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Turbine stages are exposed to a variety of excitation sources in the power industry. The resulting 

forced vibration excitation of the blades may occur near a blade’s natural frequency. Blade vibration 

is an inevitable, inherent characteristic of turbines as the rotor blades travel through the trailing wakes 

of the upstream stator blades. Blade vibration can be worsened by other mechanisms such as pitting, 

corrosion fatigue and stress corrosion cracking commonly experienced in the power industry. 

Measuring turbine blade vibration allows for condition monitoring of the blades for damage. This is 

often coupled with finite element models of the blades or with computational fluid dynamic models 

of the flow field around the blades. These numerical methods, although well-established, lack the 

complexity of the true multiphysics phenomena within a turbine. As the blade vibration measurement 

techniques essentially capture blade vibration that is the result of fluid-structure interaction (FSI), 

blade vibration should be modelled as a coupled problem, but this is usually computationally 

expensive. 

A rudimentary yet fundamentally correct numerical model of a turbine stage is thus required to model 

the fluid-structure interaction while minimising computational costs and retaining accuracy. If this can 

be achieved and blade health information can be detected in the flow field within the model, further 

analyses can then be put forth to predict blade health over time.  

The main objective of this study is to investigate the extent to which blade condition information can 

be extracted from a transient three-dimensional two-way FSI model of a blade passage containing a 

single rotor and stator blade. An experimental single-stage test turbine with five stator and five rotor 

blades is used to gather experimental data. The experimental data is used to validate the FSI model in 

the time and frequency domains. Two rotor blade assemblies were tested with the first configuration 

consisting of five healthy blades, and the second configuration consisting of four healthy blades and 

one damaged blade. All simulations are performed at constant rotational speeds for one single 

revolution of the rotor. Structural damping of the rotor blades is not considered. All numerical 

simulations are carried out using the commercial multiphysics software package of Ansys R2 2019 and 

the explicit use of CFX for the CFD simulations. 
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The results of the FSI model compare well to the experimental results when considering the simplifying 

assumptions made for the development of the numerical model. The first natural frequency and blade 

passing frequencies of the healthy and damaged blades can be extracted from the pressure field of 

the FSI model at critical speeds. Similar findings were observed in the fluid mesh deformation time 

profiles around the blade tips. Blade excitation is strongly coupled to engine-ordered vibration 

frequencies, specifically the blade passing frequencies and its first harmonic. Challenges are realised 

when modelling a single damaged blade that is part of a larger, healthy assembly of rotor blades. The 

compromise of reducing computational effort is highlighted here.  

However, very promising results pertaining to blade condition information extraction from the two-

way FSI model pressure field are obtained. These results have established a foundation on which a 

more complex FSI model can be built and coupled with a fatigue or remaining useful life study. It is 

suggested that future work should include structural damping of the rotor blades, a larger 

computational domain, and investigation of longer simulation times.  
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English letters and symbols 
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𝐶𝐹𝐿 Courant-Friedrichs-Levy number − 

𝑫 Damping (Matrix) 𝑁 ∙ 𝑠/𝑚 

𝑒 Internal Energy 𝐽/𝑘𝑔 

𝑓 Frequency 𝐻𝑧 

𝐹 Force 𝑁 

𝑔 Gravitational Acceleration 𝑚/𝑠2 

𝑘 Turbulent Kinetic Energy 𝐽/𝑘𝑔 

𝐿 Characteristic Length 𝑚 

𝑲 Stiffness (Matrix) 𝑁/𝑚 

𝑴 Mass (Matrix) 𝑘𝑔 

𝑁 Rotational Speed 𝑟𝑝𝑚 

𝑝 Numerical order accuracy − 

𝑟 Grid refinement ratio − 

𝑅𝑒 Reynolds number − 

𝑅 Radius 𝑚 

𝑇 Time period 𝑠 

 Temperature 𝐾 

𝑡 Time 𝑠 

𝑢, 𝑥 Displacement 𝑚 

𝑉 Velocity 𝑚/𝑠 

𝑦+  Y-plus value − 

 

Greek symbols 

∆ Difference/change in quantity 

𝛿 Kronecker’s delta 

𝜀 Turbulent kinetic energy dissipation rate 𝐽/𝑘𝑔 ∙ 𝑠 

𝜌 Density 𝑘𝑔/𝑚3 

𝜇 Dynamic Viscosity 𝑃𝑎 ∙ 𝑠 

𝜔 Rotational frequency 𝑟𝑎𝑑/𝑠 

 Specific turbulent kinetic energy dissipation rate 𝐻𝑧 

Ω Rotational frequency (shaft) 𝑟𝑎𝑑/𝑠 

𝜑 Mode shape − 

𝜏 Viscous Stress Tensor Pa 

 

Special characters 

  ̃  Vector/Estimate 

[ ] Matrix (bold) 

[ ]̇  First time derivative  

[ ]̈  Second time derivative 
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| | Magnitude 

𝜕 Partial Derivative 
𝐷

𝐷𝑡
 Total Derivative 

Subscripts 

𝑖, 𝑗, 𝑘 Cartesian coordinate directions 

𝑛 Natural (frequency) 

𝑜𝑓𝑓 Offset 

𝑝𝑝 Passing Period 

 

Abbreviations and Acronyms 

BPF Blade Passing Frequency 

BPP Blade Passing Period 

BTT Blade Tip Timing 

C-AIM Centre for Asset Integrity Management 

CFD Computational Fluid Dynamics 

CVS Casing Vibration Signal 

CPS Casing Pressure Signal 

EO Engine Order 

Exp Experimental  

FE Finite Element 

FEA Finite Element Analysis 

FEM Finite Element Model/Method 

FM Frequency Modulated 

FMGS Frequency Modulated Grid System 

FSI Fluid-structure Interaction, Fluid Structure Interaction model 

FTT Fast Fourier Transform 

GCI Grid Convergence Index 

HCF High Cycle Fatigue 

HP High Pressure 

LCF Low Cycle Fatigue 

LE Leading Edge 

LP Low Pressure 

NSE Navier-Stokes Equations 

MDOF Multi-degree of Freedom 

MPR Multiple-per-revolution 

ODE Ordinary Differential Equation 

OPR Once-per-revolution 

PSD Power Spectral Density 

RANS Reynolds-averaged Navier-Stokes 

RKE Realizable 𝑘 − 𝜀 

SDOF Single Degree of Freedom 

SPF Stator Passing Frequency 

SSTKO Shear Stress Transport 𝑘 − 𝜔 
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1 Introduction 

The following sections will give some background to this dissertation, present the problem statement, 

and scope and give an overview of the remainder of the dissertation. The majority of this theory and 

literature presented relates to turbomachinery as a whole and not only to steam turbines, and 

turbines in general. The discussions and arguments will however be in context of axial flow steam 

turbines as this is the focus of this study. 

1.1 Background 

Turbomachine stages are exposed to a variety of excitation sources leading to forced vibration 

responses that may occur in the vicinity of a blade’s natural frequency (Carrington et al., 2001). Flutter 

in its various forms and physical blade damage, are identified as root causes to blade vibration 

(McCloskey, 2002). As the structural motion of the blades directly affects the fatigue life, performance 

and integrity of the assembly, responses need to be monitored (Heath and Imregun, 1996).  

Measuring turbine blade vibration is driven by the need to obtain either the blade’s forced response 

magnitude and associated frequency or to estimate the modal parameters of the blade (Forbes, 

Alshroof and Randall, 2011). Acquiring this information allows for the estimation of high cycle fatigue 

life or the direct condition monitoring of the blades for damage. 

A study by Meher-Homji (1995) indicated that gas turbine failures due to blade faults were as high as 

42% and similar failure numbers were reported by Epri (1985) for steam turbines. One can only be led 

to imagine that these failure occurrences have decreased over the last few years with the 

technological advancements. But, even so, blade vibration is inevitable as it is an inherent 

characteristic of turbines due to the rotor blades travelling through the trailing wakes of the upstream 

stator blades (Alshroof et al., 2012). 

Various blade vibration measurement techniques exist which are categorised as either intrusive or 

nonintrusive. The data obtained using such methods, after the necessary processing, are then often 

linked with finite element models of the blades or with computational fluid dynamic models of the 

flow field around the blades for validation purposes. The results of such investigations can then either 

be used for online condition monitoring of the turbomachine blade health or for the prediction of the 

fatigue life and essentially the remaining useful life of the blades. The aforementioned numerical 

methods, although well-established, lack the complexity of the true multiphysics phenomena within 

a turbomachine. As the blade vibration measurement techniques essentially capture blade vibration 

that is resultant of fluid-structure interaction, modelling of this fluid-structure interaction has been 

given some attention recently (see Rao and Dutta, 2014; Brahimi and Ouibrahim, 2016; Krack, Salles 

and Thouverez, 2016; Ubulom, Neely and Shankar, 2017).  

Frequently, problems that involve fluid-structure interaction can be modelled as uncoupled problems 

within their specific domains. The fluid flow and structural motion within a turbomachine, however, 

is an example of a substantially complex problem that needs to be modelled due to the complicated 

geometry of the flow paths. Due to this complexity and the fact that fluid-structure interaction within 

turbines have primarily been modelled with transient solution procedures (Alshroof et al., 2012), 

computational costs are high. Modelling of the fluid-structure interaction within a turbine are 
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generally split up into either one-way or two-way coupling between the two numerical domains where 

the former only considers the effect of the one domain on the other (Alshroof et al., 2012). This then 

naturally reduces the accuracy of the solution with respect to the physical problem. 

Large, complex computational domains in addition to transient solution procedures have led to 

numerous simplifying fluid-structure interaction assumptions for turbines in order to bring down the 

computational costs of the models (Alshroof et al., 2012). Herein lies the challenge - producing a 

complete enough numerical model of a turbine stage to model the fluid-structure interaction while 

minimising computational costs and retaining accuracy. If this can be achieved and blade vibration can 

be detected in the flow field within the model, numerical prediction of the blades or stage status can 

be made. Coupling such a model with online vibration condition monitoring or some artificial 

intelligence system could provide the foundation of an advanced turbine condition prognostics tool.  

1.2 Literature Review 

The literature review aims to establish a framework for the research study by presenting specific topics 

in a logical order. The topics that will be covered in this review outline the focus areas of the intended 

study. The area of focus for this study is centred on investigating blade vibration and its relationship 

with the flow field through a steam turbine which is largely applicable to the power industry. 

 Steam Turbines Overview 

This section of the literature review can be considered introductory and supplementary in light of the 

remainder of the topics that are covered. This section is included to remind the reader of certain terms 

and definitions regarding turbines and the associated vibrational characteristics. 

1.2.1.1 Turbine Blade Vibration and Response Mechanisms 

Turbine vibrations can be caused by a multitude of mechanisms including rotor and bearing 

imbalances, asymmetric flexibility and misalignment of the shaft, periodic loading, rotor blade damage 

and shaft whirl to name a few (Boyce, 2012). These vibrations can be classified into two main groups: 

synchronous or asynchronous vibration. The distinction between the two groups lies in the occurrence 

of the vibration being an integer multiple of the shaft rotational speed or not. This is known as engine-

ordered vibration, or, synchronous vibration. The engine order, 𝐸𝑂, is given by 

 𝐸𝑂 =
𝜔𝑓

𝛺
 (1) 

where 𝐸𝑂 is the ratio of the excitation frequency, 𝜔𝑓 , to the rotational frequency of the shaft, Ω. 

Synchronous vibrations are caused by periodic aerodynamic loadings, which are inherent to the 

periodic internal geometry of turbines (Forbes and Randall, 2007). This is depicted in Figure 1.1 where 

the fluid flow interacts with the rotor blades and stator blades. The associated excitation frequency 

that is linked to the rotor blade passing the stator blades is called the stator passing frequency (SPF) 

and is generally of a higher 𝐸𝑂. Synchronous vibrations could also stem from the mechanical effects 

such as unbalanced rotors and non-concentric casings and the associated pressure field fluctuations 

(Zielinski and Ziller, 2000). These effects produce excitation forces of lower EOs. 
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Asynchronous vibrations are non-integer multiples of shaft speed. These vibrations are usually 

triggered by rotating stall, blade flutter, occurring predominantly at a blade’s natural frequency, and 

acoustic resonance (Zielinski and Ziller, 2000; Forbes and Randall, 2007).  

Dimitriadis et al. (2002) noted that synchronous and asynchronous vibrations could occur close to 

each other in the frequency spectrum. Synchronous modes of vibration could coexist in a rotor stage 

as well as combined synchronous and asynchronous modes. This has made it important for 

turbomachine designers to design blades that have resonant frequencies that do not coincide with 

integer multiples of shaft speed during run-up and run-down of the turbomachine. This will however 

be inevitable as the turbine will most likely run past these critical speeds during start-up and shut-

down of the turbomachine, but its effect can be limited by passing quickly over these speeds (Rao and 

Dutta, 2012). This will, however, lead to accumulation of fatigue damage of the rotor blades over time. 

The root cause of blade vibration, in the context of damage, could be attributed to various 

mechanisms. The following are some of the most prevalent turbine steam path damage mechanisms: 

creep, solid particle erosion, low and high cycle fatigue (LCF & HCF), pitting, corrosion fatigue, stress 

corrosion cracking and liquid droplet erosion (McCloskey, 2002). According to McCloskey (2002), 

corrosion fatigue is one of the leading causes of damage in the rotor blades of steam turbines. It is a 

combination of alternating stresses and environmental effects. This mechanism usually originates 

from the presence of pitting or other localised erosion (McCloskey, 2002). This fault is then developed 

through cyclic stresses which lead to either corrosion fatigue or stress corrosion cracking. 

1.2.1.2 Turbine Blade Vibration Modes 

Before diving into the depths of analysing possible blade damage mechanisms, the vibrational 

response of an undamaged blade should first be understood. The basic mode shapes for turbine 

blades can be categorised as either bending, torsional or a combination of both (EPRI, 2008). The 

bending modes can be subdivided further into tangential, axial and second bending modes. The four 

fundamental mode shape classifications are outlined next in terms of simple blade geometries (EPRI, 

2008; Schönleitner et al., 2015): 

1. Tangential – shown in Figure 1.2 (a). A flap-wise motion of the blade in the circumferential 

direction. 

2. Axial – shown in Figure 1.2 (b). An edgewise motion of the blade in the flow direction.  

Figure 1.1. Turbine cross-section schematic. (a) Cascade view with blade rotation direction. (b) 

Meridional view with fluid flow direction (Church, 2016) 
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3. Torsional – shown in Figure 1.2 (c). A twisting motion of the blade where the tip points are out 

of phase. 

4. Second bending modes – shown in Figure 1.2 (d). A more complex flap-wise motion of the 

blade in the circumferential direction where the body and tip are out of phase. 

In general, turbine blades are far more complex than the simple curved blade presented in Figure 1.2. 

The blades can contain tapering, twisting and complex airfoil cross-sections throughout the length of 

the blades, which also differ from stage to stage of large industrial turbines (Rao and Dutta, 2012). 

This results in complex mode shapes that appear as a combination of pure bending and torsional 

modes. 

As mentioned before, fatigue – whether high cycle or low cycle – is a core turbine blade damage 

mechanism. Different modes of vibration result in significantly different stress distributions in the 

blades. A probabilistic investigation by Booysen (2014) on the fatigue life of low pressure (LP) turbine 

blades during start-up showed that the first bending mode had a considerable effect on the fatigue 

life of test specimens. These results emphasise that the lower modes of vibration are of interest which 

are also highlighted by Schönleitner et al., (2015). 

Related to the resonances of the vibrational modes of turbine blades, is the rotational speeds at which 

they occur. As mentioned previously, 𝐸𝑂  vibration is of interest as it is ever present in turbine 

operation. To explain this, the Campbell diagram is introduced. The Campbell diagram is a 

representation of the blade natural frequencies as a function of revolution harmonics (or engine 

orders) over a range of shaft speeds. The shifting of the natural frequency can be attributed to the 

stress stiffening caused by the operational speed (Mohan, Sarkar and Sekhar, 2014). Figure 1.3 shows 

an example of a Campbell diagram for an arbitrary blade for the first and second modes. The critical 

speeds of the system are then identified as the positions on the Campbell diagram where the mode 

natural frequency intercepts the 𝐸𝑂 lines. 

Figure 1.2. Fundamental mode shapes of turbine blade. (a) 1st flap-

wise bending mode; (b) 1st edgewise bending mode; (c) 1st torsional 

mode; (d) 2nd flap-wise bending mode (Schönleitner et al., 2015) 
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Generally, lower modes of vibration have higher associated energy whereas lower dynamic forces are 

produced at higher modes (Logan and Roy, 2003). The Campbell diagram can be used to predict 

natural frequencies of individual blades or groups of blades which are attached to rigid drum-type 

rotors when paired with a FE model, but this technique suffers from accuracy when more flexible 

rotors are used due to the structural effects (Logan and Roy, 2003). Tracking the change in vibrational 

frequencies of the blades could give insight to the health of the rotor blades. Thus, the next section 

covers vibration measurement techniques that utilise this feature on operating turbine blades. 

 Blade Vibration Measurement Methods  

Blades are integral to the operation of any turbomachine. The vibrations they experience can cause 

severe damage to the machine. In the context of industrial use, this will put the health and safety of 

personnel at risk and hinder productive operation of the plant. It has been reported by Meher-Homji 

(1995) that 42% of gas turbine failures are caused by blade faults. Steam turbines are just as 

susceptible to blade failures – a survey performed in 1985 by EPRI (1985) reported that 75% of these 

blade failures occurred in LP turbines and that 30% thereof is contributed to HCF. Hence, many 

methods of detecting blade vibration have been developed and used over the years. These include 

the old work horse strain gauge measurement systems, dating back to the 1930s (Russhard, 2015), 

which are usually limited to the design phase of turbomachines (Forbes and Randall, 2013), and the 

non-intrusive family of measurement techniques such as that based on blade tip timing, casing 

pressure signal and casing vibration signal monitoring.  

Turbine blade vibration is governed by aeroelastic effects of unsteady flow and the fluid-structure 

interaction effects of the high-velocity compressible fluid (Beauseroy and Lengellé, 2007). The 

vibrational characteristics - amplitude, frequency and phase - largely influence the fatigue life, 

performance and integrity of the turbomachine (Salhi et al., 2008). The next few sections will cover 

the various well-known vibration measurement techniques that are used to extract blade vibration 

information.  

Figure 1.3. Campbell diagram for the first and second modes of a turbine blade 

20𝑡ℎ 𝐸𝑂  

1𝑠𝑡  𝐸𝑂  
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1.2.2.1 Strain Gauge Measuring Technique 

Usage of strain gauges to measure blade vibration is the conventional technique that forms part of 

the intrusive technologies (Agilis, 2014; Diamond and Heyns, 2018). Local deformation is measured 

through resistance changes in the strain gauge which transmits a signal related to the displacement 

to a fairly costly telemetry system (Beauseroy and Lengellé, 2007). The gauges are positioned at key 

points on the surface of the blades, typically at the root, as can be seen in Figure 1.4.  

