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Abstract 

Title: A real-time hybrid prognostics method for 

estimating remaining useful life of turbomachine 

rotor blades using blade tip timing 

Author: B. Ellis

Student Number: 14221404 

Supervisor: Prof P.S. Heyns 

Co-supervisor: Dr. D.H. Diamond 

This dissertation proposes hybrid models for (i) diagnosis and (ii) remaining useful life estimation of a 

single fatigue crack in a low-pressure turbine blade.  The proposed hybrid methods consist of physics-

based methods and data-driven methods. 

In this dissertation, blade tip timing is used to measure the relative tip displacement of a rotor blade. 

The natural frequency of the blade is determined by detecting the critical speeds of the blade using a 

newly derived least squares spectral analysis method. The method shares its origin from the Lomb-

Scargle periodogram and can detect resonance frequencies in the blade’s displacement while the rotor 

is in operation. A Campbell diagram is then used to convert the critical speed into a natural frequency. 

Two kinds of shaft transients are considered, a run-up run-down crossing the same critical speed, is 

used to test the new method. This dissertation shows that the relative displacement of the blade tip is 

comparable to those simulated from an analytical single degree of freedom model. It is also shown that 

the newly proposed resonance detection method estimates the natural frequency of the blade to a high 

degree of accuracy when compared to the measurements from a modal impact hammer test. 

The natural frequency obtained from the real time measurement is then used in a pre-constructed hybrid 

diagnostics model. The diagnostics model provides a probability density function estimation of the 

surface crack length given the measured natural frequency. A Gaussian Process Regression model is 

trained on data collected during experiments and finite element simulations of a fatigue crack in the 

blade.  

The final part of this dissertation is a sequential inference model for improving the estimation of the 

crack length and the prediction of the crack growth. The suggested model uses an unscented Kalman 

filter that improves estimations of the crack length and the rate of crack growth from Paris’ Law 

coefficients. The model is updated each time a diagnosis is performed on the blade. The RUL of the 

blade is then determined from an integration of Paris’s Law given the uncertainty estimates of the 
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current damage in the blade. The result of the algorithm is an estimation of the remaining number of 

cycles to failure. The algorithm is shown to improve the overall estimation of the RUL; however, it is 

suggested that future work looks at the convergence rate of the method.  

 

Keywords: Blade Tip Timing; Diagnostics; Fatigue Crack Growth; Finite Element Method; 

Least Squares Spectral Analysis; Paris’ Law; Probability Density Function; 

Prognostics; Sequential Inference; State Space Model; Unscented Kalman Filter 
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1. Introduction 

The use of Condition-based Maintenance (CBM) strategies are now well established. The field has 

encouraged engineers to treat damage in mechanical components only when they have been diagnosed 

close to failure. Its purpose is to reduce maintenance costs by repairing or replacing components that 

require it; contrary to replacing components that could remain in operation for much longer than initially 

estimated (Mishra, 2018). Vibration-based condition monitoring is used in CBM to identify vibration 

characteristics. These characteristics are then used to classify or quantify damage in mechanical 

components. This dissertation focuses on the use of vibration-based condition monitoring to predict 

failure in turbomachine blades while the blades are in operation. 

One of the major interests in CBM is methods for predicting the Remaining Useful Life (RUL) of a 

component. RUL is the leftover time a component will remain within design specification limits given 

certain assumed future operating conditions. Naturally, knowing a component’s RUL has implications 

for maintenance decisions and financial investment options. Predicting RUL of a component is 

challenging, because of (i) its dependence on operating conditions, (ii) accuracy of models for 

estimating damage in a component and (iii) accuracy of models for predicting damage from a condition 

monitoring signal, often obtained from accelerometers.  

Interest in RUL has led to a new field in mechanical engineering, namely Prognostics and Health 

Management (PHM). The field attempts to incorporate the understanding of physics of mechanical 

systems and sensor data to predict when mechanical components are nearing failure. One of the reasons 

that PHM has not been implemented widely in industry is because of the accumulation of uncertainty 

when processing noisy sensor data. Furthermore, models that capture the physics of a degradation 

process are often too complex or numerically expensive to compute. Hence, latest developments in 

PHM resort to data-driven methods that quantifies failure from historical data (An, Kim and Choi, 

2015). Although these data-driven methods provide an easy implementable solution, they often lack 

reliable estimates of the RUL when limited failure data is available. Thus, a major challenge in PHM is 

trying to build prediction models that require very little historical degradation data.  

Recent work in PHM indicate the use of hybrid methods. These methods combine limited historical 

failure data and physics models to estimate the RUL of a component. Physics models are developed 

from understanding (i) how certain features (such as the natural frequency) relate to damage and (ii) the 

rate at which damage propagates in a component. Hybrid methods augment these physics based 

methods with data. Liao and Köttig (2014) propose various hybrid methods and identify possible 

combinations of data-driven and physics-based models. This dissertation primarily investigates a hybrid 

damage state estimation and hybrid damage state prediction approach. 
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1.1. Background 

Turbomachinery blades experience harsh operating environments where it is difficult to find sensors 

that can provide appropriate condition monitoring data. This is due to (i) the cost of installing the sensor 

and (ii) the hash environmental conditions such as humidity, pressure and temperature that limit the 

lifetime of the sensors (Diamond, 2016). For this reason, nonintrusive methods have been developed 

for monitoring the vibration of turbomachinery blades. Blade Tip Timing (BTT) is a nonintrusive 

condition monitoring technique that uses proximity probes (Ye et al., 2019, Diamond, 2016) and a shaft 

encoder to infer the blade tip displacement with respect to the shaft. Using this information, it is possible 

to detect vibration amplitudes and resonance frequencies of the blade. One of the most sought-after 

vibration quantities from BTT data is the natural frequencies of a blade. 

Various methods have been proposed for identifying natural frequencies of rotor blades using BTT. 

These techniques show promise for identifying and tracking damage in turbines and compressors while 

the system is in operation. However, one of the largest problems with BTT is that every measurement 

occurs only after a blade has passed a proximity probe. Thus, the sampling frequency of a BTT system 

is dependent on the angular velocity of the rotor. Since the number of proximity probes encountered in 

field installations are usually limited to ten or below, the sampling rate of the BTT system is usually 

lower than some or all blade natural frequencies (Hu et al., 2015). These factors cause traditional 

processing algorithms, such as the Fourier Transform, to have limited applicability. 

1.2. Problem Overview 

The general approach to predicting RUL from condition monitoring data starts by converting the time-

based sequence of measurements into a feature space (Javed et al., 2012; An, Kim and Choi, 2015). 

This feature space reduces the dimensionality of the signal. The features are then interpreted with a 

diagnostics model that identifies and quantifies the damage of the component. A damage propagation 

model is then applied to the current state and a future damage state is computed from this estimate. The 

End of Life (EOL) of the component is finally obtained when the future estimated damage state exceeds 

the failure criteria. RUL is simply interpreted as the time until the failure criteria is exceeded with a 

certain safety factor.  

Liao and Köttig (2014) describe the implementation of prognostics using a similar flowchart as depicted 

in Figure 1.1. The figure shows each part of the information described above. The arrows represent 

different models that convert the input information state to the output state. This figure can further be 

subdivided into two key regions namely diagnostics and prognostics. The top part describes the 

diagnostics problem and has the objective of quantifying the damage state of the turbomachine blade. 

Whereas, the bottom row illustrates the prognostics problem and has the objective of propagating the 

damage by estimating future states until a failure criterion is reached. Both parts of the problem are 

crucial for estimating the RUL (Worden and Dulieu-Barton, 2004). Errors in the estimation of damage 
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during the diagnostics part causes errors in the final estimate of the RUL. Likewise, errors in the 

prognostics propagation model will either cause an early or late estimate of the EOL.  

Moreover, each of the methods used in a prognostic algorithm follow from a detailed physics model. 

Yet, it is sometimes difficult to solve these physics models because of either computational cost and/or 

model complexity. Data-driven models, however, construct models that overlook some of the 

information in the flowchart. The only requirement being that enough data must be available. Li, Ding 

and Sun (2018) emphasise an important risk about estimating RUL. That is, the risk associated with late 

estimates of the EOL has severe consequences in terms of safety, whereas early estimates only impact 

cost. Therefore, decision making based on RUL estimates would be easier to perform if the RUL 

contains confidence intervals. If confidence intervals are available, the decision makers can dynamically 

adjust the level of risk they are willing to take. 

 

Figure 1.1: Information flowchart of the diagnostics and prognostics framework for obtaining the RUL 

from a noisy BTT signal 

1.3. Objectives 

The main objective of this dissertation is to estimate the RUL of a rotating blade given a BTT 

measurement signal. Therefore, this work is primarily a solution to the prognostics problem. However, 

as shown in Figure 1.1 prognosis is not a single problem but requires solutions to many smaller 

problems. This dissertation therefore proposes techniques and algorithms for the following three aspects 

of a complete real time prognostics approach for a turbomachinery blade. The proposed methodologies 

are tested and proven using experimental test results. 

1. BTT as a condition monitoring method for identifying natural frequencies of rotating blades. 

2. Diagnosis of a rotating turbomachinery blade’s crack length from measured natural frequencies. 

3. Prognosis of typical crack lengths in turbomachine blades using a physics based and data-driven 

hybrid method. 
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2. Literature study 

Prognostics is the science of prediction and in the context of structural health management it is the 

estimation of the RUL of components or subsystems in mechanical systems (Saxena, 2010). These 

estimations/predictions are critical when preforming maintenance decisions. Prognostics follows a two-

step process where a diagnosis of damage in a component or system is obtained from a condition 

monitoring signal and a prognosis is used to estimate the components’ RUL (Liao and Köttig, 2014). 

Prognostics is ideally implemented in a real-time setting where estimates of the RUL are calculated 

while the condition monitoring data is collected from sensors.  

However, many models used to diagnose and estimate future faults may not be constructed with real-

time data. Instead, models are often trained with historical data and real-time estimates are made based 

on these pre-constructed models. These types of models may either be governed by physics or 

constructed from data. Hybrid or fusion prognostics models have the potential of incorporating both 

model types to quantify uncertainties in simplified physics models (Lei et al., 2018). This literature 

study introduces the field of Prognostics and Health Management. 

2.1. Overview of Prognostics and Health Management (PHM) 

The definition of RUL is the estimated remaining time or number of fatigue cycles for which a 

component will remain within its specifications for assumed future operating loads and future 

environmental conditions (Saxena, 2010). The RUL prediction is based on an analysis of failure modes 

and the assessment of the existing damage in the component. The current damage is compared with a 

damage propagation model until the component exceeds its specifications (Orchard and Vachtsevanos, 

2007). In turbomachines, one of the primary damage mechanism is high cycle fatigue crack propagation 

(Brits, 2016). Severe cyclic loads are exerted on the blades during operation. These loads are caused by 

the fluid’s interaction with the blades. Fluctuations in the fluid pressure cause varying loads on the 

rotating blades (Forbes and Randall, 2013). This study seeks a simplified model that reduces the 

complexity of the physics (fluid interaction with the blade) in these systems, but also utilises vibration 

data to fine tune these simplified physics models. 

Evidently, estimating RUL primarily depends on the framework one wishes to implement it in. This is 

referred to as the PHM framework. Saxena (2010) identifies two aims in prognostics namely (i) 

contingency management and (ii) maintenance management. Contingency management has the 

objective of increasing safety and decreasing collateral damage whereas maintenance management aims 

at decreasing costs and mitigating unnecessary servicing. Both methods provide different optimum 

decision criteria and have different views on the optimum RUL. Therefore, the term RUL is relative to 

the engineer’s judgment and goals (Kai Goebel et al., 2011). Subsequently, the end of life (EOL) of a 

component should be any researcher’s first objective before seeking RUL. Since this allows users to 
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define a failure threshold (i.e. safety factor) of the prognostic horizon that satisfies their objectives. 

Consequently, run-to-failure data is necessary for any data driven prognostics model. This type of data 

is hard to come by due to the associated cost and risk when obtaining this data. Since, RUL is also 

dependent on the maintenance strategy it is important to derive a prognosis from the diagnosis of the 

component. This step is often neglected by most data-driven prognostics methods.  

2.1.1. Prognostics and Health Management (PHM) framework 

PHM should be the objective from the start of data acquisition to the end of life if one considers RUL 

for any maintenance decision. Consequently, one should use the appropriate sensors such that features 

of the sensor’s data correlate strongly with the health state (i.e. damage) in the structure.  Lei et al. 

(2018) and Saidi et al., (2018) refer to these features as either health indicators (HIs) or condition 

indicators (CIs). The health state (HS) of the component is often observable such as the case of fatigue 

cracks being measured as part of non-destructive testing (NDT). The operation of the component or 

system is stopped for NDT purposes; thus, there is a limitation on the time intervals between measuring 

the cracks. Because of this, the damage in the system can rather be estimated from a continuous 

condition monitoring signal that allow structural health monitoring while the system or component is 

in operation. This is called a real-time diagnostics and prognostics framework (Chen et al., 2018).  

Vibration based condition monitoring is a field which considers detecting faults and tracking 

degradation in a component using vibration characteristics. Carden and Fanning (2004) identify three 

domains in which vibration characteristics are analysed namely (i) time domain, (ii) frequency-order 

domain and (iii) modal domain. Obtaining features from each of these domains require some knowledge 

about how the system behaves. This means one requires physics-based models such as a finite element 

model (FEM) that compares all the characteristics in each domain with the current health state. 

Otherwise, a data-driven model is required for comparing historical vibration characteristics with 

current observations to estimate the current health.  

  

(a) (b) 

Figure 2.1: Root mean square (RMS) health indicator over time a two stage (a) and three stage (b) 

degradation process depicted by Lei et al. (2018). 
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Time-based features may include statistical quantities such as the mean, standard deviation, kurtosis, 

skewness, rms and crest factor. These potential features might change as the structure degrades as 

depicted in Figure 2.1. The figure shows the change in RMS as the bearings begin to degrade. These 

time-based features assume that the condition monitoring signal originates from a stochastic process 

and can therefore completely be described by features of a probability density function. Nonetheless, 

prior signal processing of the time-based signal allows the extraction of frequency-based features that 

align better with physics models. These features also allow for analytical vibration models. The natural 

frequencies are related to the mass and stiffness of the component and should therefore be indicative of 

the health state of the structure (Carden and Fanning, 2004). On the other hand, modal domain analysis 

compares mode shapes to infer the location and extent of damage in the structure. This analysis is only 

conceivable for sensors that measure the shape of the structure. Corrado et al. (2018) showed that the 

mode shape allows one to detect multiple cracks and determine the location and size of these cracks by 

performing Gaussian process regression (GPR) on the collected data. Uhl (2004) found that three types 

of analyses are possible for detecting damage from mode shapes namely (i) modal vector correlation, 

(ii) modal curvature analysis and (iii) analysis of the deformation energy of the mode shapes. Other 

features may also originate from application of deep learning with artificial neural networks (ANN) 

using autoencoders and convolution neural networks (CNN) (Zhang et al., 2018). However, assuming 

there is limited data for turbomachine blade failure these models may overfit1 the data and fail to 

generalise the mapping between condition indicators and the vibration-based condition monitoring 

signal. 

2.1.2. Physics-based, data driven and hybrid models 

Carden and Fanning (2004) identified four stages of vibration-based condition monitoring namely (i) 

damage detection, (ii) damage location estimation, (iii) damage severity quantification and lastly (iv) 

RUL prediction. The last stage is the most important stage but relies on all other previous stages when 

using physics-based methods. That is, one cannot estimate the RUL accurately if the damage in the 

component is not estimated correctly. The models required for estimating damage and estimating RUL 

are discussed next.  

Diagnostics models 

First, a model is required for mapping the health indicators to an approximation of the health state of 

the component (Liao and Köttig, 2014). The model is called the diagnostics model (i.e. stage iii) and 

depends only on the features extracted from the condition monitoring signal. In this dissertation the 

natural frequency obtained from BTT data is considered as the health indicator. A lot of studies are 

dedicated to proving the relationship between natural frequency and damage for blades and cantilever 

                                                      

1 Overfitting is a modelling error that occurs when overly complex models are selected to represent a limited 

number of data points. (Bishop, 2006; Will, 2019).  
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beams. Elshamy, Crosby and Elhadary (2018) showed, using the FEM simulations and experimental 

data, that the depth of a crack is correlated to a reduction in the natural frequency of a rectangular 

cantilever beam. These observations are also confirmed by FEM simulations of Khalkar (2018), 

Chaudhari and Patil (2016). 

Roemer and Kacprzynski (2000) studied prognostics and diagnostics of gas turbine engines and mention 

the significant improvement hybrid diagnostics models have on the overall confidence levels of damage 

estimations. In their work they showcase the fusion of probabilistic models and pattern recognition 

models which are both data-driven methods. Despite hybrid methods having such a large potential 

impact on the confidence of diagnostics. Lei et al. (2018) stated that hybrid methods are some of the 

least published works in diagnostics and prognostics. The development of specialised equipment and 

flexible manufacturing causes mechanical systems to become more complex and unique. Consequently, 

less data becomes available for newly commissioned equipment and the components turn out to be too 

complex to construct all-entailing physics-based diagnostics models. Therefore, these circumstances 

require a model constructed from all available sources of information. Hence, hybrid methods are 

preferred until enough data is collected. 

Du Toit, Diamond and Heyns (2019) proposed a hybrid diagnostics method that classifies the severity 

of a fatigue crack at the root of turbomachinery blades using BTT condition monitoring data. The 

diagnostics model is constructed from a hybrid of finite element models and data collected from 

experiments. The hybrid model is pre-constructed and can be used to classify the severity of a blade 

crack in real-time. This method provides a discrete severity classification instead of an estimation of 

the crack length in the blade. However, a continuous estimate of the size of the crack is required for 

prognostics. This is because prognosis is concerned with the rate at which damage propagates in a 

component. The location of the crack considered in their work was induced at leading edge of the blade. 

Deterministic estimates are usually obtained from physics-based methods, whereas data-driven methods 

can provide confidence bounds for the diagnostics. In the latter case a probability distribution is often 

obtained as an estimation of the current damage in the component.  

Prognostics models 

Another model is required for approximating future health states based on fault degradation. This model 

is called the prognostics model and has the primary objective of estimating RUL (stage iv).  

To estimate RUL of turbomachine blades from physics-based methods one requires an understanding 

of the failure mechanism that is being investigated. Modelling cracks in a blade requires knowledge of 

fatigue and fracture mechanics such that the model describes crack growth rate and when failure occurs 

in the blade. Other failure mechanisms such as creep and wear may also be present in the blade. Cubillo, 

Perinpanayagam and Esperon-Miguez (2016) mention that an understanding of the failure mechanism 

in a component is fundamental to any physics-based prognostics model. Modelling the exact 
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degradation may require computationally expensive methods such as a fatigue crack growth simulation 

using FEM. Reduced physics models generalise the failure mechanics to reduce computational cost. 

However, reduced models may generalise the failure mechanism too much such that correctly modelling 

the physics becomes problematic.  

On the other hand, data-driven methods are only considered once enough data is collected, this is to 

prevent overfitting the model to the data. The most popular methods for predicting RUL from data are 

(i) GPR models and (ii) ANNs (Saha et al., 2010; An, Kim and Choi, 2015). Li, Ding and Sun (2018) 

utilised deep CNNs to map the condition monitoring signal directly to remaining useful life without 

diagnosis of the damage in component. Models such as these require a large amount of run-to-failure 

data to predict RUL. The condition monitoring signal that Li, Ding and Sun use originates from run-to-

failure simulations of 100 aircraft engines (Goebel and Saxena, 2008). A single failure in a 

turbomachine cost millions of dollars of damage and potential loss of human life. The associated cost 

of obtaining a single data point makes these types of data-driven methods extremely unfavourable. 

