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Summary

We prove a characterization of relative weak mixing in W*-dynamical sys-
tems in terms of a relatively independent joining. We then define a non-
commutative version of relative discrete spectrum, show that it generalizes
both the classical and noncommutative absolute cases and give examples.

Chapter 1 reviews the GNS construction for normal states, the related
semicyclic representation on von Neumann algebras, Tomita-Takasaki the-
ory and conditional expectations. This will allow us to define, in the tra-
cial case, the basic construction of Vaughan Jones and its associated lifted
trace. Dynamics is introduced in the form of automorphisms on von Neu-
mann algebras, represented using the cyclic and separating vector and then
extended to the basic construction.

In Chapter 2, after introducing a relative product system, we discuss
relative weak mixing in the tracial case. We give an example of a relative
weak mixing W*-dynamical system that is neither ergodic nor asymptoti-
cally abelian, before proving the aforementioned characterization.

Chapter 3 defines relative discrete spectrum as complementary to rela-
tive weak mixing. We motivate the definition using work from Chapter 2.
We show that our definition generalizes the classical and absolute noncom-
mutative case of isometric extensions and discrete spectrum, respectively.
The first example is a skew product of a classical system with a noncom-
mutative one. The second is a purely noncommutative example of a tensor
product of a W*-dynamical system with a finite-dimensional one.
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Introduction

Ergodic theory has its origins in statistical mechanics, a subfield of physics
(see, for instance, [TKS92]) and concerns itself with abstract dynamical sys-
tems. Classically this is a measure space together with a measure-preserving
group action. There are a number of textbooks available on the topic, for
instance, [Pet89], [Fur14] and [Gla03]. Ergodic theory has made an impact
within mathematics itself. We mention, for example, the work of Fursten-
berg in number theory ([Fur14]).

Of particular interest is the study of the long term behaviour of sys-
tems encapsulated in two complementary properties, that of “mixing” and
“compactness”. The former term describes systems whose orbits “fill up”
the phase space, whereas the latter refers to those systems whose orbits are
relatively compact.

In this thesis, we work in a noncommutative framework. The measure
space is replaced by a von Neumann algebra with a normal faithful state
and the dynamics is given by a state-preserving ∗-automorphism. We will
examine weak mixing and discrete spectrum relative to a subsystem. In
Chapter 2, we study relative weak mixing using a relative product system,
defined using a special type of state called a relatively independent joining.
This will allow us to obtain a new result which appeared in [DK19]. It is a
noncommutative and relative version of the following classical characteriza-
tion: a measure-preserving system is weak mixing if and only if the system
formed by its Cartesian product with itself is ergodic.

The basic construction together with its trace, is an important tool
throughout this thesis. Its use will lead us naturally to a definition of
relative discrete spectrum, explored in Chapter 3.

We end the introduction with some remarks. Two indexes, one for
symbols and the other for terms appear at the end of the thesis. With the
exception of tensor products (which we refer the reader to [WO93, Appendix
T], and [KR97b, Section 11.2]), Chapter 1 and Appendix A summarize what
we require of the following fundamental topics:

• von Neumann algebras, their normal states and tracial weights;

 
 
 



INTRODUCTION

• The GNS- and semicyclic representations;

• Tomita-Takesaki theory for states;

• Conditional expectations of von Neumann algebras;

• The basic construction and its trace;

• Direct integrals of Hilbert spaces and von Neumann algebras;

• Algebraic tensor products and von Neumann tensor products.

The contents of Appendix A is used after Remark 3.3.2. In contrast, the
other items on the list are used throughout the thesis.

Sections are numbered in the form a.b where a is the chapter (when
a = A we are referring to the appendix). Results such as theorems and
propositions are indexed in the form a.b.c where a.b is the section.

Lastly, for the non-expert, we recommend acquaintance with the basics
of functional analysis and von Neumann algebras. As an example, [Kre78,
Chapters 1-3] and the content of [Zhu93] (up to and including Chapter 18)
should suffice.

 
 
 



Chapter 1

Background

This first chapter is a modification of the first two chapters of the author’s
MSc [Kin17]. Sections 1.1 to 1.4 are meant as a summary to establish no-
tation, conventions and remind the reader of some terminology. We discuss
a very important tool for this thesis, the basic construction and its trace in
Section 1.5. Beginning with Section 1.6, the rest of the chapter discusses
noncommutative dynamical systems theory.

1.1 Faithful Normal States and Cyclic and

Separating Vectors

Proposition 1.1.1. Let µ be a normal state on a von Neumann algebra A.
Then there exists a triple (H, π,Ω) consisting of a Hilbert space H carrying a
normal (i.e. σ-weakly continuous) representation π of A and a distinguished
cyclic vector Ω of the representation satisfying µ(x) = 〈Ω, π(x)Ω〉 (in this
thesis, we take all inner products to be linear in the second coordinate).

Proposition 1.1.2. ([BR02, Proposition 2.5.6]) Suppose A is a von Neu-
mann algebra on a Hilbert space H. The following are all equivalent

1. A is σ-finite (i.e all collections of mutually orthogonal projections have
at most a countable cardinality).

2. there is a countable subset K of H which is separating for A (i.e for
any a ∈ A, ax = 0 for all x ∈ K implies a = 0.

3. there exists a faithful normal state on A.

4. A is isomorphic with a von Neumann algebra π(A) which admits a
cyclic and separating vector.

1

 
 
 



CHAPTER 1. BACKGROUND 2

We emphasize that there are two ways of viewing A (which we will keep
distinct in this thesis). One is as a subalgebra of B(H) (using the GNS
representation). The other is as a dense set in H = π(A)Ω via the map
a 7→ π(a)Ω.

Remark 1.1.3. For the remainder of the work, let us reserve the symbols
A and µ. We let A be a von Neumann algebra admitting a distinguished
normal faithful state µ. We will assume that A is already in its GNS repre-
sentation (standard representation) acting on the Hilbert space H. We let
Ω denote the distinguished cyclic and separating vector obtained from µ.

1.2 The Semicyclic Representation

We describe a generalisation of the GNS construction where a normal semifi-
nite tracial weight is used instead of a state. Details can be found in [KR97b]
§7.5.

Let τ be a normal semifinite tracial weight ([KR97b] Definition 7.5.1,
[BR02] Definition 2.7.12) on a von Neumann algebra R. We consider the
quotient space Kτ/Kτ , where

(1.2.1) Kτ := {x ∈ R | τ(x∗x) <∞}

is a left R-ideal ([KR97a] Lemma 7.5.2) and Kτ := {x ∈ R | τ(x∗x) = 0}.
The quotient map γτ : Kτ → Kτ/Kτ sends elements x ∈ Kτ to elements
x+Kτ .

Though the tracial weight τ is only defined on the positive elements
of R, it can be extended uniquely to a positive hermitian functional on
Sτ := span{a ∈ R+ | τ(a) < ∞}. Thus, because K∗τKτ = Sτ ([KR97b]
Lemma 7.5.2) the expression τ(y∗x) makes sense for every x, y ∈ Kτ . Hence,
Kτ/Kτ has the inner product

(1.2.2) 〈x+Kτ , y +Kτ 〉 := τ(y∗x), for all x, y ∈ Kτ .

Completing Kτ/Kτ in the norm ‖x+Kτ‖τ :=
√
〈x+Kτ , x+Kτ 〉 yields

a Hilbert space which we denote by Hτ .
The elements of R are represented as operators on Hτ . We first define

the action of r ∈ R on Kτ/Kτ

(1.2.3) πτ (r)(x+Kτ ) := rx+Kτ .

The arguments in the GNS construction -see for instance [KR97b] Theorem
4.5.2- give us a unique bounded linear extension with domain Hτ , which we
still denote by πτ (r).

 
 
 



CHAPTER 1. BACKGROUND 3

1.3 Tomita-Takasaki Theory and Modules

We discuss concepts related to the modular conjugation operator. Details
can be found in [BR02, Section 2.5.2.],[KR97b], for instance. The book
[Str81] presents the theory for more general weights. For a general intro-
duction to the theory of unbounded linear operators we refer to [Kre78,
Chapter 10]. For the polar decomposition for unbounded linear operators
we refer the reader to [Sch12].

Consider

(1.3.1) S0 : AΩ→ AΩ : aΩ 7→ a∗Ω.

Such a map is, in general, not continuous on its domain. However, S0 is
closable and its closure is an unbounded linear operator S with domain AΩ.
Consequently, we can use the polar decomposition for unbounded operators
to find a unique bounded linear anti-unitary operator J and a unique, posi-
tive self-adjoint operator ∆ such that S = J∆

1
2 ([KR97b, p. 598]). We call

J the modular conjugation operator and ∆ the modular operator.
If A′ := {x′ ∈ B(H) | ∀m ∈ A x′m = mx′} denotes the commutant

of A in H, the closure T of the closable, densely defined linear operator
A′Ω→ A′Ω : a′Ω→ a′∗Ω satisfies T = J∆−

1
2 .

We take note of some of the properties of J.

Proposition 1.3.1. ([BR02, Proposition 2.5.11, p.84], [KR97b, Proposi-
tion 9.2.3]) We have the following properties of J :

(a) For all ξ, η ∈ H we have, 〈Jξ, Jη〉 = 〈η, ξ〉; in particular, J is an
isometry.

(b) J = J∗ = J−1, where J∗ is defined as follows: for every x, y ∈ H,

〈J∗x, y〉 = 〈x, Jy〉 = 〈Jy, x〉.

(c) JΩ = Ω.

(d) In the case when µ is a trace, we have that S0 is continuous on AΩ
and therefore can be extended to a bounded linear operator S on H.
Moreover, in this case, J = S.

The following result is essential throughout the thesis.

Theorem 1.3.2. (Tomita-Takasaki theorem [BR02, Theorem 2.5.14]) If A
has a cyclic and separating vector, J is the modular conjugation and ∆ the
modular operator, then,

JAJ = A′,

 
 
 



CHAPTER 1. BACKGROUND 4

and for each t ∈ R, ∆it is a unitary operator and we have

∆itA∆−it = A.

Definition 1.3.3. For each t ∈ R, let

σµt : A→ A : a 7→ ∆ita∆it.

We call the one-parameter group of automorphism {σµt | t ∈ R} the modular
automorphism group associated with the pair (A, µ).

In much of our work the state will be tracial, in which case σµt is trivial,
i.e. σµt = idA.

Definition 1.3.4. Let B and C be von Neumann algebras. By a left-B-
module we mean a Hilbert space K with a normal (σ-weakly) continuous
representation π : B → B(K). If π satisfies π(ab) = π(a)π(b), for all a, b ∈
B, we call K a right-B-module. Call K a B-C-module if K is both a left-
B-module and right-C-module with representations πl and πr, respectively,
and satisfies

πl(b)πr(c)x = πr(c)πl(b)x,

for all x ∈ K, b ∈ B and c ∈ C. We sometimes refer to πl as a left action of
B on K. Similarly, πr is referred to as a right action of C on K. We usually
write xc instead of πr(c)x.

We now put

(1.3.2) j : B(H)→ B(H) : a 7→ Ja∗J.

Using this, we define
xa := j(a)x

for all x ∈ H and a ∈ A, making H a right-A-module (when we take scalar
multiplication on the right as xλ := λ̄x for all λ ∈ C). Of course, H is
already a left-A-module by the usual action of A on H, so H is in fact a
bimodule, but, as will be seen in Section 1.5, it is the right module structure
that will be of particular significance for us.

We now set up a “mirror image” (A′, µ′) of (A, µ). Later we will introduce
a conditional expectation and dynamics into the picture and mirror that as
well (Section 1.8).

Given our von Neumann algebra (A, µ), carry the state µ over to A′ in
a natural way using j, by defining a state µ′

(1.3.3) µ′(b) := µ ◦ j(b) = 〈Ω, bΩ〉 ,

for all b ∈ A′.
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1.4 Conditional Expectations of von

Neumann Algebras

Definition 1.4.1. ([Tak03b, Definition IX.4.1]) Let ν be a faithful normal
state on a von Neumann algebra B and C be a von Neumann subalgebra
of B. A linear map E of B onto C is called the conditional expectation of
B onto C with respect to ν if the following conditions are satisfied:

1. ‖E(r)‖ ≤ ‖r‖ for every r ∈ B;

2. E(r) = r for every r ∈ C;

3. ν = ν ◦ E .

We take note of the following properties of E : B → C:

Proposition 1.4.2. ([Tak03a, Theorem III.3.4]) Let r ∈ B and a, b ∈ C.
Then

1. E(r∗r) ≥ 0;

2. E(arb) = aE(r)b;

3. E(r)∗E(r) ≤ E(r∗r).

Theorem 1.4.3. ( [Tak03b, Theorem IX.4.2]) Let ν be a faithful normal
state on a von Neumann algebra B, and let C be a von Neumann subalgebra
of B. The existence of a conditional expectation E : B → C with respect to
ν, is equivalent to the global invariance

σνt (C) = C t ∈ R

of C under the modular automorphism group. If this is the case, then E is
normal and uniquely determined by ν.

Assume that F ⊆ A is a von Neumann subalgebra of A such that 1F =
1A and let λ be the state on F such that λ = µ|F .

Set

(1.4.1) F̃ := j(F ) ⊆ A′ λ̃ := µ′|F̃ .

We let
D : A→ F
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be the unique conditional expectation from A onto F with respect to µ.
Then

D′ := j ◦D ◦ j : A′ → F̃

is the unique conditional expectation such that λ̃ ◦D′ = µ′. Let

(1.4.2) P : H → H

be the projection of H onto

(1.4.3) HF := FΩ.

We now take note of a number of results extracted from Section 10.2 of
[Str81].

Proposition 1.4.4. (part of [Str81, Section 10.2])
The conditional expectation D : A→ F satisfies the equality

PD(a) = D(a)P = PaP,

for all a ∈ A.

We take note of a special case of Proposition 1.4.4:

(1.4.4) D(a)Ω = P (aΩ).

Similarly, we also have

(1.4.5) D′(b)Ω = PbΩ

for all b ∈ A′.

Proposition 1.4.5. (Part of [Str81, Section 10.2])

JHF = HF and HF = F̃Ω.

Remark 1.4.6. In the case when µ is tracial, we reserve the symbol eF
to be the projection from H = AΩ onto FΩ. We refer to eF as the Jones
projection.

Lemma 1.4.7 ([SS08] Lemma 3.6.2). Assume that µ is tracial. Let a ∈ A.
The unique conditional expectation D : A→ F from A onto F with respect
to µ has the following property: for all x ∈ H,

eFaeFx = D(a)eFx = eFD(a)x.
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1.5 The Basic Construction 〈A, eF 〉
Definition 1.5.1. Assume that µ is tracial. We consider 〈A, eF 〉, the small-
est von Neumann algebra in B(H) containing A and eF . We shall refer to
〈A, eF 〉 as the basic construction.

We set
AeFA := span {xeFy : x, y ∈ A}.

The equality JA′J = A leads us naturally to consider if 〈A, eF 〉 can be
expressed similarly.

Proposition 1.5.2. ([SS08] Lemma 4.2.3 and part of [JS97] Proposition
3.1.2)

(a) eF ∈ F ′.

(b) The vector space AeFA is dense in 〈A, eF 〉 in both the weak- and strong
operator topologies.

(c) 〈A, eF 〉 = JF ′J = (JFJ)′ and 〈A, eF 〉′ = JFJ .

(d) 〈A, eF 〉 is a semifinite von Neumann algebra ([KR97b, pp. 423-424]).

It is a non-trivial fact that there exists a faithful semifinite normal tracial
weight µ on 〈A, eF 〉 satisfying

(1.5.1) µ(xeFy) = µ(xy),

for all x, y ∈ A, referred to as the trace of 〈A, eF 〉 (see §4.2 in [SS08]).
(Weights are normally only defined on positive elements, but in addition µ
is defined on AeFA). In [AET11] µ̄ is referred to as the lifted trace.

The following result is useful for verifying the lifted trace in examples:

Theorem 1.5.3 (Part of [SS08] Theorem 4.3.11). Let ϕ be a weight on
〈A, eF 〉 with ϕ = µ on AeFA

+ := {a ∈ AeFA | ∃ b ∈ AeFA : a = b∗b}. If ϕ
is normal, then ϕ = µ̄.