Strain gauge systems are reliable and produce accurate readings at light operating conditions 

(Russhard, 2015; Battiato, Firrone and Berruti, 2017) but, they do, however, suffer from a few 

drawbacks. Strain gauges are normally installed on a few blades only due to the high costs involved, 

the influence the routing wires have on the vibratory characteristics of the system and the time-

consuming installation procedure (Beauseroy and Lengellé, 2007; Agilis, 2014; Diamond and Heyns, 

2018). Another a drawback of using strain gauges is that each strain gauge can only collect vibrational 

data of the single blade that it is attached to which leaves the user with the issue of inferring 

vibrational information to non-monitored blades (Beauseroy and Lengellé, 2007). 

In Industry, the use of strain gauges for measuring blade vibration is normally limited to the design 

phase of the turbine as their usable life is limited by exposure to harsh temperature and pressure 

conditions (Russhard, 2015; Du Toit, 2017). For academic research purposes, strain gauges are used 

in conjunction with other blade vibration identification techniques such as blade tip timing and these 

methods are subsequently used to cross-validate one another (Knappett and Garcia, 2008; Allport et 

al., 2012; Battiato, Firrone and Berruti, 2017; Rigosi, Battiato and Berruti, 2017). 

 

1.2.2.2 Frequency Modulated Grid Systems 

The Frequency Modulated Grid System (FMGS) was introduced by Bristol Siddeley Engines Ltd. in 1962 

(Russhard, 2015). Stress in the rotor blade was quantified by indirect measurement of the blade tip 

displacement. The amplitude, 𝑎 , and frequency, 𝑓 , of the vibration were shown to be directly 

Figure 1.4. Typical rotor strain gauge installation (Adapted from 

Russhard, 2015)  
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proportional to the maximum bending stress in the rotor blade. According to Russhard (2015), industry 

still uses the notion that the product 𝑎𝑓, which indicates a blade failure, is constant for any given 

material. 

Permanent magnets are installed on the tips of a few blades with the receiver wires being embedded 

in the particular rotor stage’s case. The rotation of the rotor induces an alternating current in the wire 

grid (Sabbatini et al., 2012). The frequency of the induced signal is affected by blade vibrations which 

in turn cause frequency modulation that is directly proportional to the blade vibration constant, 𝑎𝑓. 

By fitting multiple grids in the rotor path, data can be obtained from multiple points on the blade. This 

data can then be used to confirm the mode shapes and hence the vibrational characteristics at specific 

operating conditions (Russhard, 2015). Figure 1.5 shows a schematic of the FMGS. This method, as 

with the strain gauge method, imposes a few problems. The installation process is time-consuming 

and a complex process. The addition of magnets to the tips of the blades alter the vibrational 

characteristics of the blades and hinder the flow past the blades (Zielinski and Ziller, 2000). 

1.2.2.3 Blade Tip Timing Techniques 

Blade tip timing (BTT) is a nonintrusive method of measuring turbomachinery blade vibration during 

operation that has been around since the 1970s (Rigosi, Battiato and Berruti, 2017). Due to the faster 

turbomachine development cycles, a decreasing trend in the use of strain gauge systems has been 

observed while BTT systems coupled with FE models have been receiving more attention (Russhard, 

2015). 

Blade tip timing utilises proximity sensors spaced circumferentially on the casing of a rotor stage 

(Diamond and Heyns, 2018). The proximity sensors  are usually of the optical, magnetic, capacitive or 

inductive type (Dimitriadis et al., 2002; Beauseroy and Lengellé, 2007). The time of arrival (ToA) of 

each blade is measured as it passes the proximity probe relative to a once-per-revolution (OPR) or 

multiple-per-revolution (MPR) shaft mounted encoder. A reference or expected ToA is calculated 

based on the shaft speed. Vibration of a blade will result in the blade arriving either earlier or later 

Figure 1.5. FM Grid arrangement (Russhard, 2015) 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Introduction  G Janse van Vuuren 

8 

 

due to the deflected tip (see Figure 1.6). The blade tip displacement is calculated taking the difference 

of the two ToAs through 

 𝑥 = ∆𝑡ΩR (2) 

where 𝑥 is the tip deflection, ∆𝑡 is the difference in ToA, Ω is the shaft rotational speed and 𝑅 is the 

outer radius of the rotor. Measurement data from several sensors can then be used to infer the blade 

vibration characteristics over multiples of shaft rotation (Diamond and Heyns, 2018). This is, however, 

notoriously difficult if the vibration is an 𝐸𝑂 of the shaft speed (Dimitriadis et al., 2002). This is due to 

the blade tips having essentially the same displacement each time they pass the sensors while the 

system is running at constant speed and the resulting displacement data effectively repeats itself 

(Dimitriadis et al., 2002).  

Another shortcoming regarding the difficulty of post-processing BTT data is aliasing (Beauseroy and 

Lengellé, 2007). This is caused by the limitation in data acquisition sampling rate which is dependent 

on the rotational speed of the rotor, the number of sensors and the circumferential spacing between 

the probes around the rotor casing (Diamond and Heyns, 2018).  

 

A noticeable advantage that the BTT method has over the traditional strain gauge method - other than 

it being non-intrusive - is that all the blades on a rotor assembly can be monitored simultaneously 

(Rigosi, Battiato and Berruti, 2017). 

1.2.2.4 Casing Pressure Signal and Casing Vibration Signal Methods 

Forbes and Randall (2007) suggested that the measurement of the casing vibration could provide 

means of blade condition monitoring and modal parameter estimation, i.e. modal frequency, modal 

damping and mode shape. This led to the investigation of whether blade condition information could 

possibly be extracted from the casing vibration signal (CVS) and casing pressure signal (CPS) 

measurements. 

Figure 1.6. BTT principle: a compressor fan row with a sectioned casing 

showing five proximity probes (left); difference in time of arrival of tip 

of vibrating blade (right) (Diamond and Heyns, 2018) 
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Proof of Concept of CVS and CPS Measurement Method 

An analytical model of the case vibration and simulated pressure signal associated with blade 

vibrations was presented by Forbes and Randall (2007). The formulation of the excitation forces 

comprised of those transmitted through casing attachments to the engine and running gear with the 

exclusion of any fluid flow effects. Hence, the fluid-structure interaction was completely uncoupled, 

i.e. the casing motion and pressure distributions did not influence each other. 

A very general assumption is made that this static pressure force has a sinusoidal shape as the rotor 

blades act as simple oscillators. Blade motion causes phase modulation of the pressure peaks linked 

to each rotor blade. Essentially, the rotor blade vibration is modelled to vibrate about its equilibrium 

position in the rotating reference frame with the characteristics of the blade’s forced response. The 

reader is suggested to see Forbes and Randall (2007) for the exact derivation of the analytical model 

constituents. 

Verification of the analytical model is accomplished by comparing results to a very simplified FEA for 

different rotor speeds. The FE model had soft spring supports and damping added at the stator blade 

locations whereas the analytical model was based on free-free boundary conditions. The results 

showed that the analytical and FE model corresponded well. The natural frequency of the blade was 

chosen as 500 Hz and can be shown to appear in the spectral analysis plots shown in Figure 1.7. 

The response showed peaks when the blade’s natural frequency was traversed. This together with the 

validation of the FE model showed that the casing contains information about the vibrational 

characteristics of the rotor blade. This would allow for blade vibration monitoring through a non-

intrusive technique whereby the casing vibrations could be used.  

 

Forbes and Randall (2013) extended their investigations to estimate turbine blade natural frequencies 

from casing pressure and vibration measurements. Again, a simulated internal CPS was derived that 

included blade vibration effects. The work of Forbes and Randall (2013) was based on results seen in 

the work of Rao and Dutta (2010).  Rao and Dutta (2010) found that the casing pressure spectrum 

contained sidebands around some multiples of shaft rotational speed at frequencies at which rotor 

blades of a simplified experimental setup were excited. The estimation of rotor blade natural 

frequencies by Forbes and Randall (2013) was based on the measurement of the aforementioned 

sidebands found in the vibration and pressure spectrum. 

Figure 1.7. Radial casing response at shaft speed of 80 Hz: Analytical (left); FE model (right) (Forbes and 

Randall, 2007) 
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The updated analytical formulation included the fluid flow’s turbulence effect on the pressure signal 

as a white random variable with zero mean as well as the influence of the blade’s motion. Only the 

stochastic part of the pressure and casing vibration signals were used in the formulation. For further 

insight as to how the discrete portion of the signal was derived see Forbes (2010). 

Experimental estimation of the blade natural frequencies was achieved through excitation of a single 

blade row in a simplified test rig. Among the collected data, a simulated faulty blade case was also 

investigated whereby a single blade of reduced thickness was inserted in the rotor. The rotor consisted 

out of 19 flat blades with the upstream stator being represented by 6 jets emitting high velocity air. 

Overall, the CPS method presented by Forbes and Randall (2013) estimated the rotor blade natural 

frequencies relatively well in comparison to the analytically derived results. The estimation of these 

frequencies, however, depend on the knowledge of the natural frequency to within ± half of the shaft 

speed. The natural frequency of the single faulty blade was also estimated successfully. The work of 

Forbes and Randall (2013) presented the first non-intrusive method for turbine blade natural 

frequencies determination from CPS measurements taken at constant shaft operating speed.  

CPS and CVS Signal Processing Methods 

The method proposed here is based on the work of Forbes and Randall (2013) for constant shaft 

speeds. The analysis consists of the following steps:  

1) Order tracking of the raw sampled data. 

2) Synchronous averaging of order tracked data. Synchronous averaging allows for separation 

of the discrete and random parts of the signal including noise. This also allows for the 

determination of the average non-vibrating signal over a single shaft revolution. This 

process is repeated to form a full-length signal, namely, the deterministic signal. The 

stochastic signal is then constructed through the subtraction of the deterministic signal 

from the full order tracked signal. The spectrum of a separated deterministic and stochastic 

CVS is shown in Figure 1.8. The red lines are the deterministic portion of the signal and the 

stochastic portion is shown in blue. 

3) Ensemble averaging of pressure and vibration spectrum. When viewing the spectrum, 

sideband peaks appear about the engine harmonics in the stochastic part of the signal (as 

seen in Figure 1.8). The engine harmonics are determined using the deterministic part of 

the signal as explained in step 2. The method presented by Forbes and Randall (2013) uses 

Figure 1.8. Stochastic and deterministic portions of casing 

vibration signal (Forbes and Randall, 2013) 
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a spectrum bandwidth of one shaft rotation, spanning from 0.5 to 1.5 multiples of shaft 

rotational speed. This process is similar to synchronous averaging of time domain signals. 

Figure 1.9 shows an ensemble average example. Ensemble averaging gives a robust 

estimate of the spacing between narrow band peaks in the pressure and vibration 

spectrums. This then allows for the estimation of the turbine blade natural frequency. 

The blade natural frequency must be known to within ± half of the shaft rotational speed 

in order to estimate it (Forbes and Randall, 2013). Once this is known, the natural frequency 

can be calculated using the distance between the narrow band peaks as shown in figure 

3.14. This is possible because the narrow band peaks lie at integer multiples of shaft speed 

±  the blade natural frequency. The blade natural frequency is estimated through the 

relation  

 𝑓𝑛̃ =
∆𝑓 + (𝑚 − 𝑘)Ω

2
 (3) 

and  

 ∆𝑓 = (𝑘Ω + 𝑓𝑛) − (𝑚Ω − 𝑓𝑛) (4) 

where 𝑘  and 𝑚  are positive integers and 𝑘 < 𝑚 , ∆𝑓  is the frequency difference of the 

sideband peaks and Ω is the shaft rotational speed. For visualisation of this method see 

Figure 1.10. 

 

 

Figure 1.9. Ensemble averaging schematic (Forbes and Randall, 

2013) 

Figure 1.10. Schematic of narrowband peak harmonics and blade 

natural frequency (adapted from Forbes and Randall, 2013) 
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 Modelling 

Experimental procedures that measure turbine blade vibration as well as analyse the data have been 

discussed. Next, numerical modelling will be introduced to the reader. Numerical modelling in terms 

of the flow field through a turbine, the structural response of the blades as well as the fluid-structure 

interaction between the two domains will be discussed. 

These models are commonly incorporated in studies along with experimental work and hence used to 

cross-validate each other. The discussion of this section will be focused on previous authors’ work, 

although supplementary content will be provided regarding the underlying theory of the models 

especially in the case of the computational fluid dynamics.     

1.2.3.1 Structural Aspects 

Generally, only the turbine blades and rotor disks are modelled while excluding the casing and shaft 

geometries. The following section elaborates on the modelling of the turbine rotor blade and finite 

element modelling considerations.  

Blade Profiles and Disk Configurations 

The focus is placed here on LP steam turbines as they are quite commonly affected by their own 

vibration mechanisms but also that of downstream process equipment, such as condensers, in the 

power industry (Rao and Dutta, 2014). LP steam turbine blades are usually twisted and tapered from 

root to tip. Power utilities’ LP turbine blades are generally of the impulse-reaction type (Eskom 

Holdings, 2019). The blades have an impulse-bucket shape at the root of the blade and twist through 

a changing cross-section to a reaction-type profile at the tip of the blade. 

Modelling these highly twisted and tapered blades is quite challenging. Generally, if the CAD model of 

the blade is available, it might be seen that certain features such as the mounting bases and fillets are 

simplified and defeatured. This is done to avoid problematic meshing regions and to maintain mesh 

quality. 

Finite Element Modelling and Associated Analyses 

Structural modelling can be split up into two main categories when considering the turbine blade 

geometry. The basic type of analysis that should be carried out, either as validation or as part of a 

larger study, is the modal analysis. Modal analysis is used to determine the vibrational characteristics 

of a structure, i.e. natural frequencies and mode shapes. Modal analysis can be used as a starting point 

for a transient dynamic analysis. The basic form of the undamped modal analysis equation is given as  

 [𝑲]𝜑̃𝑖 = 𝜔𝑛
2[𝑴]𝜑̃𝑖 (5) 

where [𝑲] is the global stiffness matrix, [𝑴] is the global mass matrix, 𝜑̃𝑖  is a mode shape vector of 

mode 𝑖  and 𝜔𝑛  is the natural frequency of mode 𝑖 . Equation (5) is also known as the classical 

eigenvalue problem which is derived from the equations of motion of a system. It is essential to know 

the natural frequencies and associated mode shapes in context of the dynamic environment of 

turbomachinery operating conditions. If the load frequencies coincide with the natural frequencies of 

the structure, resonance, and hence, failure can occur. 
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In the context of time-dependent loadings such as those encountered on turbine rotor blades, a 

transient dynamic analysis can be undertaken. Through this analysis, the displacement, stress and 

strain of the structure can be determined. The basic equation of motion for a MDOF is given by 

 [𝑴]𝑢̈̃ + [𝑫]𝑢̈̃ + [𝑲]𝑢̃ = 𝐹̃(𝑡) (6) 

where [𝑴], [𝑫]  and [𝑲]  are the mass, damping and stiffness matrices, 𝑢̃, 𝑢̈̃  and 𝑢̈̃  are the 

displacement, velocity and acceleration vectors and 𝐹̃(𝑡) is the generalised time-dependent force 

vector. This system is discretised into elements and solved using the finite element method (FEM). 

Geometrically Linear vs Nonlinear Formulations 

It is important to know the envelope of the problem that is being dealt with. In the case of rotating 

turbomachinery blades, one would expect the vibration amplitude far under the 10𝑚𝑚  mark. 

Modelling these vibrations is challenging as one does not know beforehand what displacements to 

expect and how significant they are with regard to size of the blade. In FEM, geometrically linear 

solvers can accommodate small structural displacements, whereas geometrically nonlinear solvers 

can accommodate large and small displacements, with the latter being computationally more 

expensive. This is an important consideration then not only from an accuracy point of view, but also a 

computational effort perspective. 

1.2.3.2 Flow Aspects 

Flow, in general, can be categorised into three major groups - laminar, transitional and turbulent. The 

flow regime can be identified by the dimensionless Reynolds number given by 

 
𝑅𝑒 =

𝜌|𝑉|𝐿

𝜇
 (7) 

where 𝜌 is the fluid density, |𝑉| is the velocity magnitude, 𝐿 is the characteristic length and 𝜇 is the 

dynamic viscosity. The Reynolds number is physically interpreted as the ratio of the inertial forces to 

the viscous forces. A “high” and “low” Reynolds number has different orders of magnitude for 

different applications where for example, flow through a pipe is considered turbulent for a Reynolds 

number of 2300. Flows in turbomachines are predominantly turbulent and viscous due to the complex 

flow paths, but laminar and transitional regions can exist within the turbines (Logan and Roy, 2003).  

In general, the mass, momentum - Navier-Stokes Equations (NSE) - and energy conservation equations 

must be solved to fully describe the fluid flow and heat transfer involved. The full set of conservation 

equations in their various forms and the associated derivations can be found in reference sources such 

as Chung (2009), ANSYS (2018) Fluent theory guide and Henningson and Berggren (2005) for more 

detail pertaining to the derivations. The governing equations are given next using Einstein summation 

convention.  

Conservation of mass, or the continuity equation, is given by 

 
𝐷𝜌

𝐷𝑡
+ 𝜌

𝜕𝑢𝑘

𝜕𝑥𝑘
= 0 (8) 

where 
𝐷𝜌

𝐷𝑡
 is the total derivative of density with reference to space and time, 𝑢𝑘  is the velocity 

component in the spatial direction 𝑘  and 𝑥𝑘  is the spatial direction. The three-dimensional 

momentum conservation equations are given compactly as  
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 𝜌
𝜕𝑢𝑖

𝜕𝑡
+ 𝜌 (

𝜕𝑢𝑖𝑢𝑗

𝜕𝑥𝑗
) = −

𝜕𝑝

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
𝜏𝑖𝑗 + 𝜌𝑔𝑖 + 𝐹𝑖  (9) 

where 𝑝 is the static pressure, 𝜏𝑖𝑗  is the viscous stress tensor, and 𝜌𝑔𝑖 and 𝐹𝑖 are the body forces and 

externally exerted forces, respectively. The stress tensor 𝜏𝑖𝑗  is given by 

 𝜏𝑖𝑗 = 𝜇 (
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
−

2

3

𝜕𝑢𝑘

𝜕𝑥𝑘
𝛿𝑖𝑗) (10) 

and 𝛿𝑖𝑗  is Kronecker’s delta. The energy conservation equation is given by 

 𝜌
𝐷𝑒

𝐷𝑡
= −𝑝

𝜕𝑢𝑖

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑖
(𝑘

𝜕𝑇

𝜕𝑥𝑖
) + Φ (11) 

where 
𝐷𝑒

𝐷𝑡
 is the total derivative of internal energy, 𝑘 is the thermal conductivity which is usually a 

function of temperature and Φ is the positive definite dissipation function defined as 

 
Φ = 𝜏𝑖𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
= 𝜇 [

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
−

2

3
(

𝜕𝑢𝑘

𝜕𝑥𝑘
)

2

] (12) 

Equation (12) is defined using the assumption of a Newtonian fluid, i.e. the shear stress is proportional 

to the velocity gradient of the fluid. 