Failure mechanics models are often described in terms of differential equations that relate the damage 

propagation rate to the current damage in the component (i.e. Paris’ Law). Future damage is then 

determined from integrating these differential equations. It is required that the diagnostics model 

accurately determines the damage in the component to integrate the failure model correctly. Le, 

Chatelain and Bérenguer (2015) propose the use of sequential inference models in the form of a hidden 

Markov model (HMM) to improve the estimations of damage from the diagnostics. These improved 

estimates allow better estimation of future damage. The justification of this method is that in a real-time 

setting one obtains information about the damage in the component as the damage propagates. Thus, 

estimating/predicting damage with the failure mechanics modal and measuring the damage with the 

diagnostics model allows one to perform statistical inference on the “real” damage state of the 

component. Further details on the sequential inference model is provided later in this dissertation.  

Liao and Köttig (2014) suggest many hybrid models that estimate degradation from an augmentation 

of reduced physics models with data. The framework that Liao and Köttig suggests is a state space 

model. Particularly, models that utilise the hidden Markov assumption. It is assumed that the current 

damage state is only dependent on the previous damage state. These types of models allow for some 

interesting analyses using Bayesian statistics to improve prior estimates of an unknown hidden (“real”) 

damage state of the component (Candy, 2006). 

2.2. Rotor dynamics: Behaviour of rotating structures 

Rotor dynamics is the study of the behaviour of rotor blades, shafts, bearings and gears experiencing 

vibration (Meherwan, 2012). Consider a rotor blade, the blade has multiple natural frequencies and 

mode shapes that can be found using FEM or experimentally from a modal impact hammer test.  Figure 

2.2 shows the first three mode shapes for a simplified rotor blade simulated from FEM and Figure 2.3 
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plots the frequency response function of the same blade from a modal impact hammer test. The first 

mode shape (‘flap mode’) occurs at 203 𝐻𝑧, the second mode (‘twist mode’) occurs at 1049 𝐻𝑧 and 

the third mode occurs at 1236 𝐻𝑧. The impact hammer test only shows the first resonance frequency. 

The first mode shape is characteristic to most single degree of freedom (SDOF) models (Gubran, 2015; 

Mishra, 2016; Du Toit, Diamond and Heyns, 2019). The second mode shape, a torsional mode shape, 

has a nodal line over the length of blade. The blade tip rotates but does not have a significant 

displacement in the turbine’s circumferential direction. This has a significant impact on detecting these 

frequencies with BTT techniques.  

 

 

 

(a) (b) (c) 

Figure 2.2: ANSYS simulated first three mode shapes of rotor blade with the 1st (a), 2nd (b) and 3rd (c) 

natural frequency mode shapes.  

 

Figure 2.3: Frequency response function (FRF) of a rotor blade from a modal impact hammer test with 

amplitude and corresponding phase diagrams. 
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2.2.1. Centrifugal stiffening of turbomachine blades 

Rotor blades experience centrifugal forces due to the angular velocity of the shaft. It is found that due 

to these centrifugal loads an artificial stiffening occurs in the blade and the natural frequencies of the 

blade increase. This increase in natural frequencies depends on the shaft speed of the rotor. Campbell 

diagrams plot the change in natural frequencies as a function of angular shaft speed. BTT attempts to 

find the natural frequency of a blade while the blade is rotating. This means the natural frequency 

measured from BTT is different than the frequency measured from a modal impact hammer test when 

the blade is stationary. 

An example of a Campbell diagram is shown on the left side of Figure 2.4. In a preliminary investigation 

before determining the scope of this dissertation the effect of cracks on the overall Campbell diagram 

was investigated using FEM. This figure shows multiple Campbell lines (blue) to indicate how the 

“healthy Campbell line” changes as damage is introduced to the blade. This figure shows that the length 

of the surface crack does not change the shape of the Campbell diagram, instead the entire Campbell 

diagram is lowered due to the reduced stiffness of the blade. The cracks induced in the FEM simulations 

are equivalent to the cracks at the leading edge of the blade as investigated by Du Toit, Diamond and 

Heyns (2019).  

 

 

(a) (b) 

Figure 2.4: Preliminary ANSYS simulation results for the changes in Campbell diagram (a) with 

increase in side crack length of a rotor blade (b). 

2.2.2. Dynamic loads on rotating blades 

Typical loading cases on rotor blades manifest in harmonics of shaft speed. These loads cause large 

deflections of the blade tip at certain speeds called critical speeds. Forbes and Randall (2013) identify 

two types of sources of loads that cause vibration in rotor blades namely (i) transmitted forces from 
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structural components such as bearings and imbalances in the shaft and (ii) unsteady pressure 

distributions due to the fluid exerting a force on the blade. The latter is considered in this dissertation.  

The red lines in Figure 2.4 are referred to as engine order (EO) lines and are commonly used in the 

design of turbomachinery blades (Meherwan, 2012). These lines show potential harmonic excitation 

frequencies of the shaft and where the blue and red lines meet, resonance will occur since the excitation 

frequency equals the natural frequency of the blade. The 10th, 15th and 20th EO lines are shown in Figure 

2.4. 

The schematic in Figure 2.5 shows the wake interaction between stator and rotor rows of blades (Forbes 

and Randall, 2013). Observe that fluid changes momentum as the fluid moves from left to right and the 

middle row of blades moves vertically. This momentum change in the fluid has a loading effect on the 

blades. An equivalent net pressure difference is experienced by the blade that may either be harmonic 

(i.e. in phase with shaft angle) or non-harmonic. The frequency of the load that blade experiences is 

equal to the stator blade passing frequency. That is, the blade experiences a load pulse each time the 

rotor blade passes a stator blade. This load case is not the only loads a blade will experience. Gallego-

Garrido et al. (2007) determined resonance of the blade tip at twice the shaft speed (2nd engine order) 

even though 8 engine order blockers (8 stator blades) were used. This occurs because the interaction 

between the fluid and the blade is far more complex than a single harmonic excitation load at the stator 

blade passing frequency. A simplified load case is later simulated on a single degree of freedom system 

model that emulates behaviour of a blade during a run-up and run-down of the shaft. The simulated load 

case only considers the loads caused by a stream of air exerting a force on the blade. In the experiment, 

a single stream of air from a pressure source is tested.  

 

Figure 2.5: The wake interaction between rows of blades in a turbomachine depicted by Forbes and 

Randall (2013) 

2.3. Blade Tip Timing: Measuring natural frequency  

BTT is a real-time vibration monitoring method that measures relative displacement of the blade with 

respect to the shaft. The displacement is inferred from a measurement of the time of arrival (ToA) of 

each blade at the location of a proximity probe (Zhang et al., 2017). Figure 2.6 depicts a typical BTT 

setup with a one pulse per revolution (OPR) sensor at the shaft. A multiple pulses per revolution (MPR) 
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tachometer provides a more detailed representation of the angular velocity than the OPR sensor. The 

shaft encoder is used to determine the blade’s angular location each time a blade passes a proximity 

sensor. The displacement of the blade tip is then calculated from the difference between the measured 

angular location and an assumed “zero” angular location of the blade.  

 

Figure 2.6: Typical BTT setup with rotating blades in a stationary hub adapted from Zhang, Duan and 

Jiang (2017). Tip-timing sensors are mounted to the hub to measure the time of arrival of the blades 

and the one pulse per revolution (OPR) sensor is placed near the shaft of the rotor. 

2.3.1. Approaches 

Equation (2.1) shows how the tip displacement (𝑦) relates to the angular velocity and the position of 

the tip timing sensor. 𝑅 denotes the radius from the centre of the shaft to the blade tip, Ω(𝑡) is the 

rotational velocity as a function of time. Time of arrival (ToA) is denoted by 𝑡𝑖𝑗 and 𝛼𝑖𝑗 is the assumed 

static angular position of the blade. 

𝑦(𝑡) = 𝑅 (∫ Ω(𝑡)𝑑𝑡
𝑡𝑖𝑗

0

− 𝛼𝑖𝑗) (2.1) 

The tip deflection signal obtained from a BTT system is an event-based signal with a non-constant 

sampling frequency. Measurements of the tip displacement only occurs when the ToA is measured. 

This influences the type of signal processing one can perform on BTT data. For instance, a non-constant 

sampling frequency violates the assumptions behind most implementations of the Fourier transform and 

it is therefore not accurate to use this for a frequency analysis (VanderPlas, 2018). Also, adaptations to 

the standard Fourier transform such as the Non-Uniform Fourier Transform (NUFT) does also not 

provide accurate results due to the Nyquist frequency limit. This signal can also be resampled in terms 

of shaft revolutions to perform an analysis called computed order tracking. Computed order tracking 

identifies occurrences per revolution instead of per second. Yet, both methods have the problem of 

aliased signals due to the low number of samples per revolution or per second. The Nyquist frequency, 

which is equal to half the sampling frequency, is the largest frequency at which the Fourier transform 

will provide accurate results without aliasing. Subsequently, a low sampling frequency does 
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unfortunately not provide a complete picture of the frequency characteristics of the signal. Therefore, 

new signal processing methods that allow extraction of these features need to be considered. 

2.3.2. Fourier transforms of non-uniformly sampled data 

Consider the well-known discrete Fourier transform (DFT) of a signal denoted 𝐺(𝑓𝑘) in equation (2.2). 

The Fourier transform of equally sampled data allows one to analyse the frequency content of a signal. 

The inverse of the DFT is also provided in equation (2.3).  

𝐺(𝑓𝑘) =
1

𝑁
∑ 𝑔(𝑡𝑛)𝑒

−2𝜋𝑘(𝑛/𝑁)𝒾

𝑁−1

𝑛=0

 (2.2) 

𝑔(𝑡𝑘) = ∑ 𝐺(𝑓𝑛)𝑒
2𝜋𝑘(𝑛/𝑁)𝒾

𝑁−1

𝑛=0

 
(2.3) 

Since the invention of the DFT, most vibration-based condition monitoring efforts involve the 

transformation from time-based signals to frequency domain. One of the most limiting assumptions of 

this Fourier transform is that of constant sampling frequency and Nyquist frequency limits. 

One of the methods to overcome these limitations is the Lomb-Scargle periodogram. A periodogram is 

simply the amplitude of the Fourier transform squared and is computed using equation (2.4). 

𝑃(𝑓) = |𝐺(𝑓𝑘)|
2 = |

1

𝑁
∑ 𝑔(𝑡𝑛)𝑒

−2𝜋𝑘(𝑛/𝑁)𝒾

𝑁−1

𝑛=0

|

2

 (2.4) 

Kaloop and Hu (2015) demonstrated the use of the Lomb-Scargle periodogram in vibration-based 

condition monitoring for detecting damage in a stayed-cable bridge. The Lomb-Scargle algorithm 

maximises the likelihood of the provided data with respect to the model prescribed in equation (2.5). 

Thus, the algorithm solves the coefficients by maximising the probability of obtaining the data (denoted 

𝒟) given the prescribed model in equation (2.5) (denoted ℳ) and all its coefficients for any selected 

frequency (denoted 𝑓). This means the model parameters are determined from equation (2.6). If the data 

is assumed to be affected by white Gaussian noise distributed over the model, the solution to equation 

(2.6) collapses to the standard linear least squares regression problem (Bishop, 2006). The periodogram 

is simply computed by substituting the solution of equation (2.6) into equation (2.7). 

𝑔(𝑡, 𝑓) = 𝐴𝑓 cos(2𝜋𝑓𝑡) + 𝐵𝑓 sin(2𝜋𝑓𝑡) + 𝐶𝑓 (2.5) 

𝐴𝑓 , 𝐵𝑓 , 𝐶𝑓 = argmax
𝑤.𝑟.𝑡 𝐴𝑓,𝐵𝑓,𝐶𝑓 ∀ 𝒟

𝑝(𝒟|ℳ, 𝐴𝑓 , 𝐵𝑓 , 𝐶𝑓 , 𝑓) (2.6) 

𝑃𝐿𝑜𝑚𝑏(𝑓) = |𝐴𝑓
2 + 𝐵𝑓

2| (2.7) 
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The Lomb-Scargle periodogram is finally determined using equations (2.8) and (2.9). Notice that the 

periodogram is a function of the frequency and all the data is simply substituted in the summations. 

𝑃𝐿𝑜𝑚𝑏(𝑓) =
1

2
{
(∑ 𝑔(𝑡𝑛) cos(2𝜋𝑓[𝑡𝑛 − 𝜏]) 𝑛 )2

∑ cos2(2𝜋𝑓[𝑡𝑛 − 𝜏]) 𝑛
+
(∑ 𝑔(𝑡𝑛) sin(2𝜋𝑓[𝑡𝑛 − 𝜏]) 𝑛 )2

∑ 𝑠𝑖𝑛2(2𝜋𝑓[𝑡𝑛 − 𝜏]) 𝑛
} (2.8) 

𝜏 =
1

4𝜋𝑓
tan−1 (

∑ sin(4𝜋𝑓𝑡𝑛) 𝑛

∑ cos(4𝜋𝑓𝑡𝑛) 𝑛
) (2.9) 

The Lomb-Scargle periodogram is different from the Fourier transform, since the model in equation 

(2.5) is only a function of a single frequency. Therefore, this approach is a measure of interrogating the 

frequency content of the signal. VanderPlas (2018) indicates that the Lomb-Scargle periodogram has 

an elegant connection with probability density functions. That is, the relationship in equation (2.10). 

This shows that the probability of the frequency given that data (𝒟) and the model (ℳ) is directly 

proportional to the exponent of the Lomb-Scargle periodogram. Thus, the global maximum in the 

periodogram is the maximum likelihood estimate of the frequency.  

𝑝(𝑓|𝒟,ℳ) ∝ exp(𝑃𝐿𝑜𝑚𝑏(𝑓)) (2.10) 

It is therefore tempting to believe that, in terms of BTT the peak of the periodogram is the natural 

frequency of the blade. This dissertation shows, however, that the model in equation (2.5) does not 

approximate the data from BTT well. The Lomb-Scargle periodogram is consequently changed to suit 

BTT data better and the resonating frequency is then found from the data. 

2.4. Failure mechanisms: Damage state prediction 

Understanding damage and the methods for modelling damage is fundamental to physics-based 

prognostics according to Cubillo, Perinpanayagam and Esperon-Miguez (2016). This discussion deals 

with some fundamental ideas of fracture mechanics. The focus is on why components fail in the 

presence of cracks. More so, the rate at which a small crack will grow in a component due to fatigue 

loading. 

2.4.1. Failure types and models 

Fracture mechanics attempts to model the reason for unexpected brittle failure in components. The 

components fail due to the presence of cracks. Sharp discontinuities in a component causes large stress 

amplification factors in the component. Sharp cracks have near infinite stresses at the crack tip. 

However, this does not mean that the component will fail due to these stresses. For certain loads, the 

material can sustain the presence of the crack. Failure due to cracks are determined from the stress 

intensity factor of the crack. The idea of the stress intensity factor was initially introduced by Griffith. 

Griffith derived that failure due to cracks in a structure occurs when it is energetically favourable for a 

crack to release its stored elastic potential energy due to an acting load exceeding the material’s ability 
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to maintain the energy. Failure will occur when inequality in equation (2.11) is satisfied. Griffith 

originally derived these equations for an infinite plate with a through thickness crack in the centre of 

the plate. The value 𝐾1𝑐 is a property of the material known as the fracture toughness. The stress applied 

to the plate and the crack length is denoted  𝜎 and 𝑎 respectively. It is important to note that the stress 

in equation (2.11) is the nominal stress and is calculated for the component without any cracks. 

𝑎 ≥
1

𝜋
(
𝐾1𝑐
𝜎
)
2

 (2.11) 

Not all cracks are centre though cracks as Griffith derived and the geometry of the part is often more 

complex than a flat plate. Therefore, engineers have developed methods to account for the geometry by 

adding a geometric factor 𝐹(𝑎). 𝐹(𝑎) is a function of the geometry and the crack length (Hertzberg, 

Vinci and Hertzberg, 2012).  The stress intensity factor 𝐾1 is defined in equation (2.12). Failure occurs 

when the stress intensity factor is equal to the material fracture toughness.  

𝐾1 = 𝜎𝐹(𝑎)√𝜋𝑎 (2.12) 

This dissertation looks at cracks in rotor blades. Due to the complex shape of these blades the geometric 

factor is often not available for the geometries of airfoils. The geometric factor can, however, be 

computed from the finite element method where the stress intensity factor is calculated at the crack 

front. These simulations require a fine mesh at the crack front to approximate the stress intensity factor 

well. Most researchers assume that the geometry of a blade is similar to a rectangular cantilever beam, 

with an applied bending moment, as shown in Figure 2.7. (Newman and Raju, 1981; Witek, 2015; Brits, 

2016). This assumption allows for the use of the empirical formulas derived by Raju and Newman 

(1984). These empirical formulae are derived from finite element simulations of many rectangular 

cross-sectional beams. The Raju-Newman equations are provided in Appendix A of the dissertation.  

  

(a) (b) 

Figure 2.7: Geometric assumption of a typical surface crack presented adapted from Brits (2016)             

(a) and the same geometric assumption adapted from Witek (2015) (b). 
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2.4.2. Crack growth rate 

Fatigue is the study of remaining useful life of components under cyclic loadings. Fatigue design utilises 

SN curves for quantifying the number of cycles to failure for a certain stress amplitude in a material. 

However, these heuristic models do not account for the number of cycles that already occurred before 

the remaining useful life is estimated. This section summarises models for quantifying fatigue in terms 

of crack lengths.  

Figure 2.8 shows the rate of crack growth as a function of the stress intensity range on a log-log graph. 

This graph is shown for a stress ratio equal to zero (𝑅 = 𝜎𝑚𝑖𝑛/𝜎𝑚𝑎𝑥 = 0). Notice that there are three 

stages in the lifetime of the crack. The first part is crack initiation, where the crack has started to form 

but is too small to detect, the second part is steady crack growth and the last stage is unstable crack 

growth. This dissertation is primarily interested in the second region when the crack experiences steady 

growth.  

 

Figure 2.8: Crack growth rate as a function of range of stress intensity factor (Dowling, 2013) 

Paris’ Law describes the steady crack growth rate of a crack from the stress intensity factor range. Paris’ 

Law is provided in equation (2.13) There are however limitations on the use of Paris’ Law namely (i) 

it is only applicable for stress ratios equal to zero and (ii) it is only applicable after the crack has initiated 

and before the critical crack length is reached. The value of 𝐶 and 𝑚 are material parameters. 

𝑑𝑎

𝑑𝑁
= 𝐶(∆𝐾)𝑚 = 𝐶( ∆𝜎 𝐹(𝑎)√𝜋𝑎)

𝑚
 (2.13) 
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Adaptations have been developed for Paris’ Law that incorporates other stress ratios when 𝑅 ≠ 0. Three 

of the most popular models that are widely mentioned in literature are the Walker equation, the Foreman 

equation and the NASGRO equation (Dowling, 2013; Rege and Lemu, 2017). These equations are given 

in equations (2.14) to (2.16). The values 𝐶0, 𝐶1, 𝐶2, 𝑚0, 𝑚1, 𝑚2, 𝛾, 𝑝 and 𝑞 are material parameters, 

∆𝐾𝑡ℎ  is the minimum stress intensity factor range that will cause crack growth and 𝐾𝑚𝑎𝑥  is the 

maximum stress intensity factor during the fatigue cycles. 