There is a form of the lifted trace that we will find useful in Chapter 3:

Lemma 1.5.4. ([SS08, Lemma 4.3.4]) Let C be a von Neumann subalgebra
of a von Neumann algebra B with a faithful finite normal trace ν. Let {vi :
vi ∈ 〈B, eC〉+} be a set with index set I satisfying

(1.5.2)
∑
i∈I

v∗i eFvi = 1.
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Then

(1.5.3) T̃r(t) =
∑
i∈I

〈Jv∗i , tJv∗i Ω〉

for all t ∈ 〈B, eC〉 defines a weight on 〈B, eC〉. Moreover, (1.5.3) also

defines T̃r on BeCB, and ν̄ = T̃r on this space.

The semicyclic Hilbert space is related to the lifted trace in a manner
similar to what we see in the state case.

Proposition 1.5.5. ([SS08, Lemma 4.3.10]) The vector space AeFA, when
viewed as a set of vectors of the form t+Kµ, is dense in the semicylic Hilbert
space Hµ in the ‖·‖µ-norm.

The following result explains why the basic construction is useful for our
“mirrored” systems (Section 1.3):

Proposition 1.5.6. ([AET11] Lemma 3.4) Let V be a closed subspace of
H. Then V is a right F -submodule, if and only if PV ∈ 〈A, eF 〉.

Proof. Simply note that, for all a ∈ F,

j(F )V ⊆ V ⇔ ∀ a ∈ F PV j(a) = j(a)PV ⇔ PV ∈ (JFJ)′ = 〈A, eF 〉,

the last equality following from Proposition 1.5.2 (c).

Definition 1.5.7. Suppose V ⊆ H is a closed right-F -submodule with
orthogonal projection PV : H → V. Let µ be the lifted trace of 〈A, eF 〉. We
say that PV has finite lifted trace if µ(PV ) <∞.

1.6 W*-Dynamical Systems

Here we define the dynamical systems on von Neumann algebras that we
are going to study, and also consider their Hilbert space representations.

Definition 1.6.1. Suppose A is a von Neumann algebra with a distin-
guished faithful normal state µ. Let α : A → A be a ∗-automorphism
(an algebra automorphism that preserves the adjoint (α(a∗) = α(a)∗) such
that µ is α-preserving (µ(α(a)) = µ(a) for all a ∈ A). We call the triple
A = (A, µ, α) a W*-dynamical system (or just system when there is no
confusion).
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Definition 1.6.2. We call F = (F, λ, ϕ) a subsystem of A if F is a von
Neumann subalgebra of A (containing the unit of A) such that µ|F = λ and
α|F = ϕ. If F is globally invariant under the modular automorphism group
associated to µ (i.e. σµt (F ) = F for all t ∈ R), then F is called a modular
subsystem of A.

Throughout Chapter 2, F will be a modular subsystem of A. Note that
if the state µ of the system A is a trace (i.e. µ(ab) = µ(ba) for all a, b ∈ A),
then all of its subsystems are modular. Much of our work, in Chapter 2,
is for the case where µ is tracial. We assume that µ is tracial throughout
Chapter 3.

In studying the structure of systems, the following type of system nat-
urally appears.

Definition 1.6.3. SupposeR is a von Neumann algebra with normal semifi-
nite faithful tracial weight τ. Let ζ : R→ R be a ∗-automorphism such that
τ satisfies

(1.6.1) τ ◦ ζ = τ

(on the set of all positive elements a ∈ R). We shall refer to the triple
(R, τ, ζ) as a semifinite (W ∗-dynamical) system.

1.7 Representation of W ∗-dynamics on

(A, µ)

We refer the reader to the author’s MSc [Kin17] for any omitted proofs in
the rest of the chapter. They are, for the most part, fairly standard and
also discussed in the literature (see, for example, [Duv08] and [AET11]).
Let A be a system and F a subsystem (not necessarily modular) of A. We
shall examine the unitary operator, denoted U , that arises from α acting
on A. Afterwards, we shall see how U can be used to extend the dynamics
of α to 〈A, eF 〉.

As before, we assume that A acts on its GNS Hilbert space H. The
∗-automorphism α : A 7→ A induces a linear operator U : H → H defined
(first on the dense subspace AΩ) by

(1.7.1) U(aΩ) = α(a)Ω for every a ∈ A.

As Ω is separating, U is well-defined.

Proposition 1.7.1. The map U : H → H is a unitary operator.
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Let us discuss some properties of U .
We note that U∗ = U−1 behaves in the following manner:

(1.7.2) ∀y ∈ A U−1(yΩ) = α−1(y)Ω.

Note that our assumption that α(F ) = F leads us to conclude that FΩ
is a reducing subspace for U i.e. UFΩ ⊆ FΩ and U∗FΩ ⊆ FΩ. Hence,
from [Zhu93] Corollary 18.3, we have,

(1.7.3) UP = PU,

with P as in (1.4.2).
We also have, as a result of [BR02, Corollary 2.4.32],

(1.7.4) JU = UJ.

We can express α in terms of U :

(1.7.5) αn(a) = Un(a)U−n for all n ∈ N,

1.8 The System on the Commutant

Recall in Section 1.3 that we “mirrored” (A, µ) to obtain the von Neumann
algebra A′ and the normal faithful state µ′. We set,

(1.8.1) α′(b) := j ◦ α ◦ j(b) = UbU∗

for all b ∈ A′, using (1.7.4). This defines the system

A′ := (A′, µ′, α′).

We obtain a subsystem

F̃ =
(
F̃ , λ̃, ϕ̃

)
of A′ using (1.4.1) and setting

(1.8.2) ϕ̃ := α′|F̃ .

We also note that

(1.8.3) D ◦ α = α ◦D = ϕ ◦D, D′ ◦ α′ = α′ ◦D′ = ϕ′ ◦D′

since, in terms of P from (1.4.2),

PU = UP,

as is easily verified from α(F ) = F .
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1.9 The Dynamics on 〈A, eF 〉
Here we consider an important semifinite system that arises from a W*-
dynamical system.

We shall now extend α to the basic construction 〈A, eF 〉 ⊆ B(H), which
we will denote by ᾱ in the sequel. For every x ∈ 〈A, eF 〉, (cf. with (1.7.5))

(1.9.1) ᾱ(x) := UxU∗.

In the special case where x = eF , using (1.7.3), (1.9.1) becomes

(1.9.2) ᾱ(eF ) = eF .

It can be shown that (〈A, eF 〉, µ̄, ᾱ) is a semifinite W*-dynamical system
with

(1.9.3) ᾱn(aeF b) = Un(aeF b)U
−n = αn(a)eFα

n(b).

To prove µ̄ ◦ ᾱ = µ̄ is not elementary, requiring Theorem 1.5.3.

Corollary 1.9.1. The ∗-automorphism ᾱ : 〈A, eF 〉 → 〈A, eF 〉 satisfies µ̄ ◦
ᾱ = α i.e. (〈A, eF 〉, µ̄, ᾱ) is a semifinite system.

Proof. We will apply Theorem 1.5.3 to ϕ = µ̄ ◦ ᾱ. We have already re-
marked that µ̄ is normal (see the paragraph before (1.5.1)). As ᾱ is a
*-automorphism on a von Neumann algebra it is normal ([Con00] Proposi-
tion 46.6), hence, so is µ̄ ◦ ᾱ . So we just need to check equality of µ̄ ◦ ᾱ
and ᾱ on AeFA

+.
We show something stronger by showing agreement on the dense sub-

space AeFA. For all a, b ∈ A,

µ̄ ◦ ᾱ(aeF b)

= µ̄(α(a)eFα(b)) using (1.9.3)

= µ(α(ab))

= µ(ab) = µ̄(aeF b) using (1.5.1).

As µ̄ and ᾱ are linear, µ̄ ◦ ᾱ = µ̄ on AeFA.

1.10 Representation of Semifinite

W ∗-dynamics

Let (R, τ, ζ) be a semifinite system. Just below, in a procedure similar to
obtaining U , we can express, at least partially, the action of ζ on R as a
unitary Uζ acting on Hτ .
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We use the notation in §1.2.
For every x ∈ Kτ ((1.2.1)) define

(1.10.1) Uζ : Kτ/Kτ 3 x+Kτ 7→ ζ(x) +Kτ ∈ Kτ/Kτ .

We note that Uζ is well-defined, because using the fact that ζ is a τ -
preserving ∗-automorphism on R, we have τ(ζ(x)∗ζ(x)) = τ(ζ(x∗x)) =
τ(x∗x) < ∞. This shows not only that ζ(x) ∈ Kτ , but also that Uτ is iso-
metric on Kτ/Kτ , that is, ‖x+Kτ‖τ = ‖ζ(x) +Kτ‖τ for all x ∈ Kτ . Thus,
Uζ is a unitary operator on Hτ .

Viewing R in its semicyclic representation πτ (R) on Hτ allows us to
express the action of ζ on R in the following manner.

Proposition 1.10.1. Define ζτ : πτ (R)→ πτ (R) by the prescription:

ζτ (πτ (a)) := Uζπτ (a)U∗ζ for all a ∈ R.

Then,

(1.10.2) ζτ = πτ ◦ ζ ◦ π−1
τ .

Remark 1.10.2. Of interest to us, of course, is the special case where we
consider the semifinite system, (〈A, eF 〉, µ̄, ᾱ). However, the slightly more
abstract approach clarifies the analogous structures and procedures that
arise in comparison with finite W*-dynamical systems (Definition 1.6.1).
We let H̄ := Hµ̄ denote the semicyclic Hilbert space of (〈A, eF 〉, µ̄) and
Ū := Uµ̄ the unitary defined in (1.10.1).

 
 
 



Chapter 2

Relative Weak Mixing

2.1 Introduction

This chapter is a modification of the paper [DK19].
We study relative weak mixing for W*-dynamical systems in terms of

joinings. The main result is a characterization of relative weak mixing in
terms of relative ergodicity of the relative product of the system with its
mirror image on the commutant (in the cyclic representation). The relative
product system is defined using the relatively independent joining obtained
from the conditional expectation onto the von Neumann subalgebra relative
to which we are working. Generalizing the classical case, the subalgebra in
question is always taken to be globally invariant under the dynamics of the
W*-dynamical system.

The proof involves a careful analysis of the interplay between the von
Neumann algebra, its commutant, and the conditional expectation.

In classical ergodic theory it is well known that a dynamical system is
weakly mixing if and only if its product with itself is ergodic. Our main
result in this chapter is essentially noncommutative and relative version of
this.

A noncommutative theory of joinings has been developed in [Duv08],
[Duv10] and [Duv12], generalizing some aspects of the classical theory (see
[Gla03] for a thorough treatment, and [Fur67] as well as [Rud79] for the ori-
gins). It included a study of weak mixing, relative ergodicity and compact
subsystems. Subsequent work was done in [BCM17], which among other
things developed various characterizations of joinings and also obtained a
more complete theory for weak mixing, building on an approach to non-
commutative joinings outlined in [KLP09, Section 5]. Also see [BCM16]
for connected results. Earlier work related to noncommutative joinings ap-

13

 
 
 



CHAPTER 2. RELATIVE WEAK MIXING 14

peared in [ST92], connected to entropy, and [Fid09a], regarding ergodic
theorems.

An investigation of relative weak mixing is a natural next step in the de-
velopment of the theory of noncommutative joinings. Relative weak mixing
has already been studied and used very effectively in the noncommutative
context in [Pop07] and [AET11], but not from a joining point of view.

In particular, the authors of [AET11] proved quite a remarkable struc-
ture theorem, namely that an asymptotically abelian W*-dynamical system
is weakly mixing relative to the centre of the von Neumann algebra. This
allowed them to apply classical ergodic results to the system on the centre,
and then extend these results to the noncommutative system. They defined
relative weak mixing in terms of a certain ergodic limit, which is the ap-
proach taken in this chapter as well. However, we adapt their definition to
a form which is more convenient in the proof of our main result. The two
definitions are nevertheless equivalent when the invariant state is tracial.
To prove this, we make use of the lifted trace (Section 1.5).

Since systems which are not asymptotically abelian do occur, we do not
assume asymptotic abelianness in this thesis.

Furthermore, systems can be weakly mixing relative to nontrivial subal-
gebras other than the centre. This includes cases where the von Neumann
algebra of the system is a factor (i.e. when the centre is trivial). Therefore
we work relative to more general von Neumann subalgebras.

In the classical case, relative weak mixing is often defined in terms of a
relatively independent joining, or relative product, illustrating the impor-
tance of this characterization in the classical case. However, it is in many
cases just stated for ergodic systems, since any system can be decomposed
into ergodic parts. See for example [Fur77, Theorem 7.5], [Z+76, Definition
7.9] and [Gla03, Definition 9.22]. But we note that in [FK78] and [Fur14,
Definition 6.2], on the other hand, ergodicity is not assumed.

In the noncommutative case the assumption of ergodicity becomes prob-
lematic, as typically some form of asymptotic abelianness is required to do
an ergodic decomposition. See for example [BR02, Subsection 4.3.1] for
an exposition. Therefore we study the joining characterization of relative
weak mixing without the assumption of ergodicity. In particular the proof
of Theorem 2.4.2 has to deal with the difficulty of the system not being
ergodic.

A number of other noncommutative relative ergodic properties have al-
ready been studied in the literature, for example in [DM14], building on
ideas from [Fid09b], which was based in turn on variations of unique er-
godicity as studied in [AD09]. Those properties, however, are more of a
topological nature, rather than purely measure theoretic in origin, if one
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thinks in terms of classical ergodic theory, and the techniques involved are
quite different from those in this chapter.

The required background on relatively independent joinings appears in
Section 2.2. The definition of relative weak mixing is formulated in Section
2.3. Some relevant characterizations in terms of ergodic limits are then
derived. A noncommutative example is subsequently presented to illustrate
the points made above regarding asymptotic abelianness, the centre, and
ergodicity. The main result of the chapter, and its proof, appear in Section
2.4.

2.2 Relatively independent joinings

We use the notation of Chapter 1, Sections 1.4 to 1.8.

Definition 2.2.1. Let B = (B, ν, β) and C = (C, σ, γ) be systems. A
joining of B and C is a state ω on the algebraic tensor product B�C such
that ω (b⊗ 1C) = ν(b), ω (1B ⊗ c) = σ(c) and ω ◦ (β � γ) = ω for all b ∈ B
and c ∈ C.

We can now construct the relatively independent joining of A and A′

over F ([Duv12]):
Define the unital ∗-homomorphism

δ : F � F̃ → B(H),

to be the linear extension of F × F̃ → B(H) : (a, b) 7→ ab. Defining the
diagonal state

∆λ : F � F̃ → C

of λ by
∆λ(c) := 〈Ω, δ(c)Ω〉

for all c ∈ F � F̃ , allows us to define a state µ�λ µ′ on A� A′ by

(2.2.1) µ�λ µ′ := ∆λ ◦ E

where
E := D �D′.

Using (1.4.4), (1.4.5) (1.7.5) and (1.8.1), note that µ�λµ′ is indeed a joining
of A and A′, with the property that (µ �λ µ′)|F�F̃ = ∆λ, and it is called
the relatively independent joining of A and A′ over F. We also denote
this joining by

ω := µ�λ µ′.
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Remark 2.2.2. In the case of a state, the relatively independent joining
fits in very naturally with the modular theory of von Neumann algebras:

Note firstly that similar to the fact that ω is a joining of A and A′, we
also have

ω ◦ (σµt � (σµt )′) = ω

where σµt denotes the modular group associated to µ, and (σµt )′ is defined

analogously to α′. This follows, since D◦σµt = σµt ◦D and D′◦σµ
′

t = σµ
′

t ◦D′,
and where we also note that (σµt )′ = σµ

′

−t. From the point of view of von
Neumann algebras (i.e. noncommutative measure theory), this is a very
natural property for a joining to have, and indeed in [BCM17, Definition
3.1] it is included as part of the definition of joinings more generally, even
though here we have not required it in Definition 2.2.1.

Secondly, by [HT70, Lemma 1 of Section 1] (or see [Tak03b, Corollary
VIII.1.4]) it follows that α−1 ◦ σµt ◦ α = σµ◦αt = σµt , so

σµt ◦ α = α ◦ σµt

and analogously for α′ and σµ
′

t , again showing that the framework used here
fits in very neatly with of modular theory.

We write
A�F A′ := (A� A′, µ�λ µ′, α� α′)

and call A�F A′ the relative product system (of A and A′ over F). It is an
example of a ∗-dynamical system, namely it consists of a state ω = µ�λ µ′
on a unital ∗-algebra A�A′, and a ∗-automorphism α� α′ of A�A′ such
that ω◦(α�α′) = ω. However, this is typically not a W*-dynamical system
as given by Definition 1.6.1.

