLL word can be constructed by interweaving
two equal length RLL sub-words and assigning a positive
polarity to one sub-word and a negative polarity to the other
sub-word in the following two ways:

1) The two equal length sub-words consist of the same
number of runs.

2) The two equal length sub-words differ by one in their
number of runs.

Since [zrun]R(d′,k′)(z, u) is the number of RLL words of
length r consisting of n runs, and since any two RLL sub-
words of equal length and equal number of runs can be
interweaved together, for 1) there are {[zrun]R(d′,k′)(z, u)}2
possibilities. This is true for all possible n given some r. This
can be represented by

R(d′,k′)(z, u)�R(d′,k′)(z, u). (4)

For 2), since any RLL sub-word of n runs and length r can be
interweaved with any RLL sub-word of n− 1 runs and length
r, there are {[zrun]R(d′,k′)(z, u)} · {[zrun−1]R(d′,k′)(z, u)}
possibilities. This is true for all possible n given some r. This
can be represented by

R(d′,k′)(z, u)� uR(d′,k′)(z, u). (5)

Summing (4) and (5), we have

B(d′,k′)(z, u) = R(d′,k′)(z, u)�R(d′,k′)(z, u)

+R(d′,k′)(z, u)� uR(d′,k′)(z, u), (6)

and by replacing z with z2 (which represents the combining
of the two RLL sub-words into a balanced word which is
twice the length of the sub-words) and setting u = 1 (thereby
summing over the various possible number of runs for a given
sub-word length), it follows that

B(d′, k′, 2r) = [z2r]B(d′,k′)(z),

where B(d′,k′)(z) = B(d′,k′)(z
2, 1). For further details, refer

to Theorem 1 in [17].

Let U+(d′, k′, a, r) (U−(d′, k′, a, r)) denote the number of
(d′, k′)-RLL words of length r that start with ‘+1’ (‘−1’)
and have an unbalance of a, i.e., for a (d′, k′)-RLL word
z, σ(z) = a. By inverting any RLL word of unbalance a
starting with ‘+1’, a RLL word of unbalance −a starting with
‘−1’ is obtained, and vice versa. Therefore, U+(d′, k′, a, r) =
U−(d′, k′,−a, r). Furthermore, let

U(d′, k′, a, r) , U+(d′, k′, a, r) = U−(d′, k′,−a, r).
Observe that a is odd (even) if, and only if, r is odd (even).

A RLL word of unbalance a can be constructed by inter-
weaving two RLL sub-words differing in length by |a| and
consisting of the same number of runs or the number of runs
differing by one. If a > 0, then the longer RLL sub-word is
assigned a positive polarity and the shorter RLL sub-word a
negative polarity, and vice versa if a < 0. Then,

U+(d′, k′, a, r) = [zr]U+
(d′,k′,a)(z),

where
U+
(d′,k′,a)(z) = U+

(d′,k′,a)(z
2, 1)z−|a| (7)

and

U+
(d′,k′,a)(z, u) = R(d′,k′)(z, u)�R(d′,k′)(z, u)z|a|

+R(d′,k′)(z, u)� uR(d′,k′)(z, u)z|a|, (8)

for a > 0. In (8), the second terms of the first and second
Hadamard product, R(d′,k′)(z, u) and uR(d′,k′)(z, u), respec-
tively, are multiplied by z|a| since the difference in lengths of
the two RLL sub-words is |a|. Multiplication by z−|a| in (7)
is to compensate for multiplication by z|a| in (8).

Similarly, for a < 0,

U+
(d′,k′,a)(z, u) = R(d′,k′)(z, u)z|a| �R(d′,k′)(z, u)

+R(d′,k′)(z, u)z|a| � uR(d′,k′)(z, u). (9)

Notice that both (8) and (9) reduce to (6) when a = 0.
In Construction 3 from [7], to ensure that the runlength-

constraints are maintained at the boundary between the suffix
and the RLL word modified by Knuth’s balancing method plus
interfix, the first run of the suffix has to be of length at least
d′ and at most k′ − d′ + 1. Furthermore, the last run in the
suffix need not satisfy the minimum runlength constraint.

Let Û+(d′, k′, a, r) (Û−(d′, k′, a, r)) denote the number of
(d′, k′)-RLL words of length r that start with ‘+1’ (‘−1’),
have an unbalance of a, i.e., for a (d′, k′)-RLL word z,
σ(z) = a, whose first runlength is at least d′ and at most
k′ − d′ + 1 and whose last run need not obey the minimum
runlength constraint. By inverting any RLL word of unbalance
a starting with ‘+1’ and satisfying the prescribed conditions
on the first and last run, a RLL word of unbalance −a
starting with ‘−1’ and satisfying the same conditions on
the first and last run is obtained, and vice versa. Therefore,
Û+(d′, k′, a, r) = Û−(d′, k′,−a, r). Furthermore, let

Û(d′, k′, a, r) , Û+(d′, k′, a, r) = Û−(d′, k′,−a, r).
Then,

Û+(d′, k′, a, r) = [zr]Û+
(d′,k′,a)(z),
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where
Û+
(d′,k′,a)(z) = Û+

(d′,k′,a)(z
2, 1)z−|a| (10)

and, for a > 0,

Û+
(d′,k′,a)(z, u) = R̃(d′,k′)(z, u)� R̄(d′,k′)(z, u)z|a|

+ ˜̄R(d′,k′)(z, u)� uR(d′,k′)(z, u)z|a|, (11)

where

L̃(d′,k′)(z) = zd
′
+ zd

′+1 + . . .+ zk
′−d′+1

and

R̃(d′,k′)(z,u) =
uL̃(d′,k′)(z)

1− uL(d′,k′)(z)

and
L̄(<d′)(z) = 1 + z + z2 + . . .+ zd

′−1

and

R̄(d′,k′)(z, u) =
1 + u(L̄(<d′)(z)− 1)

1− uL(d′,k′)(z)

and

˜̄R(d′,k′)(z, u) =
uL̃(d′,k′)(z)

[
1 + u(L̄(<d′)(z)− 1)

]
1− uL(d′,k′)(z)

.

Similarly, for a < 0,

Û+
(d′,k′,a)(z, u) = R̃(d′,k′)(z, u)z|a| � R̄(d′,k′)(z, u)

+ ˜̄R(d′,k′)(z, u)z|a| � uR(d′,k′)(z, u). (12)

With these generating functions it is easy to determine the
number of balancing or near-balancing indices that can be
represented by a suffix of a particular length.

V. ENCODING AND DECODING ALGORITHMS

In this section, we formalize the various encoding and
decoding algorithms of variable- and fixed-length balanced
RLL codes based on Theorem 1, Corollary 1 and Theorem 2.
Here, we also present a runlength constraint violating marker,
where the violating run is used to indicate the balancing index,
based on Theorem 1 and RLL Knuth-like balancing procedure
introduced in Section III. It is assumed for all the codes
presented in this section, that a RLL word or sequence that
acts as the input to the RLL Knuth-like balancing method is
produced by a prior art method. In this section we adopt the
notational convention of using a tilde over a length variable
to signify word lengths which are variable. Absence of a tilde
then signifies word lengths which are fixed.

A. Balanced RLL Codes with Stringent Runlength Constraints

All the codes presented in this sub-section adhere to
stringent runlength constraints, i.e., no runlength constraint
violations are permitted. After the production of a balanced
or a near-balanced RLL word using the RLL Knuth-like
balancing method and inserting an appropriate interfix, a suffix
is concatenated with this balanced or near-balanced RLL word.
This suffix performs two important functions:

1) Encodes the balancing index so that the decoder is able
to extract the balancing index from the suffix and thereby
remove the interfix and undo the inversion of the portion
of the original RLL word caused by the RLL Knuth-like
balancing method.

2) In the case of a near-balanced RLL word, the suffix
compensates for the unbalance of the near-balanced
word and thereby produces an overall word that is
balanced.

Let U (p)(d′, k′, a, r) represent the set of all bipolar (d′, k′)-
RLL words s = (s1, s2, . . . , sr) ∈ {−1,+1}r with
s1 = p such that σ(s) = a. Then |U (+)(d′, k′, a, r)| =
|U (−)(d′, k′,−a, r)| = U+(d′, k′, a, r) = [zr]U+

(d′,k′,a)(z).
Note that when a = 0, U+(d′, k′, 0, r) = B+(d′, k′, r) =
B(d′, k′, r) = [zr]B(d′,k′)(z).