𝑑𝑎

𝑑𝑁
=

𝐶0
(1 − 𝑅)𝑚0(1−𝛾)

(∆𝐾)𝑚0 (2.14) 

𝑑𝑎

𝑑𝑁
=

𝐶1
(1 − 𝑅)(𝐾𝑐 − 𝐾𝑚𝑎𝑥)

(∆𝐾)𝑚1 
(2.15) 

𝑑𝑎

𝑑𝑁
= 𝐶2 [

(1 − 𝑓)

(1 − 𝑅)
∆𝐾]

𝑚2 (1 −
∆𝐾𝑡ℎ
∆𝐾

)
𝑝

(1 −
𝐾𝑚𝑎𝑥
𝐾1𝑐

)
𝑞  

(2.16) 

Notice that equations (2.14) to (2.16) all have a similar shape to equation (2.13). In fact, one could say 

that when assuming a constant stress intensity factor range the models in the above equations are all 

equivalent to equation (2.13) with modified Paris’ Law coefficients. Coppe et al. (2010, 2012) proposed 

a prognostics method that considers modifying the Paris Law coefficients to better predict RUL. Wang 

et al. (2019) also implemented these changes in an extended Kalman filter to predict RUL. 

2.4.3. Plasticity 

The crack growth rate and the stress intensity factor are derived using linear elastic fracture mechanics 

(LEFM). This means that the material behaviour is assumed to be completely elastic. However, thin 

components such as a blade may experience loads that cause plastic deformation in the blade. In these 

cases, LEFM is no longer applicable and other fracture mechanics principles are necessary to determine 

failure in the blade. Adaptations to the standard LEFM models allow for a plastic zone correction that 

only increases the length of the crack with a value of 𝑎𝜎0. This correction allows the use of LEFM in 

situations where small scale plasticity is present. Equation (2.17) shows how the stress intensity factor 

is determined with the plastic zone correction.  

𝐾1 = 𝜎𝐹(𝑎 + 𝑎𝜎0)√𝜋(𝑎+𝑎𝜎0) (2.17) 

This dissertation will factor the effect of plasticity into the uncertainty of the crack length. Therefore, it 

is assumed that LEFM is applicable for all loads experienced by the blade. Future work should consider 

non-linear methods for determining the stress intensity factor and validate the use of LEFM to determine 

the stress intensity factor of a crack. 
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2.5. Predicting Remaining Useful Life (RUL) 

After modelling the damage in the component using physics-based techniques the RUL of the 

component is determined from a damage propagation model. However, most deterministic estimates of 

the RUL do not capture the uncertainty in the RUL. 

In an article, An, Kim and Choi (2015) describe the methods available for determining RUL of a 

component using physics-based methods and data-driven methods. In their work they found a common 

issue with the prediction of RUL for data driven methods. There is often uncertainty around whether 

enough data has been collected to accurately model the behaviour of the damage mechanism. In their 

physics-based approach the researchers mention the use a Particle Filter (PF) to improve estimates of 

the current damage in the blade.  

Corbetta et al. (2017) also utilised a PF to model the multiple damage mechanisms of matrix cracks and 

delamination of composite laminates subject to fatigue loading. The failure mechanism of delamination 

behaves like a growing crack. In their method, the uncertainty in the damage is reduced by performing 

Bayesian inference on the measurement of (i) the matrix crack density, (ii) delamination and (ii) the 

normalised remaining stiffness of the component. 

Wang et al. (2019) proposed the use of an extended Kalman Filter (EKF) for determining fatigue cracks 

in a component. Again, the EKF was only used to improve the estimation of the current crack length. 

The RUL is predicted from this improved damage estimate. This chapter will discuss the sequential 

inference methods such as PFs and EKFs to improve the prediction of RUL. (Candy, 2006) 

2.5.1. Stochastic approach and the sequential inference problem 

Before the RUL is estimated for a component, the uncertainty in the current damage in the component 

is reduced by performing Bayesian inference. In this approach, the damage is modelled as a probability 

density function. At each diagnostic stage evidence is gathered about the current damage in the 

component. However, the current damage can also be predicted from previous estimates of the damage 

since the rate at which the damage grows is known from the previous operating conditions and the 

failure mechanics models. Thus, these two sources of information are combined using Bayes’ theorem2. 

Consider a hidden Markov chain model shown in Figure 2.9. The figure shows a hidden state vector 𝐱k 

and all its previous states denoted 𝐱k−1 and 𝐱k−2. The state vector consists of the “true” damage in the 

component and evolves over time according to a state transition model (green). The “true” damage of 

the component is always hidden and at each time step a diagnostic estimation is performed to obtain the 

estimation of the current damage, denoted 𝐳𝑘. These diagnostics measurements relate to the current 

                                                      

2 Bayes’ theorem determines the probability of an event based on prior conditions that are related to the event 

(Bishop, 2006). 
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damage state through the sensor model (purple). Initially, a prior probability3  density function is 

assumed for the hidden state vector. Typically, a multivariate Gaussian distribution (denoted 𝓝) with 

a prior mean vector, 𝛍0, and prior covariance matrix, 𝚺0 , is defined. This is shown in equation (2.18). 

The transition function (f) and sensor function (g) are affected by Gaussian white noise and are 

influenced by the process and sensor noise covariance matrices denoted 𝐑𝐰  and 𝐑𝐯  respectively. 

Equations (7.19) and (7.20) are the Gaussian transition and sensor models respectively. 

 

Figure 2.9: Hidden Markov chain model for sequential inference of the state vector 𝐱. 

𝑝(𝐱0) = 𝓝(𝛍0, 𝚺0) (2.18) 

𝑝(𝐱𝑘|𝐱𝑘−1) = 𝓝(𝐟(𝐱𝑘−1), 𝐑𝑤) (2.19) 

𝑝(𝐳𝑘|𝐱𝑘−1) = 𝓝(𝐠(𝐱𝑘), 𝐑𝑣) (2.20) 

Bayesian sequential inference primarily consists of two steps namely (i) predict and (ii) update. During 

the prediction step the current damage (𝐱𝑘) is predicted from the previous estimation of the damage 

(𝐱𝑘−1 ). The update step incorporates the information gained when observing the damage in the 

component from the diagnostics model. 

𝑝(𝐱𝑘|𝐳1:𝑘−1) = ∫𝑝(𝐱𝑘|𝐱𝑘−1)𝑝(𝐱𝑘−1)𝑝(𝐳1:𝑘−1) 𝑑𝐱𝑘−1  (2.21) 

𝑝(𝐱𝑘|𝐳1:𝑘) =
𝑝(𝐳𝑘|𝐱𝑘)𝑝(𝐱𝑘|𝐳1:𝑘−1)

𝑝(𝐳𝑘|𝐳1:𝑘−1)
 

(2.22) 

                                                      

3 Prior probability is the probability of an event before making reference to certain observations or assumptions 

related to the event (Kenton, 2018). 
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Solving the integral in equation (2.18) and determining the updated probability distribution in equation 

(2.19) can sometimes be a non-trivial task. Especially when either the transition function or the 

measurement function is non-linear. The Kalman filter is a solution to equations (2.21) and (2.22) where 

the transition and sensor models are linear and the probability density functions in equations (2.18) to 

(2.20) are Gaussian distributed. Wang, Hu and Armstrong (2017) demonstrated the use of a Kalman 

filter for estimating cracks with a simplified Paris’ Law equation. Saidi et al. (2018) extends the idea 

by implementing a Kalman smoother to improve these estimations. Each of these methods linearise 

Paris’ Law by numerically integrating the crack growth rate using the forward Euler method to obtain 

the next crack length given the loading conditions and the previous crack length. These methods are 

only accurate for short transitions and are erroneous when many loading cycles occur between real-time 

diagnosis of the machine. 

The analytical solution to equations (2.21) to (2.22) are very difficult for systems with nonlinear 

transition and sensor models. In prognostics, this transition model is the damage propagation model 

which is almost always nonlinear. Therefore, the most popular methods used by researchers are Monte 

Carlo methods also known as particle filter methods (An, Kim and Choi, 2015). Many researchers use 

particle filters for their prognostics models (Sbarufatti et al., 2002; Baraldi, Mangili and Zio, 2012; 

Baraldi et al., 2013; Jouin et al., 2016; Corbetta et al., 2018). The particle filter estimates the probability 

distributions with samples from the distribution. Inference is then performed on each individual sample 

of 𝐱 and samples collectively represent the posterior probability4 distribution. A single note about PFs 

is that they can become computationally expensive when the state vector (𝐱) has many dimensions and 

the method is only accurate for numerous samples. 

Julier and Jeffrey (1997) proposed a different approximation method for determining the posterior 

distribution in equation (2.22) called the unscented Kalman filter (UKF). The UKF attempts to 

approximate the Kalman Filter for non-linear transition functions by substituting the probability density 

functions with what is called the sigma points of the distribution. These sigma points represent the mean 

and covariance of the original Gaussian probability density function. After each predict and update step 

the sigma points are passed through the transition and measurement functions to obtain and approximate 

the posterior probability density function. Figure 2.10 shows a one-dimensional case where the prior 

probability distribution is shown in blue. This probability distribution is passed through a non-linear 

function to obtain the posterior distribution shown in red on the y-axis. The UKF approximates the 

posterior distribution (red) with a Gaussian distribution (green) using the sigma points shown by the 

dotted lines. Figure 2.11 shows a two-dimension case and how the sigma points transition during a 

nonlinear transformation. The result from the UKF is always a Gaussian distribution. Anger, Schrader 

                                                      

4 Posterior probability is the updated probability after taking new information, observations or assumptions into 

account (Hayes, 2019). 
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and Klingauf (2012) used a UKF to improve RUL prediction accuracy of bearings experiencing surface 

pitting during operation. This dissertation uses a UKF to improve the estimation of the crack length. 

The proposed model also updates the coefficients of Paris’ Law to improve the estimations of future 

crack lengths. An analytical integration of Paris’ Law is proposed instead of a forward Euler method to 

increase the accuracy of the predict and update step in equation (2.21) and (2.22). 

 

Figure 2.10: A one-dimensional illustration of passing the probability distribution of the state 𝑥𝑘 

through a non-linear transition function to obtain 𝑥𝑘+1. The distribution in red is the resulting non-

Gaussian distribution and the distribution in green is the Gaussian approximation that the UKF solves. 

 

Figure 2.11: 2D-Multivariate Gaussian approximation after the transition of a non-linear function and 

the use of sigma points to show the new distribution after a non-linear transformation (adapted from 

Julier and Jeffrey, 1997 and Singh, 2018). 

  

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Research methodology 

22 

 

3. Research methodology 

Relevant factors that affect the prognostics of turbomachine blades have been considered in the 

literature study. This section summarises the scope and contributions that this dissertation offers in the 

field of RUL prediction and diagnostics of turbomachine blades. It is understood that diagnostics form 

an important part in RUL prediction. Uncertainty management from noisy condition monitoring data 

also affects the final RUL result. Therefore, the scope of this dissertation is an all-inclusive prognostics-

diagnostics methodology and an experimental validation there-of. 

3.1. Research question 

This dissertation provides solutions to the following three problems found in the literature. These areas 

form the basis for a complete real time prognostics methodology to be implemented on a general 

turbomachine.  

3.1.1. Determine the natural frequency of a rotor blade during a transient 

operation 

Many researchers provide methods for characterising the vibration of turbomachine blades using BTT 

data (Gallego-Garrido et al., 2007; Diamond, 2016; Mohamed, Bonello and Russhard, 2019). A novel 

method is proposed for identifying the natural frequency of a turbine blade from multiple proximity 

probes measurements. This method utilises a least squares spectral analysis (LSSA) method and finds 

its origin in the Lomb-Scargle periodogram (VanderPlas, 2018). The method attempts to approximate 

a Fourier Transform on data that is unequally sampled in time. The blade resonating speed is determined 

from this method and the natural frequency is calculated.  However, modifications to the standard Lomb 

Scargle method are required to suit the data from multiple proximity probes. The method is only 

validated for transient shaft speeds, specifically a run-up and run-down. 

3.1.2. Estimate fatigue crack length from natural frequency 

A lot of vibration-based condition monitoring efforts are focused towards estimating damage from 

vibration characteristics (Mishra, 2016). This dissertation suggests a hybrid method for estimating crack 

sizes from both physics-based models and data driven models. The method utilises a Bayesian approach 

to construct the hybrid models. The Bayesian approach provides uncertainty estimates of the damage 

in the rotor blade given all prior data collected. The method is a Gaussian Process Regression (GPR) 

model that constructs a relationship between the natural frequency and crack length by modelling the 

points as samples from a multivariate Gaussian distribution. Finite Element Models (FEM) augment 

the data collected from experimentally damaged blades to improve the model performance. The method, 

as derived and tested in this dissertation, is restricted to cracks that initiate at the maximum bending 

stress location when the blade tip is displaced in the tangential direction. This dissertation therefore 

assumes the location of the crack and the size of the crack is determined through both experimental 
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results and FEM fracture simulations. Extensions to other crack locations can be performed in future 

research and will follow the same process. 

3.1.3. Predict future crack lengths and estimate RUL 

The final part of this dissertation utilises the estimations of the crack length to predict the number of 

fatigue cycles until failure of the blade. It is assumed that the stress range of the blade during operation 

is known and future stress ranges are approximated from the normal operating conditions. In the 

standard physics-based approach, the number of fatigue cycles to failure is determined from integrating 

Paris’ Law. However, the method is deterministic and only provides a single estimation of the RUL. In 

recent works, a Bayesian inference method is proposed for improving the estimate of the current crack 

length (Wang et al., 2019).  

The method proposed here is different from the deterministic approach and the Bayesian standard 

inference approach and considers performing inference on both (i) the current crack length and (ii) the 

degradation mechanics model (i.e. Paris’ Law) to improve the estimation of future crack lengths. Coppe 

et al. (2010, 2012) first suggested adjusting Paris’ Law coefficients to estimate RUL. However, the 

suggested method uses a Markov-Chain-Monte-Carlo (MCMC) model and is computationally 

expensive to evaluate. Coppe et al. also disregard the geometric factor and factors its uncertainty into 

the uncertainty of the Paris’ Law coeficients. This dissertation improves the suggested model with an 

unscented Kalman filter (UKF) to improve the computational efficiency of method. This method also 

includes the previously neglected geometric factor to reduce the uncertainty of Paris’ Law.      

3.2. Experimental proposal 

Experimental tests are conducted and used to evaluate the proposed algorithms derived in this work. 

Consider the following experimental proposal and the experimental setup.  

3.2.1. Methodology 

A flowchart is presented in Figure 3.1 to assist in explaining the experimental methodology used to test 

the proposed methods. Initially, the blades’ first natural frequency is measured from a frequency 

response function (FRF) obtained by performing a modal impact hammer test on the blade. This test is 

conducted while the blade is stationary and attached to the shaft of the rotor. The first peak in the FRF 

is taken as the natural frequency of the blade. This measurement is seen as the “true” natural frequency 

of the blade at rest. Next, the blade is rigidly attached to the surface of a slip table that is actuated at the 

natural frequency of the blade to initiate a crack in the blade. After damage is induced in the blade, the 

surface crack length is measured using a non-destructive testing (NDT) liquid dye penetrant to highlight 

cracks in the blade. The blade is then remounted to the rotor and the new natural frequency is recorded 

from an impact modal hammer test.  
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BTT data is used to perform the diagnosis of the blades’ crack length. To do this, the blade is subjected 

to loads from a transient run-up and run-down of the rotor after every crack increment. The run-up and 

run-down excites the first natural frequency of the blade. The recorded tip deflections are then used to 

measure the blades’ first natural frequency while the blade is spinning. This measurement is compared 

to the measurement from the modal impact hammer test by accounting for the stiffening of the blade 

during rotation. The process is repeated and the crack in the blade is further grown by, again, resonating 

the blade on the slip table. The new crack length is measured. Thereafter, the procedure is repeated until 

the crack length is close to the critical crack length. Safety restrictions are placed on the relative change 

in natural frequency between crack growth increments. 

 

Figure 3.1: Experimental procedure flowchart that explains the experiments used to test the proposed 

method. 

The idea of this experiment is to predict the RUL of a rotor blade using only BTT data. To do this, the 

natural frequency and crack length of the blade needs to be measured intermediately after periods of 
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fatigue-based damage have been induced. Also, since the cracked blade rotates at large angular 

velocities, careful consideration is required for maintaining safety, since this blade is prone to brittle 

failure. Table 3.1 summarises the measured parameters and the apparatus mentioned in this experiment. 

Table 3.1: Measurement parameters and the associated apparatus used during experimental work.  

Parameters Apparatus 

Crack Length Liquid dye penetrant 

Stationary Mounted Natural Frequency Modal hammer impact hammer and laser vibrometer 

Rotating Natural Frequency BTT 

Number of Cycles Electrodynamic shaker and laser vibrometer 

 

3.2.2. Blade geometry and material properties 

The rotor blade considered in the experimental work attempts to emulate the geometry of blades 

typically found in turbomachinery. The geometry shown in Figure 3.2 is a 40 𝑚𝑚 cord NACA 4506 

airfoil designed by Jansen van Vuuren (2019). The blade is designed to mimic the loads non-symmetric 

airfoils experience due to the fluid exerting a load on the blade. However, for this experiment the loads 

induced on the blade will only originate from a single high velocity stream of air. The blade is mounted 

to the rotor with two bolts and can be positioned at different angles in the rotor setup. This experiment 

will only look at 22.5° orientation of the blade with respect to the axial direction. The length of the 

blade is approximately 116 𝑚𝑚 and it is made of Aluminium T6-6082. The material properties of the 

blade are given in Table 3.2.  

Table 3.2: Material properties of Aluminium T6-6082 recorded in literature (Mrowka-Nowotnik, 

Sieniawski and Nowotnik, 2006; Correia et al., 2016; Du Toit, Diamond and Heyns, 2019) 

Material Property Value Unit 

Density 2700 − 2810 𝑘𝑔/𝑚3 

Elastic Modulus 67 − 71 𝐺𝑃𝑎 

Poisson Ratio 0.33 % 

Fracture Toughness 33 − 41 𝑀𝑃𝑎√𝑚 

0.2% Proof Stress 255 − 390 𝑀𝑃𝑎 

Paris Law Exponent 2.7845 - 

Paris Law Coefficient 1.1551 × 10−11 (𝑚𝑚/𝑐𝑦𝑐𝑙𝑒)/(𝑀𝑃𝑎√𝑚𝑚)
𝑚

 

As far as BTT research goes, not many researchers use airfoil shapes in their experimental work. 

Commonly, rectangular cross-sectional blades are used to test BTT algorithms (Hu et al., 2015; Rigosi, 

2015; Du Toit, Diamond and Heyns, 2019; Ye et al., 2019). Since the blade geometry is custom-built, 
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limited failure data is readily available to construct diagnostics and prognostics models from. This work 

is unique in the sense that BTT and fatigue failure tests are performed on the complex airfoil shape. In 

real turbine blades, the shape of the airfoil could contain a twist along the length of the blade as well, 

however this dissertation will not consider such a twist. 

 
 

Figure 3.2: Geometry of the 40 𝑚𝑚 cord NACA 4506 Airfoil with side views (left) and top view (right) 

3.2.3. Experimental setup and procedure 

The experimental setup has four main components namely (i) BTT, (ii) fatigue crack growth with an 

electrodynamic shaker (EDS), (iii) modal impact hammer test and (vi) NDT liquid dye penetrant crack 

measurement. Each component in the experimental setup is detailed here.  

Blade Tip Timing 

The rotor test bench is illustrated in Figure 3.3. The three-phase motor is controlled by a 10 𝑉 voltage 

source and can rotate at a maximum angular velocity of 1400 𝑅𝑃𝑀. 