The cyclic representation of A � A′ obtained from ω by the GNS con-
struction will be denoted by (Hω, πω,Ωω). Since ω can be extended to a
state on the maximal C*-algebraic tensor product A ⊗m A′ (see for exam-
ple [Duv10, Proposition 4.1]), we know that πω is a ∗-homomorphism from
A� A′ into the bounded operators B(Hω). Let

γω : A� A′ → Hω : t 7→ πω(t)Ωω.

Furthermore, let W denote the unitary representation of

τ := α� α′

on Hω, i.e. it is defined as the extension of

(2.2.2) Wγω(t) := γω(τ(t))
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for all t ∈ A� A′.
The cyclic representation obtained from ω, allows us to construct cyclic

representations (Hµ, πµ,Ωω) and (Hµ′ , πµ′ ,Ωω) of (A, µ) and (A′, µ′) respec-
tively, which are naturally embedded into Hω (as in [Duv08, Construction
2.3]), by setting

Hµ := γω(A⊗ 1) and πµ(a) := πω(a⊗ 1)|Hµ

for every a ∈ A, and similarly for Hµ′ and πµ′ .
The representation (Hµ, πµ,Ωω) is unitarily equivalent to our initial rep-

resentation (H, idA,Ω) of (A, µ) (via the unitary obtained from H → Hµ :
aΩ 7→ πµ(a)Ωω), but we make use of both representations later on. In terms
of notation, whereas a ∈ A is in the initial cyclic representation, we always
write πµ(a) when using the cyclic representation (Hµ, πµ,Ωω).

Now we consider cyclic representations of (F, λ) and (F̃ , λ̃):
Note that (HF , δ,Ω) is a cyclic representation of (F � F̃ ,∆λ), since

HF = δ(F � F̃ )Ω (as is easily verified using Proposition 1.4.5 and 1.3.1

(c)). However, (γω(F � F̃ ), πω|F�F̃ ,Ωω) is also a cyclic representation of

(F � F̃ ,∆λ), so these two representations are unitarily equivalent via the

unitary operator V : HF → γω(F � F̃ ) defined as the extension of δ(t)Ω 7→
γω(t) for t ∈ F � F̃ . Therefore
(2.2.3)

Hλ := γω(F ⊗ 1) = V δ(F ⊗ 1)Ω = V HF = V δ(1⊗ F̃ )Ω = γω(1⊗ F̃ ),

which means that (F, λ) and (F̃ , λ̃) are cyclicly represented on the same
subspace Hλ of Hω by

πλ(f) := πµ(f)|Hλ and πλ̃(f̃) := πµ′(f̃)|Hλ

for all f ∈ F and f̃ ∈ F̃ .

2.3 Relative weak mixing

This section presents the definition and two closely related characterizations
of relative weak mixing in terms of ergodic averages. These characteriza-
tions do not yet involve the relative independent joining. An example of
relative weak mixing is also given.

In terms of the notation in the previous section, our main definition is
the following:
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Definition 2.3.1. We call a system A weakly mixing relative to the mod-
ular subsystem F if

(2.3.1) lim
N→∞

1

N

N∑
n=1

λ
(
|D(bαn(a))|2

)
= 0

for all a, b ∈ A with D(a) = D(b) = 0.

In the classical case this is often also expressed by saying that A is a
weakly mixing extension of F.

Remark 2.3.2. We recover the absolute case of weak mixing from this
definition, by using F = C1A. Indeed, in this case we have D(a) = µ(a)1A
for all a ∈ A. Thus, (2.3.1) becomes

lim
N→∞

1

N

N∑
n=1

|µ(ban(a))|2 = 0,

or equivalently,

(2.3.2) lim
N→∞

1

N

N∑
n=1

|µ(ban(a))| = 0,

for all a, b ∈ A such that µ(a) = µ(b) = 0.
The reason for this equivalence is that for any bounded sequence (cn) of

non-negative real numbers, bounded by c > 0, say, we have

1

N

N∑
n=1

c2
n ≤

c

N

N∑
n=1

cn

and, using the Cauchy-Schwarz inequality,

(2.3.3)
1

N

N∑
n=1

cn ≤

(
1

N

N∑
n=1

c2
n

) 1
2

.

Therefore,

lim
N→∞

1

N

N∑
n=1

c2
n = 0⇔ lim

N→∞

1

N

N∑
n=1

cn = 0.

Condition (2.3.2) in turn is easily seen to be equivalent to the following:

lim
N→∞

1

N

N∑
n=1

|µ(ban(a))− µ(b)µ(a)| = 0

for all a, b ∈ A (simply replace a and b by a−µ(a) and b−µ(b) respectively
in (2.3.2)). This is the standard definition of weak mixing.
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Our first simple characterization of relative weak mixing, which will also
be used in the proof of this chapter’s main theorem in the next section, is
the following:

Proposition 2.3.3. The system A is weakly mixing relative to F if and
only if

(2.3.4) lim
N→∞

1

N

N∑
n=1

λ
(
|D (bαn(a))−D(b)D(αn(a))|2

)
= 0

for all a, b ∈ A.

Proof. Assume that A is weakly mixing relative to F. For any a, b ∈ A,
setting a0 := a−D(a) and b0 := b−D(b), we have D(a0) = D(b0) = 0 and

D(b0α
n(a0)) = D (bαn(a))−D(b)D(αn(a)).

Hence (2.3.4) follows from Definition 2.3.1. The converse is trivial by as-
suming either D(a) = 0 or D(b) = 0.

This gives us variations of this characterization as well, for example, A
is weakly mixing relative to F if and only if (2.3.1) holds for all a, b ∈ A
with D(a) = 0.

Next we are going to show that when µ is a trace, Definition 2.3.1 is
equivalent to [AET11, Definition 3.7]. To do this, we use the basic con-
struction in a similar way to how it was used in [AET11, Sections 3 and 4]
to prove their structure theorem.

We need three lemmas which we present now. The first is just a slight
variation of the calculations that appear at the beginning of the proof of
[AET11, Proposition 3.8] (see also Chapter 1 Section 1.9):

Lemma 2.3.4. Assume that µ is a trace. Let a, b ∈ A. Then

µ̄(b∗eF bᾱ
n(aeFa

∗)) = λ(|D(bαn(a))|2).

Proof. µ̄(b∗eF bᾱ
n(aeFa

∗)) = µ̄(D(c)eFD(c∗)) = µ(D(c)D(c∗)) in terms of
c := bαn(a).

The following is a version of the van der Corput lemma:

Lemma 2.3.5. [Tao09, Lemma 2.12.7] Let (vn) be a bounded sequence of
vectors in a Hilbert space H such that

(2.3.5) lim
M→∞

1

M

M∑
h=1

(
lim sup
N→∞

∣∣∣∣∣ 1

N

N∑
n=1

〈vn, vn+h〉

∣∣∣∣∣
)

= 0.
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Then

lim
N→∞

1

N

N∑
n=1

vn = 0.

Putting these two lemmas together, we obtain the following:

Lemma 2.3.6. Assume µ is a trace. Let a ∈ A satisfy

(2.3.6) lim
N→∞

1

N

N∑
n=1

λ(|D(a∗αn(a))|2) = 0.

Then, for all b ∈ A, we have

(2.3.7) lim
N→∞

1

N

N∑
n=1

λ(|D(bαn(a))|2) = 0.

Proof. We use the semicyclic representation of Chapter 1 Section 1.2. Let
x := aeFa

∗ and y := b∗eF b. Then both x and y belong to Kµ̄. For notational
convenience, put x̂ := x+Kµ̄. Observe that µ̄(yᾱn(x)) ≥ 0 by Lemma 2.3.4.
Then,

1

N

N∑
n=1

µ̄(yᾱn(x))2 =
1

N

N∑
n=1

〈ŷ, Ūnx̂〉2 =

〈
ŷ,

1

N

N∑
n=1

〈ŷ, Ūnx̂〉Ūnx̂

〉

≤ ‖ȳ‖

∥∥∥∥∥ 1

N

N∑
n=1

〈ŷ, Ūnx̂〉Ūnx̂

∥∥∥∥∥(2.3.8)

Let vn := 〈ŷ, Ūnx̂〉Ūnx̂, for every n ∈ N. Clearly, the sequence (vn) is
bounded. We can estimate, for every n, h ∈ N,

| 〈vn, vn+h〉 | ≤ ‖x̂‖2 ‖ŷ‖2 µ̄(xᾱh(x)).

This, together with Lemma 2.3.4 and our assumption (2.3.6), imply (2.3.5).
Thus, from Lemma 2.3.5, we have limN→∞

1
N

∑N
n=1 vn = 0. Therefore, from

(2.3.8), we obtain

lim
N→∞

1

N

N∑
n=1

µ̄(yᾱn(x))2 = 0.

Consequently, from (2.3.3),

lim
N→∞

N∑
n=1

µ̄(yᾱn(x)) = 0.

Again by Lemma 2.3.4, we are done.
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This finally implies the following characterization of relative weak mix-
ing (which in [AET11] was used as the definition):

Proposition 2.3.7. Assume that µ is a trace. Then A is weakly mixing
relative to the subsystem F if and only if

lim
N→∞

1

N

N∑
n=1

λ(|D(a∗αn(a))|2) = 0,

for all a ∈ A such that D(a) = 0.

Remark 2.3.8. Essential in the commutative version of Lemma 2.3.6 proof
(outlined in [Tao09, Exercise 2.14.1]), is a conditional version of the Cauchy-
Schwarz inequality in terms of the conditional expectation E:

|E(f̄ g|Y )| ≤ ‖E(|f |2|Y )‖L2(X|Y )‖E(|g|2|Y )‖L2(X|Y )

where f, g belong to the L∞(Y )-module

L2(X|Y ) = {h ∈ L2(X) : E(|h|2|Y ) ∈ L∞(Y )}

([Tao09, Section 2.13]). In the noncommutative case, however, our ap-
proach above allows us to simplify the argument and avoid some snags. We
essentially used a noncommutative translation of the proof of the absolute
case [Tao09, Corollary 2.12.8], but in terms of the basic construction, to
prove Lemma 2.3.6.

Before we get to an example, we note a few simple general facts:
Firstly, D(a) = 0 for a ∈ A, if and only if a is of the form a = c−D(c)

for some c ∈ A.
Secondly,

λ(D(αn(a∗)b∗)D (bαn(a))) = ‖PbUnaΩ‖2

for all a, b ∈ A, by a straightforward calculation. If, in addition λ is a trace,
then we have

(2.3.9) ‖PbUnaΩ‖ =
∥∥PUna∗U−nb∗Ω

∥∥
for all a, b ∈ A, by a similar calculation for λ(D (bαn(a))D(αn(a∗)b∗)).

To show that relative weak mixing is indeed relevant in noncommutative
W*-dynamical systems, in particular for non-ergodic systems which are not
asymptotically abelian, we provide the following example:
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Example 2.3.9. Let G be any discrete group, and let A be the group von
Neumann algebra obtained from it. In other words, A is the von Neumann
algebra on H = l2(G) generated by the following set of unitary operators:

{l(g) : g ∈ G}

where l is the left regular representation of G, i.e. the unitary representation
of G on H with each l(g) : H → H given by

[l(g)f ](h) = f(g−1h)

for all f ∈ H and g, h ∈ G. Equivalently,

l(g)δh = δgh

for all g, h ∈ G, where δg ∈ H is defined by δg(g) = 1 and δg(h) = 0 for
h 6= g. Setting

Ω := δ1

where 1 ∈ G denotes the identity of G, we can define a faithful normal trace
µ on A by

µ(a) := 〈Ω, aΩ〉

for all a ∈ A. Then (H, idA,Ω) is the cyclic representation of (A, µ).
Given any automorphism T of G, we define a unitary operator on H by

Uf := f ◦ T−1

for all f ∈ H. From this we obtain a ∗-automorphism of A by setting

α(a) := UaU∗

for all a ∈ A, which satisfies α(l(g)) = l(T (g)) for all g ∈ G.
Then A = (A, µ, α) is a system which we call the dual system of (G, T ).

(See [Duv10, Section 3] for more background on this type of system in the
context of quantum groups, W*-algebraic ergodic theory and joinings.)

Define a subsystem F = (F, λ, ϕ) of A by letting F be the von Neumann
subalgebra of A generated by

{l(g) : g ∈ K}

where K := {g ∈ G : TN(g) is finite}. Here

TN(g) := {T (g), T 2(g), T 3(g), ...}
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is the orbit of g. Furthermore λ := µ|F and ϕ := α|A.
We call F the finite orbit subsystem of A.
We can find D explicitly in this case: The projection P above is now

the projection of H onto the Hilbert subspace spanned by {δg : g ∈ K}.
Therefore we have

(2.3.10) D(l(g)) =

{
l(g) for g ∈ K

0 for g /∈ K

for all g ∈ G.
Note that the unital ∗-algebra generated by {l(g) : g ∈ G} is exactly

A0 = span{l(g) : g ∈ G}.
Suppose that for any g, h ∈ G with g /∈ K, it is true that

(2.3.11) D(l(hT n(g))) = 0

for n large enough, i.e. for n > n0 for some n0. Then, for any c0, b0 ∈ A0,
and a0 := c0 −D(c0), we have

Pb0U
na0Ω = 0

for n large enough. Since A0 is strongly dense in A, it follows that

lim
n→∞

Pb0U
naΩ = 0

for all a ∈ A such that D(a) = 0, by simply considering any c ∈ A and
some c0 ∈ A0 such that ‖c0Ω− cΩ‖ < ε for an ε > 0 of our choosing, and
setting a := c−D(c).

Since λ is a trace, we can apply a similar argument to ‖Pb0U
naΩ‖ =

‖PUna∗U−nb∗0Ω‖ (see (2.3.9)) to show that

lim
n→∞

PbUnaΩ = 0

and therefore
lim
n→∞

λ(D(αn(a∗)b∗)D (bαn(a))) = 0

for all a, b ∈ A such that D(a) = 0. It follows easily from this that A is
weakly mixing relative to F. The limit above could be interpreted as A
having a stronger property, namely that A is “strongly mixing relative to
F”.

What remains is to show specific cases for which (2.3.11) holds and
which illustrate the points made above about noncommutative systems.

A simple case is when G is the free group on a countably infinite set of
symbols S. We then consider any bijection T : S → S which has both finite
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and infinite orbits in S, say T is a permutation when restricted to some finite
non-empty subset, or to each of infinitely many finite non-empty subsets,
while it shifts the remaining infinite subset of S. We obtain an automor-
phism T of G from this bijection. Then (2.3.11) follows from (2.3.10).

But at the same time, F is then not trivial, i.e. F strictly contains the
subalgebra C1, and is in general not abelian. In fact, F is ∗-isomorphic to
the group von Neumann algebra of the free group K on the symbols with
finite orbits. That F 6= C1, also implies that A is not ergodic (see [Duv10,
Theorem 3.4]). Furthermore,

‖[αn(l(g)), l(h)]Ω‖ =
√

2

if T n(g)h 6= hT n(g), which is the case if g and h are in two separate orbits,
or if g = h has an infinite orbit. Hence A is not asymptotically abelian in
the sense of [AET11, Definition 1.10]. Furthermore, A is a factor.

We summarize the key conclusions from this example, as they concretely
illustrate a number of remarks made in Section 2.1, motivating the remarks
made at the beginning of the chapter:

Proposition 2.3.10. Let A be the dual system of (G, T ), where G is the free
group on a countably infinite set of symbols S, and T is an automorphism
of G induced by a bijection T |S : S → S which has both finite and infinite
orbits (the former on non-empty subsets of S). Then A is weakly mixing
relative to its non-trivial finite orbit subsystem (which in general consists
of a noncommutative von Neumann subalgebra), but A is neither ergodic,
nor asymptotically abelian, and furthermore its von Neumann algebra A is
a factor.

2.4 The joining characterization

This section presents the main result of the chapter, still using the notation
from Section 2.2.

Let HW
ω denote the fixed point space of W . The relative independent

joining (or the relative product system) will connect to relative weak mixing
via the following notion:

Definition 2.4.1. We say that A�F A′ is ergodic relative to the modular
subsystem F of A, if HW

ω ⊆ Hλ.

Our main goal in this chapter is to prove the following characterization
of relative weak mixing:
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Theorem 2.4.2. Assume that µ is a trace. Then A is weakly mixing rela-
tive to F if and only if A�F A′ is ergodic relative to F.