The bijective mapping

ψ(p) : L(−k′+d′,k′−d′) × {0, 1, . . . , ν} → U (p)(d′, k′, a, r)

associates each possible balancing index with a unique RLL
word from U (p)(d′, k′, a, r) for each −(k′ − d′) ≤ a ≤ k′ −
d′, where ψ(+)(a, i) = −ψ(−)(−a, i) and L(−k′+d′,k′−d′) ,
(L(d′,k′) − d′)∪ (−L(d′,k′) + d′). Note that ν = n− 1 for the
variable length codes and ν = n for the fixed length codes.
Hence, the mapping ψ(p) produces the desired suffix for a
given unbalance a and (near-)balancing index i. The inverse
mapping [ψ(p)]−1(s) produces the pair (a, i) from the suffix
s.

1) Variable-Length Codes 1 (VL1): In this variable-length
code construction, the output of the RLL Knuth-like balancing
method with a variable-length interfix is a balanced RLL word.
Therefore, the suffix also needs to be a balanced RLL word.
Since there are n possible balancing indices (see Comment 1),
the length of the suffix is the minimum r such that

n ≤ B(d′, k′, r).

Suppose that z = (z1, z2, . . . , zl−1, zl, . . .), zl ∈ {−1,+1},
denotes some (very) long bipolar (d′, k′)-RLL sequence. Par-
tition z into variable-length sub-sequences zj , j = 1, 2, . . .,
each consisting of n runs, where n is odd. Then

z = (z1, z2, . . . ,zj−1, zj , . . .),

where
zj = (zj,1, zj,2, . . . , zj,m̃)⇔ ρ

(βj,1)
j

with ρj = (ρj,1, ρj,2, . . . , ρj,n), polarity word βj =
(βj,1, βj,2, . . . , βj,n) and

m̃ =

n∑
l=1

ρj,l.

For each variable-length word zj of length m̃ preform the
following encoding algorithm:

1) Apply the RLL Knuth-like balancing method from Sec-
tion III to zj ⇔ ρ

(βj,1)
j and find a balancing index i,

0 ≤ i ≤ n − 1 (see Comment 1), i.e., an index i such
that σi is a peak in the positive primary region or a valley
in the negative primary region. Then, inserted a single-
run interfix of length ρ′j = |σ(β

[i]
j �ρj)|, d′ ≤ ρ′j ≤ k′,
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into ρj to obtain ρ′j as per (1), and insert β′j as defined

in (2) to obtain β′[i]
j as per (3). Then z′j ⇔ ρ

′(β′
j,1)

j is
balanced, i.e., σ(z′j) = σ(β

′[i]
j �ρ′j) = 0. The existence

of at least one such balancing index is guaranteed by
Theorem 1.

2) Generate the balanced RLL suffix corresponding
to the balancing index i, i.e., sj =

(sj,1, sj,2, . . . , sj,r) = ψ(−βj,n)(0, i) ⇔ τ
(γj,1)
j , where

τj = (τj,1, τj,2, . . . , τj,t̃), γj = (γj,1, γj,2, . . . , γj,t̃) is
the polarity word and

r =

t̃∑
l=1

τj,l.

Note that σ(sj) = σ(γj�τj) = 0. Also, note that γj,1 =
−β′j,n+1 = −βj,n, where β′j,n+1 is the last symbol in
β
′[i]
j , in order to insure that the boundary between z′j

and sj is also a run boundary.
3) Create the balanced RLL word bj = (z′j , sj) ⇔

(ρ
′(β′

j,1)

j , τ
(γj,1)
j ) by appending the suffix sj to the

balanced RLL word z′j ⇔ ρ
′(β′

j,1)

j . Note that σ(bj) =

σ(z′j) + σ(sj) = σ(β
′[i]
j � ρ′j) + σ(γj � τj) = 0. If

β′j,1 = −sj−1,r, send cj = bj , else if β′j,1 = sj−1,r,
then send the inversion of bj , i.e., cj = −bj ⇔
(ρ

′(−β′
j,1)

j , τ
(−γj,1)
j ). This is done to ensure that the

boundary between cj−1 and cj is also a run boundary,
allowing cj−1 and cj to be cascaded (concatenated)
without violating the runlength constraints.

Therefore, the output of the encoder corresponding to z is

c = (c1, c2, . . . , cj−1, cj , . . .)

= (c1, c2, . . . , cl−1, cl, . . .).

This is also the input to the decoder. Although cj , j =
1, 2, . . ., are variable length, the decoder can deduce the
codeword boundaries by partitioning the sequence c =
(c1, c2, . . . , cl−1, cl, . . .) into sub-sequences cj = (z′j , sj),
j = 1, 2, . . ., where the first portion of cj , z′j , consists of
n+ 1 runs and the last portion of cj , sj , is of length r.

For each variable-length balanced RLL codeword cj per-
form the following decoding algorithm:

1) Decode the balancing index i, 0 ≤ i ≤ n− 1, from the
fixed-length suffix sj as (0, i) = [ψ(sj,1)]−1(sj).

2) For z′j ⇔ ρ
′(β′

j,1)

j , with ρ′j = (ρ′j,1, ρ
′
j,2, . . . , ρ

′
j,n+1) and

a polarity word β′
j = (β′j,1, β

′
j,2, . . . , β

′
j,n+1), obtain ρj

from ρ′j by deleting the interfix ρ′j,i+1 at index i + 1,
i.e.,

ρj = (ρ′j,1, ρ
′
j,2, . . . , ρ

′
j,i−1, ρ

′
j,i, ρ

′
j,i+2, . . . , ρ

′
j,n+1).

Also obtain βj from β′
j by deleting β′j,i+1 at index i+1

and inverting all β′j,l for l = 1, 2, . . . , i (thereby undo-
ing the inversion introduced during the RLL balancing
method), i.e.,

βj = (−β′j,1,−β′j,2, . . . ,−β′j,i−1,−β′j,i,
β′j,i+2, . . . , β

′
j,n+1).

TABLE I
THE MAPPING ψ(+)(0, i) FOR EXAMPLE 2.

i ψ(+)(0, i)

0 (+ +−−+ + + +−−−−)⇔ (2, 2, 4, 4)(+)

1 (+ +−−−+ + + +−−−)⇔ (2, 3, 4, 3)(+)

2 (+ +−−−−+ + + +−−)⇔ (2, 4, 4, 2)(+)

3 (+ + +−−+ + +−−−−)⇔ (3, 2, 3, 4)(+)

4 (+ + +−−−+ + +−−−)⇔ (3, 3, 3, 3)(+)

Then the original RLL word is zj =

(zj,1, zj,2, . . . , zj,m̃) ⇔ ρ
(βj,1)
j , if βj,1 = −zj−1,m̃, and

zj ⇔ ρ
(−βj,1)
j , if βj,1 = zj−1,m̃, where βj,1 is the first

symbol in βj .
If the source RLL word is already balanced, i.e., σ(zj) = 0,

the above encoding and decoding algorithms can be modified
to achieve slightly better average code rate. In such a case, an
interfix is not needed. If a sequence consisting of n+ 1 runs
is balanced, it is clear that the sub-sequence consisting of the
first n runs cannot be balanced. Similarly, if a sequence of n
runs is balanced, then the addition of any run to this sequence
results in an unbalanced sequence. Therefore, the decoder can
uniquely distinguish between whether the original source RLL
word was balanced or not. The decoder first extracts the first
n runs. If this is a balanced word, no interfix was added
and this is the original RLL word. Otherwise, an interfix was
added, and the same decoding procedure as described above
is executed. It should be obvious that if the source RLL word
is already balanced, the appending of a suffix is unnecessary,
resulting in a further average code rate improvement.

Example 2: Consider the case d′ = 2, k′ = 4 and n = 5.
Then

B(2,4)(z) = 1 + z4 + z6 + 3z8 + 4z10 + 13z12 + . . .

Therefore, since n ≤ B(2, 4, r), the minimum suffix length is
r = 12. Table I gives a possible manifestation of the mapping
ψ(+) (recall that ψ(−)(0, i) = −ψ(+)(0, i)).

Suppose that some (2, 4)-RLL encoder produces the (2, 4)-
RLL sequence

z = (−−−−+ + +−−+ + + +−−−+ +−−−
+ + + +−−+ + + + . . .),

where

z ⇔ ρ(β1) = (4, 3, 2, 4, 3, 2, 3, 4, 2, 4, . . .)(−).