 

Figure 3.3: Side view of total BTT test bench. 
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Figure 3.4 shows the inside of the rotor housing with only a single blade mounted to the rotor. The other 

rotor blades and all the stator blades are removed from the setup. The reason for this change is to ensure 

safety, since the blade has a crack and could fail while the rotor is spinning. Counterweights are added 

to ensure that the rotor is balanced due to the removal of the other rotor blades. A single air nozzle is 

also extended and connected to a 3 𝑏𝑎𝑟 pressure source to excite the blade during rotation. A single 

stream of air impacts the blade per blade rotation. The stream of air is by no means equivalent to the 

natural flow from the stator blades. Instead, this experiment attempts to measure the response of the 

blade using BTT and finds the first natural frequency from the measured response. Future work shall 

consider the effect of multiple air nozzles and stator blades on the response of the blade to imitate the 

loads in real turbomachinery. The blade is angled at 22.5° with respect to the axial direction to impose 

the momentum change of the fluid as the shaft spins, thus causing the fluid to exert a force onto the 

blades.  

 

Figure 3.4: Single blade in rotor housing with counterweights (left), proximity probes fastened onto the 

outside of the rotor housing (middle) and the optical shaft encoder with zebra strip wrapped around the 

shaft (right). 

The optical shaft encoder and the eddy current proximity probes are shown in Figure 3.4 (middle and 

right respectively). The shaft encoder measures angular velocity of the shaft from voltage pulses as the 

zebra strip rotates. A total of 79 pulses are generated per single shaft revolution. A gap distance of 

approximately 0.5 𝑚𝑚 is left between the encoder and the shaft.  

The eddy current proximity probes detect when the blades pass the probes. These probes generate a 

voltage when a conductive material enters the sensors’ measuring region. Three eddy current proximity 

probes are installed on the outer rotor housing with a clearance gap of 0.2 𝑚𝑚 between the probe head 

and the blade. The time of arrival (ToA) is measured from the voltage pulse generated by the proximity 

probe using the rising edge of 30% total voltage range as a trigger criterion. The probes are connected 

to an external 24 𝑉 battery source to minimise the electrical noise present in the laboratory. 
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A data acquisition (DAQ) device, an HBM Quantum MX410, synchronously records both the shaft 

encoder and proximity probes’ voltages at a sampling rate of 192 𝑘𝐻𝑧. In this work data is processed 

off-line after the experiments have been conducted. In a real-time diagnostic setting the ToAs will be 

determined instantaneously instead of the entire voltage signal being stored.  

This experiment considers a linear 50 seconds run-up and 50 seconds run-down of the shaft with a 

maximum shaft speed of 1400 RPM and an amplitude of 100 RPM. A triangular voltage signal at a 

frequency of 0.01 𝐻𝑧 with variable amplitude and offset is used to control the motor. 

Crack growth using electrodynamic shaker  

The crack in the blade is initiated and propagated with an electrodynamic shaker (EDS). Figure 3.5 

shows part of the EDS (left) that vibrates the slip table (right). The vibration is tuned such that the table 

vibrates at the first natural frequency of the blade. The amplitude of the slip table’s vibration is between 

5𝑔 and 2𝑔 and depends on the blade tip response measured from a laser vibrometer. The amplitude of 

the slip table’s vibration is controlled such that the voltage output of the laser vibrometer does not 

overload the control of the slip table. The maximum displacement of the blade tip during this experiment 

is less than 5 𝑚𝑚. The blade in Figure 3.5 is mounted rigidly to the table though a mounting plate that 

is fastened with 7 bolts. This is to ensure a rigid connection between the table and the blade. 

 

Figure 3.5: Electrodynamic shaker (EDS) oriented to shake the slip table (left) with a blade mounted to 

the table (right). 

Observe the red laser light at the blade tip in Figure 3.5 (left). This is the location where a PSV 400 

laser vibrometer measures the blade tip vibration. The EDS is controlled with a closed loop feedback 

system. The system measures the acceleration of the slip table and the velocity of the blade tip; and an 

FRF is then constructed from both signals. The EDS is set to maintain the FRF at the first resonance 

frequency. The run-up procedure therefore sweeps through a range of frequencies to construct a rough 

FRF. Thereafter, the EDS excites the blade at the first resonant frequency, while performing small 
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oscillations in frequency to detect changes in the FRF. Changes in the natural frequency will cause the 

EDS to search for the new resonant frequency. The test is concluded when the resonant frequency 

changes more than 5 𝐻𝑧. The control system brings the table to rest when the test is concluded. 

Modal Analysis 

After a crack is generated in the blade, the new first natural frequency needs to be measured in order to 

compare it to the BTT-derived value. An impact hammer modal test is conducted on the blade after 

each crack growth increment. The blade is rigidly attached to the rotor for these tests, as shown in Figure 

3.4. A PDV 100 laser vibrometer is set up to measure the velocity response at the tip of the blade. The 

blade is then impacted by a modal hammer and the FRF curve is recorded for the blade. The average 

FRF curve is constructed from 3 impact hammer tests. 

NDT Liquid Dye Penetrant 

The crack length in the blade is measured by preforming an NDT liquid dye penetrant test. The blade 

is first thoroughly cleaned with penetrant remover. Thereafter, the blade is sprayed with liquid dye 

penetrant (Figure 3.6 left) and left for 20 minutes so that the penetrant reaches deep into the cracks. 

Next, the blade is cleaned, and all the penetrant is removed from the surface with a towel sprayed with 

penetrant remover. Finally, a thin layer of developer is sprayed on top of the surface and the result is 

shown in Figure 3.6 (right). The crack length is then measured using a Vernier Calliper. 

 

Figure 3.6: Blade sprayed with red liquid dye penetrant (left) and a developed NDT result for measuring 

crack length (right) 

3.2.4. Limitations and exclusions 

The scope of research only includes a methodology for predicting RUL for a single crack at the root of 

the NACA 4506 blade. Other blade geometries and crack locations are not considered here. Also, due 
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to safety concerns only a single blade in the rotor is tested and the interaction between blades are not 

modelled nor included in this scope. The effect of orientation angle in the rotor hub is also excluded, 

however preliminary studies have shown that the angle of attack of the rotor blade has a large impact 

on the amplitude of blade tip response. The loading on the blade mainly originates from the momentum 

change of the high velocity streams of air. The effect of different pressure changes across the blade is 

therefore not part of in this study. These limitations are potential topics for future research. 

3.2.5. Experiments summary 

Figure 3.7 is a summarised procedure for the experiments conducted in this dissertation. The figure 

shows the experiment cycle that starts with a blade mounted to the rotor (shown in greed) the blade’s 

natural frequency is measured using BTT and confirmed using a modal impact hammer test. Next, the 

same blade is mounted to the EDS and the crack in the blade is initiate/ grow the crack in the blade. A 

single experiment is conducted in this dissertation. However, two outcomes are obtained from the single 

experiment namely (i) the natural frequency estimated from BTT is validated to the measurements of a 

modal impact hammer test and (ii) the fatigue lifecycle of the blade is used to validate the RUL 

prediction methodology. The cycle in Figure 3.7 is repeated for 10 blades until each blade is considered 

unsafe to perform the BTT test. 

 

Figure 3.7: Experimental procedure repeated multiple times for all ten rotor blades. 

Mount blade to 
rotor

Measure natural 
frequency using 
modal impact 
hammer test

Measure natural 
frequency using 

BTT

Mount blade to 
EDS

Shake the blade to 
initiate/ increase the 
length of the crack 

in the blade

Measure the crack 
length

Measure the 
number of cycles
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3.2.6. Dissertation structure 

The answers to the research questions proposed in Section 3.1 are contained in the following chapters. 

Results of the experiments conducted in Section 3.2.3 provide validation of the methodologies derived 

in this dissertation. The following chapters are presented in this dissertation: 

 Chapter 4: Measuring angular tip displacement. In this section the time of arrival signal is 

interpreted to determine the response of the blade. 

 Chapter 5: Features of damaged blades. A novel method for determining the resonating 

frequencies of a blade is proposed. The results of this section show that BTT can be used to 

determine the natural frequency of the blade in real time. 

 Chapter 6: Measure damage from the natural frequency. Here a diagnostics model is 

constructed using data collected during the experiments and finite element simulations. The 

hybrid method uses estimates of the natural frequency to provide an approximation of the 

current crack length in the blade. 

 Chapter 7: Estimate RUL. This section concludes the comprehensive workflow in this 

dissertation by providing a method for estimating the RUL of a rotor blade after a couple of 

diagnostic estimates have been performed on the blade.  
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4. BTT: Measuring relative angular tip displacement 

This section addresses the method of determining time of arrival and angular tip displacement of a rotor 

blade from sensor readings.  

4.1. Time of arrival pulses of proximity probes 

BTT requires two types of measured signals namely (i) a shaft encoder signal and (ii) a proximity probe 

signal. Typical measurements of a proximity probe are shown in Figure 4.1. The figure also shows a 

zoomed graph of the single pulse highlighted in red on the graph on the left. The pulse is generated due 

to the blade tip passing the eddy current proximity probe. 

 

Figure 4.1: Typical proximity probe signal of a single blade rotating at a constant angular velocity (left) 

with a zoomed graph on a single pulse (right). 

Notice, that due to the sampling frequency (195 𝑘𝐻𝑧) a complete shape of the pulse is easily shown. 

This is sometimes not the case, since the pulse width is dependent on the velocity of the rotor. If the 

rotor is spinning at maximum speed, fewer samples will be captured along the width of the pulse. 

Consequently, the triggering criteria used to determine the ToA of the blade has a notable effect. 

Furthermore, since most of the signal does not contain valuable information it is computationally 

efficient to specify a trigger level to detect the times at which pulses occur.  

This dissertation considers four types of criteria for determining the time of arrival (ToA) of the blade. 

These criteria are (i) the local maximum time of the pulse, (ii) the positive slope trigger, (iii) the negative 

slope trigger and (iv) the average between the positive and negative slope trigger. Figure 4.2 shows the 

first three of the possible choices for the ToA. The fourth trigger criterion is an average between the 
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positive slope (left ToA trigger) and the negative slope (right ToA trigger). The figure on the right 

shows a pulse measured at a lower sampling rate (15 𝑘𝐻𝑧). Observe that at a lower sampling rate the 

local maximum ToA trigger criterion has an error of approximately 36 𝜇𝑠 when compared to the higher 

sampling rate signal. Compare this to the error of the positive slope triggering criterion of approximately 

5 𝜇𝑠. The negative slope triggering criterion has no error in this case. Therefore, the positive and 

negative slope trigger times are used as the ToA for the blade. 

 

Figure 4.2: Time of Arrival (ToA) triggers on a single proximity probe pulse measured at 195 𝑘𝐻𝑧 with 

a trigger level set to 30% of the normalised pulse signal (left). The same pulse measured at a lower 

sampling rate (15 𝑘𝐻𝑧) with the ToA triggers computed from the new signal (right). 

 

Figure 4.3: Measured voltage signal of a 79 pulses per revolution optical shaft encoder for a shaft 

rotating at an arbitrary angular velocity. 
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Figure 4.3 shows a typical tachometer signal of an optical shaft encoder with 79 pulses per revolution. 

The Instantaneous Angular Speed (Ω𝐼𝐴𝑆 ) or the Average Angular Speed (Ω𝐴𝐴𝑆 ) of the shaft is 

determined from the positive or negative trigger slope zero crossing times using equation (4.1) and (4.2) 

respectively. The values ∆𝜃𝑒𝑛𝑐𝑜𝑑𝑒𝑟 , 𝑡𝑛, and 𝑝𝑝𝑟 denote the encoder spacing, the 𝑛𝑡ℎ zero-crossing time 

and the number of pulses per revolution respectively. 

Ω𝐼𝐴𝑆(𝑡𝑛) =
∆𝜃𝑒𝑛𝑐𝑜𝑑𝑒𝑟
(𝑡𝑛 − 𝑡𝑛−1)

≅
2𝜋

𝑝𝑝𝑟(𝑡𝑛 − 𝑡𝑛−1)
 (4.1) 

Ω𝐴𝐴𝑆(𝑡𝑛) =
2𝜋

(𝑡𝑛 − 𝑡𝑛−𝑝𝑝𝑟)
 (4.2) 

Equation (4.1) assumes a constant angular spacing between pulses. This assumption is problematic for 

irregularly spaced encoders. Zebra encoder strips, used by optical shaft encoders, are prone to irregular 

encoder spacings due to the methods used to prepare these encoders and attach them to shafts. Diamond, 

Heyns and Oberholster (2019) proposed an improved method for determining angular velocities from 

multiple pulses per revolution (MPR) sensors that are prone to this irregular spacing. This method uses 

Bayesian inference to learn the geometry of the shaft encoder by making assumptions on the 

acceleration of the shaft. These improved methods allow one to measure the angular velocity more 

precisely than the approximation in equation (4.1). The results from the inference method determines 

approximations of the values of ∆𝜃𝑒𝑛𝑐𝑜𝑑𝑒𝑟 over the entire circumference of the shaft encoder strip such 

that a smoother curve is obtained when using equation (4.1). 

Figure 4.4 shows the rotor shaft speed as determined by equation (4.1) and (4.2). The Bayesian 

geometry compensation method recommended by Diamond, Heyns and Oberholster (2019) is 

performed on the shaft encoder signal and the resulting angular velocity is shown in orange in Figure 

4.4. Figure 4.4 shows that equation (4.2) provides the least variation in determining the angular shaft 

speed of the rotor. However, in this method the MPR sensor is interpreted as an OPR sensor and there 

is a loss of information when using this method. Notice that geometry compensated signal reduced the 

variation in the shaft speed compared to the results of equation (4.1) shown in blue.  

The shaft encoder section distances (∆𝜃𝑒𝑛𝑐𝑜𝑑𝑒𝑟) computed from the geometry compensation method is 

shown in Figure 4.5 for the 79 pulses per revolution shaft encoder. The blue line shows the 

approximation used to determine the angular velocity in equation (4.1) and the orange line shows the 

results from the inference method for each section of the encoder strip.  

This dissertation, therefore, uses the geometry compensated relative angular velocity to determine the 

rotor shaft speed from the zero crossing times of the MPR shaft encoder signal. 
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Figure 4.4: Instantaneous angular velocity, geometry compensated angular velocity and the average 

angular velocity calculated from the zero-crossing times of the shaft encoder signal. 

 

Figure 4.5: Geometry compensated shaft encoder section distances compared to the assumed section 

distances of the instantaneous angular velocity in equation (4.1) 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



BTT: Measuring relative angular tip displacement 

36 

 

4.2. Angular tip displacement relative to shaft 

The relative angular displacement of the blade tip with respect to the rotor shaft is denoted 𝜃𝑏/𝑠 . 

Equation (4.3) relates the first derivative of the relative angular tip displacement to the absolute angular 

velocity of the tip ( �̇�𝑏 ) and the shaft ( �̇�𝑠 ). Note that these velocities are approximated from the 

measurements of the proximity probe and shaft encoder respectively. 

�̇�𝑏/𝑠(𝑡) = �̇�𝑏(𝑡) − �̇�𝑠(𝑡) (4.3) 

  

(a)             (b) 

Figure 4.6: Two potential sequential time of arrival configurations at ToA pulse 𝑡𝑖 (a) and at ToA pulse 

𝑡𝑖+1 (b)  

Consider two sequential ToA pulse measurements denoted as 𝑡𝑖  and 𝑡𝑖+1 shown in Figure 4.6. It is 

important to distinguish between the displacement (𝜃𝑏) of the blade and the relative displacement of 

blade with respect to the shaft (𝜃𝑏/𝑠). After two sequential ToA pulses, for a single blade, the total 

displacement of the blade tip is equal to one full revolution (2𝜋 radians). This is because the proximity 

probe remains in place and simply detects when the blade tip passes the probe. It is assumed that the 

rotor only has positive angular velocity. After two associated pulses the tip of the blade has reached the 

same point. Thus, integrating equation (4.3) and using the net change theorem in equation (4.4) the 

difference in relative angular displacement is calculated using equation (4.5). This equation is also 

shown in Figure 4.7. The resulting calculation now describes the relative angular displacement as a 

function of the tachometer signal integrated between the two ToAs. 

∫ �̇�𝑏/𝑠(𝜏)𝑑𝜏
𝑡𝑖+1

𝑡𝑖

= [∆𝜃𝑏/𝑠 ]𝑡𝑖

𝑡𝑖+1  = 𝜃𝑏/𝑠(𝑡𝑖+1) − 𝜃𝑏/𝑠(𝑡𝑖)    (4.4) 

[∆𝜃𝑏/𝑠 ]𝑡𝑖

𝑡𝑖+1 = ∫ �̇�𝑏 (𝜏)𝑑𝜏
𝑡𝑖+1

𝑡𝑖

−∫ �̇�𝑠(𝜏)𝑑𝜏
𝑡𝑖+1

𝑡𝑖

= 2𝜋 −∫ �̇�𝑠 (𝜏) 𝑑𝜏
𝑡𝑖+1

𝑡𝑖

  (4.5) 
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Figure 4.7: The angular displacement of the blade tip relative to the shaft between two ToA 

measurements. 

The relative angular displacement at each ToA is determined from the cumulative summation of 

equation (4.5). Therefore, the measured value of the relative angular displacement is computed using 

equation (4.6) at every ToA (𝑡𝑛). Note however, that due to the formulation of this problem an initial 

boundary condition is required. That is, the relative angular displacement needs to be known for at least 

one of the ToA pulses. This is unfortunately very difficult to compute exactly from the measured data 

since this requires knowledge of the deflection of the blade tip relative to the shaft at the first ToA. 

Nevertheless, the simplifying assumption of setting 𝜃𝑏/𝑠(𝑡0) to zero is made. The resulting signal  

𝜃𝑏/𝑠(𝑡𝑛) will therefore have a bias offset associated with it. The raw displacement values from different 

proximity probe sensors must therefore be zeroed before they are used in a BTT algorithm. 

𝜃𝑏/𝑠(𝑡𝑛) = 𝜃𝑏/𝑠(𝑡0) +∑[∆𝜃𝑏/𝑠 ]𝑡𝑖

𝑡𝑖+1

𝑛−1

𝑖=0

 (4.6) 

Figure 4.8 illustrates an implementation of these computational steps on data from the BTT test setup 

with a single blade mounted to the rotor. The shaft is driven according to the profile shown in Figure 

4.8 (a) and the blade response is shown for the three proximity probes in Figure 4.8 (b). Recall, the 

displacement values may not represent the signal exactly. Thus, the relative angular displacement of 

each proximity probe may change in the vertical axis. 
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(a) 

 

(b) 

Figure 4.8: Average angular velocity of the rotor shaft (a) and the associated relative angular tip 

displacement (b) of a single blade passing three different proximity probes. 

The relative angular displacement response of the blade shows large changes in the amplitude at 

approximately 30s and 70s. These amplitudes are consistent with the same rotor shaft speed namely 

128 𝑟𝑎𝑑/𝑠. These peaks indicate a resonance in the response of the blade and are called the critical 

speeds of the rotor blade. The following chapter considers using these critical speeds to estimate he 

natural frequency of the blade.  
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5. Signal processing: Features of damaged blades 

The first natural frequency of a blade is an important quantity to be extracted from BTT signals, since 

it is used extensively for structural health monitoring  (Elshamy, Crosby and Elhadary, 2018; Khalkar, 

2018). This chapter proposes a method for determining the natural frequency of a rotor blade from the 

relative angular displacement of the blade. The proposed method determines the shaft speeds (critical 

speeds) that cause resonance of the blade tip with respect to the shaft. The natural frequency is then 

determined by compensating for the artificial stiffening of the blade during rotation using a Campbell 

diagram. The method is applied to the blade tip response measured from the experiments.  

