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Reduced-control antenna arrays reduce the number of controls required for beamforming while
maintaining a given array aperture. A reduced-control array for direction finding (DF), inspired by the
concept of compressive sensing (CS), was recently proposed which uses random compression weights
for combining antenna-element signals into fewer measurements. However, this compressive array
had not been studied in terms of traditional characteristics such as directivity, sidelobe level (SLL)
or beamwidth. In this work, random compression weights are shown to be suboptimal and a need
for the optimisation of compressive arrays is expressed. Existing codebook optimisation algorithms
prove to be the best starting point for the optimisation of compressive arrays, but are computationally
complex. A computationally efficient codebook optimisation algorithm is proposed to address this
problem, which inspires the compressive-array optimisation algorithm to follow. Compressive antenna
arrays are formulated as a generalisation of reduced-control arrays and a framework is presented for
their optimisation in terms of SLL. By allowing arbitrary compression weights, compressive arrays are
shown to improve on existing reduced-control techniques. A feed network consisting of interconnected
couplers and fixed phase shifters is proposed, enabling the implementation of compressive arrays in
microwave hardware. The practical feasibility of compressive arrays is illustrated by successfully
manufacturing a 3-GHz prototype compressive array with integrated antenna elements.
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CHAPTER 1 INTRODUCTION

1.1 PROBLEM STATEMENT

1.1.1 Context of the problem

Beamforming antenna arrays consist of a group of antennas that, when combined together, are able
to electronically steer a beam in different directions while the array itself remains stationary [2].
Beamforming arrays are used extensively in radar [2, 3], telecommunications [2], radio astronomy [4],
and radio direction finding (DF) [5].

In traditional phased arrays, each element is connected to a phase shifter, and possibly, an amplifier [3].
Digital antenna arrays contain a receiver and/or transmitter at each antenna element. These hardware
components are the beamforming controls which enable adaptive beamforming. Advantages of
digital beamforming include the ability to steer multiple beams simultaneously in software, array
reconfigurability, improved dynamic range, and precise array calibration [2, 3, 6]. The use of phase
shifters and/or amplifiers at each element in traditional phased arrays, and transmitters and/or receivers
at each element in digital antenna arrays places limitations on the number of elements that may be used
due to the size, weight, complexity, and cost involved [3, 6, 7]. With uniform spacing between antenna
elements, this limits the aperture of the array, and therefore, the achievable resolution.

Over the decades, significant effort has gone into developing reduced-control arrays which maintain a
given aperture but require either fewer antenna elements, or fewer beamforming controls in an effort to
reduce cost, size, and weight [3, 7–9].

One way of reducing the cost and complexity of an array is to take a filled array with a large aperture
and turn some of the elements off, referred to as array thinning [9]. This results in an array with a
beamwidth similar to that of the filled array, but with decreased directivity proportional to the number
of active elements [2, 10].

Another way of reducing the number of controls is to combine the signals at the antenna elements
before reaching the transmitters and/or receivers, thereby reducing the number of controls for the same
number of antenna elements [2–4, 7, 11]. Existing overlapped subarrays combine antenna elements
while considering a reduced steering range, resulting in narrow beams with high directivity being
steered over a relatively small angular range [2, 3, 7].

An array that combines the antenna-element signals so that each output is a function of all antenna
elements for a full field of view, inspired by the concept of compressive sensing (CS), was proposed
in [11] for DF. Such compressive arrays were proposed to use random compression weights to combine
the antenna-element signals, since this approach has worked well in other CS applications [12, 13].
However, a recent hardware implementation of a compressive array with random weights exhibited
ambiguities when performing DF, implying that weights would need to be optimised if compressive

Portions of this chapter are ©2018 IEEE; reprinted, with permission, from [1].

 
 
 



CHAPTER 1 INTRODUCTION

arrays are to be useful in practice [14]. Typical array specifications such as directivity, beamwidth
and sidelobe level (SLL) are all functions of the radiation pattern of an array [2]. The optimisation of
compressive arrays is therefore a pattern-synthesis problem.

One approach to array pattern synthesis is to minimise SLL in a pre-defined sidelobe region [15].
Interestingly, the minimisation of SLL is analogous to the problem of codebook optimisation [1].
Codebook optimisation algorithms aim to minimise the similarity between codewords (vectors) in a
codebook (matrix), while minimising SLL involves minimising the similarity between the steering
vectors of an array. Unfortunately, the codebook optimisation problem is inherently combinatorial in
nature, leading to computationally expensive algorithms [16]. Any approach to optimising compressive
arrays would need to take such complexity into account if a computationally feasible algorithm is to be
developed.

1.1.2 Research gap

Random compression weights were proposed for use in a compressive array since that is what is widely
used in CS [11]. Such a compressive array was implemented in hardware with two subarrays and four
antenna elements for DF, but some steering angles exhibited ambiguities, and a need was expressed for
optimising the feed network [14]. In addition, compressive arrays have not been characterised in terms
of directivity, SLL, or beamwidth, all of which are standard measures for characterising an antenna
array [2].

Random compression weights are suitable for signal reconstruction in a CS framework, but only under
the assumption that the dimensions of the system are sufficiently large [17]. This may not be the case
for antenna arrays where arrays with very few elements are still of practical interest.

Existing codebook optimisation techniques may be applied to CS systems with predictable performance,
including systems of small dimensions [18,19]. However, even then the optimisation is only performed
on a discrete number of vectors. Codebook optimisation algorithms are, therefore, unsuitable in their
current form for optimising SLL which relies on continuous sampling of the sidelobe patterns.

These observations show that there is a need for deeper investigation into the design of compressive arrays
as a pattern-synthesis problem. The suitability of random compression weights is questionable, and
current codebook optimisation techniques cannot solve a continuous SLL optimisation problem.

Existing array synthesis methods for conventional arrays consider not only uniform minimisation of
SLL, but also allow arbitrary shaping of the sidelobe amplitude patterns [20]. Allowing arbitrary
sidelobe masks to be specified would make a compressive array design algorithm suitable for a wider
range of applications.

In addition to the design of compression weights for compressive arrays is the problem of implementing
such designs in hardware. The only hardware architecture proposed to date [14] is restricted to
random weights. Unless hardware constraints are added to the already-complex problem of optimising
compression weights, a technique for implementing optimised compressive arrays would have to be
able to implement arbitrary weights. No such technique has yet been proposed.

1.2 RESEARCH OBJECTIVE AND QUESTIONS

Based on the context and motivation given above, two main research questions were identified.
The first question is whether compressive-array compression weights can be designed to meet pre-
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CHAPTER 1 INTRODUCTION

defined radiation-pattern requirements. Under this question, the following sub-questions have been
identified.

Suitability of random compression weights: Are random compression weights, widely used in CS
applications, suitable for designing compressive arrays?

Compressive arrays based on optimised codebooks: Can existing numerically optimised codebooks
be used to design compressive arrays, and will there be an increase in performance compared to
random compression weights?

Addressing computational complexity in codebook optimisation algorithms: Can the computational
complexity of existing codebook optimisation algorithms be addressed?

Developing a compressive array SLL minimisation algorithm: How is codebook optimisation related
to SLL minimisation, and can insight gained from optimising discrete codewords in a codebook be
used to develop an algorithm for optimising SLL in a compressive array?

Arbitrary sidelobe shaping: Can the shape of sidelobe regions in compressive arrays be controlled by
means of arbitrary amplitude-pattern masks?

The second question is whether compressive arrays are feasible to implement in hardware. Under this
question, the following sub-questions have been identified.

Hardware implementation of arbitrary compression weights: Can a hardware architecture be
developed to implement arbitrary compression weights in compact and cost-effective microwave
circuitry?

Practical feasibility of compressive arrays: Is it feasible to implement optimised compressive array
systems in microwave hardware?

1.3 APPROACH

1.3.1 Hypotheses

In relation to the research questions listed above, the following hypotheses were formulated.

Suitability of random compression weights: Random weights can, at best, be assumed to be suitable
for a compressive array with a large number of antenna elements [17]. The implementation of a
small two-subarray, four-element compressive array for DF exhibited ambiguities at some steering
angles [14]. It is expected that the performance resulting from the use of random weights will
decrease in direct proportion with the dimensions of the system. This warrants the use of numerically
optimised weights with predictable properties that do not rely on statistical measures.

Compressive arrays based on optimised codebooks: The codewords in an optimised codebook
represent the steering vectors in a compressive array, and not the compression weights themselves.
In order to find the compression weights from the steering vectors, an inverse transformation will
have to be applied. Since there are only a discrete number of compression weights, the rank of the
transformation will also be discrete and limited. It is therefore expected that optimised codebooks
will only allow control over the array patterns at a limited number of angles.

Addressing computational complexity in codebook optimisation algorithms: The formulation of the
state-of-the-art best complex antipodal spherical codes (BCASC) codebook optimisation algorithm
requires minimising the Euclidean distance between codewords and all their antipodals, leading to a
computationally expensive algorithm [16]. If this approach is extended to the even more complex
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CHAPTER 1 INTRODUCTION

problem of optimising SLL at large number of points, it is expected that such an approach will
become computationally infeasible for antenna arrays of even moderate sizes. It is expected that the
discrete codebook optimisation problem can be reformulated to directly minimise the similarity
between the codewords as measured by their pair-wise absolute dot products (coherence), since this
implicitly includes the effect of the antipodals and is more consistent with the desired goal. This
would provide a better starting point for developing an SLL optimisation algorithm for compressive
arrays.

Developing a compressive array SLL minimisation algorithm: Antenna amplitude patterns can be
calculated by taking the absolute dot product of the conjugated beamforming weights and the
steering vectors, and the SLL is given as the maximum pattern value outside the main beam.
Similarly, coherence consists of a maximum absolute dot product. It is expected that coherence
and SLL will become equivalent if the steering weights used in a compressive array are properly
defined. However, this requires defining coherence as a continuous value over all angles in the
sidelobe regions. Standard codebook optimisation algorithms consider only a discrete number of
vectors and will therefore not suffice. Instead, the problem will have to be reformulated to minimise
SLL over continuous sidelobe patterns using insight gained from discrete coherence optimisation
techniques.

Arbitrary sidelobe shaping: In codebook optimisation algorithms, the similarity between codewords
must be minimised for all possible combinations of codewords, which translates to optimising the
sidelobe patterns over all steering angles in a compressive array. This implies that a good SLL at,
for example, broadside does not guarantee a good SLL elsewhere. It is expected that this property
may be exploited to design compressive arrays where the sidelobe specifications change based on
steering angle, opening up a new set of design freedoms that may be used to compromise sidelobe
performance at certain angles for better performance elsewhere.

Hardware implementation and practical feasibility of compressive arrays: A two-subarray ultra-
high frequency (UHF) compressive array with four elements and a random sensing matrix was
successfully implemented using lumped-element splitters and combiners, but requires a large
number of crossovers [14]. Partially and completely overlapped subarrays can be seen as a special
case of the compressive array, since the antenna elements are also weighted and combined to
reduce the number of controls [2, 7]. Such feed networks have successfully been implemented in
practice [2,3,7,21]. It is expected that existing techniques for implementing compressive arrays and
overlapped feed networks may be extended, or new techniques devised, to implement compressive
feed networks with arbitrary compression weights.

1.3.2 Methodology

In order to test and evaluate the hypotheses given above, the following methodology was followed.

Suitability of random compression weights and compressive arrays based on optimised codebooks:
Optimised codebooks designed using an existing algorithm were transformed to compression
weights and compared to random compression weights in terms of coherence and DF accuracy as a
measure of performance in a practical application. Compressive arrays optimised using the approach
to follow were also compared to and evaluated against random and codebook-based compressive
arrays.

Addressing computational complexity in codebook optimisation algorithms: The computational
complexity of the BCASC codebook optimisation algorithm was addressed by reformulating the
problem to directly minimise coherence. The proposed and BCASC algorithms were implemented
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in a numerical computation environment and compared in terms of achieved coherence and run
times over multiple tests and multiple codebook dimensions.

Developing a compressive array SLL minimisation algorithm with arbitrary sidelobe shaping: Using
insight gained from developing the proposed codebook optimisation algorithm, the problem was
extended to optimise SLL over all angles in the sidelobe regions. The problem was formulated so
that arbitrary sidelobe masks may be applied for shaping the sidelobe regions.

Hardware implementation and practical feasibility of compressive arrays: Existing overlapped subarray
implementation techniques were extended to allow the implementation of arbitrary compressive feed
networks. A compressive feed network was first designed and manufactured in isolation to show
that a given feed network response can be realised accurately. Subsequently, a complete prototype
compressive array with integrated antenna elements was designed to show that compressive arrays
are feasible to implement in practice. The microwave circuitry was simulated using a full-wave
electromagnetic solver, manufactured, tested, and evaluated against the specifications.

1.4 RESEARCH GOALS

The concept of compressive arrays has been suggested [11] and a prototype implemented [14], but such
arrays were proposed to use only random compression weights and were not evaluated in terms of any of
the measures traditionally used for antenna arrays [2]. The goal of this work is to develop a framework
for the design of compressive arrays as a pattern-synthesis problem, and to evaluate the potential of
compressive arrays against existing reduced-control arrays. The goal of the work is also to investigate
whether optimised compressive arrays are feasible to implement in microwave hardware.

1.5 RESEARCH CONTRIBUTION

The contributions of this work are summarised below.

Suitability of random compression weights and compressive arrays based on optimised codebooks:
The use of numerically optimised codebooks in the design of compressive arrays has been proposed
and compared to designs based on random weights. Codebook-based compressive arrays outperform
random compressive arrays in terms of both coherence and mean DF performance in a noisy
environment, showing that random weights are suboptimal for small CS systems.

Addressing computational complexity in codebook optimisation algorithms: An algorithm for
optimising codebooks by directly minimising coherence has been proposed. The proposed algorithm
outperforms the state-of-the-art BCASC algorithm by almost an order-of-magnitude reduction in
median run time while maintaining similar coherence results.

Developing a compressive array SLL minimisation algorithm with arbitrary sidelobe shaping: A
generalised framework for the optimisation of compressive arrays with arbitrary sidelobe specifica-
tions has been proposed. The algorithm is inspired by the coherence-based codebook optimisation
algorithm also developed as part of this work. The coherence optimisation problem is extended
to consider the minimisation of SLL in a compressive array. The approach is validated against a
Chebyshev uniform linear array (ULA) and shown to improve on an existing weighted thinned array,
a conventional ULA with a limited steering range, and a dual-transform overlapped subarray system
for the same number of beamforming controls.

Hardware implementation and practical feasibility of compressive arrays: A novel network of
interconnected couplers and phase shifters has been proposed for implementing an arbitrary
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complex-valued feed network response in microwave hardware. The proposed approach is validated
by approaching the standard implementation of a 4× 4 Butler matrix. Three independently designed
arrays are combined to share the same 8-element array, illustrating the versatility of the proposed
approach. A planar compressive feed network with two subarrays and four antenna-element ports
is implemented and manufactured in microstrip for a 3.15-GHz ULA and achieves the desired
response within 0.6 dB and 5.2◦. A complete prototype compressive array with two subarrays and
an integrated array of four printed dipole elements is successfully manufactured in a planar circuit,
achieving the desired SLL within 1.1 dB at the design frequency of 3 GHz.

The theory of CS is a relatively new concept which challenges the well-established Nyquist-Shannon
sampling paradigm, making it initially challenging to both understand and accept. As a by-product
of the work outlined above, a tutorial on CS has been developed which consists of new analogies,
numerical examples and a simple reconstruction algorithm to explain the fundamental concepts in CS.
This tutorial forms the basis of Chapter 2.

1.6 RESEARCH OUTPUTS

The publications resulting from this work are outlined below.

Suitability of random compression weights and compressive arrays based on optimised codebooks:
This part of the work has led to the publication of the following conference paper [22]:
H. E. A. Laue and W. P. du Plessis, “Compressive direction-finding antenna array,” in IEEE-
APS Topical Conf. on Antennas and Propag. in Wireless Commun. (APWC), Sep. 2016, pp.
158–161.

Addressing computational complexity in codebook optimisation algorithms: This part of the work has
led to the publication of the following journal paper [23]:
H. E. A. Laue and W. P. du Plessis, “A coherence-based algorithm for optimizing rank-1
Grassmannian codebooks,” IEEE Signal Process. Lett., vol. 24, no. 6, pp. 823–827, June
2017.

Developing a compressive array SLL minimisation algorithm with arbitrary sidelobe shaping: This
part of the work has led to the publication of the following journal paper [1]:
H. E. A. Laue and W. P. du Plessis, “Numerical optimization of compressive array feed networks,”
IEEE Trans. Antennas Propag., vol. 66, no. 7, pp. 3432–3440, July 2018.

Hardware implementation of arbitrary compression weights: This part of the work has led to the
publication of the following journal paper [24]:
H. E. A. Laue and W. P. du Plessis, “A checkered network for implementing arbitrary overlapped
feed networks,” IEEE Trans. Microw. Theory Techn., vol. 67, no. 11, pp. 4632–4640, Nov.
2019.

An introduction to CS: This part of the work has led to the publication of the following accredited-
magazine article [25]:
H. E. A. Laue, “Demystifying compressive sensing [Lecture notes],” IEEE Signal Process. Mag.,
vol. 34, no. 4, pp. 171–176, July 2017.

6 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

 
 
 



CHAPTER 1 INTRODUCTION

1.7 THESIS OVERVIEW

An overview of the thesis as contained in the relevant chapters is given below.

Chapter 1 introduces the problem of reducing the number of controls in beamforming arrays and
highlights some of the limitations of the recently-proposed compressive DF array [11]. The
assumption that random weights are optimal for compressing antenna-element signals is challenged,
and is it suggested that compression weights should instead be optimised for low SLL.

Chapter 2 introduces the fundamental concepts in CS in the form of a tutorial with analogies, numerical
examples, and a simple algorithm, thereby providing intuitive explanations for the CS principles
referred to throughout the thesis.

Chapter 3 gives an overview of existing reduced-control arrays including thinned and sparse arrays,
subarray systems, and compressive antenna arrays. An overview of discrete codebook optimisation
is also given, which is the most promising starting point for developing a compressive array
optimisation algorithm.

Chapter 4 investigates whether random compression weights are indeed optimal for compressive arrays
when applied to DF. A new technique for designing compressive arrays using optimised codebooks
is proposed and evaluated against conventional arrays and random compressive arrays.

Chapter 5 addresses the issue of computational complexity in the existing state-of-the-art codebook
optimisation algorithm. A computationally efficient codebook optimisation algorithm is proposed
which offers a more promising starting point for developing a compressive array optimisation
algorithm.

Chapter 6 develops a framework and algorithm for optimising compressive arrays for low SLL. It is
shown how compressive arrays are a generalisation of existing reduced-control arrays. Compressive
arrays designed using the proposed approach are evaluated against existing reduced-control arrays
and shown to implement designs which could not previously be considered.

Chapter 7 addresses the issue of how a compressive feed network can be implemented in hardware by
proposing a novel feed network layout which can implement arbitrary complex-valued compression
weights. Measured results are presented for a network implemented in microstrip.

Chapter 8 describes the successful design and manufacturing of a prototype compressive array with
integrated antenna elements in a microwave circuit. Various practical considerations that arise when
implementing compressive arrays in hardware are highlighted.

Chapter 9 summarises the main contributions of the work and highlights some potential considerations
for future work.

Addendum A derives the proposed codebook and compressive array optimisation algorithms.

A glossary is also provided which defines terminology used throughout the thesis.
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CHAPTER 2 AN INTRODUCTION TO
COMPRESSIVE SENSING

2.1 CHAPTER OVERVIEW

The conventional Nyquist-Shannon sampling theorem has been fundamental to the acquisition of
signals for decades, relating a uniform sampling rate to the bandwidth of a signal. However, many
signals can be compressed after sampling, implying a high level of redundancy. The theory of CS
presents a sampling framework based on the rate of information of a signal and not the bandwidth,
thereby minimising redundancy during sampling. This means that a signal can be recovered from far
fewer samples than conventionally required.

When considering new fields that challenge existing paradigms, it is often useful to start by gaining a
high-level understanding of the principles underlying that field. This chapter employs a new set of
analogies, illustrations and numerical examples to provide intuitive explanations for the fundamental
principles in CS, allowing the reader who is new to CS to understand the references to CS in the
chapters to follow.

Two analogies illustrating the core concepts in CS are presented in Sections 2.2 and 2.3. Section 2.4
explains the concept of sparsity—the fundamental assumption behind CS. Section 2.5 explains the
concept of incoherence and how compressed measurements are taken. In Section 2.6, the CS problem
is reformulated to consider it from a more in-depth mathematical perspective. A simple reconstruction
algorithm in Section 2.7 shows how perfect reconstruction of the original signal from sub-Nyquist
samples is possible, and considers the rationale behind computationally efficient `p-norm recovery
algorithms. Finally, conclusions are drawn and the chapter is summarised in Section 2.8.

2.2 ANALOGY 1—LISTENING WITH HALF AN EAR

Three journalists are taking notes at a press conference. The first is inexperienced and quite naïve; so
afraid of missing something important, he frantically writes down every word being said. The second
journalist is more experienced and while also listening attentively to every word, he interprets what is
said and summarises the facts concisely in his notes. The third journalist is quite lazy; not listening
attentively at all, he only picks up every second or third word being said. The experienced journalist
sees the lazy one daydreaming and is greatly surprised afterwards to find their notes almost identical.
‘How did you get all the facts, when you were clearly only listening with half an ear?’, he asks. ‘Did
you not know’, the lazy one replies, ‘that the speaker is known to waffle, using ten words to convey a
single concept? I am not likely to miss anything important when I know he could not be saying very
much, though his words may be many.’

This chapter is a modified version of a published accredited-magazine article [25]. Portions of this chapter are ©2017
IEEE; reprinted, with permission, from [25].
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The naïve journalist represents conventional Nyquist-rate sampling, with words analogous to samples.
This scheme makes no effort to interpret what is being sampled; the sampling rate is based purely on the
signal bandwidth. The experienced journalist represents conventional signal compression. Sampling
is still done at the Nyquist rate, but the system interprets the sampled signal and expresses it more
concisely for storage or transmission. The lazy, or rather, the efficient journalist represents compressive
sampling. This scheme samples well below the Nyquist rate by assuming that the unique concepts or
information being conveyed is little, and that this information is distributed over the many conventional
samples so that missing a particular sample is unlikely to lead to significant loss of information.

2.3 ANALOGY 2—FILLING IN THE GAPS

Imagine playing a game where a friend chooses a word and reveals the letters and their positions one by
one, at random, until you correctly identify all the letters. You have gotten as far as ‘co–pr–ss’. You see
that the answer must be ‘compress’, and that the missing letters are ‘m’ and ‘e’. How did you identify
these two letters? You did not see the letters as unrelated parts to be identified on their own, but saw
them as collectively conveying a single concept—a word.

Compressive sampling is analogous to such a game, where letters represent samples. Instead of seeing
samples as unrelated to each other, CS identifies the concepts the samples are collectively conveying.
These concepts are few compared to the number of samples, like many letters convey a single word.
Some samples required by the Nyquist theorem are missing, but by identifying the concepts being
conveyed, the CS algorithm is able to fill in the missing samples.

On the other hand, imagine playing the game without the assumption that the letters form a word. This
significantly increases the complexity of the problem, since any combination of letters is a possible
solution. Without any vocabulary to draw from, there is no way to identify the missing letters and you
will have to wait until all the letters have been revealed.

Conventional sampling is like the latter scenario. It does not interpret what the samples are conveying,
but treats each sample as an individual concept to be identified correctly. All the Nyquist samples must
be taken; there is no way of filling in any gaps.

2.4 SPARSIFYING BASES

Consider a discrete signal vector x = [x1, x2, . . . , xN ]T of N samples taken at the conventional Nyquist
rate of at least twice the signal bandwidth. A signal vector in a conventional sampling domain can be
expressed in a different domain/basis for analysis or processing. For example, time domain signals may
be transformed to the Fourier domain to analyse their frequency content.

Consider a set of orthonormal basis vectors placed as columns in the transformmatrixA = [a1 a2 · · · aN ].
The signal vector x can then be expressed as a weighted sum of basis vectors [12]

x =
N∑
n=1

snan = As, (2.1)

where the N × 1 vector s contains the coefficients of the signal in its new basis, found as the projection
of x onto each of the basis vectors by the dot product sn = aTnx or s = ATx in the real case and s = AHx
in the complex case. Each coefficient is represented by its own basis vector which is separable from all
others.

Sampling at the Nyquist rate guarantees perfect recovery of the original signal, suggesting that no fewer
than N coefficients are required to fully describe the signal. However, a signal vector can often be
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y

x

(x, y) = (2, 1)s2

s1
(s1, s2) = (   5, 0)

Figure 2.1. Illustration of a two-dimensional data point expressed in standard and sparsifying bases.
Adapted from [25], ©2017 IEEE.

expressed in a different basis where many coefficients are zero (or close to zero) [13]. The remaining K
non-zero, or significant, coefficients are sufficient to fully describe the signal. When x is expressed in a
sparsifying basis, it results in a K-sparse vector s with only K � N significant coefficients. Sparsity
in s implies redundancy in x, since N samples represent a signal with effectively only K degrees of
freedom. Here, the significant coefficients in the sparsifying basis can be seen as the concepts or
information being conveyed by x.

Figure 2.1 illustrates a two-dimensional data point at (2, 1) in the standard basis. However, in the
sparsifying basis shown, the data point is (

√
5, 0), which has only one significant coefficient.

Many signals have sparsifying bases, a fact well known in conventional compression where a signal
may be expressed in a sparsifying basis so only the largest coefficients can be retained [12].

Images are typically sparse in the discrete cosine transform (DCT) or wavelet bases [26], audio signals
in the modified discrete cosine transform (MDCT) basis [27], magnetic resonance (MR) images in the
spatial, spatial finite differences or wavelet domains [28], and sensor array data in direction of arrival
(DoA) [29].

2.5 INCOHERENCE AND COMPRESSIVE SAMPLING

CS exploits redundancy to reduce the number of samples that must be taken to fully describe a signal.
It has been noted that redundancy can be quantified in terms of the number of significant coefficients in
a sparsifying basis. CS aims to reduce the required number of samples without any prior knowledge of
the signal, only the assumption that some sparsifying basis exists.

Consider as a first approach simply neglecting some of the conventional Nyquist samples at random.
The problem here is that some samples neglected may contain crucial information. For example, what
if the signal contains spikes or sharp discontinuities? Neglecting samples in these areas would lead to
significant loss of information.

In order for this approach to work, it would be necessary for the information to be distributed evenly
over all the conventional samples, so that no one sample conveys significantly more information than
another. While the signal should be sparse in some other basis, it should certainly not be sparse in the
domain in which it is sampled.

The incoherence1 between two domains expresses the idea that a vector which is sparse in one
domain will be non-sparse in the other, and occurs when the basis vectors between the domains are
dissimilar [13]. Consider the time and frequency domains, where the time domain is represented by

1The term incoherence in this context should not be confused with the term coherence used elsewhere. Both measure the
similarity between vectors, but whereas coherence measures the similarity between vectors in a single matrix/codebook/basis,
incoherence measures the dissimilarity of vectors between two matrices/codebooks/bases.
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ℓ p

Compression

y
Compressed

measurements

A

Φ
B

M = 16

s
Sparsifying

domain

K = 2

x
Conventional

samples

N = 64

CS recovery

Figure 2.2. Example of a CS system with N = 64, M = 16, K = 2, random Gaussian Φ, and A
the inverse DCT matrix. Blue arrows represent matrix multiplications. Amplitudes are not to scale.
Adapted from [25], ©2017 IEEE.

the standard basis and the frequency domain by the Fourier basis. A single frequency component
will result in a sine wave with most time samples being significant. Similarly, a time-domain impulse
can only be represented by a multitude of frequency components. The bottom of Figure 2.2 shows
an example where A is the inverse DCT matrix. The blue arrow represents a matrix multiplication
with A or its inverse, depending on the direction. With only two significant coefficients in s, almost all
conventional samples in x are significant.

If the bases of x and s are incoherent, and if s is sparse, then the information of interest (the K significant
coefficients in s) will be distributed over all N samples in x. Since this information is comparatively
little (K � N), neglecting some of the samples in x is unlikely to lead to a significant loss of information
(see Analogy 1, Section 2.2). Also, the choice of which samples to neglect becomes almost arbitrary,
as long as enough are kept [13]. Aliasing is not a problem unless the samples that are kept are spaced
uniformly; therefore, samples are typically neglected at random [13].

So far the requirements are sparsity in s and non-sparsity in x, which is met when there is incoherence
between the conventional and sparsifying bases. But what happens if x itself is sparse? Redundancy is
still present, but neglecting samples at random will result in a loss of information. The solution is to
transform the signal x to an intermediate domain before sampling—a domain in which the signal is
non-sparse, and which is incoherent with the sparsifying domain.

How will such an intermediate domain be selected? An interesting fact is that a random basis is highly
likely to be incoherent with almost any other basis [13]. This means that without prior knowledge
of the sparsifying domain, the signal may be transformed to a random domain and the incoherence
requirement will be met. In this way universal sampling schemes can be designed which require only
the assumption that some sparsifying basis exists. No knowledge of the sparsifying basis is required
during sampling, only during signal reconstruction.
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Figure 2.3. (a) General illustration of a sensing matrix implementation (N = 4, M = 2). (b) Single-pixel
CS camera (adapted from [12]). Adapted from [25], ©2017 IEEE.

How is compressive sampling implemented? The simultaneous process of transforming to an
intermediate domain and neglecting transformed samples may be described by the system y = Φx,
where y is the M × 1 vector of compressed samples (or measurements), and Φ is the rectangular M × N
sensing matrix, with K < M < N . The rows {φm}

M
m=1 describe the basis vectors of the intermediate

domain, where only M out of N basis vectors are used. Each measurement is found as the projection of
x onto the corresponding basis vector as ym = φmx. Figure 2.2 illustrates how a random Φ is used to
compress x into the measurement vector y.

Each measurement ym is a unique weighted combination of all the elements in x, or ym =
∑N

n=1 φm,nxn.
Notice how this ensures that the information in x is distributed over all the measurements in y. The
processes of weighting and summation are used for hardware implementations of the sensing matrix.
This is illustrated in Figure 2.3(a) for N = 4 and M = 2.

While a form of CS may be implemented in software to compress Nyquist-rate signals, the real power
of CS lies in developing new hardware-based sub-Nyquist sampling schemes.