It is well known that the NSE are one of the millennial problems as it has not been proved that a 

smooth solution always exists, and if it does, that they have bounded energy, i.e. that the solution is 

unique. Hence, the careful use of numerical models to model certain features or groups of features of 

fluid flow, each with their own set of assumptions which is especially important in turbulence 

modelling. These equations are solved similar to structural problems by discretising the domain, but 

under the broad spectrum of computational fluid dynamic methods available. These include finite 

difference methods, finite volume methods and control volume finite element methods. 

Turbulence Modelling 

Unsteady flow field fluctuations in time and space over many different scales are characteristic of real 

turbulence. In reality, turbulent flows would involve turbulent time and length scales that would be 

significantly smaller than the smallest practically generated finite volume mesh. Direct numerical 

simulation of the conservation equations has been performed academically for low-Reynolds number 

flows over flat plates, LP and HP turbines and other turbomachinery components. Although it has far 

superior accuracy, it is too computationally expensive for general engineering flows due to it resolving 

all scales of turbulent fluctuations (Argyropoulos and Markatos, 2015; Pichler et al., 2016). 

This brought the need for modelling turbulent flows through turbulence models. A commonly used 

turbulence model for industrial flows is the Reynolds-averaged Navier-Stokes (RANS) model in its 

various forms. RANS models do not resolve the small-scale fluctuations but rather model the effect 

the turbulence has on the flow through averaging. For RANS models, the solution variables of the 

instantaneous NSE are split into the mean (time-averaged) and fluctuating components. For scalar 

quantities such as velocity components, pressures and temperatures this can be represented as 

 𝜓 = 𝜓̅ + 𝜓′ (13) 

where 𝜓̅ is the mean component and 𝜓′ is the fluctuating component. This gives rise to new terms 

which represent the effects of turbulence in the flow. Substituting the variables in the Cartesian tensor 

form of the momentum equation (16) and dropping the overbar on the mean velocity, 𝑢̅, gives 
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𝜕

𝜕𝑡
(𝜌𝑢𝑖) +

𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑖𝑢𝑗) = −

𝜕𝑝

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
[𝜇 (

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
−

2

3
𝛿𝑖𝑗

𝜕𝑢𝑘

𝜕𝑥𝑘
)] 

(14) 

 +
𝜕

𝜕𝑥𝑗
(−𝜌𝑢𝑖

′̅𝑢𝑗
′̅) 

where 𝛿𝑖𝑗  is again Kronecker’s delta. Equation (14) can be rewritten to account for variable density 

flow as well (see Favre-averaged NSEs in ANSYS, 2018). The term 𝜌𝑢𝑖
′̅𝑢𝑗

′̅ has been dubbed Reynolds 

stresses and can be modelled in various ways. One way of modelling these turbulence-induced 

stresses is to apply the Boussinesq hypothesis to relate the Reynolds stresses to the mean velocity 

gradients through the relation 

 −𝜌𝑢𝑖
′̅𝑢𝑗

′̅ = 𝜇𝑡 (
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) −

2

3
(𝜌𝑘 + 𝜇𝑡

𝜕𝑢𝑘

𝜕𝑥𝑘
) 𝛿𝑖𝑗  (15) 

where 𝜇𝑡 is the turbulent viscosity and 𝑘 is the turbulent kinetic energy. A disadvantage of using the 

Boussinesq hypothesis is that 𝜇𝑡 is assumed as an isotropic quantity, which may not always be the 

case (ANSYS, 2018d). It can, however, work well in cases that are dominated by only one of the 

turbulent shear stresses which, according to ANSYS (2018a), covers most technical flows. An 

alternative method to the Boussinesq approach is to solve the transport equations in terms of the 

Reynolds stresses which is known as the Reynolds Stress Model, but is not part of the scope of this 

study (see ANSYS, 2018b, p. 42). 

Arising from Equation (15) is the turbulent kinetic energy and turbulent viscosity, both of which also 

need to be modelled appropriately. Hence, the introduction of two variants of the RANS model that 

are used widely in industry for many different types of engineering flow calculations due to their 

robustness, economy and reasonable accuracy (ANSYS, 2018d). These are the 𝑘 − 𝜀 and the 𝑘 − 𝜔 

models. Both models have modified versions, whereby various other flow effects are included in the 

transport equations, which have been brought about over the years. 

Both the 𝑘 − 𝜀 and the 𝑘 − 𝜔 models relate the Reynolds stresses to the mean velocity gradients and 

the turbulent viscosity. These models differ by the way in which the turbulent viscosity is calculated. 

The turbulent viscosity for the 𝑘 − 𝜀 model is linked to the turbulent kinetic energy and dissipation 

rate through the relation 

 
𝜇𝑡 = 𝜌𝐶𝜇

𝑘2

𝜀
 (16) 

where 𝐶𝜇 is a constant quantity computed from strain rates and other model constants and 𝜀 is the 

turbulent energy dissipation rate. Both 𝑘 and 𝜀 are included in the transport equations that also need 

to be solved for (ANSYS, 2018b, p. 81). The turbulent viscosity for the 𝑘 − 𝜔 model is linked to the 

turbulent kinetic energy and turbulent frequency through the relation 

 
𝜇𝑡 = 𝜌

𝑘

𝜔
 (17) 

where 𝜔 is the turbulent frequency. Both 𝑘 and 𝜔 are included in the transport equations that also 

need to be solved for (ANSYS, 2018b, p. 84). More specifically, the realizable 𝑘 − 𝜀 and shear stress 

transport 𝑘 − 𝜔 models have become the work horses of industry (ANSYS, 2018c, p. 96). More detail 

pertaining to which turbulence models were used in this study will be presented in section 3.1. 
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Near-wall Treatments 

Turbulent flows are significantly affected by the presence of walls. In the near-wall region, the solution 

variables have large gradients. This makes it important for having an accurate representation of the 

flow in the near-wall region. A commonly used approach for modelling the wall bounded turbulent 

flow is to use a set of semi-empirical formulas called wall functions, which are used to link the viscosity-

affected region between the wall and fully turbulent region. This avoids having to resolve flow in the 

boundary layer and thus saves computational resources (ANSYS, 2018a, p. 172).  

As the viscosity-affected region and fully turbulent region will be modelled differently, a link to the 

boundary between these two regions was developed as a dimensionless distance from the wall known 

as the 𝑦+ value given by  

 
𝑦+ =

𝜌 ∆𝑦 𝑢𝜏

𝜇
 (18) 

and 

 
𝑢𝜏 = (

𝜏𝜔

𝜌
)

1
2
 (19) 

where  𝑢𝜏 is the friction velocity at a distance of ∆𝑦 from the wall and 𝜏𝜔 is the wall shear stress. The 

𝑦+ value can be viewed as a local Reynolds number. The sought 𝑦+ value for a CFD simulation is 

dependent on the type of simulation (flat plate flow, turbomachinery blades, heat transfer, etc.), the 

turbulence model used and whether a wall function is used or not. The 𝑦+ value is used to set the first 

cell height normal to the wall.  

The shear stress transport 𝑘 − 𝜔 model (SSTKO) of CFX employs an automatically switching near-wall 

treatment depending on the calculated 𝑦+ value. A switch is made between a wall-function and low-

𝑅𝑒 number formulation to smoothly resolve the boundary layer (ANSYS, 2018a). 

To ensure proper mesh refinement in the boundary layer, TurboGrid - the meshing software used for 

the fluid domain, allows one to set a 𝑦+ value based on an inflow 𝑅𝑒 number to compute the near 

wall spacing of the mesh. This ensures an appropriate number of nodes in the boundary layer and thus 

a reduction in errors offered by the automatic switching near-wall treatment method.    

Mesh Quality 

Mesh quality is important in both FEA as well as CFD studies. It will be discussed briefly here in context 

of a three-dimensional fluid domain, but it can be directly applied to a structural mesh. Many mesh 

quality metrics exist, therefore a few key metrics will be outlined below. 

The first metric, face angle, is calculated as the angle of the two edges that touch a node for each face. 

The maximum face angle can be considered to be a measure of skewness. A face angle of 90° would 

be ideal for all elements but this would not be possible to achieve throughout the entire mesh of a 

turbomachine passage. Staying within the limits of 15° and 165° is generally an indication of a good 

quality mesh (ANSYS, 2018e). 

The second metric, edge length ratio, is the ratio of longest edge of a face to the shortest edge of a 

face. For each face,  

max(𝑙1, 𝑙2)

min(𝑙1, 𝑙2)
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is calculated for the two edges of the face that touch a node. The edge length ratio can be considered 

to be a measure of aspect ratio. A generally accepted value for the edge length ratio is 1000 in the 

case of a smooth transitioning mesh (ANSYS, 2018e). For complex cavities as well as fluid domains 

around highly twisted blades, lower edge length ratios are sought. 

Lastly, the element volume ratio is the ratio of the maximum element volume that touches a node to 

the minimum element volume that touches a node. This can be used as a measure of local expansion 

factor. An acceptable limit on this metric is 20 (ANSYS, 2018e). In high curvature areas, one would 

need to limit the element volume ratio, as with the edge length ratio, to capture the domain correctly. 

Larger element volume ratios are thus less problematic in large planar regions. 

The type of mesh employed is very important when it comes to any type of numerical simulation as it 

is directly linked to solving time and numerical accuracy. Unstructured meshes, such as tetrahedral 

meshes, offer flexibility when it comes to complex domains. Structured meshes on the other hand, 

offer higher numerical accuracy and require less storage space than an unstructured mesh (Ali et al., 

2016). Topology blocking along with a structured mesh is a mainstream meshing approach to many 

flow simulations carried out recently (Ali et al., 2016). Partitioning a complex domain allows for better 

mesh quality as the simpler sub-domains are meshed more easily with a structured mesh. The meshing 

approach of this study is elaborated on in section 3.1.1 of the Numerical Model chapter. 

Mesh Independence and Convergence 

As with any numerical method, whether spatially- or time-discretised, there exists an error caused by 

the discretisation of the scheme. This makes it necessary for grid convergence studies or some type 

of uncertainty estimation of the solutions obtained from CFD in order to test mesh-independence of 

the solutions. According Roache (1994), “systematic grid refinement studies are the most common, 

most straightforward and arguably the most reliable”. Roache (1994) proposed the use of a grid 

convergence index (GCI) for the uniform reporting of grid refinement studies. This would allow for the 

estimation of the grid convergence accuracy of a particular discretised solution. This method is 

outlined below. 

Through Richardson Extrapolation, the 𝑝th-order discrete solution ℎ is given by 

 ℎ𝑒𝑥𝑎𝑐𝑡 ≅ ℎ1 +
ℎ1 − ℎ2

𝑟𝑝 − 1
 (20) 

where ℎ1 and ℎ2 are the discrete solutions of two different uniform grid spacings (with ℎ1 relating to 

the fine grid) and 𝑟  is the grid refinement ratio in terms of the spacings of the two grids. This 

extrapolation is generally (𝑝 + 1) order accurate. The order of convergence, 𝑝, is calculated as  

 
𝑝 =

ln (
ℎ3 − ℎ2
ℎ2 − ℎ1

)

ln(𝑟)
 

(21) 

where ℎ1, ℎ2 and ℎ3 are the performance parameters ranging from a fine to coarse grid. The GCI for 

three solutions can be expressed as 

 
𝐺𝐶𝐼12 =

𝐹𝑠 |
ℎ2 − ℎ1

ℎ1
|

𝑟𝑝 − 1
 

(22) 

and  
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 𝐺𝐶𝐼23 =

𝐹𝑠 |
ℎ3 − ℎ2

ℎ2
|

𝑟𝑝 − 1
 

(23) 

where 𝐹𝑠 is a safety factor of 1.25 when a minimum of three solutions are available and 3 if only two 

mesh refinements are available. If three refinements are performed and 

 
𝐺𝐶𝐼23

𝑟𝑝𝐺𝐶𝐼12
≈ 1, (24) 

then mesh independence is achieved and the solution is in the asymptotic range of convergence. In 

the case of two-grid refinements, the GCI can be converted to a percentage 

 𝐺𝐶𝐼12 = 𝑥 [%] (25) 

resulting in the performance parameter, ℎ, being within 𝑥-percent of the exact value. This is based on 

empirical studies by Roache (1994) that suggest a confidence interval of 95% is applicable.  

Furthermore, this method can be extended to FEM solutions as well as either finite volume methods 

or finite difference methods. It is extremely important in the author’s opinion to ensure that mesh-

independent solutions are obtained. Discretisation error will always be present, and hence the need 

to minimise it as far as practically possible, especially in the case that two numerical solvers, in the 

fluid domain and structural domain, will have crosstalk of information between each other and hence 

these errors will be carried back and forth between the solvers.  

Temporal Discretisation Independence 

The Courant number or CFL (Courant-Friedrichs-Levy) number is of vital importance for transient flow 

analyses. This non-dimensional number for a one-dimensional grid is calculated using 

 
𝐶𝐹𝐿 =

𝑢∆𝑡

∆𝑥
 (26) 

where 𝑢 is the fluid speed, ∆𝑡 is the timestep and ∆𝑥 is the mesh size. For a fully explicit solver, the 

𝐶𝐹𝐿 = 1 condition is usually imposed to ensure stability of the solution (ANSYS, 2018b). 

CFX calculates the CFL number based on a multidimensional generalisation of equation (26) by using 

a velocity and length scale based on the mass flow into a control volume and the dimension of the 

control volume (ANSYS, 2018b). CFX, however, makes use of an implicit solver and hence does not 

require the CFL number to be small for stability purposes (ANSYS, 2018b), especially in the case of 

RANS models being used where small-scale transient fluctuations are not resolved. 

For the purpose of a timestep independence study, similar to the grid independence study, the CFL 

number can still be used to determine the time step size required for an accurate solution when using 

uniformly sized timesteps. 

1.2.3.3 Fluid-structure Interaction Modelling 

Many studies on turbine blade vibration incorporate a FE model coupled with either an analytical 

model (Forbes and Randall, 2007) or experimental studies (Heinz et al., 2010; Ratz, Forbes and Randall, 

2013; Drozdowski et al., 2016; Lin et al., 2016, as examples). CFD studies regarding turbulence 

modelling of the flow within turbines are usually conducted with experiments (Denton, 2010; Zhang, 

He and Stüer, 2012; Megerle, 2014; Argyropoulos and Markatos, 2015, as examples). 
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Many engineering problems can be defined by multiphysics phenomena (Benra et al., 2011), but are 

usually solved separately in each domain due to the computational costs involved with the transferring 

of data between the solvers for general engineering problems (Alshroof et al., 2012). Benra et al. 

(2011) describe this multiphyiscs phenomena in terms of fluid-structure interaction (FSI) as the 

interchange of flow effects on a body and the structural motion effect of the body on the flow. This is 

achieved through the passing of boundary conditions from one domain to the other at each 

computational step (Alshroof et al., 2012).  

A FSI problem can be solved in two ways: using a monolithic or partitioned approach. A monolithic 

approach involves the simultaneous solving of the flow and structural equations such that their mutual 

influences are taken into account directly, which helps with stability of the solution (Degroote, Bathe 

and Vierendeels, 2009). The monolithic approach is more robust than the partitioned approach but is 

more computationally expensive. In a partitioned approach, the flow and structural equations are 

solved separately, negating the influence on each domain whilst the solving of each of the domains is 

underway (Degroote, Bathe and Vierendeels, 2009). This makes it necessary for the partitioned 

approach to have some type of coupling algorithm for the interaction of the two domains and to 

provide a coupled solution. Partitioned methods are subdivided further into one-way and two-way 

coupling. In one-way coupling, the fluid pressure for instance, acting on the structure is transferred to 

the structural solver. Two-way coupling involves the transfer of the structural displacement to the 

fluid solver as well (Benra et al., 2011). Two-way coupling can then be subcategorised into weak and 

strong coupling. Benra et al. (2011) highlight the differences between weak and strong two-way 

coupling. Some general advantages and disadvantages of one-and two-way coupling methods are 

outlined by Benra et al. (2011): 

1. Two-way coupling is generally more accurate, especially when geometric nonlinearities, i.e. 

large deflections, are present 

2. Energy conservation is ensured by two-way coupling, but not necessarily by one-way coupling 

3. One-way coupling simulations have much lower computation times 

4. Mesh quality is preserved in one-way coupling as the deformation of the fluid mesh does not 

need to be calculated 

Numerical investigations of the fluid-structure interaction of turbine flow and blade motion are usually 

limited to investigations of blade flutter (Forbes, Alshroof and Randall, 2011). The majority of these 

investigations make use of one-way coupling between the fluid and structural solvers such as that by 

Rama and Dutta (2014) and Alshroof et al. (2012). There have however, been investigations involving 

two-way coupling such as that by Forbes, Alshroof and Randall (2011), Zhang et al. (2011) and Ubulom, 

Neely and Shankar (2017). 

The work of Forbes, Alshroof and Randall (2011) investigated whether the pressure profile around the 

rotor blades follows blade motion whilst they oscillate around their equilibrium position. A secondary 

investigation considered the difference between using one-way and two- way coupled solvers. The 

simulations were conducted using a simplified pseudo two-dimensional flow-scenario of a single blade 

modelled with one degree of freedom and a single stator blade passage. The SSTKO turbulence model 

was used to model the flow.  

The change in pressure over time at a specific pressure tap location on the blade is shown in Figure 

1.11. Both pressure profiles have the same trend although they are different in magnitude. This could 

be due to the incorrect aerodynamic damping lacking in the one-way coupled case. It was cautiously 
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concluded that the rotor blade pressure profile follows the blade motion. The authors, however, 

recommended longer computation time to obtain complete convergence to the quasi-steady state 

solution as well as refining the CFD Mesh. 

Rama and Dutta (2014) investigated self-excitation of long steam turbine blades during low load and 

high back pressure operating conditions. Self-excitation of the blades was modelled through the 

change in steam inlet angle to the blades. During low steam flow the steam inlet flow angle on the 

blade is larger than during normal operation (Rao and Dutta, 2014). The larger angle of the steam inlet 

flow causes flow separation over the blade leading to stall flutter. 

A single blade was modelled with a rectangular fluid domain surrounding the blade in three 

dimensions. The fluid and structural meshes were generated independently without common nodes 

at the fluid-structure interface. This was done to simplify modelling and allow for large displacements 

without mesh distortion. The fluid domain was solved for first with the structural domain solved next 

with the transfer of the fluid solution, hence a one-way coupled approach. 

Figure 1.12 shows the gross oscillatory nature of the turbine blade at different steam flow inlet angles. 