In this section, a model is also presented that simulates the complete analytical response of the blade 

tip. The model is a SDOF model and experiences loads that emulate the loading conditions of the blade 

during the experiment. The purpose of the model is to approximate the response of the blade as a 

continuous signal, contrary to a discrete signal obtained from processing ToA signals (using the method 

discussed in Chapter 4). During the BTT experiments only event-based data is collected. The entire 

response of the blade is simulated and studied to understand the frequency content of the response of 

the blade during the experiment. The method for determining the natural frequency is then applied to 

the simulated analytical model and the results are compared to the data obtained from the experiments. 

The model confirms that the natural frequency is obtained from the newly proposed method. The 

limitations and shortcomings of the method are also discussed. 

This chapter concludes by comparing the natural frequency estimations obtained from the BTT data to 

measurements of the impact modal hammer test. The comparison is made for all the data collected from 

the damaged blades in the experiment. 

5.1. Determining natural frequency from blade response 

Ideally, a Fourier analysis such as the DFT or the STFT is applied to BTT data. However, as discussed 

in Section 2.3.2, these methods have two types of limitations namely (i) irregular sampling frequency 

and (ii) the Nyquist frequency limit. This section considers an alternative means of analysing BTT data 

to determine the frequency response of the blade tip due to the rotor shaft speed. This alternative method 

shares its origins with the Lomb-Scargle periodogram (VanderPlas, 2018).  

Consider a blade response to have the functional form in equation (5.1). The model in equation (5.1) is 

a linear model in terms of 𝐴, 𝐵 and 𝐶. This form has significant implications for determining the natural 

frequency of the rotor blade. Since the model is approximated as a single degree of freedom system, the 

blade response is simply described as a function of the excitation frequency and its associated amplitude 

(𝒜) and phase (𝜙). The amplitude and phase are calculated using equation (5.2) and equation (5.3) 

respectively.  
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𝜃𝑏/𝑠(𝑡) = 𝐴𝑐𝑜𝑠(2𝜋𝑓𝑡) + 𝐵𝑠𝑖𝑛(2𝜋𝑓𝑡) + 𝐶 (5.1) 

𝒜 = √𝐴2 + 𝐵2 (5.2) 

𝜙 = tan−1 (
𝐵

𝐴
) (5.3) 

The power spectral density of the signal (𝑃𝐿𝑆𝑆𝐴) is the square of the amplitude in equation (5.2). The 

Lomb-Scargle periodogram determines the power spectral density using a least squares fit  

𝑃𝐿𝑆𝑆𝐴 = |𝒜|
2 = |𝐴2 + 𝐵2|  (5.4) 

As discussed in Section 4.2, the data collected from a single proximity probe depends on the initial 

relative angular displacement at the first time of arrival for each proximity probe. This value is constant 

for each proximity probe. This means each probe has its own bias offset. Therefore equation (5.5) 

proposes a model for determining the relative tip displacement as a function of time from three 

proximity probes. This equation can easily be expanded for more proximity probes by introducing more 

constant 𝐶  parameters. The value 𝑛  represents the number of revolutions that occurred during the 

collection of the blade displacement data (𝑛 ∈ ℤ). 

𝜃𝑏/𝑠(𝑡𝑘) = {

𝐴𝑐𝑜𝑠(2𝜋𝑓𝑡𝑘) + 𝐵𝑠𝑖𝑛(2𝜋𝑓𝑡𝑘) + 𝐶𝑝𝑟𝑜𝑏𝑒 1   𝑖𝑓 𝑘 ∈ {0,3,6,… ,3𝑛 + 0}

𝐴𝑐𝑜𝑠(2𝜋𝑓𝑡𝑘) + 𝐵𝑠𝑖𝑛(2𝜋𝑓𝑡𝑘) + C𝑝𝑟𝑜𝑏𝑒 2  𝑖𝑓 𝑘 ∈ {1,4,7,… ,3𝑛 + 1}

𝐴𝑐𝑜𝑠(2𝜋𝑓𝑡𝑘) + 𝐵𝑠𝑖𝑛(2𝜋𝑓𝑡𝑘) + C𝑝𝑟𝑜𝑏𝑒 3  𝑖𝑓 𝑘 ∈ {2,5,8, …3𝑛 + 2}

 (5.5) 

This equation is better understood in the form of equation (5.6) where the data collected for each BTT 

measurement is substituted in equation (5.5) to provide a linear model between the unknown 

coefficients (𝐴, 𝐵, 𝐶𝑝𝑟𝑜𝑏𝑒 1, 𝐶𝑝𝑟𝑜𝑏𝑒 2 and 𝐶𝑝𝑟𝑜𝑏𝑒 3). Notice that the offset coefficients are only added to 

the relative angular displacement associated with the probe that detected the time of arrival pulse. 

{
  
 

  
 
𝜃𝑏/𝑠 (𝑡0)

𝜃𝑏/𝑠(𝑡1)

𝜃𝑏/𝑠(𝑡2)

𝜃𝑏/𝑠(𝑡3)

⋮
𝜃𝑏/𝑠(𝑡𝑛)

  

}
  
 

  
 

=

[
 
 
 
 
 
𝑐𝑜𝑠(2𝜋𝑓𝑡0) 𝑠𝑖𝑛(2𝜋𝑓𝑡0) 1 0 0

𝑐𝑜𝑠(2𝜋𝑓𝑡1) 𝑠𝑖𝑛(2𝜋𝑓𝑡1) 0 1 0

𝑐𝑜𝑠(2𝜋𝑓𝑡2) 𝑠𝑖𝑛(2𝜋𝑓𝑡2) 0 0 1

𝑐𝑜𝑠(2𝜋𝑓𝑡3) 𝑠𝑖𝑛(2𝜋𝑓𝑡3) 1 0 0
⋮ ⋮ ⋮ ⋮ ⋮

𝑐𝑜𝑠(2𝜋𝑓𝑡𝑛) 𝑠𝑖𝑛(2𝜋𝑓𝑡𝑛) 0 0 1]
 
 
 
 
 

{
 
 

 
 

𝐴
𝐵

𝐶𝑝𝑟𝑜𝑏𝑒 1
𝐶𝑝𝑟𝑜𝑏𝑒 2
C𝑝𝑟𝑜𝑏𝑒 3 }

 
 

 
 

 (5.6) 

Provided enough BTT data 𝜃𝑏/𝑠 (𝑡𝑘) is collected for each proximity probe; the maximum likelihood 

estimation or least squares regression estimate of the parameters 𝐴, 𝐵, 𝐶𝑝𝑟𝑜𝑏𝑒 1, 𝐶𝑝𝑟𝑜𝑏𝑒 2 and 𝐶𝑝𝑟𝑜𝑏𝑒 3  

can be determined. The maximum likelihood solution is the coefficients that maximise the probability 

of the data given the model in equation (5.5). However, the model requires the frequency (𝑓) to compute 

this estimate. The Lomb-Scargle periodogram assumes values for 𝑓. The method then solves the least 

squares regression problem for the model for all the interrogated frequencies. The model that produces 
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the highest power spectral density in equation (5.4) is the maximum likelihood estimate to the 

probability of the frequency given the model and the data, that is argmax
𝑤.𝑟.𝑡 𝑓

𝒫(𝑓|𝒟,𝑀).  

Solving the coefficients in equation (5.6) provides a likelihood value for the resonating frequency as a 

function of excitation frequency. The solution is therefore similar to a frequency response function 

(FRF). The Lomb-Scargle periodogram have a lot of similarities to the proposed method, however, the 

proposed method is particularly adapted for BTT data. The results from the Lomb-Scargle periodogram 

yields inconsistent results for BTT data. Also, the frequency range to interrogate is primarily determined 

from the excitation frequency. 

To illustrate the proposed method, least squares regression is performed on the data from Figure 4.8. A 

window size of 100 datapoints is selected and a frequency range equal to the shaft speed range is 

interrogated. This interrogation window is moved from the start of the recorded data to the end and the 

measurement and the power spectral density is recorded for all interrogated frequencies. Figure 5.1 

shows a contour plot of the power spectral density at the average time of the 100 datapoints for the 

entire spectrum of time. One could think of the diagram as a combination of modified Lomb-Scargle 

periodograms stacked next to one another in the time domain. The actual excitation frequency is plotted 

over the entire contour plot. It is shown in Figure 5.1 that the method detects the critical speeds of the 

rotor. The peak amplitude for each second in the time domain corresponds with the shaft excitation 

frequency.  

 

Figure 5.1: Contour plot of the BTT resonance detection algorithm compared with the shaft excitation 

frequency. 
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Figure 5.2: Waterfall plot of the BTT resonance detection algorithm. 

Notice that along the excitation frequency curve, the amplitude changes. At a certain speed the 

amplitude becomes large and this seems to correspond with the locations of the peaks in Figure 4.8. 

These resonance peaks are marked with white stars and the corresponding frequencies are annotated on 

the graph. This result is better shown in Figure 5.3 where amplitude is plotted over time for the run-up 

and run-down of the rotor. The same resonance peaks are shown with red crosses. 

 

Figure 5.3: Frequency response function from interrogated resonating frequencies over time (top) and 

the corresponding angular shaft speed (bottom). 
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Note that the peaks from Figure 5.1 and Figure 5.3 are only the resonating frequencies of the blade and 

not the natural frequency of the blade. Due to centrifugal stiffening of the blade at large angular 

velocities the first natural frequency does not remain constant (Meherwan, 2012). A Campbell diagram 

is constructed in Figure 5.4 from ANSYS finite element modal analysis results. The only boundary 

conditions for the modal analysis is the fixed boundary condition at the base of the rotor blade and an 

imposed rotational velocity at the location of centre of the shaft. 

The blue curve in Figure 5.4 is approximated using equation (5.7). The function relates the new natural 

frequency (𝑓𝑛) to the natural frequency when the blade is stationary (𝑓𝑛0). The angular shaft speed is 

denoted 𝑓𝑠. 

𝑓𝑛 = 0.0022(𝑓𝑠
 )2 + 0.0002 (𝑓𝑠) + 𝑓𝑛0 (5.7) 

Since, the methods derived in this section find the critical shaft speeds of the blade, the natural frequency 

of the blade is equal to the engine order (𝐸𝑂) times the shaft speed (𝑓𝑠). This frequency at which 

resonance occurs is equal to the natural frequency when the blade is resonating. Equation (5.8) is the 

final step required to find the natural frequency of the blade at the stationary angular velocity reference 

frame. Equation (5.8) is only valid for shaft speeds that cause the blade tip to resonate.  

𝑓𝑛0 = 𝐸𝑂(𝑓𝑠) − 0.0022(𝑓𝑠)
2 − 0.0002(𝑓𝑠) (5.8) 

 

Figure 5.4: Campbell diagram of NACA 4506 rotor blade simulated from finite element model.  
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5.2. Modelling blade tip response and BTT measurements 

This section proposes a single degree of freedom model to analytically approximate the response of a 

blade during the experiment. Ideally, the response of the relative tip displacement should be 

characterized by the blade’s natural frequency. This mainly occurs when the blade experiences 

resonance at a critical speed. At critical speeds harmonics of the excitation frequency due to the fluid 

exerting a pressure on the blade is equal to the natural frequency of the blade. In the BTT experiment a 

single blow off air nozzle is used to excite the blade during rotation.  

The purpose of the analytical model is to determine the frequency response of the blade tip due to the 

nozzle and the speed at which the shaft is spinning. The reason for this model is to obtain a continuous 

blade response time history instead of discrete points. Analysing the frequency content of the analytical 

response of the model allows a complete understanding of what to expect from the proposed method, 

in Section 5.1, for determining the natural frequency. 

Consider the free body diagram in Figure 5.5 and the associated equation of motion for a single blade 

shown in equation (5.11). This model only approximates the first mode (flap mode) of the rotor blade 

as a single degree of freedom (SDOF) model. The relative tip displacement is denoted 𝜃𝑏/𝑠 and the 

displacement of the shaft is 𝜃𝑠. The displacement of the blade (𝜃𝑏) follows the displacement of the shaft. 

The blade experiences dynamic loading expressed by a forcing function added to the SDOF model. 

 

 

(a) (b) 

Figure 5.5: Rotor blade setup (a) and a single degree of freedom approximation model for blade tip 

displacement relative to the shaft (b) 

𝐽𝑏�̈�𝑏 + 𝑐�̇�𝑏 + 𝑘𝜃𝑏 = 𝑐�̇�𝑠 + 𝑘𝜃𝑠 + 𝑇(𝑡) (5.9) 

𝜃𝑏/𝑠 = 𝜃𝑏 − 𝜃𝑠 (5.10) 

𝐽𝑏�̈�𝑏/𝑠 + 𝑐�̇�𝑏/𝑠 + 𝑘𝜃𝑏/𝑠 = −𝐽𝑏�̈�𝑠 + T(𝑡) (5.11) 
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It is assumed that the rotor is balanced, and structurally transmitted vibrations are negligible. This is an 

important assumption since Gubran (2015) showed that rotor imbalance could cause excitation in the 

blades. Gravitational forces are also neglected in this model. The loads experienced by the blade are 

summarised in Section 2.2.2.  

In the experiment, the moment on the blade originates from the momentum change of the air. Since the 

blade only experiences a load when the blade is positioned close to the nozzle, the moment applied to 

the blade is rather a function of the shaft displacement than a function of time (𝑇(𝜃𝑠)). A discrete 

impulse equation is used in this simulation to emulate the load from a single blow-off nozzle. Equation 

(5.12) describes an approximation of the aerodynamic load that the blade experiences during rotation. 

Figure 5.6 (a) shows the rotor and the location of the high velocity stream of air. The approximated load 

in equation (5.12) is shown in Figure 5.6 (b). 

𝑇(𝜃𝑠) = {
𝑇0, 𝜃𝑠 𝑖𝑛 𝑎 ℎ𝑖𝑔ℎ 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑧𝑜𝑛𝑒
0, 𝜃𝑠 𝑖𝑛 𝑎 𝑙𝑜𝑤 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑧𝑜𝑛𝑒

 (5.12) 

  

(a) (b) 

Figure 5.6: Equivalent pressure load of a turbomachine blade for a single high velocity stream (a) and 

the associated moment applied to the blade tip during the simulation (b). 

The response of the blade is solved by integrating the equation of motion using a 4th order Runge Kutta 

numerical integration method. However, the equation is first rewritten in the form of equation (5.13) 

and the relative velocity and displacement are solved simultaneously.  

{
𝜃𝑏/𝑠̇  

𝜃𝑏/𝑠̈
} = [

0 1

−
𝑘

𝐽𝑏
−
𝑐

𝐽𝑏

] {
𝜃𝑏/𝑠 

𝜃𝑏/𝑠̇
} +

1

𝐽𝑏
{

0
𝑇(𝜃𝑠)−𝐽𝑏�̈�𝑠

} (5.13) 
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The shaft speed for this numerical simulation is a linear run up and run down of the shaft. This is 

depicted in Figure 5.7. The selected velocity profile is comparable to the speed of the rotor shaft during 

one of the experiments (shown in Figure 4.8). Additionally, all the parameters for this simulation are 

given in Table 5.1. These parameters are selected to model the response of a healthy rotor blade under 

loading conditions such as the experimental setup. 

 

Figure 5.7: Simulated angular shaft speed for single high velocity stream of air. 

Table 5.1: Parameters used in Runge Kutta numerical simulations of blade response. 

Parameter Value Units 

Minimum Shaft Speed 1175 𝑅𝑃𝑀 

Maximum Shaft Speed 1260 𝑅𝑃𝑀 

Stiffness (𝑘) 8350 𝑁/rad 

Natural Frequency (𝑓𝑛) 205 𝐻𝑧 

Damping Ratio (𝜁) 0.01 − 

Approximated Equivalent Force (𝐹0) 1 𝑘𝑁 

High velocity pulse width 5 degrees 

Runge Kutta integration step size 2 × 10−4 𝑠 

The integrated response of the blade tip displacement is shown in Figure 5.8. The initial condition of 

the blade is selected at zero angular displacement and zero angular velocity. Notice that response of the 

amplitude of the blade increases at certain times. The peak of these amplitudes coincides with 10th 

engine order critical speed of the rotor. 
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The Discrete Fourier Transform (DFT) and Short Time Fourier Transform (STFT) of the response are 

shown in Figure 5.9 and Figure 5.10 respectively. The DFT indicates that the blade vibrates at its natural 

frequency. However, the STFT shows that the response is a superposition of integer harmonics of the 

rotor shaft speed. The amplitude of the response is large when any integer multiple of the shaft speed 

is equal to the natural frequency of the blade (green line in Figure 5.10). To show that the response of 

the blade happens in harmonics of shaft speed, a computed order tracking of the simulated blade 

response is shown in Figure 5.11. From Figure 5.11 it is shown that the rotor shaft speed excites the all 

synchronous engine orders. Resonance occurs when the 10th engine order of the shaft speed is equal to 

the natural frequency of the blade. 

 

Figure 5.8: Simulated relative angular tip displacement results from Runge Kutta integration. 

 

Figure 5.9: Fourier transform of simulated relative angular displacement of blade tip. 
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Figure 5.10: Short time Fourier Transform of simulated relative angular tip displacement of the blade. 

 

Figure 5.11: Computed order tracking of simulated relative angular tip displacement of the blade tip 
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BTT data is simulated from the analytical response of the SDOF model by resampling the blade tip 

deflection per revolution of the blade tip. Three arbitrary locations on the circumference of the rotor 

hub are selected for the placement of the proximity probes. The simulated “measurements” of relative 

angular tip displacement for the three proximity probes are shown in Figure 5.12. These data points are 

comparable to the blade tip response measured in Figure 4.8. The proposed resonance detection method 

is applied to the simulated BTT data to obtain Figure 5.13. The associated frequency response function 

is shown in Figure 5.14. The resonance detection method calculates a natural frequency equal to 

205.15 𝐻𝑧, which is 0.15 𝐻𝑧 larger than initially specified in Table 5.1. 

 

Figure 5.12: Simulated BTT data for three proximity probes sampled from the response in Figure 5.8 

 

Figure 5.13: Contour plot of the proposed resonance detection method on the simulated BTT data. 
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Figure 5.14: Frequency response function of the simulated BTT data. 

The proposed method in Section 5.1 determines the critical speed of the rotor by interrogating selected 

frequencies. In this dissertation, the interrogated frequency range is equal to the range of the shaft speed. 

The method also works by interrogating a frequency range that contains the “actual” natural frequency 

of the blade. This is shown in Figure 5.15 where the selected frequency range is 10 times the shaft 

speed. Thus a 10th engine order of the shaft speed is expected to cause resonance of the blade tip. Figure 

5.15 shows the power spectral density for the simulated BTT data and the measured experiment data. 

Notice the two methods show different results. The area indicated by the red arrow is not present in 

Figure 5.15 (a) and is not associated with an integer multiple of the shaft speed. That is, the blade tip in 

the experiment also vibrates non-synchronously. The analytical model in Figure 5.15 (a) only predicts 

synchronous vibration. However, knowing that synchronous resonance occurs at integer multiples of 

the shaft speed allows one to determine the natural frequency as the white stars in Figure 5.15 regardless 

of the presence of non-synchronous vibration of the blade tip. 

 
 

(a) (b) 

Figure 5.15: Contour plots of the proposed resonance detection method with an interrogating frequency 

range containing the natural frequency of the simulated BTT data (a) and the experiment data (b). 
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5.3. BTT method compared to modal impact hammer results 

Lastly, the natural frequency is determined from BTT for all the damaged blades in the experiment. The 

method is compared to measured natural frequencies of the blade from the modal impact hammer test. 