Figure 2.3(b) illustrates a CS application, the single-pixel camera, where an N-pixel image is
reconstructed from M < N measurements [12, 26]. An image is projected onto a digital micromirror
device (DMD)—an array of tiny mirrors, each representing a pixel. For each measurement ym, the
micromirrors are randomly set to either reflect light toward a collecting lens, or away from it. This
is the process of weighting (by zero or one), with the weights for each measurement taken from the
corresponding row in Φ. The lens then collects the rays from the DMD and concentrates it onto a single
photodiode—the process of summation. After the first measurement, new weights are programmed
into the DMD for the next measurement.

2.6 EQUIVALENT SYSTEMS AND DESIGN REQUIREMENTS

So far it has been seen that CS is possible when a signal has a sparse representation in some domain
that is incoherent with the sampling domain. To understand the problem in more detail it is useful to
consider it from a slightly different angle. Consider the effect of Φ and A not separately, but together in
the following equivalent formulation of the CS problem:

y = Φx = ΦAs = Bs, (2.2)
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whereB is the M×N compressed transformmatrix. The columns {bn}
N
n=1 are vectors in an overcomplete

basis, with more vectors than dimensions. Each vector still represents a coefficient in s, but the set
cannot be orthogonal and there will be some similarity between the vectors.

The goal is to recover s from y = Bs. Notice that the system is underdetermined since there are less
equations than unknowns. It would generally be impossible to determine s uniquely since y does
not present sufficient information about it. However, the assumption of sparsity in s is the additional
information required to obtain a unique solution. Out of the infinite number of possible solutions, only
the sparsest solution is considered, i.e. the sparsest vector s that satisfies y = Bs. This is a form of
Occam’s razor: out of all the possible explanations for the measured data, assume that the simplest
(sparsest) one must be correct (see Analogy 2, Section 2.3).

Figure 2.2 shows the relationship between Φ, A and B. The arrow labelled ‘CS recovery’ indicates that
using a CS algorithm, it is possible to go upstream by finding the length-N vector s from the smaller
length-M vector y. Having s, the original vector x can be found through A.

Consider the following example. An underdetermined system in the form y = Bs is given by


−0.357
0.612
0.137

 =

−1.036 −0.293 −0.127 −0.503 −0.127
−0.844 0.088 −0.385 0.105 1.048
0.241 −0.069 −0.444 0.733 0.412




0
1.0
0
0

0.5


, (2.3)

where a random Gaussian sensing matrix Φ with zero mean and variance 1/N and the inverse DCT
transform matrix A have been used to obtain B = ΦA.

Assuming for now that it is known which coefficients in s are significant, the system may be reduced to
the equivalent overdetermined subsystem

−0.357
0.612
0.137

 =

−0.293 −0.127
0.088 1.048
−0.069 0.412


[
1.0
0.5

]
(2.4)

in the form y = B′s′, where the columns in B corresponding to the non-zero elements in s have been
extracted to give the submatrix B′, and s′ contains the non-zero coefficients in s.

Under which conditions can s be recovered from y? Firstly, the columns in B′ should be linearly
independent, since the coefficients in s will not be separable if they can be expressed as a linear
combination of the vectors corresponding to the other coefficients. This condition would have sufficed
if the K locations were known beforehand. However, they are not. Out of the infinite number of possible
solutions, the solution s with the least number of significant coefficients will be chosen, which will in
turn give the locations of the K non-zero coefficients. However, it must be ensured that there is only
one K-sparse solution to choose—a unique solution.

Suppose for the sake of contradiction that two distinct K-sparse solutions s and ŝ exist, such that
y = Bs = ŷ = Bŝ, or B(s − ŝ) = 0. Then the difference vector δ = s − ŝ is at most 2K-sparse [30].
By definition, the equivalent subsystem B′δ′ = 0 has a non-trivial solution if and only if the 2K or
less columns in B′ are linearly dependent. Conversely, if these columns are linearly independent,
B(s − ŝ) = 0 cannot be satisfied and no more than one K-sparse solution can exist. To guarantee a
unique solution for any combination of K or less significant coefficients in s, all subsets of 2K columns
in B must be linearly independent [30].

The restricted isometry property (RIP) goes a step further and considers whether submatrices with 2K
columns are nearly linearly dependent by placing bounds on the conditioning of these submatrices [31].
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This ensures robustness in the presence of noise, since small perturbations may produce large errors
when solving a nearly linearly dependent system.

Another common criterion for evaluating compresssed transform matrices is to consider the coherence
of B. (Here the similarity between vectors within a single set of non-orthogonal vectors is considered
rather than the similarity between two orthonormal bases.) Since there are more columns that rows,
the columns cannot be orthogonal; however, the coherence quantifies how closely B resembles an
orthonormal set. For example, if the columns in B′ in (2.4) are too similar, it will be difficult distinguish
between them in order to recover the elements in s′. The coherence of a matrix with normalised
columns is calculated as the maximum absolute dot product maxl,n |bH

l
bn | for all l, n ∈ {1, . . . , N}

(Section 3.4) [32].

Compressed transform matrices B with independent and identically distributed (i.i.d.) random entries
have been shown to meet the RIP criterion with high probability. Examples include Gaussian matrices
with zero mean and variance 1/M, and Bernoulli matrices with equiprobable ±1/

√
M entries [13].

For practical implementations Φ may be chosen in the same way as B (replacing M with N), and
the resulting B will still be able to meet the criteria for arbitrary choice of A [13]. As a result, the
incoherence requirement between Φ and A will also be satisfied.

2.7 MINIMISING SPARSITY—PERFECT RECOVERY ALGORITHMS

So far, it has been shown how it is possible for a CS system to preserve the information in x from only
the measurements y. But how is x recovered from y?

In developing a CS recovery algorithm, the aim is to obtain a unique solution to an underdetermined
system that is the sparsest of all solutions. This can be formulated as

min ‖s̃‖0 subject to y = Bs̃, (2.5)

where ‖ · ‖0 is the `0-norm defined as the number of non-zero elements in a vector. The problem reads:
‘Minimise the number of non-zero elements in s̃, subject to s̃ being a possible solution to the system.’
The general `p-norm is defined as ‖s‖p = p

√∑N
n=1 |sn |

p.

To illustrate, consider the following combinatorial `0 minimisation algorithm:
for k ← 1 to M − 1

for all combinations of k out of N coefficient locations in s̃
Find the least-squares solution ŝ′ to y = B′s̃′
if ŷ = B′ŝ′ = y −→ break

This algorithm tries all possible combinations of sparse coefficient locations, starting with a single one,
until it finds an exact least-squares solution to the subsystem.

Consider the system in (2.3) with s unknown. The first try would assume that only s1 is significant and
solve the resulting subsystem, giving the least-squares solution s1 = −0.062. This gives ŷ = [0.064,
0.052, −0.015]T , y, which is not an exact solution.

Eventually the combination (s2, s5) is reached, which leads to the subsystem in (2.4) with s′ unknown,
for which the least-squares solution is (s2, s5) = (1.0, 0.5), giving ŷ = [−0.357, 0.612, 0.137]T = y, an
exact solution. This also happens to be the first combination that gives an exact solution, as expected.
While there are many more solutions, the algorithm accepts this one as correct since it is sparsest. If
desired, it is now possible to calculate x̂ = Aŝ.
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y = Bs͂
Solutions to s2

s1

ŝ

ℓ0.5

(a)

y = Bs͂
Solutions to s2

s1

ℓ1

ŝ

(b)

y = Bs͂
Solutions to s2

s1

ℓ2

ŝ

(c)

Figure 2.4. Illustration of `p-norms for (a) p = 0.5, (b) p = 1, and p = 2 (Euclidean norm). Blue lines
occur where the vector s̃ has constant `p-norm. Any point on a red line is a possible solution. Adapted
from [25], ©2017 IEEE.

Unfortunately, a combinatorial `0 algorithm is computationally infeasible for problems of practical
sizes [12]. For a practically feasible recovery algorithm, the `p-norm formulation

min ‖s̃‖p subject to y = Bs̃, 0 < p ≤ 1 (2.6)

is preferred since it can be solved using a variety of efficient optimisation algorithms [33]. The `1
problem can be recast as a linear program [30,32], and requires around O {K log(N/K)} measurements
when using a random sensing matrix [13]. For 0 < p < 1 the problem is non-convex with multiple
minima, but local optimisers nevertheless perform well, particularly when p = 0.5 [33].

To visualise why the `p-norm favours sparsity when 0 < p ≤ 1, consider the graphs in Figure 2.4 for
p = 0.5, p = 1, and p = 2. The `p-balls shown in blue represent the points at which s̃ has constant
`p-norm. Since the norms must be minimised, imagine the balls being inflated until they first touch the
lines of possible solutions shown in red. For 0 < p ≤ 1, the `p-norms favour sparse solutions that lie
on the axes. By comparison, minimising the common Euclidean norm (p = 2) is not useful since it
does not obtain a solution that is necessarily sparse.

2.8 CHAPTER SUMMARY

In this chapter, it was shown how CS exploits redundancy to reduce sampling rates, and under which
conditions the original signal is preserved despite the system being underdetermined. It was shown how
universal sampling schemes requiring the existence but not knowledge of a sparsifying basis may be
developed by using random sensing matrices. Lastly, a simple `0-minimisation algorithm was shown to
recover a signal with knowledge of the sparsifying basis, and the rationale behind `p-minimisation
algorithms was considered for 0 < p ≤ 1.
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CHAPTER 3 TOWARDS APPLYING COMPRESSIVE
SENSING TO REDUCED-CONTROL
ARRAY DESIGN

3.1 CHAPTER OVERVIEW

This chapter provides an overview of existing reduced-control techniques and codebook optimisation
algorithms which sets the stage for applying the concept of CS to antenna arrays.

Section 3.2 describes conventional beamforming arrays, while Section 3.3 provides a survey of existing
reduced-control arrays. The concept of reducing the number of beamforming controls is motivated in
Section 3.3.1. Thinned and sparse arrays are considered in Section 3.3.2 and subarrays are described
in Section 3.3.3, which include the dual-transform and chess networks. Existing techniques for
implementing compressive arrays are described in Section 3.3.4, where limitations of the current
techniques are also highlighted. The most promising starting point for the development of a compressive
array optimisation algorithm, discrete codebook optimisation, is discussed in Section 3.4. The concept
of coherence is revisited in Section 3.4.1 and various codebook optimisation algorithms are listed in
Section 3.4.2. The sequential approach towards codebook optimisation is discussed in some detail in
Section 3.4.3. Finally, the chapter is summarised in Section 3.5.

3.2 CONVENTIONAL BEAMFORMING ANTENNA ARRAYS

Consider an array of N antenna elements placed at arbitrary locations in two-dimensional space.
Define the steering vector as the baseband array response in square-root power to a unit-amplitude
continuous-wave signal impinging on the array from the direction θ in the plane of the array, denoted
a(θ).1 The steering vector includes the effect of the element patterns and can either be formulated
mathematically, determined by simulation, or measured practically. In the case of a ULA with isotropic
elements, the N×1 steering vector is given by [5]

a(θ) =
[

ej2πd1 sin(θ)/λ, · · · , ej2πdN sin(θ)/λ
]T

, (3.1)

where θ is the clockwise incident angle of the wave relative to broadside, dn is the distance of element n
to a reference point on the array, and λ is the wavelength.2 The geometry associated with an N-element
ULA is illustrated in Figure 3.1(a). A circular array with radius R and isotropic elements on the

Portions of this chapter are ©2017–2019 IEEE; reprinted, with permission, from [1, 23, 24].
1The techniques described are applicable in the general case with suitable alterations, but only the one-dimensional case

is considered to avoid unnecessary notational complexity.
2It is worth noting that since the analyses are phase-based, the results are inherently narrowband. However, most

antenna-array analyses are formulated in this way, so this is not considered a limitation of the results obtained.
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Figure 3.1. (a) An N-element ULA receiving a signal from the direction θ. (b) An N-element ULA
with beamforming weights, shown in reception; taken from [1], ©2018 IEEE.

circumference of the circle has a steering vector given by [5]

a(θ) =
[

ej2πR sin(θ−θ1)/λ, · · · , ej2πR sin(θ−θN )/λ
]T

, (3.2)

where θn is the clockwise angle of element n around the circle. The steering of circular arrays will only
be considered in the plane of the array. In the remainder of the thesis, steering vectors are assumed to
be normalised to have unit length.

Beamforming arrays apply a complex-valued weight vn to each antenna element before summing the
resulting signals, as illustrated in Figure 3.1(b) for reception [15]. On reception, the beamforming
weights may be applied in hardware or in software. One advantage of applying the weights in software
is that independent beams may be formed in multiple directions simultaneously [6]. On transmission,
the complex-valued weights are applied as excitations at the antenna elements to perform beamforming.
The resulting array radiation pattern in square-root power is given by [15]

q(θ) =
��v(θs)Ta(θ)

�� , (3.3)

where v(θs) is the vector of beamforming weights for the desired steering direction θs. Generally, the
phases of the beamforming weights are chosen to be the negatives of the phases in a(θs) so that the
signals from the direction θs add in-phase. The amplitudes of the beamforming weights are chosen
to realise a particular array amplitude pattern, which involves a compromise between directivity,
beamwidth and SLL [2, 34].

The distribution of the currents (with magnitudes and phases) across the elements of an array is referred
to as the aperture illumination. This is best understood in terms of a transmit array. In a conventional
ULA, the currents at the antenna elements are the excitation weights in v(θs) (before modulating
the excitations with a data signal), such that v(θs) is the aperture illumination. In the case of more
complex feed networks such as overlapped subarrays, the definition remains the same. However, since
subarrays are effectively individual arrays that happen to share the same aperture with other subarrays,
it is useful to define an aperture illumination for each subarray separately. In this way, a stimulus
to a single subarray port will realise a particular aperture illumination at the antenna elements. The
individual subarray aperture illuminations then add to form the total aperture illumination, which in
turn determines the radiation pattern of the array as a whole.
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Thinned

Sparse

(a)

Partially overlapped

Contiguous

Completely overlapped

(b)
Compressive

(c)

Figure 3.2. Illustrations of various reduced-control arrays. Squares represent beamforming controls.
(a) Thinned arrays disable some elements in a ULA, whereas the elements in a sparse array are not
restricted to a uniform grid. (b) Subarrays share none, some, or all of the antenna elements with
adjacent subarrays. (c) Compressive arrays are a generalisation of all reduced-control arrays with a
fixed antenna-element layout.

3.3 REDUCED-CONTROL ARRAYS

3.3.1 Motivation

As discussed in Section 1.1.1, there is a need for reduced-control arrays that utilise less beamforming
controls than a conventional array with uniform spacing between the antenna elements. Reduced-control
arrays offer reduced cost, size and/or weight compared to conventional arrays [3, 7–9].

Reduced-control arrays can broadly be categorised as follows and as illustrated in Figure 3.2.

Thinned and sparse arrays place a reduced number of elements non-uniformly in a given array
aperture [2, 8–10,29, 35–38].

Conventional subarrays combine antenna elements into subarrays for a limited steering range or for
wideband applications [2, 3, 7, 39, 40].

Compressive arrays are a generalisation of conventional reduced-control arrays that utilise subarrays
that are each a function of all the antenna elements, and are not necessarily restricted to a limited
steering range [11, 14].

In terms of cost, the beamforming controls, which require active radio-frequency (RF) components, are
usually the limiting factor and not the passive antenna elements [3]. This is especially true in the case of
digital arrays which require an RF frontend at each antenna element. While thinned and sparse arrays
reduce both the number of elements and controls, subarrays and compressive arrays reduce the number
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of controls whilst utilising a filled array of elements. This means that subarrays and compressive arrays
offer more degrees of freedom than thinned/sparse arrays for similar cost at the expense of a more
complex feed network [2, 39, 40]. Compared to ULAs, overlapped subarrays and compressive arrays
primarily offer savings in terms of cost, but with more degrees of freedom than other reduced-control
techniques.

3.3.2 Thinned and sparse arrays

Thinned and sparse arrays are similar in that they both place a reduced number of antenna elements
non-uniformly in a given aperture, the difference being that thinned arrays have their elements placed on
the underlying grid of a filled array, as illustrated in Figure 3.2(a) [41]. Thinned arrays can, therefore, be
implemented by taking a filled array and either disabling or removing some of the elements. Disabling
elements (for example, by terminating them in matched loads) has the advantage that the mutual
electromagnetic coupling between adjacent elements remains similar across all but the extremes of
the array [38]. This leads to the elements having similar radiation patterns which is useful since the
assumption of identical element patterns is still widely used in array design [2]. Allowing arbitrary
element positions enables lower SLLs to be achieved, but limits the useful steering range of sparse arrays,
whereas thinned arrays with half-wavelength element spacing do not have this limitation [38].

When the average inter-element spacing is large, the directivity of a thinned or sparse array is mainly a
function of the number of active elements [2, 10]. The achievable SLL is also a function of the number
of active elements [10]. The beamwidth and resolution of the array is mainly a function of the array
aperture dimensions [10]. As an example, a uniform-excitation M-element thinned/sparse array will
have a resolution similar to that of a uniform-excitation N-element ULA and a directivity similar to that
of a uniform-excitation M-element ULA. Because the directivity is similar to that of the M-element
ULA but the beamwidth is reduced, the SLL of the thinned/sparse array will be higher than that of
either ULAs.

An additional degree of freedom that can be exploited is to apply weights to the active elements,
allowing for finer control over the array patterns [38].

Many techniques for finding optimal element locations exist. For example, elements may be placed
according to some probabilistic distribution [8, 35]. Sparse arrays may be made up of elements placed
by sampling a random distribution, where the shape of the distribution influences the average expected
array patterns [8]. A similar technique for thinned arrays is that of density tapering, where a binary
decision is made for each grid point to either place or not place an element according to a pre-defined
random distribution [35].

Thinned arrays may also be numerically optimised using algorithms such as genetic algorithms [36]
and inverse fast Fourier transform (IFFT) techniques [9]. Weighted thinned arrays have also been
designed using a modified form of the IFFT technique [38].

The use of optimisation algorithms for designing large thinned arrays is challenging due to the
computational complexity of the algorithms [41]. An alternative for large arrays is the use of difference
sets and almost difference sets, analytical binary sets that determine which elements are active [41–43].
Difference and almost difference sets have allowed very large linear and planar arrays to be designed
without optimisation and with predictable performance. Almost difference sets have also been used
for seeding genetic algorithms, leading to better thinned arrays than either technique could offer
alone [44].

Many different methods exist for optimising sparse arrays [41]. A notable algorithm for optimising
sparse arrays is based on the matrix pencil method [45].
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Recently, CS reconstruction algorithms have been applied to the design of sparse arrays [29, 41]. The
system to be solved is given by q = ATv, where q is the desired complex-valued array pattern sampled
at various angles, A is the steering matrix with steering vectors as columns, and v is the vector of
beamforming weights to be solved for. Using a reconstruction algorithm that favours sparse solutions,
the aim is to find a set of beamforming weights v that has only few non-zero components. Note that
this is not a compressive array, but a conventional sparse array designed using sparsity-promoting
algorithms.

In addition to CS-based approaches that define a pattern-matching problem as above, CS-based methods
have also been developed where a maximum radiation-pattern mask can be specified instead of an
exact, predefined pattern [41, 46, 47].

3.3.3 Subarrays for limited steering ranges

In contrast to thinned and sparse arrays, conventional subarrays reduce the number of controls while
maintaining a filled array of elements. This is achieved by weighting and combining the antenna-element
signals so that each combination forms a subarray. The elements can be shared between subarrays,
leading to overlapped subarrays. The amount of overlap is used in the following classification, as
illustrated in Figure 3.2(b) [7].

Contiguous subarrays do not share any antenna elements, and are effectively ULAs of potentially
varying sizes placed next to each other. Each subarray is a combination of the antenna elements
unique to that subarray [3, 7].

Partially overlapped subarrays share some, but not all, of the antenna elements with adjacent
subarrays [2, 3, 39, 40]. Typically, adjacent subarrays overlap each other by a fixed number of
elements across the array.

Completely overlapped subarrays share the entire array aperture so that each subarray is a function of
all the antenna-element signals [2,39]. Compressive arrays such as the one proposed for DF [11,14]
are also completely overlapped systems, but will be dealt with separately in Section 3.3.4.

Subarray systems can be seen as an array of elements with controlled element patterns, where each
element is itself a subarray of basic antenna elements [40]. The spacing between the basic antenna
elements is small, for example half a wavelength, but the spacing between the phase centres of the
subarrays is large, up to several wavelengths [7]. The large spacing between the phase centres of the
subarrays may cause grating lobes in the array factor. The techniques for overcoming this challenge fall
into two main categories [39]. Some approaches suppress the grating lobes via irregular spacing of
the subarray phase centres, similar to the way thinned and sparse arrays are able to avoid ambiguities
due to the irregular element spacing [39,48,49]. Other approaches retain the regular spacing of the
subarrays, but design the subarray patterns to be low outside the steering range, thereby suppressing
the grating lobes. The result is that high-directivity beams with low SLL can be steered across a small
angular range [2, 3, 7].

Various feed network layouts exist for implementing overlapped feed networks using couplers, crossovers,
lenses, and/or reflectors [2, 39, 40]. Overlapped feed networks have been manufactured using strip-
lines [50,51], waveguides [40], lenses [52], and radio frequency integrated circuits (RFICs) [53].

Contiguous subarrays may have uniform or non-uniform illuminations across the elements unique
to each subarray [41,54,55]. The design of contiguous subarrays involves selecting the elements to
allocate to each subarray, the amplitude weights (if any) applied to the elements in each subarray,
and the excitations applied to the subarrays [41]. A ULA may be divided into contiguous subarrays
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Figure 3.3. A contiguous subarray system with N = 12 and M = 3: (a) The array factor and subarray
amplitude pattern. (b) The broadside-steering pattern and subarray amplitude pattern.

of random sizes [49]. One contiguous-subarray technique for planar arrays involves dividing the
elements into identical L-shaped subarrays, with the L shapes rotated and fit together in a tiled
manner [48]. Pattern-matching design methods such as the contiguous partition method aim to realise
a reference pattern corresponding to a reference aperture illumination across the entire array [56].
The total aperture illumination achieved by the subarrays is then a quantised version of the reference
illumination [39, 54].

Consider a contiguous subarray system with N = 12 antenna elements with half-wavelength spacing
grouped into M = 3 groups of four antennas each [7]. The spacing between the elements is half a
wavelength, so the spacing between the subarrays is 0.5 × 4 = 2 wavelengths. Figure 3.3(a) shows
the array factor for an array of three subarrays, as well as the amplitude pattern of the subarrays. The
subarray outputs are combined to perform beamforming. Figure 3.3(b) shows the array pattern when
steered to broadside. Notice how the subarray pattern suppresses grating lobes in the array factor.

As illustrated above, conventional subarray systems with regularly-spaced subarrays aim to realise
subarray patterns that are high in the steering range, and low elsewhere to suppress grating lobes
in the array factor. The ideal subarray pattern is unity in the steering range and zero elsewhere [2].
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Figure 3.4. Illustration of the Skobelev chess network as described in [40,57] with two cascades of
couplers for N = 12 and M = 2. Each subarray spans 10 antenna elements.

Different types of subarrays use different techniques to realise subarray patterns that approximate the
ideal flat-topped subarray pattern.

The Skobelev chess network [40, 57–59] is an example of a partially overlapped subarray system, and
is illustrated in Figure 3.4 for N = 12 antenna elements and M = 2 subarrays. In this example, each
subarray spans ten elements. The network consists of cascades of directional couplers, where each
cascade consists of two rows of interconnected couplers. The couplers in each row are identical. The
outputs of the lowest cascade are connected to T-section combiners [60] to provide the M subarray
outputs. The greater the number of cascades, the greater the degree of overlap between adjacent
subarrays. The Skobelev chess network has the advantage that it does not require any physical crossovers
and can thus be implemented compactly in a planar layout.

Figures 3.5(a) and (b) show the aperture illuminationmagnitudes and phases, respectively, for a Skobelev
chess network with N = 12 elements with half-wavelength spacing, M = 2, and two cascades [40].
The resulting subarray pattern, equivalent for both subarrays, is shown in Figure 3.5(c).

A single-cascade, Ka-band Skobelev chess network has successfully been implemented in wave-
guide [40].

A dual-transform subarray is an example of a completely overlapped subarray [2, 39, 40]. A dual-
transform system consists of two multiple-beam networks in cascade, as illustrated in Figure 3.6. Each
input to a multiple-beam network results in a beam that points in a unique direction [2, 61]. In a
dual-transform array, each multiple-beam network realises the discrete Fourier transform (DFT), and
can be implemented as a Bulter matrix [61], lens, reflector, or can be implemented digitally [39]. A
larger N × N multiple-beam network has its M outputs corresponding to the beams closest to broadside
connected to a smaller M ×M multiple-beam network. Each output of the smaller network corresponds
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Figure 3.5.A Skobelev chess network with N = 12, M = 2 and two cascades: (a) Aperture illumination
magnitudes. (b) Aperture illumination phases. (c) Subarray patterns.
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Figure 3.6. Illustration of a dual-transform completely overlapped subarray system as described in [2].

to a subarray. Since the M × M network has the same number of inputs and outputs, it is often
implemented digitally [39].

Progressive phases are applied to the subarray ports to steer the beam, and an amplitude taper can also
be applied to the subarray ports to improve the SLL in the steered array pattern [2]. For example, a
standard length-M Chebyshev amplitude taper can be applied to the subarray ports [2].

Consider a Butler-matrix-based dual-transform array. Ignoring the terminated ports, the response of
the upper M × N matrix DM×N is given by [2]

dM×N
m′,n =

1
√

N
e
−j2π
N (m

′−M+1
2 )(n−

N+1
2 ), (3.4)

where m′ refers to the index of an element in the M × 1 intermediate signal vector z (see Figure 3.6) so
that

z = DM×Nx. (3.5)

The response of the lower M × M matrix DM×M is given by

dM×M
m,m′ =

1
√

M
e

j2π
M (m−

M+1
2 )(m

′−M+1
2 ), (3.6)

so that
y = DM×Mz. (3.7)

The exponents in (3.4) and (3.6) have opposite signs since one of the Butler matrices should implement
the DFT, and the other the inverse discrete Fourier transform (IDFT). The one matrix functions as a
multiple-beam network, and the other is reversed to function as a beam-focusing network [2].

Combining (3.5) and (3.7), the system response can be described by

y = DM×Mz = DM×MDM×Nx = Φx, (3.8)

where Φ is the M × N sensing matrix that describes the response of the complete feed network.

Consider a dual-transform subarray system with N = 32 elements with half-wavelength spacing and
M = 4 subarrays. The sinc-shaped aperture illuminations corresponding to the subarrays are shown in
Figure 3.7(a). The corresponding subarray amplitude patterns are plotted in Figure 3.7(b). The outer
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Figure 3.7. A dual-transform subarray system with N = 32 and M = 4: (a) Aperture illuminations.
(b) Subarray patterns.

subarrays have larger ripple in the steering range and higher SLLs outside the steering range due to
the truncation of the sinc illuminations at the edges of the array. The maximum theoretical steering
angle [2] is ±5.4◦.

For practical dual-transform systems, lenses and reflectors are often preferred due to the complexity
and physical size of Butler matrices for arrays of even moderate sizes [40]. A large contributor towards
the complexity of Butler matrices is the large number of crossovers required [62, 63]. This makes the
use of lenses and reflectors cost-effective, but also restricts the main application of the dual-transform
technique to physically large arrays [39]. An example of a dual-transform array that has successfully
been manufactured using lenses is the array presented in [52]. There, a cylindrical bootlace lens
implements the larger multiple-beam matrix, and a Rotman lens implements the smaller multiple-beam
matrix.
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Figure 3.8. Illustration of a compressive array with N = 4 antenna elements and M = 2 subarrays.

3.3.4 Compressive antenna arrays

Inspired by the concept of CS (Chapter 2), a completely overlapped compressive DF array has previously
been proposed [11, 14]. This compressive array uses a random sensing matrix Φ to connect each
subarray to all the antenna elements [11]. The random sensing matrix was originally proposed to be
real-valued [11], but recently, a compressive DF array has been designed with a random complex-valued
sensing matrix [14]. The feed network configuration for a compressive array is illustrated in Figure 3.8
for N = 4 antenna elements and M = 2 subarrays.

CS predicts that if a sampled signal is sparse in some domain, the number of samples can be reduced
without any loss of information, or with limited loss of information in the case of noisy systems
(Chapter 2). A DF ULA with one receiver per antenna element must have no more than half-wavelength
spacing between the elements if the full field of view is to be scanned. Good DF resolution requires a
large array aperture. The need for half-wavelength spacing and a large aperture can quickly lead to a
large number of receivers being required. However, the number of DoAs is typically much smaller than
the number of antenna elements, implying a high level of redundancy. Typical signals from DF arrays
are, therefore, sparse in DoA.

The compressive array is unique in that the sensing matrix is not designed with the hardware
implementation in mind as all other reduced-control arrays are. The lack of constraints on the sensing
matrix implies that a hardware architecture for such arrays would need to be able to implement arbitrary
sensing matrices.

In [11], the use of attenuators is suggested as a possibility for implementing the compression weights,
or the use of 180◦ phase shifters if the sensing matrix is restricted to ±1 entries.

Recently, a practical design for a compressive DF array at 868 MHz with N = 4 unequally-spaced
antenna elements and M = 2 subarrays was presented [14]. Each antenna element was connected
to a two-way splitter, of which each output was connected to a four-way combiner to produce the
subarray outputs. Thus, four two-way splitters and two four-way combiners were used. The splitters
and combiners were implemented as lumped-element Wilkinson power dividers [60]. The lumped-
component values of the splitters were modified to introduce random magnitude and phase variations
in the signals, thereby aiming to implement a random complex-valued sensing matrix. The splitters and
combiners were manufactured on separate boards and connected using cables. The compressive array
was able to resolve some DoAs correctly, but had ambiguities at certain steering angles. The steering
angles with ambiguities were found to correspond to the steering vectors that had small Euclidean
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distances to some of the other steering vectors [14]. This implies that the coherence of the compressed
transform matrix (Section 2.6) was high. The issue of coherence and its relationship to Euclidean
distance will be dealt with in Section 3.4.

The drawback of the hardware configuration in [14] is the large number of crossovers required. If cables
are used to implement the crossovers as was done in [14], then MN cables are required in total. This
number would soon become enormous. A small array of, say, N = 8 and M = 4, would already require
8 × 4 = 32 cables connecting 8 + 4 = 12 separate boards. This technique was developed to implement
a random sensing matrix, but to implement an arbitrary pre-defined sensing matrix, phase-matched
cables would be required. These limitations make this approach unsuitable for arrays of practical
sizes [64].