The rest of this section is devoted to the proof of this theorem. We
break the proof into a sequence of smaller results. Some of these are of
independent interest (in particular Propositions 2.4.6, 2.4.10 and 2.4.11,
and Remark 2.4.9), and do not require µ to be tracial.

Lemma 2.4.4 below uses the following result:

Proposition 2.4.3. ([Duv12, Proposition 3.6]) Suppose that ϑ is a joining
of (A, µ) and (A′, µ′) such that ϑ|F�F̃ = ∆λ. Then ϑ = µ�λ µ′ if and only
if any of the following three equivalent conditions hold:

1. (Hµ 	Hλ) ⊥ (Hµ′ 	Hλ)

2. (Hµ 	Hλ) ⊥ Hµ′

3. Hµ ⊥ (Hµ′ 	Hλ).

The following lemma and proposition proves one direction of Theorem
2.4.2. In the classical case, this direction is also proven in [Fur14, Proposi-
tion 6.2] and [FK78, Lemma 1.3], but using different arguments.

Lemma 2.4.4. Consider a modular subsystem F of the system A. For any
a ∈ A with D(a) = 0 and any b ∈ A′, we have

πω(a⊗ b)Ωω ⊥ Hλ.

Proof. For any c ∈ F ,

〈πλ(c)Ωω, πµ(a)Ωω〉 = 〈Ωω, πµ(c∗a)Ωω〉 = µ(c∗a)

= λ(D(c∗a)) = λ(c∗D(a))

= 0.

Hence, πµ(a)Ωω ∈ Hµ	Hλ. So πµ(a)Ωω ⊥ Hµ′ by Proposition 2.4.3. On the
other hand, πµ′(b

∗f)Ωω ∈ Hµ′ for any f ∈ F̃ , so 〈πµ′(b∗f)Ωω, πµ(a)Ωω〉 = 0.
Therefore,

〈πλ̃(f)Ωω, πω(a⊗ b)Ωω〉 = 〈πω(1⊗ b∗)πµ′(f)Ωω, πω(a⊗ 1)Ωω〉
= 〈πµ′(b∗f)Ωω, πµ(a)Ωω〉
= 0,

proving the lemma, since πλ̃(F̃ )Ωω is dense in Hλ.
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Using this lemma we can show one direction of Theorem 2.4.2:

Proposition 2.4.5. Assume that µ is a trace and that A�F A′ is ergodic
relative to F. Then

lim
N→∞

1

N

N∑
n=1

λ
(
|D (bαn(a)) |2

)
= 0

for all a, b ∈ A such that D(a) = 0 or D(b) = 0.

Proof. Let Q be the projection of Hω onto the fixed point space HW
ω of W .

By the mean ergodic theorem we then have

lim
N→∞

1

N

N∑
n=1

ω(τn(s)t) = lim
N→∞

1

N

N∑
n=1

〈W nπω(s∗)Ωω, πω(t)Ωω〉

= 〈Qπω(s∗)Ωω, πω(t)Ωω〉

for all s, t ∈ A � A′. This holds in particular for s = a∗ ⊗ j(a) and t =
b∗ ⊗ j(b), where a, b ∈ A, and D(a) = 0 or D(b) = 0.

Suppose D(a) = 0 (the case D(b) = 0 is similar, by taking Q to the
other side in the inner product above). Then πω(s∗)Ωω ⊥ HW

ω by Lemma
2.4.4, so Qπω(s∗)Ωω = 0. This means, by the definition of ω = µ �λ µ′ in
(2.2.1), that

0 = lim
N→∞

1

N

N∑
n=1

〈Ω, D(αn(a∗)b∗)D′(α′n(j(a))j(b))Ω〉

= lim
N→∞

1

N

N∑
n=1

λ(D(αn(a∗)b∗)D(bαn(a))),

as required, since

D′(α′n(j(a))j(b))Ω = PJαn(a∗)b∗Ω = D(bαn(a))Ω,

where we have used the fact that µ is a trace (so JcΩ = c∗Ω for all c ∈
A).

Next we consider the other direction of Theorem 2.4.2. We don’t have
a reference to a proof of the classical case of this direction. Our first step
is the following:
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Proposition 2.4.6. A�F A′ is ergodic relative to F if and only if

(2.4.1) lim
N→∞

1

N

N∑
n=1

ω(tτn(s)) = lim
N→∞

1

N

N∑
n=1

ω(E(t)τn(E(s)))

for all s, t ∈ A� A′. Both limits exist, whether A�F A′ is ergodic relative
to F or not.

Proof. Let Q be the projection of Hω onto the fixed point space HW
ω of W .

Let R be the projection of Hω onto Hλ.
By the mean ergodic theorem, for all s, t ∈ A� A′,

lim
N→∞

1

N

N∑
n=1

ω(tτn(s)) = 〈γω(t∗), Qγω(s)〉

and

lim
N→∞

1

N

N∑
n=1

ω(E(t)τn(E(s))) = 〈γω(E(t∗)), Qγω(E(s))〉 .

Let Pµ be the projection of Hµ onto Hλ, and Pµ′ the projection of Hµ′

onto Hλ. Consider s = a ⊗ b, where a ∈ A and b ∈ A′. Then, because
πµ′(D

′(b))Ωω ∈ Hλ, we know by the construction of D (Proposition 1.4.4)
that

γω(E(s)) = πµ(D(a))πµ′(D
′(b))Ωω = πλ(D(a))πµ′(D

′(b))Ωω

= Pµπµ(a)πµ′(D
′(b))Ωω = Pµπµ(a)Pµ′πµ′(b)Ωω

= Rπµ(a)Rπµ′(b)Ωω.

since R|Hµ = Pµ and R|Hµ′ = Pµ′ .
For y ∈ Hµ′ 	Hλ and f ∈ F , we have

〈πλ(f)Ωω, πω(a⊗ 1)y〉 = 〈πµ(a∗f)Ωω, y〉 = 0,

since πµ(a∗f)Ωω ∈ Hµ ⊥ (Hµ′ 	Hλ) by Proposition 2.4.3. So πω(a⊗ 1)y ⊥
Hλ, which means that

γω(E(s)) = Rπω(a⊗ 1)πµ′(b)Ωω = Rπω(a⊗ b)Ωω.

So
γω(E(s)) = Rγω(s)
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for all s ∈ A� A′. Hence,

〈γω(E(t∗)), Qγω(E(s))〉 = 〈Rγω(t∗), QRγω(s)〉

for all s, t ∈ A� A′.
Now, if A�F A′ is ergodic relative to F, i.e. Q ≤ R, it follows that

〈γω(E(t∗)), Qγω(E(s))〉 = 〈γω(t∗), Qγω(s)〉

from which we see that (2.4.1) holds for all s, t ∈ A� A′.
Conversely, if (2.4.1) holds for all s, t ∈ A� A′, then we have

〈Rγω(t∗), QRγω(s)〉 = 〈γω(t∗), Qγω(s)〉

for all s, t ∈ A�A′. It follows that RQR = Q, so Q ≤ R, meaning A�F A′

is ergodic relative to F.

As a consequence of this proposition, we have the following lemma to-
wards the proof of Theorem 2.4.2:

Lemma 2.4.7. Assume that µ is a trace. Then A�F A′ is ergodic relative
to F if and only if

(2.4.2) lim
N→∞

1

N

N∑
n=1

λ(|D(bαn(a))|2) = lim
N→∞

1

N

N∑
n=1

λ(|D(b)D(αn(a))|2)

for all a, b ∈ A. Both limits exist, whether A�F A′ is ergodic relative to F
or not.

Proof. Suppose A �F A′ is ergodic relative to F, then (2.4.1) holds. Ap-
plying it to s = a⊗ c and t = b⊗ d, for a, b ∈ A and c, d ∈ A′, we obtain

lim
N→∞

1

N

N∑
n=1

ω([bαn(a)]⊗ [dα′n(c)])

= lim
N→∞

1

N

N∑
n=1

ω([D(b)D(αn(a))]⊗ [D′(d)D′(α′n(c))]).

Using the definition of ω, this is equivalent to

lim
N→∞

1

N

N∑
n=1

〈Ω, D(bαn(a))D′(dα′n(c))Ω〉

= lim
N→∞

1

N

N∑
n=1

〈Ω, D(b)D(αn(a))D′(d)D′(α′n(c))Ω〉 .
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Setting c = j(a∗) = JaJ and d = j(b∗) = JbJ , we have in particular

lim
N→∞

1

N

N∑
n=1

〈Ω, D(bαn(a))JD(bαn(a))Ω〉

= lim
N→∞

1

N

N∑
n=1

〈Ω, D(b)D(αn(a))JD(b)D(αn(a))Ω〉 .

Since µ is a trace, this is equivalent to

lim
N→∞

1

N

N∑
n=1

〈Ω, D(bαn(a))D(αn(a∗)b∗)Ω〉

= lim
N→∞

1

N

N∑
n=1

〈Ω, D(b)D(αn(a))D(αn(a∗))D(b∗)Ω〉 .

Since λ is a trace, this is equivalent to (2.4.2).
Note that from the manipulations above we also see that

lim
N→∞

1

N

N∑
n=1

λ(|D(bαn(a))|2) = lim
N→∞

1

N

N∑
n=1

ω(tτn(s))

and

lim
N→∞

1

N

N∑
n=1

λ(|D(b)D(αn(a))|2) = lim
N→∞

1

N

N∑
n=1

ω(E(t)τn(E(s))

exist by Proposition 2.4.6, whether A�F A′ is ergodic relative to F or not,
where s = a⊗ (JaJ) and t = b⊗ (JbJ).

Now, suppose (2.4.2) holds, then we have by the equivalences above,
that

lim
N→∞

1

N

N∑
n=1

ω([bαn(a)]⊗ [JbJα′n(JaJ)])

= lim
N→∞

1

N

N∑
n=1

ω([D(b)D(αn(a))]⊗ [D′(JbJ)D′(α′n(JaJ))]),

i.e.

lim
N→∞

1

N

N∑
n=1

ω((b⊗ (JbJ))τn(a⊗ (JaJ)))

= lim
N→∞

1

N

N∑
n=1

ω(E(b⊗ (JbJ))τn(E(a⊗ (JaJ)))).
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Because of the polarization identity, applied in turn to the two appearances
of the sesquilinear form A× A 3 (a, c) 7→ a⊗ (JcJ) above (once inside τn

and once outside), (2.4.1) then follows, so A�F A′ is ergodic relative to F
by Proposition 2.4.6.

In order to proceed, we need the notion of relative ergodicity for a system
itself:

Definition 2.4.8. We say that A is ergodic relative to F if HU ⊆ HF ,
where HU is the fixed point space of U : H → H, and HF = FΩ.

This generalizes ergodicity of A, which is the special case HU = CΩ.

Remark 2.4.9. In [Duv12, Definition 4.1] an alternative condition was
used instead of HU ⊆ HF to define relative ergodicity, namely

Aα ⊆ F,

where Aα := {a ∈ A : α(a) = a}. For our purposes here, Definition 2.4.8 is
the more convenient definition, but the question nevertheless arises whether
the two conditions are equivalent. From [Duv12, Proposition 4.2] we know
that HU = AαΩ, so if Aα ⊆ F , then HU ⊆ HF . This fact is used in
Proposition 2.4.10.

We do not need the converse. However, it does hold, since F is a modular
subsystem, as we now explain. The conditional expectation D is determined
by

D(a)|HF = Pa|HF
for all a ∈ A (Proposition 1.4.4). The subalgebra Aα is easily seen to be
globally invariant under the modular group as well (see [Duv12, Proposition
4.2]), hence we also have a unique conditional expectation DAα : A → Aα

such that µ ◦DAα = µ, which is similarly determined by

DAα(a)|HU = Qa|HU

where Q is the projection of H onto HU . Assuming HU ⊆ HF , it follows
that

D(DAα(a))|HU = PDAα(a)|HU = Qa|HU = DAα(a)|HU

and therefore D(DAα(a)) = DAα(a), since Ω ∈ HU is separating for A. So,
for a ∈ Aα, we have

a = DAα(a) = D(DAα(a)) ∈ F

which means that Aα ⊆ F .
To summarize: A is ergodic relative to F, if and only if Aα ⊆ F .
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The following generalizes the standard fact that weak mixing implies
ergodicity:

Proposition 2.4.10. If A is weakly mixing relative to F, then A is ergodic
relative to F.

Proof. From Proposition 2.3.3, we have λ(|D(ba) − D(b)D(a)|2) = 0 for
a ∈ Aα and all b ∈ A. Since λ is faithful, it follows that D(b(a−D(a))) =
D (ba)−D(b)D(a) = 0. In particular, setting b = (a−D(a))∗, we conclude
that a = D(a) ∈ F , since µ is faithful and λ ◦ D = µ. So Aα ⊆ F , hence
HU ⊆ HF by the first part of Remark 2.4.9.

Next we consider a version of Proposition 2.4.6 for a system itself.

Proposition 2.4.11. A is ergodic relative to F if and only if

(2.4.3) lim
N→∞

1

N

N∑
n=1

µ(bαn(a)) = lim
N→∞

1

N

N∑
n=1

λ(D(b)αn(D(a)))

for all a, b ∈ A. Both limits exist, whether A is ergodic relative to F or not.

Proof. Essentially the same argument, using the mean ergodic theorem, as
in the proof of Proposition 2.4.6, but with Q now the projection of H onto
HU , and with R replaced by P .

Using the last three results, we can now prove the remaining direction
of Theorem 2.4.2:

Proposition 2.4.12. Assume that µ is tracial and that A is weakly mixing
relative to F. Then A�F A′ is ergodic relative to F.

Proof. Note that for all a, b ∈ A,

λ
(
|D (bαn(a))−D(b)D(αn(a))|2

)
= λ(|D(bαn(a))|2)

− λ(D(αn(a∗)b∗)D(b)D(αn(a)))

− λ(D(αn(a∗))D(b∗)D(bαn(a)))

+ λ(D(αn(a∗))D(b∗)D(b)D(αn(a))).

Consider the second term and use the trace property of µ:

λ(D(αn(a∗)b∗)D(b)D(αn(a))) = λ(D(αn(a∗)b∗D(b)D(αn(a))))

= µ(αn(a∗)b∗D(b)D(αn(a)))

= µ(b∗D(b)αn(D(a)a∗)).
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Since A is ergodic relative to F by Proposition 2.4.10, we now have by
Proposition 2.4.11 that

lim
N→∞

1

N

N∑
n=1

λ(D(αn(a∗)b∗)D(b)D(αn(a)))

= lim
N→∞

1

N

N∑
n=1

λ(D(b∗)D(b)αn(D(a)D(a∗)))

= lim
N→∞

1

N

N∑
n=1

λ(|D(b)D(αn(a))|2)

Similarly

lim
N→∞

1

N

N∑
n=1

λ(D(αn(a∗))D(b∗)D(bαn(a)))

= lim
N→∞

1

N

N∑
n=1

λ(|D(b)D(αn(a))|2)

and

lim
N→∞

1

N

N∑
n=1

λ(D(αn(a∗))D(b∗)D(b)D(αn(a)))

= lim
N→∞

1

N

N∑
n=1

µ(D(b∗)D(b)αn(aD(a∗)))

= lim
N→∞

1

N

N∑
n=1

λ(|D(b)D(αn(a))|2)

Keep in mind that all these limits exist by Proposition 2.4.11. Then by
Proposition 2.3.3,

0 = lim
N→∞

1

N

N∑
n=1

λ
(
|D (bαn(a))−D(b)D(αn(a))|2

)
= lim

N→∞

1

N

N∑
n=1

[λ(|D(bαn(a))|2)− λ(|D(b)D(αn(a))|2)],

so

lim
N→∞

1

N

N∑
n=1

λ(|D(bαn(a))|2) = lim
N→∞

1

N

N∑
n=1

λ(|D(b)D(αn(a))|2),

since both limits exist (see Lemma 2.4.7). By Lemma 2.4.7 we are done.
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This completes the proof of Theorem 2.4.2. To summarize: the one
direction is given by Proposition 2.4.5, the other by Proposition 2.4.12.

To connect this to the structure theorem in [AET11], we mention the fol-
lowing: Suppose that we have an asymptotically abelian W*-dynamical sys-
tem A with a tracial invariant state, as defined in [AET11, Definition 1.10].
According to [AET11, Theorem 1.14] (and Proposition 2.3.7), such a system
is weakly mixing relative to the central system C := (A∩A′, µ|A∩A′ , α|A∩A′).
Theorem 2.4.2 then shows that A�C A′ is ergodic relative to C.