Figure 5.16 shows how the measurements compare with one another. The red line shows an exact 

correlation where both measurements of the natural frequency are equal. Notice that the method works 

quite well in estimating the natural frequency since almost all the points are on the red line. This graph 

therefore shows that the resonance detection algorithm works for the prescribed shaft speed. 

 

Figure 5.16: Comparison of the natural frequency measured from BTT with the natural frequency 

measured from a modal impact hammer test 

In summary, this chapter shows that the blade natural frequency is found from BTT data. First, the 

signal is converted to time of arrival pulses by using a trigger criterion. These pulses are then compared 

to angular velocity of the shaft to find the displacement of the blade tip relative to the shaft using 

equation (4.5) and (4.6). Next, the critical speed is determined from the response of the blade. A least 

square spectral analysis (LSSA) method is derived for determining the critical speed at which the blade 

tip experiences resonance. The method interrogates possible critical speeds and a frequency response 

function is generated for the blade, as shown in Figure 5.3. The natural frequency of the blade is then 

finally found using equation (5.8) to relate the critical shaft speed to the natural frequency in a stationary 

reference frame. 

  

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Diagnostics: Measure damage from natural frequency 

52 

 

6. Diagnostics: Measure damage from natural frequency 

The objective of this chapter is to present a diagnostics model that fits into the remaining useful life 

prediction framework. This diagnostics model uses the natural frequency estimate obtained from BTT 

to approximate the length of a fatigue crack in a rotor blade. Assumptions are made on the geometry 

and location of the crack. The crack size and shape are determined from both (i) fatigue crack growth 

simulations such as those presented by Rege and Lemu (2017) and (ii) measurements of the size of the 

beach marks from the fracture surface of a blade that already undergone fatigue failure.  

 In this dissertation an ANSYS SMART (Separating Morphing and Remeshing Technology) crack 

growth simulation is used to determine the shape of the fatigue crack based on Paris’ Law for fatigue 

crack growth rate. Thereafter a modal analysis is performed on the blade with the different crack sizes 

to determine the first natural frequency as a function of surface crack length. An inverse model is then 

constructed to map the natural frequencies to the surface crack lengths. In early implementations of a 

diagnostics method for determining damage in rotor blades, there is no record of how the crack length 

relates to the first natural frequency. Thus, in situations like these, a physics-based model must be used 

to perform diagnosis. Uncertainty is usually large with these models, since there are limited 

observations of the actual system to validate the physics model. On the other hand, as more diagnostic 

exercises are performed on the structure, more data becomes available and data-driven models start to 

generalise the relationship between frequency and crack length. Note that the data of the diagnostics 

model is only recorded when the crack length is measured in the blade, such as during an NDT 

inspection.  

This chapter proposes a hybrid diagnostics framework that augments the physics-based simulation 

results with data. The reason for this is (i) to have a model to start with when no measured data is 

available, and (ii) to incrementally update the physics-based model by introducing data as it becomes 

available. Therefore, this model can be implemented in early stage diagnostics when data is available 

albeit limited.  

The structure of this chapter is as follows:  

1. First, the experimental results are presented for the measurement of the natural frequency from 

both the modal hammer tests and the BTT tests. These measurements are plotted against the 

measured surface crack length from the NDT liquid dye penetrant test. 

2. A semi-elliptical surface crack is used to approximate the shape of the crack. This shape is 

determined from finite element fatigue fracture simulations and measurements of microscope 

images of the fatigue fracture surface. 

3. A finite element modal analysis is performed for a blade with varying surface crack lengths. 

The results are then compared to the collected experimental data. 
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4. Finally, a hybrid method is proposed for including the finite element results with the data driven 

results to diagnose a crack length in the rotor blade, based on the measurement of the natural 

frequency from BTT.  

6.1. Fatigue crack growth test results 

Ten turbine rotor blades are subjected to fatigue tests on the slip table configuration shown in Figure 

3.5. The crack length and natural frequency are periodically measured. Figure 6.1 shows the surface 

crack length measurement results during the run to failure fatigue lifecycle of the blades. Note that no 

prior seeding procedures were implemented to initiate the crack in the centre of the blade. Instead the 

crack is initiated purely from exciting the base of the blade at its natural frequency. 

   

(a) (b) (c) 

Figure 6.1: NDT liquid dye penetrant results of crack sizes in rotor blades from (a) early stage, (b) 

intermediate stage and (c) late stage fatigue. 

The first mode natural frequency of the blade is now interpreted as a function of the crack length. Figure 

6.2 presents the experimental results from the modal hammer test and the BTT natural frequency 

estimates. Observe that as the crack grows in the blade the natural frequency decreases in both the 

modal hammer tests and the BTT measurements. These results align with the observations made in the 

numerical studies conducted by Chaudhari and Patil (2016) and Elshamy, Crosby and Elhadary (2018) 

for cracked rectangular cross-sectional cantilever beams. The natural frequency also does not seem to 

change significantly for small cracks. 

Notice that there are fewer BTT measurement data points than modal test data points, especially after 

reaching a 30 𝑚𝑚 crack length. During the experiments it was noticed that a surface crack length longer 

than 30 𝑚𝑚 would have significantly different natural frequencies before and after spinning the blade 

to perform the BTT measurement due to further crack growth during rotation. This was seen in both the 

modal hammer test results and the BTT results. Figure 6.3 show the BTT results of the same rotor blade 

before and after the 30 𝑚𝑚 surface crack length. This figure shows that the resonance frequencies 
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(indicated with a red dashed line) changes during the BTT test. This observation was not made for the 

same blade while the crack was shorter than 30 𝑚𝑚. BTT tests were therefore neglected for large 

surface cracks. This also ensures that the blade does not break while performing a BTT test. 

  

(a) (b) 

Figure 6.2: First mode natural frequency of the rotor blade measured from modal impact hammer test 

(left) and the new BTT method (right). 

  

(a) (b) 

Figure 6.3: BTT results for a 29 𝑚𝑚 surface crack (a) and results for a 33 𝑚𝑚 surface crack (b) of the 

same rotor blade 

6.2. Fatigue crack shape and size in a rotor blade 

To construct a physics model that relates the natural frequency to crack length it is important to know 

the shape and depth of the crack. This dissertation assumes a semi-elliptical crack shape only defined 

by the surface crack length (2𝑐) and crack depth (𝑎). Two methods are used to approximate the shape 

(i) measurements from the fracture surface and (ii) fatigue crack growth simulations using FEM. 
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6.2.1. Optical microscope images of fracture surface 

The fatigue fracture surface of a rotor blade is illustrated in Figure 6.4. The fracture surface is obtained 

from an optical microscope image of one of the blades used in this experiment. The fracture surface 

shows fatigue failure with beach marks (shown in red). The depth of the crack is determined by 

approximating the beach marks as an ellipse centred about the point shown in red. The crack depths (𝑎) 

and surface crack lengths (2𝑐) are measured from the beach marks and are recorded in Figure 6.7. 

 

(a) 

 

(b) 

Figure 6.4: Optical microscope photos of fracture surface of a rotor blade subject to run to failure fatigue 

test (a), with marked fatigue beach marks (b). 

6.2.2. Finite element method crack growth simulation 

The crack shown in Figure 6.1 is also simulated using the finite element method. An ANSYS SMART 

crack growth simulation was performed on the rotor blade. The simulation requires an initial crack size 

and propagates the crack by calculating the stress intensity factor along the crack front. The crack front 

is then propagated according to Paris’ Law after a specified number of loading cycles. Thereafter, the 

blade is remeshed with the new crack length. The initial crack is positioned where the maximum 

bending stress occurs due to the blade tip being displaced 5𝑚𝑚 relative to the base of the blade (shown 

in Figure 6.5). 

This simulation requires an initial crack size. A semi-elliptical surface crack length of 2𝑚𝑚 (𝑐 = 1𝑚𝑚) 

and depth of 0.5 𝑚𝑚 (𝑎 = 0.5𝑚𝑚) was selected to start the simulation. This size was selected because 

it is the smallest possible crack size that avoids ANSYS from defeaturing the small crack during 

meshing. A fully reversed load is applied to the blade with a 5𝑚𝑚  blade tip displacement5. The 

                                                      

5 This is the maximum amplitude of the tip displacement used during fatigue testing on the slip table as mentioned 

in Section 3.2.3 
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simulation is performed for 40 subsets and a total of  1000 cycles per subset. Figure 6.6 (a) to (c) shows 

the adaptation of the mesh as the crack grows during the simulation.  

 

Figure 6.5: Equivalent von-Mises stress of the rotor blade due to 5𝑚𝑚 tip displacement and location of 

maximum stress. 

 

  

(a) (b) 

  

(c) (d) 

Figure 6.6: ANSYS SMART crack growth simulation mesh of (a) the initial crack, (b) a 12𝑚𝑚 crack 

and (c) a 20 𝑚𝑚 crack. The equivalent von-Mises stress of the blade at the crack front of Figure 6.6 (d) 
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The results obtained from these simulations are the crack lengths in the tangential direction (i.e. the 

depth of the cracks) and the length of the cracks at the surface of the blade. This simulation is repeated 

until the crack front reaches the other side of the blade. These results have been recorded and are shown 

in Figure 6.7. Figure 6.6 (d) shows the equivalent von-Mises stress close to the crack front. Notice that 

the stress diverges at the tip of the crack due to the discontinuous nature of the crack.  

6.2.3. Relationship between crack length and crack depth 

The results from both the simulation and the optical microscope images are shown in  Figure 6.7. A 

least squares regression model is fit through the data and is shown in equation (6.1). 

𝑎 = 0.0189 + 0.8098 ln(2𝑐) (6.1) 

 

Figure 6.7: Surface crack length and crack depth of a semi-elliptical surface crack approximation from 

FEM simulation and optical microscope images.  

   

(a) (b) 

Figure 6.8: The assumed crack size in the blade (a) from equation (6.1). The cross-sectional area and 

second moment of area of the blade as a function of crack size (b) 
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The resulting crack shapes as a function of crack length are shown by the contours in Figure 6.8 (a), the 

associated cross-sectional area and second moment of area is also calculated as a function of crack 

length. 

6.3. Finite element model for first natural frequencies of cracked 

rotor blades 

Now that the crack depth can be described as a function of crack length the natural frequency of the 

blade can be determined using FEM. The relationship between crack depth and crack length is necessary 

for modelling the size of a semi-elliptical surface crack in the blade. The crack is introduced to the blade 

by splitting the blade at the location of the crack and only sharing the topology between the two parts 

of the blade that are not part of the crack. This is shown in Figure 6.9 where the pink edges show the 

shared topology between the bottom and top part of the blade. The reason for this type of model is to 

introduce the crack to the blade without removing any material from the blade. The modal analysis is 

performed for different lengths of the crack and the first natural frequency is plotted in Figure 6.10. 

Figure 6.9 (b) shows the mode shape of a blade without a crack and Figure 6.9 (c) shows the mode 

shape of the blade with a 33 𝑚𝑚 crack. Notice that the mode shape of the blade with a crack is straighter 

when compared to the blade without a crack.  

 

  

(a) (b) (c) 

Figure 6.9: ANSYS shared topology of the top and bottom part of the blade (a) and the associated mode 

shape for no crack (b) and the largest crack (c). 

Figure 6.10 shows the FEM modal analysis results for the blade as a function of crack length. From 

Figure 6.10 it is seen that the model approximates the data well for small cracks. The deviation in the 

finite element results seem to indicate an offset in the crack length. The author speculates the reason for 

this offset is due to plasticity at the crack tip that is not accounted for during the FEM modal analysis.  
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Figure 6.10: Finite element modal analysis results compared to the data collected from the experiments. 

6.4. Hybrid method for diagnosing faults from FEM simulations 

and Data  

The goal of this section is to determine the probability density function of the crack length (𝑐) given the 

natural frequency measured from BTT ( 𝑓𝐵𝑇𝑇 ). This probability density function is preferably 

conditioned on all prior experimental data collected (𝒟) and physics-based models (ℳ𝑝ℎ𝑦𝑠𝑖𝑐𝑠) chosen 

to diagnose the rotor blade. That is, obtaining the probability density function in equation (6.2) is the 

ultimate objective in fault diagnosis using stochastic methods. The data collected is divided into two 

parts namely (i) the training labels (𝐲) and (ii) the training features (𝐗). In the case of turbomachine 

rotor blade diagnostics, the training labels consist of both measured crack lengths (from NDT tests) and 

the crack lengths specified in the FEM modal analysis. The training features consist of the BTT-

measured natural frequencies and the results of the FEM modal analysis. 

𝑝(𝑐|𝑓𝐵𝑇𝑇 ,ℳ𝑝ℎ𝑦𝑠𝑖𝑐𝑠, 𝒟) = 𝑝(𝑐|𝑓𝐵𝑇𝑇 , 𝐲, 𝐗) (6.2) 

In the standard diagnostics approach, most engineers select a model (such as a polynomial) to fit both 

the experimental data and the finite element simulation results (denoted ℳ𝑝ℎ𝑦𝑠𝑖𝑐𝑠 ). The model 

parameters (denoted 𝐰), also referred to as the weights of the selected model, is usually solved from a 

linear least squares regression. However, these least squares regression models maximise the likelihood 

of obtaining the training data for the selected model (Bishop, 2006). Thus, increasing the complexity of 

the selected model (ℳ𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑) will maximise the likelihood of the data and the model will overfit the 

data. Thus, the least squares regression models may fail to generalise the diagnosis of a crack with a 
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few experimental/true measurements of the natural frequency. In early stage diagnosis (when limited 

data is available) the model will practically always overfit the experimental data. Equation (6.3) shows 

the maximum likelihood solution to the model parameters (𝐰ML). Under the assumption that the labels 

(𝐲) have white Gaussian noise and the selected model is linear in terms of the model parameter, equation 

(6.4) is the maximum likelihood solution to equation (6.3). The symbol 𝛟 refers to the design matrix 

and consists of the all the training features substituted into the selected model. 

𝐰M𝐋 = argmax
𝑤.𝑟.𝑡 𝐰

𝑝(𝒟,ℳ𝑝ℎ𝑦𝑠𝑖𝑐𝑠|ℳ𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑)  (6.3) 

𝐰ML = (𝛟
T𝛟 )

−1
(𝛟T𝐲) 

(6.4) 

One of the limitations of the maximum likelihood solution is that the model parameters needs to be 

solved for every new data point. This dissertation, therefore, suggests the use of a Gaussian process 

regression (GPR) model for diagnostics. One of the advantages of GPR models is that no single model 

is selected to represent the data. Instead, the GPR model is governed by the choice of a kernel function. 

A lot of literature shows the use of GPR for generalised models in diagnostics and prognostics (Saha et 

al., 2010; Corrado et al., 2018). Seeger (2004) provides an in-depth derivation and practical use of GPR 

models. In summary, these models perform inference to obtain the probability distribution in equation 

(6.2). Further details on the use of GPR can be found in Seeger (2004). This dissertation uses the built-

in packages of Python Scikit-learn to perform GPR.  

Consider a blade that has no prior inspection data and only a finite element simulation of the damage in 

the blade is used to construct the model. The physics-based model is the only information available. 

However, as data becomes available a hybrid model augments the physics model with the data. Each 

data point in the diagnostics model consists of measuring the length of a crack and the natural frequency 

of the blade during stationary conditions. Thus, each data point requires an NDT technique to measure 

the crack length and a modal impact hammer test or BTT-test to measure the natural frequency of the 

blade. Collecting data is therefore a longstanding process. This dissertation, therefore, proposes a two 

GPR models namely (i) a physics-based model and (ii) a hybrid model. 

The resulting models and the 95% confidence intervals are shown in Figure 6.11. The figure depicts a 

model that is trained only on (a) the FEM results (also referred to as the physics-based model) and a 

model that is trained on (b) both the experiment data and the FEM simulation results. The associated 

kernel functions and their optimised hyperparameters are reported in equations (6.5) and (6.6) for the 

physics-based and hybrid approach respectively. The difference between the two models is the inclusion 

of all the data gathered during the experiments. 
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𝜅𝑝ℎ𝑦𝑠𝑖𝑐𝑠(𝑥
𝑖, 𝑥𝑗) = ( [𝐷𝑜𝑡𝑃𝑟𝑜𝑑𝑢𝑐𝑡(𝜎0 = 17.3)+  𝑊ℎ𝑖𝑡𝑒𝐾𝑒𝑟𝑛𝑒𝑙(𝜎 = 0.00412)]

× 𝑅𝐵𝐹(𝑙 = 5140) )2  +  0.289 2 (6.5) 

𝜅ℎ𝑦𝑏𝑟𝑖𝑑(𝑥
𝑖 , 𝑥𝑗) = ( [𝐷𝑜𝑡𝑃𝑟𝑜𝑑𝑢𝑐𝑡(𝜎0 = 0.774)+  𝑊ℎ𝑖𝑡𝑒𝐾𝑒𝑟𝑛𝑒𝑙(𝜎 = 0.0884)]

× 𝑅𝐵𝐹(𝑙 = 432) )2  +  203 2 

(6.6) 

It is noticed that both models encapsulate the FEM results well, however the uncertainty of the physics-

based model is less than for the hybrid model. It is, however, emphasised that less uncertainty does not 

necessarily lead to a better model. The better model is one that predicts the crack length best given all 

the gathered evidence i.e. the model that is a solution to equation (6.2). Notice that the physics-based 

model does guarantee that the natural frequency and the crack length of a blade will fit in the 95% 

confidence interval of the physics-based GPR model.  

 
 

(a) (b) 

Figure 6.11: Scikit-learn Gaussian process regression model of only the FEM results (a) and a hybrid 

between the data and finite element results (b)  

Once a lot of data is collected data-driven techniques are applicable and may provide better predictions 

of the crack length given the natural frequency of the blade. Since GPR constructs models by solving 

the distribution in equation (6.2) both the data-driven and the physics-based models are applicable. 

However, since the hybrid model contains evidence collected from FEM simulations and data collected 

from a limited number of blades. The hybrid method model is therefore considered further in this 

dissertation, since it contains the most evidence of how natural frequency relates to crack length. 

The diagnostics model in Figure 6.11 is constructed such that the model performs estimates of the 

natural frequency given the crack length. This is because a better GPR model is obtained when the 

fitting the data to the inverse model. Figure 6.12 orientates the model such that the crack length can be 

estimated from the natural frequency. 
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Figure 6.12: Hybrid diagnostics model with natural frequency as independent variable and crack length 

set to the dependent variable. 
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7. Prognostics: Estimating RUL 

Finally, all the derived models and methods are combined in this chapter to provide a methodology to 

estimate the RUL.  Consider the diagnostics model derived in Chapter 6. This model provides 

probability distributions of the crack given the measured natural frequency form BTT. Note that once 

an estimate of the crack size is known the remaining number of fatigue cycles to failure can be 

determined from Paris’ law. Thus, the remaining number of fatigue cycles until failure is calculated 

using equation (7.1). The Paris’ law coefficients, geometric factor, stress range, maximum allowable 

crack length and the current estimate of the crack length is denoted by 𝐶, 𝑚, 𝐹(𝑎𝑘), ∆𝑆, 𝑎𝑓 and 𝑎𝑘 

respectively. 

∆𝑁𝑓 = 𝐶(𝐹(𝑎𝑘)∆𝑆√𝜋)
𝑚
(𝑎𝑓

2−m
2 − 𝑎𝑘

2−m
2 )(

2 − m

2
) (7.1) 

Note, however, that there are the large uncertainties in the crack length obtained from the diagnostics 

model, the RUL estimation from equation (7.1) becomes very uncertain. This chapter, therefore, 

suggests the use of a state space model to improve the estimates of current crack length, which will 

decrease uncertainty in the RUL estimation. Simply put, the model predicts the crack length at the next 

BTT inspection of the blade. After a diagnosis is made of the blade, the prediction of the crack length 

is updated using Bayesian inference. The state space model proposed here also includes modelling the 

Paris’ law coefficients as part of the state parameters. Thus, the crack length is treated as uncertain as 

well as the crack growth rate. This chapter is structured as follows: 

1. First, the data collected from the fatigue tests are presented and crack lengths are compared to 

the number of loading cycles. 