Partition z into sub-sequences consisting of n = 5 runs. Then
z = (z1, z2, . . .) where z1 ⇔ ρ

(β1,1)
1 = (4, 3, 2, 4, 3)(−) and

z2 ⇔ ρ
(β2,1)
2 = (2, 3, 4, 2, 4)(+).

Encode z1 and z2 as follows. For z1, i = 0, 3, 4, 5 are bal-
ancing indices (cf. Example 1). We will use the first balancing
index i = 0. The length of the interfix run is ρ′ = |σ0| = 2, and
so ρ′1 = (2, 4, 3, 2, 4, 3) and β′[0]

1 = (+−+−+−). It is easy
to verify that, with z′1 ⇔ ρ

′(+)
1 , σ(z′1) = σ(β

′[0]
1 � ρ′1) = 0.

Then, s1 = ψ(+)(0, 0) = (+ + − − + + + + − − −−) ⇔
(2, 2, 4, 4)(+) = τ

(+)
1 , and so c1 = (z′1, s1).
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For z2, as can be easily verified, i = 4 is the only balancing
index. The length of the interfix run is ρ′ = |σ4| = 3, and so
ρ′2 = (2, 3, 4, 2, 3, 4) and β′[4]

2 = (− + − + −+). It is easy
to verify that, with z′2 ⇔ ρ

′(−)
2 , σ(z′2) = σ(β

′[4]
2 � ρ′2) = 0.

Then, s2 = ψ(−)(0, 4) = −ψ(+)(0, 4) = (−−−+ + +−−
− + ++) ⇔ (3, 3, 3, 3)(−) = τ

(−)
2 . However, since s1,12 =

−1 = β′2,1, c2 = (−z′2,−s2)⇔ (ρ
′(+)
2 , τ

(+)
2 ).

Therefore, the output of the VL1 encoder is

c = (c1, c2)⇔ (2, 4, 3, 2, 4, 3, 2, 2, 4, 4, 2, 3, 4, 2, 3, 4,

3, 3, 3, 3, . . .)(+).

At the VL1 decoder, the first 6 runs are z′1, the next 12
symbols are s1, the next 6 runs are z′2 and the next 12 symbols
are s2. Thus

z′1 ⇔ ρ
′(+)
1 = (2, 4, 3, 2, 4, 3)(+)

s1 ⇔ (2, 2, 4, 4)(+)

and

z′2 ⇔ ρ
′(+)
2 = (2, 3, 4, 2, 3, 4)(+)

s2 ⇔ (3, 3, 3, 3)(+).

For c1 = (z′1, s1), the balancing index i = 0 is obtained from
(0, 0) = [ψ(+)]−1(s1). Then delete the interfix run at index
i+ 1 = 1 from ρ′1 to obtain

z1 ⇔ ρ
(−)
1 = (4, 3, 2, 4, 3)(−).

For c2 = (z′2, s2), the balancing index i = 4 is obtained
from (0, 4) = [ψ(+)]−1(s2). Then delete the interfix run at
index i + 4 = 5 from ρ′2 and invert the polarity of the first
i = 4 runs to obtain ρ(−)2 = (2, 3, 4, 2, 4)(−). Since β2,1 =
z1,16 = −1

z2 ⇔ ρ
(+)
2 = (2, 3, 4, 2, 4)(+).

Therefore

z = (z1, z2, . . .)⇔ (4, 3, 2, 4, 3, 2, 3, 4, 2, 4, . . .)(−),

which corresponds to the original RLL sequence.
2) Variable-Length Codes 2 (VL2): These variable-length

balanced RLL codes are almost identical to VL1, the only
difference being that while the interfix length ρ′ in VL1 is
variable, d′ ≤ ρ′ ≤ k′, in VL2 the interfix is fixed-length,
ρ′ = d′. By Corollary 1, even the near-balancing index i,
0 ≤ i ≤ n− 1, is identical to the balancing index from VL1.
With an interfix ρ′ = d′, for zj we have that −(k′ − d′) ≤
σ(β

′[i]
j � ρ′j) ≤ k′ − d′. Then, the suffix sj needs to have

an unbalance σ(sj) = a = −σ(β
′[i]
j � ρ′j). Note that the

unbalance σ(sj) = a is odd (even) if, and only if, the length
r of the suffix sj is odd (even). Also, since the length m̃ of
zj depends on ρj , it may be even or odd. Thus, the length
m̃ + d′ of z′j may be even or odd. In order for (z′j , sj) to
be balanced, m̃ + d′ + r must be even, indicating that r is
even (odd) whenever m̃+d′ is even (odd). If the suffix length
r is even, then suffixes of odd length r − 1 (or r + 1) are
also required. Then, since there are n possible near-balancing

indices, the required minimum suffix length r, r even, must
satisfy

n ≤ min
{
U(d′, k′, a, r) : a ∈ L(−k′+d′,k′−d′), a is even

}
and

n ≤ min
{
U(d′, k′, a, r − 1) : a ∈ L(−k′+d′,k′−d′), a is odd

}
or

n ≤ min
{
U(d′, k′, a, r + 1) : a ∈ L(−k′+d′,k′−d′), a is odd

}
.

The encoding and decoding algorithms of VL2 are essen-
tially identical to that of VL1 with minor modifications. In
encoding step 1) from VL1, for VL2 the interfix is ρ′j = d′ and
−(k′−d′) ≤ σ(z′j) = σ(β

′[i]
j �ρ′j) ≤ k′−d′. In encoding step

2) from VL1, for VL2 the suffix is sj = (sj,1, sj,2, . . . , sj,ς) =

ψ(−βj,n)(a, i) ⇔ τ
(γj,1)
j , where a = −σ(β

′[i]
j � ρ′j) and

ς = r (even) if the length of z′j is even or ς = r − 1
(or ς = r + 1) (odd) if the length of z′j is odd. Note that
σ(bj) = σ(z′j) + σ(sj) = σ(β

′[i]
j � ρ′j) + σ(γj � τj) =

−a + a = 0. On the decoding side, the decoder can deduce
the codeword boundaries by partitioning the sequence c =
(c1, c2, . . . , cl−1, cl, . . .) into sub-sequences cj = (z′j , sj),
j = 1, 2, . . ., where the first portion of cj , z′j , consists of n+1
runs and the last portion of cj , sj , is of length r if the length
of z′j is even, or of length r− 1 (r+ 1) if the length of z′j is
odd. In decoding step 1) from VL1, for VL2 the extraction of
the near-balancing index from sj is (a, i) = [ψ(sj,1)]−1(sj).

3) Fixed-Length Codes (FL): For the fixed-length balanced
RLL codes, zj is of fixed length m, while the corresponding
ρj is of variable length ñ. Hence, the number of runs ñ in
zj may be even or odd. The code FL is based on Theorem 2,
which guarantees the existence of at least one near-balancing
index i, 0 ≤ i ≤ ñ, such that −(k′ − d′) ≤ σ(β

′[i]
j � ρ′j) ≤

k′ − d′ if the interfix is of length ρ′j = d′ and k′ ≥ 2d′.
Then, the suffix sj needs to have an unbalance σ(sj) = a =

−σ(β
′[i]
j � ρ′j). For a (d′, k′)-RLL word of length m, the

maximum number of runs is max{ñ} = bm/d′c, where bxc
denotes the largest integer less than or equal to x. Since m+
d′+r must be even, if m+d′ is even (odd), then r, the length
of the suffix, is even (odd). If r is even, then the length of the
suffix is the minimum r such that⌊m

d′

⌋
+ 1 ≤ min

{
U(d′, k′, a, r) : a ∈ L(−k′+d′,k′−d′),

a is even
}
,

and if r is odd, then the length of the suffix is the minimum
r such that⌊m

d′

⌋
+ 1 ≤ min

{
U(d′, k′, a, r) : a ∈ L(−k′+d′,k′−d′),

a is odd
}
.