Larger inlet angles lead to larger amplitudes of vibration and hence more severe self-excitation as in 

the case of low load and high back pressure operating conditions. This serves as an example of a 

complex phenomenon - self-excitation of turbine blades - that can lead to damage of the blades, which 

was successfully modelled. The importance of fluid-structure interaction is highlighted here. 

Ubulom, Neely and Shankar (2017) analysed the influence of varying levels of coupling (two-way and 

one-way coupling) on the high-cycle fatigue life estimation of a turbine blade. For the one-way coupled 

case, the fluid domain was solved prior to solving blade displacements and superimposed on the FSI 

interface of the blade.  

The study showed a stronger influence of aerodynamic damping on the predicted stress response from 

the two-way coupled case, with a lower fluctuating stress amplitude as compared to the one-way 

coupled case. Ubulom, Neely and Shankar (2017) stated that the exclusion of the interaction of the 

structural blade motion and aerodynamic flow field neglects potentially more dangerous 

aeroelasticity issues including flutter and limit cycle vibrations, which are key components of HCF 

Figure 1.11. One-way and two-way case pressure over two stator 

passing periods (Forbes, Alshroof and Randall, 2011) 
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failure modes. The one-way analysis could potentially not capture these problems as they are highly 

dependent on modal instability and energy exchange between the two domains (Ubulom, Neely and 

Shankar, 2017). The authors concluded that a decoupled, or one-way coupled, approach to FSI is highly 

conservative and that much economic benefit can be attained through full two-way coupled analyses 

when predicting high cycle fatigue. 

The work of Alshroof et al. (2012) was a continuation of the study by Forbes, Alshroof and Randall 

(2011). This study presented a “tuned” three-dimensional one-way FSI model of a vibrating turbine 

blade. This one-way model enforced blade motion onto the fluid domain. The computational domain 

was limited to a single rotor blade passage comprised of approximately 1.2 million cells and took 

roughly four weeks to simulate. The investigation sought to quantify the relationship of the pressure 

at the turbine casing surface and the vibrating blade motion by varying the distance between the 

casing and the blade tip. The secondary objective was to investigate if the pressure profile around the 

rotor blade followed its vibratory motion. The model developed by Alshroof et al. (2012) is believed 

to have the computational efficiency of a moving boundary CFD model. 

The results obtained show that the pressure distribution at the casing surface does not differ 

significantly, in its general form, from the pressure at the vibrating rotor blade tip. In fact, these 

pressure distributions are almost identical for the first spatial harmonic of the pressure distribution. 

The difference exists due to the flow leakage at the tip of the blade inducing vortices. This difference 

becomes more apparent as the clearance distance increases as seen in Figure 1.13. 

These results coincided with the enforced motion of the rotor blades and it was concluded that the 

pressure profile around the rotor blades follow its motion. This is a similar conclusion by Forbes, 

Alshroof and Randall (2011) with the investigation of their 2D two-way FSI model. 

A need for further work was realised as this study made use of a unity pitch ratio, which is not a 

realistic representation of a physical turbine, and only small dynamic blade deflections were 

investigated. 

Figure 1.12. Increase in blade vibration amplitude at different inlet flow angles over time (Rama and 

Dutta, 2014) 
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The investigation by Alshroof et al., (2012) portrayed the importance of reducing the computational 

domain by enforcing a one-way structure-fluid interface. These results showed that it is possible to 

capture blade motion in the pressure field around a rotor blade and even at the casing of the turbine. 

This type of blade motion is essentially flow-induced vibration and one can use this data to identify 

significant frequencies in the associated spectra. As damage will alter the natural frequency of the 

blade, one can then track these changes in the frequency domain using the pressure profile. 

1.3 Problem Statement and Objectives 

Blade vibration condition monitoring is capable of indicating blade damage through the correct signal 

processing techniques. The motion of the blades is a direct result of fluid-structure interaction and 

therefore makes it an attractive avenue of investigation through numerical modelling. 

The following void has been identified from literature: establishing a relationship between rotor blade 

damage and the pressure field of a fluid-structure interaction model of a steam turbine stage while 

minimising the computational effort. 

The aim of this study is to establish to what extent the flow field of a three-dimensional two-way fluid-

structure interaction model of a turbine stage can be used to extract blade vibration information. The 

results from this research study are applicable to the power industry. 

1.4 Scope of Research 

The key question that will be addressed throughout this research dissertation is: 

To what extent can we link turbine blade response information to the pressure field when modelling 

the fluid-structure interaction of the flow through a turbine stage? 

The outcomes of this study are to develop a three-dimensional two-way fluid-structure-interaction 

model of a single stage turbine passage that, 

1. Can be used to investigate blade vibration in the pressure field 

2. Is computationally efficient while retaining accuracy  

3. Is validated against an experimental model 

Figure 1.13. Pressure distributions over time at the casing and blade tip for (a) 0.5 mm, (b) 1.0 mm and (c) 1.5 

mm gap (Alshroof et al., 2012) 
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4. Is developed using commercial code, specifically the multiphysics environment of ANSYS 

Workbench (R2 2019) where ANSYS Mechanical is used for the structural domain and ANSYS 

CFX is used for the fluid domain. 

The exclusions of the study are outlined below: 

1. A numerical model of the full annulus of a turbine stage. Reduced geometry will be exploited 

where possible to reduce computation time. 

2. An analytical model will not be developed, nor will an existing analytical model be used for 

comparison. The analytical model referred to is that which describes a pressure field including 

effects of blade vibration. 

3. New signal processing techniques as well as modifying existing signal processing techniques. 

The aim of the study does not focus on signal processing, but it will form part of the 

experimental work to validate the numerical model. Thus, the simplest techniques will be 

used. 

4. Damage classification. The aim of the study is to extract blade vibration information out of a 

FSI pressure field. The blade vibration can be linked to any type of damage, or even flow 

induced flutter.  

The contribution, in short, will be an investigation into the extent that blade damage information can 

be obtained from the pressure field of a two-way fluid-structure interaction model of a steam or gas 

turbine stage, while sensibly minimising computational costs. 

1.5 Document Overview 

The remainder of the document is broken up into four sections that are briefly described below. 

Chapter 2 presents the experimental testing section of this study. The vibration measurement 

techniques are shown along with the static modal analysis results of the rotor blades and some 

preliminary post-processing of the data.   

Chapter 3 presents the numerical model.  In this section, the geometry, mesh, boundary conditions 

and materials are discussed as well as key settings used for the fluid and structural solvers. This 

chapter also supplies investigations for mesh independent solutions, timestep size selection and solver 

type selection for the fluid and structural domain. The chapter is concluded with a section on how the 

FSI model is set up with a short section on how solver coupling, and fluid mesh deformation is handled 

in ANSYS. 

The discussion of all the FSI simulation results are presented in Chapter 4. This section is split up into 

three investigations, namely, uncertainty quantification of the measured stage inlet velocity; a healthy 

rotor blade analysis; and a supplementary damaged rotor blade analysis. 

The study is concluded in Chapter 5 and recommendations are listed for future work on this topic. 

Four appendices are included at the end of this dissertation that contain, 

• the computational solve times for the FSI simulations, 

• supplementary modal analysis data, 

• additional FSI simulation data, 

• and drawings for the experimental set up of the test turbine.  
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2 Experimental Testing 

This chapter presents the experimental part of the study. The intention of performing experiments 

was to validate the numerical model. A key area of concern was the detection of the change in 

pressure at the rotor blade’s tip. The casing vibration was also measured as a supplementary dataset. 

2.1 Layout and Equipment 

The test bench consisted of a single turbine stage - an upstream stator blade row and a rotor blade 

row. Due to air pressure supply limits, the turbine rotor was not powered by airflow. Instead, air was 

passed over the stator blades through a circular arrangement of nozzles inside the turbine casing, from 

a high-pressure air supply while an electric motor was used to turn the rotor assembly. The test bench 

can be viewed in Figure 2.1.  

1 2 3 4 5 

Figure 2.1. Experimental test bench. Overview of test bench (top); Blade arrangement (middle); Nozzle 

inlets (bottom) 
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The assembly included five stator and five rotor blades, which can also be viewed in Figure 2.1. This 

configuration was based solely on the existing test bench that was available. Furthermore, two rotor 

configurations were tested. A healthy configuration consisting of five identical healthy rotor blades 

and a damaged configuration consisting of four healthy rotor blades and a single damaged rotor blade. 

The encoder data was used to sync the test data for different runs. The tachometer served as a 

reference for the encoder to ensure repeatability of the tests. A list of numbered items in Figure 2.1 

are given in Table 2.1. It must be noted that auxiliary equipment such as a handheld anemometer 

were used to measure air velocity, etc., that are not added to the list in Table 2.1.  

Table 2.1. Test bench equipment and sensor list 

Placement Sensor/equipment Sensitivity/Information 

1 Microphone (ICP 378C01) 2 𝑚𝑉/𝑃𝑎 

2 Accelerometer  100 𝑚𝑉/𝑔 

3 Zebra tape encoder 79 𝑝𝑢𝑙𝑠𝑒𝑠 𝑝𝑒𝑟 𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

4 Tachometer 1 𝑝𝑢𝑙𝑠𝑒 𝑝𝑒𝑟 𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

5 Electric motor 𝑇ℎ𝑟𝑒𝑒 − 𝑝ℎ𝑎𝑠𝑒, 5.5 𝑘𝑊 

6 Quantum MX410 DAQ 4 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 

 

The response of the turbine rotor blades was measured using a microphone at the rotor blade tips 

and a casing accelerometer. The microphone was mounted flush with the casing’s inner surface to 

detect pressure changes as the blades passed. The accelerometer was attached to the casing using 

wax and was also used as the secondary sensor for data capture as it was unsure at first whether it 

would produce any significant information of the rotor blade’s response. An important note here is 

that only a single air nozzle was used to excite the rotor blades. This was done to produce the largest 

excitation from the available air supply. The nozzle (seen in Figure 2.2) was strategically chosen as the 

nozzle preceding the microphone (in the direction of rotation of the rotor blades) situated directly 

over a stator blade. This would also try to mimic the numerical model of chapter 3, whereby a single 

blade passage was modelled. The air velocity was measured by a handheld anemometer at the nozzle 

outlet as 65 𝑚/𝑠 . There is, however, uncertainty in this measurement which will be numerically 

investigated in chapter 4. 

Microphone Microphone Accelerometer Excitation air nozzle 

Figure 2.2. Measurement sensor placement 
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Although industrial turbine blades are normally twisted and tapered to optimal profiles shapes, 

manufacturing such blades is quite a tedious and expensive process. It was thus decided to make use 

of a simple blade profile that would still fulfil part an industrial turbine blade requirement. As stated 

in section 1.2.3.1, power utilities generally use blades that have an impulse design at the root which 

then twist into a reaction profile at the tip (Eskom Holdings, 2019). The blades used for the 

experimental testing are of the reaction-type, airfoil profile that have a uniform cross-section over the 

span of the blade. Thus, the section where the experimental blades are similar to industrial blades 

coincides with the key area of concern - the flow field around the tip - making it representative of an 

industrial setup. 

The profile that was used for the stator and rotor blades was the NACA 4506 airfoil profile similar to 

the work of Alshroof et al. (2012), but here the chord length was chosen as 40 𝑚𝑚 as viewed in Figure 

2.3. A portion (~5%) of the trailing edge (TE) was cut off to avoid having a sharp point and thus 

meshing complications in the numerical model of chapter 3.  

 

Also shown in Figure 2.3, are the profiles of the healthy and damaged rotor blades. The damaged rotor 

blade was made 70% of the thickness of the healthy blade both experimentally and numerically. The 

reason for describing the damaged blade in this manner is two-fold, namely: it assists in the meshing 

process of the numerical model described in chapter 3.1 as opposed to a damaged blade that is 

modelled as having a cut-out or notch somewhere along its span; and it still portrays a damaged state 

in terms of wear of the blade as it alters its mechanical response. 

The manufactured blades can be seen in Figure 2.4. These blades were manufactured from aluminium 

alloy (6082 - T6) round bar which has a Young’s modulus of 𝟕𝟏 𝑮𝑷𝒂, a density of 𝟐𝟕𝟕𝟎 𝒌𝒈/𝒎𝟑 and 

Poisson’s ratio of 𝟎. 𝟑𝟑 . A detailed mechanical drawing for the blades can be found in Appendix D: 

Test Turbine Technical Drawings, along with other drawings of the test turbine setup. The total height 

of the blades, from root (including 10 𝑚𝑚 hub mounting) to tip, is approximately 116.4 𝑚𝑚. 

Figure 2.3. NACA 4506 Airfoil blade cross-section with chord length of 40 mm. 

Healthy blade (top); Damaged blade (bottom). 
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2.2 Static Modal Analyses of Blades 

A static modal analysis was performed on the rotor blades as assembled in the hub shown in Figure 

2.1. A Polytec PSV 100 portable digital laser vibrometer was used to track the response velocity close 

to the tip of the blades while a modal hammer was used to excite the blades. Figure 2.5 shows the 

frequency response function (FRF) magnitude for the modal testing of the healthy and damaged rotor 

blades. Five healthy and two damaged blades were tested with the first static natural frequencies 

determined as 202.5 𝐻𝑧 and 131.1 𝐻𝑧, respectively. 

Quite a distinct difference exists between the natural frequencies of the healthy and damaged blades. 

This can be attributed mainly due to the difference in stiffness as the cross-sectional areas are 

different. The reduction in mass of the blades due to the difference in cross-sectional area is small as 

the masses only differ by approximately nine grams. 

 

Figure 2.5. First static natural frequencies of healthy (H) and damaged (D) rotor blades 

 

Figure 2.4. Manufactured blades showing the healthy and damaged blade (left) and the 

curved tips (right) to account for the casing curvature 
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2.3 Experimental Methodology 

The experimental tests on the mock-up turbine rig were split into two main groups. These included 

constant shaft rotational speed tests and varying rotational speed tests. The constant rotational 

speed tests were conducted 30 times for 5𝑠 at each shaft speed tested. The varying rotational speed 

tests were conducted using a digital triangular wave input from a signal generator. A total of 12 

ramping tests were done over a period of 25𝑠 each whereby 6 tests were ramped up from 0 rpm to 

~1378 rpm and 6 tests ramped down from ~1378 rpm to 0 rpm. All datasets were sampled at a 

frequency of 9600 𝐻𝑧.  

 Measuring Shaft Speed  

Although the linearly increasing wave input from the signal generator was not a pure analogue 

signal, the quantization effect on the experimental data was seen to be negligible. For instance, 

Figure 2.6 shows the quantization of the input voltage to the motor compared to the ideal analogue 

signal.  

Converting the tachometer and optical shaft encoder data to time-dependent rotational speed series’ 

yields sufficiently smooth data. The shaft shuddered slightly at low speeds (< 150 𝑟𝑝𝑚) due to the 

bearing and motor influences. This made it necessary to limit the data processing window to speeds 

above 150 𝑟𝑝𝑚 including the speed ramping tests. Figure 2.7 shows the tachometer and encoder 

signals for a run-up run-down test. 

 

 

 

 

Figure 2.6. Quantization of motor input voltage for varying 

rotational speed tests. Full signal (top), zoomed-in view (bottom) 
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Figure 2.8 shows the shaft rotational speed computed from the tachometer and encoder signals of 

Figure 2.7. The resolution of the encoder is higher and thus a more defined signal is produced. Both 

signals contain information of the position and instantaneous speed of the shaft and rotor blades. 

One of the rotor blades were lined up with a marker on the shaft that was used by the tachometer. 

This was also the same position that the damaged blade was placed in the damaged configuration 

runs. This allowed the use of a trigger on the data acquisition device to start recording data every 

time the tachometer sent out a pulse resulting in starting each of the tests at the same angular shaft 

position. This meant that the results for constant rotational speed tests were already synchronised 

and readily comparable.  

 

(a) (b) 

(c) (d) 

Figure 2.7. (a) Tachometer; (b) zoomed in tachometer; (c) encoder; and (d) zoomed-in encoder 

signals for ramp-up-ramp-down test 

Figure 2.8. Shaft rotational speed computed from tachometer and encoder signals for ramping 

tests. Full signal (left); zoomed-in signal (right) showing the difference between the tachometer 

and encoder data 
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 Critical Shaft Speeds 

Recall from section 1.2.1.1 that an engine order (𝐸𝑂) is given by, 

 
𝐸𝑂 =

𝑓𝑒𝑥

𝑓𝑠
 (27) 

where 𝐸𝑂 is the ratio of the excitation frequency, 𝑓𝑒𝑥, to the rotational frequency of the shaft, 𝑓𝑠. If 

the excitation frequency of interest is the natural frequency of the blade (𝑓𝑒𝑥 = 𝑓𝑛), one would expect 

this to occur at a speed of 𝑓𝑠 · 60 [𝑟𝑝𝑚].  

For the healthy blade, that has a natural frequency of 202.5 𝐻𝑧, a shaft speed of 12150 𝑟𝑝𝑚 would 

result in resonance of the blade when neglecting damping and centrifugal stiffening. But there are 

stator row blades preceding the rotor blade row. Operating the turbine at 2430 𝑟𝑝𝑚 would excite the 

first natural frequency of the rotor blade as 5 × 2430 = 12150 𝑟𝑝𝑚. In this case, 𝐸𝑂 = 5, which is 

representative of the stator or blade passing frequency (BPF). The BPF harmonic speeds, particularly 

the first harmonic speed, also produces resonance of the rotor blades as will be seen in chapter 4. 

Here the shaft speed of first BPF harmonic is 1215 𝑟𝑝𝑚 and can be calculated in general for the ℎ𝑡ℎ 

harmonic as,  

 
𝑁𝑐𝑟𝑖𝑡 =

𝑓𝑛 · 60

5 · (ℎ + 1)
 [𝑟𝑝𝑚] (28) 

where 𝑁𝑐𝑟𝑖𝑡  is now noted as the critical speed and 5 · ℎ is the 𝐸𝑂 (note: ℎ = 0 for the blade passing 

frequency). These critical speeds are best viewed on a Campbell diagram such as that shown in Figure 

1.3. Equation (28) was used to select constant shaft rotational speeds for the experimental tests. 

These speeds were not exactly equal to the critical speeds as the equation does not take damping, 

centrifugal stiffening of the rotor blade or pre-loads due to flow effects into account. The centrifugal 

stiffening of the rotor blade would lead to a higher first natural frequency and thus a higher critical 

speed for a specific 𝐸𝑂. Nonetheless, these speeds would still be in the vicinity of the blade resonance 

frequency and thus still valid in producing data that would show some sign of resonance. 

 Preliminary Data Post-processing 

As with most experimental datasets, filtering out some component of the data is always necessary, 

whether it be with a low-pass, bandwidth or high-pass filter. In this case, the first natural frequencies 

of the rotor blades were noted as the most important frequencies as they were most likely to be 

encountered. This led to using a low-pass filter on all the data to attenuate all high frequencies. It is 

important to mention that the signals were filtered in the forward and reverse directions to produce 

zero-phase distortion. 