2. The next section describes the stresses on the blade during operation and the stress intensity 

factor at the crack tip as a function of crack length. The Raju-Newman stress intensity factor 

approximation is then compared to the simulated measurements from the FEM fatigue crack 

growth simulation. 

3. The failure criteria are then discussed for the blade used in this experiment 

4. The sequential inference state space model is then provided for the crack and an unscented 

Kalman filter (UKF) is then suggested to solve the filtering problem. The UKF is a Bayesian 

inference method that solves posterior distributions of the state given a prediction and an update 

model. The UKF assumes the state space parameters are sampled from a multivariate Gaussian 

distribution. The UKF results of one of the blades are discussed and the improvement of the 

overall RUL prediction is shown for this model. The rest of the results from the UKF is provided 

in Appendix B. 
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5. A method is then discussed for improving the approximation of the geometric factor in equation 

(7.1). This method is implemented in the original UKF state transition equations and the RUL 

prediction. 

6. Finally, the applicability of this method for real time prognosis is discussed and possible 

limitations of the method are shown. 

7.1. Fatigue crack growth experimental results 

The fatigue crack growth results obtained from the NDT tests and the electrodynamic shaker are shown 

in Figure 7.1. The figure shows the measurements from NDT for all 10 blades that where tested. Notice 

that the figure has a large uncertainty range in the number of cycles as the crack length increases. That 

is, the crack growth curves become more spread out as the crack grows. This is due to the loading 

amplitude that changes during the experiment. This is controlled the blade displacement amplitude due 

to the excitation frequency of the slip table as mentioned in Section 3.2.3. 

 

Figure 7.1: Fatigue crack length (measured in NDT tests) compared to the number of loading cycles on 

the electrodynamic shaker. 

Figure 7.2 shows both the expected value from the diagnostics estimate of the crack length and the NDT 

measurements. The lower graph in the figure is the stress amplitude during the fatigue test. Notice that 

this stress amplitude is not constant. The reason for this is that the stress is calculated from the 

displacement of the tip of the blade. However, the displacement of the blade tip varies during the 

experiment due to the frequency response of the blade changing during degradation. By integrating the 

velocity response measured by the laser vibrometer it is possible to find the average displacement 

amplitude. The average stress is then calculated from the average displacement of the blade tip in a 

finite element solution.  

Due to the excitation at the base of the blade, a fully reversed stress is applied during each cycle. Thus, 

the stress ratio 𝑅 = −1. Corbani et al. (2014) investigated the effect of compressive stresses on the 
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crack growth rate and found no significant increase in the size of the crack front due to compressive 

stresses.  On the other hand, Silva (2005) and Zhang et al. (2010) found that residual stresses due to 

compressive loads cause faster crack growth. However, Zhang et al. (2010) suggest an adaptation on 

Paris’ law for negative stress ratios in equation (7.1). The equation only shows that the maximum tensile 

stress intensity factor is used and the parameter 𝛽 is only a function of the stress ratio. Therefore, the 

stress amplitude will only consist of the tensile component on the crack growth rate calculated from 

equation (7.2) and the compressive stress is neglected.  

𝑑𝑎

𝑑𝑁
= 𝐶((1 + 𝛽)𝐾𝑚𝑎𝑥)

𝑚
 (7.1) 

∆𝑆 = 𝑆𝑚𝑎𝑥 − 𝑆𝑚𝑖𝑛 = 𝑆𝑚𝑎𝑥 (7.2) 

 

Figure 7.2: NDT crack length measurement and BTT crack length estimation over the number of 

loading cycles. Additional graph shows the stress amplitude during the fatigue failure test.  

7.2. Stresses and future operating conditions 

This section describes the computation of the stress intensity factor from two sources. The first approach 

is to determine the stress intensity factor at the surface from the FEM fatigue fracture simulation in 

Section 6.2.2. The second approach entails an approximation that assumes a semi-elliptical surface 

crack in a rectangular cross-section cantilever beam. The size and shape of the crack is already 

determined in Section 6.2.3. The complex geometry of the blade is approximated by calculating an 

equivalent thickness of the blade given the with and cross-sectional area. This assumption was used by 

Witek (2011, 2015) and Brits (2016). Both the finite element method and the approximation method is 

compared in this section.  
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7.2.1. Stress intensity factor  

The stress intensity factor is calculated for each node on the crack front during the finite element 

simulation. Figure 7.3 shows solutions to the stress intensity factor as the crack length changes. Each 

figure shows the crack front and the stress intensity factor solution is shown as a line graph underneath 

each crack. There are six stress intensity factor contour lines per crack length. Convergence of the 

solution to the stress intensity factor is verified due to the convergence of the contour lines. 

  

  

(a) (b) 

  

  

(c) (d) 

Figure 7.3: Finite element fatigue crack growth simulation stress intensity factor contour results for (a) 

the initial crack, (b) a small crack, (c) an intermediate crack and (d) a large crack. 
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The geometric factor at the crack surface is shown as green dots in Figure 7.4. Notice that there are no 

stress intensity factor values for crack lengths larger than 32 𝑚𝑚. This is because the finite element 

mesh requires very small element sizes to accurately solve the stress intensity factor. Figure 7.4 also 

shows the evaluation of an equivalent geometric factor, calculated from the Raju-Newman equations in 

Appendix A. The width of the rectangular section is assumed equal to 2𝑏 = 40𝑚𝑚 and the equivalent 

thickness is calculated using equation (7.3) from the cross-sectional area 𝐴 = 67 𝑚𝑚2. The Raju-

Newman equations are only valid for cracks that do not exceed the thickness. Therefore, the graph also 

shows the part of the Raju-Newman equation that is not valid for cantilever beam approximations.  

𝑡𝑒𝑞 =
𝐴

2𝑏
 (7.3) 

 

Figure 7.4: Stress intensity factor calculated from Raju-Newman approximation and the finite element 

simulation of the fatigue crack growth. 

The Raju-Newman equations provide a continuous analytical solution to the geometric factor that is 

close enough to the finite element solutions (within a 10-20% error margin). These equations are 

therefore used to calculate the stress intensity factor range from the average applied stress. 

7.2.2. Failure of the blade under assumed operating stress 

Now that the stress intensity factor can be calculated it is important to estimate when failure occurs in 

the blade. The next figure shows the behaviour of the blade under static loads. The figure shows the 

applied stress on the y-axis and the crack length on the x-axis. Failure is caused by either yielding or 

brittle fracture. Yielding happens when the applied stress is larger than the material yield stress, shown 

by the orange line. Brittle failure, on the other hand, occurs when the stress intensity factor exceeds 
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fracture toughness (𝐾1𝑐 = 30𝑀𝑃𝑎√𝑚) of the material. Since the stress intensity function is a function 

of the crack length, the curve shown in blue is the maximum allowable stress that safeguards against 

brittle failure. The red dashed line indicates the maximum operating stress and where the red dashed 

line and the blue line meet is the critical crack length. Brittle fracture will only occur at a crack length 

larger than 38 𝑚𝑚. Thus, the region shown in green is the ‘safe’ region where failure will not occur 

due to static loading. 

 

Figure 7.5: Behaviour of Aluminium T6-6082 blade subject to stationary bending loads in the presence 

of a crack, adapted from Dowling (2013) 

In the case of variable stresses, the crack length increases until it reaches the critical crack length. Note 

from the Figure 7.5 that operating stresses less than 80 𝑀𝑃𝑎 have critical crack lengths almost equal to 

the width of the blade. In these cases, the blade will not experience brittle failure; instead, steady crack 

growth will occur until the crack is as wide as the blade. Therefore, a maximum allowable crack length 

is required for the blade. This allowable crack length should be part of the design specification for the 

blade and the blade should not be used if the crack exceeds the specification. 

7.3. Sequential inference model for improved damage estimates 

The current damage state of the blade is progressively measured by performing diagnostics on the 

results obtained from BTT. These measurements are noisy and the blade’s crack length is therefore 

modelled as a probability distribution. This section proposes the state parameters and the equations 

necessary to perform sequential inference on the probability distribution of the current damage state.  
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This dissertation proposes the use of the Paris’ law coefficients as part of the damage state. Including 

the uncertainty of Paris’ law’s coefficients allows for better prediction of future crack lengths, since the 

probability density function of the current state is not only conditioned on the damage alone but the rate 

at which damage occurs. The state vector (denoted 𝐱k) is shown in equation (7.3).  The Paris’ law 

coefficients and crack length are represented by 𝐶𝑘, 𝑚𝑘 and 𝑎𝑘 

𝐱𝑘 = {
𝐶𝑘 
𝑚𝑘 
𝑎𝑘

} (7.3) 

After several loading cycles the state vector changes according to equation (7.4). The vector function 

(denoted 𝐟) is referred to as the transition function.  

𝐱𝑘+1 = 𝐟(𝐱𝑘) = { 

𝐶𝑘+1  =  𝐶𝑘
𝑚𝑘+1 = 𝑚𝑘

𝑎𝑘+1  =  𝑓(𝑎𝑘 , 𝐶𝑘 ,𝑚𝑘)
 } (7.4) 

The equation shows that the Paris’ law coefficients do not change after several loading cycles, however 

the crack becomes longer according to the Paris’ law. Equation (7.5) is integrated in equation (7.6) to 

provide the final transition of the current crack length to the next crack length after the loading cycles 

have occurred. The result of this integration can be seen in equation (7.7). The parameters ∆𝑆 and ∆𝑁 

are the stress range and number of cycles that elapsed between the transition from 𝐱𝑘 to 𝐱𝑘+1. 

𝑑𝑎

𝑑𝑁
= 𝐶(∆𝐾)𝑚 (7.5) 

∫(
𝑑𝑁

𝑑𝑎
)𝑑𝑎 = ∫(

𝑎− 
𝑚
2

𝐶(𝐹(𝑎)∆𝑆√𝜋)
𝑚)𝑑𝑎 (7.6) 

𝑎𝑘+1 = 𝑓(𝑎𝑘 , 𝐶𝑘,𝑚𝑘) = (∆𝑁(
2

2 −𝑚𝑘
)𝐶𝑘(𝐹(𝑎𝑘)∆𝑆√𝜋)

𝑚𝑘
+ 𝑎𝑘

2−mk
2 )

2
2−𝑚𝑘

 (7.7) 

As mentioned earlier the current damage in the blade is continuously monitored though inspections of 

the blade using BTT measurements. Therefore, it is assumed that state variable 𝑎𝑘 is observable. In 

terms of a sequential inference approach, the measurement function is defined in equation (7.8)  

𝒛𝑘 = {𝑎𝑘} (7.8) 

These equations all form part of a hidden Markov chain model. Fracture mechanics theory is used to 

derive the transition equations; therefore, these equations are physics-based. Equation (7.8) is the 

measurement function and is calculated from data obtained during diagnostics. Both Kalman filters and 

particle filters allow for the combination of both the data and the physics-based models to perform 

inference on the state parameter assuming a hidden Markov chain model. 
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Equations (7.3), (7.4), (7.7) and (7.8) are implemented in an unscented Kalman filter. The prior 

probability distribution is defined by the mean vector and covariance matrix in equation (7.9) and (7.10) 

respectively. The sigma points presented in the work of Julier and Jeffrey (1997) are selected to model 

the multivariate Gaussian distribution defined by the current state. 

𝛍𝟎 = {
8.512 × 10−11  

2.7
10

} (7.9) 

𝚺𝟎 = [

(7 × 10−13)2 0 0 
0 (0.005)2 0 
0 0 (1)2

] 
(7.10) 

Figure 7.6 shows the posterior distribution of the UKF given the diagnostics estimates for blade 1. The 

green dashed line shows measured crack length from the NDT tests and is considered as the “real” crack 

length of the blade. The red dashed line is the mean of the diagnostics model after the natural frequency 

of the blade is measured from BTT. The red Gaussian distributions indicate the uncertainty of the 

diagnostics model. The blue distributions are the UKF posterior distribution after inference is performed 

on all previous crack length estimations of the diagnostics of the blade. 

 

Figure 7.6: Damage state estimation of a single blade with the measured crack length (green), the BTT 

diagnostics (red) and the UKF results (blue). The stress amplitude during the loading cycles is shown 

by the lower blue bar graph determined from FEM simulations of the blade’s displacement amplitude 

measured during the fatigue tests. 
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Notice that the uncertainty of the posterior of the crack length becomes less the more diagnostic 

estimates are used in the UKF. This is shown in the next figure where the entire Gaussian probability 

density function is shown for the surface crack length after each update and predict step in the UKF.  

 

Figure 7.7: The posterior distribution of the current crack length per diagnosis of the blade from BTT. 

Figure 7.8 and Figure 7.9 show the probability distributions of the Paris law coefficient and exponent 

respectively. These distributions indicate that the standard deviation of the parameters increase with 

each addition of diagnostics information for both coefficients. However, considering the mean value of 

the Paris Law coefficients shown in Figure 7.10 for the ten blades presented in Section 6.1 it is evident 

that the parameters change with each diagnostic estimate.  

 

Figure 7.8: The posterior distribution of Paris law coefficient per diagnosis of the blade from BTT. 
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Figure 7.9: The posterior distribution of Paris law exponent per diagnosis of the blade from BTT. 

 
 

(a) (b) 

Figure 7.10: The mean value of the posterior distributions for the Paris Law coefficient (a) and exponent 

(b) from the UKF for all the blades. 

7.4. RUL prediction methodology 

Now that a method has been derived to better estimate the current damage state of the blade, it is 

necessary to predict the remaining number of loading cycles the blade can sustain before reaching the 

critical crack length or the maximum allowable crack length, denoted 𝑎𝑓. Rearranging equation (7.7) 

the remaining number of cycles to failure are calculated using equation (7.11) in a deterministic sense. 

∆𝑁𝑓 = 𝐶(𝐹(𝑎𝑘)∆𝑆√𝜋)
𝑚
(𝑎𝑓

2−m
2 − 𝑎𝑘

2−m
2 )(

2 − m

2
) (7.11) 
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The result of the UKF describes a joint probability distribution on the parameters 𝐶, 𝑚 and 𝑎. Thus, a 

deterministic answer for the RUL can be calculated from the mean value of the distribution as shown 

in equation (7.12). The expected value of multivariate Gaussian distributions is equal to the mean vector 

of the UKF. 

𝔼[∆𝑁𝑓] = 𝔼[C𝑘](𝐹(𝔼[𝑎k])∆𝑆√𝜋)
𝔼[𝑚𝑘]

(𝑎𝑓

2−𝔼[𝑚𝑘]
2 − 𝔼[𝑎k]

2−𝔼[𝑚𝑘]
2 )(

2 − 𝔼[𝑚𝑘]

2
) (7.12) 

7.4.1. Monte Carlo method for RUL estimation 

The result in equation (7.12) is only a deterministic estimate of the remaining number of cycles before 

the crack becomes too long. This estimate is of limited use because the uncertainty of the estimate is 

not known. An alternative approach to the deterministic estimate is to compute the RUL using a Monte 

Carlo method. The method approximates the joint probability distribution over 𝐶,𝑚 and 𝑎 as a specified 

number of points. These points are all sampled from the final posterior probability distribution obtained 

from the UKF as shown in equation (7.13). An estimate of the RUL is then determined from each 

sample point using equation (7.11). The final RUL probability distribution is then represented by the 

points, from which a histogram or Kernel Density Estimation (KDE) plot can be created.  

𝒑𝒌,𝒊 = {

𝐶𝑘,𝑖
𝑚𝑘,𝑖

𝑎𝑘,𝑖

}~𝓝(𝐱𝑘 , 𝚺𝑘) (7.13) 

∆N𝑓,𝑖 = 𝐶𝑘,𝑖(𝐹(𝑎𝑘,𝑖)∆𝑆√𝜋)
𝑚𝑘,𝑖

(𝑎𝑓

2−𝑚k,i
2 − 𝑎

𝑘,𝑖

2−𝑚k,i
2 )(

2 −𝑚𝑘,𝑖

2
) (7.14) 

The RUL can be determined any time after an estimation is made on the crack length of the blade. 

Figure 7.11 shows the crack propagation from the posterior distributions of the UKF until the crack 

reaches the critical crack length equal to 40 𝑚𝑚. The top and bottom curves are aligned with the 

number of loading cycles. These approximations were made by assuming the future operating stress 

will be 50 𝑀𝑃𝑎 continuously until failure. The figure shows how the original uncertainty in UKF is 

very large at first and with each inference step of the UKF the standard deviation of the RUL decreases. 

A significant improvement is shown from the estimations of the brown curves compared to blue curves. 

The critical crack length also does not need to be the width of the blade. Simply substituting a different 

threshold value for 𝑎𝑓 the estimation will of the number cycles until this threshold is calculated. This is 

shown in Figure 7.12 where the maximum crack length is set equal to 31 𝑚𝑚. This is equal to the last 

crack length measured during the experiment for blade number one. Considering how the blue 

histogram compares to the purple histogram in Figure 7.12, it is evident that the method improves the 

estimations of the crack length and the crack growth rate. To maintain continuity of argument in this 

dissertation the RUL estimates of the rest of the blades are reported in Appendix B. 
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Figure 7.11: Remaining useful life estimation of a blade assuming a constant stress amplitude of 

50 𝑀𝑃𝑎. Probabilities of failure at the number of cycles are shown at the top and the Monte Carlo 

predictions from samples of the UKF are shown below. 

 

Figure 7.12: Remaining useful life estimation of a blade assuming a constant stress amplitude of 

50 𝑀𝑃𝑎. The probability that the crack length equals the maximum specified crack length of 31 𝑚𝑚 

given the number of cycles is shown in the top graph. 
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Figure 7.12 shows that the mean value of the RUL probability density function closely approximates 

the last measured crack length of the rotor blade. The uncertainty of the estimate reduces each time the 

crack is inspected. It is hypothesised that the uncertainty of the RUL will continually reduce for each 

inspection of the blade using BTT. The intervals between inspections should initially be as short as 

possible to decrease the overall uncertainty of the Paris law coefficients and consequently reduce the 

uncertainty of the RUL. This experiment uses large inspection intervals since the blade is fatigued on 

the shaker table and tested in the rotor. In industrial applications the fatigue of the rotor blade primarily 

occurs due to the operating conditions of the turbomachine. 

Figure 7.13 shows approximations of the histograms in Figure 7.11 as Gaussian distributions. The figure 

compares the RUL estimates with the number of cycles until failure. The method should ideally 

converge to a straight line with a gradient equal to the dashed lines in Figure 7.13. This is because the 

remaining number of cycles should be used as the fatigue cycles are applied to the blade. The figure 

shows that the remaining useful life is still updating and the current estimation in the Paris law 

coefficients have not reached a converged value. Also note from Figure 7.6 the stress amplitude varies 

during the loading cycles.  

 

Figure 7.13: Remaining number of cycles estimation as the number of cycles occur. 

The same figure is generated and overlayered in Figure 7.14 for all the blades. Figure 7.14 (a) shows 

the RUL posterior distribution as a function of the number of loading cycles. Note that the stress 

amplitude changes during the number of cycles due to the shaker table that controls the displacement 

of the blade during testing. Thus, the loading conditions are different during the number of cycles. 