Suppose that z = (z1, z2, . . . ,zj−1, zj , . . .) is produced
by a prior art (d′, k′)-RLL block code where the codeword
boundaries correspond to run boundaries. Then

zj = (zj,1, zj,2, . . . , zj,m)⇔ ρ
(βj,1)
j
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TABLE II
THE MAPPING ψ(+)(1, i) FOR EXAMPLE 3.

i ψ(+)(1, i)

0 (+ +−−+ + + +−−−)⇔ (2, 2, 4, 3)(+)

1 (+ +−−−+ + + +−−)⇔ (2, 3, 4, 2)(+)

2 (+ + +−−+ + +−−−)⇔ (3, 2, 3, 3)(+)

3 (+ + +−−−+ + +−−)⇔ (3, 3, 3, 2)(+)

4 (+ + + +−−+ +−−−)⇔ (4, 2, 2, 3)(+)

5 (+ + + +−−−+ +−−)⇔ (4, 3, 2, 2)(+)

TABLE III
THE MAPPING ψ(+)(−1, i) FOR EXAMPLE 3.

i ψ(+)(−1, i)

0 (+ +−−+ + +−−−−)⇔ (2, 2, 3, 4)(+)

1 (+ +−−−+ + +−−−)⇔ (2, 3, 3, 3)(+)

2 (+ +−−−−+ + +−−)⇔ (2, 4, 3, 2)(+)

3 (+ + +−−+ +−−−−)⇔ (3, 2, 2, 4)(+)

4 (+ + +−−−+ +−−−)⇔ (3, 3, 2, 3)(+)

5 (+ + +−−−−+ +−−)⇔ (3, 4, 2, 2)(+)

with ρj = (ρj,1, ρj,2, . . . , ρj,ñ), polarity word βj =
(βj,1, βj,2, . . . , βj,ñ) and

m =

ñ∑
l=1

ρj,l.

The encoding algorithm for each zj and the decoding
algorithm for each cj is the same as for VL2 with the
appropriate change of m̃ to m and n to ñ. Also, at the decoder,
the partitioning of the sequence c = (c1, c2, . . . , cl−1, cl, . . .)
is into fixed-length sub-sequences cj = (z′j , sj), j = 1, 2, . . .,
where the length of cj is m+ d′ + r since the lengths of z′j
and sj are m+ d′ and r, respectively.

Example 3: Consider the case d′ = 2, k′ = 4 and m = 11.
Since m + d′ is odd, the suffix length r must also be odd.
Since

max{ñ} =
⌊m
d′

⌋
+ 1 =

⌊11

2

⌋
+ 1 = 6,

the suffix length is the minimum r that satisfies

6 ≤ min
{
U+(2, 4, 1, r), U+(2, 4,−1, r)

}
.

Then, as

U+
(2,4,1)(z) = z5 + 2z7 + 4z9 + 8z11 + 18z13 + . . .

and

U+
(2,4,−1)(z) = z5 + z7 + 2z9 + 6z11 + 11z13 + . . .

it follows that the minimum possible suffix length is r = 11.
Tables II and III gives a possible manifestation of the mappings
ψ(+) for a = 1 and a = −1, respectively (recall that
ψ(−)(a, i) = −ψ(+)(−a, i)).

Suppose that an encoder of some block RLL code of length
11, which maintains run boundaries at codeword boundaries,
produces the (2, 4)-RLL sequence

z = (+ + +−−−−+ + + +−−+ +−−−+ +−− . . .),

where

z ⇔ ρ(β1) = (3, 4, 4, 2, 2, 3, 2, 2, . . .)(+).

Partition z into sub-sequences of constant length m = 11.
Then z = (z1, z2, . . .) where z1 ⇔ ρ

(β1,1)
1 = (3, 4, 4)(+) and

z2 ⇔ ρ
(β2,1)
2 = (2, 2, 3, 2, 2)(−).

Encode z1 and z2 as follows. For z1, as can be easily
verified, i = 0, 1, 3 are near-balancing indices. We will use
the first balancing index i = 0. The length of the interfix run
is ρ′ = d′ = 2, and so ρ′1 = (2, 3, 4, 4) and β′[0]

1 = (−+−+).
Then, with z′1 ⇔ ρ

′(−)
1 , σ(z′1) = σ(β

′[0]
1 � ρ′1) = 1. Thus,

s1 = ψ(−)(−1, 0) = −ψ(+)(1, 0) = (−−+ +−−−−+ +

+)⇔ (2, 2, 4, 3)(−) = τ
(−)
1 , and so c1 = (z′1, s1).

For z2, as can be easily verified, i = 0, 1, 2, 3, 4, 5 are all
near-balancing indices. For illustrative purposes, we will use
i = 2 as the near-balancing index even though it is not the
smallest such index. The length of the interfix run is ρ′ =

d′ = 2, and so ρ′2 = (2, 2, 2, 3, 2, 2) and β′[2]
2 = (+ − + −

+−). Then, with z′2 ⇔ ρ
′(+)
2 , σ(z′2) = σ(β

′[2]
2 � ρ′2) = −1.

Thus, s2 = ψ(+)(1, 2) = (+ + + − − + + + − − −) ⇔
(3, 2, 3, 3)(+) = τ

(+)
2 . However, since s1,11 = +1 = β′2,1,

c2 = (−z′2,−s2)⇔ (ρ
′(−)
2 , τ

(−)
2 ).

Therefore, the output of the FL encoder is

c = (c1, c2)⇔ (2, 3, 4, 4, 2, 2, 4, 3, 2, 2, 2, 3, 2, 2,

3, 2, 3, 3 . . .)(−).

At the FL decoder, the first 13 symbols are z′1, the next 11
symbols are s1, the next 13 symbols are z′2 and the next 11
symbols are s2. Thus

z′1 ⇔ ρ
′(−)
1 = (2, 3, 4, 4)(−)

s1 ⇔ (2, 2, 4, 3)(−)

and

z′2 ⇔ ρ
′(−)
2 = (2, 2, 2, 3, 2, 2)(−)

s2 ⇔ (3, 2, 3, 3)(−).

For c1 = (z′1, s1), the near-balancing index i = 0 is
obtained from (−1, 0) = [ψ(−)]−1(s1) (note that (1, 0) =
[ψ(+)]−1(−s1)). Then delete the interfix run at index i+1 = 1
from ρ′1 to obtain

z1 ⇔ ρ
(+)
1 = (3, 4, 4)(+).

For c2 = (z′2, s2), the near-balancing index i = 2 is
obtained from (−1, 2) = [ψ(−)]−1(s2) (note that (1, 2) =
[ψ(+)]−1(−s2)). Then delete the interfix run at index i+1 = 3
from ρ′2 and invert the polarity of the first i = 2 runs to obtain

z2 ⇔ ρ
(+)
2 = (2, 2, 3, 2, 2)(+).

Since z1,11 = β2,1 = +1, z2 ⇔ ρ
(−)
2 = (2, 2, 3, 2, 2)(−).

Therefore

z = (z1, z2, . . .)⇔ (3, 4, 4, 2, 2, 3, 2, 2, . . .)(+),

which corresponds to the original RLL sequence.
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B. Balanced RLL Codes with Runlength Constraint Violating
Marker

Based on Theorem 1 and the RLL Knuth-like balancing
method presented in Section III, we propose a simple and
efficient maximum runlength constraint violating marker. The
purpose of such a violation is to demarcate the balancing
index. The marker, whose first run violates the maximum
runlength constraint, is inserted at the index i + 1, where i
is the balancing index. The decoder, by identifying the first
runlength violation, then knows the value of the balancing
index. The aim is to minimize both the marker length and
violation amount, however, as shown in [19], an improvement
of one is accompanied by a degradation of the other.

As for VL1 codes, perform the same partitioning of the
sequence z = (z1, z2, . . . , zl−1, zl, . . .) into variable-length
sub-sequences zj , j = 1, 2, . . ., each consisting of n runs,
where n is odd, so that

z = (z1, z2, . . . ,zj−1, zj , . . .),

where
zj = (zj,1, zj,2, . . . , zj,m̃)⇔ ρ

(βj,1)
j

with ρj = (ρj,1, ρj,2, . . . , ρj,n), polarity word βj =
(βj,1, βj,2, . . . , βj,n) and

m̃ =

n∑
l=1

ρj,l.

By Theorem 1, for each zj there exists at least one index
i, 0 ≤ i ≤ n, such that d′ ≤ σ(β

[i]
j � ρj) ≤ k′ (σi is a

peak in the positive primary region) or −k′ ≤ σ(β
[i]
j �ρj) ≤

−d′ (σi is a valley in the negative primary region). First
consider the case where σi is a peak. Construct a marker
µj ⇔ (ρ′j,1, ρ

′
j,2, ρ

′
j,3)(β

′
j,1), associated with a polarity word

(β′j,1, β
′
j,2, β

′
j,3), where

ρ′j,1 = k′ + 1,

ρ′j,2 = −σi + (k′ + 1) + d′,

ρ′j,3 = d′,

and β′j,1 = −1 by (2). Notice that the marker’s first run has a
violation of 1 (1 greater than k′). Insert the marker at index
i+ 1, thereby obtaining

ρ′′j , (ρj,1, ρj,2, . . . , ρj,i, ρ
′
j,1, ρ

′
j,2, ρ

′
j,3, ρj,i+1, . . . , ρj,n)

and

β
′′[i]
j , (−βj,1,−βj,2, . . . ,−βj,i, β′j,1, β′j,2, β′j,3,

βj,i+1, . . . , βj,n).