Figure 2.10 shows the filter experimental data for constant rotational speed runs of 1350 𝑟𝑝𝑚. A 6th-

order lowpass Butterworth filter was employed with a cut-off frequency of 600 𝐻𝑧. It is evident that 

a great deal of high frequency content is present in the broadband signals. 
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The same filtering process was followed for the linearly varying rotational speed tests. Figure 2.9 

shows filtered and unfiltered sensor data for a single run. The accelerometer data shows clear peaks 

at specific times and hence specific shaft speeds. This will be elaborated on in chapter 4, as they signify 

critical speeds and amplified blade response.   

 

 

Figure 2.10. Filtered (red) and unfiltered (black) microphone and casing accelerometer data for constant rotational 

speed of 1350 𝑟𝑝𝑚. From top to bottom: microphone (healthy configuration), microphone (damaged 

configuration), accelerometer (healthy configuration) and accelerometer (damaged configuration).           

Figure 2.9. Filtered (red) and unfiltered (black) microphone and casing accelerometer data for linearly varying 

rotational speed. From top to bottom: microphone (healthy configuration), microphone (damaged configuration), 

accelerometer (healthy configuration) and accelerometer (damaged configuration). 
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2.4 Conclusion of Experimental Testing Section 

The experimental testing methodology and data preparation was presented in this chapter. Two rotor 

configurations were tested - a healthy configuration consisting of five identical healthy rotor blades 

and a damaged configuration consisting of four healthy rotor blades and a single damaged rotor blade. 

Initially, static modal analyses were carried out on the two rotor configurations showing the first static 

natural frequency of the healthy and damaged blades to be 202.5 𝐻𝑧 and 131.1 𝐻𝑧, respectively. 

Only, the first natural frequencies of the blades were noted as they were most likely to be encountered 

considering the operational range of the test bench.  

The experimental tests were split into two main groups: linearly varying and constant rotational speed 

tests at estimated critical speeds. Low pass filtering was employed to all the data collected to remove 

all frequencies above 600 𝐻𝑧. Further discussions and post-processing will be presented in chapter 4. 
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3 Numerical Model 

This chapter presents the numerical model used for the study. The structural domain, fluid domain 

and FSI coupling setup is described here. Mesh refinement studies, a timestep sensitivity study and 

structural solver type study are presented next. Lastly, some post-processing of the simulation data is 

shown. 

This chapter contains some terms and definitions not covered in the literature review that are relevant 

to the ANSYS multiphysics environment (version R2 2019).  

The computer used for all simulations has the following build: AMD Ryzen 7 2700X CPU (8 x cores, 16 

threads, 3.7 (4.3 GHz Turbo)) and 32GB DDR4 RAM. All models include the NACA 4506 airfoil profile 

for stator and rotor blade cross-sections with a chord length of 40 𝑚𝑚  as seen in Figure 2.3. 

Approximately 5% of the trailing edge (TE) was cut off to avoid having a sharp point. The straight cut-

off TE was then rounded in the numerical model to produce a higher quality mesh.  

3.1 Fluid Domain 

This section will give a through overview of the fluid domain geometry, mesh and boundary conditions. 

Furthermore, the mesh refinement study and timestep sensitivity study setup and results are 

presented. 

 Geometry and Mesh 

The geometry consists of one flow passage, i.e. a 72° slice, of the experimental annulus of Chapter 2 

with one stator blade and one rotor blade. This was chosen to reduce the computational domain. It 

does, however, imply that the flow effects simulated are identical in each flow passage, which is not 

the case when one of the blades in the assembly are damaged. It also implies that if a single damaged 

(c) 

(d) 

Rotor 

Blade 
Stator 

Blade 

(a) (b) 

Outlet Inlet 

Direction 

of rotation 

Figure 3.1. Geometry that the fluid domain is based on. Rotor assembly and stator blade row (a); Axial 

cross-sectional view of turbine stage showing direction of flow (b); Front view of simulated annular section 

(c); Top view of annular section showing blade angles and direction of rotation (d) 
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rotor blade is simulated, that all other blades and flow paths are identical. It will, however, suffice as 

the study attempts to obtain blade condition information in the pressure field in close proximity to 

the blade and hence, studying the effect of the two-way FSI pressure field on a single blade is 

acceptable. 

Figure 3.1 shows the geometry that the fluid domain is based on as well as the rotor and stator blades. 

All dimensions are based on the actual experimental test rig of chapter 2 and are documented in Table 

3.1. It must be noted that the hub, casing and stator blade were never simulated - their geometrical 

influences were, however, accounted for by making use of the model in Figure 3.1. 

Table 3.1. Geometrical dimensions of numerical fluid domain 

Dimension Value 

Stator blade stagger angle 22.5° 

Rotor blade stagger angle 30° 

Centre distance between blade rows 54 𝑚𝑚 

Inlet length with respect to the stator blade 
centre 

40 𝑚𝑚 

Outlet length with respect to the rotor blade 
centre 

101 𝑚𝑚 

Hub diameter 80 𝑚𝑚 

Casing diameter 295 𝑚𝑚 

Blade length (stator and rotor) 106.4 𝑚𝑚 

 

(b) 

(c) 

(a) 

Figure 3.2. Fluid domain mesh. Stator domain inlet (a); Rotor domain inlet (b); Rotor domain mesh refinement at 

blade tip (c)  
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The fluid domain was extracted from the model shown in Figure 3.1 and subsequently meshed. The 

mesh of the fluid domain was created using Ansys TurboGrid which employs an optimised automated 

topology and meshing approach to provide a high quality anisotropic hexahedral mesh (ANSYS, 

2018e).  

Figure 3.2 shows the differences in the stator and rotor domain inlets (note that the rotor domain 

inlet is connected to the stator domain outlet through a boundary condition elaborated on in section 

3.1.2). More emphasis was placed on the rotor domain mesh as can be seen with the increased mesh 

refinement in the layer between the blade tip and casing. This was done to ensure the flow effects 

were captured properly through the small blade tip gap. Figure 3.3 shows the full fluid domain meshes. 

Also seen in Figure 3.3 is the boundary layer mesh refinement at the rotor blade tip. A non-conformal 

mesh is implemented at the tip to preserve mesh quality. The fluid meshes are pure structured 

hexahedral meshes with grid spacing and refinement implemented sensibly in areas of importance. 

The meshes shown in Figure 3.2 and Figure 3.3 were the meshes used for all remaining simulations 

after the mesh refinement study (MRS) was performed.  

 Boundary Conditions 

The main boundary conditions for the fluid domain are illustrated in Figure 3.4. A detailed list of all 

the boundary conditions for the fluid domain are given in Table 3.2. The rotational periodic boundary 

is a special type of boundary condition that allows the flow to continuously flow through the boundary 

(a) 

(c) 

(b) 

(d) 

Figure 3.3. Fluid domain mesh. Stator domain (a); Rotor domain (b); Axial view of rotor domain (c); 

Boundary layer mesh and non-conformal mesh at rotor blade tip (d) 
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and into the “next” passage. This is perhaps better visualised by the velocity vector plot in Figure 3.5. 

It thus allows for the modelling of a reduced domain by assuming that the flow characteristics are 

cyclically identical.  

The transient rotor-stator boundary condition is similar to the rotational periodic boundary condition 

in that it accounts for the interaction effects at the sliding interface between the stator and rotor 

passage. The rotor blade walls were set as rotating walls to account for the Coriolis forces acting on 

the fluid as the fluid swirls.  

 

The inlet is set to a near-uniform velocity boundary condition. A small 5% radial variation is taken into 

account through CFX. It is important to note here that an assumption is made on using a near-uniform 

flow field which differs from the experimental test bench of chapter 2. The effect of the magnitude of 

this uniform inlet velocity will be studied in chapter 4. 

Inlet Outlet 

Rotational 

Periodicity 

Transient 

rotor-stator 

interface 

No-slip 

Rotating wall* 

Rotating domain 

No-slip 

stationary wall 

Stationary domain 

Inlet zone 

Outlet zone 

Figure 3.4. Fluid domain boundary conditions. *Doubles as a fluid-structure coupling boundary in FSI simulations 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Numerical Model  G Janse van Vuuren 

37 

 

Table 3.2. Fluid domain boundary conditions 

Boundary Condition 

Inlet Velocity inlet 

Outlet Average static pressure = 0 

Casing surface Stationary no-slip wall 

Hub surface Rotating no-slip wall 

Stator blade surface Stationary no-slip wall 

Rotor blade surface Rotating no-slip wall at a specified 
rotational speed 

Rotor fluid domain Rotating domain at a specified 
rotational speed about the z-axis 

Stator fluid domain Stationary domain 

 

 

 Fluid Material Properties 

This section contains the finer details of setting up the fluid domain solver. As previously discussed, 

the flow through a turbine contains laminar, transition as well as turbulent regions. Although the flow 

is comprised of different flow regimes in different regions, the focus of this study is the blade loading 

information and not prediction of the boundary state. Thus, only turbulent modelling will be 

considered. A major challenge that turbulence modelling faces is the accurate prediction of flow 

separation over smooth surfaces (ANSYS, 2018a). In general, two-equation RANS turbulence models 

underpredict turbulence effects in regions of strong pressure gradients (ANSYS, 2018a). The SSTKO 

turbulence model was thus developed to give highly accurate predictions of flow separation in regions 

Figure 3.5. Velocity vector plot of the flow through three rotor blade passages illustrating the 

rotationally periodic boundary condition (rotor blade motion is clockwise around the positive 

x-axis) 
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of strong pressure gradients through inclusions of the effects in the turbulent viscosity formulation. 

Hence, it will be used to model turbulence in this work as there exists such adverse pressure gradients 

over the rotor blades due to the flow separation produced by the stagger angle of the blades.  

The properties of the fluid can be found in Table 3.3. The air properties were based on the ambient 

temperature and pressure measured in the laboratory. The properties were attained using the 

information presented by Engineering ToolBox (2005). The compressibility of air was neglected for all 

simulations. 

Table 3.3. Inlet air properties 

Dry air (At 18°𝑪, subsonic flow) 
Properties Value 

Density, 𝜌 1.212 𝑘𝑔/𝑚3 
Dynamic viscosity, 𝜇 1.803 × 10−5 𝑃𝑎 ∙ 𝑠 
Pressure, 𝑃 1.025 𝑏𝑎𝑟 

Reynolds number 
𝑅𝑒 =

𝜌|𝑉|𝐿

𝜇
≈ 174775 → 𝑇𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡 𝑓𝑙𝑜𝑤 

𝐿 is the chord length of the blade cross-section 

 

 Mesh Refinement Study 

As with any numerical method, whether spatially- or time-discretised, there exists an error caused by 

the discretisation of the scheme. This makes it necessary for grid convergence studies or some type 

of uncertainty estimation of the solutions obtained from CFD in order to test mesh-independence of 

the solutions. The GCI method presented in section 1.2.3.2 is implemented next to estimate the grid 

convergence accuracy of the fluid domain model presented in this study. 

A set of steady state CFD simulations were run using the same boundary conditions with varying mesh 

densities as part of a mesh refinement study (MRS). A fixed ratio of approximately 1.265 was used to 

refine the mesh and a total of 3 mesh refinements were made. The stator-rotor interface boundary 

was now set to a mixing plane model instead of the transient rotor-stator shown in Figure 3.4. The 

mixing plane interface model is used for steady state CFD simulations. It averages, or “mixes out” the 

circumferential non-uniform flow profiles at the stage interface by calculating these averaged profiles 

on the upstream side of the interface and then applying it to the downstream side of the interface. 

The circumferential profile average is a function of the radius only (hub to casing spanwise direction) 

and subsequently cannot model the effects of wakes and shock wave interactions. 

 

 

Figure 3.6. Pressure monitor point used in MRS simulations. 
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Table 3.4 shows the solver setup parameter and boundary conditions used for the MRS simulations. 

The rotational speed was chosen as 1418 𝑟𝑝𝑚 as this was the maximum possible rotational speed 

achievable with the experimental test bench. Hence, it was chosen as the benchmark speed for the 

MRS and timestep sensitivity study. Figure 3.6 shows the pressure monitor point used for the MRS 

simulations. The point was placed in the centre of the blade up against the casing such that it mimics 

the experimental test bench microphone placement. 

 

Table 3.4. MRS Solver setup and boundary conditions 

Analysis Setting/Boundary Condition Property/Scheme 
Rotational speed 1418 𝑟𝑝𝑚 
Inlet velocity magnitude 65 𝑚/𝑠 

Turbulence model of all quantities SSTKO 

Turbulent kinetic energy, 𝑘 High Resolution1 

Specific dissipation rate, 𝜔 High Resolution 

RMS residual convergence tolerance  1𝐸 − 6 for all residuals 

 

The mesh parameters for the MRS simulations are given in Table 3.5. Following the systematic GCI 

method of Roache (1994) by using equations (20) to (24), the results of the MRS are presented in Table 

3.6 using the pressure monitor point of Figure 3.6. 

Table 3.5. MRS mesh parameters for fluid domain 

 
Mesh A Mesh B Mesh C 

Rotor Stator Rotor Stator Rotor Stator 

Hub boundary layer elements 15 15 15 15 15 15 

Elements between boundary layers  12 10 20 18 30 25 

Shroud boundary layer elements 18 16 20 20 25 24 

Shroud/Hub tip elements 16 4 20 4 25 4 

Stator inlet/Rotor outlet elements 22 5 24 6 26 8 

Elements per component  519389 326218 652715 417415 843925 509824 

Total elements 845607 1070130 1353749 

Total Pressure at tip [Pa] 806.7 816.4 819.1 

 

Focusing on the result of the GCI method in Table 3.6, the ratio 
𝐺𝐶𝐼23

𝑟𝑝𝐺𝐶𝐼12
 is approximately unity, 

indicating that even the coarsest mesh used in the MRS simulations would give satisfactory results. 

These results show that there is also a difference of only ≈ 0.16% between the medium and fine 

mesh. It can be concluded that the solution is indeed in the asymptotic range of convergence. 

Furthermore, the static pressure distribution at the rotor midspan and the spanwise total pressure at 

 
1 The High Resolution transient scheme uses the second order backward Euler scheme whenever possible and reverts to the first order 

backward Euler scheme to maintain a bounded solution (ANSYS, 2018a) 
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different streamwise locations were reviewed in Figure 3.7 as supporting evidence as to which mesh 

would provide decent accuracy while minimising the number of elements used. 

Taking a closer look at the pressure distribution at the rotor blade midspan, a good matching between 

all grids can be observed. There are no shocks present in the flow, but it is, however, evident that the 

coarse mesh overpredicts the pressure on the suction side and under predicts the pressure on 

pressure side of the rotor blade with respect to the finer meshes. Similar results are seen in Figure 3.7 

(b) where the coarse radial meshing of mesh A does not capture the pressure profile as smoothly as 

the finer meshes. 

 

Table 3.6. MRS results based on GCI method of Roache (1994).  

 𝒇𝟏 (𝑴𝒆𝒔𝒉 𝑪) 𝒇𝟐 (𝑴𝒆𝒔𝒉 𝑩) 𝒇𝟑 (𝑴𝒆𝒔𝒉 𝑨) 

𝑃𝑡𝑜𝑡𝑎𝑙 [𝑃𝑎] 806.725281 816.34845 819.074036 

𝑟 1.265 

𝑝 5.3664 

𝑓𝑒𝑥𝑎𝑐𝑡 820.151 

𝐺𝐶𝐼12 0.001644 (0.1644 %) using 𝐹𝑠 = 1.25 

𝐺𝐶𝐼23 0.005823(0.5823%) using 𝐹𝑠 = 1.25 
𝐺𝐶𝐼23

𝑟𝑝𝐺𝐶𝐼12
 = 1.0033 ≈ 1 

 

The predictions of the pressure profile as various streamwise locations is quite similar between the 

fine and medium mesh. Hence, the medium mesh - mesh B with ≈ 1.07 million cells - will be adequate 

for all further fluid flow simulations and will also save computation time with respect to the fine mesh 

of ≈  1.35 million cells. 

 

 

 

(a) (b) 

Figure 3.7. MRS pressure distribution. Static pressure distribution at rotor midspan (a); Spanwise total pressure 

distribution at streamwise locations (b). 
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 Timestep Sensitivity Study 

As all the FSI simulations will be transient in nature, a timestep needs to be chosen to ensure the 

temporal discretisation adequately captures the unsteady flow characteristics. The CFD mesh is 

undoubtedly the larger and more important mesh and thus the timestep chosen for all of the analyses 

will be based on the outcome of this timestep sensitivity study. 

The blade passing period (BPP) is divided into 12, 24, 48, 96 and 192 equal steps. The corresponding 

timestep sizes are based on, once again, the maximum achievable shaft rotational speed of 1418 𝑟𝑝𝑚 

and its corresponding BPP of 0.008462623𝑠. 

As the initial conditions for the transient case were set to a steady state result, with corresponding 

inlet velocities and rotational speeds, the first BPP includes a portion of erratic data. This arises from 

the fact that the steady state simulations were performed using the mixing plane model interface 

leading to wake interaction over the rotor-stator interface not being computed. Recall that this 

circumferential profile average of the mixing plane model is a function of the radius only. This led to 

simulating three BPPs and subsequently removing the first BPP data. The same approach was taken 

for all transient and FSI simulations. An example of the difference between the mixing plane model 

and the transient rotor-stator interface can be seen in the pressure contour plot of Figure 3.8.  

Figure 3.8. Pressure contour showing the difference between the mixing plane model (top) and transient 

rotor-stator interface (bottom) at rotor midspan. 
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It is clear that the mixing plane model does not take the stator domain’s wakes into account, whereas 

the transient rotor-stator interface does calculate these profiles as a function of the radial, 

circumferential and axial directions. 

Table 3.7 shows the solver setup parameter and boundary conditions used for timestep sensitivity 

simulations. Any solver setting not included here is set to a default CFX value. The total pressure was 

again monitored, but at various locations in close proximity to the rotor blade. Figure 3.8 shows the 

pressure monitor points used for the timestep sensitivity study. It includes points at the LE and the TE 

and then at the centre of the blade on the casing, at the blade tip and midway between the blade tip 

and casing. These monitor points were also used for the FSI simulations.  

The pressures at the monitored points of Figure 3.9 are shown in Figure 3.10 for the various timestep 

sizes simulated. The monitor point that is located at the centre of the blade on the casing is 

representative of the microphone location on the experimental test turbine of chapter 2. It is clear 

that the refinement of the passing time periods allows for the prediction of the smaller oscillations in 

the pressure profiles. The simulations that used 12,   24 and 48 timesteps were not able to resolve 

these smaller fluctuations. The simulations that used 96 and 192 timesteps provided more resolution 

at all the monitor points where one would expect complex flow patterns. While the finest timestep 

would result in slightly more temporal accuracy, the computational time differed by a factor of 

approximately 1.8, nearly double the solve time of the second smallest timestep investigated.  