 
 
 



Chapter 3

Relative Discrete Spectrum

In the classical case, systems with discrete spectrum relative to a factor (in
the ergodic, not operator algebraic sense), appear in the celebrated ergodic
theoretic proof of Szermerédi’s Theorem ([Fur77]). Such systems, referred
to as isometric extensions, were originally defined in terms of a type of skew
product, and are equivalent to the underlying L2-space being spanned by
generalized eigenfunctions. In the review paper [FK78], almost periodic
functions are used to define compact extensions. These two approaches are
equivalent. More precisely, [Rob16, Section 4] using, a slightly different
definition of almost periodic functions (but equivalent to the five properties
appearing in [Fur14, Theorem 6.13]) shows that the closed subspace spanned
by the almost periodic functions coincide with the closed subspace spanned
by the generalized eigenfunctions. In this chapter we do not deal at all with
noncommutative analogues of compact extensions.

Besides the original papers of Furstenberg and Zimmer, the books [Gla03]
and [Tao09] provide an exposition on isometric extensions and compact ex-
tensions respectively. The approach of [Gla03] is based around the original
papers of Furstenberg and Zimmer. In contrast, [Tao09] uses Hilbert C*-
modules.

The chapter consists of two main parts. The first gives our noncommu-
tative definition of relative discrete spectrum, defined as a complementary
concept to relative weak mixing (expressed in terms of a closed subspace of
H). A subsequent discussion presents various attempts at finding a viable
definition of relative discrete spectrum. Next, our definition is shown to not
only be a noncommutative generalization of classical isometric extensions,
but also generalizes the noncommutative version of discrete spectrum. The
second part, consisting of Sections 3.3 and 3.4, we discuss two examples
of relative discrete spectrum. The first example (Section 3.3) is a skew
product of a commutative system with a noncommutative one. The sec-

34

 
 
 



CHAPTER 3. RELATIVE DISCRETE SPECTRUM 35

ond (Section 3.4) is a purely noncommutative example of the von Neumann
tensor product of two noncommutative systems, where the second system
is finite dimensional.

We end the chapter with some open problems.
Note that throughout this chapter we will be working only with traces.

3.1 The Semicyclic System Revisited

Recall that (A, µ, α) is a system with subsystem (F, λ, ϕ) (Section 1.6), H̄ is
the semicyclic Hilbert space obtained from (〈A, eF 〉, µ̄) and Ū is the unitary
representation of ᾱ on H̄ (Section 1.2 and Remark 1.10.2).

We now turn our attention to expressing the GNS representation of
the relatively independent joining ω (Section 2.2) in terms of H̄ which is
convenient for our subsequent work. We will construct a natural unitary
operator R : Hω → H̄. In the classical case, such a result appears in [Pet11,
pp. 63-64].

Proposition 3.1.1. Recall that (A, µ, α) is a system with (A, µ) as in Re-
mark 1.1.3. Let µ be tracial. We have a uniquely determined well-defined
unitary operator

R : Hω → H̄

satisfying R(γω(a⊗ j(b))) = γµ̄(aeF b) for all a, b ∈ A.
Furthermore,

Ū = RWR∗.

with Ū as in Remark 1.10.2 and W in (2.2.2).

Proof. Let a, c ∈ A and b, d ∈ A′. Since j is linear, we may define R0 :
A� A′ → 〈A, eF 〉 via the prescription

R0(a⊗ b) := aeF j(b).

From the universal property of A� A′, R0 is well-defined and linear. Note
that R0(A⊗A′) ⊆ Kµ̄ with Kµ̄ = {x ∈ 〈A, eF 〉 : µ̄(x∗x) <∞} as in (1.2.1).
Indeed, take a⊗ b ∈ A� A′ and set

c := R0(a⊗ b) = aeF j(b).

Then, just as in the proof of [KR97b, Lemma 7.5.2],

µ̄(c∗c) =µ̄(j(b∗)eFa
∗aeF j(b))

≤‖a∗a‖ µ̄(j(b∗)eF j(b))

= ‖a‖2 µ(j(b)∗j(b)) <∞,
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since x∗y∗yx ≤ ‖y∗y‖x∗x in a unital C∗-algebra, as y∗y ≤ ‖y∗y‖ from the
spectral theorem. Thus c ∈ Kµ̄. Hence, we can consider

R : γµ̄(A� A′)→ H̄ : γω(t) 7→ γµ̄(R0(t)).

We need to show that R is well-defined, and uniquely extends to a
unitary operator Hω → H̄. Note that since j(f)Ω = Jf ∗Ω = fΩ for all
f ∈ F , we have

(3.1.1) D′(b)Ω = D(j(b))Ω.

Thus, for all a, c ∈ A and b, d ∈ A′,

〈γµ̄(R0(a⊗ b)), γµ̄(R0(c⊗ d))〉µ̄ =〈γµ̄(aeF j(b)), γµ̄(ceF j(d))〉µ̄
=µ̄(j(b∗)eFa

∗ceF j(d))

=µ̄(eFa
∗ceF j(d)j(b∗)eF )

=µ̄(D(a∗c)eFD(j(b∗d))

=µ(D(a∗c)D(j(b∗d)))

=〈Ω, D(a∗c)D′(b∗d)Ω〉
=〈Ω, δ ◦ (D �D′)((a∗c)⊗ (b∗d))Ω〉
=ω((a∗c)⊗ (b∗d)) = ω((a⊗ b)∗(c⊗ d))

=〈γω(a⊗ b), γω(c⊗ d)〉ω.

So it follows that for all s, t ∈ A�F A′,

(3.1.2) 〈γµ̄(R0(s)), γµ̄(R0(t))〉µ̄ = 〈γω(s), γω(t)〉ω.

Thus, R is well-defined (as γω(t) = 0 implies γµ̄(R0(t)) = 0) and can be
extended to an isometric linear operator, still denoted by R, from Hω to H̄.
From Proposition 1.5.5, γµ̄(AeFA) is dense in H̄. It follows that Rγω(A �
A′) = γµ̄(R0(A � A′)) = γµ̄(AeFA) is dense in H̄. Hence, RHω = H̄ and
therefore R is a unitary operator.

Now we carry over the dynamics of Hω onto H̄. Recall that the dynamics
on Hω is given by

Wγω(a⊗ b) = γω(α(a)⊗ α′(b)) = γω((UaU∗)⊗ (UbU∗)).

For a, b ∈ A,

RWR∗(γµ̄(aeF b)) =RWγω(a⊗ j(b)) = Rγω(α(a)⊗ j(α(b)))

=γµ̄(α(a)eFα(b)) = γµ̄(ᾱ(aeF b))

=Ū(γµ̄(aeF b)),

which implies that Ū = RWR∗.
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Note that we can express the relatively independent joining in terms of
µ̄ using R :

µ�F µ′(a⊗ b) = µ̄(eFaeF j(b)) = µ̄(D(a)eFD(j(b)).

Indeed, We have

µ�F µ′(t) =ω(1∗t) = 〈γω(1), γω(t)〉
=〈R(γω(1)), R(γω(t))〉
=µ̄(eFR0(t)) since R0(1) = eF .

In particular, for t = a⊗ b with a ∈ A and b ∈ A′,

µ�F µ′(a⊗ b) = µ̄(eFaeF j(b)).

From the definition of ω,

ω(a⊗ b) =〈Ω, D(a)D(b)Ω〉
=〈Ω, D(a)j(D(b))Ω〉(3.1.3)

=〈Ω, D(a)D(j(b))Ω〉
=µ(D(a)D(j(b)))

=µ̄(D(a)eFD(b)),

(3.1.3) follows from j(c)Ω = Jc∗Ω = cΩ, for every c ∈ A′, using Proposi-
tion 1.3.1(d) and the fact that J is also the modular conjugation operator
associated to µ′ ([BR02, Proposition 2.5.11].

If HW
ω denotes the vector space of all fixed points of W, then

H̄ Ū := RHW
ω ,

must be the fixed points of Ū . We also have a copy of Hλ in H̄ :

(3.1.4)

H̄λ :=RHλ = Rγω(1⊗ F̃ ) from (2.2.3)

=Rγω(1⊗ F̃ )

=γµ̄[R0(1⊗ F̃ )]

=γµ̄(eFF ).

3.2 Relative discrete spectrum

Having obtained our unitary equivalence R in Proposition 3.1.1, we can
equivalently restate relative ergodicity (Definition 2.4.1) from a “basic con-
struction” point-of-view:
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Definition 3.2.1. We say that A�F A′ is ergodic relative to a subsystem
F of A, if H̄ Ū ⊆ H̄λ.

We shall continue to use such a point-of-view to define relative discrete
spectrum.

The inspiration for our noncommutative definition of relative discrete
spectrum is based on the treatment appearing in [Gla03] of the original
work of Furstenberg and Zimmer (see the notes on [Gla03, p. 193]). The
U -µ̄-modules (Definition 3.2.3) play a role analogous to that of the finite
rank modules appearing in [Gla03, Definition 9.2] and [Gla03, Definition
9.10]. However, unlike [Gla03], we do not use an analogue of generalized
eigenfunctions. Instead we opt to directly use the U -µ̄-modules to define
a subspace analogous to the vector space E(X/Y) of all generalized eigen-
functions appearing in [Gla03, Definition 9.10].

Definition 3.2.2. Given a closed subspace V of H, denote the projection
of H onto V by PV . We call V a right-F -submodule (of H) if V F ⊆ V , i.e.
if xa ∈ V for all x ∈ V and for all a ∈ F .

Definition 3.2.3. Suppose V ⊆ H 	 HF (the orthogonal complement of
HF in H) is a right-F -submodule. Call V a U-µ̄-module if V satisfies

µ̄(PV ) <∞ and UV = V.

Definition 3.2.4. By EA/F denote the closed subspace of H	HF spanned
by all U -µ̄-modules.

We now want to capture the idea that relative weak mixing and relative
discrete spectrum exist as complementary concepts ([Tao09, §12.4] presents
this point of view in the commutative case). It is based on the following
result, the one direction of which is proven in [AET11, Proposition 3.8],
although they also mention that the other direction holds. We prove the
latter using Theorem 2.4.2.

Theorem 3.2.5. The system A is weakly mixing relative to F if and only
if EA/F = {0}.

Proof. Note that the statement of the theorem can be rephrased as follows:
The system A is weakly mixing relative to F if and only if there are no
non-trivial U -µ̄-modules.
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That A is weakly mixing relative to F holds if there are no non-trivial
U -µ̄-modules, follows from Definition 2.3.1, Proposition 2.3.7 and [AET11,
Proposition 3.8]. We prove the converse as follows:

Assume there is a non-trivial U -µ̄-module V .Hence, PV ∈ Kµ̄ and we
can set

x := γµ̄(PV ) ∈ H̄.

As UV = V, we have ᾱ(PV ) = UPVU
∗
α = PV . Hence, x ∈ H̄ Ū , with x 6= 0,

since PV 6= 0 and µ̄ is faithful.
Since PV eF = 0,

〈x, γµ̄(eFa)〉µ̄ = µ̄(P ∗V eFa) = 0,

for all a ∈ F. Hence, from (3.1.4), x ⊥ H̄λ, so x /∈ H̄λ (since x 6= 0) and
thus H̄ Ū * H̄λ.

In other words, A�F A′ is not ergodic relative to F. By Theorem 2.4.2
we are done.

Motivated by the above result, we give the main definition of this chap-
ter:

Definition 3.2.6. We say that the system A has discrete spectrum relative
to F if EA/F = H 	HF . Alternative terminology for this is to say that A is
an isometric extension of F.

Thus relative weak mixing and relative discrete spectrum correspond to
the two extremes of EA/F , and are, in this sense, complementary.

In the remainder of this section we show that the classical definition of
relative discrete spectrum as well as the absolute case of noncommutative
discrete spectrum are special cases of this definition, confirming that it is
a sensible definition in a noncommutative framework. We also make some
remarks on other possible definitions and their deficiencies compared to
Definition 3.2.6. In the next two sections we then study examples.

The following is easy to show since eF is a projection of finite lifted trace
and HF is U -invariant as α(F ) ⊆ F, and is a convenient characterization of
relative discrete spectrum:

Proposition 3.2.7. A system A has discrete spectrum with respect to F if
and only if the following condition holds:

(†) there exists a family U of U-invariant right-F -modules such that their
corresponding projections are of finite lifted trace and

span {x : x ∈ V, V ∈ U} = H.
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Proof. Suppose A has discrete spectrum relative to F. Then there is a
family W of U -invariant right-F -modules whose corresponding projections
are of finite lifted trace and spanW = H 	 HF , where we abuse notation
and write spanW = span {x ∈ V : V ∈ W}. Now HF is a right-F -module,
since eF ∈ 〈A, eF 〉 and 〈A, eF 〉 contains all the right-F -modules (Proposition
1.5.6). Since α(F ) = F, we have that U(eF (H)) = eF (H). We also have
µ̄(eF ) = µ̄(1eF1) = µ(1·1) = 1, so that eF is of finite lifted trace. So we have
(†) with U = W ∪ {eF}. Conversely if (†) holds, then we make the same
observation that eF is a U -invariant projection whose image corresponds to
a right-F -module and is of finite lifted trace to conclude that A has discrete
spectrum relative to F.

Remark 3.2.8. There were a number of attempts from the author to de-
fine relative discrete spectrum in a way closer to the commutative case.
However, each approach suffered from ambiguity or technical difficulty.

We outline these approaches in a more informal manner than is used in
the rest of the thesis.

Let us remark that compact extensions (in the sense of [Tao09] are
isometric extensions (in the sense of [Fur77]) as proved in the notes [ZK].
We do not know if compact extensions in the sense of [Tao09]) are compact
(in the sense of [Fur14]) or isometric (in the sense of [Gla03]).

If one considers the absolute classical case, then compact systems are
those whose orbits are relatively compact (the closure of each orbit is com-
pact). Relative compactness can be characterised using zonotopes.

Along these lines, [Tao09, Section 2.13] uses the notion of an L∞-Hilbert
module to define what he calls L2(X | Y ). Here the measure preserving
dynamical system (X,X , µ, T ) is an extension of (Y,Y , ν, S). Functions in
L2(X | Y ) whose orbits are relatively compact (in a sense that we will not
define here) are called conditionally almost periodic. Functions f ∈ L2(X |
Y ) which satisfy the following condition are referred to as conditionally
almost periodic in measure: for all ε > 0 there is a E ∈ Y satisfying
ν(Y ) ≤ ε such that

(3.2.1) fχ(Y \E) is conditionally almost periodic,

where, χE is the indicator function of the set E. [Tao09] calls (X,X , µ, T )
a compact extension of (Y,Y , ν, S) if every function in L2(X | Y ) is con-
ditionally almost periodic in measure. Now it is not so clear what the
noncommutative analogue of (3.2.1) would be. For instance, how do we
interpret the existence of the noncommutative analogue of χY \E? Should
we, given ε > 0, find a projection pε whose trace is less than ε?
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Rather than working with an L∞-Hilbert module perhaps we should
remain in an L2-space? We are in a metric space. So, in the absolute case,
we can use total boundedness to characterise relative compactness of the
orbits. It would therefore make sense to use an analogous form of total
boundedness, in the relative case, to define almost periodic functions.

For instance,

Definition 3.2.9. (Definition 3.4.3 [Pet11]) Let Γ be a countable group
and let Γ y (X,B, µ) be an extension of a probability measure preserving
action Γ y (X,A, µ). A function f ∈ L2(X,B, µ) is almost periodic relative
to L∞(X,A, µ) if for all ε > 0, there exist g1, g2, . . . , gn ∈ L∞(X,B, µ) such
that for all γ ∈ Γ we have kγ1 , k

γ
2 , . . . , k

γ
n ∈ L2(X,A, µ) such that

(3.2.2)

∥∥∥∥∥σγ(f)−
n∑
j=1

kγj gj

∥∥∥∥∥
2

< ε,

where σγ denotes the group action of Γ on L2(X,B, µ) via the Koopman
representation.

Note that the functions gi appearing in (3.2.2) are purposely written on
the right. We call Γ y (X,B, µ) a compact extension of Γ y (X,A, µ)
provided that every f ∈ L2(X,B, µ) is almost periodic with respect to
L∞(X,A, µ). This definition therefore has the advantage that we do not
refer to conditional almost periodicity in measure.