Then, if
z′′j ⇔ ρ

′′(β′′
j,1)

j ,

where β′′j,1 is the first symbol in β′′[i]
j , it follows that

σ(z′′j ) = σ(β
′′[i]
j � ρ′′j )

= σ(β
[i]
j � ρj)− ρ′1 + ρ′2 − ρ′3

= σi − (k′ + 1)− σi + (k′ + 1) + d′ − d′
= 0.

Thus, the unbalance of the marker is chosen to be the negative
of σi, so that, after the insertion of the marker, z′′j is balanced.
A moment’s reflection reveals that the marker defined above
is the optimal achievable using the RLL balancing method:
with the first runlength set at k′+ 1, the remaining unbalance
is d′ − k′ − 1 ≤ σi − (k′ + 1) ≤ −1, since d′ ≤ σi ≤ k′,
which then requires at least two more runs to compensate for
the unbalance, the number of runs in the marker must be odd
to prevent run mergers and ρ′j,3 is set to the minimum possible
value, i.e., d′. Furthermore, note that d′ + 1 ≤ ρ′j,2 ≤ k′ + 1,
meaning that ρ′j,2 may introduce another 1 violation. ρ′j,2 =
k′ + 1 occurs only when σi = d′. Therefore, the marker’s
maximum violation is 2 (two runs with 1 violation).

If σi is a valley, then the marker has

ρ′j,1 = k′ + 1,

ρ′j,2 = σi + (k′ + 1) + d′,

ρ′j,3 = d′,

and β′j,1 = +1 by (2). Then

σ(z′′j ) = σ(β
′′[i]
j � ρ′′j )

= σ(β
[i]
j � ρj) + ρ′1 − ρ′2 + ρ′3

= σi + (k′ + 1)− σi − (k′ + 1)− d′ + d′

= 0.

Again, d′ + 1 ≤ ρ′j,2 ≤ k′ + 1.
If β′′j,1 = −β′′j−1,n+3, where −β′′j−1,n+3 is the last symbol

in β′′[i]j−1, send cj = z′′j , else if β′′j,1 = β′′j−1,n+3, send the

inverse of z′′j , i.e., cj = −z′′j ⇔ ρ
′′(−β′′

j,1)

j .
Therefore, the output of the encoder corresponding to z is

c = (c1, c2, . . . , cj−1, cj , . . .)

= (c1, c2, . . . , cl−1, cl, . . .).

This is also the input to the decoder. The decoder partitions
the sequence c = (c1, c2, . . . , cl−1, cl, . . .) into sub-sequences
z′′j , j = 1, 2, . . ., consisting of n+ 3 runs, where

z′′j ⇔ ρ
′′(β′′

j,1)

j ,

with ρ′′j = (ρ′′j,1, ρ
′′
j,2, . . . , ρ

′′
j,n+3) and a polarity word β′′

j =
(β′′j,1, β

′′
j,2, . . . , β

′′
j,n+3). Identify the first ρ′′j,l = k′ + 1 in ρ′′j ,

then i = l − 1 is the balancing index. Obtain ρj from ρ′′j by
deleting the marker (ρ′′j,i+1, ρ

′′
j,i+2, ρ

′′
j,i+3) at index i+ 1, i.e.,

ρj = (ρ′′j,1, ρ
′′
j,2, . . . , ρ

′′
j,i−1, ρ

′′
j,i, ρ

′′
j,i+4, . . . , ρ

′′
j,n+3).

Also obtain βj from β′′
j by deleting (β′′j,i+1, β

′′
j,i+2, β

′′
j,i+3) at

index i + 1 and inverting all β′′j,l for l = 1, 2, . . . , i (thereby
undoing the inversion introduced during the RLL balancing
method), i.e.,

βj = (−β′′j,1,−β′′j,2, . . . ,−β′′j,i−1,−β′′j,i, β′′j,i+4, . . . , β
′′
j,n+3).

Then the original RLL word is zj = (zj,1, zj,2, . . . , zj,m̃) ⇔
ρ
(βj,1)
j , if βj,1 = −zj−1,m̃, and zj ⇔ ρ

(−βj,1)
j , if βj,1 =

zj−1,m̃, where βj,1 is the first symbol in βj .
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VI. PERFORMANCE COMPARISON

Having described the various balanced RLL codes based
on the RLL Knuth-like balancing method, in this section we
compare the performance of these codes in terms of code rate
with existing balanced RLL codes which are based on Knuth’s
original balancing method. It is demonstrated that the pro-
posed codes outperform their counterparts for corresponding
parameters almost universally, and that, in certain cases, the
improvement is significant.

A. VL1, VL2 and FL Codes

In evaluating VL1 and VL2 codes, which are variable
length, the average length of the variable-length portions are
needed for comparison purposes. In case of VL1 and VL2
codes, the length of the (d′, k′)-RLL source words is variable.
If

z = (z1, z2, . . . , zm̃)⇔ ρ(β1) = (ρ1, ρ2, . . . , ρn)(β1)

denotes the RLL source word, the length of z,

m̃ =

n∑
j=1

ρj ,

is variable length since n, the number of runs in z, is fixed for
VL1 and VL2 codes. Let m̄ denote the average length of m̃.
Then m̄ can be computed in the following manner. Assume
that the RLL source words z are produced by a maxentropic
source. Then, for RLL codes whose code rate is close to
capacity, this is a reasonable approximation. For a maxen-
tropic source, ρ, which is fixed length, can be any word in
Ln(d′,k′). This can be equivalently reformulated in the following
manner. Let A = {0, 1, . . . , k′ − d′} be a q-ary alphabet with
q = k′−d′+1. Let α = (α1, α2, . . . , αn) ∈ An be any word of
length n over the alphabet A. Then, any (d′, k′)-RLL word ρ
can be obtained from α as ρ = (α1+d′, α2+d′, . . . , αn+d′).
Since we consider all possible α ∈ An and assume that the
occurrence of each α is equiprobable and independent, the
probability of each symbol in A at any index j, 1 ≤ j ≤ n,
is 1/q. Therefore

m̄ = n

q−1∑
j=0

j + d′

q

=
n

q

(
qd′ +

q−1∑
j=0

j
)

= nd′ +
n

q

q(q − 1)

2

=
n(d′ + k′)

2
. (13)

While the interfix length ρ′ = d′ for VL2 and FL codes
is fixed, it is variable length d′ ≤ ρ′ ≤ k′ for VL1 codes.
Since determining the average interfix lengths theoretically
is a particularly difficult endeavor, we obtained the average
interfix lengths through simulations by generating all variable
length (d′, k′)-RLL words containing n runs and applied the
RLL balancing method from Section III. Table IV summarizes
the results, where the entry without brackets denotes the

TABLE IV
AVERAGE INTERFIX LENGTHS FOR VL1 CODES. THE ENTRY WITHOUT

BRACKETS DENOTES THE AVERAGE INTERFIX LENGTH WHEN THE FIRST
OCCURRING BALANCING INDEX IS SELECTED, AND THE ENTRY INSIDE

BRACKETS GIVES THE AVERAGE INTERFIX LENGTH WHEN THE
BALANCING INDEX WITH THE SMALLEST INTERFIX LENGTH IS SELECTED.

n =

3 5 7 9

(d′, k′) =

(1, 2) 1.5 (1.5) 1.5 (1.5) 1.5 (1.5) 1.5 (1.5)

(1, 3) 2.0 (1.78) 2.0 (1.67) 2.0 (1.62) 2.0 (1.6)

(1, 4) 2.5 (2.12) 2.5 (1.93) 2.5 (1.84) 2.5 (1.78)

(1, 5) 3.0 (2.47) 3.0 (2.21) 3.0 (2.07) 3.0 (1.98)

(1, 6) 3.5 (2.83) 3.5 (2.5) 3.5 (2.32) 3.5 (2.2)

(1, 7) 4.0 (3.2) 4.0 (2.79) 4.0 (2.57) 4.0 (2.43)

(1, 8) 4.5 (3.56) 4.5 (3.09) 4.5 (2.83) 4.5 (2.67)