3.4 DISCRETE CODEBOOK OPTIMISATION

3.4.1 Coherence

Coherence, the largest similarity between vectors in a codebook, is a widely-used metric for evaluating
compressed transform matrices in CS systems (Section 2.6). In [14], the design and construction of a
compressive DF array showed that the random sensing matrix that was implemented was not optimal,
and it was concluded that some form of optimisation of the sensing matrix would have to be performed.
Although the sensing matrix is what is implemented in hardware, it is the compressed transform matrix
that must be designed for low coherence, which in turn will cause the incoherence requirement between
the sampling and sparsifying domains to be met (Section 2.6).

The minimisation of the similarity between vectors in a codebook falls within the wider context of
codebook optimisation, and in particular, Grassmannian codebook optimisation [65]. Compressed
transform matrices used in CS are referred to as rank-1 codebooks because the codewords are made up
of vectors and not matrices. Minimising the similarity between vectors is the same as maximising the
distance between the lines spanned by the vectors [66].

Apart from their application to CS, optimised Grassmannian codebooks are also of interest in multi-
antenna communication systems [66–68].

3.4.2 Codebook optimisation algorithms

The complex Grassmannian manifold G(M, R) is the set of all R-dimensional subspaces in CM . For
example, the manifold G(3, 1) is the set of all lines in 3-dimensional complex space. Finding the best
packing of subspaces involves maximising the minimum distance between a set of N subspaces [65]. A
rank-R Grassmannian codebook consists of N codewords, with each codeword being an M × R matrix
with orthonormal columns. Each subspace is represented by a codeword since the span of R orthogonal
vectors is an R-dimensional subspace.

Various approaches towards designing Grassmannian codebooks exist [16]. In [68], optimal codebooks
are constructed analytically from difference sets for certain dimensions. For other dimensions, a
numerical method based on the Lloyd algorithm is proposed [68]. An alternating projection method
which searches for optimal codebooks by alternately enforcing structural and spectral conditions
is proposed in [69]. A sequential optimisation framework proposed in [66] formulates a minimax
codebook optimisation problem which is solved by sequentially approximating the max operator by the
p-norm as p→∞.
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The BCASC algorithm [16] follows a similar sequential procedure to [66] to obtain rank-1 codebooks
(also referred to as antipodal spherical codes), which are shown to be better than those obtained by
existing approaches. The BCASC algorithm seeks to maximise the minimum Euclidean distance
between codewords themselves. Rank-1 codewords represent lines, and all phase shifts of a codeword lie
on the same line and are termed complex antipodals. It is therefore necessary to consider codewords and
all their antipodals when computing Euclidean distances. This drastically increases the computational
complexity of the problem since complex codewords have an infinite number of antipodals.

3.4.3 Sequential codebook optimisation

Consider an M × N matrix B representing a rank-1 codebook with N column vectors
{
bn =[

b1,n · · · bM,n

]T}N
n=1 as codewords. The coherence of B is defined as [16]

µ(B) = max
n,l

|bH
nbl |

‖bn‖ ‖bl ‖
, (3.9)

where n, l ∈ {1, . . . , N}. In CS literature, the compressed transform matrix B is assumed to have
unit-norm columns, in which case the denominator in (3.9) is 1 and may be suppressed [32]. In the
algorithms proposed in Chapters 5 and 6, a unit-norm constraint is placed on the matrices being
designed for low coherence or SLL. The significance of this constraint in the context of compressive
arrays is discussed in Sections 6.3.1 and 8.6.4.

The lower bound on the achievable coherence is given by [16]

µc(M, N) =



√
N−M

M(N−1) if N ≤ M2,

max
(√

1
M ,

√
2N−M2−M
(M+1)(N−M), 1 − 2N

−1
M−1

)
if M2 < N ≤ 2(M2 − 1),

max
(√

2N−M2−M
(M+1)(N−M), 1 − 2N

−1
M−1

)
if 2(M2 − 1) < N .

(3.10)

The bound for N ≤ M2 in (3.10) is also known as the Welch bound [16, 68].

The coherence optimisation problem is given by [16, 68]

min max
n,l

��bH
nbl

�� subject to ‖bn‖
2 = 1 ∀ n. (3.11)

In order to obtain a smooth approximation to the max operator a series of sub-problems given
by [16, 66]

min

(∑
n,l

��bH
nbl

��p )1/p

subject to ‖bn‖
2 = 1 ∀ n (3.12)

with p ≥ 1 may be solved with increasing values of p, thereby approximating the ∞-norm by the
p-norm with p→∞ [66].

Coherence is well-defined on the Grassmannian manifold and is inversely equivalent to the distance

metric
√

1 −
��bH

nbl

��2 common in line-packing problems [66, 67]. Minimising the coherence of a
codebook is equivalent to maximising the minimum distance between the lines represented by the
codewords [16].
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The approach in [66] uses optimisation algorithms that are able to enforce the orthonormality constraint
in higher-rank codebooks. However, it is not necessary to resort to complicated algorithms when rank-1
codebooks which have only unit-length constraints are considered.

By considering rank-1 codebooks only, the BCASC algorithm is able to use a simpler optimisation
technique which maximises the minimum Euclidean distance between codewords [16]. The Euclidean
distance between the codewords alone does not lie on the Grassmannian manifold since it measures
distances between codewords and not the lines spanned by the codewords. To ensure that optimisation
is performed on the manifold, this approach requires maximising the distance between codewords and
all their antipodals leading to

max min
n,l

ψ∈[0,2π)



bn − blejψ

 subject to ‖bn‖
2 = 1 ∀ n. (3.13)

The value of this approach is shown by the fact that the BCASC algorithm achieves lower coherence
values for rank-1 codebooks than previous approaches [16]. However, this approach has been criticised
for its computational complexity which restricts its practical application to codebooks of small
dimensions [70].

3.5 CHAPTER SUMMARY

This chapter provided a brief survey of existing conventional and reduced-control beamforming arrays.
Reduced-control arrays can be broadly categorised into thinned and sparse arrays, conventional
subarrays, and compressive arrays. Thinned and sparse arrays place a limited number of antenna
elements non-uniformly in a given aperture. Conventional subarrays combine antenna-element
signals to realise high-directivity beams across limited steering ranges, where the subarrays may be
non-overlapping, partially overlapped, or completely overlapped. In the completely overlapped case,
all subarrays share the entire aperture. Compressive arrays are a generalisation of reduced-control
arrays, but have not yet been investigated in much detail. The research to date on compressive arrays
suggests that some form of optimisation is required. The chapter ended with an overview of codebook
optimisation, which is the most promising starting point for an investigation into the optimisation of
compressive arrays.
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CHAPTER 4 EVALUATING THE OPTIMALITY OF
RANDOM COMPRESSIVE ARRAYS

4.1 CHAPTER OVERVIEW

The theory of CS has inspired the concept of a compressive DF antenna array where N antenna
elements are combined into M measurements before sampling with expected performance similar
to that of a conventional N-element array, given that the number of DoAs is sufficiently small. The
use of real- and complex-valued random Gaussian sensing matrices in designing such an array has
previously been proposed. In this chapter, the use of codebooks with numerically optimised coherence
to design compressive arrays is proposed as an alternative for arrays of small sizes. A codebook-based
array consistently outperforms a real- and complex-valued Gaussian array in mean DF accuracy.
A compressive array that has been optimised for low SLL (from Chapter 6) outperforms all other
compressive arrays and comes closest to the performance of an N-element ULA, confirming that
optimising a compressive array for low SLL leads to improved DF performance. Random compressive
arrays can, therefore, not be assumed to be optimal for arrays of small sizes and the optimisation of
compressive arrays is warranted.

This chapter starts by describing the compressive DF problem in Section 4.2. Section 4.3 describes
existing compressive array designs and presents a method for designing compressive arrays based on
optimised codebooks. Various compressive array designs are compared in terms of coherence and DF
performance in Section 4.4. Finally, some conclusions are drawn and the chapter is summarised in
Section 4.5.

4.2 COMPRESSIVE DIRECTION FINDING

The baseband signal received by a conventionalDF antenna arraywith N elements is given by [11]

x(t) =
K∑
k=1

a(θk)zk(t) + n(t), (4.1)

where x(t) is the N × 1 signal vector, zk(t) represents an incoming signal from direction θk , K is the
number of sources, a(θk) is the N × 1 steering vector for the direction θk , and n(t) is an N × 1 additive
white Gaussian noise (AWGN) vector.

The noise has been defined as being present at the antenna elements under the assumption that each
antenna element has a low-noise amplifier (LNA) with significant gain, so that the noise introduced
by the feed network and receivers is negligible. In the case of a ULA, the steering vector is given
by (3.1).

This chapter is an updated and extended version of a published conference paper [22]. Portions of this chapter are ©2016
IEEE; reprinted, with permission, from [22].
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A set of Ns steering angles are chosen giving an N × Ns steering or transform matrix A as [11]

A =
[

a(θ1), a(θ2), · · · , a(θNs )
]
. (4.2)

The angular spectrum is an Ns × 1 vector containing the signals received from the sampled directions,
given by

s(t) =
[

s1(t), s2(t), · · · , sNs (t)
]T , (4.3)

allowing the received signal to be written as [11]

x(t) = As(t) + n(t). (4.4)

A compressive DF array uses weighted combinations of the antenna signals to reduce the number of
receivers required (Chapter 3). The M × 1 measurement vector is obtained from [11]

y(t) = Φx(t) = Φ [As(t) + n(t)] = Bs(t) + Φn(t), (4.5)

where Φ is the M × N sensing matrix to be implemented in microwave hardware before sampling. B is
the M × Ns compressed steering matrix given by

B = ΦA =
[

b(θ1), b(θ2), · · · , b(θNs )
]
, (4.6)

where b(θs) are the compressed steering vectors.

The coherence of the compressed steering matrix B can be calculated similar to (3.9), but the normalised
absolute dot products between neighbouring steering vectors must not be considered, as their similarity
will be high due to the fine angular grid. Instead, a minimum distance between the steering angles
should be defined for calculating the coherence. The steering range may also be limited by considering
only the coherence across the desired steering range.

The angular spectrum is estimated from the measurements by solving (4.5) for s(t). Since Ns � M , the
system is underdetermined. However, CS theory suggests that this system can nevertheless be solved
with high probability of success given that the number of sources K is relatively small (K � Ns), the
number of measurements M > K is sufficiently large, and that B is robust (Chapter 2) [12].

Conventional super-resolution DF algorithms have successfully been applied to compressive arrays
by substituting B for A [11]. The angular power spectrum of the minimum variance distortionless
response (MVDR) or Capon beamformer can be written as [11]

P(θ) =
1

a(θ)HR−1
x a(θ)

, (4.7)

where Rx is the covariance matrix of the received signal vector given by E[x(t) x(t)H], with E[ ] the
expectation operator. MVDR can thus be applied to a compressive array by replacing x(t) with y(t)
and a(θ) with b(θ).

4.3 SENSING MATRIX DESIGN

Real-valued sensing matrices (Φ) with independent, identically distributed (i.i.d.) zero-mean entries
drawn from the Gaussian distribution are widely used in CS applications [12] and have been proposed
for use in compressive arrays [11, 14]. Complex-valued sensing matrices with real and imaginary
components drawn from the Gaussian distribution have also been proposed for compressive arrays [14].
The resulting compressed steering/transform matrix B = ΦA is also assumed to be i.i.d. Gaussian due
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to the properties of the distribution (Chapter 2) [12]. These random compressed steering/transform
matrices have been shown to satisfy the RIP criterion (Chapter 2) with high probability, based on the
assumption that the dimensions of the matrix are sufficiently large [17]. However, arrays of very small
sizes are still of practical interest. The number of antenna elements in an array is often much smaller
than the number of samples in other typical CS applications which take, for example, time-domain
samples using analogue-to-digital converters (ADCs) or spatial samples using image sensors.

The relatively small size of compressive arrays suggests the use of numerically optimised matrices. The
design of low-coherence codebooks has been studied for application to telecommunication systems [67],
and their potential for use in CS applications has also been noted [16]. Various approaches towards
optimising codebooks are described in Section 3.4 and Chapter 5.

The matrix Φ can be obtained from an optimised M × N matrix B by creating an orthogonal N × N
matrix A through the careful selection of Ns = N sampling angles and solving

Φ = BA−1. (4.8)

Note, however, that this method only allows control of the system response at the N sampling angles.
Chapter 6 presents an algorithm for optimising the sensing matrix Φ over continuous sampling
angles.

4.4 NUMERICAL SIMULATION RESULTS

Conventional 4- and 16-element ULAs and compressive arrays with 4 subarrays and 16 elements
were compared, all with isolated isotropic elements and half-wavelength spacing. Real and complex
Gaussian arrays and an array based on an optimised codebook were chosen for comparison. In the
case of the codebook-based array, the complex-valued 4 × 16 matrix B was found using the BCASC
algorithm [16] (Sections 3.4 and 5.2). The best out of ten designs for all compressive arrays were
chosen based on the coherence of B over steering angles from −60◦ to 60◦. A steering range from
−60◦ to 60◦ was chosen for evaluating the coherence since this is considered a wide steering range [2].
The DF results for the compressive array in Section 6.4.2 is also presented for comparison, although its
design will not be described here in detail.

Figure 4.1 shows the coherence patterns, the normalised absolute dot products between steering vectors,
of a conventional 16-element ULA with a uniform excitation. Figure 4.2 shows the coherence patterns
of the chosen compressive arrays. Angles are shown in u = sin(θ) since the N orthogonal angles in A
in (4.8) are equally spaced in u (as indicated by the grid lines). Steering vectors are compared between
steering angles |θs | ≤ 60◦ and pattern angles |θa | ≤ 90◦ when calculating coherence. Although the
steering range is limited, the steering vectors in |θs | ≤ 60◦ are still compared to the steering vectors in
|θa | ≤ 90◦, since it is not desirable to have a high similarity with steering vectors outside the steering
range. Such a high similarity would introduce an ambiguity which could cause a DoA outside the
steering range to appear as a DoA within the steering range.

Two main features of the antenna patterns determine the DF performance of any array. These factors
are the width of the main lobe and the coherence value which is the largest value outside the main
lobes on the line θs = θa in Figures 4.1 and 4.2. The width of the main lobe influences the accuracy
with which a DoA can be resolved, whereas the coherence influences the performance by introducing
ambiguities, especially at low signal-to-noise ratio (SNR).

In Figure 4.1, the first sidelobes determine the coherence of the ULA as −13.15 dB and the entire
pattern translates uniformly with steering angle (in u). The main lobes are well-defined. At each
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Figure 4.1. Coherence patterns for a 16-element ULA.

steering angle, the nulls and the main-lobe peak are located at 16 pattern angles equally spaced in u,
for example at the grid intersections in Figure 4.1.

In Figure 4.2(a), the real Gaussian array can be seen to exhibit large similarity between its steering
vectors, with a coherence of −0.36 dB. The main lobes are not well-defined and their widths vary
significantly with steering angle. The complex Gaussian array in Figure 4.2(b) has a coherence of
−0.6 dB and has more well-defined main lobes, although some variation in the main-lobe widths
remains. The codebook-based array in Figure 4.2(c) achieves a coherence of −0.81 dB and has
more uniform main-lobe widths than the complex Gaussian array. The coherence patterns for the
SLL-optimised compressive array (Section 6.4.2) is equivalent to the array patterns shown in Figure 6.3,
and the array has nearly uniform main-lobe widths and a coherence of −2.89 dB.

Figure 4.3 shows the normalised absolute dot products of the compressive arrays at broadside steering—
cross-sections of the plots in Figure 4.2 at us = 0. Also shown is the Welch bound for M = 4, N = 16
which is −7 dB. The codebook-based array satisfies the Welch bound at the N sampling angles, but
not necessarily elsewhere as the coherence was only optimised at these angles. This can also be seen
by the fact that most of the large lobes in Figure 4.2(c) occur between the grid lines, while the Welch
bound is satisfied at the intersections of the grid lines. By comparison, the Gaussian arrays do not meet
the Welch bound at the grid intersections.

Coherence is a well-established measure of the optimality of a compressed transform matrix and is not
application-specific (Sections 2.6 and 3.4) [32,71]. The fact that the optimised compressive arrays have
better coherence than the random compressive arrays suggests that it cannot be assumed that random
compressive arrays are optimal for arrays of small sizes, irrespective of the application. In the case
of the DF application, the effect of the coherence patterns on DF performance is illustrated below by
comparing the DF accuracy of the various arrays.

The DF performance of the compressive arrays as well as conventional M- and N-element arrays were
evaluated using the MVDR algorithm with 100 time samples. The incoming signal DoA was swept
from −60◦ to 60◦ in 121 steps, and the statistics were generated from 1 000 tests per step. The angular
spectra were calculated across θ ∈ [−90◦, 90◦] using Ns =18 001 sampling angles for an angular grid
resolution of 0.01◦. Cubic spline interpolation was further performed on the angular spectra using 100
times more sampling angles, and the DoAs estimated as the location of the peak in each spectrum. The
SNR at the antenna elements was swept from −5 dB to 30 dB in 0.5 dB increments.
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(b) Complex Gaussian array

¡0.875
¡0.75

¡0.5

¡0.25

0

0.25

0.5

0.75
0.875

S
te

er
in

g 
an

gl
e

 (
u)

¡16

¡14

¡12

¡10

¡8

¡6

¡4

¡2

0

¡1¡0.75
¡0.5¡0.25

0
0.25

0.5
0.75

1

Pattern angle (u)

M
ag

ni
tu

de
 (

dB
)

(c) Codebook-based array

Figure 4.2. Coherence patterns for various compressive DF arrays.
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Figure 4.3. Coherence patterns for DF arrays with M = 4 and N = 16 with broadside beam steering.

In order to compare the performance of the various arrays, the root mean square (RMS) error in the
DoA estimate was taken as a fraction of the RMS DF error of the M-element conventional array at
each steering angle, and the mean and maximum of these values taken over all steering angles. The
resulting mean and maximum relative RMS errors for the various arrays are shown in Figure 4.4. Also
shown is the performance of the SLL-optimised compressive array from Section 6.4.2 that has been
optimised across continuous sampling angles.

The real Gaussian array has the worst performance of the compressive arrays from 4.5 dB element-level
SNR upwards in the mean sense, and performs worse than the M-element ULA across all SNRs in
the maximum sense. The codebook-based array outperforms the complex Gaussian array in the mean
sense at all SNRs, and has a mean relative RMS error of less than 1 across a wider range of SNRs. In
the maximum sense, the complex Gaussian array outperforms the codebook-based array from 5 dB
element-level SNR upwards. However, the random arrays and the codebook-based array do not perform
particularly well in the maximum sense at any SNR. The SLL-optimised array from Section 6.4.2 is by
far the best compressive array, converging to one-fifth of the RMS error of an M-element ULA in the
mean sense, and only slightly worse in the maximum sense.

At higher SNRs, the compressive arrays generally perform better than a conventional M-element
array in the mean sense, but worse than an N-element ULA. At lower SNRs, the compressive arrays
perform worse than an M-element ULA which can be explained by the relatively high coherence
values of the compressive arrays, leading to ambiguities in the presence of noise. The real Gaussian
array has the worst performance, and such arrays are clearly not optimal for DF applications. Using
complex-valued sensing matrices presents a better approach, but the fact that the codebook-based
array had better performance than the complex Gaussian array in the mean sense again suggests that
random compressive arrays cannot be assumed to be optimal. The suboptimality of random arrays
is confirmed by the superior performance of an array that has been optimised for low SLL across
continuous sampling angles, which will be described in detail in Chapter 6. The performance of the
SLL-optimised array also confirms that optimising a compressive array for low SLL leads to improved
DF performance.

The assumption behind these conclusions is that the number of receivers is relatively small, which
is considered a reasonable assumption for practical DF systems. As the number of antenna elements
and receivers increases, the performance of random compressive arrays is expected to improve. At
which point random compressive arrays begin to become useful is yet to be determined. Optimising
compressive arrays remains the better approach for predictable results at least until such point that the
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Figure 4.4. (a) Mean and (b) maximum relative MVDR RMS DoA estimation error for M = 4 and/or
N = 16 conventional and compressive arrays.
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computational complexity of a compressive-array optimisation algorithm becomes too expensive due
to the size of the array.

4.5 CHAPTER SUMMARY

The use of discrete codebooks with optimised coherence has been proposed for designing compressive
DF arrays. An M = 4, N = 16 codebook-based compressive array was found to result in better
coherence and mean DF accuracy than real and complex-valued random Gaussian compressive arrays,
and to outperform an M-element ULA in the mean sense over a wider range of SNRs than the random
arrays. These results suggest that random compressive arrays cannot be assumed to be optimal for
arrays of relatively small sizes. The SLL-optimised array from Section 6.4.2 outperformed all other
compressive arrays, showing that optimising a compressive array for low SLL is an effective way of
improving the DF performance of a compressive array.
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CHAPTER 5 ADDRESSING COMPUTATIONAL
COMPLEXITY IN COHERENCE
OPTIMISATION ALGORITHMS

5.1 CHAPTER OVERVIEW

In Chapter 4, it was shown that random compressive arrays cannot be assumed to be optimal and
that the optimisation of compressive arrays is warranted. The use of existing optimised codebooks
in designing compressive arrays was promising, but only allowed control over array patterns at N
sampling angles. There is, therefore, a need for an algorithm that can optimise a compressive array
over continuous sampling angles. The obvious starting point in developing such an algorithm would be
the state-of-the-art BCASC algorithm (Section 3.4) [16,19]. However, optimising sensing matrices
across continuous sampling angles would constitute a problem of considerably greater complexity than
the already-complex problem of optimising discrete codebooks. Although it achieves the best-known
coherence results, the BCASC algorithm has been criticised for its computational complexity [70].
Before attempting to extend discrete codebook optimisation algorithms to the problem of optimising
compressive arrays across continuous sampling angles, it would be wise to first attempt to address the
issue of computational complexity in the BCASC algorithm.

In this chapter, an iterative algorithm for the numerical optimisation of rank-1 Grassmannian codebooks
is presented. This algorithm achieves similar coherence results to the BCASC algorithm, but requires a
median of 9.52 times less computation time. This improvement is achieved by reformulating the problem
to directly minimise coherence instead of maximising the Euclidean distance between codewords,
removing the need to consider large numbers of complex antipodals. The run-time improvement allows
the optimisation of the larger codebooks required in many applications [70], and provides a better
starting point for the development of a compressive array optimisation algorithm.

Section 5.2 describes the existing BCASC codebook optimisation algorithm. In Section 5.3, a new
algorithm is proposed which minimises codebook coherence directly. The implementation of the
algorithms in software, an important factor considering the focus being computational complexity,
is described in Section 5.4, and coherence results for codebooks of various sizes are presented in
Section 5.5. Finally, some conclusions are drawn and the chapter is summarised in Section 5.6.

This chapter is a modified version of a published journal paper [23]. Portions of this chapter are ©2017 IEEE; reprinted,
with permission, from [23].

The MATLAB code for generating the main results in this chapter is available online at https://doi.org/10.24433/
CO.e059a3c5-cf64-4f77-a83d-d5b8aebda64a.
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5.2 BEST COMPLEX ANTIPODAL SPHERICAL CODES

The current state-of-the-art BCASC algorithm, as described in [16], is outlined below.

Ignoring codeword antipodals, (3.13) can be reformulated as

min
∑
n,l

‖bn − bl ‖
−p subject to ‖bn‖

2 = 1 ∀ n, (5.1)

where p → ∞. As p increases, more weight is assigned to the smaller pairwise distances between
codewords, until the minimum pairwise distance dominates the expression. The method of Lagrange
multipliers can be used to show that the conditions for a local minimum are

bn =
∑
n,l

bn − bl

‖bn − bl ‖
p+2 ∀n, (5.2)

where underlining denotes the normalisation u = u/‖u‖.

The optimised codebook B can be found by interpreting (5.2) as a set of forces at optimisation step k
(f(k)n is given by the right-hand side (RHS) of (5.2)) and adding a gain factor α multiplied by the matrix
of forces (F(k) =

[
f(k)1 · · · f(k)N

]
) to the current matrix B(k−1) giving

B(k) = B(k−1) + αF(k), k = 0, 1, . . . , (5.3)

where underlining denotes the column normalisation U = {un/‖un‖}
N
n=1 to ensure that all ‖bn‖

2 = 1.
The result converges to a fixed point as k →∞ when α is small enough [16].

Extending (5.2) to consider the antipodals results in

f(k)n =

∫ 2π

0

∑
n,l

b(k)n − b(k)
l

ejψ

‖b(k)n − b(k)
l

ejψ ‖p+2
dψ, (5.4)

which can be solved using numerical integration. Alternatively, the integral can be approximated by a
summation to give

f(k)n ≈

Q∑
q=1

∑
n,l

b(k)n − b(k)
l

ej2πq/Q

‖b(k)n − b(k)
l

ej2πq/Q‖p+2
, (5.5)

where the number of antipodals considered, Q, determines the accuracy of the approximation. The
main drawback of the BCASC algorithm is the computational complexity resulting from the need to
consider a large number of antipodals.

A random codebook may be used as the starting point for the first subproblem. The result of each
subproblem is then used as starting point for the next subproblem which uses a larger value of p. This
process is repeated for p→∞.

5.3 COHERENCE-BASED CODEBOOK OPTIMISATION

An algorithm with a coherence metric which avoids the need to explicitly consider the antipodals is
proposed below to address the computational complexity of the BCASC algorithm.

Instead of using the metric
∑

n,l ‖bn − bl ‖
−p as in (5.1), consider the minimisation of the metric

g(B) =
∑
n,l

(��bH
nbl

��2 − µ2
t

)p
, p = 2, 4, 6, . . . , (5.6)
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which minimises the absolute difference between the squares of the pair-wise absolute dot products and
some target value µt = β µc(M, N), where µc(M, N) is calculated from (3.10). Squaring the absolute
value provides a smooth metric, and restricting p to even values ensures that the summed terms increase
monotonically from their minima.

A non-zero target value is used in (5.6) to improve the rate of convergence [66]. However, the algorithm
described in Section 5.4 uses a fixed iteration gain for each subproblem making it prone to instability
when β = 1, so it is necessary to reduce µt by choosing β < 1 to improve stability.

In order to enforce the unit-length constraint on the codewords, define the Lagrange function as

g(B, λ) = g(B) +
N∑
n=1

λn

(
‖bn‖

2 − 1
)
, (5.7)

where λ = {λn}Nn=1 are the Lagrange multipliers for the N unit-length constraints. The conditions for
finding the constrained minimum of (5.6) are [72]

∂g(B, λ)
∂Re{bm,n}

= 0,
∂g(B, λ)
∂Im{bm,n}

= 0 and
∂g(B, λ)
∂λn

= 0 (5.8)

for all bm,n and λn. These conditions are then used to derive the force vector at iteration k in
Addendum A.1, leading to

f(k)n = −2
∑
n,l

( ���b(k)n

H
b(k)
l

���2 − µ2
t

)p−1 (
b(k)
l

H
b(k)n

)
· b(k)

l
. (5.9)

The proposed algorithm iteratively updates the codebook using (5.3) leading to the coherence-based
Grassmannian codebook (CBGC) algorithm.

In (5.9), the factor
(
b(k)
l

H
b(k)n

)
· b(k)

l
is the vector projection of b(k)n onto b(k)

l
. Due to the negative sign

in (5.9), the weighted sum of projections is subtracted from b(k)n in (5.3), with those larger or smaller

than the target µt given preference via the factor
(���b(k)n

H
b(k)
l

���2 − µ2
t

)p−1
, with larger p increasing the

effect. Thus b(k)n is altered to reduce the components it has in common with other codewords.

5.4 ALGORITHM IMPLEMENTATION

Both the BCASC and CBGC algorithms were implemented using the generalisation of the BCASC
algorithm shown in Algorithm 5.1. This was done to compare only the effect of the updates in (5.5)
and (5.9) by using the same algorithm.

The main differences between Algorithm 5.1 and the form in [16] are the initial value of p and the
convergence criteria. Algorithm 5.1 utilises codeword convergence




b(k)n − b(k−1)
n




 rather than the

convergence of force vectors to codewords



f(k)n − b(k)n




. This change is necessary as force vectors do
not converge to codewords in the CBGC algorithm, while the codewords themselves always converge
successfully.

The BCASC and CBGC algorithms were implemented in MATLAB R2016a and run on machines with
two 6-core Intel Xeon E5-2630 processors and 32 GB of memory each.

The BCASC algorithm may use numerical integration with (5.4) or a finite number of antipodals
with (5.5) [16]. In order to vectorise the operations and to exploit MATLAB’s parallel-processing
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Algorithm 5.1 Generalised coherence optimisation algorithm adapted from [16]. Taken
from [23], ©2017 IEEE.
1: procedure Optimise Coherence(M, N, αinit)
2: B(0)M×N ← random complex codebook
3: ε ← 10−10 . Convergence parameter
4: α← αinit
5: pmax ← 29, p← 2
6: kmax ← 105 .Maximum number of iterations
7: while p ≤ pmax do
8: k ← 1
9: while k ≤ kmax and any



b(k)n − b(k−1)
n



 ≥ ε do
10: Calculate F(k) =

[
f(k)1 f(k)2 · · · f(k)N

]
11: B(k) = B(k−1) + αF(k) . Update B
12: k ← k + 1 . Increase iteration number
13: p← 2p . p for next subproblem
14: α← αinit/(p − 1) . α for next subproblem

capabilities, the discrete approximation was used, allowing the antipodals to be precomputed at each
iteration.

The number of antipodals considered by the generalised BCASC algorithm (Q) was selected by
comparing the results of ten tests for Q = 50, 100 and 200 as shown in Table 5.1. All coherence values
were identical to three significant figures. In most cases the run times were longer for Q = 50 than
for Q = 100 as a result of incomplete consideration of the antipodals, while Q = 200 only served to
increase the run times. Therefore, Q = 100 was used in subsequent tests.

The results obtained using the original BCASC algorithm described in [16, Fig. 1] for Q = 100 without
the changes mentioned above are also shown in Table 5.1. The changes resulted in coherences that
are equivalent to within 0.15%, and run times that are faster or only 3.6% slower in one case. These
observations demonstrate that the BCASC algorithm is not compromised by the changes made.

The starting codebook B(0) was generated by normalising the columns of a matrix whose elements had
their real and imaginary parts drawn from a zero-mean Gaussian distribution. The variance of this
distribution has no effect as the codes are normalised. The initial gain value, αinit, was set to 0.9 as
in [16]. However, the CBGC algorithm required lower gain for stability and thus used αinit = 0.04. A
value of β = 0.5, mid-way between the BCASC approach (β = 0) and the optimum coherence (β = 1),
resulted in convergence in all test cases.