We could propose the following definition for almost periodic functions
in the noncommutative case:

Definition 3.2.10. Let A be a system with F a subsystem of A. Call a
vector f ∈ H almost periodic if the following property is satisfied: For every
ε > 0, there is an r ∈ N and operators h1, h2, . . . , hr, g1, g2, . . . , gr in A such
that for every n ∈ Z there are vectors k

(n)
1 , k

(n)
2 , . . . , k

(n)
r ∈ H,

(3.2.3)

∥∥∥∥∥Un(f)−
r∑
i=1

hij(gi)k
(n)
i

∥∥∥∥∥ < ε,

where j is as in (1.3.2).

Such vectors f in Definition 3.2.10 could be referred to as “two-sided”
almost periodic vectors, since we have operators acting on the left and
the right (via j). We could also have a “right-sided” version (in (3.2.3)

replace
∑r

i=1 hij(gi)k
(n)
i with

∑r
i=1 hik

(n)
i ). Similarly we could have a “left-

sided” version. Thus we have ambiguity as to the “handedness” of the sums
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appearing in (3.2.3). Additionally, it is not clear how to select the operators
hi and gi.

We turned to [Gla03]’s approach to isometric extensions, in the classical
case, via generalized eigenfunctions. Again, considering X = (X,X , µ, T )
an extension of Y = (Y,Y , ν, S), if E(X/Y ) denotes the vector space of
all generalized eigenfunctions, call X an isometric extension of Y provided
L2(X) = E(X/Y ).

In an attempt to obtain a noncommutative analogue of generalized
eigenfunction, we will need the the concept of “finite rank”.

Definition 3.2.11. ([AET11, Definition 3.5])A left- (respectively right-)
F -submodule W of H has finite rank if there are some x1, x2, . . . xr ∈ W
such that W =

∑r
i=1 Fxi (respectively, W =

∑r
i=1 j(F )xi).

We would like to replicate the definition of “generalized eigenvector”
in the noncommutative setting. However, we obtain a number of possible
variations. Note, as before as in Definition 3.2.10, we have left-, right- and
two-sided variants.

Definition 3.2.12. Let v ∈ H. Then call v

1. a point eigenvector if v is contained in a U -invariant finite rank mod-
ule;

2. an orbit eigenvector if the orbit of v is contained in some finite rank
submodule; equivalently, the submodule spanned by the orbit of v is
contained in some finite rank module.

Note that our Definition 3.2.6 eliminates the need to choose a type of
eigenvector while Definition 3.2.4 allows us to make a choice of “handed-
ness” due to Proposition 1.5.6.

We turn our attention to checking that our definition of relative discrete
spectrum generalizes the classical notion of relative discrete spectrum, de-
fined as follows (see [Gla03, Definition 9.10]):

Definition 3.2.13. Assume that A is a classical system, i.e. A = L∞(η)
for a standard probability space (Y,Σ, η) (see Section A.1). A F -submodule
V of H = L2(η) is said to be of finite rank if there are x1, ..., xn ∈ V such
that

V =

{
n∑
i=1

aixi : a1, ..., an ∈ F

}
,
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where ajxj is simply pointwise multiplication of functions. We call x ∈ H an
F -eigenvector of U if x belongs to some U -invariant finite rank F -module.
If H is spanned by the F -eigenvectors of U , then we say that A has relative
discrete spectrum over F in the classical sense.

This is indeed a special case of Definition 3.2.6 as is proved below in
Proposition 3.2.14. The proof uses direct integral theory, as it is used in
[AET11, Lemma 4.1]. This is why we assume that (X,X , η) is standard, as
it ensures that L2(η) is separable (Corollary A.2.4).

Proposition 3.2.14. Assume that A is a classical system, i.e. A = L∞(η)
for a standard probability space (X,X , η) and α(f) = f ◦ T for some fixed
invertible map T : X → X satisfying η(Z) = η(T−1(Z)) for all Z ∈ X . The
system A has discrete spectrum relative to F (in the sense of Definition
3.2.6) if and only if it has relative discrete spectrum over F in the classical
sense.

Proof. (⇒) Assume that A has discrete spectrum relative to F. The ap-
proach of the proof is to express any U -µ̄ module V as the direct sum of
finite rank modules, using ideas from the proof of [AET11, Lemma 4.1].

Using [KR97b, Theorem 14.2.1], since F is commutative, we have a uni-
tary operator Φ : H → H⊕ where H⊕ is a direct integral H⊕ =

∫ ⊕
Y
Hp dν(p)

of Hilbert spaces Hp indexed by some standard probability space (Y,Y , ν).
Thus, in particular, any statement about a module V in H⊕ has a corre-
sponding statement about Φ−1(V ) in H.

The von Neumann algebra F is then identified with the von Neumann al-
gebra of all diagonalizable operators φ(F ) := ΦFΦ−1 = {Mf : f ∈ L∞(ν)}.
Each Mf ∈ B⊕ acts on elements x ∈ H⊕ as multiplication operators via the
equality (Mfx)(p) = f(p)x(p) for almost all p ∈ X. Given any U -µ̄-module
V, then as in the proof of [AET11, Lemma 4.1] we can write

Φ(V ) =

∫ ⊕
Y

Vp dν(p),

for a measurable field of Hilbert subspaces Vp ⊆ Hp. (Details can be found
in [Kin17, Section 4.6]).

We shall now express ΦV as a direct sum of φ(F )-modules of finite rank.
For each n ∈ N ∪ {∞} write

Yn := {p ∈ Y : dim (Hp) = n}.
Each Yn turns out to be measurable [KR97b, Remark 14.1.5]. Consider

the projections MχYn
and define

Vn :=

∫
Yn

Vp dν(p) = MχYn
(V ),
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where χYn denote the indicator functions. Since µ̄(V ) < ∞, p 7→ dim(Vp)
is integrable, so ν(Y∞) = 0, hence V∞ = 0. and the collection {Yn : n ∈ N}
satisfies ν(∪n∈NYn) = 1. It follows that Φ(V ) can be identified with ⊕n≥1Vn.

It is now straightforward to verify that each Φ−1(Vn) is a U -µ̄-module.
We have, for every f ∈ F,

fφ−1(MχYn
)(H) = φ−1(MχYn

)f(H) ⊆ φ−1(MχYn
)(H),

so that each Vn is a right φ(F )-module.
In a similar way to the proof of [AET11, Lemma 4.1], α induces dynamics

on Y leaving each Yn invariant, which in turn means that each Vn is U -
invariant. (We refer the interested reader to [Kin17, Proposition 4.7.6] for
the details.)

By construction, dim(Vp) = n whenever p ∈ Yn and it follows that
Φ−1(Vn) is of finite rank.

Hence Φ(V ) consists solely of φ(F )-eigenvectors. It follows that H	HF

is spanned by F -eigenvectors. Since HF = FΩ, HF is spanned by the
F -eigenvector Ω. Hence H is spanned by F -eigenvectors as required.

(⇐) We now prove the converse. Assume that A has relative discrete
spectrum over F in the classical sense. The key idea that we use here is
that the projection PV corresponding to a finite rank F -module V satisfies
µ̄(PV ) <∞.

We have that H = span E , where E = {x1, x2, . . . , xn} is the set of all
F -eigenvectors of U.

Let x ∈ span E and write

x =
n∑
i=1

tiei

for some ti ∈ C. For each i there is some U -invariant F -module Vi of finite
rank such that ei ∈ Vi. Denote by U , the collection of all U -invariant right-
F -modules V with µ̄(PV ) < ∞. It is here that we use our key idea: To
prove the proposition, it is sufficient to show that all the modules Vi have
corresponding projections of finite lifted trace. Indeed, it will follow that
x ∈ spanU and hence

H = span E ⊆ spanU ⊆ H,

which is sufficient to show that A has discrete spectrum with respect to F,
by Proposition 3.2.7.

Consider then any finite rank F -module V :=
{∑t

i=1 fivi : fi ∈ F
}
.

 
 
 



CHAPTER 3. RELATIVE DISCRETE SPECTRUM 45

We now give a description of φ(PV )(p)Hp for almost all p. Put wi := Φvi
for each i = 1, 2, . . . , t. Thus,

φ(PV )(H⊕) = Φ(V ) =

{
t∑
i=1

Mgiwi : gi ∈ L∞(Y )

}
.

Hence all vectors of the form Mgw for g ∈ L∞(Y ) and w ∈ {wi : i =
1, 2, . . . , t} form a dense spanning set for Φ(V ) and thus, from [KR97b,
Lemma 14.1.3], for almost all p,

φ(PV )(p)Hp =

{
t∑
i=1

gi(p)wi(p) : gi ∈ L∞(Y )

}
= span{wi(p) : i = 1, 2, . . . , t}.

We thus have,

µ̄(PV ) =

∫
Y

dim((φ(PV ))(p)Hp) dν(p)) ≤
∫
Y

t dν(p) = t <∞.

We now consider another special case of Definition 3.2.6 when F = C1
and λ = µ|F . We take note that the basic construction, in this case, is given
by 〈A, eF 〉 = JF ′J = JB(H)J = B(H), using Proposition 1.5.2(c). Thus,
since the trace on B(H) is unique up to nonzero scalar multiples, we may
take µ̄ to be the canonical trace Tr on B(H). In particular, this means that
our U -µ̄-modules are all the finite dimensional subspaces of H.

Proposition 3.2.15. Let A = (A, µ, α) be a system and F be the trivial
system i.e F = C1, λ = µ|F , and ϕ = α|F . Then A has discrete spectrum
relative to F, if and only if A has discrete spectrum i.e. H is spanned by
the eigenvectors of U.

Proof. Let E denote the set of all eigenvectors of U. Assume that A has
discrete spectrum, that is, span E = H. For any x ∈ E ∩ (H 	HF ), let

Sx := {tx : t ∈ C}.

Then it easy to verify that Sx is a U -µ̄-module.
Indeed, Sx is U -invariant: for every t ∈ C, if s is the eigenvalue of x,

then U(tx) = tU(x) = stx ∈ Sx. Since Sx is finite-dimensional, it is closed
and PSx ∈ B(H) = 〈A, eF 〉. Moreover,

H 	HF = span{Sx : x ∈ E ∩ (H 	HF )} ⊆ H 	HF .
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Thus, A has discrete spectrum relative to F.
Conversely, assume that A has discrete spectrum relative to F. Then,

as remarked above, all U -µ̄-modules V have finite dimension. As U |V is
bijective onto V, and

〈x, y〉 = 〈Ux, Uy〉 = 〈U |V x, U |V y〉,

for all x, y ∈ V, we have that U |V is a unitary operator on V. Thus, the
normal operator U |V is unitarily diagonalizable: there exists an basis EV
for V consisting solely of eigenvectors of U |V . If U denotes the collection of
all U -µ̄-modules consider

E =
⋃
V ∈U

EV ∪ {Ω}.

We wish to verify that H ⊆ span E . If x ∈ HF then x = tΩ for some
t ∈ C and thus x ∈ span E . If x ∈ H 	 HF , then x ∈ span (E\{Ω}), by
our assumption that A has discrete spectrum relative to F. Consequently,
we can find a sequence, (xn) ⊆ span (E\{Ω}), such that xn → x. For each

n ∈ N, there is a kn ∈ N such that xn =
∑kn

i=1 t
(n)
i v

(n)
i for some t

(n)
i ∈ C and

some v
(n)
i ∈ E\{Ω}.

As each v
(n)
i is a finite linear combination of the eigenvectors of U so

too is each xn. Thus, x ∈ span E . As we already have span E ⊆ H, it follows
that A has discrete spectrum.

3.3 Skew Products

In order to show that the definition of relative discrete spectrum (Definition
3.2.6) is sensible, we still need to exhibit some examples. This is what we
do in this section and the next.

In this section we focus on a skew product, starting with a classical
system and extending it by a noncommutative one.

The following result will be useful for our examples:

Proposition 3.3.1. Let (B, ν) and (C, σ) be von Neumann algebras with
faithful normal tracial states ν and σ, both in their GNS representations on
the Hilbert spaces Hν and Hσ, with cyclic vectors Ων and Ωσ, respectively.
Consider the Hilbert space H := Hν⊗Hσ, the von Neumann tensor product
A := B⊗̄C and the faithful normal trace µ := ν⊗̄σ ([KR97b, Proposition
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11.2.3]). Set F := B ⊗ 1 with state λ := µ|F . Then 〈A, eF 〉 = B⊗̄B(Hσ).
The trace µ̄ of 〈A, eF 〉 is given by

(3.3.1) µ̄(t) =
∑
i∈I

〈Ων ⊗ hi, t(Ων ⊗ hi)〉 = µ⊗̄Tr(t),

for all t ∈ 〈A, eF 〉+, where {hi : i ∈ I} is any orthonormal basis for Hσ,
Jσ is the modular conjugation for (C, σ) and Tr is the canonical trace on
B(Hσ).

Proof. Let Jν ,Jσ and J = Jν⊕Jσ denote the modular conjugation operators
associated to ν, σ, and µ, respectively. By Proposition 1.5.2 and [SZ79,
Section 10.7 Lemma 1] we have

(3.3.2)
〈A, eF 〉 =(Jν ⊗ Jσ)(B′⊗̄B(Hσ))(Jν ⊗ Jσ)

=(JνB
′Jν)⊗̄(JσB(Hσ)Jσ) = B⊗̄B(Hσ).

We compute the lifted trace using Lemma 1.5.4. To do this, we need a
set {vi : i ∈ I} in 〈A′, eF 〉 (indexed by some set I) such that

∑
i v
∗
i eFvi = 1

(see Remark 3.3.2 below). Let

vi = 1⊗ wi

where, for all z ∈ Hσ,
wiz := 〈li, z〉Ωσ

and li := Jσhi.
Note that,

〈A′, eF 〉 = 〈JAJ, JeFJ〉 = J〈A, eF 〉J
= (JνBJν)⊗̄(JσB(Hσ)Jσ)

= B′⊗̄B(Hσ).

So we have vi ∈ 〈A′, eF 〉.
In terms of the projection P of Hσ onto CΩσ we have,

v∗i eFvi = 1⊗ w∗iPwi,

since eF = 1 ⊗ P , H = Hν ⊗ Hσ and HF = Hν ⊗ (CΩσ). For each i, the
linear operator w∗iPwi is the projection of Hσ onto Cli. Hence,

(3.3.3)
∑
i

v∗i eFvi = 1.
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Thus, applying (1.5.3) in Lemma 1.5.4 in terms of Ω = Ων ⊗ Ωσ, for all
t ∈ 〈A, eF 〉+,

µ̄(t) =
∑
i

〈Jv∗i Ω, tJv∗i Ω〉

=
∑
i

〈Ων ⊗ Jσli, t(Ων ⊗ Jσli)〉

=
∑
i

〈Ων ⊗ hi, t(Ων ⊗ hi)〉.

From the faithfulness of µ̄, the first equality of (3.3.1) and the trivialness of
ϕµ̄t , it follows from [Str81, Theorem 8.2] that the second equality of (3.3.1)
is true.

Remark 3.3.2. The reference for Lemma 1.5.4, [SS08, Lemma 4.3.4], re-
quires a net (vi)i∈I satisfying (3.3.3). However, we do not see I as a directed
set being used, neither in the proof of [SS08, Lemma 4.3.4] nor in any results
that [SS08, Lemma 4.3.4] depends on. In fact the only explicit requirement
is that the (vi) form a maximal set such that (v∗i eFvi) are orthogonal pro-
jections ([SS08, p.61]).

We now turn to the skew product. Let (X,X , ρ) be a standard proba-
bility space with compact Hausdorff space X and Borel measure ρ. We let
S : X → X be an invertible map which is measure preserving with respect
to ρ, that is,

∀K ∈ X ρ(K) = ρ(S−1(K)).

We set

B := L∞(ρ), Ων := 1, ν(f) :=

∫
X

f dρ and β : B → B : f 7→ f ◦ S.

Then B is a system if we view B as operators acting on L2(ρ) via
pointwise multiplication: for every f ∈ L∞(ρ), we have an operator

Mf : L2(ρ)→ L2(ρ) : g 7→ fg.

We let (C, σ, γ) be a system such that C, in its GNS representation, acts
on a separable Hilbert space Hσ. Denote the unitary representation of γ on
Hσ by Uγ. Now put

A := B⊗̄C.
Then

(L2(ρ)⊗Hσ, idA, 1⊗ Ωσ)
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is the GNS triple for A when we use the product state

µ := ν⊗̄σ.