Figure 7.14 (b) shows the RUL estimates as the crack length changes for the blade. From this figure it 

is noticed that the uncertainty in the RUL primarily reduces due to the increase in crack length. Thus, 

the model only becomes certain of failure when it is close to failure. This makes sense and it is a good 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Prognostics: Estimating RUL 

76 

 

sanity check. The uncertainty of failure is strongly dependent on the length and Paris law coefficients 

due to equation (7.11). The mean RUL estimation for all the blades are shown to be a function of the 

crack length. However, the uncertainty reduces as the crack length increases. The reduced uncertainty 

is primarily due to the crack growth rate becoming unstable and brittle failure is imminent. Thus, the 

predicted RUL is low for large cracks and the uncertainty of failure decreases. Future work will look at 

the effect of modelling Paris law coefficients as part of the state space parameters and the overall 

prediction accuracy. 

 

(a) 

 

(b) 

Figure 7.14: RUL estimation until the crack equals 40𝑚𝑚 with a 50 𝑀𝑃𝑎 average stress is obtained in 

for all experiments compared to the number of cycles (a) and the estimated current crack length (b). 
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7.5. Improved integration of Paris’ Law for state estimation and 

RUL estimation 

Consider the geometric factor in equation (7.5). During the integration of equation (7.4) this factor is 

assumed constant for each step in the UKF. This assumption is only valid when the geometric factor 

does not change significantly during a loading cycle. Figure 7.4 showed that the geometric factor 

changes for different crack lengths. An improved model to estimate of the crack propagation should 

solve the crack length intermediately by transitioning the crack length only for a small number of cycles 

(denoted ∆𝑛). The new crack length is then transitioned continuously for this small number of cycles 

until the summation of all the ∆𝑛 transitions is equal to the specified ∆𝑁. Equation (7.15) shows the 

intermediate transition function. Equation (7.12) shows that the final transition is a composite function 

of each small transition. 

𝑓(𝐶𝑘,𝑚𝑘 , 𝑎𝑘 , ∆𝑛) = (∆𝑛 (
2

2 −𝑚𝑘
)𝐶𝑘(𝐹(𝑎𝑘)∆𝑆√𝜋)

𝑚𝑘
+ 𝑎𝑘

2−mk
2 )

2
2−𝑚𝑘

 (7.15) 

𝑎𝑘+1 = 𝑓(𝐶𝑘,𝑚𝑘 , 𝑓(𝐶𝑘 ,𝑚𝑘 , 𝑓(… ), ∆𝑛), ∆𝑛) (7.16) 

This method ensures an accurate approximation to the transition function. The more intermediate the 

crack lengths are available, the closer the approximations become to the analytical integral of equation 

(7.6). This method was implemented in the UKF state estimation shown in Figure 7.6 and Appendix B. 

The geometric factor also does not remain constant in equation (7.7) when estimating the remaining 

number of cycles to failure. A similar incremental method is applied to this equation however small 

increments are made on the crack length. The number of cycles is then determined from a summation 

of all the cycles required to propagate the crack from its current state to the specified final state. 

∆𝑛𝑖 = 𝑔(𝐶 ,𝑚 , 𝑎𝑖, 𝑎𝑖−1) = 𝐶 (𝐹(𝑎𝑖)∆𝑆√𝜋)
𝑚 
(𝑎𝑖

2−𝑚 
2 − 𝑎

𝑖−1

2−𝑚 
2 )(

2 −𝑚 

2
) (7.17) 

∆𝑁𝑓 = ∑ ∆𝑛𝑖

𝑓

𝑖=𝑘+1

 

 

(7.18) 
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7.6. Comparison of hybrid prognostics models 

The derived prognostics model is compared to existing techniques. This section compares the model to 

three types of existing models namely (i) a deterministic model based only on physics-based methods 

and observations from BTT, (ii) a hybrid prognostics model with a physics-based diagnostics model 

and (iii) a hybrid prognostic model based only on the crack length (that is a model that excludes  the 

Paris law coefficients from the hidden state variable). 

7.6.1. Deterministic estimation from physics-based models 

The RUL of the one the blades is determined using a deterministic technique from integrating Paris’ 

law. The result is shown in Figure 7.15. The bottom graph shows the crack length estimated from BTT 

(blue) at the number of loading cycles referenced to the start of the experiment. The true crack length 

measurements are shown in green. At each of the diagnostics stages (that is at each estimation of the 

crack length shown in blue) the number of cycles is predicted until the crack reaches a length of 31 𝑚𝑚. 

The mean of the Paris law coefficients is used to calculate the remaining number of cycles from the 

crack length estimated at each stage. The top graph shows the number of cycles that is required from 

the start of the experiment for the crack length to equal 31 𝑚𝑚. It is assumed that the blade exceeds its 

specification limit when the number of cycles exceeds the indicated amount (vertical coloured bar). 

 

Figure 7.15: Deterministic estimations of the number of loading cycles to failure determined from the 

mean of the crack length obtained from the diagnostics model.  

Notice that each number of cycles estimation (from the deterministic model) is different for each 

diagnosis of the blade. That is, at each of the numbered points on the lower graph has a different RUL 
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estimation shown in the top graph. Therefore, the result in Figure 7.15 does not provide enough 

information for decision making since the estimations are inconsistent.  There are also no uncertainty 

bounds resulting from the method which makes it difficult for engineers to determine the associated 

risk of keeping the blade in operation. The advantage of the proposed method in section 7.4 is that the 

result is a probability density function with uncertainty bounds that become smaller with each 

estimation as shown in Figure 7.12. 

7.6.2. Regular physics-based diagnostics 

Figure 7.16 demonstrates the method for crack length estimations made from the purely physics-based 

diagnostics method. The figure shows each crack length estimation with Gaussian probability density 

functions shown in red. The uncertainty in the probability distribution is very narrow since only FEM 

is used to diagnose the crack length. The UKF results from the observed diagnostics is show in blue. 

Comparing Figure 7.16 to Figure 7.6, it is evident that the physics-based diagnostics method (i.e. Figure 

7.16) fails to estimate the measured crack length (green points) as accurate as the hybrid method.  

 

Figure 7.16: Damage state estimation of a single blade with the measured crack length (green), the BTT 

physics-based diagnostics (red) and the UKF results (blue). The stress amplitude during the loading 

cycles is shown by the lower blue bar graph. 

Figure 7.17 shows how the Paris law parameters changes with each diagnosis. The final estimations of 

the remaining number of cycles is shown in Figure 7.18. These results are comparable to the results in 

Figure 7.12 since the same algorithm is used to predict the RUL from the current damage estimate. The 

only difference between the two models is that the model in Figure 7.12 uses a hybrid diagnostics 

method whereas Figure 7.18 uses a model constructed only on FEM results.  
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(a) (b) 

Figure 7.17: The mean value of the posterior distributions for the Paris Law coefficient (a) and exponent 

(b) from the UKF of the physics-based diagnostics for all the blades. 

 

Figure 7.18: Remaining useful life estimation of a blade using a physics-based diagnostics method. 

Assuming a constant stress amplitude of 50 𝑀𝑃𝑎. The probability that the crack length equals the 

maximum specified crack length of 31 𝑚𝑚 given the number of cycles is shown in the top graph. 

7.6.3. UKF estimation of only crack length as hidden state 

The final model to consider is a UKF that treats the crack length only as the hidden state parameter. 

The Paris law parameters are assumed constant in this model. The estimations of the crack length are 

made from the hybrid diagnostics model and the result is shown in Figure 7.19. The results show that 

the UKF does not approximate both the diagnostics and the measured crack lengths as effectively as 

the model in Figure 7.6. This is because the Paris law parameters are fixed. Thus, errors are made in the 

prediction step of the UKF. The update step in the UKF accounts for the difference between the 
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diagnostics approximations and these predictions. The RUL estimations for this model is shown in 

Figure 7.20. The model has comparable results to the model in Figure 7.12 and is commonly used by 

most crack length prediction prognostics methods. 

 

Figure 7.19: Damage state estimation of a single blade with the measured crack length (green), the BTT 

diagnostics (red) and the crack length based UKF results (blue). The stress amplitude during the loading 

cycles is shown by the lower blue bar graph. 

 

Figure 7.20: Remaining useful life estimation of a blade assuming a constant stress amplitude of 

50 𝑀𝑃𝑎. The probability that the crack length equals the maximum specified crack length of 31 𝑚𝑚 

given the number of cycles is shown in the top graph. 
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7.7. Limitations and applicability for real-time prognostics of 

rotor blades 

This final section discusses some of the limitations this method has for real time applications on rotor 

blades.  

First and foremost, the UKF works by approximating Gaussian probability density functions which are 

continuous over an entire real domain of the state vector. The UKF will for certain priors predict crack 

lengths larger than the length of the blade when using equation (7.7). This is problematic since the stress 

intensity factor is not defined for cracks that are longer than the blade itself. These problems primarily 

occur if the prior probability distributions are not selected correctly. It is necessary to investigate the 

choice of proper priors in equation (7.13), however this is not part of the scope of this dissertation. 

Instead, the methodology was provided for estimating RUL from BTT data. Future work should 

consider the effect of prior mean vector and covariance matrices.  

Secondly, the estimation of the RUL is a probability of failure curve. The expected value or mean of 

this probability density function is not a good estimate of when the component will fail since there is a 

50% chance that the blade will fail before the cycles are completed. Rather, it is recommended that the 

probability of failure is selected based on risk assessment. 

Lastly, these estimations in RUL all have Gaussian shapes due to the way the UKF models the inference 

problem. Other non-Gaussian probability density functions could have been investigated to see if the 

RUL estimate remains Gaussian. However, Coppe et al. (2010, 2012) used a particle filter-based 

approach to approximate the RUL of the various plates. These predictions showed that the RUL 

remained near Gaussian. 
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8. Conclusion 

This dissertation presents four key contributions to the field of prognostics and health management. 

The first contribution is a novel method for analysing BTT signals to determine the response of the tip 

of the blade. The method is derived from dynamics principles and makes no assumptions about the 

acceleration of the rotor shaft. The method also allows the user to determine the relative angular 

displacement of the blade tip by treating each proximity probe individually (instead of collectively). 

Therefore, knowledge about the radial location of each proximity probe is not necessary to determine 

the blade response.  

The second contribution is the derivation of a technique that determines the critical speed of a rotor 

blade from a newly derived least squares spectral analysis method. The method detects the critical 

speeds of the rotor from the measured response of the blade. The significance of this work is that it 

allows the user to perform spectral analysis on data that is unequally sampled in time. The newly derived 

method finds its origin with the Lomb-Scargle periodogram. VanderPlas (2018) showed that since the 

Lomb-Scargle periodogram is a least-squares fit between unequally sampled data, there might not exist 

a Nyquist frequency limit for this technique. Regardless, this method is only tested for a single transient 

run-up run-down load case for the rotor. The method is successful in approximating the critical speeds 

and using a Campbell diagram to obtain the natural frequency of blade in real-time. The resulting 

measured natural frequencies are within a 5 𝐻𝑧 error margin from the natural frequencies measured 

with modal impact hammer tests. The approximation method accounts for centrifugal stiffening in the 

blade due to centrifugal acceleration force experienced by the blade. 

The third contribution is a hybrid model that estimates the uncertainty of the crack length in a rotor 

blade from the measured BTT results. The GPR model uses both results from a FEM modal analysis 

and the experimental data to perform inference on the current crack length given the measured natural 

frequency from BTT tests. FEM fatigue fracture simulations and optical microscope images of the 

fracture surface confirm the shape of a typical fatigue crack that initiates at the location of maximum 

bending stress in the blade. In early stage diagnostics, when limited data is available for determining 

damage of the blade, a physics model is the only available model for estimating crack length from 

natural frequency. However, as data becomes available hybrid techniques allow for in inclusion data 

collected from NDT tests. The GPR method also fits in the proposed prognostics framework of this 

dissertation. 

The final contribution of this dissertation is the use of the diagnostic estimates to improve fatigue crack 

growth models. The method proposed here estimates the remaining useful life by setting up a state space 

model for improving the uncertainty in the Paris Law coefficients and ultimately the estimation of the 

RUL.  
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In conclusion this dissertation is summarised in Figure 8.1 and Figure 8.2. First the procedure starts 

with a BTT signal. The signal is then processed to obtain the natural frequency of the blade. The current 

crack length in the blade is determined from a pre-constructed diagnostics model that provides 

uncertainty estimates of the damage in the blade based on the current natural frequency of the blade. 

The condition of the blade is continually monitored, and a state space model improves the current 

estimate of the crack length by performing Bayesian inference given all the prior diagnostics 

information. The final probability density function of the RUL estimate is obtained by propagating the 

crack length until it reaches the maximum allowable crack length. The success of the proposed 

methodology is demonstrated, and it is proven that the RUL can be estimated from a BTT condition 

monitoring signal. 

 

 

Figure 8.1: Prognostics framework for determining the RUL of a rotor blade in real time using BTT as 

a condition monitoring method. 
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Figure 8.2: Real-time diagnostics and prognostics framework and its required information to construct 

the models. 
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9. Future work 

This dissertation proposes a complete real-time hybrid prognosis of a turbine rotor blade. The intention 

of this work is to estimate remaining useful life of these rotor blades from newly derived methods and 

methods found in literature. Naturally, not all diagnostics and prognostics methods have been 

considered and future work could see the inclusion of many different methods. This section outlines 

some of the future work that can be pursued from this work. These topics pertain to the practical 

application and the generalisation of the proposed techniques. 

1. The newly derived BTT signal processing method is shown to work for a run-up run-down 

transient load case. This is a specific type of transient load case. Other types of transient loads 

may cause the measurement of the blade tip displacement or estimations of the natural 

frequency to be inaccurate.  

o A confirmation of the true relative blade tip displacement compared to the signal 

processing measurements is therefore necessary. That is, the measurements from BTT 

(calculated from the method proposed in Section 4.2) need to be compared to other 

measurements such as strain gauge measurements to ensure that the technique 

determines the true relative displacement of the blade. 

2. The new least squares spectral analysis method also only confirms the measurement of the 

natural frequency of the blade in an experiment with a single blade and a single air nozzle. 

Admittedly, this is not representative of the true loads in a turbine rotor.  

o Therefore, future work should look at the effect of multiple blades and multiple air 

nozzles on the accuracy of the technique. These other types of conditions should ideally 

emulate the loads of a real turbomachine rotor blade setup.  

3. The diagnostics of the blade makes assumptions of the location and shape of a single crack in 

the blade. This assumption is restrictive in the sense that a blade may contain cracks at other 

locations and may have multiple cracks. Most of the current research shows methods for 

detecting multiple cracks and crack sizes (Corrado et al., 2018).  

o The application of techniques for detecting and measuring multiple cracks could 

improve the overall estimation of the RUL using the proposed methodology with 

multiple crack lengths as the state parameters. 

4. The hybrid diagnostics model suggested in Section 6.4 is compared to the physics-based model. 

The selection of a hybrid method is purely based on the model that uses all sources of available 

information.  

o The limitation of the hybrid method is that the model is constructed from FEM 

simulations and measured data that is hard to come by. The method requires 

measurements of the crack length in the blade (typically obtained from NDT tests) and 
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natural frequency measurements. This data can be obtained beforehand by performing 

experiments such as the experiments proposed in this dissertation or by intermittently 

stopping the operation of the turbomachine to perform NDT tests. 

5. The state space model proposed in the prognostics section is not completely validated and it is 

difficult to prove whether this model is better than only tracking the crack length in the blade.  

o Methods for tracking the crack length as the hidden state variable are shown to improve 

the overall estimation of the RUL of the component. However, adding the Paris law 

coefficients to the hidden state vector does not show significant improvement for the 

limited number of diagnostics estimates performed in the experiment. Future 

endeavours will look at proving the improvement of including these parameters in the 

state space model. Various methods have been proposed for evaluating the performance 

of a prognostics algorithm (Saxena et al., 2008; Kai Goebel et al., 2011; Ramasso et 

al., 2016). These metrics could be used validate the suggested approach. 

6. The proposed state space model only considers linear elastic fracture mechanics. The effect of 

plasticity and crack initiation is overseen in this dissertation.  

o Future work should also look at the models that include the NASGRO equation for 

nonzero stress ratios. 

7. The effect of multiple degradation models such a wear and creep are not considered in this 

dissertation, however the inclusion of these method will likely have the same type of transition 

and measurement functions. 

8. Other real time condition monitoring techniques have not been considered. However, due to 

the hybrid nature of the suggested prognostics methodology, these techniques should be easy 

to implement. Future work should confirm the use of multiple condition indicators to estimate 

the remaining number of cycles. 
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Appendix A: Raju-Newman Stress Intensity Factor 

The following section only provides the Raju and Newman (1984) equations for determining the stress 

intensity factor of a surface crack in a rectangular cross-sectional beam subject to tension and bending. 

The parameters to note is the crack depth (𝑎), the surface crack length (2𝑐), the bending stress (𝑆𝑏), the 

normal tensile stress (𝑆𝑡), the thickness (𝑡) and the width of the beam (2𝑏) 

𝐾1 = (𝑆𝑡 +𝐻𝑆𝑏)√
𝜋𝑎

𝑄
𝐹 (A.1) 

The rest of the parameters in equation (A.1) are calculated from equations (A.2) to (A.15) 

𝑄 = 1 + 1.464(
𝑎

𝑐
)
1.65

 (A.2) 

𝐹 = [𝑀1 +𝑀2 (
𝑎

𝑡
)
2

+𝑀3 (
𝑎

𝑡
)
4

] 𝑓𝜙𝑔𝑓𝑤 (A.3) 

𝑀1 = 1.13 − 0.009 (
𝑎

𝑐
) (A.4) 

𝑀2 = −0.54 +
0.89

0.2 + (𝑎/𝑐)
 (A.5) 

𝑀3 = 0.5 −
1

0.65 + (
𝑎
𝑐)
+ 14 (1 −

𝑎

𝑐
)
24

 (A.6) 

𝑔 = 1 + [0.1 + 0.35 (
𝑎

𝑡
)
2

] (1 − sin𝜙)2 (A.7) 

𝑓𝜙 = [(
𝑎

𝑐
)
2

cos2𝜙 + sin2𝜙]

1
4
 (A.8) 

𝑓𝑤 = [sec (
𝜋𝑐

2𝑏
√
𝑎

𝑡
)]

1
2

 (A.9) 

𝐻 = 𝐻1 + (𝐻2 −𝐻1) sin
𝑝 𝜙 (A.10) 

𝑝 = 0.2 +
𝑎

𝑐
+ 0.6

𝑎

𝑡
 (A.11) 

𝐻1 = 1 − 0.34
𝑐

𝑡
− 0.11

𝑎

𝑐
(
𝑎

𝑡
) (A.12) 

𝐻2 = 1 + 𝐺1 (
𝑎

𝑡
) + 𝐺2 (

𝑎

𝑡
)
2

 (A.13) 

𝐺1 = −1.22 − 0.12
𝑎

𝑐
 (A.14) 

𝐺2 = 0.55 − 1.05 (
𝑎

𝑐
)
0.75

+ 0.47 (
𝑎

𝑐
)
1.5

 (A.15) 
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Appendix B: Crack growth estimation graphs 

This section reports all the fatigue failure data collected from the experiments. The UKF state space 

model is applied to the data and the uncertainty of the crack length is shown in blue. The red Gaussian 

distributions show the uncertainty of the crack length when measuring the natural frequency of the blade 

from BTT. The green line is the true measured crack length measured from the NDT liquid dye 

penetrant test. The average assumed stress range is plotted below for the number of cycles during the 

fatigue test. The stress amplitude is determined from the relative blade tip displacement response due 

to the acceleration of the slip table 
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Figure B.1: All experimental results with UKF approximations of the current crack length (blue) and 

the diagnostics of the   
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Figure B.2: All remaining useful life estimates of the BTT signal for ten blades 
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