Due to the large exponents p, a force vector in the CBGC algorithm would occasionally round to a zero
vector before normalisation. Testing whether this occurred was thus necessary to avoid attempting to
normalise a zero vector.

5.5 RUN TIME AND COHERENCE RESULTS

The minimum and maximum coherences and run times for ten tests are compared in Table 5.2 for
codebooks of various dimensions obtained using the BCASC and CBGC algorithms. The lower bound
from (3.10) and the BCASC coherences published in [16] are also shown.

The CBGC algorithm resulted in coherences equal to or better than those of the generalised imple-
mentation of the BCASC algorithm except M = 4, N = 20, where only the maximum coherence was
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Table 5.1. BCASC Coherence and Run Times of Ten Tests for Various Values of Q using Generalised
and Original Forms. Taken from [23], ©2017 IEEE.

Minimum coherence, Q = Mean run time (s), Q =

M N 50 100 200 100 [16, Fig. 1] 50 100 200 100 [16, Fig. 1]

4 7 0.354 0.354 0.354 0.354 292.0 2.22 3.35 8.21
4 16 0.447 0.447 0.447 0.447 1 010 10.70 13.78 39.67
4 64 0.688 0.688 0.688 0.687 23 816 25 471 26 891 30 531
5 10 0.333 0.333 0.333 0.333 1 915 2 312 3 590 2 231
5 16 0.390 0.390 0.390 0.390 1 855 1 751 2 218 2 837

worse. The CBGC algorithm also had minimum coherences equal to or better than the BCASC results
published in [16] except for M = 4, N = 64.

The run times of the CBGC algorithm were significantly better than those of the BCASC algorithm
except for M = 4, N = 20, where the minimum run time was marginally worse. When the mean run
times of the BCASC and CBGC algorithms were compared for the codebook sizes in Table 5.2, the
CBGC algorithm was found to be a median of 9.52 times faster than the BCASC algorithm.

The number of iterations in Table 5.2 shows no clear benefit for either algorithm, with the CBGC
algorithm requiring a median of only 14% fewer iterations, and each algorithm requiring fewer iterations
for some of the problems.

A greater run-time improvement may be anticipated as the CBGC force vector in (5.9) has Q = 100
times fewer terms than the BCASC force vector in (5.5) and the median of the number of iterations are
similar. However, the optimised implementation of (5.5) is better able to exploit the vectorisation [73]
capabilities of the MATLAB development environment used during testing, thereby diminishing the
run-time improvement achieved.

5.6 CHAPTER SUMMARY

An iterative algorithmwhichmakes use of a coherence-basedmetric for optimising rank-1 Grassmannian
codebooks has been proposed. Evaluating this algorithm against the Euclidean-distance-based BCASC
algorithm within the same algorithmic framework has shown that the proposed algorithm results in
almost an order-of-magnitude improvement in run time while achieving comparable or better coherence
results. The proposed algorithm is, therefore, a promising starting point for the development of an
algorithm that optimises compressive arrays across continuous sampling angles.
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CHAPTER 6 DEVELOPING A COMPRESSIVE
ARRAY SLL OPTIMISATION
ALGORITHM

6.1 CHAPTER OVERVIEW

In Chapter 4, it was shown that random compressive arrays are suboptimal, and that a technique is
required for optimising such arrays. In Chapter 5, a computationally efficient algorithm for optimising
discrete codebooks was proposed, and it was suggested that this algorithm would be a suitable starting
point for developing a compressive array SLL optimisation algorithm.

In this chapter, a framework for the optimisation of narrowband compressive arrays with arbitrary
sidelobe-pattern requirements is presented. This framework includes other reduced-control arrays
as special cases. The framework is inspired by the coherence optimisation algorithm presented in
Chapter 5. The coherence optimisation problem is extended to consider the problem of minimising
SLL in a compressive array. The presented approach allows the sidelobe amplitudes to be specified
independent of pattern and steering angle, which is useful as shaped sidelobe patterns are often desirable
in antenna arrays [15].

The proposed compressive array framework is not restricted to a particular hardware configuration,
but represents a flexible reduced-control array design methodology. For example, a compressive feed
network may be implemented using microwave circuitry to enable an array to have a larger number of
antenna elements than beamforming controls, or as a software algorithm to reduce data rates.

The versatility of the proposed algorithm is illustrated by synthesising linear and circular compressive
arrays with a variety of constraints, including hard and soft nulls. Comparisons to optimal solutions [34],
thinned arrays synthesised using the iterative FFT technique (IFT) [38], conventional arrays synthesised
by the matrix inversion method [15], and a dual-transform completely overlapped subarray system [2]
demonstrate the performance of compressive arrays synthesised using the proposed approach.

Section 6.2 starts by defining compressive arrays as a generalisation of reduced-control arrays, and
shows how radiation patterns may be derived for compressive arrays. The continuous coherence
optimisation problem for minimising SLL is presented in Section 6.3 along with an algorithm for
accomplishing this goal. Results for a number of designs which highlight various advantages of the
proposed approach are presented in Section 6.4. Finally, the chapter is summarised in Section 6.5.

This chapter is a modified and updated version of a published journal paper [1]. Portions of this chapter are ©2018
IEEE; reprinted, with permission, from [1].

The MATLAB code for generating the main results in this chapter is available online at https://doi.org/10.24433/
CO.24b779d2-852f-4af7-a489-f206fde12c23.
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Figure 6.1. (a) A compressive array with N elements and M subarrays with beamforming weights for
array pattern calculations. (b) An N-element ULA with weights that result in the same patterns as the
corresponding compressive array. Taken from [1], ©2018 IEEE.

6.2 A GENERALISED VIEW OF REDUCED-CONTROL ARRAYS

6.2.1 Defining compressive arrays

Consider the general compressive array illustrated in Figure 6.1(a), shown in the receive configuration.
The results obtained are, however, equally valid for a transmit array due to reciprocity. The system is
represented by y = Φx, where y is the M×1 vector of signals at the beamforming controls, x is the
N×1 vector of signals at the antenna elements, and Φ is the M × N sensing matrix or feed network
response matrix representing a compressive feed network with M ≤ N (Chapter 2, 4). Row m of Φ
describes how the N antenna-element signals are weighted and combined to form the output at the
mth subarray. Equivalently, row m of Φ describes the aperture illumination at the antenna elements
produced by the mth subarray on transmit. The M×1 compressed steering vector (the response y to a
reference wave) is then b(θ) = Φa(θ) (Chapter 4) [11].

A conventional uniform-excitation array with one element per beamforming control can be represented
by the N × N sensing matrix Φ = I. A non-weighted thinned array will have an M × N sensing matrix
made up of M rows taken from an N × N identity matrix [11]. A partially overlapped subarray [7] will
have at least one non-zero entry per row, while a completely overlapped subarray [2] can be represented
by a fully populated sensing matrix. The compressive DF array in [11] uses a sensing matrix with
random Gaussian entries (Chapter 4).

The term compressive array arises as the synthesis of antenna arrays with complex-valued sensing
matrices with M < N is considered, similar to the approach used in CS (Chapter 2) [12]. As outlined
above, the compressive array formulation includes most existing reduced-control arrays with fixed
element positions as special cases, making it a generalisation of the reduced-control concept. The
generalised definition of compressive arrays does not include any hardware constraints. Instead, all
constraints on Φ are removed to allow for more degrees of freedom in an effort to find the best-
performing designs. By using this generalisation, it is shown how sensing matrices may be designed to
improve on existing criteria and fulfil a variety of criteria that could not previously be considered for
reduced-control arrays.

A compressive feed network can be implemented in hardware or in software, for transmission and/or
reception. Overlapped subarrays suggest that feed networks can be implemented in microwave circuity
where each output is a weighted combination of multiple antenna elements (Chapter 3) [2, 3, 7, 21].
The hardware implementation of a compressive array will be considered in Chapters 7 and 8. The
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proposed method could also be applied to an array with a receiver at each element by using a software
implementation of the sensing matrix. This would enable reduced data rates for transmission to a
central processing station, for example.

6.2.2 Compressive array patterns

A set of M complex-valued excitations at the M subarray ports is defined to characterise a compressive
array. The feed network, described by Φ, results in compressed steering vectors b(θ) which change in
both amplitude and phase with steering angle. This requires each steering angle to have its own set of
weights to achieve the desired pattern when steering in that direction.

Considering the illustration in Figure 6.1(a), the array square-root power pattern is defined as the
weighted sum of the M subarray outputs due to a reference wave from the direction θ as

q(θ) =
��w(θs)Tb(θ)

�� , (6.1)

where w(θs) is the M×1 vector of complex weights for the steering angle θs.

The aim of a compressive array design algorithm is to find Φ and w(θs) for all steering angles of
interest that minimise the SLL. The SLL is defined as the largest pattern magnitude in a pre-defined
sidelobe region relative to the main-beam peak. Since b(θ) is a function of Φ, both w(θs) and b(θ)
must be optimised over all steering angles θs and pattern angles θ. However, the problem can be greatly
simplified if w(θs) is chosen as the complex conjugate of b(θs). This leads to

q(θ) =
��b(θs)Hb(θ)

�� . (6.2)

This expression is similar in form to the coherence criterion from CS theory (Chapter 2, 5).

In order to validate the compressive array algorithm for an M = N array against a Chebyshev array
(Section 6.4.1), it is necessary to define a ULA with the same patterns as the corresponding compressive
array. To do this, consider the combined effect of the sensing matrix Φ and the beamforming weights
w(θs). Substituting b(θ) = Φa(θ) into (6.2) gives

q(θ) =
��aH(θs)ΦHΦa(θ)

�� . (6.3)

Since a(θ) is the steering vector for a ULA, define a set of equivalent weights for a conventional ULA
as vT(θs) = aH(θs)ΦHΦ, or

v(θs) = ΦTΦ∗a∗(θs), (6.4)

where ∗ represents complex conjugation. This gives

q(θ) =
��v(θs)Ta(θ)

�� , (6.5)

which is similar in form to (6.1). Applying the weights v(θs) to a length-N ULA, as illustated in
Figure 6.1(b), will result in the same patterns as the corresponding compressive array.

While varying excitations is the only way to control transmit beamforming, digital beamforming
techniques on reception are not limited to weight-and-sum beamforming. For example, super-resolution
methods such as MVDR and CS-based algorithms have been successfully applied to compressive
arrays for DF (Chapter 4) [11].
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6.3 CONTINUOUS SLL OPTIMISATION

6.3.1 Problem formulation

The use of optimised codebooks to design compressive arrays for low SLL is severely hampered by the
fact that array pattern control is only possible at N angles (Chapter 4). Even if the discrete M × N
codebook B has the lowest possible coherence, there is no way of predicting the resulting array patterns
in-between the N angles. Simply increasing the number of sampling angles in A will not suffice since
this would result in B = ΦA from (4.8) being underdetermined.

In order to exercise sidelobe control across continuous steering and pattern angles, it is necessary
to reformulate the optimisation problem in terms of Φ, since the sensing matrix with MN discrete
complex weights determines the continuous compressed steering vectors via b(θ) = Φa(θ).

With the definition of the excitation weights as the complex conjugates of the compressed steering
vectors (Section 6.2.2), the SLL can be computed from

SLL = max
|θa−θs | ≥θSLL

��b(θs)Hb(θa)
�� ,

θs ∈ [θs1, θs2], θa ∈ [θa1, θa2], (6.6)

where θSLL is the specified start of the sidelobe region relative to the steering angle, θs are the steering
angles, θa are the array pattern angles, [θs1, θs2] is the steering range, and [θa1, θa2] is the field of view
(typically, [−90◦, 90◦] for ULAs and [−180◦, 180◦] for circular arrays). When designing compressive
feed networks for ULAs, the start of the sidelobe region is defined to be constant in sin(θ) space, with
the result that it changes with steering angle (θs) in θ space.

Note that b(θs)Hb(θa) =
[
b(θa)Hb(θs)

]∗ and therefore
��b(θs)Hb(θa)

�� = ��b(θa)Hb(θs)
��, which explains

the symmetry observed in the pattern plots of Section 6.4. Thus only unique combinations of θs and
θa need to be considered in the optimisation, which significantly reduces the problem complexity.
Unique combinations of θs and θa are given by θa − θs ≥ θSLL (the upper triangular sidelobe regions
in Figures 6.3 and 6.4).

Define the continuous SLL optimisation problem as

min
Φ

max
θa−θs ≥θSLL

��[Φa(θs)]H[Φa(θa)]
��

R(θs, θa)

subject to

‖Φa(θs)‖2 = 1, θs ∈ [θs1, θs2], θa ∈ [θa1, θa2], (6.7)

where R(θs, θa) is the sidelobe mask. This mask is used to allow the sidelobe requirements to vary
over the sidelobe region. Note that the mask values may be specified independently for both steering
and pattern angles, which leads to a number of novel designs as discussed in Section 6.4.

The condition ‖b(θs)‖2 = 1 is necessary to ensure that a peak is located at θs when the beam is
steered in that direction. This constraint is equivalent to saying that the sum of the subarray pattern
powers should equal 1 across the steering range. When all compressed steering vectors have equal
length, an absolute dot product with any other compressed steering vector (

��b(θs)Hb(θa)
��, a , s) is

guaranteed to be no larger than the absolute dot product of a compressed steering vector with itself
(
��b(θs)Hb(θs)

�� = ‖b(θs)‖2), resulting in a peak in the desired steering direction. The choice of which
length the compressed steering vectors should equal is arbitrary and does not affect the final patterns; a
value of 1 is chosen here for convenience. This condition is only enforced on the compressed steering
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vectors in the steering range of interest, which allows the subarray patterns to be suppressed outside the
steering range. As long as the compressed steering vectors outside the steering range have lengths less
than 1, the peaks of the steered beams will remain correct. In the algorithm to follow, this constraint
is relaxed so that the lengths of the compressed steering vectors are within ±0.01 dB because this
relaxation leads to faster convergence.

Similar to the discrete coherence optimisation problem in (3.11), the continuous formulation in (6.7)
is non-convex and is not guaranteed to converge to the global minimum. Even so, local optimisers
produce discrete codebooks with coherence values that have not been improved upon by any other
method (Chapter 5) [16, 66], so this approach is reasonable.

Unfortunately, optimising the patterns using the formulation above would involve evaluating an infinite
number of combinations of steering and pattern angles. The angles are thus discretised to provide
a finite set of angles over which the SLL must be optimised. This is done by defining a set of FN
sampling angles for both the steering and pattern angles, where F is the oversampling factor. These
angular points are uniformly spaced in sin(θ) space over [−1,1) for ULAs to compensate for the sin(θ)
factor in (3.1), and in θ space over [−180◦,180◦) for circular arrays as the elements are uniformly
distributed around the circle. Although FN sampling angles are defined, only those within the steering
range and sidelobe regions are considered in the optimisation.

Since the pattern values must be evaluated over all steering angles, the problem is inherently combinat-
orial in nature, with up to O

{(FN
2

)}
combinations to consider. The oversampling factor F allows a

compromise to be made between angular grid resolution (which influences the SLL) and realistic run
times. A value of F = 2M was empirically found to present a good compromise between achieved SLL
and run time. Using F = 2M means that the resulting number of sampling angles, 2MN , is equal to
the number of control variables, namely the real and imaginary parts of the MN elements in Φ.

In order to ensure that the calculated performance is accurate, the final beamwidth and SLL values in
the results below were calculated using 16 times more sampling points [38]. The 3-dB points in the
beamwidth calculations were found using cubic spline interpolation [38].

6.3.2 Algorithm and implementation

The approach to minimising SLL in terms of Φ is to sequentially approximate the max operator similar
to (5.6) and use a general-purpose constrained non-linear solver for the subproblems. The goal function
to be minimised is given by

g(Φ) = α


1
C

∑
θa−θs ≥
θSLL

( ��(Φas)H(Φaa)
��

αRs,a

)p
1/p

, (6.8)

subject to the constraints

c1(Φ) = ‖Φas ‖2 − 100.01/10 ≤ 0 ∀s and (6.9)

c2(Φ) = 10−0.01/10 − ‖Φas ‖2 ≤ 0 ∀s, (6.10)

where the subscripts s and a refer to variables sampled at the angles θs and θa, and C is the number of
terms in the summation. Including the factor 1/C and raising the sum to 1/p maintains proper scaling
of the problem. The function is of the form (

∑
N |xn |

p)
1/p which approximates the ∞–norm by the

p–norm as p→∞ [66]. The inequality-constraint functions for the unit-length requirements in (6.7)
are provided in (6.9) and (6.10).
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Since the dot products scaled by the sidelobe mask are typically smaller than one, raising them to
large powers may produce results smaller than the lower limit of numerical representation, resulting in
underflow of some of the terms in the summation. A scaling factor α, which does not affect the final
function value, is thus introduced to scale the terms in the summation to minimise the incidences of
underflow. The terms in the summation in (6.8) can be written as (xs,a/α)p, and the goal is to ensure
that these terms are as large as possible. Overflow during the intermediate computations can be avoided
by setting the sum equal to the largest representable value and assuming that all terms are equal to the
largest term, giving ∑

C

( xmax

α

)p
= C

( xmax

α

)p
= νmax, (6.11)

where νmax is the largest machine-representable number. Solving for α gives

α =
xmax

(νmax/C)1/p
. (6.12)

The sequential quadratic programming (SQP) algorithm [72] in MATLAB was chosen to solve the
subproblems given by (6.8) to (6.10) for increasing values of p. The value of p is incremented via

p(k) = min
(
pmax, 2

⌈
rp(k−1)

2

⌉)
,

k = 2, 3, . . . , p(1) = 2, r > 1, (6.13)

where r is the power multiplication factor, k is the subproblem number, and pmax is the maximum
value of p. For each subproblem, p is incremented to the next even number greater or equal to rp(k−1).
Restricting p to even values ensures that (6.8) is smooth (Chapter 5). For a particular problem, the
value of pmax should be increased until no further improvement in SLL is observed, after which the
value of r is then reduced until no further improvement in SLL is observed. Values of pmax = 512 and
r = 1.1 have been found to produce good solutions for a wide range of problems and were used to
obtain the results in Section 6.4.

The initial sensing matrix Φ(0) was chosen with real and imaginary parts drawn from a Gaussian
distribution with variance 1/(2N) so that E [‖φm‖] = 1, where φm are the rows in Φ [13]. The minimum
step size was set to 10−10, the step size used for discrete coherence optimisation in Chapter 5. The
first-order optimality and constraint convergence criteria were kept at their default values of 10−6. The
number of iterations per subproblem was limited to a maximum of 105. Gradients of goal and constraint
functions are derived analytically in Addendum A.2. This is important since using finite differences is
computationally inefficient. Each finite-difference calculation would require calculating a large number
of dot products twice, whereas the dot products only have to be calculated once to evaluate both the
goal function and an analytical goal-gradient expression.

6.4 RESULTS

The results obtained for a number of test problems are outlined below, after a description of the
conditions under which the results were obtained.

Isotropic antenna elements are assumed. However, the procedure is general enough that the steering
vectors may be specified in terms of arbitrary element patterns including, for example, simulated or
measured embedded element patterns.

Angles and beamwidths for ULAs are given in u = sin(θ) space. The algorithm was implemented in
MATLAB R2016b and run on machines with two 6-core 2.30-GHz Intel Xeon E5-2630 processors and
32 GB of memory each. In all cases, an oversampling factor of F = 2M was used.
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Figure 6.2. Subarray power patterns and their sum for the M = N = 4 compressive array in Section 6.4.1.
Adapted from [1], ©2018 IEEE.

The results below are summarised in Table 6.1. The SLL and beamwidth results for the compressive
arrays are for the designs with the lowest SLL from ten independent runs of the algorithm. Only the
worst (i.e. largest) 3-dB beamwidths over the steering ranges are presented. The run times indicated are
for the algorithm to run to p = pmax even if the best SLL was obtained before then.

Reduced-control arrays can be considered to either reduce the number of beamforming controls for
a given aperture or to increase the aperture for a given number of beamforming controls. Under the
reasonable assumption that the cost of an array is primarily determined by the number of beamforming
controls (Section 3.3.1) [3], the second perspective is more useful when comparing reduced-control
and conventional arrays for a given cost. Section 6.4.3 below thus compares a compressive array
with M controls and N antenna elements to an M-element conventional array because an N-element
conventional array would cost approximately N/M more.

6.4.1 M = N, uniform sidelobe mask

The first test case considers a feed network with M = 4 outputs for a ULA with N = 4 elements, the
start of the sidelobe region at uSLL = 0.5, and a uniform sidelobe mask. Since M = N , a Chebyshev
excitation provides the optimum result for the conventional weights v(θs), where optimality refers to
the lowest possible SLL for a given main-beam region, or the smallest beamwidth for a given SLL [34].
This problem thus tests whether the proposed algorithm is able to approach the known optimum.

For the purpose of validation, the steering range was defined as us ∈ [−1, 1) since a ULA has patterns
that translate all the way to endfire, though with a grating lobe at endfire when half-wavelength spacing
is used. When calculating SLL, the sidelobe region range was adjusted to ensure that that grating lobes
were ignored at extreme steering angles as is done for Chebyshev arrays.

The compressive array achieved an SLL of −16.98 dB. The Chebyshev excitation for an SLL of
−16.98 dB is |v(θs)| = [0.6669,1,1,0.6669]T. The normalised magnitudes of the equivalent weights
v(θs) for the compressive array are the same, with a maximum deviation of 9.89 × 10−7 from the
Chebyshev excitation over all weights and steering angles. This result demonstrates that the compressive
array algorithm can achieve comparable results to the known optimum.

Figure 6.2 shows the radiation patterns of each of the M subarrays in the compressive array. The patterns
are shown as power values, which add to 1 at each angle as shown and as required by (6.7).
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Figure 6.3. Normalised patterns as a function of steering angle for the uniform-mask compressive
array in Section 6.4.2. Taken from [1], ©2018 IEEE.

The subarray patterns are simply the M individual elements in the compressed steering vector, since
each element in b(θ) represents the response of the array at the mth beamforming control. Even though
the excitations at the N elements are equivalent to those of a Chebyshev array, the operating principle
is different. A weighted ULA with M isotropic elements samples the entire angular domain at each
element. In the compressive array, each subarray samples the angular space differently. The subarrays
are able to scan the entire range of interest when combined, but individually, some subarrays favour
certain angles. The crucial observation is that there is no angle at which all of the subarray gains are
low because that would make steering in that direction impossible.

The ability of compessive arrays to implement shaped subarray patterns can be exploited to suppress
the subarray patterns where no steering is desired (Section 6.4.3), or to suppress interference from a
particular direction (Section 6.4.4).

6.4.2 M < N, uniform sidelobe mask

The true compressive array design evaluated here considers a feed network with M = 4 for a ULA
with N = 16, the start of the sidelobe region at uSLL = 0.046875, and a uniform sidelobe specification.
The steering range was limited to |us | ≤ 0.875 or |θs | ≤ 61◦ since |θs | ≤ 60◦ is already considered a
wide steering range and steering to endfire presents a number of practical challenges [2]. This problem
illustrates the case where beamwidths similar to that of a large, filled array are desired at the expense of
higher SLL, a typical consideration for DF arrays.

The results are compared to a weighted thinned linear array (Section 3.3.2) designed using the IFT [9,38].
The IFT does not allow the steering range to be limited, so this example also serves to illustrate
the performance improvements arising from the ability of compressive arrays to limit the steering
range.

Figure 6.3 shows the patterns as a function of steering angle for the compressive array design.
Significantly, the patterns do not translate with steering angle, but vary significantly as the main beam
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is steered. Note that beamwidth and SLL values provided below are achieved at all steering angles
despite the significant pattern variation. This is an example of non-translational patterns which arise
in compressive arrays. One of the main consequences of non-translational patterns is that steering
of the main beam is more complex as the excitation amplitudes and phases vary non-linearly, unlike
translational patterns where only linear phase variation is required.

The compressive array has an SLL of −2.89 dB and a worst-case 3-dB beamwidth of 0.0942 over the
specified steering range, while the IFT achieved an SLL of −2.47 dB with a 3-dB beamwidth of 0.1017
as the best result from ten runs. The compressive array design improves on the weighted thinned design
by 0.42 dB in SLL and 7.4% in beamwidth (in u). This improvement is achieved by exploiting the
additional degrees of freedom provided by the fact that the M feed network outputs are functions of all
N antenna elements, which includes the ability to exploit a limited steering range. On the other hand,
in a weighted thinned array each of the M outputs is only a function of a single antenna, and the IFT
cannot exploit a limited steering range.

Compressive arrays with uniform sidelobe masks would be useful as an alternative to thinned or
weighted thinned arrays where SLL is crucial, since the additional degrees of freedom in the feed
network allow designs with lower SLL for the same number of beamforming controls.

6.4.3 Soft stationary null steering

Section 6.4.2 showed that a compressive array can have patterns that change as a function of steering
angle. In order to exploit this property, the sidelobe mask Rs,a can be specified independently for both
steering and pattern angles, allowing the shape of the sidelobe regions to be controlled.

This problem introduces the idea of a soft stationary null, where the sidelobes are reduced at a fixed
pattern angle over all steering angles except those near the soft null itself. This allows a beam to be
steered in the direction of the soft null, while suppressing interference from this direction when steering
to other angles. This type of array would be useful in scenarios where a high-power source must
be suppressed in order to receive weak signals from other directions, but where it is also necessary
to monitor the high-power source itself. This situation would occur when low-power radios and a
high-power radar must be monitored by a receiver system.

Consider a feed network with M = 8 for a ULA with N = 16, the start of the sidelobe region at uSLL =

0.25, and a steering range of |us | ≤ 1−uSLL = 0.75. This limit prevents any portion of the grating lobes
from appearing at extreme steering angles in the case of half-wavelength element spacing [2].

A soft null at broadside is required to be 20 dB below the SLL. The nature of the soft null means
that it is only present when |us | ≥ 0.25, so that the null does not enter the predefined main-beam
region.

The resulting patterns are shown in Figure 6.4. The achieved SLL is −19.85 dB and the 3-dB beamwidth
ranges from 0.1837 to 0.2370 depending on the steering angle. The beamwidths narrow near broadside
steering due to the nulls at the start of the sidelobe region (u = ±0.25). The worst pattern level in the
soft-null region is −39.87 dB, or 20.02 dB below the SLL. Due to the reduced sidelobes at broadside
steering, the directivity peaks near broadside steering at 10.14 dB, while the minimum directivity over
the steering range is 8.96 dB.

The results were compared to an M-element ULA with the same specifications to ensure that both
cases have the same number of beamforming controls. Weights for the ULA were redesigned for each
steering angle using the covariance matrix inversion method [2, 15]. The required SLL was specified
as −19.85 dB, and the achieved worst-case SLL is −19.76 dB (since no uSLL is specified, the SLL is
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Figure 6.4. Normalised patterns as a function of steering angle for the soft-null compressive array in
Section 6.4.3. Taken from [1], ©2018 IEEE.
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Figure 6.5. Sum of the subarray pattern powers for the soft-null compressive array in Section 6.4.3.
Taken from [1], ©2018 IEEE.

defined here as the largest pattern value outside the main beams). The largest pattern value in the soft
null region is −39.84 dB below the peaks, or 20.08 dB below the achieved SLL. The 3-dB beamwidths
range from 0.2465 to 0.2556. Thus, the compressive array improves on the ULA by 7.3% in worst-case
beamwidth. The directivity of the ULA ranges from 8.69 dB to 8.85 dB, which is consistently lower
than that of the compressive array.

Figure 6.5 shows the sum of the M subarray pattern powers over pattern angle, which equals
0 dB ± 0.01 dB in the steering range as required by (6.9) and (6.10). The subarray patterns are
suppressed in the out-of-scan regions (|u| > 0.75), which explains the higher directivity of the
compressive array over the ULA.

The design of an M = 8, N = 16 soft-null compressive array, and an 8-element soft-null ULA shows
that increasing N for the same M increases the control over the array patterns.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

55

 
 
 



CHAPTER 6 DEVELOPING A COMPRESSIVE ARRAY SLL OPTIMISATION ALGORITHM

130 140 150 160 170 180 ¡170 ¡160 ¡150 ¡140 ¡130
Pattern angle (°)

¡60

¡50

¡40

¡30

¡20

¡10

0
P

at
te

rn
 p

o
w

er
 (

d
B

)

Subarray 1
Subarray 2
Subarray 3
Subarray 4
Subarray 5
Subarray 6

Figure 6.6. Superimposed subarray patterns in the out-of-scan region for the compressive circular
array in Section 6.4.4. Adapted from [1], ©2018 IEEE.

6.4.4 Hard stationary null steering

Limiting the steering range of a compressive array means that the subarray patterns may be constrained
in any manner outside the steering range. Consider an application where an interfering signal is present
from a known direction with significantly higher power than the signal(s) of interest. An example
of such a scenario is a passive bistatic radar where the receiver sees a direct-path signal from the
transmitter of opportunity that has a much higher signal strength than the reflected signal from the
target, with the direct-path signal as much as 90 dB stronger than the reflected signal [74]. A null
formed via digital beamforming (e.g. a soft null) may not suffice, since most of the receivers’ available
dynamic range will be utilised for sampling the interfering signal to avoid saturation, with little dynamic
range left for the signal(s) of interest. A hard stationary null solves this problem by placing a null in the
subarray patterns themselves so that the interfering signal is suppressed before sampling.

Consider the constraint function

c3,m(φm) = ‖φma(θw)‖2 − 10W/10 ≤ 0 ∀m, (6.14)

where φm is the mth row of Φ such that bm(θw) = φma(θw), θw is the desired null direction with
θw < [θs1, θs2], and W is the desired magnitude in dB of the mth subarray pattern in the null direction.
The null level is not specified relative to the subarray pattern peak, since a subarray pattern does not
necessarily have a single distinct peak (Section 6.4.1). It is specified simply as the value of bm in the
null direction.

Consider the design of a feed networkwith M = 6 for a uniform circular array (UCA)with N = 9 elements
with half-wavelength spacing between adjacent elements. The steering range is θs ∈ [−130◦, 130◦]
with a null of magnitude W = −60 dB at 180◦. The start of the sidelobe region is θSLL = 50◦.

Figure 6.6 shows the resulting subarray patterns, superimposed, in the out-of-scan region with the hard
null visible at 180◦. The achieved SLL over all steering angles is −13.27 dB and the 3-dB beamwidth
ranges from 42.9◦ to 50.1◦.
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Figure 6.7. SLL as a function of steering angle for the dual-transform and compressive arrays in
Section 6.4.5. Taken from [1], ©2018 IEEE.