Table 3.7. Timestep sensitivity study solver setup and boundary conditions 

Analysis Setting/Boundary Condition Property/Scheme 
Rotational speed 1418 𝑟𝑝𝑚 
Inlet velocity magnitude 65 𝑚/𝑠 

Temporal discretization  Second order Backward Euler Method 

Turbulence model of all quantities SSTKO 

Turbulent kinetic energy, 𝑘 High Resolution 

Specific dissipation rate, 𝜔 High Resolution 

Simulation time length 0.025388 𝑠 

Time step size Varying  

RMS residual convergence tolerance 1𝐸 − 4 for all residuals 

Minimum coefficient loops (per timestep) 3 

Maximum coefficient loops (per timestep) 6 

 

Thus, to save computational time for the FSI simulations while achieving adequate temporal accuracy, 

the BPP would be divided into 92 timesteps resulting in a timestep size of 8.8152𝐸 − 5 seconds. This 

timestep would be used regardless of the rotational speeds investigated, as all speeds tested would 

be less than the benchmark of 1418 𝑟𝑝𝑚. Temporal accuracy would thus be retained, or even better, 

for slower rotational speeds. 
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Figure 3.9. Pressure monitor points used for timestep sensitivity study 

(a) 

(b) (c) 

(d) (e) 

Figure 3.10. Timestep sensitivity study total pressure at: casing - centre of the rotor blade (a); midway 

between casing and blade tip (b); blade tip (c); LE (d); and TE (e). 
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3.2 Structural Domain 

This section will present how the structural domain was modelled. Firstly, the stator blade was 

modelled as a rigid body in the fluid domain and hence it was not necessary add it to the structural 

domain. Although a vibrational response from a stator blade could possibly have some type of effect 

on the downstream flow and hence the flow over the rotor blade, this effect was excluded from the 

study to decrease the computational burden. 

Damping was also assumed to be negligible. This was done in order to reduce the complexity of the 

problem, although damping would naturally be present in the physical setup. From herein after, the 

term blade will be used to describe the rotor blade, whether it be the healthy or damaged rotor blade. 

In cases where the stator blade is mentioned, it will be explicitly stated as such. 

 

 Geometry, Mesh and Material Properties 

As a brief reminder to the reader, the profile of the blades used are that of a NACA4506 airfoil. The 

damaged blades have approximately 70% of the thickness of the healthy blades to simulate a type of 

wear state of the blade. The geometry of the blade was defeatured so that the meshing process could 

be carried out easier for both the fluid and structural domain. The root of the blade as well as the fillet 

at the base (Figure 3.11 (b)) were omitted in the numerical model resulting in a decrease in stiffness, 

which in turn altered the natural frequencies of the blade. It was thus necessary to either increase the 

stiffness of the blade through its elastic modulus or decrease the mass of the blade through its density. 

The former option was chosen, and the material properties can be viewed in Table 3.8. 

Table 3.8. Rotor blade material properties - Aluminium alloy 6082 - T6 with Elastic modulus 71 𝐺𝑃𝑎 

Material Property Value for Healthy Blade Value for Damaged Blade 

Density  2770 𝑘𝑔/𝑚3 2770 𝑘𝑔/𝑚3 

Elastic modulus (original) 89.7 𝐺𝑃𝑎 (71 𝐺𝑃𝑎) 74 𝐺𝑃𝑎 (71 𝐺𝑃𝑎) 

Poisson’s ratio 0.33 0.33 

 

Figure 3.11 shows the numerical model geometry of the physical blade and the defeatured blade used 

in this study. The defeatured blade length is equal to that of the physical blade from tip to the top of 

the base. 
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 Boundary Conditions and Solver Setup 

Simple boundary conditions were used for the blade. The root of the blade (hub-side) was assigned a 

fixed boundary condition and a rotational velocity equal to that of the shaft speed was added to the 

blade body to account for the Coriolis forces. For the FSI simulations only, a fluid-coupling boundary 

condition was added to the three blade faces that would be in contact with the fluid (suction side, 

pressure side and tip surface) to allow for data transfers between the two domains to take place. All 

the boundary conditions and locations for the blade are shown in Figure 3.12. The solver settings for 

the structural solver are given in Table 3.9. Any solver setting not included here is set to a default 

Ansys Mechanical value. 

 

(a) (b) 

Figure 3.11. Rotor blade: Physical blade with base (a); Defeatured blade (b). 

Figure 3.12. Rotor blade boundary conditions. 
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Table 3.9. Structural domain solver setup and boundary conditions 

Analysis Setting/Boundary Condition Property/Value 
Rotational speed Dependent on speed being tested 

Large deflection formulation Effect was tested in section 3.2.4 

Force convergence tolerance (min. ref.) 1𝐸 − 3 % (1𝐸 − 4 𝑁) 

Moment convergence tolerance (min. ref.) 1𝐸 − 3 % (1𝐸 − 4 𝑁 ∙ 𝑚𝑚) 

Displacement convergence tolerance (min. ref.) 1𝐸 − 3 % (0 𝑚𝑚) 

Rotational convergence tolerance (min. ref.) 1𝐸 − 3 % (0°) 

 

 Mesh Refinement Study 

Obtaining mesh-independent solutions for the structural domain is just as important as that of the 

fluid domain, hence the inclusion of a structural mesh refinement study. A modal analysis was 

performed on the blade to determine the adequate number of elements needed for the remainder of 

the structural analyses. Both linear order and quadratic order elements were used.  

Although, only the first natural frequency is of interest as it has the highest chance of being triggered, 

the first two natural frequencies of the blades were computed.  

The mesh size was varied through the element size used to discretise the domain in the spanwise 

direction (longitudinal direction of the blade). The element size in the spanwise direction was reduced 

by 80% for each mesh studied. Table 3.10 shows the computed natural frequencies of the healthy 

blade for different mesh sizes and different element types. 

 

Table 3.10. Structural MRS using modal analysis 

Element Type 
Mesh number- 
Nodes/Elements 

Spanwise 
Element 
Size [mm] 

𝒇𝟏 [𝑯𝒛] 𝒇𝟐 [𝑯𝒛] 

Linear 

𝐴 − 56488/48972 5 202.6624 1079.074 

𝐵 − 68768/60102 4 202.4968 1078.653 

𝐶 − 85960/75684 3.2 202.3491 1078.271 

𝐷 − 105608/93492 2.56 202.2347 1077.975 

𝐸 − 132624/117978 2.048 202.1285 1077.698 

Quadratic 

𝐹 − 218183/48972 5 201.8039 1076.514 

𝐺 − 266148/60102 4 201.802 1076.511 

𝐻 − 273882/61710 3.2 201.8001 1076.506 
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Figure 3.13 shows the relative error made through spatial discretisation with respect to the quadratic 

element mesh 𝐻.  

 

As one can see in Figure 3.13, the relative error is very small for all meshes studied. The quadratic 

order element would indeed result in a more accurate solution to any of the structural analyses carried 

out in this study, but the computational cost does not justify the need for this especially because of 

the fact that the main focus area of this study is that of the flow field around the blade. Hence, a 

spanwise mesh element size of 4 𝑚𝑚 in conjunction with a linear order type element (mesh 𝐵) will 

be used for all further analyses. 

 Solver Type Investigation 

A steady state load analysis was performed to compare the blade deformation for different solver 

types. A rotation of 0.1°, 0.55° and 1°, respectively, were applied to the blade tip around the z-axis 

(shaft of the turbine). The outcome determined which of the solvers would be more applicable for the 

remainder of the structural domain simulations, i.e. the geometrically nonlinear (GNLS) or 

geometrically linear solver (GLS). A geometrically nonlinear solver can however solve geometrically 

linear problems, although the computational cost is unnecessary as it has an iterative solution. It was 

expected that the deformations and strains would be large in relation to the geometry size for the 

turbine setup described throughout this dissertation. Typically, one would use a geometrically 

nonlinear solver if the transverse displacements are more than 10% of the thickness of a slender 

structure (ANSYS, 2019). The investigation was performed using the healthy blade and it was expected 

that the findings would be directly applicable to the thinner damaged blade. 

Figure 3.13. MRS for structural domain - Relative error in computed natural frequencies for different 

element types and sizes 
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A GLS predicted linear displacement, as expected for the applied rotations. This can be viewed in 

Figure 3.14. The GLNS suggests however, that as the rotational increases, so too does the 

displacement of the blade, but nonlinearly. One can see for small rotations, the GLS and GNLS produce 

comparable results. As it is expected that the blade tip displacements of the FSI simulations are to be 

somewhat large, ≥ 2 𝑚𝑚 as seen in preliminary results, the GLNS will be used. If this is not the case, 

the GLNS will still predict the correct displacements, but at a slightly higher computational cost than 

the GLS. 

3.3 FSI Framework 

After a complete evaluation of the fluid and structural domain mesh and the selection of an 

appropriate timestep size, the FSI simulation setup can now be presented. The System Coupling 

service of Ansys would only link the transient fluid and structural domain through the specified data 

transfer interfaces to allow for the updating of each domain’s boundary condition interactions. The 

fluid and structural models from the previous section are thus used as is. Hence, Ansys employs a 

partitioned method approach. 

All FSI simulations were thus performed using a partitioned two-way approach. This decision was 

made due to the findings by Ubulom, Neely and Shankar (2017) and Alshroof et al. (2012) that pure 

one-way FSI models are highly conservative. They do not capture the full complexity of the flow 

through a turbine. The procedure employed by the System Coupling component in ANSYS Workbench 

is outlined in Figure 3.15 and a brief explanation is given in context of the transient simulations 

presented in this study.  

Figure 3.14. Blade tip displacement for steady state simulation using GLS and GNLS. 
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 Figure 3.15. Two-way fluid-structure solver coupling in ANSYS Workbench overview 

Firstly, data transfer regions need to be created in both the structural and fluid domains. In this case, 

this would be on the surface of the airfoil shaped rotor blade and the corresponding surface of the 

fluid domain it will be in contact with. Each surface can either be a source or a target depending on 

which way the data is being sent. Here, the fluid region will act as a source of transferring force 

(pressure) to the rotor blade and also act as a target for receiving incremental displacement from the 

blade. The rotor blade acts a source of sending incremental displacement to the fluid and a target that 

receives forces (due to the pressure field) from the fluid. 

The coupled solving procedure starts with the convergence of the fluid domain in the first timestep. 

The pressures are then interpolated onto the rotor blade as pressure force boundary conditions. This 

results in deformation of the rotor blade mesh. The structural domain is then solved until a 

convergence criterion is met. The displacement of the rotor blade mesh is then interpolated onto the 

fluid domain which leads to the deformation of the fluid domain mesh and consequently a change in 

the pressure field. The change in the numerical value of the data transfer between the two domains 

over each system coupling iteration (per timestep) is recorded and when this change drops below a 

pre-determined convergence tolerance then system coupling convergence is achieved for that 

timestep. A new coupling timestep will only commence if the fluid domain, the structural domain and 

the coupling interface data transfers have met their respective residual tolerances otherwise, the 

coupling solver iterates until the maximum number of iterations per timestep has been reached.  

This process is repeated for all timesteps. It must be noted that a minimum number of iterations can 

be set for the coupling solver, whereby a minimum number of iterations per timestep need to be 

performed before the timestep ends, even if all solvers have converged to their respective 

convergence criteria. By doing this, the option of linearly ramping the data transfer between the two 

solvers becomes available. This involves incrementally increasing the load transfer between the 

New coupling time 

step 

No

  

Yes

  

End of coupling time step 

Structural domain 

solver convergence 

Fluid domain 

solver convergence 

Interpolation of 

displacements 

Interpolation of 

pressure forces 

Data transfer convergence at 

FSI interface and both solver 

convergences achieved? 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Numerical Model  G Janse van Vuuren 

50 

 

solvers until the minimum number of iterations have been met. This allows for a smaller and steadier 

perturbation to the quasi-equilibrium state of the system, especially in the case of large loads being 

transferred. Theoretically, this will decrease the inner-loop iterations per timestep, i.e. CFD solver and 

FEM solver, and lead to smaller computational solving time. 

For the simulations to follow, the FSI solver is assigned a constant timestep size to properly 

synchronise the data transfer between the domains. The minimum and maximum coupling iterations 

for the System Coupling service relate to the number of iterations required at the fluid-structure 

interaction interface to achieve convergence of the data transfer between the two domains. The data 

transfer ramping option was enabled, as seen in Table 3.11, to steadily perturb each domain with the 

data transfer at the FSI interface until the full load is applied at the specified value for minimum 

coupling iterations. Table 3.11 shows the other coupling settings for the FSI simulations.  

Table 3.11. System coupling settings 

Setting Value 
Analysis time Dependent on the rotational speed 

Time step size 8.8152𝐸 − 5 𝑠 

Blade to fluid transfer RMS convergence tolerance 1𝐸 − 4 

Fluid to blade transfer RMS convergence tolerance 1𝐸 − 4 

Minimum coupling iterations 3 

Maximum coupling iterations 5 

Mesh deformation RMS residual target 1𝐸 − 6 

Mesh deformation minimum coefficient loops 3 

Mesh deformation maximum coefficient loops 10 

 

A very important consideration was the modelling of the mesh deformation. This was specified for the 

FSI simulations as well as the CFD-only simulations. The latter showed that no mesh deformation 

occurred during the simulations, as expected. The FSI case, however, solved for a deforming fluid mesh 

due to the forces exerted on the fluid through the motion of the rotor blade.  

Simply put, the mesh stiffness can be set as variable or constant throughout the domain in CFX. A 

variable mesh stiffness is sought as it allows nodes in regions of high stiffness to move together. This 

preserves mesh distribution and quality which is particularly helpful in boundary layers. The mesh 

stiffness options available in CFX allow for either an increase in stiffness near small volumes; an 

increase in stiffness near boundaries; a combination of the previous two methods or a user-defined 

stiffness formulation. 

After numerous tests, it was decided to make use of the stiffness formulation that was a function of 

the distance from small volumes based on the initial mesh. The determining factor of this was the 

small blade tip gap of 1 𝑚𝑚 and the number of small volume elements in this gap. 

3.4 Preliminary Data Post-Processing 

The FSI simulations were run for six BPPs at constant rotational speed, after which the first BPP data 

was removed due to reasons stated in section 0. Hence, a full rotation was simulated. Once again, the 

data had to be filtered using a lowpass filter due to the inclusion of numerical noise. 
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Numerical noise is an inevitable by-product of CFD simulations (Gilkeson et al., 2014). The study by 

Gilkeson et al. (2014) highlighted that numerical noise is present due to the choice of turbulence 

model employed and the mesh used for the simulations. An example of the simulation data is shown 

in Figure 3.16 where the raw and filtered signals are shown. An in-depth look at these results will be 

presented in chapter 4. Figure 3.16 also shows the raw and filtered FSI pressure and fluid mesh 

displacement for a constant rotational speed of 1418 𝑟𝑝𝑚. A 6th-order lowpass Butterworth filter was 

employed with a cut-off frequency of 1000 𝐻𝑧. It is evident that a small amount of high frequency 

numerical noise is present in the pressure signal whereas the fluid mesh displacement signal contains 

less of this high frequency content. 

 

 

3.5 Conclusion of Numerical Study Section 

The numerical model and FSI data preparation are presented in this chapter. A simplified model of the 

experimental test bench is presented whereby a 72°  annulus slice, or single blade passage, is 

modelled. Two rotor configurations are shown - a healthy configuration consisting of a single healthy 

rotor blade and a damaged configuration consisting of a single damaged rotor blade.  

A mesh refinement study is presented for both the fluid and structural domain in terms of a steady-

state CFD simulation and modal analysis, respectively, to determine adequate domain discretisation. 

A timestep sensitivity study is also presented for the fluid domain from which the minimum timestep 

for the FSI simulations was selected. Different solver types are also investigated for the structural 

domain. 

Boundary conditions, as well as solver settings for the fluid, structural and FSI simulations, are 

presented. Lastly, some preliminary data processing is shown though the filtering of FSI simulation 

data due to the presence of numerical noise. An in-depth analysis of the FSI data is presented in 

chapter 4.  

(a) (b) 

Figure 3.16. Filtering of FSI data: Total pressure on measured at the blade midpoint on the casing (a); Displacement 

of fluid mesh at blade tip (b) 
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4 Discussion of Results 

This chapter is the crux of what this study has set out to achieve - what blade condition information 

can we extract from a pressure field of a turbine stage passage when using a two-way fluid-structure 

interaction model. The results will be presented using experimental and numerical models, including 

CFD-only and FSI simulations. Firstly, the effect of the uncertainty in the measurement of inlet velocity 

is quantified. Secondly, validation of the FSI model in terms of the contents extracted from a CFD-only 

model as opposed to a similar FSI model are reviewed. Thirdly, the healthy rotor blade configuration 

analysis is presented as the main investigation. Lastly, a damaged rotor blade FSI model is reviewed in 

terms of the information that can be extracted from its flow field as supporting evidence to the claims 

made in the main investigation.  

Validation is a key component of any numerical model as one has to assess how well the physics of a 

real-world problem or experiment are captured. As a numerical model will always include some set of 

assumptions made to model certain aspects of a problem, differences in numerical and experimental 

results are expected. Validation, therefore, also assists in quantifying the effect that these 

assumptions make on the numerical model results in comparison to experimental data. 

Certain assumptions were made when developing the FSI model as mentioned in previous sections. 

These assumptions were made to better represent an actual turbine blade passage than what was 

available in the experimental test rig. These assumptions, as well as differences between the FSI model 

and experimental test turbine, are outlined below to remind the reader: 

• Inlet flow boundary condition: A constant, uniform inlet velocity is used for the FSI model. This 

inlet velocity is prescribed perpendicular to the inlet boundary at 65 𝑚/𝑠  - similar to the 

experimental tests. The air is supplied to the experimental test rig through a single nozzle, as 

mentioned in section 2.1. The inlet airflow in the FSI model is modelled as a uniform flow field 

of 20%, or one fifth, of the annular area of the experimental test turbine at the same velocity. 

It is expected that this would result only in larger response magnitude of both the pressure 

field and blade motion than would be the case for the experimental results. 

• Defeaturing of the blade geometry: As mentioned in section 3.2.1, the numerical blade was 

defeatured by removing the base of the blade that attached to the hub as well as the fillets 

between the blade and the base. This reduced the geometrical stiffness of the blade and led 

to the altering of the elastic modulus of the blade material to match the first natural frequency 

of the experimental blade. The blade’s displacement response is, however, still expected to 

be larger in magnitude than the experimental blade. 

• Damping of the blades: The damping coefficient of the experimental blades was not known, 

and determination thereof was excluded from this study. Thus, the numerical blades excluded 

damping in the simulations. This, of course, would result in differences between the 

experimental and numerical datasets, in terms of frequency content, but they will still be 

comparable. 