Put
F := B ⊗ 1

and let λ := µ|F .
We now construct the skew product dynamics α on A using the theory

of direct integrals (it will be convenient for us to use the approach contained
in [Nie80] and [Tak03a, Section IV.8]; Appendix A contains a summary).
Consider the space of Hσ-valued ρ-square integrable functions L2(ρ;Hσ).
Then L∞(ρ) is ∗-isomorphic to the von Neumann algebra M of all diago-
nalizable operators on L2(ρ;Hσ) ∼= L2(ρ)⊗Hσ as multiplication operators
on L2(ρ;Hσ) (Propositions A.2.7 and A.2.3). So, in effect, any f ∈ L∞(ρ) is
identified with Mf⊗1. Furthermore, 1⊗Ωσ is represented by Ω ∈ L2(ρ,Hσ)
given by Ω(p) = Ωσ for all p ∈ X. If we put N (p) = C for all p ∈ X, then
from Corollary A.3.3 and its proof we have the isomorphism∫ ⊕

X

N (p) dρ(p) ∼= B⊗̄C.

The elements a =
∫ ⊕
X
a(p) dρ(p) of

∫ ⊕
X
N (p) dρ(p) consist of decomposable

operators with a(p) ∈ B(Hσ) for all p ∈ X, such that

‖a(·)‖ ∈ L∞(ρ),

and for any z ∈ L2(ρ;Hσ) the element az ∈ L2(ρ,Hσ) is given by

(az)(p) = a(p)z(p)

for all p ∈ X. Moreover, from [Tak03a, Theorem IV.8.18], we have a(p) ∈ C.
Thus, we may represent each a ∈

∫ ⊕
X
C dρ by a map a : X → C : p 7→ a(p).

Let
k : X → Z

be any measurable map. For a ∈
∫ ⊕
X
C dρ, define for all p ∈ X,

(3.3.4) α(a)(p) := γk(p)(a(Sp)).

Then α is the skew product dynamics, where k acts as the generator of a
cocycle.

We verify that the map p 7→ α(a)(p) indeed represents an element in A.
For all c ∈ C and z ∈ Hσ the map

(3.3.5) t : X → Hσ : p 7→ γk(p)(c)z
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is measurable in terms of the Borel σ-algebra generated from the norm
topology on Hσ. Indeed, the inverse image t−1({γk(p)(c)z}) is a countable
collection of p 7→ k(p)’s inverse images. However, the range of k is ZC . So
p 7→ k(p)’s inverse images can be at most countable.

We can now use (3.3.5) to show that α(b⊗c) ∈
∫ ⊕
X
C dρ. for every b ∈ B

and c ∈ C. If x ∈ L2(ρ;Hσ), we have

y(p) := α(b⊗ c)(p) = β(b)(p)γk(p)(c)x(p).

Therefore, for every z ∈ Hσ,

p 7→ 〈z, y(p)〉 = β(b)(p)〈γk(p)(c∗)z, x(p)〉.

is measurable from (3.3.5) and Proposition A.2.1. Since

‖β(b)(p)‖ ≤ ‖β(b)‖∞ = ‖b‖∞ ≡ ‖b‖

and
∥∥γk(p)(c)x(p)

∥∥ ≤ ‖b‖ ‖x(p)‖ , we have

‖y(p)‖ ≤ ‖b‖ ‖c‖ ‖x(p)‖ ,

so that ‖y(·)‖ is square-integrable and y ∈ L2(ρ;Hσ). Further, p 7→ α(b ⊗
c)(p) is essentially bounded since,

‖α(b⊗ c)(p)‖ ≤ ‖β(b)‖ γk(p)(c) = ‖b‖ ‖c‖ .

Thus, α(b⊗ c) is a decomposable operator and since γk(p)(c) ∈ B, we have

α(b⊗ c) ∈
∫ ⊕
X

C dρ(p).

So α(B⊗̄C) ⊆
∫ ⊕
X
C dρ(p). Similarly, if we define

κ(a)(p) = γ−k(p)(a(S−1p)),

for all p ∈ X, then κ(a) ∈
∫ ⊕
X
C dρ and κ = α−1. Thus, A ⊆ α−1(A) and

therefore α(A) = A. It is then routine to check that α is a ∗-automorphism.
Indeed, for all x, y ∈

∫ ⊕
X
C dρ(p) and all z ∈ C,

1. Additivity

α(x+ y)(p) =γk(p)((x+ y)(Sp)) = γk(p)((x)(Sp) + (y)(Sp))

=γk(p)(x(Sp)) + γk(p)(y(Sp)) = α(x)(p) + α(y)(p);
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2. Homogeneity

α(zx)(p) =γk(p)[(zx)(Sp)] = γk(p)[z(x)(Sp)]

=zγk(p)[(x)(Sp)] = zα(x)(p);

3. Multiplicativity

α(xy)(p) =γk(p)(xy)(Sp) = γk(p)(x(Sp)y(Sp))

=γk(p)(x(Sp))γk(p)(y(Sp)) = α(x)(p)α(y)(p);

4. ∗-Preservation

α(x∗)(p) =γk(p)(x∗)(Sp) = γk(p)[(x)(Sp)]∗

=[γk(p)x(Sp)]∗ = [α(x)(p)]∗.

Since the cyclic vector of A, Ω = 1⊗ Ωσ is identified with the map

X → Hσ : p 7→ 1(p)Ωσ = Ωσ,

(Proposition A.2.3) we have Ω(p) = Ω(Sp) = Ωσ.
It follows that the state µ is preserved by the dynamics:∫

X

〈Ω(p), [γk(p)(a(Sp))]Ω(p)〉 dρ(p) =

∫
X

〈Ω(p), a(Sp)Ω(p)〉 dρ(p)

=

∫
X

〈Ω(p), a(p)Ω(p)〉 dρ(p).

We check that F is preserved by ϕ = α|F : for all p ∈ X,

α(b⊗ 1)(p) = (b ◦ S)⊗ 1.(3.3.6)

We describe the unitary representation U of α. Note first that

(UaΩ)(p) = (α(a)Ω)(p) = α(a)(p)Ω(p) = γk(p)(a(Sp))Ωσ

= Uk(p)
γ (a(Sp)Ωσ) = Uk(p)

γ (aΩ)(Sp).

Let x ∈
∫ ⊕
X
Hσ dρ(p) and approximate x by a sequence (xn) = (anΩ) in AΩ.

Since,

‖xn − x‖2 =

∫
X

‖xn(p)− x(p)‖2 dρ(p)

=

∫
X

‖xn(Sp)− x(Sp)‖2 dρ(p)→ 0 as n→∞,
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it follows as in the proof of the completeness of Lp spaces, there is a sub-
sequence (‖xni(Sp)− x(Sp)‖) which tends to 0 except for p in a null set
N0 ⊆ X.

Thus,
(Ux)(p) = lim

i
Uk(p)
γ (xni(Sp)) = Uk(p)

γ (x(Sp)),

for all p ∈ X\N0. Without loss, we may define Ux such that this holds for
all p ∈ X. Then it follows that

(3.3.7) (U−1x)(p) = U−k(S−1p)
γ x(S−1p).

Next we discuss a concrete example of C. The main points from this
example are summarized in Proposition 3.3.4.

Example 3.3.3. Let G be a countable group endowed with the discrete
topology and let T : G→ G be any group automorphism such that for each
g ∈ G, the orbit of g, T Zg := {T ng : n ∈ Z} is a finite set (we refer to
T Zg as a finite orbit). Consider the dual system on C := L(G), the group
von Neumann algebra on the group G as in Example 2.3.9. Thus, C is the
von Neumann algebra on `2(G) generated by the following set of unitary
operators:

(3.3.8) {l(g) : g ∈ G}

where l is the left regular representation of G, i.e. the unitary representation
of G on `2(G) with each l(g) : `2(G)→ `2(G) given by

[l(g)f ](h) = f(g−1h)

for all f ∈ `2(G) and g, h ∈ G. Equivalently,

l(g)δh = δgh

for all g, h ∈ G, where δg ∈ `2(G) is defined by δg(g) = 1 and δg(h) = 0 for
h 6= g. Setting

Ωσ := δ1

where 1 ∈ G denotes the identity of G, we can define a faithful normal trace
σ on B by

σ(a) := 〈Ωσ, aΩσ〉

for all a ∈ C. It follows that (`2(G), idC ,Ωσ) is the cyclic representation of
(C, σ).
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We have a unitary Uγ : `2(G)→ `2(G), defined by

Uγ(f) = f ◦ T.

We define a ∗-automorphism γ on C by

γ(c) = UγcU
∗
γ ,

for all c ∈ C. Then, (C, σ, γ) is a system.
Using Proposition 3.3.1, the basic construction is given by

〈A, eF 〉 = L∞(ρ)⊗̄B(`2(G)).

For each g ∈ G let
Rg := span (UZ

γ δg)

and let Qg be the projection of `2(G) onto Rg. Set

Vg := L2(ρ)⊗Rg

and let Pg = 1⊗Qg be the projection of H := L2(ρ)⊗ `2(G) onto Vg.
We have

µ̄(Pg) =
∑
h∈G

〈Ων ⊗ δh, Pg(Ων ⊗ δh)〉 =
∑
h∈G

〈δh, Qgδh〉 = dim(Rg) <∞,

since all orbits are finite.
The Vg’s , for g 6= 1, span H 	 HF = L2(ρ) ⊗ Ω⊥σ , since the Rg’s span

Ω⊥σ . As Rg is spanned by an orbit, we have UγRg = Rg. It follows that if
x⊗ y ∈ Vg, then,

U(x⊗ y)(p) = Uk(p)
γ (x⊗ y)(Sp) = Uk(p)

γ (x(Sp)y) = x(Sp)Uk(p)
γ y ∈ Rg,

for all p ∈ X, since x⊗ y is represented by p 7→ x(p)y in
∫ ⊕
X
Hσ d(ρ). Hence

U(x⊗ y) ∈ L2(ρ)⊗Rg, so UVg ⊂ Vg. Using (3.3.7), it similarly follows that
U−1Vg ⊆ Vg, so UVg = Vg.

The Vg’s are trivially right-F -modules, since F = L∞(ρ)⊗ 1. Hence the
Vg’s are indeed U -µ̄-modules which (when excluding g = 1) span H 	 HF

as required by Definition 3.2.6.

We briefly summarize:

Proposition 3.3.4. Consider a dual system C generated from a discrete
countable group G, with automorphism T : G → G producing only finite
orbits, and a classical system B obtained from a standard probability space
(X,X , ρ) and measure-preserving transformation S : X → X. Form the
system (B⊗̄C, µ, α) with µ as a vector state from 1⊗δ1 and dynamics given
by equation (3.3.4). Then (B⊗̄C, µ, α) has discrete spectrum relative to
(B ⊗ 1, µ|B⊗1, α|B⊗1).
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Taking G to be a free group, with T induced by a finite orbit bijection
of the symbols, provides a concrete and non-trivial realization of C.

3.4 Finite Extensions

In this section we present a second example of relative discrete spectrum.
In this case, unlike the previous section, we start with a noncommutative
system and extend it by a finite dimensional noncommutative system (hence
the name “finite extension”).

Definition 3.4.1. Consider a system B = (B, ν, β). Let n ∈ N. Set A =
B�Mn(C) with faithful normal trace µ = ν⊗̄tr, where Mn(C) is the n×n
matrices over C and tr is the normalized trace on Mn(C). Suppose further
that there is a ∗-automorphism α of A such that α(b ⊗ 1) = β(b) ⊗ 1.
Represent B as the subsystem F of A given by F = B ⊗ 1, λ(b⊗ 1) = ν(b)
and ϕ(b⊗1) = β(b)⊗1. Then we refer to A = (A, µ, α) as a finite extension
of F. Equivalently, we say that A is a finite extension of B.

Note that we can view B �Mn(C) as all n× n matrices with entries in
B.

There is a general reason why finite extensions are isometric extensions
(Proposition 3.4.6): if the lifted trace is finite, we automatically have rela-
tive discrete spectrum, which we now show (Corollary 3.4.3).

Proposition 3.4.2. Let A be a system with subsystem F. Then the subspace
H 	HF is a U-invariant right F -submodule.

Proof. Consider H 	 HF and its corresponding projection 1A − eF . Since
1A−eF ∈ 〈A, eF 〉, H	HF is a right F -module using Proposition 1.5.6. Fur-
thermore, since α(F ) = F, we have UHF = HF , and therefore multiplying
by U∗ on both sides we obtain U∗HF = HF . Consequently, ∀x ∈ H 	 HF

∀y ∈ HF , using U∗HF = HF , we have

(3.4.1) 〈Ux, y〉 = 〈x, U∗y〉 = 0,

so that U(H 	HF ) ⊆ H 	HF .

Corollary 3.4.3. Suppose that A is a system with subsystem F and assume
that the lifted trace µ̄ is finite, in the sense that for every x ∈ 〈A, eF 〉+,
µ̄(x) <∞. Then A has discrete spectrum relative to F.

Proof. Since µ̄(1A−eF ) <∞, H	HF is spanned by a U -µ̄-module, namely
itself.
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Since the basic construction of a finite-dimensional von Neumann alge-
bra is again finite-dimensional, the lifted trace is finite and we have:

Corollary 3.4.4. Every system on a finite-dimensional von Neumann al-
gebra has discrete spectrum relative to every subsystem.

Another example follows from [JS97, Proposition 3.1.2]:

Corollary 3.4.5. Suppose that both A and F are type II1 factors such that
their index [A : F ] is finite ([JS97, p.29]). Then A has discrete spectrum
relative to F.

Using Corollary 3.4.3, we are now in a position to prove the following:

Proposition 3.4.6. If A is a finite extension of F, then A has discrete
spectrum relative to F.

Proof. Without loss of generality, assume that (B, ν) in Definition 3.4.1
is in its GNS representation B → B(Hν) with cyclic vector Ων . One can
easily verify that the GNS triple for Mn(C) is (Cn � Cn, πn,Λ), where πn :
Mn(C) → Mn(C) � Mn(C) : c 7→ c ⊗ 1, and Λ = 1√

n

∑n
j=1 ej ⊗ ej with

{ej} an orthonormal basis for Cn. Thus the GNS triple for A = B�Mn(C)
is given by (Hν � Cn � Cn, π,Ω), where Ω = Ων ⊗ Λ, π : B �Mn(C) →
B �Mn(C)�Mn(C) : a 7→ diagn(a), diagn(a) being the n× n matrix with
a’s all along the diagonal and zero elsewhere.

From Proposition 3.3.1,

〈A, eF 〉 = B �Mn(C)�Mn(C).

Let
Tr := tr � tr

be the normalized trace on Mn(C)�Mn(C). Let PΛ be the projection

PΛ : Cn � Cn → Cn � Cn : aΛ 7→ Tr(a)Λ,

where a ∈Mn(C)�Mn(C). One can verify directly by calculation that PΛ

is a projection in B(Mn(C) �Mn(C)). If 1B denotes the identity operator
in B, then the operator 1B ⊗ PΛ is the projection onto (B ⊗ 1)ΩA, that is,
1B ⊗ PΛ = eF .

By Proposition 3.3.1, the lifted trace of 〈A, eF 〉 is ν � Tr.
As µ̄ is finite, A has discrete spectrum relative to F, by Corollary 3.4.3.
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Example 3.4.7. We give a concrete realization of a finite extension for
which the dynamics is not compact nor a tensor product of the dynamics
on the underlying algebras.

Let B1 be the group von Neumann algebra generated from a free group
G on two symbols c and d. Let ν1 the trace on B1 (Example 3.3.3). The
map β1 : B1 → B1 : a 7→ l(d)al(d)∗ is a ∗-automorphism of B1. Fur-
thermore, using the fact that ν1 is a trace, ν1(β1(b1)) = ν1(l(d)b1l(d)∗) =
ν1(l(d)∗l(d)b1) = ν1(b1). So B1 = (B1, ν1, β1) is a system.

We let B2 = (B2, ν2, β2) be any system.
Consider B = B1 ⊕ B2 which we view as the set of all matrices of the

form [
b1 0
0 b2

]
for all b1 ∈ B1 and all b2 ∈ B2.

Let s ∈ (0, 1) ⊆ R and put

ν = s(ν1 ⊕ 0) + (1− s)(0⊕ ν2).

Then ν is a faithful normal state on B. So B = (B, ν, β), with β = β1⊕ β2,
is a system.