6.4.5 Small steering range array

A dual-transform completely overlapped subarray system (Section 3.3.3) with M = 8 and N = 64
is described in [2]. N antenna elements in a ULA are the inputs to an N × N Butler matrix, but
only M outputs corresponding to the beams closest to broadside are used. These M outputs are then
passed through an M × M Butler matrix to produce the M subarray outputs. The subarray outputs are
weighted by a 40-dB length-M Chebyshev window. The entire feed network can be described by a
fully populated M × N sensing matrix since each subarray output is a function of the signals at all the
antenna elements.

The dual-transform SLLs as a function of steering angle are shown in Figure 6.7 (with SLL defined
here as the largest pattern value outside the main beam for a given steering angle). The specified range
of steering angles is us ∈ [−0.1094, 0.1094], but the sidelobes are high at the extremities. As indicated
in Figure 6.7, the array achieves a worst-case SLL of −32.49 dB over a range of us ∈ [−0.0846, 0.0846]
which presents a more useful steering range. The worst 3-dB beamwidth over a steering range of
us ∈ [−0.0846, 0.0846] is 0.0398, and the directivity ranges from 16.82 dB to 16.88 dB over the same
range.

A compressive array was designed for a slightly wider steering range of us ∈ [−0.0859, 0.0859], with a
sidelobe region starting at uSLL = 0.0508 to match the smallest start of a −32.49-dB sidelobe region in
the dual-transform array, which was found to be 0.0522. The best SLL achieved for the compressive
array was −34.20 dB, an improvement of 1.71 dB over the dual-transform array. The worst-case 3-dB
beamwidth for the compressive array was 0.0382 which also improves on the dual-transform design.
Finally, the directivity varied from 16.97 dB to 17.15 dB which is, again, slightly better than that of the
dual-transform array.

Figure 6.7 compares the SLL of the compressive and dual-transform arrays as a function of steering
angle. The SLL of the dual-transform array has significant variation in the steering range, compromising
SLL at certain steering angles in favour of others. On the other hand, the compressive array achieves a
lower overall SLL by maintaining nearly-uniform SLLs across the entire steering range.

Figure 6.8 shows the patterns for the compressive and dual-transform arrays at steering angles with
the worst SLL, namely us = −0.0859 and us = −0.0846, respectively. While the dual-transform array
has some sidelobes that are lower than those of the compressive array, this characteristic leads to a
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Figure 6.8. Compressive array pattern at us = −0.0859 steering angle and dual-transform array pattern
at us = −0.0846 steering angle for the limited-steering problem in Section 6.4.5. Taken from [1], ©2018
IEEE.

higher SLL and a wider main beam than the compressive array which has a more uniform pattern in
the sidelobe regions.

6.5 CHAPTER SUMMARY

In this chapter, a generalised framework for the optimisation of compressive arrays for low SLL has been
proposed. A sequential algorithm for accomplishing this goal, inspired by the coherence optimisation
algorithm from Chapter 5, has been described.

The proposed algorithm has been validated against a Chebyshev array and achieved the same optimal
result. Compressive arrays have been shown to achieve better results than a weighted thinned array
designed using the IFT, and improve on the performance of an existing completely overlapped
dual-transform subarray system. A compressive array with a soft null obtained better results than a
conventional ULA with the same number of beamforming controls. The increased number of elements
of a compressive array is thus shown to enable better control over the shape of array patterns than a
conventional array with the same number of controls. A hard-null compressive array shows that the
subarray patterns can be constrained outside the steering range to suppress interference in hardware
before sampling, for example.
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CHAPTER 7 A CHEQUERED NETWORK FOR
IMPLEMENTING ARBITRARY FEED
NETWORKS

7.1 CHAPTER OVERVIEW

Traditionally, subarray pattern synthesis is linked to the chosen feed network layout, where the aim is, for
example, to synthesise flat-topped subarray patterns for a limited steering range (Chapter 3) [2,3,39,40].
In Chapter 6, a generalised framework for designing compressive feed networks for beamforming
arrays was presented and shown to improve on existing reduced-control techniques. This improvement
was achieved by removing all feed-network constraints and allowing an arbitrary complex-valued feed
network response Φ. However, no details have yet been given of how compressive feed networks could
be implemented in hardware. Since no constraints are placed on the feed network response, a technique
for implementing a compressive feed network in hardware must be able to implement an arbitrary
complex-valued response.

In this chapter, the problem of implementing an arbitrary complex-valued feed network response is
addressed by presenting a novel overlapped feed network layout consisting of interconnected couplers
and fixed phase shifters. The proposed approach separates the tasks of subarray pattern synthesis and
feed network implementation, and enables full exploitation of compressive arrays by not placing any
constraints on the feed network response.

While no constraints are placed on the feed network response to be implemented, constraints may
be placed on the coupling ratios and phase shifts to ensure realisability. An algorithm is proposed
below to implement a desired feed network response while minimising the range of coupling ratios and
phase shifts required. Constraints may also be placed on the power delivered to terminations to reduce
losses.

Section 7.2 introduces the proposed chequered feed network layout and presents a method for deriving
its response. An algorithm for designing the feed network to implement a desired response is presented
in Section 7.3. Section 7.4 presents results for some test cases, including measured results for a
microstrip implementation of a compressive array with four antenna elements and two subarrays.
Finally, a summary of the chapter is provided in Section 7.5.

This chapter is a modified and updated version of a published journal paper [24]. Portions of this chapter are ©2019
IEEE; reprinted, with permission, from [24].

The MATLAB code for generating the main results in this chapter is available online at https://doi.org/10.24433/
CO.2625641.v1.
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Figure 7.1. A generalised overlapped feed network. Adapted from [24], ©2019 IEEE.
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Figure 7.2. Definition of a single tile consisting of a directional coupler and two fixed phase shifters:
(a) Tile port definitions. (b) Tile response to a stimulus at port 3. (c) Tile response to a stimulus at
port 4. Adapted from [24], ©2019 IEEE.

7.2 THE CHEQUERED NETWORK LAYOUT FOR ARBITRARY FEED NETWORK RE-
SPONSES

7.2.1 Overlapped feed networks

An arbitrary overlapped feed network with M subarrays for N antenna elements is illustrated in
Figure 7.1. Following the same notational convention as before, the feed network response is given by
the M × N matrix Φ, such that the subarray signal vector is related to the antenna-element signal vector
by the equation y = Φx.

Ports are labelled according to their signal variables, so that antenna-element ports are labelled x1
to xN and subarray ports y1 to yM as shown in Figure 7.1. Terminated ports are labelled zl, where
l ∈ 1, . . . ,T , and T is the number of terminated ports which depends on the chosen layout.

Complex-valued subarray excitations w1 to wM are applied at the subarrays ports, along with correction
weights σ1 to σM . These correction weights are included for more degrees of freedom to realise the
desired feed network response. In practice, the weights wm and σm can be combined for a single
excitation at each subarray port.

7.2.2 The chequered layout

The proposed network uses a tile consisting of a directional coupler and two fixed phase shifters as its
basic element, as illustrated and defined in Figure 7.2, with reciprocity applying. The specific coupler
used here is a single-section branchline coupler [60], although the technique is also applicable to other
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y1 y2 y3 y4

y1 y2 y3 y4
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1x 2x 3x 4x 5x 6x

Figure 7.3. An example of the proposed network of couplers and fixed phase shifters for M = 4 and
N = 6 and 4 tile rows, with the additional tiles required for extending the layout to 5 rows shown in
dashed lines. Taken from [24], ©2019 IEEE.

couplers with similar port layouts. The phase shifters are fixed and their simplest implementation is
varying lengths of transmission line, although other phase shifters with wider bandwidths can also
be employed. The relative power delivered to the through and coupled port is p2 and q2, respectively,
with p2 + q2 = 1. The coupling ratio is defined as p/q. Coupling ratios above and below 0 dB indicate
more power being transferred to the through and coupled ports, respectively. A coupling ratio of 0 dB
indicates an equal-split coupler.

The tiles are connected in a chequered pattern to form the feed network, similar to the way couplers
are connected in the chess network proposed by Skobelev (Chapter 3) [40,57]. The layout is planar
and requires no physical crossovers. Each row of couplers is identical in Skobelev’s chess network,
whereas the network proposed here allows the parameters of each tile to be specified independently.
The top row of tiles connects to the N antenna-element ports, xn, and the bottom row connects to the
M subarray ports, ym. All remaining tile ports, zl, have matched terminations. Sufficient rows are
required to ensure that there is at least one signal path from each subarray port to each element port
when complete overlap is required. This leads to a diamond-shaped chequered layout as illustrated in
Figure 7.3 for M = 4 and N = 6, with the minimum number of rows to allow complete overlap being 4.
Also shown are the additional tiles required to extend the layout to 5 rows.

The minimum number of rows that achieves the desired overlap between subarrays does not guarantee
sufficient degrees of freedom to implement the desired response. The number of rows should thus be
increased until the desired response can be realised. A procedure for finding the minimum number of
rows required to implement a desired feed network response is outlined in Section 7.3.1.

Typically, there will be two or more signal paths between any subarray and element port. For a stimulus
at a given subarray port, the various signal paths to a given element port combine via superposition to
produce the desired output. The application of both amplitude and phase alterations along the signal
paths allows arbitrary complex-valued responses to be realised as long there are enough tile rows to
provide the required degrees of freedom.
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Figure 7.4. Derivation of a 2 × 2 chequered network: (a) Tile symbol with associated intermediate
signal variables. (b) Layout with numbered tiles and intermediate signal nodes. The arrow indicates
the signal flow convention used to define the row transform matrices. Taken from [24], ©2019 IEEE.

It is assumed that arbitrary complex-valued excitations, w1 to wM , can be applied to the subarray ports.
These variable excitations both allow beamforming even though the feed network itself is fixed, and
add additional degrees of freedom which can be exploited to help achieve the required response with
the smallest number of tiles.

7.2.3 Derivation of the network response

The response of a 2 × 2 network with three rows is derived below, leading to a procedure for deriving
the response of any chequered network.

Figure 7.4(a) presents a symbol for a tile of the form shown in Figure 7.2 along with definitions for
the intermediate signals at its ports. The signals flow in a downward direction in Figure 7.4(a) when
stimuli are applied at κc,1 and κc,2. The response of tile c can be expressed in matrix form as

[
κc,3
κc,4

]
=

[
−jpcejψc,1 −qcejψc,2

−qcejψc,1 −jpcejψc,2

] [
κc,1
κc,2

]
(7.1)

= Kc

[
κc,1
κc,2

]
, (7.2)

where Kc is the response matrix for tile c. When a node κc,1 or κc,2 is connected to a terminated
port, the corresponding phase shift ψc,1 or ψc,2 is set to zero since it has no effect on the feed network
response.

Figure 7.4(b) shows a 2 × 2 chequered layout with intermediate signal nodes, inter-row signal vectors,
and row transform matrices that will be used in the derivation to follow. The response will first
be derived for stimuli applied to the element ports so that signal flow is in the indicated downward
direction.
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The inter-row signal vector u1 is defined as the terminated and inter-tile signals between the first and
second rows, and is given by

u1 =


z1
κ2,2
κ3,1
z2

 =


0 0
−jp1ejψ1,1 −q1ejψ1,2

−q1ejψ1,1 −jp1ejψ1,2

0 0


[

x1
x2

]
(7.3)

=


01×2
K1

01×2

 x = R1x. (7.4)

where 0a×b is an a × b matrix of zeros, and the row transform matrix for row r is denoted Rr . The next
inter-row signal vector u2 is found to be

u2 =


z3
κ4,1
κ4,2
z4

 =
[

K2 02×2
02×2 K3

] 
z1
κ2,2
κ3,1
z2

 = R2u1. (7.5)

The subarray output vector y is then

y =
[
y1
y2

]
=

[
02×1 K4 02×1

] 
z3
κ4,1
κ4,2
z4

 = R3u2. (7.6)

Combining (7.3)–(7.6) gives
y = R3R2R1x. (7.7)

The 2 × 2 matrix R3R2R1 represents the chequered network response from the antenna elements to the
subarray ports. Due to reciprocity, reversing the direction of signal flow and finding x as a function of a
stimulus y results in

x = (R3R2R1)
T y = RT

1 RT
2 RT

3 y, (7.8)

which shows that the derivation for the reversed signal direction follows the same approach, but uses
transposed row transform matrices in reverse order. The scattering parameters between the element
and subarray ports are provided by the network response matrix with the scattering parameter Sym,xn
being element (m, n) of R3R2R1.

To find the scattering parameters involving terminated ports, the inter-row signal vector containing the
desired terminated port signal must be found, with the signal flow direction depending on whether
the scattering parameter is calculated from an element or subarray port. Finding Sz3,xn and Sz4,xn in
Figure 7.4(b) requires applying stimuli at xn and calculating R2R1 in that order since the signal flow
direction is downward. Conversely, Sz1,y1 will be element (1, 1) in RT

2 RT
3 since the stimulus is applied

to y1. The parameters Sz1,xn , Sz2,xn , Sz3,ym , and Sz4,ym are all zero since the corresponding ports are
isolated from each other.

The total aperture illumination x determines the radiation pattern when the feed network is connected
to an antenna array. The radiation amplitude pattern, normalised to the array directivity, remains
unchanged when x is multiplied by an arbitrary complex constant Aejα as only the relative amplitudes
and phases of the elements are of importance. Applying an arbitrary constant phase shift α to x gives
yejα = R3R2R1xejα, where ejα can be incorporated into any of the row matrices. This means that any
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Algorithm 7.1. Determining chequered layouts. Adapted from [24], ©2019 IEEE.
1) The smallest number of rows that ensures the existence of at least one signal path between

the ports ym and xn for each non-zero entry φm,n in Φ is determined.
2) Algorithm 7.2 is followed in an attempt to find a feasible solution that satisfies the constraints.
3) If no feasible solution is found, one row is added to the network as illustrated in Figure 7.3.
4) Steps (2) and (3) are repeated until a feasible solution is found.

phase shift can be added to or subtracted from all the phase shifts in a row to, for example, reduce the
lengths of the transmission lines used as phase shifters.

From the 2 × 2 chequered network derivation, a simplified procedure can be deduced for deriving the
response of any chequered network.

1. Rows are numbered from top to bottom. The inter-row signal vectors are defined with the left-most
signal node corresponding to the first element in each signal vector as shown in Figure 7.4(b).

2. The row transform matrices are numbered according to their rows and their sizes are determined.
Using the signal flow convention in Figure 7.4(b), the number of rows in each matrix equals the
length of the inter-row signal vector below the row, and the number of columns equals the length of
the inter-row signal vector above the row.

3. Each row transform matrix is populated by defining a square block diagonal matrix with the
row-specific tile responses Kc as the block diagonal elements in the order in which they appear in
the row. For example, R2 in (7.5) is such a block diagonal matrix. If the row transform matrix is
rectangular, the block diagonal matrix is padded with zeros to reach the required size.

7.3 AN ALGORITHM FOR DESIGNING A CHEQUERED NETWORK FOR A DESIRED
RESPONSE

7.3.1 Determining the network layout

The procedure to select a layout for a given problem is outlined in Algorithm 7.1, after which the
network can be designed using the approach described below.

7.3.2 Single-stage optimisation for a given set of constraints

A chequered network implements a desired feed network response Φ when the constraints

σmSym,xn = φm,n ∀m, n (7.9)

are satisfied, where Sym,xn is the scattering parameter between ports ym and xn, and σm is a complex-
valued correction weight applied at subarray port ym. Additional constraints are added to ensure that
the coupling ratios and phase shifts are realisable. After satisfying all the constraints, any remaining
degrees of freedom are utilised to minimise the mean power delivered to the terminated ports. The
optimisation problem is constraint-driven rather than goal-function-driven in the sense that the network
response and realisability criteria are controlled by constraints rather than by the goal function.

The problem described above can be solved using a general-purpose constrained non-linear solver,
such as SQP [72]. A local solver such as SQP is not guaranteed to converge to a feasible solution, so
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multiple trial points must be used in an attempt to reach a feasible solution [75]. The MultiStart solver in
MATLAB offers a convenient way of starting the SQP algorithm from multiple trial points [76].

The optimisation problem is formulated as

min

[∑
l

∑
m

��Szl,ym ��2 +∑
l

∑
n

��Szl,xn ��2] , (7.10)

with the constraints

Re
{
σmSym,xn − φm,n

}
≤ ε ∀m, n (7.11)

Im
{
σmSym,xn − φm,n

}
≤ ε ∀m, n (7.12)

p2
c + q2

c = 1 ∀c (7.13)

pmin ≤ pc ≤ pmax ∀c (7.14)

0 ≤ qc ≤ 1 ∀c (7.15)

ψmin ≤ ψc ≤ ψmax ∀c, (7.16)

where c are the tile indices. The goal, defined in (7.10), is to minimise the mean power delivered to
the terminated ports from both subarray and element ports. Constraints (7.11) and (7.12) ensure that
the real and imaginary components of the network response achieve their desired values to within a
tolerance ε. The relationship between pc and qc is maintained by (7.13). The fact that pc and qc
are specified individually instead of expressing qc as

√
1 − p2

c allows the algorithm to pass through
infeasible regions which improves convergence. The range of coupling ratios is bounded by (7.14),
while (7.15) ensures that (7.13) always only has real-valued solutions. The range of phase shifts is
bounded by (7.16).

Q trial points are passed to the MultiStart solver which are uniformly distributed over the bounds (7.14)
to (7.16), −1 ≤ Re{σm} ≤ 1, and −1 ≤ Im{σm} ≤ 1. The final solution is the feasible solution with
the lowest goal function value.

On transmission, terminated ports that are not isolated from subarray ports (e.g. ports z1 and z2 in
Figure 7.4) may have to dissipate large amounts of power. Constraints of the form∑

l

��Szl,ym ��2 ≤ Pmax ∀m, (7.17)

where Pmax is the maximum total relative power delivered from a subarray port to the terminated ports,
can be placed on the power delivered to terminated ports. However, the scattering parameters assume
that only one port is excited at a time, so the actual power delivered to terminated ports will differ when
multiple ports are stimulated simultaneously. Furthermore, the power delivered will depend on the
signals at the stimulated ports, so the power delivered will vary with steering angle in the case of a
beamforming array. Scattering-parameter-based terminated powers therefore do not reflect the actual
losses of a beamforming system in operation, but nevertheless provide a useful way of evaluating the
efficiency of a chequered network in a manner which is easy to formulate as a constraint.

Constraints are not placed on the powers delivered to terminated ports on reception since non-uniform
aperture illuminations may require that significant power be delivered to terminated ports to form the
desired illuminations across the elements. The power delivered to terminated ports is a function of
the aperture efficiency of the illuminations and is thus not necessarily indicative of the efficiency of
the chequered network implementation. However, the aperture illuminations do not prevent the full
utilisation of at least one antenna element. The element port with the lowest loss (i.e. with the least
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Algorithm 7.2. Optimising chequered networks. Adapted from [24], ©2019 IEEE.
1) An optimisation is performed from Q trial points without constraints on the coupling ratios.
2) Couplers from step (1) with pc > pshort are shorted.
3) Optimisation is repeated with incrementing pmin and decrementing pmax, until no feasible

solution is found.
4) Optimisation is repeated with incrementing ψmin, until no feasible solution is found.
5) A final optimisation is performed from Q trial points with the final constraints.

power delivered to the terminated ports) can therefore be used to provide an indication of the efficiency
of the chequered network implementation on reception. As with all feed networks, an LNA may be
added at each antenna element to improve system performance.

7.3.3 Multi-stage optimisation to minimise the range of coupling ratios and phase shifts

Two observations which arise from the approach outlined above are considered below.

First, the obvious choice when specifying the constraints on the coupling ratios and phase shifts
is to specify the worst-case constraints that are tolerable for the chosen hardware implementation.
However, it is often possible to find feasible solutions with even more stringent constraints, which is
desirable as certain coupling ratios and phase shifts may be easier to implement. Unfortunately, it is
difficult to predict the most stringent constraints that will produce a feasible solution for a given layout
and Φ.

Second, some of the couplers may tend toward having pc = 1 when optimising chequered networks
without constraints on the coupling ratios, especially for couplers that are connected to terminated ports.
This is a result of the algorithm attempting to minimise the power delivered to the terminated ports.
Such couplers reduce to 90° phase shifters and will be referred to as shorted couplers. Shorted couplers
are desirable as they simplify the implementation and reduce loss by removing terminated ports. Some
couplers may also tend toward having qc = 1, resulting in cross-shorted couplers, which comprise
two 180° phase shifters that cross one another. Cross-shorted couplers undesirable as crossovers are
difficult to implement [62].

These two observations can be used to devise a scheme for finding the most stringent constraints that
are able to produce a feasible solution, while allowing the inclusion of shorted couplers to reduce
power loss. Instead of formulating a multi-objective optimisation problem, the proposed approach is to
sequentially find solutions using the approach in Section 7.3.2 with increasingly stringent constraints,
while prioritising those constraints that are deemed most important.

The proposed sequential optimisation procedure is described in Algorithm 7.2. First, the constraints
on the coupling ratios are removed and an initial optimisation is performed using Q trial points. The
resulting solution is then evaluated and couplers with pc > pshort are shorted in the following steps by
setting pc = 1. For all non-shorted couplers, if the initial solution has more stringent coupling ratios
than those corresponding to pmin and pmax, the coupling-ratio constraints are altered to match the range
of coupling ratios from the initial solution.

Next, the procedure outlined in Section 7.3.2 is followed repeatedly with coupling-ratio constraints that
become more stringent with each MultiStart solver run, until no feasible solution can be found within
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Figure 7.5. (a) A 4 × 4 Butler matrix implementation, and (b) the 4 × 4 DFT implementation obtained
from the proposed algorithm with adjacent phase shifts combined. Coupling ratios in decibels appear
to the left of the couplers. Taken from [24], ©2019 IEEE.

Q trials. At each run, the solver terminates upon finding the first feasible solution. Depending on the
chosen priority, the minimum coupling ratio can be incremented first, the maximum coupling ratio can
be decremented first, or the furthest of the two from 0 dB at each step can be changed.

A similar procedure is followed for the phase shifts, where the range [ψmin, ψmax] is reduced until no
feasible solution is found within Q trials. In the sections to follow, ψmax is fixed and ψmin is incremented
since a less negative phase shift corresponds to a shorter transmission line, although a different scheme
could also be employed depending on the type of phase shifter used.

The first trial point of each solver run is the last feasible solution from the previous run, and the
remaining Q − 1 trial points are randomly distributed as described in Section 7.3.2. After obtaining the
final constraints, a final optimisation is performed from Q trial points.

7.4 RESULTS FOR SOME TEST CASES

The results for a number of test cases are presented below, after a description of the system
parameters.

The chequered-network optimisation algorithm was implemented in MATLAB R2018b and run on a
computer with two 6-core Intel Xeon E5-2630 processors and 32 GB of memory. Couplers from the
initial solution with coupling ratios above 20 dB were shorted, and coupling ratios and phase shifts
were varied in 0.1 dB and 5° steps, respectively.

7.4.1 4 × 4 Butler matrix

A Butler matrix is an example of a completely overlapped feed network and is a hardware-based
implementation of a fast Fourier transform (FFT) [77]. In this section, a chequered network is designed to
implement the DFT and is shown to approach the optimised Butler matrix (FFT) implementation.

Figure 7.5(a) shows a standard implementation of a 4 × 4 Butler matrix [61]. In practice, an additional
crossover may be required to correctly order ports x2 and x3.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

67

 
 
 



CHAPTER 7 A CHEQUERED NETWORK FOR ARBITRARY FEED NETWORKS

The desired response for a 4 × 4 Butler matrix is given by [2]

Φ =


1 157.5◦ 1 −67.5◦ 1 67.5◦ 1 −157.5◦
1 −67.5◦ 1 −22.5◦ 1 22.5◦ 1 67.5◦
1 67.5◦ 1 22.5◦ 1 −22.5◦ 1 −67.5◦

1 −157.5◦ 1 67.5◦ 1 −67.5◦ 1 157.5◦

 . (7.18)

The chequered layout was chosen to mirror that of a Butler matrix in anticipation of the network reducing
to the standard implementation. The procedure in Algorithm 7.2 was followed with ψ ∈ [−180°, 0°],
Q = 20, and an error tolerance of 10−6 on the feed network response. In the same way that couplers
with large coupling ratios are shorted, couplers with coupling ratios below −20 dB were constrained to
have pc = 0 to allow crossovers in the design as they are present in the standard implementation.

The resulting chequered network is shown in Figure 7.5(b), where adjacent phase shifts, including the
phase shifts in the shorted and cross-shorted couplers, have been combined. All couplers converged to
equal-split couplers.

The design can be further simplified by introducing a phase shift of +185◦ to ports y1 and y3 by
changing the phases of the correction weights at these ports, σ1 and σ3. Applying the splitting rule [60],
the newly introduced phase shifts can be split and shifted up to the two branches containing the −230°
and −185° phase shifts, which then become −230° + 185° = −45° and −185° + 185° = 0°, respectively.
Applying a 180° phase shift to ports y2 and y4 has a similar effect, and the −180° and −225° phase
shifts become 0° and −45°, respectively. The resulting simplified design is the same as the standard
implementation in Figure 7.5(a), thereby validating the proposed algorithm.

7.4.2 Three independent subarrays spanning eight elements

In order to demonstrate the versatility of the proposed approach, three non-scanning conventional
8-element arrays were designed independently and combined to share the same aperture by means of a
3 × 8 chequered network. The spacing between elements was half a wavelength.

The specifications of the three arrays were chosen arbitrarily. The first two subarrays were designed
using the shaped-beam synthesis algorithm proposed by Orchard et al. [78], and five and two pattern
roots were placed in the sidelobe and main-beam regions, respectively. The first subarray has a
cosec2(θ) cos(θ) main-beam shape with its peak at 10° [78] and −20-dB sidelobes. The required beam
shape was realised to within ±0.1 dB across 16° < θ < 48°. The second array has a flat-topped [78]
main beam centred around −15°, with the sidelobes to the left and right of the main beam being
−15 dB and −20 dB, respectively. The flat-topped beam was realised to within ±0.01 dB across
−27° < θ < −4°. The third subarray is a −30-dB Chebyshev array with the main beam at 30°. The
resulting Φ is given by

|Φ| =


0.24 0.24 0.43 0.48 0.68 1.00 0.96 0.63
0.15 0.13 0.30 0.06 0.51 0.99 1.00 0.56
0.26 0.52 0.81 1.00 1.00 0.81 0.52 0.26

 (7.19)

and

Φ =


0.0◦ 32.1◦ −2.8◦ −25.8◦ −36.6◦ −75.0◦ −129.0◦ 171.5◦
0.0◦ −139.9◦ −81.2◦ −27.0◦ −168.1◦ −125.6◦ −80.2◦ −30.5◦
0.0◦ −90.0◦ 180.0◦ 90.0◦ 0.0◦ −90.0◦ 180.0◦ 90.0◦

 , (7.20)

for which the subarray radiation patterns are shown in Figure 7.6.
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Figure 7.6. Normalised radiation patterns of three independent subarrays spanning eight elements.
Adapted from [24], ©2019 IEEE.
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Figure 7.7. The obtained design for the 3 × 8 independent-subarray problem. Coupling ratios in
decibels appear to the left of the couplers. Taken from [24], ©2019 IEEE.

A chequered network was designed to simultaneously implement these three patterns as a fully-
overlapped array by using the illuminations of the three subarrays to form the rows of Φ. Algorithms 7.1
and 7.2 were used with with ψ ∈ [−180°, 0°], Q = 20, and an error tolerance of 10−3 on the feed network
response. Equal priority was given to increasing pmin and decreasing pmax in (7.14) to minimise the
range of coupling ratios as outlined in Section 7.3.3.

Figure 7.7 shows the resulting chequered-network design. The final coupling ratios are between −6 dB
and 5.7 dB, and the phase shifts range from −180° to 0°. The antenna element with the lowest loss
is at port x6, from which −3.8 dB of power is delivered to terminated ports z7 to z12, which gives an
indication of the efficiency of the chequered network implementation on reception. On transmission,
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x1 x2 x3 x4

y1 y2

5z 6z

2z

4z

Figure 7.8. The obtained design for the 2 × 4 compressive-feed-network problem. Coupling ratios in
decibels appear to the left of the couplers. Taken from [24], ©2019 IEEE.

the total power delivered to terminated ports z1 and z2 relative to the input power at the subarray
ports y1, y2, and y3 is −4.6 dB, −5.6 dB, and −6.6 dB, respectively. Adding appropriate constraints
changes the above powers to −5.0 dB, −6.0 dB, and −5.5 dB, respectively, when constrained to be less
than −5 dB.

7.4.3 2 × 4 compressive feed network

In this section, measured results for a 2 × 4 narrowband compressive feed network implemented in
microstrip for a ULA are presented. These are the first published results for a successfully manufactured
compressive feed network without hardware constraints on Φ. The steering range was limited to
|θs | < 10◦ and the start of the SLL region was sin(θs) = 0.35. The element spacing was limited to 0.64
wavelengths by manufacturing considerations.

This feed network represents the smallest number of subarrays that constitutes a beamforming array as
a single subarray would not allow dynamic control of the array pattern because variations to the single
excitation would not affect the array pattern. The limited number of controls thus makes it essential to
exploit all the available degrees of freedom if acceptable array performance is to be achieved. Using a
compressive feed network configuration is therefore desirable, as it places no constraints on Φ.

Ten independent runs of the compressive array design algorithm (Chapter 6) all obtained an SLL of
−12.15 dB, so all 10 designs were candidates for implementation. Chequered networks were designed
using Algorithms 7.1 and 7.2 with ψ ∈ [−260°, −140°], Q = 20, and an error tolerance of 10−3 on
the feed network response. The maximum phase shift was set to −140◦ to account for the minimum
transmission-line length required to connect the couplers. Decreasing pmax was prioritised to avoid the
excessively thin microstrip lines which result from large coupling ratios.

Out of the 10 designs, the network that achieved the most stringent constraints while still satisfying the
specifications was chosen, with the resulting response of

Φ =
[

0.67 261.6◦ 0.35 180.2◦ 0.26 126.4◦ 0.52 84.9◦
0.33 218.8◦ 0.51 194.6◦ 0.65 213.1◦ 0.52 266.8◦

]
being implemented by the network shown in Figure 7.8. The final coupling ratios are between −4.7 dB
and 4.3 dB, and the phase shifts range from −215° to −143°. The phase shifts were not simplified as was
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y y

x x x x

Figure 7.9. Photograph of the manufactured 2 × 4 compressive feed network. Taken from [24], ©2019
IEEE.

done in Section 7.4.1, showing that Algorithms 7.1 and 7.2 produce designs which can be implemented
even without additional tuning. The antenna element with the lowest loss (port x1) delivers −3.6 dB of
power to ports z4 to z6. On transmission, the power delivered to terminated port z2 relative to the input
power at the subarray ports y1 and y2 is −13.2 dB and −8.9 dB, respectively.