(2, 3) 2.5 (2.5) 2.5 (2.5) 2.5 (2.5) 2.5 (2.5)

(2, 4) 3.0 (2.78) 3.0 (2.67) 3.0 (2.62) 3.0 (2.6)

(2, 5) 3.5 (3.12) 3.5 (2.93) 3.5 (2.84) 3.5 (2.78)

(2, 6) 4.0 (3.47) 4.0 (3.21) 4.0 (3.07) 4.0 (2.98)

(2, 7) 4.5 (3.83) 4.5 (3.5) 4.5 (3.32) 4.5 (3.2)

(2, 8) 5.0 (4.2) 5.0 (3.79) 5.0 (3.57) 5.0 (3.43)

(3, 4) 3.5 (3.5) 3.5 (3.5) 3.5 (3.5) 3.5 (3.5)

(3, 5) 4.0 (3.78) 4.0 (3.67) 4.0 (3.62) 4.0 (3.6)

(3, 6) 4.5 (4.12) 4.5 (3.93) 4.5 (3.84) 4.5 (3.78)

(3, 7) 5.0 (4.47) 5.0 (4.21) 5.0 (4.07) 5.0 (3.98)

(3, 8) 5.5 (4.83) 5.5 (4.5) 5.5 (4.32) 5.5 (4.2)

(4, 5) 4.5 (4.5) 4.5 (4.5) 4.5 (4.5) 4.5 (4.5)

(4, 6) 5.0 (4.78) 5.0 (4.67) 5.0 (4.62) 5.0 (4.6)

(4, 7) 5.5 (5.12) 5.5 (4.93) 5.5 (4.84) 5.5 (4.78)

(4, 8) 6.0 (5.47) 6.0 (5.21) 6.0 (5.07) 6.0 (4.98)

(5, 6) 5.5 (5.5) 5.5 (5.5) 5.5 (5.5) 5.5 (5.5)

(5, 7) 6.0 (5.78) 6.0 (5.67) 6.0 (5.62) 6.0 (5.6)

(5, 8) 6.5 (6.12) 6.5 (5.93) 6.5 (5.84) 6.5 (5.78)

(6, 7) 6.5 (6.5) 6.5 (6.5) 6.5 (6.5) 6.5 (6.5)

(6, 8) 7.0 (6.78) 7.0 (6.67) 7.0 (6.62) 7.0 (6.6)

(7, 8) 7.5 (7.5) 7.5 (7.5) 7.5 (7.5) 7.5 (7.5)

average interfix length when the first occurring balancing index
is selected, and the entry inside brackets gives the average
interfix length when the balancing index with the smallest
interfix length is selected. It is interesting to note that the
prior entry is always equal to (d′ + k′)/2. Also, for the latter
entry, notice that for k′ > d′ + 1 it decreases as n increases.
For the VL1 codes, we will use (d′ + k′)/2 as the average
interfix length.

Let M̄1(d′, k′, r), M̄2(d′, k′, r) and M3(d′, k′, r) denote the
maximum possible RLL source word length for a suffix length
r for the VL1, VL2 and FL codes, respectively. For the VL1
codes, the number of runs in the RLL source word is n, where
n is odd, and

n ≤ B(d′, k′, r).

If B(d′, k′, r) is odd, then by (13)

M̄1(d′, k′, r) =
d′ + k′

2
B(d′, k′, r).
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Otherwise, if B(d′, k′, r) is even, then

M̄1(d′, k′, r) =
d′ + k′

2
[B(d′, k′, r)− 1].

For a RLL random walk (i, σi), 0 ≤ i ≤ n, σl − σl−1 ∈
2L(d′,k′) for 1 ≤ l ≤ n. Therefore, σi is always even (odd)
if σ0 is even (odd). For the VL2 codes, the RLL source word
contains n runs, where n is odd. In such a case, σ0 can be
even or odd since the length of zj , m̃ =

∑n
j=1 ρj , can be even

or odd. The unbalance of z′j is σi − d′ if σi is a peak, and
σi + d′ if σi is a valley. Therefore, the unbalance of z′j can
be even or odd. Since the suffix needs to compensate for this
unbalance, suffixes of both even and odd length are required.

Let

Umin(d′, k′, r) , min
{
U(d′, k′, a, r) : a ∈ L(−k′+d′,k′−d′),

a is even
}
,

if r is even, and

Umin(d′, k′, r) , min
{
U(d′, k′, a, r) : a ∈ L(−k′+d′,k′−d′),

a is odd
}
,

if r is odd. Since

n ≤ Umin(d′, k′, r),

then
M̄2(d′, k′, r) =

d′ + k′

2
Umin(d′, k′, r),

if Umin(d′, k′, r) is odd, and

M̄2(d′, k′, r) =
d′ + k′

2
[Umin(d′, k′, r)− 1],

if Umin(d′, k′, r) is even.
For the FL codes,⌊m

d′

⌋
+ 1 ≤ Umin(d′, k′, r),

and so the maximum possible m is

m = d′[Umin(d′, k′, r)− 1] + d′ − 1

= d′Umin(d′, k′, r)− 1.

If m is even (odd) and r is even (odd), then

M3(d′, k′, r) = m,

else if m is odd (even) and r is even (odd), then

M3(d′, k′, r) = m− 1.

For the balanced RLL code Construction 3 from [7], where
0 < 2d ≤ k <∞,

N3(d, k, r) = min
{
Û(d+ 1, k + 1, a, r) :

a ∈ {−d− 1,−d+ 1, . . . , d− 1, d+ 1}
}
,

where N3(d, k, r) is the maximum possible RLL source word
length for a suffix of length r.

While Construction 3 from [7] guarantees the preservation
of the runlength constraints within the balanced RLL codeword

that it generates, there is no mechanism to ensure that such
runlength constraints are preserved at boundaries of such
codewords. This limitation means that codewords generated
by Construction 3 cannot be concatenated freely without
potentially introducing runlength violations. Note that suffixes
of Construction 3 have a mechanism to deal with case where
the last run in the RLL source word is less than d′ [7, p.
320], implying that RLL source word boundaries need not
correspond to run boundaries. Furthermore, a suffix for Con-
struction 3 may end with a run whose length is between 1 and
k′, both inclusive (cf. the definition of Û+(d′, k′, a, r)), and
so a runlength violation may occur at the boundary between
the suffix of the current codeword and the next codeword. The
codes VL1, VL2 and FL do not have this limitation, i.e., their
codewords can be concatenated freely without any runlength
violations. As a result, a direct comparison of M̄1, M̄2 and M3

with N3 is somewhat skewed. However, a simple modification
to Construction 3 from [7] can remove this limitation.

Consider the case where a run spans the boundary of two
(d, k)-constrained source words, i.e., one part of the run is
in the first source word while the other part is in the second
source word. Between these two source words is inserted a
(d, k)-constrained suffix f−1(s), where s ∈ U (−)(d + 1, k +
1, a, r), i.e., f−1(s) starts with 1 and ends with at least d and
at most k 0s.

Consider two runs with lengths ρ1, d′ ≤ ρ1 ≤ k′, and
ρ2, d′ ≤ ρ2 ≤ k′. Partition ρ1 into two non-zero portions of
lengths ρ1,1 and ρ1,2 where ρ1 = ρ1,1 + ρ1,2. Between these
two portions of the split run of length ρ1 is inserted a run
of length ρ2, which is also split into two portions of lengths
ρ2,1 and ρ2,2 such that ρ2 = ρ2,1 + ρ2,2. Then ρ1,1 and ρ2,1
are combined into a single run of length ρ1,1 + ρ2,1, as are
ρ2,2 and ρ1,2 into a run of length ρ2,2 +ρ1,2. It is desired that
the resulting two new runs satisfy the runlength constraints,
i.e., d′ ≤ ρ1,1 + ρ2,1 ≤ k′ and d′ ≤ ρ2,2 + ρ1,2 ≤ k′. The
partitioning of ρ1 is predetermined, while ρ2 can be partitioned
in any way. Consider the following cases:

1) ρ1,1 < d′: Set ρ2,2 = ρ1,1, therefore ρ2,2+ρ1,2 = ρ1,1+
ρ1,2 = ρ1 and so d′ ≤ ρ2,2 + ρ1,2 ≤ k′. Then ρ2,1 =
ρ2−ρ2,2 = ρ2−ρ1,1, and therefore d′ ≤ ρ1,1+ρ2,1 ≤ k′.