• Simulating a single passage and single blade: This modelling decision leads to the assumption 

that the fluid flow and blade vibration is identical in each passage. This would not be an exact 

representation of the physical setup, especially in the case of the damaged blade simulations. 
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4.1 Uncertainty Quantification of Effect of the Inlet Air Velocity 

The inlet velocity to the turbine stage that was measured experimentally had some degree of 

uncertainty in the measurement. The measured velocity of 65 𝑚/𝑠  was used in the simulations 

assuming that the amount of energy transferred to the rotor blades would only change the magnitude 

of the blade’s response and not the frequency content of the flow field around the blades. As all 

following simulations would use the same inlet velocity, it became necessary to justify this 

assumption. It would be preferable to use the largest possible excitation velocity, but not larger than 

the experimentally measured velocity, to produce the largest blade response. This would allow for 

clear distinctions of the pressure field characteristics in both the time and frequency domains. 

A rotational speed of 1215 𝑟𝑝𝑚 was used for inlet velocities of 65, 52 and 41.6 𝑚/𝑠. The rotational 

speed was set equal to a critical speed using equation (28) coinciding with the 10𝑡ℎ 𝐸𝑂, i.e. the first 

harmonic of the blade passing frequency. The inlet velocities were reduced twice by 80% from the 

measured speed of 65 𝑚/𝑠. These simulations were carried out using the healthy blade geometry. 

Figure 4.1 and Figure 4.2 show the total pressure and fluid mesh displacement, respectively, at 

selected monitor points (see Figure 3.9). From here on afterwards the monitor point located at the 

centre of the blade on the casing will be referred to as the casing monitor point, similarly, the monitor 

point located at the centre of the blade midway between the blade tip and casing will be referred to 

as the midway monitor point. 

 

Examining Figure 4.1, a tentative conclusion can be made about the postulate that only the pressure 

magnitude changes as a function of the inlet velocity to the turbine stage. The general trend of the 

pressure is relatively consistent with a decrease in inlet velocity. It is, however, evident that some of 

the micro fluctuations in the pressure profile are lost. The high-frequency content is expected to have 

smaller amplitudes for less energy entering the system, hence the diminishing micro fluctuations. 

(a) 

(d) (c) 

(b) 

Figure 4.1. Total pressure signals at the: casing (a); midway point (b); LE (c); TE (d) for the FSI simulations 

pertaining to the uncertainty quantification of effect of the inlet velocity. 
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Similar observations are made for the fluid mesh displacement in Figure 4.2. The general trend of the 

displacement profiles is consistently reduced for lower inlet velocities. There are, however, negligible 

micro fluctuations present in the displacement profiles. The general trend of the displacement profiles 

can be seen to increase over time. Negligible structural damping together with rotating the blade at a 

critical speed, i.e. a speed that is an integer multiple of the natural frequency of the blade, would 

result in resonance. If the simulation were to be carried out over a longer simulated time, an even 

larger displacement response amplitude will be seen. The motion of the blade is due to superposition 

of structural and aerodynamic loads imposed on the blade. The two key contributions to this blade 

motion are the disturbances caused by the rotor blade passing the stator blades; and the shaft 

rotational speed.  

The frequency spectra for the casing pressure and fluid mesh displacement are portrayed by FFT 

magnitude and phase angle diagrams in Figure 4.3. Three dominant frequencies are observed when 

viewing the pressure signal spectrum. These are the BPF and two of its harmonics at 101.4, 202.8 and 

304.3 𝐻𝑧, respectively. The frequency of 202.8 𝐻𝑧 coincides with the first natural frequency of the 

blade. The dominant frequencies present in the displacement spectra are, however, located at the 

shaft rotational speed and then again, at the first natural frequency of the blade. This is also the ninth 

harmonic of the rotational speed frequency or the tenth 𝐸𝑂 of the system.  

Phase changes of ±90° and larger than 90° can be observed in the spectra of Figure 4.3 which indicate 

that the fluid is being excited at more than one frequency. In fact, the fluid is being excited by the 

harmonics of the shaft rotational speed and, more specifically, the BPF and its harmonics. The phase 

changes of ±90° indicate that the fluid is being excited at a critical frequency. In this case, it is the BPF 

of the blade that can be seen in the pressure and fluid displacement spectrum. The phase changes 

that are larger than 90° occur at the blade’s natural frequency and suggest that the response is slightly 

dampened. The response of the blade is in fact lightly dampened by the fluid. 

 

(c) (d) 

(a) (b) 

Figure 4.2. Unfiltered fluid mesh displacement at the: casing (a); midway point (b); LE (c); TE (d) for the 

FSI simulations pertaining to the uncertainty quantification of effect of the inlet velocity. 
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Both spectra shown in Figure 4.3 have consistent frequency content with, again, lower magnitudes 

associated with the smaller inlet velocities. This proves that the previously made assumption is 

adequate as the inlet velocity only influences the magnitude of the response and, for the given ranges 

tested, the distribution of the frequency spectra remain unaffected. Thus, the remainder of all FSI and 

CFD simulation results that are presented make use of an inlet velocity of 65 𝑚/𝑠.  

4.2 Healthy Blade Analysis 

This section presents an in-depth analysis of the experimental and simulation results for the healthy 

blade configuration. A brief comparison of the FSI and CFD-only pressures is also presented to highlight 

certain characteristics present in the FSI model’s flow field. The analysis is split up into two major 

categories: varying rotational speed and constant rotational speed.  

 Varying Rotational Speed Investigation 

It is well known that a blade’s natural frequency increases as the shaft rotational speed increases. This 

phenomenon is caused by the centrifugal stiffening of the blades and is usually visualised using a 

Campbell diagram, also known as a frequency-RPM map. The results presented in this section serve 

as evidence that, although there are assumptions made in the numerical model, the underlying 

principles of the numerical model and experimental turbine are consistent.  

Two datasets were obtained from the experimental tests, namely, casing sound pressure and casing 

acceleration. The frequency spectra of the varying rotational speed tests are studied for the possible 

generation of a frequency-RPM map to identify the natural frequency of the blades as a function of 

rotational speed. This will serve as a guideline as to what can be expected for simulation results. Figure 

4.4 shows the frequency-RPM map for the healthy configuration experimental casing pressure signal. 

The frequency map of the microphone pressure data can be seen to have five distinct bands of peaks. 

The largest of these (on the left of the graph) represents the BPF as a function of the rotational speed. 

The remaining bands represent the harmonics of the BPF as functions of rotational speed. 

Unfortunately, this is the only blade condition information that the experimental pressure data 

(a) (b) 

Figure 4.3. FFT plots of fluid casing monitor: total pressure (a) and fluid mesh displacement (b) for the FSI 

simulations pertaining to the uncertainty quantification of effect of the inlet velocity.  
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contains. The blade natural frequencies could not be obtained from the microphone data. It is believed 

that the sensitivity of the microphone could be too low. Making use of either a more sensitive 

microphone, or pressure transducer, or increasing the air flow through the test turbine should allow 

for the detection of the blade natural frequency. Although the natural frequencies are detected by 

the accelerometer as will be discussed in detail next, more evidence is needed to confirm the 

hypothesis that the pressure measuring sensor can detect local blade condition information. 

 

Viewing the frequency map of the casing accelerometer data in Figure 4.5, a distinct difference is 

observed when compared to the casing pressure frequency map. A multitude of diagonal bands of 

peaks fan over the frequency map, just the same as for the pressure data. These bands are identified 

as the 𝐸𝑂𝑠 of the rotational speed. Two other frequencies that are can be seen as vertical lines in the 

frequency spectra are located at ~74 𝐻𝑧 and ~114𝐻𝑧. These frequencies are not a function of the 

rotational speed and are therefore inherent natural frequencies of the experimental test turbine 

structure. 

A fair number of peaks are present in the region of 200 − 230 𝐻𝑧. These peaks occur at rotational 

speeds that coincide with 𝐸𝑂𝑠 that are closely related to the blade passing frequency. These peaks 

thus occur at critical speeds and the frequencies associated with them are the natural frequencies of 

the blades. The centrifugal stiffening effect on the blades is clearly seen in Figure 4.5, although this is 

not the only load that contributes to the increased stiffness of the blades as pressure forces increase 

the preload on the blades. The significant peaks were extracted and are shown in Figure 4.5 (a). The 

estimated natural frequency shift with rotational speed can be seen in Figure 4.5 (b). The numerical 

values of the experimental blade in Figure 4.5 (b) can be viewed in Appendix B: Natural Frequency 

Evolution of the Healthy Experimental Blade. 

No variable rotational speed simulations were performed purely due to the amount of time it would 

take to solve. Instead, a modal analysis was performed on the single defeatured numerical blade by 

pre-stressing it with a load resulting from the applied rotational velocity to create a Campbell diagram. 

The numerical blade’s natural frequency is also expected to increase for larger rotational speeds. It is, 

however, expected that the natural frequency variation over tested rotational speeds will not be as 

Figure 4.4. Frequency-RPM maps for the healthy configuration experimental casing pressure.  
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large as the variation of the experimental turbine. A number of factors influence this natural frequency 

variation such as structural damping (which is excluded), the pressure load from the upstream flow 

over the stator blades and how this provides a preload to the blade and lastly, the viscous damping 

provided by the flow in simulations will be higher due to a full-field inlet flow being modelled as 

opposed to the single nozzle used for the experiments. 

 

(a) 

(b) 

Figure 4.5. Natural frequency peak detection of healthy blade configuration: frequency-RPM map showing 

significant peak locations (a); peaks extracted from (a) to estimate blade natural frequency as a function of 

rotational speed for the experimental blades as well as the numerical blades (b). 
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Figure 4.5 (b) also shows the Campbell diagram of the healthy numerical blade and the evolution of 

the first natural frequency. It is evident that there is some sort of evolution of the blade’s natural 

frequency with an increase in rotational speed. It is, however, not nearly as much as that experienced 

by the experimental blades. The frequency only increases by approximately 1.45 𝐻𝑧, whereas the 

experimental blade’s frequency increased by approximately 24.7 𝐻𝑧. This serves as a guideline for the 

analysis of the FSI model’s pressure field when driven by a constant rotational speed in the next 

section. The frequencies of interest, i.e. the natural frequency of the blade, should be expected on the 

lower end of the spectrum range, near the static natural frequency. 

A last important note regarding the natural frequency evolution with rotational speed is that a specific 

critical speed will not occur at the same 𝐸𝑂 for the experimental and FSI models. For instance, the 

critical speed of 1350 𝑟𝑝𝑚 is linked to a 10𝑡ℎ and 9𝑡ℎ 𝐸𝑂 excitation for the experimental turbine and 

the FSI model, respectively, for corresponding natural frequencies of 224.6 𝐻𝑧 and 203.6 𝐻𝑧. This can 

be verified through equation (28). 

 Constant Rotational Speed Investigation 

As a turbine is designed to run at a constant or steady-state speed, it becomes attractive to focus on 

the frequency spectra at such operating conditions. It is advantageous to be able to monitor the 

frequency spectra at a specific speed as any deviations from a baseline spectrum would indicate that 

something has changed in the system. Before comparing the frequency spectra of the FSI model’s 

pressure field to the experimental results, it is necessary to examine the relationship between the 

blade vibration and the change in pressure around the blade. The intention hereof is to gain a deeper 

understanding of flow field in a two-way FSI model. 

4.2.2.1 Comparison of the FSI and CFD Flow Fields 

Considering a single blade passing period. It may be expected that the rotor blade will respond as it 

passes a stator blade. The corresponding pressure profile close to the tip of the blade should follow 

the same trend, after all, Alshroof et al. (2012) proved this in their study. This can be illustrated by the 

blade-to-blade contour plots of the total pressure at the midspan of the stage through a single BPP in 

Figure 4.6. It is clear that there is a disturbance in the pressure field downstream of the rotor blade as 

it passes through the trailing wake of the stator blade. The inlet flow is prescribed perpendicular to 

the stator inlet face to allow for larger flow-induced vibration of the rotor blades.  A recirculation zone 

forms behind the rotor blade due to the stagger angle of the blades and the direction of the inlet flow 

and is linked to how the flow dampens the blade’s response.  

The viscous damping of the fluid affects the rotor blade response leading to the oscillations 

diminishing as the rotor blade approaches the next stator blade. This is then repeated for the next 

blade. If there is not enough damping, the transient response continues beyond the blade passing 

period. This is, however, dependent on the inlet flow velocity and the rotational speed of the rotor. In 

this case, the pressure profile for the next blade passing period will be combined with the previous 

passing period’s response and the signal would seem to be erratic.   

This concept is better visualised by considering the transient pressure profile at a single point. A FSI 

and CFD-only simulation were run at different speeds - 1418 𝑟𝑝𝑚 and the critical speed of 1215 𝑟𝑝𝑚. 

The results for the total casing pressure are shown in Figure 4.7 as well as the arithmetic difference 

between the two signals for two different rotational speeds. A clear, repetitive trend is seen for the 
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CFD-only pressures for both rotational speeds. The fluid dampens out the blade passing effect on the 

pressure profile as there is no opposing force from the blade in this case. 

The FSI pressure profile is somewhat different for the two rotational speeds. The FSI pressure profile 

is also relatively consistent for each BPP for the critical speed, i.e. 1215 𝑟𝑝𝑚. This is due to the blade 

being excited at its natural frequency as the critical speed is a harmonic of the BPF, and this in turn is 

equal to the natural frequency of the blade. The speed of 1418 𝑟𝑝𝑚 is not a harmonic of the BPF and 

neither is any of its harmonics equal to the natural frequency of the blade.  

Emphasis is placed on Figure 4.8 to further explain the differences in the pressure signals. The 

spectrum of the maximum speed case displays harmonics located in close vicinity to the blade’s 

natural frequency. The 8𝑡ℎ  and 9𝑡ℎ 𝐸𝑂 are located at 189.1 𝐻𝑧 and 212.7 𝐻𝑧, respectively. These 

frequencies are close to the natural frequency of the blade, but not close enough to cause even low 

amplitude resonance, which is clearly absent in Figure 4.8 (b). The critical speed’s spectrum includes 

two significant frequencies, the BPF and its first harmonic, located at 101.3 𝐻𝑧  and 202.5 𝐻𝑧 , 

respectively. The fewer forcing frequencies present in the critical speed’s pressure spectrum, and their 

relation to the blade’s natural frequency, results in a smoother profile. The opposite is true for the 

maximum speed case where the number of significant forcing frequencies are larger together with 
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Figure 4.6. FSI blade-to-blade contour plots of the total pressure at the midspan of the stage through a single 

BPP. 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Discussion of Results  G Janse van Vuuren 

60 

 

the larger centrifugal forces caused by the rotational velocity subdue the viscous damping effect of 

the fluid. This results in an irregular pressure profile. 

 

Studying the difference of the FSI and CFD-only pressure profiles, a similar conclusion can be made. 

The pressure differences shown in Figure 4.7 are essentially the pressure changes produced by the 

pressure force exerted on the fluid by the blade only. It is clear that the blade motion, or pressure 

force, makes a significant contribution to the FSI model’s pressure profile. Viewing the spectra of the 

(a) (b) 

(a) 

(b) 

Figure 4.7. Casing pressure comparison for FSI and CFD-only simulations at: 1215 𝑟𝑝𝑚 (a); 1418 𝑟𝑝𝑚 (b) 

Figure 4.8. FFT magnitude of the casing pressure for FSI and CFD-only simulations at: 1215 𝑟𝑝𝑚 (a); 1418 

𝑟𝑝𝑚 (b). 
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pressure differences in Figure 4.8, the contributing frequencies of the blade’s pressure force exerted 

on the fluid are clearly seen. The CFD-only pressure profile includes only the BPF and its harmonics. 

Thus, the major driving frequency in the pressure field is that produced by the pressure force of the 

rotor blade. Hence, it can be tentatively concluded that blade condition information can be seen in 

the pressure field. It is, however, necessary to investigate this claim further.  

4.2.2.2 Comparison of the FSI Model and Experimental Results 

A number of FSI simulations were run at constant rotational speeds. The speeds tested are the 

maximum speed imposed by the limits of the experimental test turbine of 1418 𝑟𝑝𝑚; the critical 

experimental speed of 1350 𝑟𝑝𝑚; and the critical numerical speed of 1215 𝑟𝑝𝑚. The former and 

second-to-last speeds relate to the 10𝑡ℎ 𝐸𝑂 excitation of the experimental and FSI models’ blades, 

respectively. These critical speeds differ, although they represent the same 𝐸𝑂 excitation for the 

different data compared here. This is due to the differences in the blades’ natural frequency at 

higher rotational speeds as discussed in section 4.2.1. The data will, however, be compared on a 

speed-for-speed basis.    

The spectrum magnitude and phase information of the maximum speed’s experimental casing 

pressure can be seen Figure 4.9. As mentioned in section 4.2.1, the experimental pressure spectrum 

only contained BPF information for the variable speed tests as it is believed that the sensitivity of the 

microphone was too low. This is again the case for the constant rotational speed pressure spectrum. 

The blade passing frequency and its harmonics are the only significant frequencies present in the 

experimental casing pressure spectrum. The phase angle diagram supports this claim. Therefore, the 

experimental casing pressure will not be investigated any further for the remainder of this study. 

The spectrum magnitude of the maximum speed’s FSI casing pressure and experimental casing 

acceleration can be viewed in Figure 4.10. The accelerometer picked up a multitude of significant 

frequencies in the system. These include the 5𝑡ℎ, 10𝑡ℎand 12𝑡ℎ 𝐸𝑂𝑠. A frequency of 204.8 𝐻𝑧 is 

also captured signifying possibly the static natural frequency of one of the rotor blades. This claim is, 

however, unverified. The frequency of 228.6 𝐻𝑧 is the natural frequency of the rotor blades at a 

𝐵𝑃𝐹 = 118.2 𝐻𝑧 = 5𝑡ℎ𝐸𝑂  

2 × 𝐵𝑃𝐹 = 10𝑡ℎ𝐸𝑂  3 × 𝐵𝑃𝐹 = 15𝑡ℎ𝐸𝑂  

Figure 4.9. FFT magnitude and phase information of the experimental casing pressure at 1418 rpm 
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speed of 1418 𝑟𝑝𝑚. This is supported by the findings of the natural frequency estimates in Figure 

4.5 of section 4.2.1. The 10𝑡ℎ 𝐸𝑂 frequency (first harmonic of the BPF) is relatively close to the 

experimental blade natural frequency and therefore results in the resonating the blades, but not at 

full amplification. 

The FSI casing pressure spectrum at this speed, however, does not contain such a large, significant 

frequency denoting the natural frequency of the blade. This is due to a variety of factors influencing 

the blade’s stiffness as explained in section 4.2.1. The spectrum of the maximum speed case does, 

however, have harmonics located in close vicinity to the blade’s natural frequency as explained in 

section 4.2.2.1. The 8𝑡ℎ and 9𝑡ℎ 𝐸𝑂 are located at 189.1 𝐻𝑧 and 212.7 𝐻𝑧, respectively. These 

frequencies are not in the region of resonance of the blade to lead to any form of forced harmonic 

vibration. 