The chequered network was implemented in microstrip using single-section branchline couplers [60],
with lengths of transmission line being used as phase shifters. The substrate used was Rogers R4003C
with a process dielectric constant of 3.38 and a height of 0.81 mm. The manufactured circuit is shown
in Figure 7.9. The implementation of chequered networks in microstrip will be described in more detail
in Chapter 8.

The desired and measured aperture illumination magnitudes and phases at 3.15 GHz are shown in
Figure 7.10. The subarray corrections σm for the manufactured network were re-calculated to minimise
the maximum deviations from the desired aperture illuminations in decibels and degrees. The corrected
measured illuminations are within 0.6 dB and 5.2° of the desired response.

The measured frequency-dependent results of the chequered network are summarised in Table 7.1.
Figure 7.11 shows the worst measured return loss and isolation across all relevant ports. Specifying
the required voltage standing wave ratios (VSWRs) as 1.5 and 2 (return losses of 14 dB and 9.5 dB,
respectively) give bandwidths of 4.5% and 14.6%, and worst-case isolations of 16.9 dB and 11.2 dB,
respectively. Considering a bandwidth of 10% gives a VSWR of 1.65 (a return loss of 12.2 dB) and a
worst-case isolation of 12.6 dB.

Figure 7.12 shows the accuracy with which the manufactured network realises the desired response as
a function of frequency. Errors are found by calculating σmSym,xn/φm,n ∀m, n. The maximum error is
calculated as the range of errors divided by two, which ensures that only the relative amplitude and phase
distributions are evaluated because arbitrary amplitude and phase shifts can be introducted as outlined
in Section 7.2.3. The standard deviation of the errors is also presented to quantify the distribution of
the errors relative to their mean. The accuracy across various frequency ranges is given in Table 7.1.
The fact that the system was designed for a single frequency using narrowband components, is seen
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Figure 7.10. Aperture illumination (a) magnitudes and (b) phases for the 2 × 4 compressive feed
network. Taken from [24], ©2019 IEEE.

by the fact that the results are excellent at 3.15 GHz, but deteriorate as the bandwidth is increased.
Despite this deterioration, it is believed that the performance at 10% and even 14.6% bandwidth will
be acceptable in many applications.

Figure 7.13 shows the measured transmit loss from each subarray port to the element ports, and the
measured receive loss from the element port with the least loss (x1) to the subarray ports as a function
of frequency. These measurements include the effects of return loss, isolation, power delivered to
terminations, and component losses (e.g. due to dielectric loss and finite conductivity). Key results
are again summarised in Table 7.1. These results show that the ability to implement an arbitrary feed
network comes at the expense of losses, which include component losses, which are dependent on
the size of the network, and the power delivered to terminations, which depends on the chequered
network design.

The results above show that a practical chequered network can be designed and realised despite the many
variations inherent in manufacturing. The achieved return loss, isolation and feed network accuracy
were reasonable despite manufacturing tolerances, and no manual tuning of the circuit was required.
The measured results were achieved without de-embedding the connectors [79], and therefore include
the effect of mismatching at the interfaces between the connectors and the microstrip circuit. This
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Figure 7.11.Measured worst return loss and isolation across all relevant ports for the 2×4 compressive
feed network. Taken from [24], ©2019 IEEE.
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Figure 7.12. Measured accuracy of the 2 × 4 compressive feed network as a function of frequency.
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Figure 7.13. Transmit loss from subarray ports and receive loss from element port x1 of the 2 × 4
compressive network as a function of frequency. Taken from [24], ©2019 IEEE.
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shows that chequered networks perform well even when connected to external circuitry via non-ideal
interfaces. A chequered network is also able to achieve reasonable results across a range of frequencies
despite both using narrowband components and being designed at a single frequency. The presence of
terminations in a chequered network can increase losses, but such losses will depend on the network
structure and response.

7.5 CHAPTER SUMMARY

A network of couplers and phase shifters has been proposed for implementing arbitrary complex-valued
feed networks. The responses of such chequered networks have been derived using a process based
on a series of matrix multiplications. An optimisation approach to determine the coupling ratios and
phase shifts required to implement an arbitrary feed network while satisfying constraints necessary to
allow the network to be physically implemented has been outlined.

The proposed chequered network and algorithm were validated by demonstrating that a synthesised
4 × 4 DFT chequered network approaches the manually-designed Butler matrix (FFT) implementation.
Three independently designed subarrays were overlapped to share an 8-element aperture (a 3× 8 array),
illustrating the versatility of the proposed approach. A 2 × 4 compressive feed network for a ULA was
implemented as amicrostrip chequered network to demonstrate that complicated unconventional network
responses can be realised. The measured aperture illuminations of the microstrip chequered network
were within 0.6 dB and 5.2° of the desired aperture illuminations at 3.15 GHz, and within 1.4 dB
and 10.3° across the impedance bandwidth of 4.5%. The ability to implement arbitrary feed network
responses comes at the expense of losses on transmission and reception, though these losses depend on
the network response and structure.
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CHAPTER 8 DESIGN AND IMPLEMENTATION OF A
PROTOTYPE COMPRESSIVE
ARRAY

8.1 CHAPTER OVERVIEW

Thus far, an algorithm for designing compressive array feed network responses (Chapter 6), and an
algorithm for implementing a desired feed network response as a chequered network (Chapter 7) has
been proposed. A chequered network has successfully been implemented in microstrip in Chapter 7,
although the details of such an implementation have not yet been given. All the required components are
in place to develop and implement a prototype compressive array. In this chapter, a set of specifications
are chosen and a compressive array with two subarrays and four integrated antenna elements is designed,
manufactured using a single sheet of substrate, and tested. The manufactured array achieves an SLL
within 1.1 dB of the theoretical SLL at 3 GHz, and has a 3-dB SLL bandwidth of 7.9%. By describing
the practical implementation of a compressive array with integrated antenna elements, this chapter
shows how the various components of a compressive array are designed and integrated to form a
complete working system. This chapter also highlights some of the practical issues associated with
designing and manufacturing a compressive array.

The specifications for the prototype compressive array are given in Section 8.2. Section 8.3 describes the
design of the antenna elements and presents the simulated embedded element patterns on which the feed
network design is based. Section 8.4 describes the design of the compressive feed network response and
its implementation as a theoretical chequered network. The resulting chequered network is implemented
in microstrip as described in Section 8.5, which also serves as a general framework for implementing
chequered networks in microstrip. Simulated and measured results are presented in Section 8.6 and
compared to the theoretical results. Finally, the chapter is summarised in Section 8.7.

8.2 DESIGN SPECIFICATIONS

The chosen application for the prototype compressive array is a beamforming array with a limited
steering range. Four antenna elements and two subarrays were implemented since this allowed the entire
compressive array to be implemented on a single sheet of 9” by 12” substrate. Two subarrays represents
the smallest number of subarrays that constitutes a beamforming array. Such a small reduced-control
array requires all the available degrees of freedom to be exploited to obtain reasonable performance,
making a compressive array a good choice over other reduced-control techniques. For example, it
would be impossible to design a thinned array that selects two elements out of four without introducing
ambiguities in the array factor. The only reasonable option would be to select two adjacent elements,
which is equivalent to a conventional two-element array and thus not a reduced-control array.
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The chosen specifications for the prototype compressive array are listed below.

1. The compressive array should operate at 3 GHz. This frequency allows for a reasonably compact
distributed circuit implementation while still maintaining dimensions that are large enough to be
easily manufactured using standard techniques.

2. The steering range should be |θs | < 10◦, a typical range for limited-steering applications [39],
rounded to |sin(θs)| < 0.175.

3. The start of the SLL region should be at sin(θ) = 0.35. This results in an SLL similar to that of a
uniform-excitation four-element ULA with isotropic elements.

4. The VSWRs of the subarrays should be better than 2 and the isolation between the subarray ports
better than 10 dB at 3 GHz.

5. Due to cost limitations, the feed network and antenna array should fit on a single sheet of double-sided
substrate of dimensions 272 mm by 196 mm (the usable space on a 9” by 12” sheet).

8.3 DIPOLE ARRAY DESIGN

The design of the antenna array was performed in simulation using Computer Simulation Technology
(CST) Microwave Studio 2018. The chosen type of antenna element was a printed dipole with an
integrated balun since it is easy to implement on double-sided subtrate [80, 81].

A single printed dipole was first designed in isolation. The dipole arms were optimised to resonate at
3 GHz, after which the balun parameters were optimised for impedance matching at 3 GHz. Next, four
of these dipoles were placed in an array along with the sheet of substrate on which the feed network
would be implemented and the mounting brackets for holding the substrate and subminiature version A
(SMA) connectors. The embedded dipole elements were then optimised to account for mutual coupling.
The dipole arm length for each element was optimised to move the resonant frequency back to 3 GHz,
after which the feed point of each balun was optimised for impedance matching at 3 GHz.

The chosen element spacing was 0.64 wavelengths. This spacing ensures that the start of the SLL
region of an ambiguity does not enter the visible region up to a steering angle of sin(θs) = 0.2125 or
θs = 12.3◦, slightly wider than the steering range of interest. An element spacing of 0.64 wavelengths
allowed the antenna array to fit on the substrate with some space for the ground-plane reflector to
extend beyond the outer elements.

Figure 8.1 shows the simulated embedded element gain patterns, and Figure 8.2 shows the worst-case
return loss and isolation across all elements. The elements have peak gains ranging from 4.3 to 4.8 dBi.
The VSWRs are equal to 2 (a return loss of 9.5 dB) or better from 2.82 GHz to 3.36 GHz, an impedance
bandwidth of 17%. The isolation between all ports is better than 17.2 dB across this range. The return
losses at 3 GHz are 46.6 dB or better and the isolations at 3 GHz 19.5 dB or better.

The simulated embedded element patterns were used to design the feed network response as described
in Section 8.4. This shows that the compressive array design algorithm (Chapter 6) is able to utilise
embedded element patterns which are not identical.

The alternative to using simulated element patterns is to first manufacture the antenna array, measure
its response, and then use the measured response to design the feed network. The disadvantage of
this approach is that interfaces (e.g. SMA connectors) would be required to connect the array to
the measurement equipment, and additional interfaces to connect to the subsequently manufactured
feed network (e.g. barrel and SMA connectors). Cascading such interfaces can lead to potentially
significant and unpredictable discontinuities, minimising the benefit of using measured element patterns.
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Figure 8.1. Simulated dipole element gain patterns.
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Figure 8.2. Worst-case return loss and isolation across all dipole elements.

Using simulated element patterns allows the entire compressive array to be manufactured as a single
component, but assumes good agreement between simulation and measurement.

8.4 DESIGN OF THE FEED NETWORK RESPONSE AND CHEQUERED NET-
WORK

The feed network response was designed using the compressive array design algorithm from Chapter 6
for the specifications listed in Section 8.2 with the simulated embedded element patterns in Figure 8.1.
The element patterns were only specified and the SLL only calculated across θ ∈ [−90◦, 90◦] since the
patterns outside θ ∈ [−90◦, 90◦] were assumed to be sufficiently suppressed due to the ground-plane
reflector behind the printed dipole elements.

Since the SLL of a compressive array typically deteriorates rapidly beyond the steering range (see
e.g. Figure 6.7), a slightly wider steering range of |sin(θs)| < 0.2 or |θs | < 11.5◦ was passed to the
algorithm. The sum of the subarray pattern powers was constrained to be within ±0.1 dB across the
steering range (constraints (6.9) and (6.10)) as the SLL deteriorated significantly when the constraint
was reduced below this value. The algorithm was run 20 times and all 20 designs achieved an SLL
of −11.3 dB which is equal to the SLL of a uniform-excitation four-element ULA with isotropic
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Figure 8.3. Resulting subarray patterns from the compressive array design algorithm for (a) design 10
and (b) design 15.

elements. Therefore, all 20 designs were considered as candidates for implementation in a chequered
feed network.

The feed network responses were implemented as chequered networks using the chequered network
design algorithm from Chapter 7. The range of phase shifts was set to ψ ∈ [−260◦,−140◦]. The
upper bound ψmax corresponds to the approximate minimum length of transmission line required to
connect two couplers. The lower bound ψmin is determined by the approximate longest transmission
line that will fit on the chosen chequered tile size, which will be described in Section 8.5. The
chequered network was required to implement the desired response with a magnitude and phase
tolerance of 0.1 dB and 1◦, roughly an order of magnitude less than the expected accuracy of the
hardware implementation (Chapter 7). The minimum and maximum coupling ratio constraints were
varied with equal priority (Section 7.3.3). Couplers from the initial solution with coupling ratios above
20 dB were shorted, and Q = 20 trial points were used.

All 20 compressive feed networks were successfully implemented as chequered networks. The smallest
coupling ratio range (the ratio between the largest and smallest coupling ratio for a given design) was
3.2 dB (design 15), the median coupling ratio range 9.5 dB, and the largest coupling ratio range 13.1 dB.
The smallest phase shift range for any one design was 54◦ (design 15), the median phase shift range
87◦, and the largest phase shift range 120◦.

Figure 8.3 shows the subarray patterns for the two designs with the smallest coupling ratio ranges,
namely design 10 (7.2 dB) and design 15 (3.2 dB). Design 10 has two beams pointing in opposite
directions, while design 15 has one subarray with a single main lobe near broadside, and one subarray
with two lobes to the left and right of broadside with low gain near broadside. These two designs
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1z 2z

Figure 8.4. Chequered network obtained for design 15. Coupling ratios in decibels appear to the left of
the couplers.

show striking similarities to two common types of monopulse array patterns, namely squinted-beam
monopulse patterns and sum-and-difference monopulse patterns [82]. The algorithm is thus shown to
approach known manually designed systems for limited-scan DoA estimation. The compressive array
design algorithm can therefore also be expected to obtain good results for larger systems and systems
with unconventional requirements for which manual designs do not yet exist.

Design 15 was chosen since it had the smallest coupling ratio and phase shift range. The resulting
chequered network is shown in Figure 8.4. The coupling ratios range from −1.6 dB to 1.6 dB and the
phase shifts from −195◦ to −140◦. This design has the added benefit of being lossless on transmit.

8.5 MICROSTRIP IMPLEMENTATION OF THE CHEQUERED NETWORK

Microstrip was chosen to implement the chequered network since it can easily be manufactured on
double-sided substrate. The chosen substrate was Rogers R4003C with a process dielectric constant of
3.38 and a height of 0.81 mm. In simulation, the recommended design value for the dielectric constant
of 3.55 was used.

The proposed approach is to draw a parametrised tile of a chosen size in a full-wave electromagnetic
solver such as CST Microwave Studio and then optimise the parameters for each tile in the chequered
layout. The proposedmicrostrip circuit with associated parameters for a single tile is shown in Figure 8.5,
where the tile is square with sides 40 mm long. The circuitry consists of a branchline coupler and two
meanders of transmission lines with variable heights. The branchline coupler moves up or down as the
length of the cross arms vary, while the positions of the microstrip lines at the ports remain constant.
This enables the tiles to be connected simply by placing them next to one another.

The parameters of the tile are the lengths and widths of the through and cross arms and the heights of
the meanders. Chequered networks may require large coupling ratios, leading to very wide microstrip
lines with potentially significant discontinuities at the coupler junctions. Discontinuities are therefore
compensated for using constant-impedance tapers [83].

Sufficiently wide curved bends offer less significant discontinuities than chamfered corners [83].
Defining the curved microstrip lines by blending edges in CST Microwave Studio allows for meanders
with small heights, almost down to straight lines, whereas the use of chamfered corners would require
a minimum height for the meandered lines. These considerations led to the choice of curved bends for
implementing the meandered lines.
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Figure 8.5.Microstrip implementation of a single chequered network tile with optimisation parameters
indicated. Each side is 40 mm long. Tile port numbers are encircled. Dashed lines show where the tile
is cropped for the optimisation of the coupler.

The first step in optimising a tile is to crop the tile as illustrated by the dashed lines in Figure 8.5,
leading to a coupler circuit with horizontal and vertical symmetry. The lengths and widths of the
coupler arms are optimised for the following goals:

1. The coupling ratio, given by |S3,1 |/|S4,1 |, must equal the desired coupling ratio. The coupling ratio
is used instead of the desired power to the through and coupled ports (p2 and q2, respectively) since
the coupling ratio can be realised exactly. The values of p2 and q2 are specified assuming that
p2 + q2 = 1 which will not hold true due to losses and mismatching, so that the specified p2 and q2

cannot be realised exactly.
2. S1,1 is minimised at 3 GHz to ensure matched transmission-line junctions.
3. The phase difference S4,1 − S3,1 must equal −90◦ as assumed in the analytical tile model. This

enables accurate phases to be realised when the meandered lines are included.
4. S2,1 is minimised at 3 GHz to maintain isolation between ports 1 and 2, and between ports 3 and 4.

After optimising the coupler in isolation, the meandered lines are included and their heights are
optimised so that S3,1 = ψ1 − 90◦ and S4,2 = ψ2 − 90◦.

Where tiles are shorted, only the through arms and meandered lines are kept. The tapers at the junctions
are kept, since constant-impedance tapers are also useful to compensate for bend discontinuities [83].
This simplifies the design procedure as the same tile template can be used for shorted tiles with only
minor modifications.

Where port 1 or 2 is terminated, the corresponding meandered line is removed and replaced with a
matched termination. Matched terminations were implemented as 50 Ω surface-mount resistors that
connect to the ground plane by means of vias.

Figure 8.6 shows the complete microstrip circuit with all the tiles connected. The transmission lines
that connect the upper tiles to antenna elements 2 and 3 were meandered to have the same phase length
as the transmission lines connecting to elements 1 and 4. The thickest microstrip line is the through
arm of coupler 1 which is 3.6 mm wide, corresponding to a characteristic impedance of about 31 Ω.
The thinnest line is the cross arm of coupler 7 which is 1.3 mm wide, corresponding to a characteristic
impedance of about 61 Ω.
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8.6 RESULTS

Figure 8.7 shows a photograph of the manufactured and assembled compressive array. The substrate
and SMA connectors were held together using 10-mm wide square brass rods. In the following
sections, results will be presented for the scattering parameters (Section 8.6.1), subarray patterns
(Section 8.6.2), broadband SLL (Section 8.6.3), and 3-GHz steered patterns (Section 8.6.4) of the
compressive array.

8.6.1 Scattering parameter results

Figure 8.8 shows the simulated and measured scattering parameters of the assembled compressive
array. The return losses and isolation of the simulated array are better than 17.1 dB at 3 GHz. The
simulated array has VSWRs of 2 (a return loss of 9.5 dB) or better from 2.77 GHz to beyond 3.4 GHz,
but the isolation is better than 10 dB only up to 3.35 GHz. This gives a combined impedance and
isolation bandwidth of 19%. The return losses and isolation of the manufactured array are better than
17.7 dB at 3 GHz. The manufactured array has VSWRs of 2 or better from 2.84 GHz to 3.28 GHz,
and the isolation across this range is better than 12.3 dB. This gives an impedance bandwidth of 14%.
Considering the resonant frequencies of S1,2 and S2,2, there appears to be an upward frequency shift of
about 70 MHz from the simulated to the manufactured results.

8.6.2 Subarray pattern results

Figure 8.9 shows the desired, simulated and measured subarray patterns at 3 GHz. The desired subarray
patterns are those resulting from the compressive array design algorithm. Between θ ∈ [−20◦, 20◦], the
simulated patterns equal the desired patterns within 0.9 dB, and the manufactured patterns equal the
desired patterns within 1.5 dB. The simulated subarray sidelobes have peak values within 0.9 dB of the
desired subarray sidelobe levels, and the measured patterns have subarray sidelobe levels within 2.6 dB
of the desired levels. These results show that there is good agreement with the desired patterns at both
the simulation and manufacturing stages of the design process, especially in the main-lobe regions
where the gains are the highest. The main differences between the measured and desired patterns are
the depth of the nulls and shape of the sidelobes in subarray 1, and the height of the right sidelobe in
subarray 2.

Simulated subarrays 1 and 2 had peak gains of 6.9 dB and 6.1 dB, respectively. Both manufactured
subarrays had peak gains of 7.3 dBi. The patterns in the region outside θ ∈ [−90◦, 90◦] were suppressed
by at least 12.1 dB and 14.5 dB relative to the peak gains for the simulated and manufactured arrays,
respectively. This validates the assumption that the patterns outside θ ∈ [−90◦, 90◦] are sufficiently
suppressed to have a negligible effect on the SLL.

8.6.3 Broadband SLL results

The SLL of the simulated and manufactured compressive arrays as a function of frequency is shown in
Figure 8.10. The correction weights (Section 7.3.2) were calculated to minimise the SLL at 3 GHz.
The SLL of the simulated array reaches a minimum of −11.2 dB at 3 GHz, or within 0.1 dB of the
theoretical SLL. The simulated SLL is within 3 dB of its minimum value from 2.754 GHz to 3.288 GHz
for a 3-dB SLL bandwidth of 17.7%. The SLL of the manufactured array is −10.2 dB at 3 GHz, or
within 1.1 dB of the theoretical SLL. A minimum SLL of −11.2 dB occurs at 3.05 GHz. The SLL for
the manufactured array is within 3 dB of this value from 2.899 GHz to 3.137 GHz for a 3-dB SLL
bandwidth of 7.9%.
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Figure 8.6. Two-layer microwave circuit for the complete compressive array with tile and port numbers
indicated. Top-layer copper and coupler numbers are shown in white and bottom-layer copper in dark
grey. The substrate measures 268 mm by 185 mm.

Figure 8.7. Photograph of the manufactured compressive array.
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Figure 8.8. (a) Simulated and (b) measured scattering parameters of the compressive array.

The broadband results show that a manufactured compressive array is able to achieve the same minimum
SLL as a simulated compressive array, although a frequency shift of 50 MHz in the minimum-SLL
frequency was observed. This frequency shift could be due to manufacturing tolerances or an inaccurate
estimation of the dielectric constant of the substrate. The simulated compressive array has significantly
better bandwidth results than the manufactured compressive array, which is most likely a result of
manufacturing tolerances. Even so, a bandwidth of 7.9% is still considered reasonable considering that
the network is made up of narrowband single-section branchline couplers, which are generally limited
to 10-20% bandwidth each [60]. Should the compressive array be used to steer multiple narrowband
signals within a larger bandwidth, the correction weights could be re-calculated for each signal’s centre
frequency to allow the compressive array to be used over a wider frequency range.
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Figure 8.9. Normalised desired, simulated and measured radiation patterns at 3 GHz for subarray (a) 1
and (b) 2.
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Figure 8.10. SLL of the simulated and manufactured compressive arrays as a function of frequency.
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Figure 8.11. Directivity of the steered patterns for simulated conventional and compressive arrays as a
function of steering angle at 3 GHz.

Table 8.1. SLL at 3 GHz at various stages of the design process.

Design aspect SLL (dB) Deviation from theoretical SLL (dB)

Theoretical feed network response −11.3 –
Numerical chequered network −10.8 0.5
Simulated compressive array −11.2 0.1

Manufactured compressive array −10.2 1.1

8.6.4 Steered-pattern results at 3 GHz

This section focuses on the properties of the steered patterns at the design frequency of 3 GHz.

Figure 8.11 shows the directivity of the steered patterns for the simulated compressive array at 3 GHz
as a function of steering angle. Also shown is the directivity of the steered patterns for a four-element,
uniform-excitation ULA which is the same array that is attached to the compressive feed network.
Simulated patterns are used because the antenna elements were not manufactured in isolation to be
measured separately, and the measurement set-up did not allow for measurement of the full three-
dimensional radiation patterns that are required for calculating directivity numerically. Nevertheless,
the good agreement observed between the simulated and measured subarray azimuth patterns suggests
that the simulated three-dimensional subarray patterns are also accurate.

The directivity of the compressive array ranges from 9.4 dBi to 9.9 dBi and is the lowest near broadside.
The directivity of the printed dipole ULA varies less and ranges from 10.2 dB to 10.3 dB across the
steering range. The SLL of the ULA across the steering range is −11.4 dB which is only 0.2 dB
better than that of the simulated compressive array. The compressive array is therefore able to halve
the number of beamforming controls while sacrificing only 0.8 dB in worse-case directivity and
maintaining a similar SLL across the steering range. A limitation of this result is that directivity does
not take losses into account. The simulated realised gains (which includes the effect of losses) of the
elements in the ULA were within 0.1 dB of their simulated directivities. The simulated realised gains
of the subarrays were up to 2 dB worse than the simulated directivities of the subarrays.

Table 8.1 gives the 3-GHz SLL at various stages of the design. The theoretical SLL of the feed network
response obtained from the compressive array design algorithm is −11.3 dB. After implementing the
desired response in a chequered network, the SLL worsens by 0.5 dB to −10.8 dB. Interestingly, sub-
sequently implementing the chequered network in microstrip and simulating the complete compressive
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Figure 8.12. SLL as a function of steering angle at 3 GHz.
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Figure 8.13. Steered patterns with the worst SLL at 3 GHz.

array results in an SLL of −11.2 dB which is within 0.1 dB of the theoretical SLL. This does not
necessarily mean that the response of the simulated network moved closer to the desired response,
but it does mean that the response deviated in a direction that also happened to give good SLL. The
manufactured compressive array had an SLL within 1.1 dB of the theoretical SLL at 3 GHz.

Figure 8.12 shows the SLL of the steered patterns as a function of steering angle. The theoretical
and simulated arrays have the worst SLL near broadside, whereas the manufactured array has the
worst SLL at the extreme steering angles. As expected, the SLL of the arrays start to deteriorate
rapidly near the extremes of the steering range. The SLL of the manufactured array starts deteriorating
rapidly near about +9.5◦, which shows the importance of specifying a slightly wider steering range
than required. Figure 8.13 shows the steered patterns with the worst SLL for the theoretical, simulated,
and manufactured arrays which occur at steering angles of −0.8◦, 1.3◦, and −10.1◦, respectively. The
SLL near broadside steering for the theoretical and simulated arrays is dominated by the shoulders
of the main beam and not the sidelobes themselves. The beamwidth of the worst steered pattern for
the manufactured array is narrower than that of the theoretical and simulated array so that the SLL is
dominated by the amplitude of the sidelobes.

Figure 8.14 shows the beamwidths in u = sin(θ) at the various stages of the design process. At all
stages, the beamwidth peaks near broadside steering and is lowest at the extreme steering angles. The
worst-case beamwidths for the theoretical, simulated, and manufactured arrays are 0.394, 0.388, and
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Figure 8.14. Beamwidths in u = sin(θ) as a function of steering angle at 3 GHz.

0.366, respectively. The simulated array has marginally better beamwidths than the theoretical array,
and the manufactured array has a worst-case beamwidth 7.1% better than the theoretical array.

Although the steering angle corresponding to the worst steered pattern for the manufactured array is
−10.1◦, the peak of the steered pattern is in fact at −8.1◦. Figure 8.15 shows the peak angles of the
steered patterns as a function of the intended steering angles. To accurately determine the locations of
the pattern peaks, measurement noise was removed by filtering the steered patterns with second-order
Savitzky-Golay filters with frame lengths of 30◦ [84]. Instead of the expected linear relationship
between the intended and realised peak angles, the relationship is non-linear and the realised peak
angles tend toward saturation at extreme steering angles. This means, for example, that in order to
realise a steered-beam peak at −8.1◦, the steering weights corresponding to a steering angle of −10.1◦
should be applied.

Figure 8.16 shows the squint of the steered beams as a function of steering angle. The theoretical,
simulated, and manufacted arrays have a maximum absolute squint of 1.1◦, 1.2◦, and 2◦ across the
steering range, respectively. This means that the useful steering range is reduced by up to 1.1◦, 1.2◦,
and 2◦ on each side, respectively.

The peaks of the steered patterns are maintained at the desired steering angles by means of the
constant-subarray-power-sum constraints (6.9) and (6.10). The normalised sums of the subarray pattern
powers at various stages of the design are shown in Figure 8.17. The sum of subarray pattern powers
for the theoretical array has a range of 0.2 dB as specified, which leads to a maximum absolute squint
of 1.1◦. The sum of subarray pattern powers for the simulated array has a range of 0.28 dB, which
leads to a slightly larger maximum absolute squint of 1.2◦. The sum of subarray pattern powers for the
manufactured array has the largest range of 0.53 dB, leading to a maximum absolute squint of 2◦. By
comparing Figures 8.16 and 8.17, it can be seen that the steered beams have zero squint where the
gradients of the subarray pattern power sums are zero, e.g. near broadside and ±7.5◦ for the theoretical
array and near −5◦ for the manufactured array. This validates the assumption that steered patterns have
zero squint where the subarray pattern power sums are locally constant (Section 6.3.1).

The constant-subarray-power-sum constraint is only maintained in the steering range to allow the
suppression of the subarray patterns in the out-of-scan regions. This out-of-scan suppression occurs
at all stages of the design as shown by the suppression of the subarray pattern power sums outside
|θ | < 10◦ in Figure 8.17. At the leftmost steering angle, the left side of the steered beam is suppressed
by the subarray patterns, thereby squinting the beam towards the right (a positive squint). At the
rightmost steering angle, the right side of the steered beam is suppressed by the subarray patterns,

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

89

 
 
 



CHAPTER 8 DESIGN AND IMPLEMENTATION OF A PROTOTYPE COMPRESSIVE ARRAY

¡12.5
¡10¡7.5

¡5¡2.5
0

2.5
5

7.5
10

12.5
Steering angle (°)

¡12.5

¡10

¡7.5

¡5

¡2.5

0

2.5

5

7.5

10

12.5

P
ea

k 
an

g
le

 (
°)

Theoretical
Simulated
Manufactured

Figure 8.15. Peak pattern angle as a function of steering angle at 3 GHz.
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Figure 8.16. Steered-pattern squint at 3 GHz.
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Figure 8.17. Normalised sums of subarray pattern powers at 3 GHz.
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squinting the beam towards the left (a negative squint). This also explains the decreased beamwidths at
extreme steering angles as seen in Figure 8.14. In the case of the manufactured array, the suppression
of the subarray patterns occurs prematurely within the steering range, leading to worse squint than
expected. To account for this deviation as a result of manufacturing tolerances, it may be helpful to
constrain the sum of subarray pattern powers to be constant across a range slightly wider than the
steering range.