2) ρ1,2 < d′: Set ρ2,1 = ρ1,2, therefore ρ1,1+ρ2,1 = ρ1,1+
ρ1,2 = ρ1 and so d′ ≤ ρ1,1 + ρ2,1 ≤ k′. Then ρ2,2 =
ρ2−ρ2,1 = ρ2−ρ1,2, and therefore d′ ≤ ρ1,2+ρ2,2 ≤ k′.

3) ρ1,1 ≥ d′ and ρ1,2 ≥ d′: Set ρ2,1 = min{ρ1,2, ρ2 − 1}.
If ρ1,2 ≤ ρ2 − 1, then ρ2,1 = ρ1,2 and this is the same
as case 2) above. If ρ2 − 1 < ρ1,2, then it follows that
d′ ≤ ρ1,1+ρ2,1 = ρ1,1+ρ2−1 < ρ1,1+ρ1,2 = ρ1 ≤ k′.
Then ρ2,2 = 1, and d′ ≤ ρ2,2 + ρ1,2 = 1 + ρ1,2 ≤
ρ1,1 + ρ1,2 = ρ1 ≤ k′.

If ρ1 corresponds to the length of the run that is split over
two RLL source words and ρ2 corresponds to the length of
the last run in s, then by appropriately cyclically shifting the
suffix s, the runlength constraint across the suffix and the next
balanced RLL codeword can be preserved. For a word x =
(x1, x2, . . . , xr), denote the cyclic shift of a > 0 symbols
to the right as x〈a〉 , (xr−a+1, . . . , xr, x1, x2, . . . , xr−a). If
a < 0, then cyclically shift |a| symbols to the left, i.e., for
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a > 0, x〈−a〉 , (xa+1, . . . , xr, x1, x2, . . . , xa). Then
1) If ρ1,1 < d′: use f−1(s)〈ρ2−ρ1,1〉 as the suffix.
2) If ρ1,2 < d′: use f−1(s)〈ρ1,2〉 as the suffix.
3) If ρ1,1 ≥ d′ and ρ1,2 ≥ d′: use f−1(s)〈min{ρ1,2,ρ2−1}〉

as the suffix.
The cyclically shifted version of the suffix, s〈a〉, must have the
same unbalance as the original, unshifted suffix, i.e., σ(s〈a〉) =
σ(s). This will be the case if the polarity of the first run is
the same as the last run in s〈a〉 after shifting. This happens
only if the number of runs in s is even.

Let ŝ = f−1(s)〈a〉, where a = 0 or a = ρ2 − ρ1,1 or
a = ρ1,2 or a = ρ2−1, denote the selected suffix. The decoder,
which can extract ŝ, then locates the index j of the first symbol
1 in ŝ. Then

1) If j = 1: the original suffix is ŝ.
2) If j > 1: the original suffix is ŝ〈−j+1〉.

The balancing index can then be determined from the original
suffix.

Let U ′+(d′, k′, a, r) (U ′−(d′, k′, a, r)) denote the number
of (d′, k′)-RLL words of length r that start with ‘+1’ (‘−1’),
have an unbalance of a and consist of an even number of runs.
Clearly, U ′+(d′, k′, a, r) = U ′−(d′, k′,−a, r). Let

U ′(d′, k′, a, r) , U ′+(d′, k′, a, r) = U ′−(d′, k′,−a, r).
Then,

U ′+(d′, k′, a, r) = [zr]U ′+(d′,k′,a)(z),

where
U ′+(d′,k′,a)(z) = U ′+(d′,k′,a)(z

2, 1)z−|a|

and

U ′+(d′,k′,a)(z, u) = R(d′,k′)(z, u)�R(d′,k′)(z, u)z|a|.

With this modification to Construction 3 from [7], which
allows balanced RLL codewords to be concatenated freely
without any runlength constraint violations, the maximum
RLL source word length N ′3(d, k, r) for a suffix of length r is

N ′3(d, k, r) = min
{
U ′(d+ 1, k + 1, a, r) :

a ∈ {−d− 1,−d+ 1, . . . , d− 1, d+ 1}
}
.

Finally, for Construction 4 from [7], where d = 0 and which
is a special case of Construction 3, the maximum RLL source
word length for a suffix length r is denoted by

N4(k, r) = min
{
U(1, k + 1,−1, r), U(1, k + 1, 1, r)

}
.

Let r′ denote the total redundancy of the various balanced
RLL codes to be compared. The total redundancy is the sum
of the interfix and suffix lengths. Then r′ = r + (d′ + k′)/2
for the VL1 codes, while r′ = r + d′ for the VL2 and FL
codes. For Construction 3 from [7], r′ = r + d + 1, and
for Construction 4 from [7], r′ = r + 1. We are going to
compare the maximum RLL source word length that can be
achieved by the various codes at a specific total redundancy
r′. In all the subsequent tables, VL1 codes are evaluated
as M̄1(d′, k′, r′ − d(d′ + k′)/2e), where dxe represents the
smallest integer greater than or equal to x, VL2 codes as

TABLE V
MAXIMUM RLL SOURCE WORD LENGTH FOR REDUNDANCY r′ ,

d′ = 2, k′ = 4. M̄1 , M̄2 AND M3 DENOTE THE MAXIMUM POSSIBLE RLL
SOURCE WORD LENGTH FOR VL1, VL2 AND FL CODES, RESPECTIVELY.
N3 AND N ′3 DENOTE THE MAXIMUM POSSIBLE RLL SOURCE WORD

LENGTH FOR CONSTRUCTION 3 FROM [7] AND MODIFIED VERSION OF
CONSTRUCTION 3 AS PRESENTED IN THIS ARTICLE, RESPECTIVELY.

r′ M̄1 M̄2 M3 N3 N ′3
20 - 153 102 71 46

21 279 315 211 - -
22 - 291 192 146 85

23 621 687 457 - -
24 - 717 478 341 211

25 1251 1479 985 - -
26 - 1455 970 720 406

27 2721 3087 2059 - -
28 - 3243 2160 1575 886

29 5553 6615 4411 - -
30 - 6957 4638 3418 1894

31 11949 14079 9385 - -
32 - 15099 10064 7361 3953

33 24807 29775 19851 - -
34 - 32253 21500 15828 8369

35 52659 63477 42317 - -
36 - 70101 46734 34167 17909

37 110601 134805 89871 - -
38 - 149589 99726 73115 37404

39 233913 286161 190773 - -
40 - 322653 215102 157108 79803

41 492681 608841 405895 - -
42 - 691623 461082 336573 168690

43 1042587 1293357 862237 - -
44 - 1484163 989440 720559 356568

M̄2(d′, k′, r′−d′), FL codes as M3(d′, k′, r−d′), Construction
3 codes from [7] as N3(d, k, r′−d−1), the modified version of
Construction 3 codes as N ′3(d, k, r′−d− 1) and Construction
4 codes from [7] as N4(k, r′ − 1).

For the first comparison, consider the case d′ = 2 (d = 1)
and k′ = 4 (k = 3), with the maximum RLL source word
lengths for various codes shown in Table V (cf. [7, Tab. IV]).
Note that N ′3 is approximately half of N3; this is the cost of
ensuring that runlength constraints are maintained at codeword
boundaries. Notice that M̄1, M̄2 and M3 all improve on N3.
In the case of M̄1, it does so at a lower r′. For VL2, we have
to take the minimum of M̄2 at r′ and r′ + 1 (recall that VL2
requires both even and odd length suffixes), with the average
redundancy being r′+0.5 (assuming even and odd suffixes are
equiprobable). It is clear that the VL1 codes have a better code
rate than FL codes. Also, notice that M̄2 is slightly higher than
M̄1, but this is at a redundancy 0.5 higher.

Table VI shows the results for d′ = 2 (d = 1) and k′ =
10 (k = 9). N3 is larger than M̄1, M̄2 and M3, except for
M̄2 when r′ ≥ 42 where it is larger at a lower redundancy.
However, M̄1, M̄2 and M3 are larger than N ′3 for a sufficiently
high r′ (M̄1 for all r′ in the table).