Set A = (B �M2(C) and µ = ν � tr). We now describe dynamics on
(A, µ). For wi ∈ B, let

W =

[
w1 w2

w3 w4

]
∈ A,

be a unitary and define α(a) := WaW ∗ for all a ∈ B � M2(C). Then
α(A) ⊆ A and µ ◦ α = µ as is verified from the unitarity of W .

From direct calculations, the requirements that W satisfy α(b ⊗ 1) =

W

[
b 0
0 b

]
W ∗ ∈ B ⊗ 1 for every b ∈ B, and that α(b⊗ 1) = β(b)⊗ 1 yield

(3.4.2) β(b) = w1bw
∗
1 + w2bw

∗
2 = w3bw

∗
3 + w4bw

∗
4,

and
w1bw

∗
3 + w2bw

∗w∗4 = w3bw
∗
1 + w4bw

∗
2 = 0

for all b ∈ B. The direct sum structure of B will allow us to satisfy the
latter requirement easily, while still giving nontrivial dynamics. This is
done by setting

w1 = v1 ⊕ 0 and w4 = v4 ⊕ 0

for v1, v4 ∈ B1, and

w2 = 0⊕ v2 andw3 = 0⊕ v3
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for v2, v3 ∈ B2. Then (3.4.2) reads

v1b1v
∗
1 ⊕ v2b2v

∗
2 = v4b1v

∗
4 ⊕ v3b2v

∗
3,

for every b = b1 ⊕ b2 ∈ B. The vi are unitary, since W is. It follows that
v∗4v1 ∈ B′1 and v∗3v2 ∈ B′2.

We now show that α is not a product of the ∗-automorphism β and a ∗-

automorphism on M2(C). By direct calculation, for every m =

[
m1 m2

m3 m4

]
∈

M2(C),

α(1B ⊗m) =


m11B1 0 m2v1v

∗
41B1 0

0 m41B2 0 m3v2v
∗
31B2

v4v
∗
1m31B1 0 m41B1 0

0 m2v3v
∗
21B2 0 m11B2 .


So, α(1B ⊗m) is not of the form

1B ⊗ t =

[
t11B t21B
t31B t41B

]
.

Thus, α(1B ⊗M2(C)) 6⊆ 1B ⊗M2(C) and α cannot be a tensor product of
dynamics on B and M2(C), respectively, unless B1 = 0 and v2v

∗
3 = v3v

∗
2 =

1B1 , or B2 = 0 and v1v
∗
4 = v4v

∗
1 = 1B1 .

Now consider a specific case. Assume that B2 6= 0. Let v1 = v4 := l(d).
Then we show that B is not compact. If we consider the orbit UZ

β1
δc of δc

under Uβ1

UZ
β1
δc = {. . . , δd−2cd2 , δd−1cd1 , δc, δdcd−1 , δd2cd−2 , δd3cd−3 , . . .},

for all m,n ∈ Z, m 6= n, then we have dmcd−m 6= dncd−n, and

‖δdmcd−m − δdncd−n‖ =
√

2.

Hence, UZ
β1
δc cannot be totally bounded, so that, as we are in a metric

space, the closure of UZ
β1
δc cannot be compact. It follows that B is not a

compact system.
Thus, we have constructed a finite extension A of a non-compact system

B, such that α is not the product of the dynamics on B with the dynamics
on M2(C).
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3.5 Some Considerations for Further

Research

We collect a number of problems related to isometric extensions.

1. Equivalent Conditions for Relative Discrete Spectrum Are there any
useful characterizations of relative discrete spectrum? Of the defini-
tions appearing in Remark 3.2.8, which ones, if any, are equivalent to
Definition 3.2.6?

2. A Decision Problem In order to use the definition of relative discrete
spectrum (Definition 3.2.6), it would be useful to decide whether or
not a given a projection PV ∈ 〈A, eF 〉 satisfies µ̄(PV ) <∞ when µ̄ is
not finite (in the sense of Corollary 3.4.3.

3. Further Examples of Isometric Extensions We have seen in Section
3.4 that the existence of finite lifted traces automatically implies that
the system is an isometric extension. The absolute case of discrete
spectrum serves as an example of an isometric extension where the
lifted trace is not finite. Can one find further examples?

4. Intermediate Subsystems Given a system A and a subsystem F, one
can define an intermediate system B of A and F. By definition, B is
a subsystem of A, but also has F as a subsystem. It can be shown,
that if A has discrete spectrum relative to F, then B has discrete
spectrum relative to F. However, we do not know if A has discrete
spectrum relative to B.

 
 
 



Appendix A

Direct Integrals

For convenience, we summarize some basic definitions and results from
[Nie80] (used in Section 3.3). This appendix contains more than what is
needed in this thesis.

A.1 Borel Spaces and Borel Functions

The use of the adjective “Borel” is meant to convey what, in modern ter-
minology, would be associated with the word “measurable”. However, we
will be working with standard probability spaces (defined below). Thus,
the σ-algebras of interest will be generated from a topology.

Definition A.1.1. ([Nie80, p.1] ) Let X be a set. By a Borel structure
on X we mean a σ-algebra on X. The members of the Borel structure are
referred to as Borel sets of X. A Borel space (X,X ) is a set X together
with a Borel structure X . A Borel function is a function f : X → Y from a
Borel space X to a Borel space Y such that for every K ∈ Y , f−1(K) ∈ X .
A Borel measure on X is a countably additive σ-finite measure defined on
the Borel sets of X and takes values in [0,∞]. We will say a property holds
µ-almost everywhere (abbreviated µ-a.e) if it holds for all p ∈ X except on
a set K ∈ X with µ(K) = 0.

Two Borel spaces K and L are isomorphic to each other if there is a
bijective function f : K → L such that both f and f−1 are Borel functions.

A Polish space is a separable complete metric space with the Borel
structure generated from the metric. Suppose that (X,X , µ) is a probability
space with a complete probability measure and Y is isomorphic, differing
with the possible exception of a null set, to a Polish space. We then say that
(X,X , µ) is a standard probability space. Thus, the measure µ is standard
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(there is a standard Borel space Z ⊆ X such that µ(X\Z) = 0). Hence,
L2(µ) is separable (Corollary A.2.4).

A.2 Hilbert Spaces and Operators

We can distinguish between two cases of direct integrals of Hilbert spaces.
The first is when the elements of the direct integral are maps of the form

v : X → H

where H is a single Hilbert space. This is in contrast with the second case,
where a countable family of Hilbert spaces replace H.

Consider a separable (possibly finite-dimensional) Hilbert space H. The
Borel structure on H is given by the norm topology. Let µ be a Borel
measure on a Borel space X. Then

Proposition A.2.1. ([Nie80, p.15,p.24]) A function v : X → H is Borel
if and only if for every x ∈ H p 7→ 〈x, v(p)〉 is a Borel function.

Definition A.2.2. (Cf. [Nie80, Theorem 5.1]) By L2(µ;H) denote the
Hilbert space of all Borel functions v : X → H (where, as usual, we identify
functions which agree µ-a.e) such that p 7→ ‖v(p)‖ is µ-square integrable
with inner product

〈v, w〉 =

∫
X

〈v(p), w(p)〉 dµ(p).

As an aside, in [Nie80], the notation v(µ) is used to refer to functions
in the normed space L2(µ;H), while v is used to refer to the function in
the corresponding seminormed space. We shall not adopt this convention
in this thesis.

For any v ∈ L2(µ;H), we use the notation

v =

∫ ⊕
X

v(p) dµ(p).

Similarly, the notation
∫ ⊕
X
H(p) dµ(p) may be used in place of L2(µ;H) (in

light of Definition A.2.10, one may think of H(p) = H for all p ∈ X).

Proposition A.2.3. ([Nie80, Proposition 5.2]) There is a unique linear
isometry of L2(µ;H) onto L2(µ) ⊗H mapping p 7→ f(p)x to f ⊗ x for all
f ∈ L2(µ) and x ∈ H.
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Corollary A.2.4. ([Nie80, Corollary 5.3]) If µ is standard, then L2(µ;H)
is separable.

Let B(H) denote the normed space of all bounded linear operators on a
Hilbert space H. Then a map a : X → B(H) is Borel if and only if for all
x, y in H, the function p 7→ 〈x, a(p)y〉 is Borel.

Definition A.2.5. ([Nie80, p.18]) A decomposable operator a on L2(µ;H)
is a Borel function a : X → B(H) such that

1. p 7→ ‖a(p)‖ belongs to L∞(µ) (we say that a is µ-essentially bounded);

2. for any v ∈ L2(µ;H) there exists a function av : L2(µ;H)→ L2(µ;H)
defined by

(av)(p) = a(p)v(p)

and satisfies
‖(av)(p)‖ ≤ kv(p),

where k = ess supp∈X ‖a(p)‖.

In this case we write a =
∫ ⊕
X
a(p) dµ(p).

Definition A.2.6. ([Nie80, p.18]) We call linear operators a on L2(µ;H)
diagonalizable if they are of the form

∫ ⊕
X
f(p)I dµ(p), where I is the identity

operator on H.

Proposition A.2.7. ([Nie80, pp.18-19]) The set of all diagonalizable op-
erators on L2(µ;H) is a von Neumann algebra ∗-isomorphic to L∞(µ).

Theorem A.2.8. ([Nie80, Proposition 6.1] ) If a is a µ-essentially bounded
Borel function from X to B(H), then a is a unitary (respectively, positive,
a projection, a partial isometry) if and only if a(p) is unitary (respectively,
positive, a projection, a partial isometry) for µ-a.e.

We can characterise decomposable operators as follows

Theorem A.2.9. ([Nie80, Theorem 6.2] An operator on L2(µ;H) is de-
composble if and only if it commutes with every diagonalizable operator.

We now turn to the second case of direct integrals of Hilbert spaces.
The concept of coherence is important here. For each n ∈ N, let `2

n denote
the set consisting of all those elements in `2 (the Hilbert space of all square-
summable complex-valued sequences) whose values at n + 1, n + 2, . . . are
zero. Then `2

0 ⊆ `2
1 ⊆ . . . ⊆ `2 and dim `2

n = n for all n ∈ N ∪ {∞}
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If {H(p) : p ∈ X} is a family of separable Hilbert spaces, a field of
separable Hilbert spaces is just a map H : X → {H(p) : p ∈ X} : p 7→ H(p).
A coherence [Nie80, p.23] for a field of separable Hilbert spaces H is a map
r which maps every point p ∈ X to an isometry r(p) : H(p) → `2 whose
range is `2

dimH(p). Defining r in such a way removes the dependency on p ∈ X
when considering the the domain of the adjoint r(p)∗.

Similarly, we can have a coherence for a field of operator fields p 7→ a(p).
If, for each n ∈ N ∪ {∞}, the sets Xn = {p ∈ X | dimH(p) = n} are

measurable, we say that H is a Borel field of Hilbert spaces.
A map v : X → {H(p) | p ∈ X} such that v(p) ∈ H(p) for each p ∈ X

is called a vector field over H. An r-Borel vector field over H [Nie80, p.23]
is a vector field over H for which

p 7→ r(p)v(p)

from X to `2 is a Borel function.
We have a similar definition for an r-Borel operator field over H : call

an operator field p 7→ a(p) r-Borel, provided the map p 7→ r(p)a(p)r(p)∗

from X → B(`2) is Borel measurable.

Definition A.2.10. (see [Nie80, Theorem 7.1]) The Hilbert space

L2(µ;H, r)

(also denoted by
∫ r
X
H(p) dµ(p)) consists of all those r-Borel measurable

vector fields v over H such that p 7→ ‖v(p)‖ belongs to L2(µ). The inner
product is given by

〈v, w〉 =

∫
X

〈v(p), w(p)〉 dµ(p).

We refer to
∫ r
X
H(p) dµ(p) as a direct integral of Hilbert spaces of H with re-

spect to µ and r. For an element v of
∫ r
X
H(p) dµ(p) write v =

∫ r
X
v(p) dµ(p).

An r-Borel µ-essentially bounded operator field a overH induces a linear
operator, denoted

∫ r
X
a(p) dµ(p), satisfying∫ r

X

a(p) dµ(p)

∫ r

X

v(p) dµ(p) =

∫ r

X

a(p)v(p) dµ(p).

Such operators will be referred to as decomposable.
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A.3 von Neumann Algebras

A field of von Neumann algebras over a Borel field of Hilbert spaces H is
just a map p 7→ A(p) which assigns to each p ∈ X a von Neumann algebra
A(p) ⊆ B(H(p)).

Let vN(H) denote the collection of all von Neumann algebras defined
on H. Call a field of von Neumann algebras p 7→ A(p) a r-Borel field of von
Neumann algebras [Nie80, p.74] if for each n ∈ N ∪ {∞},

p 7→ r(p)A(p)r(p)∗|`2n

from Xn to vN(`2
n) is Borel. The Borel structure placed on vN(`2

n) is the so-
called Effros-Borel structure ([Nie80, p. 67]). Equivalently, p 7→ A(p) is r-
Borel if and only if there exists a r-Borel generating sequence for p 7→ A(p) :
a sequence (an) of r-Borel operator fields over H such that, for all p ∈ X,
(an(p)) generates the von Neumann algebra A(p) ([Nie80, p.74]).

When µ is standard, the von Neumann algebra

(A.3.1)

∫ r

X

A(p) dµ(p)

(called the direct integral of von Neumann algebras of A(p)) consists of all
the decomposable operators

∫ r
X
a(p) dµ(p) ([Nie80, Theorem 18.2, p.75]).

The vector space of all diagonalizable operators (denoted by M in
[Nie80, p.51]) consists of all those linear operators on

∫ r
X
H(p) dµ(p) of the

form ∫ r

X

f(p)Ip dµ(p),

where f ∈ L∞(µ) and Ip is the identity operator on H(p).
We note that when r is a constant coherence (i.e. r(p) is the same

isometry for all p) then we replace r with ⊕ in (A.3.1) writing∫ ⊕
X

A(p) dµ(p),

instead of
∫ r
X
f(p)Ip dµ(p). (In this case, L2(µ;H) = L2(µ;H, r) with

H(p) = H for all p ∈ X and
∫ r
X
a(p) dµ(p) =

∫ ⊕
X
a(p) dµ(p) for all decom-

posable operators a acting on L2(µ;H) ([Nie80, p.24]).)
The next two results tell us that a direct integral decomposition of a von

Neumann algebra acting on a separable Hilbert space is always possible.

Theorem A.3.1. ([Nie80, Theorem 9.1]) Suppose that B is an abelian
von Neumann algebra acting on a separable Hilbert space K. Then there is
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a standard Borel space Z and a Borel measure ν on Z such that B and
L∞(ν) are ∗-isomorphic, and there is a Borel field of Hilbert space H on
Z, a coherence r for H, and a linear isometry I of K onto L2(ν;H, r) such
that IBI−1 is the algebra of diagonalizable operators on L2(ν;H, r).

Theorem A.3.2. ([Nie80, Theorem 19.4]) If A is a von Neumann alge-
bra on

∫ r
X
H(p) dµ(p) whose centre contains M, then there is an r-Borel

field of von Neumann algebras p 7→ A(p) over H with A =
∫ r
X
A(p) dµ(p).

In particular, a given von Neumann algebra always has a direct integral
decomposition with respect to a given subalgebra of its centre.

Below is a key result used in Section 3.3:

Corollary A.3.3. ([Nie80, Corollary 19.9]) Let p 7→ A(p) be an r-Borel
field of von Neumann algebras over H. Suppose that there is a von Neumann
algebra A0 which acts on a separable Hilbert space and is ∗-isomorphic
to A(p) for almost all p ∈ X. Then

∫ ⊕
X
A(p) dµ(p) and A0⊗̄M are ∗-

isomorphic.

Remark A.3.4. Books such as [KR97b] and [Dix81] provide different def-
initions for direct integrals of Hilbert spaces, decomposable operators and
decomposable von Neumann algebras. These definitions “differ superfi-
cially” from the definitions presented here ([Nie80, p.43, p.82] -see also
[KR97b, Definition 14.1.1, Definition 14.1.6, Lemma 14.1.23]).
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Mathématique, 34(1):275–291, 1978.

[Fur67] Harry Furstenberg. Disjointness in ergodic theory, minimal sets,
and a problem in diophantine approximation. Theory of Com-
puting Systems, 1(1):1–49, 1967.

[Fur77] H. Furstenberg. Ergodic behavior of diagonal measures and a the-
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