8.7 CHAPTER SUMMARY

In this chapter, results have been presented for the first successfully manufactured prototype compressive
array with integrated antenna elements. The use of embedded element patterns in the design confirms
that the compressive array design algorithm does not require the assumption of identical element
patterns. Good agreement was observed between the theoretical, simulated and measured results for the
assembled compressive array, showing that compressive arrays are feasible to implement in practice.
The use of simulated element patterns to design the feed network resulted in acceptable measured
results, which simplifies the design process and allows a compressive array to be manufactured as
a single component. The manufactured compressive array achieved an SLL within 1.1 dB of the
theoretical value at 3 GHz, and the return losses and isolation were better than −17.7 dB at 3 GHz.
The simulated and manufactured compressive arrays achieved the same minimum SLL of −11.2 dB,
but the minimum SLL for the manufactured array occurred at 50 MHz above the design frequency.
The manufactured compressive array had a 3-dB SLL bandwidth of 7.9% even though it was only
designed to operate at 3 GHz, showing that compressive arrays have the potential to operate at a range
of frequencies. The manufactured array exhibited a maximum absolute squint in the steered patterns of
2◦ compared to a theoretical maximum squint of 1.1◦, thereby reducing the useful steering range. This
could be improved by constraining the sum of subarray pattern powers across a wider angular range, or
investigating alternative ways of constraining the pattern peaks to occur at the desired angles.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

91

 
 
 



 
 
 



CHAPTER 9 CONCLUSION

9.1 CONCLUSIONS

In this thesis, a thorough investigation into the design and feasibility of compressive arrays has been
presented. The problem has been formulated to consider conventional array characteristics while
exploiting the benefits of the unconventional concept of CS.

This work represents the first investigation into compressive arrays that considers their feasibility in
terms of traditional antenna array characteristics such as SLL, directivity, and beamwidth. A framework
has been proposed for the optimisation of compressive arrays as general-purpose beamforming arrays
with arbitrary sidelobe specifications, along with an algorithm for performing such optimisation.

A major challenge in the optimisation of compressive arrays is the fact that the patterns must be
optimised for explicitly at all steering angles, leading to a complex problem which is combinatorial in
nature. In order to develop a computationally feasible compressive array optimisation algorithm, it
was first necessary to address the issue of computational complexity in the state-of-the-art BCASC
coherence optimisation algorithm. This was done by proposing a novel coherence optimisation
algorithm to directly minimise coherence, which in turn inspired the proposed compressive array
optimisation algorithm.

Compressive arrays were shown to improve on existing reduced-control array designs, which was
achieved by removing all constraints on the feed network response. However, this opened up the question
of whether it was possible to implement such unconstrained responses in hardware. This question was
addressed by proposing a novel overlapped feed network layout consisting of interconnected couplers
and phase shifters. Such chequered networks were shown to be able to implement arbitrary feed
network responses, making them suitable for implementing compressive arrays. An advantage of this
approach is that the tasks of pattern synthesis and feed network implementation are separated, thereby
simplifying the design process.

The study was concluded by designing and manufacturing a prototype compressive array, which
highlighted a number of practical challenges associated with compressive arrays. The prototype was
successfully implemented and obtained satisfactory results despite manufacturing tolerances, showing
that compressive arrays are indeed feasible to implement in practice.

The main contributions of the work are summarised below.

Suitability of random compression weights and compressive arrays based on optimised codebooks:
A compressive array designed using an optimised codebook was shown to improve on random
real- and complex-valued compressive arrays in terms of mean DF accuracy. A compressive array
optimised for low SLL showed a significant improvement over the random compressive arrays
in both mean and worst-case DF accuracy, converging with SNR to one-fifth of the RMS error
of a conventional M-element array. Neither real- nor complex-valued compression weights can,
therefore, be assumed to be optimal for compressive arrays of practical sizes.

 
 
 



CHAPTER 9 CONCLUSION

Addressing the computational complexity in codebook optimisation algorithms: A novel algorithm has
been proposed for optimising codebooks which directly minimises coherence instead of maximising
the Euclidean distance between codewords. The proposed codebook optimisation algorithm resulted
in almost an order-of-magnitude reduction in median run time compared to the BCASC algorithm
while maintaining similar coherence results. Optimising directly for coherence is thus a better
approach towards designing optimal codebooks.

Developing a compressive array SLL minimisation algorithm with arbitrary sidelobe shaping: Inspired
by the proposed coherence-based codebook optimisation algorithm, the optimisation of discrete
codewords in a codebook was extended to the optimisation of SLL in a compressive array. Coherence
and SLL become equivalent when the beamforming weight vectors are defined as the complex
conjugates of the corresponding steering vectors, and when the steering vectors are constrained to
have unit length. The only difference is that SLL is taken across continuous steering and pattern
angles such that a start of the SLL region must be defined. Compressive arrays are a generalisation
of reduced-control arrays and are able to improve on existing reduced-control array designs by
removing all constraints on the feed network response. Increasing the number of antenna elements
increases the control over the array patterns for the same number of beamforming controls, so
that a compressive array is able to improve on the performance of a conventional ULA for the
same number of beamforming controls. Non-uniform sidelobes may be realised by applying a
sidelobe-shaping mask which varies with both steering and pattern angle. Compressive arrays may
also have subarray patterns that are constrained outside the steering range, allowing an interferer to
suppressed in hardware before sampling, for example.

Hardware implementation of arbitrary compression weights: A novel network of interconnected
couplers and fixed phase shifters has been proposed for implementing arbitrary complex-valued
feed network responses. An algorithm has been proposed for optimising chequered networks
to implement a desired response while minimising the range of coupling ratios and phase shifts
required, which facilitates the practical realisation of compressive arrays in hardware. The claim that
chequered networks are able to implement arbitrary responses was substantiated by combining three
independently designed arrays to share the same 8-element aperture by means of a 3 × 8 chequered
feed network. A 2 × 4 microstrip chequered network for a ULA was manufactured, achieving the
desired response within 0.6 dB and 5.2◦. These results show that chequered networks are able to
implement arbitrary feed network responses and are feasible to implement in hardware.

Practical feasibility of compressive arrays: The successful design and manufacturing of a 3-GHz
prototype compressive array with integrated antenna elements showed that compressive arrays are
feasible to implement in microwave hardware. The compressive array design algorithm is able to use
simulated embedded element patterns which are not identical. Although only designed to operate at
3 GHz, the compressive array had a 3-dB SLL bandwidth of 7.9%, showing that compressive arrays
have the potential to perform well across a range of frequencies. Comparing the steered patterns of
a simulated compressive array against the steered patterns of the ULA without the compressive feed
network, it was found that the compressive array was able to halve the number of beamforming
controls for only a 0.8 dB reduction in directivity, although this excludes the effect of losses. A
number of practical design considerations have been highlighted. Where multiple feed network
designs exist with equally good SLL, candidate designs should be evaluated in terms of the range of
coupling ratios and phase shifts that each design requires when implemented as a chequered network.
The steering range should be specified slightly wider than required to avoid rapid deterioration
of the SLL at extreme steering angles due to manufacturing tolerances. Steered-beam squint has
been shown to be related to the gradient of the sum of subarray pattern powers (or steering vector
lengths). Squint in the steered beams may limit the useful steering range due to the non-linear
relationship between the intended and realised steering angles.
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9.2 FUTUREWORK

Being the first investigation into the design of compressive arrays as a pattern-synthesis problem, many
questions have arisen that fall outside the scope of the current study. These questions are listed below
as a hypothesis and suggestion as to the direction future work could take.

For what size arrays is the compressive array design algorithm and chequered network design
algorithm feasible in terms of computational complexity? The proposed algorithms for designing and
implementing compressive feed networks are computationally expensive due to their combinatorial
nature. The compressive array design algorithm must consider all relevant combinations of steering
and pattern angles, and the chequered network design algorithm must consider all the signal paths
that determine the total feed network response. A crucial question that remains unanswered is for
what size arrays the proposed algorithms will remain useful before their computational complexity
becomes prohibitive. However, even if the proposed methods are restricted to the smallest of arrays,
this remains useful as the smallest arrays require the most degrees of freedom to be exploited in
order to obtain reasonable performance (Sections 7.4.3 and 8.2).

Can compressive arrays be designed for predictable broadband performance? The results for the
prototype compressive array presented in Chapter 8 shows that a compressive array is able to obtain
reasonable performance across a range of frequencies. However, this was coincidental as the array
was only optimised to perform well at 3 GHz. Where a compressive array is intended to work at a
range of frequencies, broadband performance must be explicitly incorporated into the design process.
This would entail designing a feed network response that takes into account frequency-dependent
antenna element patterns.

Is it possible and computationally feasible to optimise beamforming weights separately? Currently,
beamforming weights are assumed to be the complex conjugates of the steering vectors at the
corresponding steering angles. However, it was suggested in Chapter 8 that the beamforming
weights should be adjusted to account for squint, which does not hold to this assumption. Although
it would increase the computational complexity of the problem, optimising beamforming weights
separately may result in better performance, especially as the number of beamforming controls
increases.

Is there a better way to account for steered-beam squint? Currently, steered-beam squint is constrained
indirectly by the constant-subarray-pattern-power-sum constraint. This is problematic as it is not
always possible to reduce the range of subarray pattern power sums to an arbitrarily small value,
especially where simulated or measured element patterns are used. It would be preferable to
explicitly account for steered-beam squint in the optimisation, which would probably include the
optimisation of beamforming weights as mentioned above.

Is it possible and useful to perform sensitivity analyses on theoretical and chequered-network feed
network responses? Currently, feed network responses and their chequered-network implementations
are accepted based on their predicted performance derived from analytical models or simulation,
an approach that has thus far produced acceptable results. However, manufacturing tolerances do
contribute towards reducing performance. It is expected that some designs, both in terms of their
theoretical feed network responses and chequered-network implementations, may be more sensitive
to variations in the design parameters (compression weights, coupling ratios, phase shifts, and
lengths and widths of transmission lines) than others. A sensitivity analysis would be able to predict
in a statistical manner how the performance may be expected to vary along with the parameters of a
manufactured circuit, allowing designs to be chosen based on their sensitivity to manufacturing
tolerances.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

95

 
 
 



 
 
 



REFERENCES

[1] H. E. A. Laue and W. P. du Plessis, “Numerical optimization of compressive array feed networks,”
IEEE Trans. Antennas Propag., vol. 66, no. 7, pp. 3432–3440, July 2018.

[2] R. J. Mailloux, Phased Array Antenna Handbook. Norwood, MA, USA: Artech House, 2005.

[3] J. S. Herd and M. D. Conway, “The evolution to modern phased array architectures,” Proc. IEEE,
vol. 104, no. 3, pp. 519–529, Mar. 2016.

[4] A. van Ardenne, J. D. Bregman, W. A. van Cappellen, G. W. Kant, and J. G. B. de Vaate,
“Extending the field of view with phased array techniques: Results of European SKA research,”
Proc. IEEE, vol. 97, no. 8, pp. 1531–1542, Aug. 2009.

[5] B. Friedlander, “Wireless direction-finding fundamentals,” in Classical and Modern Direction-
of-Arrival Estimation, T. E. Tuncer and B. Friedlander, Eds. Burlingston, MA: Elsevier, 2009,
ch. 1, pp. 1–51.

[6] C. Fulton, M. Yeary, D. Thompson, J. Lake, and A. Mitchell, “Digital phased arrays: Challenges
and opportunities,” Proc. IEEE, vol. 104, no. 3, pp. 487–503, Mar. 2016.

[7] T. Azar, “Overlapped subarrays: Review and update [Education column],” IEEE Antennas Propag.
Mag., vol. 55, no. 2, pp. 228–234, Apr. 2013.

[8] Y. T. Lo, “Aperiodic Arrays,” in Antenna Handbook, Y. T. Lo and S. W. Lee, Eds. New York,
NY: Van Nostrand Reinhold Company Inc., 1988, ch. 14, pp. 14-1–14-37.

[9] W. P. M. N. Keizer, “Linear array thinning using iterative FFT techniques,” IEEE Trans. Antennas
Propag., vol. 56, no. 8, pp. 2757–2760, Aug. 2008.

[10] Y. Lo, “A mathematical theory of antenna arrays with randomly spaced elements,” IEEE Trans.
Antennas Propag., vol. 12, no. 3, pp. 257–268, May 1964.

[11] Y. Wang, G. Leus, and A. Pandharipande, “Direction estimation using compressive sampling
array processing,” in IEEE/SP 15th Work. Stat. Signal Process., Aug. 2009, pp. 626–629.

[12] R. G. Baraniuk, “Compressive sensing [Lecture notes],” IEEE Signal Process. Mag., vol. 24,
no. 4, pp. 118–121, July 2007.

[13] E. J. Candes and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process.
Mag., vol. 25, no. 2, pp. 21–30, Mar. 2008.

[14] J. Steckel, D. Laurijssen, A. Schenck, N. BniLam, and M. Weyn, “Low-cost hardware platform
for angle of arrival estimation using compressive sensing,” in Eur. Conf. Antennas Propag., Apr.
2018.

[15] C. A. Olen and R. T. Compton, “A numerical pattern synthesis algorithm for arrays,” IEEE Trans.
Antennas Propag., vol. 38, no. 10, pp. 1666–1676, Oct. 1990.

 
 
 



REFERENCES

[16] H. Zörlein and M. Bossert, “Coherence optimization and best complex antipodal spherical codes,”
IEEE Trans. Signal Process., vol. 63, no. 24, pp. 6606–6615, Dec. 2015.

[17] E. J. Candes and T. Tao, “Decoding by linear programming,” IEEE Trans. Inf. Theory, vol. 51,
no. 12, pp. 4203–4215, Dec. 2005.

[18] H. Zörlein, D. E. Lazich, and M. Bossert, “On the noise-resilience of OMP with BASC-based
low coherence sensing matrices,” in Proc. 10th Int. Conf. Sampling Theory Appl. (SampTA),
July 2013, pp. 468–471.

[19] H. A. Zörlein, “Channel Coding Inspired Contributions to Compressed Sensing,” Ph.D. disserta-
tion, Inst. Commun. Eng., Ulm Univ., Ulm, Germany, 2015.

[20] O. M. Bucci, G. D’Elia, G. Mazzarella, and G. Panariello, “Antenna pattern synthesis: a new
general approach,” Proc. IEEE, vol. 82, no. 3, pp. 358–371, Mar. 1994.

[21] S. P. Skobelev, “Methods of constructing optimum phased-array antennas for limited field of
view,” IEEE Antennas Propag. Mag., vol. 40, no. 2, pp. 39–50, Apr. 1998.

[22] H. E. A. Laue and W. P. du Plessis, “Compressive direction-finding antenna array,” in IEEE-APS
Topical Conf. Antennas Propag. Wireless Commun. (APWC), Sep. 2016, pp. 158–161.

[23] H. E. A. Laue and W. P. du Plessis, “A coherence-based algorithm for optimizing rank-1
Grassmannian codebooks,” IEEE Signal Process. Lett., vol. 24, no. 6, pp. 823–827, June 2017.

[24] H. E. A. Laue and W. P. du Plessis, “A checkered network for implementing arbitrary overlapped
feed networks,” IEEE Trans. Microw. Theory Techn., vol. 67, no. 11, pp. 4632–4640, Nov 2019.

[25] H. E. A. Laue, “Demystifying compressive sensing [Lecture notes],” IEEE Signal Process. Mag.,
vol. 34, no. 4, pp. 171–176, July 2017.

[26] M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. E. Kelly, and R. G. Baraniuk,
“Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag., vol. 25, no. 2, pp.
83–91, Mar. 2008.

[27] M. D. Plumbley, T. Blumensath, L. Daudet, R. Gribonval, and M. E. Davies, “Sparse
representations in audio and music: From coding to source separation,” Proc. IEEE, vol. 98,
no. 6, pp. 995–1005, June 2010.

[28] M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The application of compressed sensing for
rapid MR imaging,” Magnetic Resonance in Medicine, vol. 58, no. 6, pp. 1182–1195, Dec. 2007.

[29] A. Massa, P. Rocca, and G. Oliveri, “Compressive sensing in electromagnetics—A review,” IEEE
Antennas Propag. Mag., vol. 57, no. 1, pp. 224–238, Feb. 2015.

[30] D. L. Donoho and M. Elad, “Optimally sparse representation in general (nonorthogonal)
dictionaries via `1 minimization,” Proc. Nat. Acad. of Sci., vol. 100, no. 5, pp. 2197–2202, Mar.
2003.

[31] S. Foucart, “A note on guaranteed sparse recovery via `1-minimization,” Appl. and Computational
Harmonic Anal., vol. 29, no. 1, pp. 97–103, July 2010.

[32] M. Fornasier and H. Rauhut, “Compressive sensing,” in Handbook of Mathematical Methods in
Imaging, O. Scherzer, Ed. New York, NY: Springer New York, 2011, pp. 187–228.

[33] Z. Zhang, Y. Xu, J. Yang, X. Li, and D. Zhang, “A survey of sparse representation: Algorithms
and applications,” IEEE Access, vol. 3, pp. 490–530, May 2015.

98 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

 
 
 



REFERENCES

[34] C. L. Dolph, “A current distribution for broadside arrays which optimizes the relationship between
beam width and side-lobe level,” Proc. IRE, vol. 34, no. 6, pp. 335–348, June 1946.

[35] M. I. Skolnik, J. W. Sherman, III, and F. C. Ogg, Jr, “Statistically designed density-tapered
arrays,” IEEE Trans. Antennas Propag., vol. 12, no. 4, pp. 408–417, July 1964.

[36] R. L. Haupt, “Thinned arrays using genetic algorithms,” IEEE Trans. Antennas Propag., vol. 42,
no. 7, pp. 993–999, July 1994.

[37] V. Murino, A. Trucco, and A. Tesei, “Beam pattern formulation and analysis for wide-band
beamforming systems using sparse arrays,” Signal Process., vol. 56, no. 2, pp. 177–183, Jan.
1997.

[38] W. P. du Plessis, “Weighted thinned linear array design with the iterative FFT technique,” IEEE
Trans. Antennas Propag., vol. 59, no. 9, pp. 3473–3477, Sep. 2011.

[39] R. J. Mailloux, Electronically Scanned Arrays. San Rafael, USA: Morgan and Claypool
Publishers, 2007.

[40] S. P. Skobelev, Phased Array Antennas with Optimized Element Patterns. Norwood, USA:
Artech House, 2011.

[41] P. Rocca, G. Oliveri, R. J. Mailloux, and A. Massa, “Unconventional phased array architectures
and design methodologies—a review,” Proc. IEEE, vol. 104, no. 3, pp. 544–560, Mar. 2016.

[42] D. G. Leeper, “Isophoric arrays-massively thinned phased arrays with well-controlled sidelobes,”
IEEE Trans. Antennas Propag., vol. 47, no. 12, pp. 1825–1835, Dec 1999.

[43] G. Oliveri, M. Donelli, and A. Massa, “Linear array thinning exploiting almost difference sets,”
IEEE Trans. Antennas Propag., vol. 57, no. 12, pp. 3800–3812, Dec 2009.

[44] G. Oliveri and A. Massa, “Genetic algorithm (GA)-enhanced almost difference set (ADS)-based
approach for array thinning,” IET Microw., Antennas Propag., vol. 5, no. 3, pp. 305–315, Feb
2011.

[45] Y. Liu, Z. Nie, and Q. H. Liu, “Reducing the number of elements in a linear antenna array by the
matrix pencil method,” IEEE Trans. Antennas Propag., vol. 56, no. 9, pp. 2955–2962, Sep 2008.

[46] G. Prisco and M. D’Urso, “Maximally sparse arrays via sequential convex optimizations,” IEEE
Antennas Wireless Propag. Lett., vol. 11, pp. 192–195, Feb 2012.

[47] B. Fuchs, “Synthesis of sparse arrays with focused or shaped beampattern via sequential convex
optimizations,” IEEE Trans. Antennas Propag., vol. 60, no. 7, pp. 3499–3503, July 2012.

[48] R. J. Mailloux, S. G. Santarelli, and T. M. Roberts, “Wideband arrays using irregular (polyomino)
shaped subarrays,” Electron. Lett., vol. 42, no. 18, pp. 1019–1020, Aug. 2006.

[49] A. P. Goffer, M. Kam, and P. R. Herczfeld, “Design of phased arrays in terms of random
subarrays,” IEEE Trans. Antennas Propag., vol. 42, no. 6, pp. 820–826, June 1994.

[50] Z. Kachwalla, “A limited-scan linear array using overlapping subarrays,” J. Elect. and Electron.
Eng., Australia, pp. 126–131, June 1983.

[51] J. S. Herd, S. M. Duffy, and H. Steyskal, “Design considerations and results for an overlapped
subarray radar antenna,” in 2005 IEEE Aerospace Conf., Mar. 2005, pp. 1087–1092.

[52] H. Southall and D. McGrath, “An experimental completely overlapped subarray antenna,” IEEE
Trans. Antennas Propag., vol. 34, no. 4, pp. 465–474, Apr. 1986.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

99

 
 
 



REFERENCES

[53] S. M. Duffy, D. D. Santiago, and J. S. Herd, “Design of overlapped subarrays using an RFIC
beamformer,” in 2007 IEEE Antennas Propag. Soc. Int. Symp., June 2007, pp. 1949–1952.

[54] R. Mailloux, “Array grating lobes due to periodic phase, amplitude, and time delay quantization,”
IEEE Trans. Antennas Propag., vol. 32, no. 12, pp. 1364–1368, Dec. 1984.

[55] R. Haupt, “Reducing grating lobes due to subarray amplitude tapering,” IEEE Trans. Antennas
Propag., vol. 33, no. 8, pp. 846–850, Aug. 1985.

[56] P. Rocca, M. D’Urso, and L. Poli, “Advanced strategy for large antenna array design with
subarray-only amplitude and phase control,” IEEE Antennas Wireless Propag. Lett., vol. 13, pp.
91–94, Jan. 2014.

[57] S. P. Skobelev, “Analysis and synthesis of an antenna array with sectoral partial radiation patterns,”
Telecommun. and Radio Eng., vol. 45, no. 11, pp. 116–119, Nov. 1990.

[58] D. Petrolati, P. Angeletti, and G. Toso, “A novel lossless BFN for linear arrays based on overlapped
sub-arrays,” in 8th European Conf. Antennas Propag. (EuCAP 2014), Apr. 2014, pp. 2247–2250.

[59] S. P. Skobelev, “Some features of the overlapped subarrays built up of beam-forming matrices
for shaping flat-topped radiation patterns,” IEEE Trans. Antennas Propag., vol. 63, no. 12, pp.
5529–5535, Dec. 2015.

[60] D. M. Pozar, Microwave Engineering. Hoboken, NJ, USA: John Wiley and Sons, Inc., 2012.

[61] W. P. Delaney, “An RF multiple beam-forming technique,” IRE Trans. Military Electron., vol.
MIL-6, no. 2, pp. 179–186, Apr. 1962.

[62] T. N. Kaifas and J. N. Sahalos, “On the design of a single-layer wideband Butler matrix for
switched-beam UMTS system applications [Wireless corner],” IEEE Antennas Propag. Mag.,
vol. 48, no. 6, pp. 193–204, Dec. 2006.

[63] B. Piovano, L. Accatino, F.Muoio, G. Caille, andM.Mongiardo, “CAD andmechanical realization
of planar, Ka-band, 8x8 Butler matrices,” in 2002 32nd Eur. Microw. Conf., Sep. 2002, pp. 1–4.

[64] N. BniLam, J. Steckel, andM.Weyn, “Synchronization of multiple independent subarray antennas:
An application for angle of arrival estimation,” IEEE Trans. Antennas Propag., vol. 67, no. 2, pp.
1223–1232, Feb. 2019.

[65] J. H. Conway, R. H. Hardin, and N. J. Sloane, “Packing lines, planes, etc.: Packings in
Grassmannian spaces,” Experiment. Math., vol. 5, no. 2, pp. 139–159, Jan. 1996.

[66] A. Medra and T. N. Davidson, “Flexible codebook design for limited feedback systems via
sequential smooth optimization on the Grassmannian manifold,” IEEE Trans. Signal Process.,
vol. 62, no. 5, pp. 1305–1318, Mar. 2014.

[67] D. J. Love, R. W. Heath, and T. Strohmer, “Grassmannian beamforming for multiple-input
multiple-output wireless systems,” IEEE Trans. Inf. Theory, vol. 49, no. 10, pp. 2735–2747, Oct.
2003.

[68] P. Xia, S. Zhou, and G. B. Giannakis, “Achieving the Welch bound with difference sets,” IEEE
Trans. Inf. Theory, vol. 51, no. 5, pp. 1900–1907, May 2005.

[69] I. S. Dhillon, J. R. Heath, T. Strohmer, and J. A. Tropp, “Constructing packings in Grassmannian
manifolds via alternating projection,” Experiment. Math., vol. 17, no. 1, pp. 9–35, Jan. 2008.

[70] B. Dumitrescu, “Designing incoherent frames with only matrix-vector multiplications,” IEEE
Signal Process. Lett., vol. 24, no. 9, pp. 1265–1269, Sep. 2017.

100 Department of Electrical, Electronic and Computer Engineering
University of Pretoria

 
 
 



REFERENCES

[71] A. Xenaki, P. Gerstoft, and K. Mosegaard, “Compressive beamforming,” J. Acoust. Soc. Am., vol.
136, no. 1, pp. 260–271, July 2014.

[72] J. Nocedal and S. J. Wright, Numerical Optimization. New York, NY, USA: Springer-Verlag,
1999.

[73] W. P. du Plessis, “Efficient computation of array factor and sidelobe level of linear arrays [EM
programmer’s notebook],” IEEE Antennas Propag. Mag., vol. 58, no. 6, pp. 102–114, Dec. 2016.

[74] P. E. Howland, D. Maksimiuk, and G. Reitsma, “FM radio based bistatic radar,” IEE Proc.—Radar
Sonar Navig., vol. 152, no. 3, pp. 107–115, June 2005.

[75] Nonlinear Systems with Constraints, MathWorks Inc., Natick, USA, 2018. [Online]. Available:
https://www.mathworks.com/help/optim/ug/nonlinear-systems-with-constraints.html

[76] MultiStart, MathWorks Inc., Natick, USA, 2018. [Online]. Available: https:
//www.mathworks.com/help/gads/multistart.html

[77] J. P. Shelton, “Fast Fourier transforms and Butler matrices,” Proc. IEEE, vol. 56, no. 3, pp.
350–350, Mar. 1968.

[78] H. J. Orchard, R. S. Elliott, and G. J. Stern, “Optimising the synthesis of shaped beam antenna
patterns,” IEE Proc. H—Microw., Antennas Propag., vol. 132, no. 1, pp. 63–68, Feb. 1985.

[79] G. F. Engen and C. A. Hoer, “Thru-reflect-line: An improved technique for calibrating the dual
six-port automatic network analyzer,” IEEE Trans. Microw. Theory Techn., vol. 27, no. 12, pp.
987–993, Dec. 1979.

[80] D. Jaisson, “Fast design of a printed dipole antenna with an integrated balun,” IEE Proc.—Microw.,
Antennas Propag., vol. 153, no. 4, pp. 389–394, Aug. 2006.

[81] R. Li, T. Wu, B. Pan, K. Lim, J. Laskar, and M. M. Tentzeris, “Equivalent-circuit analysis of a
broadband printed dipole with adjusted integrated balun and an array for base station applications,”
IEEE Trans. Antennas Propag., vol. 57, no. 7, pp. 2180–2184, July 2009.

[82] S. M. Sherman and D. K. Barton, Monopulse Principles and Techniques. Norwood, MA, USA:
Artech House, 2011.

[83] P. L. D. Abrie, The Design of Impedance-Matching Networks for Radio-Frequency andMicrowave
Amplifiers. Dedham, MA, USA: Artech House, 1985.

[84] S. J. Orfanidis, Introduction to Signal Processing. Englewood Cliffs, NJ, USA: Prentice-Hall,
1996.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

101

 
 
 

https://www.mathworks.com/help/optim/ug/nonlinear-systems-with-constraints.html
https://www.mathworks.com/help/gads/multistart.html
https://www.mathworks.com/help/gads/multistart.html


 
 
 



GLOSSARY

Antenna array: A group of antennas that are combined on reception or simultaneously excited on
transmission, resulting in a radiation pattern for the array as a whole.

Antenna element: A single antenna in an antenna array.

Antenna pattern: See radiation pattern.

Antipodal: Any phase shift of a codeword, applied to all the elements in the codeword.

Aperture illumination: The complex-valued current distribution that exists across the elements of an
antenna array.

Array aperture: The physical surface area of an antenna array that radiates or receives electromagnetic
energy.

Array pattern: See radiation pattern.

Beamforming: The process of using an antenna array to form a radiation pattern with a peak in a
desired direction by either combining weighted antenna-element signals on reception, or applying
excitations to antenna elements on transmission.

Beamforming control: Any device used to apply the weights or excitations required for beamforming,
including phase shifters and/or amplifiers for conventional phased arrays, and transmitters and/or
receivers for digital arrays.

Beamforming weight: The weight or excitation applied by a beamforming control.

Beamwidth: The width of the main beam in a radiation pattern as measured between the angles where
the gain is 3 dB lower than the peak gain.

Codebook: A collection of codewords. Rank-1 codebooks can be expressed as matrices, where the
columns of the matrix form the codewords.

Codeword: A vector or matrix that forms part of a codebook, where the number of columns in a
codeword is equal to the rank of the codebook. Rank-1 codewords are column vectors.

Coherence: A measure of the similarity between codewords in a rank-1 codebook, measured as the
maximum absolute dot product between any two codewords.

Completely overlapped subarray: An overlapped subarray where each subarray is a function of all the
antenna elements. Represented by a fully populated sensing matrix.

Compressed samples: The samples/measurements taken after applying the sensing matrix to the
conventional samples, expressed as y = Φx.

Compressed steering matrix: The matrix B with the compressed steering vectors at the sampled angles
as columns.
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Compressed steering vector: The received signal vector b(θ) at the subarrays for a reference wave
impinging on the compressive array from the direction θ.

Compressed transform matrix: The matrix B in a CS system that relates the compressed samples to the
sparse domain via y = Bs. Equivalent to the compressed steering matrix in antenna arrays.

Compression weights: The elements in the sensing matrix Φ.

Compressive array: A generalisation of reduced-control arrays which allows for complete overlap and
does not necessarily place constraints on the feed network response.

Compressive feed network: The feed network associated with a compressive array, i.e. a compressive
array excluding the antenna elements.