Table VII shows the results for d′ = 4 (d = 3) and k′ = 8
(k = 7). In this case, the performance improvement is the
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TABLE VI
MAXIMUM RLL SOURCE WORD LENGTH FOR REDUNDANCY r′ ,

d′ = 2, k′ = 10. M̄1 , M̄2 AND M3 DENOTE THE MAXIMUM POSSIBLE
RLL SOURCE WORD LENGTH FOR VL1, VL2 AND FL CODES,

RESPECTIVELY. N3 AND N ′3 DENOTE THE MAXIMUM POSSIBLE RLL
SOURCE WORD LENGTH FOR CONSTRUCTION 3 FROM [7] AND MODIFIED

VERSION OF CONSTRUCTION 3 AS PRESENTED IN THIS ARTICLE,
RESPECTIVELY.

r′ M̄1 M̄2 M3 N3 N ′3
20 246 90 30 323 136

21 - 402 135 - -
22 618 438 144 824 338

23 - 1098 367 - -
24 1554 1182 394 2122 848

25 - 3294 1099 - -
26 3882 3714 1236 5398 2115

27 - 9222 3075 - -
28 9702 10602 3534 13818 5334

29 - 25758 8587 - -
30 24522 30330 10110 35246 13386

31 - 70878 23625 - -
32 61386 85002 28334 90033 33834

33 - 193230 64411 - -
34 155622 235686 78560 229886 85344

35 - 522906 174301 - -
36 391926 647214 215738 587359 216120

37 - 1406430 468811 - -
38 993690 1764006 588000 1500807 547244

39 - 3763482 1254495 - -
40 2515650 4775778 1591926 3836857 1388409

41 - 10030278 3343427 - -
42 6384630 12867150 4289048 9811684 3525249

43 - 26633766 8877923 - -
44 16213278 34496730 11498910 25101181 8960996

most distinct. M̄1, M̄2 and M3 are significantly larger than
N3 and N ′3 are all r′. For r′ = 44, M̄1 is approximately eight
times N ′3. The VL1 codes have the best code rate, with M̄1

being nearly double M3 for larger r′.
The final comparison is shown in Table VIII, where d′ = 1

(d = 0) and k′ = 4 (k = 3) (cf. [7, Tab. V]). This corresponds
to the case where there is no minimum runlength constraint.
This is where it is expected for the VL1, VL2 and FL codes to
perform the worst in comparison to the codes from [7] because
the RLL Knuth-like balancing method on which these codes
are based approaches Knuth’s original balancing method when
there is no minimum runlength constraint. This is corroborated
by Table VIII, where N4 is higher than M3. However, the VL2
codes have a better code rate since M̄2 is slightly larger than
N4 at a slightly lower redundancy.

In conclusion, at least one of the codes VL1, VL2 or FL
provide better performance than the codes from [7] for all the
values of d′ and k′ considered (where this statement takes into
account N ′3 rather than N3 for fairness of comparison). In the
majority of cases, all three codes provide better performance.
For low values of d′, VL2 codes have the best performance,
however, their improvement over codes from [7] is relatively
marginal. For larger values of d′, the VL1 codes have the best

TABLE VII
MAXIMUM RLL SOURCE WORD LENGTH FOR REDUNDANCY r′ ,

d′ = 4, k′ = 8. M̄1 , M̄2 AND M3 DENOTE THE MAXIMUM POSSIBLE RLL
SOURCE WORD LENGTH FOR VL1, VL2 AND FL CODES, RESPECTIVELY.
N3 AND N ′3 DENOTE THE MAXIMUM POSSIBLE RLL SOURCE WORD

LENGTH FOR CONSTRUCTION 3 FROM [7] AND MODIFIED VERSION OF
CONSTRUCTION 3 AS PRESENTED IN THIS ARTICLE, RESPECTIVELY.

r′ M̄1 M̄2 M3 N3 N ′3
20 6 - - - -
21 - - - - -
22 18 - - - -
23 - 18 15 - -
24 18 30 18 5 5

25 - 54 39 - -
26 54 42 30 12 8

27 - 66 47 - -
28 90 54 34 15 9

29 - 66 47 - -
30 186 42 30 14 8

31 - 126 87 - -
32 222 126 82 33 20

33 - 306 207 - -
34 378 318 214 90 54

35 - 642 431 - -
36 738 678 454 186 114

37 - 1134 759 - -
38 1542 1074 718 295 180

39 - 1842 1231 - -
40 2466 1650 1098 465 260

41 - 2814 1879 - -
42 3906 2562 1710 808 388

43 - 4854 3239 - -
44 6498 5118 3414 1585 794

performance, and significantly improve on the codes from [7].
In general, the relative improvement increases as d′ increases
and/or k′ − d′ decreases. Note that these improvements are
obtained with VL1 and VL2 codes, which have no constraints
on d′ and k′, unlike Construction 3 from [7] which has the
restriction k ≥ 2d. A disadvantage of the VL1, VL2 and FL
codes is that they are unsuitable when k′ = ∞, i.e., when
there is no maximum runlength constraint. This is because the
RLL balancing method that these codes utilize is based on the
premise that k′ is finite.

B. Marker Codes

As shown in Section V-B, the marker based on the RLL
balancing method has a worst case length of 2(k′+ 1) + d′ =
2(k + 2) + (d + 1) = 2k + d + 5. This is 3d + 1 less than
the length of the optimal 1 violation marker from [19] based
on Knuth’s original balancing method. The advantages of the
marker proposed in this paper are:

1) The marker is shorter by 3d + 1 than the optimal
marker length with 1 violation based on Knuth’s original
balancing method [19].

2) The marker has no restriction on d′ and k′ (optimal
markers from [19] have the restriction k ≥ 2d).
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TABLE VIII
MAXIMUM RLL SOURCE WORD LENGTH FOR REDUNDANCY r′ ,

d′ = 1, k′ = 4. M̄1 , M̄2 AND M3 DENOTE THE MAXIMUM POSSIBLE RLL
SOURCE WORD LENGTH FOR VL1, VL2 AND FL CODES, RESPECTIVELY.
N4 DENOTES THE MAXIMUM POSSIBLE RLL SOURCE WORD LENGTH FOR

CONSTRUCTION 4 FROM [7].

r′ M̄1 M̄2 M3 N4

10 - 47.5 17 52

11 87.5 167.5 66 -
12 - 197.5 79 185

13 302.5 637.5 254 -
14 - 797.5 319 662

15 1047.5 2372.5 948 -
16 - 3112.5 1245 2372

17 3672.5 8762.5 3504 -
18 - 11942.5 4775 8510

19 12947.5 32212.5 12884 -
20 - 45302.5 18119 30578

21 45872.5 118152.5 47260 -
22 - 170537.5 68213 110069

23 163177.5 432747.5 173098 -
24 - 638447.5 255377 396877

25 582432.5 1583622.5 633448 -
26 - 2380607.5 952243 1433229

27 2084997.5 5792437.5 2316974 -
28 - 8850362.5 3540143 5183060

29 7483022.5 21182412.5 8472964 -
30 - 32829382.5 13131753 18767985

3) Simpler encoding and decoding procedures. Since the
runlength boundaries correspond to marker boundaries,
the boundary merging (runlength constraint preserving)
operations of [19] are unnecessary.

4) A more computationally efficient balancing method
since each symbol need not be inverted, but only runs
as a whole.

These advantages are achieved at the cost of an additional 1
violation which occurs infrequently.

VII. CONCLUSION

A novel Knuth-like balancing method for RLL words was
presented. The method is better suited for RLL words since it
inverts runs as a whole, rather than inverting individual sym-
bols as with Knuth’s original balancing method. It was shown
that under certain conditions, such a balancing procedure is
guaranteed to produce at least one balancing or near-balancing
point for any RLL source word, which is a prerequisite to
constructing balanced RLL codes based on such a balancing
method.

Numerous balanced RLL codes were constructed with the
proposed Knuth-like balancing method forming the core of
each. In the context of traditional balanced RLL codes which
strictly adhere to the runlength constraints, three related codes
were presented, two variable length and one fixed length.
While the variable length codes have a better code rate than
the fixed-length codes for all d′ and k′, the fixed-length version
does have the advantage of limiting error propagation. All

three codes have better codes rates than existing balanced
RLL codes based on Knuth’s original balancing method for
the majority of d′ and k′ values. Notably, at least one of the
three new codes has better code rate for all d′ and k′. The
improvement in code rate is significant for the majority of
d′ and k′ values, and is particularly pronounced for larger
d′ and smaller k′ − d′. Furthermore, a maximum runlength
violating marker based on the new RLL balancing method was
proposed that improves on the optimal 1 violation markers
based on Knuth’s original balancing method in a number
of ways. These improvements, including marker length and
encoding and decoding complexity, are achieved at the cost of
an additional 1 violation which happens infrequently.

Through these various code constructions and associated
performance evaluations, we have demonstrated the greater
suitability of the novel Knuth-like balancing method to bal-
ancing RLL words than Knuth’s original balancing method.
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