Compressive sensing (CS): A novel sub-Nyquist sampling framework based on the assumption of
sparsity.

Conventional samples: Uniformly distributed samples that are taken in accordance with the Nyquist
theorem.

Coupling ratio: The the ratio between the square-root power delivered to the through and coupled ports
in a directional coupler.

Digital array: An antenna array with a transmitter and/or receiver at each antenna element.

Digital beamforming: The process of combining antenna-element or subarray signals in software.
Requires a receiver at each antenna element or subarray.

Embedded element pattern: The radiation pattern of an antenna element with the effects of mutual
coupling with neighbouring antenna elements included.

Feed network: The hardware that connects the antenna elements to the transmitter(s) and/or receiver(s)
in an antenna array system.

Feed network response: The numerical relationship between the antenna-element signals and the signals
at the subarray ports in a reduced-control array, given by the matrix Φ. Equivalent to the sensing
matrix in the context of a compressive array.

Grassmannian manifold G(M, R): The set of all R-dimensional subspaces in CM . Where the rank
R = 1, the manifold is the set of all lines in complex M-dimensional space.

Hard null: A null placed in a subarray pattern and realised in hardware.

Overlapped subarray: A subarray that shares some antenna elements with one or more adjacent
subarrays.

Partially overlapped subarray: An overlapped subarray where only some of the antenna elements are
shared between adjacent subarrays.

Phase centre: The point on an antenna array from which the wavefront spreads out in a sphere.

Phased array: A traditional beamforming array that makes use of hardware phase shifters to perform
beamforming.

Radiation pattern: The relative gain of an antenna or antenna array as a function of angle. Antenna-
element or subarray patterns are found by stimulating only the element or subarray in question and
terminating the others in matched loads.
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Reduced-control array: Any array that uses less beamforming controls for a given aperture than a ULA
that fills the same aperture.

Resolution: The smallest angular distance between two sources that still allows them to be resolved as
separate sources for a given antenna array.

Sensing matrix: The matrix Φ which describes the process of combining a large number of conventional
samples x into fewer measurements y = Φx. Equivalent to feed network response in the context of
an antenna array.

Shorted coupler: A coupler with an infinite coupling ratio, which reduces to two −90◦ phase shifters
in the case of a branchline coupler.

Sidelobe level (SLL): Where a start of the sidelobe region is specified, the largest radiation pattern
amplitude in the pre-defined sidelobe region relative to the main-beam peak. Otherwise, the largest
relative amplitude of the lobes other than the main lobe in a radiation pattern. When quoted as
a single value for a reduced-control array, it refers to the worst sidelobe level across all steering
angles.

Soft null: A null formed by the application of beamforming weights, that is present at all steering angles
except those near the null direction itself.

Sparse domain: A domain in which a signal has only few non-zero components. The basis for a sparse
domain is the sparsifying basis.

Sparsifying basis: The basis associated with a sparse domain.

Sparsity: The concept of a signal having few non-zero coefficients. Also used in a general sense to
convey the concept of redundancy, as quantified by the number of significant coefficients a signal
has in a sparsifying basis.

Standard basis: The Euclidean basis. In three dimensions, the standard basis vectors are (1, 0, 0),
(0, 1, 0), and (0, 0, 1).

Start of the sidelobe region: The angular distance from the main-beam peak to the start of the region
where the radiation pattern is minimised in an SLL-optimisation algorithm.

Steering angle: The intended angular direction in which a beam is pointed during beamforming.

Steering matrix: The matrix A with the steering vectors at the sampled angles as columns. The
transform matrix for an antenna array.

Steering vector: The received signal vector a(θ) at the antenna elements for a reference wave impinging
on the antenna array from the direction θ.

Subarray: A single antenna-array input or output that is a function of multiple antenna elements.

Subarray pattern: See radiation pattern.

Transform matrix: The matrix A in a CS system that relates the conventional samples to the sparse
domain. Equivalent to the steering matrix in antenna arrays.

Uniform linear array (ULA): An antenna array with antenna elements that are uniformly spaced on a
line.

Wavefront: The surface on which an electromagnetic wave has constant phase. Assumed to be planar
in the far field.
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ADDENDUM A DERIVATION OF THE
ALGORITHMS

A.1 CBGC DERIVATION

The CBGC algorithm (Chapter 5) is derived below.

Define the functions

gn,l (B) =
(��bH

nbl

��2 − µ2
t

)p
and (A.1)

g (λn) = λn

(
‖bn‖

2 − 1
)
. (A.2)

The equilibrium conditions in (5.8) for a given value of m and n now become (all terms not dependent
on n fall away) ∑

n,l

∂gn,l(B)
∂Re{bm,n}

+
∂g(λn)
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= 0, (A.3)

∑
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+
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= 0 and (A.4)

∂g(λn)

∂λn
= 0 , (A.5)

where m and n are fixed, but l ∈ (1, . . . , N).

Starting with the real case in (A.3), consider
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where the sums describe the dot products which perform piece-wise multiplication of the vector
elements with indices m′ = {1, . . . ,m, . . . , M}. However, the derivatives are only functions of the
current m′ = m, and so (A.10) reduces to
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− jIm

{
bm,n

}) (
Re

{
bm,l

}
+ jIm

{
bm,l

}) ])
(A.12)

= 2Re
{
bH
nbl

} (
∂

∂Re{bm,n}
Re

[
Re

{
bm,n

}
Re

{
bm,l

}
+ Im

{
bm,n

}
Im

{
bm,l

}
+ j

(
Re

{
bm,n

}
Im

{
bm,l

}
− Im

{
bm,n

}
Re

{
bm,l

}) ])
+ 2Im

{
bH
nbl

} (
∂

∂Re{bm,n}
Im

[
Re

{
bm,n

}
Re

{
bm,l

}
+ Im

{
bm,n

}
Im

{
bm,l

}
+ j

(
Re

{
bm,n

}
Im

{
bm,l

}
− Im

{
bm,n

}
Re

{
bm,l

}) ])
(A.13)

= 2Re
{
bH
nbl

} (
∂

∂Re{bm,n}

[
Re

{
bm,n

}
Re

{
bm,l

}
+ Im

{
bm,n

}
Im

{
bm,l

} ])
+ 2Im

{
bH
nbl

} (
∂

∂Re{bm,n}

[
Re

{
bm,n

}
Im

{
bm,l

}
− Im

{
bm,n

}
Re

{
bm,l

} ])
(A.14)

= 2
(
Re

{
bm,l

}
Re

{
bH
nbl

}
+ Im

{
bm,l

}
Im

{
bH
nbl

} )
(A.15)

= rm,n,l . (A.16)

Next, consider
∂g(λn)

∂Re{bm,n}
=

∂

∂Re{bm,n}
λn

(
‖bn‖

2 − 1
)

(A.17)

=
∂

∂Re{bm,n}
λn

(
M∑

m′=1
Re2{bm′,n

}
+ Im2{bm′,n

})
(A.18)

=
∂

∂Re{bm,n}
λn

(
Re2{bm,n

}
+ Im2{bm,n

})
(A.19)

=
∂

∂Re{bm,n}
λnRe2{bm,n

}
(A.20)

= 2λnRe{bm,n} . (A.21)
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Combining (A.3), (A.7), (A.16) and (A.21) gives

0 =
∑
n,l

∂gn,l(B)
∂Re{bm,n}

+
∂g(λn)

∂Re{bm,n}
(A.22)

=
∑
n,l

p · hn,l · rm,n,l + 2λnRe{bm,n} (A.23)

∴ Re{bm,n} =
p

2λn

[
−

∑
n,l

hn,l · rm,n,l

]
=

p
2λn

um,n . (A.24)

The imaginary case in (A.4) is derived using similar logic. Consider

∂gn,l(B)
∂Im{bm,n}

= p
(��bH

nbl

��2 − µ2
t

)p−1
×

∂

∂Im{bm,n}
��bH

nbl

��2 (A.25)

= p · hn,l ×
∂

∂Im{bm,n}
��bH

nbl

��2 . (A.26)

Then calculate

∂

∂Im{bm,n}
|bH

nbl |
2

=
∂

∂Im{bm,n}

( [
Re

{
bH
nbl

}]2
+

[
Im

{
bH
nbl

}]2
)

(A.27)

= 2Re
{
bH
nbl

} (
∂

∂Im{bm,n}
Re

{
bH
nbl

})
+ 2Im

{
bH
nbl

} (
∂

∂Im{bm,n}
Im

{
bH
nbl

})
(A.28)

= 2Re
{
bH
nbl

} (
∂

∂Im{bm,n}

[
Re

{
bm,n

}
Re

{
bm,l

}
+ Im

{
bm,n

}
Im

{
bm,l

} ])
+ 2Im

{
bH
nbl

} (
∂

∂Im{bm,n}

[
Re

{
bm,n

}
Im

{
bm,l

}
− Im

{
bm,n

}
Re

{
bm,l

} ])
(A.29)

= 2
(
Im

{
bm,l

}
Re

{
bH
nbl

}
− Re

{
bm,l

}
Im

{
bH
nbl

} )
(A.30)

= sm,n,l . (A.31)

Next, consider

∂g(λn)

∂Im{bm,n}
=

∂

∂Im{bm,n}
λn

(
‖bn‖

2 − 1
)

(A.32)

=
∂

∂Im{bm,n}
λn

(
Re2{bm,n

}
+ Im2{bm,n

})
(A.33)

=
∂

∂Im{bm,n}
λnIm2{bm,n

}
(A.34)

= 2λnIm{bm,n} . (A.35)
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Combining (A.4), (A.26), (A.31) and (A.35) gives

0 =
∑
n,l

∂gn,l(B)
∂Im{bm,n}

+
∂g(λn)

∂Im{bm,n}
(A.36)

=
∑
n,l

p · hn,l · sm,n,l + 2λnIm{bm,n} (A.37)

∴ Im{bm,n} =
p

2λn

[
−

∑
n,l

hn,l · sm,n,l

]
=

p
2λn

vm,n . (A.38)

Combining (A.5), (A.24) and (A.38) gives

0 =
∂g(λn)

∂λn
=

∂

∂λn
λn

(
‖bn‖

2 − 1
)
= ‖bn‖

2 − 1 (A.39)

∴ 1 = ‖bn‖
2 (A.40)

=

M∑
m′=1

Re2{bm′,n
}
+ Im2{bm′,n

}
(A.41)

=

M∑
m′=1

(
p

2λn
um′,n

)2
+

(
p

2λn
vm′,n

)2
(A.42)

=

(
p

2λn

)2 M∑
m′=1

u2
m′,n + v

2
m′,n (A.43)

∴
2λn

p
=

√√√
M∑

m′=1
u2
m′,n + v

2
m′,n (A.44)

∴ 2λn = p

√√√
M∑

m′=1
u2
m′,n + v

2
m′,n (A.45)

= p ‖un + jvn‖ . (A.46)

The elements bm,n of the codeword bn, taken as the force vector, is found by combining (A.24), (A.38)
and (A.46) to give

bm,n = Re{bm,n} + jIm{bm,n} (A.47)

=
p

2λn
um,n + j

p
2λn

vm,n (A.48)

=
p

2λn
(
um,n + jvm,n

)
(A.49)

=
p

p ‖un + jvn‖
(
um,n + jvm,n

)
(A.50)

=
um,n + jvm,n
‖un + jvn‖

. (A.51)

Combining the elements bm′,n for m′ ∈ {1, . . . , M} gives

fn ≡ bn =
un + jvn
‖un + jvn‖

= un + jvn, (A.52)
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where underlining denotes normalisation (Section 5.2). The relationship fn = bn only holds true at
equilibrium, since it was derived using the equilibrium conditions in (A.3)–(A.5). However, when
equilibrium is not met, this force vector will provide an estimate for the direction in which the nearest
stationary point lies.

The next step is to combine the real and imaginary parts of (A.52), which can be expanded into

fn = un + jvn (A.53)

= −
∑
n,l

hn,l · rn,l − j
∑
n,l

hn,l · sn,l (A.54)

= −
∑
n,l

hn,l ·
(
rn,l + jsn,l

)
(A.55)

= −2
∑
n,l

hn,l ·
[
Re{bl}Re

{
bH
nbl

}
+ Im{bl} Im

{
bH
nbl

}
+j

(
Im{bl}Re

{
bH
nbl

}
− Re{bl} Im

{
bH
nbl

} )]
. (A.56)

In order to combine the real and imaginary parts of (A.56), consider the identity

ab∗ =
(
Re{a} + jIm{a}

) (
Re{b} + jIm{b}

)∗
(A.57)

=
(
Re{a} + jIm{a}

) (
Re{b} − jIm{b}

)
(A.58)

= Re{a}Re{b} + Im{a}Im{b} + j
[
Im{a}Re{b} − Re{a}Im{b}

]
. (A.59)

Comparing (A.56) to (A.59) allows (A.56) to be re-written as

fn = −2
∑
n,l

hn,l · bl

(
bH
nbl

)∗
(A.60)

= −2
∑
n,l

hn,l · bl

(
bH
l bn

)
(A.61)

= −2
∑
n,l

(��bH
nbl

��2 − µ2
t

)p−1
· bl

(
bH
l bn

)
(A.62)

= −2
∑
n,l

( ��bH
nbl

��2 − µ2
t

)p−1 (
bH
l bn

)
· bl. (A.63)

A.2 COMPRESSIVE ARRAY DESIGN ALGORITHM GRADIENT DERIVATIONS

The gradients of the goal and constraint functions in the compressive array design algorithm (Chapter 6)
are derived below.

The parameters of the optimisation problem are the elements in Φ, and therefore the derivatives of the
goal and constraint functions (6.8)–(6.10) and (6.14) need to be calculated with respect to Φ.
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Start by considering the derivative of (6.8) with respect to each element in Φ as

∂g(Φ)
∂φm,n

=
∂

∂φm,n
α


1
C

∑
θa−θs ≥
θSLL

( ��bH
s ba

��
αRs,a

)p
1/p

(A.64)

=
α

C1/p
∂

∂φm,n


∑

θa−θs ≥
θSLL

( ��bH
s ba

��
αRs,a

)p
1/p

(A.65)

=
α

pC1/p


∑

θa−θs ≥
θSLL

( ��bH
s ba

��
αRs,a

)p
1/p−1

×
∂

∂φm,n

∑
θa−θs ≥
θSLL

( ��bH
s ba

��
αRs,a

)p
(A.66)

=
α

pC1/p


∑

θa−θs ≥
θSLL

( ��bH
s ba

��
αRs,a

)p
1/p−1

×
∑

θa−θs ≥
θSLL

∂

∂φm,n

( ��bH
s ba

��
αRs,a

)p
(A.67)

=
α

pC1/p


∑

θa−θs ≥
θSLL

( ��bH
s ba

��
αRs,a

)p
1/p−1

×
∑

θa−θs ≥
θSLL

∂

∂φm,n

( ��bH
s ba

��2
α2R2

s,a

)p/2
(A.68)

=
pα

2pC1/p


∑

θa−θs ≥
θSLL

( ��bH
s ba

��
αRs,a

)p
1/p−1

×
∑

θa−θs ≥
θSLL


( ��bH

s ba

��2
α2R2

s,a

)p/2−1
∂

∂φm,n

��bH
s ba

��2
α2R2

s,a

 (A.69)

=
α

2α2C1/p


∑

θa−θs ≥
θSLL

( ��bH
s ba

��
αRs,a

)p
1/p−1

×
∑

θa−θs ≥
θSLL


1

R2
s,a

( ��bH
s ba

��2
α2R2

s,a

) p−2
2

∂

∂φm,n

��bH
s ba

��2 (A.70)

=
1

2αC1/p


∑

θa−θs ≥
θSLL

( ��bH
s ba

��
αRs,a

)p
1/p−1

×
∑

θa−θs ≥
θSLL


1

R2
s,a

( ��bH
s ba

��
αRs,a

)p−2
∂

∂φm,n

��bH
s ba

��2 . (A.71)

Wherever
��bH

s ba

�� /(αRs,a

)
is raised to some function of p, α is not factored out since its function is to

prevent the power from underflowing (Section 6.3.2).

Next, find

∂

∂φm,n

��bH
s ba

��2 = ∂

∂φm,n

(
Re2{bH

s ba

}
+ Im2{bH

s ba

})
(A.72)

= 2Re
{
bH
s ba

} (
∂

∂φm,n
Re

{
bH
s ba

})
+ 2Im

{
bH
s ba

} (
∂

∂φm,n
Im

{
bH
s ba

})
(A.73)

= 2Re
{
bH
s ba

} (
∂

∂Re
{
φm,n

}Re
{
bH
s ba

}
+ j

∂

∂Im
{
φm,n

}Re
{
bH
s ba

})
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+ 2Im
{
bH
s ba

} (
∂

∂Re
{
φm,n

} Im
{
bH
s ba

}
+ j

∂

∂Im
{
φm,n

} Im
{
bH
s ba

})
(A.74)

= 2Re
{
bH
s ba

} (
Re

{
∂

∂Re
{
φm,n

} bH
s ba

}
+ jRe

{
∂

∂Im
{
φm,n

} bH
s ba

})
+ 2Im

{
bH
s ba

} (
Im

{
∂

∂Re
{
φm,n

} bH
s ba

}
+ jIm

{
∂

∂Im
{
φm,n

} bH
s ba

})
. (A.75)

Then, calculate

∂

∂Re
{
φm,n

} bH
s ba =

∂

∂Re
{
φm,n

} M∑
m′=1

b∗m′,sbm′,a, (A.76)

where bm,s and bm,a refer to the mth elements in bs and ba, respectively, and m′ = {1, . . . ,m, . . . , M}.
However, the derivative is only a function of the current m′ = m, leading to

∂

∂Re
{
φm,n

} bH
s ba =

∂

∂Re
{
φm,n

} b∗m,sbm,a. (A.77)

Applying the product rule gives

∂

∂Re
{
φm,n

} bH
s ba =

(
∂

∂Re
{
φm,n

} b∗m,s

)
bm,a + b∗m,s

(
∂

∂Re
{
φm,n

} bm,a

)
. (A.78)

The differentiated elements in b now need to be expanded using b = Φa, starting with

∂

∂Re
{
φm,n

} b∗m,s =
∂

∂Re
{
φm,n

} (φmas)∗ (A.79)

=
∂

∂Re
{
φm,n

} N∑
n′=1

φ∗m,n′a
∗
n′,s (A.80)

=
∂

∂Re
{
φm,n

} φ∗m,na∗n,s (A.81)

=
∂

∂Re
{
φm,n

} (
Re

{
φm,n

}
− jIm

{
φm,n

})
a∗n,s (A.82)

= a∗n,s, (A.83)

followed by

∂

∂Re
{
φm,n

} bm,a =
∂

∂Re
{
φm,n

} (φmaa) (A.84)

=
∂

∂Re
{
φm,n

} N∑
n′=1

φm,n′an′,a (A.85)

=
∂

∂Re
{
φm,n

} φm,nan,a (A.86)

=
∂

∂Re
{
φm,n

} (
Re

{
φm,n

}
+ jIm

{
φm,n

})
an,a (A.87)

= an,a. (A.88)
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Substituting (A.83) and (A.88) into (A.78) gives

∂

∂Re
{
φm,n

} bH
s ba = a∗n,sbm,a + b∗m,san,a. (A.89)

Now, consider the derivative of bH
s ba with respect to the imaginary part of φm,n as

∂

∂Im
{
φm,n

} bH
s ba =

∂

∂Im
{
φm,n

} M∑
m′=1

b∗m′,sbm′,a (A.90)

=
∂

∂Im
{
φm,n

} b∗m,sbm,a. (A.91)

Applying the product rule as in the real case gives

∂

∂Im
{
φm,n

} bH
s ba =

(
∂

∂Im
{
φm,n

} b∗m,s

)
bm,a + b∗m,s

(
∂

∂Im
{
φm,n

} bm,a

)
. (A.92)

Next, consider the differentiated element in bs:

∂

∂Im
{
φm,n

} b∗m,s =
∂

∂Im
{
φm,n

} φ∗m,na∗n,s (A.93)

=
∂

∂Im
{
φm,n

} (
Re

{
φm,n

}
− jIm

{
φm,n

})
a∗n,s (A.94)

= −ja∗n,s, (A.95)

followed by the element in ba:

∂

∂Im
{
φm,n

} bm,a =
∂

∂Im
{
φm,n

} φm,nan,a (A.96)

=
∂

∂Im
{
φm,n

} (
Re

{
φm,n

}
+ jIm

{
φm,n

})
an,a (A.97)

= jan,a. (A.98)

Substituting (A.95) and (A.98) into (A.92) gives

∂

∂Im
{
φm,n

} bH
s ba = −ja∗n,sbm,a + jb∗m,san,a. (A.99)

Substituting (A.89) and (A.99) into (A.75) gives

∂

∂φm,n

��bH
s ba

��2 = 2Re
{
bH
s ba

} (
Re

{
a∗n,sbm,a + b∗m,san,a

}
+ jRe

{
−ja∗n,sbm,a + jb∗m,san,a

})
+ 2Im

{
bH
s ba

} (
Im

{
a∗n,sbm,a + b∗m,san,a

}
+ jIm

{
−ja∗n,sbm,a + jb∗m,san,a

})
(A.100)

= 2Re
{
bH
s ba

} (
Re

{
a∗n,sbm,a + b∗m,san,a

}
+ jIm

{
a∗n,sbm,a − b∗m,san,a

})
+ 2Im

{
bH
s ba

} (
Im

{
a∗n,sbm,a + b∗m,san,a

}
+ jRe

{
−a∗n,sbm,a + b∗m,san,a

})
.

(A.101)
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In order to recombine the real and imaginary parts, start by rearranging (A.101) as follows:

∂

∂φm,n

��bH
s ba

��2
= 2Re

{
bH
s ba

}
Re

{
a∗n,sbm,a + b∗m,san,a

}
+ 2jRe

{
bH
s ba

}
Im

{
a∗n,sbm,a − b∗m,san,a

}
+ 2Im

{
bH
s ba

}
Im

{
a∗n,sbm,a + b∗m,san,a

}
+ 2jIm

{
bH
s ba

}
Re

{
−a∗n,sbm,a + b∗m,san,a

}
(A.102)

= 2Re
{
bH
s ba

}
Re

{
a∗n,sbm,a + b∗m,san,a

}
+ 2jRe

{
bH
s ba

}
Im

{
a∗n,sbm,a − b∗m,san,a

}
+ 2Im

{
bH
s ba

}
Im

{
a∗n,sbm,a + b∗m,san,a

}
+ 2jIm

{
bH
s ba

}
Re

{
−a∗n,sbm,a + b∗m,san,a

}
(A.103)

= 2Re
{
bH
s ba

}
Re

{
a∗n,sbm,a

}
+ 2Re

{
bH
s ba

}
Re

{
b∗m,san,a

}
+ 2jRe

{
bH
s ba

}
Im

{
a∗n,sbm,a

}
− 2jRe

{
bH
s ba

}
Im

{
b∗m,san,a

}
+ 2Im

{
bH
s ba

}
Im

{
a∗n,sbm,a

}
+ 2Im

{
bH
s ba

}
Im

{
b∗m,san,a

}
− 2jIm

{
bH
s ba

}
Re

{
a∗n,sbm,a

}
+ 2jIm

{
bH
s ba

}
Re

{
b∗m,san,a

}
(A.104)

= 2
[
Re

{
bH
s ba

}
Re

{
a∗n,sbm,a

}
+ Im

{
bH
s ba

}
Im

{
a∗n,sbm,a

}
+ j

(
Re

{
bH
s ba

}
Im

{
a∗n,sbm,a

}
− Im

{
bH
s ba

}
Re

{
a∗n,sbm,a

}) ]
+ 2

[
Re

{
bH
s ba

}
Re

{
b∗m,san,a

}
+ Im

{
bH
s ba

}
Im

{
b∗m,san,a

}
+ j

(
−Re

{
bH
s ba

}
Im

{
b∗m,san,a

}
+ Im

{
bH
s ba

}
Re

{
b∗m,san,a

}) ]
(A.105)

= 2 [(ac + bd) + j(ad − bc)] + 2 [(eg + f h) + j(−eh + f g)] . (A.106)

Consider the identities

(a + jb)∗(c + jd) = (ac + bd) + j(ad − bc) (A.107)

and

(e + j f )(g + jh)∗ = (eg + f h) + j(−eh + f g), (A.108)

which allow (A.106) to be rewritten as

∂

∂φm,n

��bH
s ba

��2 = 2
(
Re

{
bH
s ba

}
+ jIm

{
bH
s ba

})∗ (
Re

{
a∗n,sbm,a

}
+ jIm

{
a∗n,sbm,a

})
+ 2

(
Re

{
bH
s ba

}
+ jIm

{
bH
s ba

}) (
Re

{
b∗m,san,a

}
+ jIm

{
b∗m,san,a

})∗ (A.109)

= 2
(
bH
s ba

)∗ (
a∗n,sbm,a

)
+ 2

(
bH
s ba

) (
b∗m,san,a

)∗ (A.110)

= 2
(
bH
abs

) (
bm,aa∗n,s

)
+ 2

(
bH
s ba

) (
bm,sa∗n,a

)
. (A.111)

Now, the derivative of
��bH

s ba

��2 with respect to the matrix Φ can be written as

∂

∂Φ
��bH

s ba

��2 = 2
[(

bH
abs

)
baaHs +

(
bH
s ba

)
bsaHa

]
, (A.112)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

115

 
 
 



ADDENDUM A DERIVATION OF THE ALGORITHMS

which, together with (A.71), gives the derivative of the goal function with respect to Φ as

∂g(Φ)
∂Φ

=
1

αC1/p


∑

θa−θs ≥
θSLL

( ��bH
s ba

��
αRs,a

)p
1/p−1

×
∑

θa−θs ≥
θSLL

©­« 1
R2
s,a

( ��bH
s ba

��
αRs,a

)p−2 [(
bH
abs

)
baaHs +

(
bH
s ba

)
bsaHa

]ª®¬ . (A.113)

To find the gradients of the unit-norm constraint function (6.9), start by calculating

∂

∂φm,n
c1(Φ) =

∂

∂φm,n
‖bs ‖

2 (A.114)

=
∂

∂φm,n

M∑
m′=1

Re2{bm′,s
}
+ Im2{bm′,s

}
(A.115)

=
∂

∂φm,n
Re2{bm,s

}
+ Im2{bm,s

}
(A.116)

= 2Re
{
bm,s

} ∂

∂φm,n
Re

{
bm,s

}
+ 2Im

{
bm,s

} ∂

∂φm,n
Im

{
bm,s

}
(A.117)

= 2Re
{
bm,s

} (
∂

∂Re
{
φm,n

}Re
{
bm,s

}
+ j

∂

∂Im
{
φm,n

}Re
{
bm,s

})
+ 2Im

{
bm,s

} (
∂

∂Re
{
φm,n

} Im
{
bm,s

}
+ j

∂

∂Im
{
φm,n

} Im
{
bm,s

})
(A.118)

= 2Re
{
bm,s

} (
Re

{
∂

∂Re
{
φm,n

} bm,s

}
+ jRe

{
∂

∂Im
{
φm,n

} bm,s

})
+ 2Im

{
bm,s

} (
Im

{
∂

∂Re
{
φm,n

} bm,s

}
+ jIm

{
∂

∂Im
{
φm,n

} bm,s

})
. (A.119)

Next, find

∂

∂Re
{
φm,n

} bm,s =
∂

∂Re
{
φm,n

}φmas (A.120)

=
∂

∂Re
{
φm,n

} N∑
n′=1

φm,n′an′,s (A.121)

=
∂

∂Re
{
φm,n

} φm,nan,s (A.122)

=
∂

∂Re
{
φm,n

} (
Re

{
φm,n

}
+ jIm

{
φm,n

}) (
Re

{
an,s

}
+ jIm

{
an,s

})
(A.123)

=
∂

∂Re
{
φm,n

}Re
{
φm,n

}
Re

{
an,s

}
− Im

{
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}
Im

{
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}
+ j

(
Re

{
φm,n

}
Im

{
an,s

}
+ Im

{
φm,n

}
Re

{
an,s

})
(A.124)
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= Re
{
an,s

}
+ jIm

{
an,s

}
(A.125)

= an,s, (A.126)

followed by

∂

∂Im
{
φm,n

} bm,s =
∂

∂Im
{
φm,n

}φmas (A.127)

=
∂

∂Im
{
φm,n

} N∑
n′=1

φm,n′an′,s (A.128)

=
∂

∂Im
{
φm,n

} φm,nan,s (A.129)

=
∂

∂Im
{
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} (
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{
φm,n

}
+ jIm

{
φm,n

}) (
Re

{
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}
+ jIm

{
an,s

})
(A.130)

=
∂

∂Im
{
φm,n

}Re
{
φm,n

}
Re

{
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}
− Im

{
φm,n

}
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{
an,s

}
+ j

(
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{
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}
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{
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}
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{
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}
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{
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})
(A.131)

= −Im
{
an,s

}
+ jRe

{
an,s

}
(A.132)

= jan,s. (A.133)

Substituting (A.126) and (A.133) into (A.119) gives

∂

∂φm,n
c1(Φ) = 2Re

{
bm,s

} (
Re

{
an,s

}
+ jRe

{
jan,s

})
+ 2Im

{
bm,s

} (
Im

{
an,s

}
+ jIm

{
jan,s

})
(A.134)

= 2Re
{
bm,s

} (
Re

{
an,s

}
− jIm

{
an,s

})
+ 2Im

{
bm,s

} (
Im

{
an,s

}
+ jRe

{
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})
(A.135)

= 2
[
Re

{
bm,s

}
Re

{
an,s

}
+ Im

{
bm,s

}
Im

{
an,s

}]
+ 2j

[
−Re

{
bm,s

}
Im

{
an,s

}
+ Im

{
bm,s

}
Re

{
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}]
(A.136)

= 2
[ (

Re
{
bm,s

}
+ jIm

{
bm,s

}) (
Re

{
an,s

}
+ jIm

{
an,s

})∗] (A.137)

= 2bm,sa∗n,s. (A.138)

From (A.138), the gradient of the constraint function (6.9) with respect to the matrix Φ is found
as

∂

∂Φ
c2(Φ) = 2bsaH

s . (A.139)

Similarly, the gradient of (6.9) is found as

∂

∂Φ
c2(Φ) = −2bsaH

s . (A.140)

The gradient of the hard null constraint function (6.14) is found using a similar approach to be

∂c3,m(φm)

∂φm
= 2bm(θw)a(θw)H (A.141)

for row m in Φ; the gradients at all other rows are zero.
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