The experimental blade’s natural frequency is also clearly seen in the casing accelerometer’s 

spectrum located at 228.6 𝐻𝑧. The BPF and its first harmonic appear in both spectra and in general, 

the spectra are in agreement putting aside the differences created through the assumptions made in 

the FSI model.      

The next rotational speed that will be analysed is the experimental critical speed of 1350 𝑟𝑝𝑚. The 

experimental and numerical blades are excited by different 𝐸𝑂s. For this speed, the 9𝑡ℎ 𝐸𝑂 excites 

the numerical blade and the 10𝑡ℎ 𝐸𝑂 excites the experimental blades due to the way in which the 

natural frequencies evolve with rotational speed. This is clearly seen in the spectra of Figure 4.11. 

Also shown in this figure, is the experimental casing acceleration spectrum magnitude for this critical 

speed. In general, the harmonics of a base frequency reduce in amplitude the higher the order of the 

harmonic is. If the amplitude of a harmonic is larger than the base frequency, it is an indication that 

there is another component in the system that is vibrating at this frequency. This is seen in the 

spectrum of the accelerometer’s signal. The 2𝑛𝑑 harmonic of the BPF can be seen to have the largest 

amplitude for the experimental results. The blades are being excited at this 𝐸𝑂 as the rotational 

frequency harmonic coincides with the natural frequency of the blades at this specific rotational 

speed.  

𝐵𝑃𝐹 = 118.2 𝐻𝑧  

204.8 𝐻𝑧 
9𝑡ℎ 𝐸𝑂 = 228.6 𝐻𝑧  

2 × 𝐵𝑃𝐹  

12𝑡ℎ 𝐸𝑂 = 283.9 𝐻𝑧  

212.7 𝐻𝑧 

8𝑡ℎ 𝐸𝑂 

= 189.1 𝐻𝑧 

Figure 4.10. FFT magnitude of the FSI model casing pressure and experimental casing acceleration at 1418 

rpm for the healthy configuration. 
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The FSI casing pressure spectrum shows similar tendencies. The largest peak occurs at the 9𝑡ℎ 𝐸𝑂, 

corresponding to a frequency very close to the static natural frequency of the blade. This inevitably 

causes the blade to vibrate close to its natural frequency - again not at maximum amplification as 

this is not a strong harmonic. This claim is again supported by the fact that a higher order harmonic 

of the rotational frequency has a larger amplitude compared to the rest of the spectrum, and thus 

there is more than one component contributing to its amplitude for that specific frequency. 

The final rotational speed that will be analysed is the numerical critical speed of 1215 𝑟𝑝𝑚. Here, 

the 10𝑡ℎ 𝐸𝑂 excites the numerical blade and the 11𝑡ℎ 𝐸𝑂 excites the experimental blades. This is 

clearly seen in the spectra of Figure 4.12. Yet again, higher order 𝐸𝑂𝑠, specifically the 10𝑡ℎ and 11𝑡ℎ, 

have larger amplitudes than the lower 𝐸𝑂 frequencies for each set of data, respectively. This leads 

to the finding that there is another component in the system that is vibrating at this frequency. This 

is seen in both spectra shown in Figure 4.12. 

Similar findings are observed in the FSI casing pressure spectrum. The largest peak occurs at the 

10𝑡ℎ 𝐸𝑂, corresponding to a frequency of 202.6 𝐻𝑧 which, is essentially the natural frequency of the 

blade. This causes the rotor blade to resonate. This 𝐸𝑂 is the only significant frequency in the 

spectrum within a few 𝐸𝑂𝑠 for this critical speed, unlike the previous two speeds analysed. This is 

𝐵𝑃𝐹 = 112.3 𝐻𝑧  

9𝑡ℎ 𝐸𝑂 =  202.2 𝐻𝑧  

2 × 𝐵𝑃𝐹 = 10𝑡ℎ 𝐸𝑂   

3 × 𝐵𝑃𝐹  

12𝑡ℎ 𝐸𝑂 = 283.9 𝐻𝑧  

Figure 4.11. FFT magnitude of the FSI model casing pressure and experimental casing acceleration at 

1350 rpm for the healthy configuration. 

𝐵𝑃𝐹 = 101.3 𝐻𝑧  

2 × 𝐵𝑃𝐹 = 10𝑡ℎ 𝐸𝑂  

3 × 𝐵𝑃𝐹  

11𝑡ℎ 𝐸𝑂 = 222.8 𝐻𝑧  

12𝑡ℎ 𝐸𝑂 = 243.6 𝐻𝑧  

Figure 4.12. FFT magnitude of the FSI model casing pressure and experimental casing acceleration at 1215 

rpm for the healthy configuration. 
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again the case of having more than one component contributing to the amplitude of this specific 

frequency, being, the 𝐸𝑂 excitation frequency of the shaft and response frequency of the blade. 

Reviewing the three speeds analysed, i.e. 1418 𝑟𝑝𝑚, 1350 𝑟𝑝𝑚 and 1215 𝑟𝑝𝑚, the latter rotational 

speed is the only speed to have caused the healthy numerical blade to resonate at full amplification 

at its natural frequency which is picked up in the pressure field of the FSI model. The speed of 

1350 𝑟𝑝𝑚  excited the blade, but at a low amplification factor, whereas the maximum speed of 

1418 𝑟𝑝𝑚  did not excite the blade at all as none of its 𝐸𝑂𝑠  coincided with the blade’s natural 

frequency. This statement is supported by the transient pressure profile as well as the transient fluid 

mesh displacement profile of the FSI model at the casing monitor point. Both of these profiles can be 

seen for the different rotational speeds tested in Figure 4.13.  

It is clear that for the speed of 1215 𝑟𝑝𝑚, both the pressure and displacement profiles “blow up” - 

the responses diverge due to the blade resonating at its natural frequency, whereas the responses of 

the other two speeds are dampened out due to the weak 𝐸𝑂 driving frequencies. This is confirmation 

that blade condition information can be detected in the pressure field of a two-way FSI model. The 

blade condition information that was extracted from the pressure field is the resonance frequency of 

the blade, which in each case, coincided with an 𝐸𝑂. Collectively, this type of forced vibration can be 

termed ultra-harmonic, or harmonic multiple forced vibration.  

Synchronous vibration, or 𝐸𝑂 vibration, is a major component in turbomachinery vibration. This has 

been highlighted in this section. Even if the base forcing frequency - the rotational speed - is not 

near the natural frequency of the blade, the 𝐸𝑂 frequencies that are in close vicinity of the blade 

natural frequency lead to either an amplified response of the blade or to the resonance of the blade. 

This is, however, dependent on the strength of the harmonic and whether it is a harmonic of the 

blade passing frequency. This is shown experimentally and numerically through CFD and FSI model 

comparisons. 

 

 

(a) (b) 

Figure 4.13. FSI casing: pressure (a) and fluid mesh displacement (b) transient profiles for different rotational 

speeds of the healthy rotor blade. 
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4.3 Damaged Blade Analysis 

This section presents the analysis of the experimental and simulation results for the damaged blade 

configuration. This can be considered supplementary to the Healthy Blade Analysis of section 4.2. 

The damaged rotor configuration of the experimental turbine consisted of four healthy blades and a 

single damaged blade. The damaged blade consisted of the same profile as the healthy blade, but its 

thickness was reduced by 30%. The damaged blade FSI model was set up identically to the healthy 

blade model. Setting up the model as such assumes that identical flow profiles exist in each blade 

passage as all the rotor blades have the same reduced thickness profile. Hence, comparing the FSI 

model to the experimental results will be problematic.  

The secondary objective of this study, minimising the computational effort, affected how the final FSI 

model would be set up, bearing in mind the consequences that it would have on certain analyses. That 

being said, the experimental and numerical results will be uncoupled and analysed such that the 

similarities and differences in the datasets are exemplified. 

 Experimental Data Investigation 

There is an expectation of what the spectra will reveal prior to generating the frequency-RPM maps 

of the experimental casing pressure and acceleration signals. The spectral map of the casing pressure 

is not shown here as it again only shows the blade passing frequency accompanied by four of its 

harmonics with nothing related to the local rotor blade response. One would expect the casing 

accelerometer to show clear information of the healthy and damaged blades. The spectral map of the 

casing accelerometer, however, seems quite similar to the healthy blade configuration spectrum. Both 

of these spectral maps are shown in Figure 4.14.  

There is no clear indication of the local mode of the first natural frequency for the damaged blade in 

the spectral map of Figure 4.14 (b). Instead, the presence of a large number of small undulations can 

be seen around the frequency of 115 𝐻𝑧 and in the range spanning from 190 𝐻𝑧 to 315 𝐻𝑧. In fact, 

what is actually observed here, are the global modes of the system - the measured spectrum 

corresponds to the structure’s global dynamics rather than the local behaviour of a single damaged 

blade. This does, however, indicate that something in the system has changed, which in this case refers 

to the inclusion of a single damaged rotor blade. 

This finding epitomises the challenging situation of comparing the numerical and experimental data. 

To gain more insight into the local behaviour of the damaged blade, one would perhaps have to 

instrument the blade directly with strain gauges. This creates another challenge as a more advanced 

telemetry system will have to be used to allow for data transmission while the turbine is in operation. 

These problems can also, however, be alleviated through the use of an adequately sensitive casing 

microphone or pressure transducer. Usage of a BTT technique could also be a viable alternative. 
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To further investigate the spectrum of the casing acceleration, constant rotational speed data will now 

be presented. Figure 4.15 shows the spectra of two different rotational speeds’ casing acceleration. It 

is clear that a majority of 𝐸𝑂 frequencies are present in the spectra. There is, however, no clear 

suggestion of either of the blades’ natural frequencies - although the healthy blade’s natural frequency 

has been marked due to prior knowledge of its shift with rotational speed. Thus, advanced signal 

processing techniques would have to be used to extract useful information as well as perhaps the use 

of other vibration measuring techniques. 

(a) 

(b) 

Figure 4.14. Frequency-RPM maps for the experimental casing acceleration of the: healthy (a); and 

damaged (b) rotor configurations.  
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 Numerical Data Investigation  

Shifting the focus now to the numerical model, a Campbell diagram can be presented showing the 

expected evolution of the blade’s natural frequency with rotational speed. This is shown in Figure 4.16 

along with the 10𝑡ℎ 𝐸𝑂 . The 10𝑡ℎ 𝐸𝑂  corresponds to the 2𝑛𝑑  harmonic of the BPF and is thus 

identified as a critical blade vibration contributor. Over the specified rotational speed range, the 

damaged numerical blade’s first natural frequency is expected to evolve from 131.2 𝐻𝑧 to 135.1 𝐻𝑧. 

The experimental damaged blade, of course, will have a larger change in natural frequency. 

Next, the spectra for two constant rotational speeds will be presented. The speeds shown are the 

maximum speed imposed by the limits of the experimental test turbine of 1418 𝑟𝑝𝑚 and the critical 

numerical speed of 787 𝑟𝑝𝑚. The former speed relates to the 10𝑡ℎ 𝐸𝑂 excitation of the damaged 

numerical blade. An additional set of results for a speed of 1350 𝑟𝑝𝑚 can be found in Appendix C: 

Additional FSI Simulation Results. 

 

(a) 

(b) 

9𝑡ℎ  𝐸𝑂  

10𝑡ℎ 𝐸𝑂 
= 2 × 𝐵𝑃𝐹  

15𝑡ℎ 𝐸𝑂  

216.5 𝐻𝑧 
= 𝑓𝑛,ℎ𝑒𝑎𝑙𝑡ℎ𝑦  

20𝑡ℎ 𝐸𝑂  

16𝑡ℎ 𝐸𝑂  11𝑡ℎ 𝐸𝑂  

6𝑡ℎ 𝐸𝑂  

10𝑡ℎ 𝐸𝑂 
= 2 × 𝐵𝑃𝐹  

11𝑡ℎ 𝐸𝑂 
= 𝑓𝑛,ℎ𝑒𝑎𝑙𝑡ℎ𝑦  

12𝑡ℎ 𝐸𝑂  13𝑡ℎ 𝐸𝑂 

Figure 4.15. FFT magnitude plot of the experimental damaged configuration casing acceleration for: 787 

rpm (a); and 1215 rpm (b). 
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A few conclusions can be drawn from the spectra shown in Figure 4.17. The spectrum magnitude of 

the maximum speed’s casing pressure includes peaks at the 5𝑡ℎ, 10𝑡ℎand 12𝑡ℎ 𝐸𝑂 frequencies. These 

significant peaks, as well as all the other 𝐸𝑂 frequencies, are not sufficiently close to the natural 

frequency of the damaged rotor blade and therefore the blade is not excited. This was also observed 

for the healthy blade and it is thus expected that the damaged rotor blade responds in a similar 

manner. 

 

10𝑡ℎ 𝐸𝑂  

Figure 4.16. Campbell diagram for the numerical damaged blade's first natural frequency 

(a) 

(b) 

𝐵𝑃𝐹 = 118.2 𝐻𝑧  

2 × 𝐵𝑃𝐹  3 × 𝐵𝑃𝐹  

𝐵𝑃𝐹 = 65.6 𝐻𝑧  

2 × 𝐵𝑃𝐹
= 131.2 𝐻𝑧 

 

3 × 𝐵𝑃𝐹  

4 × 𝐵𝑃𝐹  

Figure 4.17. FFT magnitude of the FSI model casing at: 1418 rpm (a); and 787 rpm (b) for the healthy 

configuration. 
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Viewing the spectrum produced by the critical speed of 787 𝑟𝑝𝑚, findings analogous to the healthy 

blade results can be made. The 2𝑛𝑑 harmonic of the BPF, or the 10𝑡ℎ 𝐸𝑂, coincides with the natural 

frequency of the damaged blade. This ultra-harmonic forced vibration leads to resonance of the 

damaged blade. This statement is again supported by the transient pressure profile together with the 

transient fluid mesh displacement profile of the FSI model at the casing monitor point. Both of these 

profiles can be seen for the different rotational speeds in Figure 4.18. 

 

 

It is clear that for the speed of 787 𝑟𝑝𝑚, both the pressure and displacement profiles diverge due to 

the blade resonating at its natural frequency, whereas the responses of the maximum speed case are 

dampened out. This is supportive evidence that blade condition information can be detected in the 

pressure field of a two-way FSI model. The information extracted pertains to the resonance frequency 

of the blade when exciting the blade with an appropriate 𝐸𝑂 frequency. An appropriate 𝐸𝑂 frequency 

would be one that is strongly related to the physics involved in the problem - which is most likely to 

be the blade passing frequency or a harmonic thereof. 

4.4 Conclusion of the Discussion of Results Section 

This chapter presented the numerical and experimental results of this study through an in-depth 

analysis. The primary objective that this study set out to achieve, namely, to what extent can blade 

condition information be extracted from a pressure field of a turbine stage passage when using a two-

way fluid-structure interaction model, was successfully accomplished.  

Firstly, an uncertainty quantification for the effect of the measured inlet velocity was presented to 

determine the effect on the frequency response of the flow field. Secondly, a brief overview of the 

differences between a CFD-only model and FSI model was presented. Thirdly, the healthy rotor blade 

configuration analysis was presented as the main investigation. Lastly, a damaged rotor blade FSI 

model was reviewed in terms of the information that can be extracted from its flow field as supporting 

evidence to the claims made in the main investigation.  

The findings confirmed that blade condition information can be detected in the pressure field of a 

two-way FSI model. The blade condition information that was extracted from the pressure field, as 

(a) (b) 

Figure 4.18. FSI casing: pressure (a) and fluid mesh displacement (b) transient profiles for different rotational 

speeds of the damaged rotor blade 
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well as the fluid mesh deformation field, coincided with the resonance frequency of the blade. In each 

case, the resonance frequency of the blade coincided with an 𝐸𝑂 equal to the second harmonic of the 

blade passing frequency. Other 𝐸𝑂 frequencies within one order of the second harmonic of the blade 

passing frequency also showed low-amplitude vibration of the blade in the region of resonance. 

Collectively, this type of forced vibration is termed ultra-harmonic, or harmonic multiple forced 

vibration. 

Synchronous vibration, or 𝐸𝑂 vibration, is a major component in turbomachinery vibration. This has 

been highlighted in this section. Even if the base forcing frequency - the rotational speed - is not near 

the natural frequency of the blade, the 𝐸𝑂 frequencies that are in close vicinity of the blade natural 

frequency lead to either an amplified response of the blade or to the resonance of the blade. This is, 

however, dependent on the strength of the harmonic. An appropriate 𝐸𝑂 frequency would be one 

that is strongly related to the physics involved in the problem - which is most likely to be the blade 

passing frequency or a harmonic thereof. 

A few challenges were however encountered, as extending the FSI model to evaluate a damaged blade 

was far more complex than anticipated.  The damaged rotor configuration of the experimental turbine 

consisted of four healthy blades and a single damaged blade. Setting up the numerical model with a 

single stator and rotor blade assumes that identical flow profiles exist in each blade passage as all the 

rotor blades have the same profile. This was the key difference between the experimental and 

numerical model that did not allow for direct comparison.  
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5 Conclusion and Recommendations 

5.1 Conclusion 

In this dissertation a three-dimensional two-way fluid-structure interaction model of a single turbine 

stage blade passage was developed. The primary objective was to investigate what blade vibration 

information could be obtained from the pressure field around the rotor blade. The secondary 

objective required minimising the computational effort while retaining accuracy of the model. 

Analyses into mesh independent solutions were undertaken for both the structural and fluid domains. 

As the FSI model solution would be transient in nature, a timestep sensitivity study was included to 

ensure adequate temporal discretization. Furthermore, the study involved investigations of a healthy 

rotor blade and a damaged rotor blade - which was a reduced thickness version of the healthy rotor 

blade. Accommodating the numerical model, was an experimental test turbine that was used to gather 

experimental data for validation of the numerical model. The single-stage test turbine was comprised 

of five upstream stator blades and five rotor blades. Two rotor blade assemblies were tested with the 

first configuration consisting of five healthy blades, and the second configuration consisting of four 

healthy blades and one damaged blade. All simulations were performed at constant rotational speeds 

for one single revolution of the rotor. Structural damping of the rotor blades was, however, not 

considered. All numerical simulations were carried out using the commercial multiphysics software 

package of Ansys R2 2019 and the explicit use of CFX for the CFD simulations. 

The numerical study was split up into four key analyses. Firstly, the effect of the uncertainty in the 

measurement of inlet velocity was quantified. Secondly, validation of the FSI model in terms of the 

contents extracted from a CFD-only model as opposed to a similar FSI model were reviewed. Thirdly, 

the healthy rotor blade configuration analysis was presented as the main investigation. Lastly, a 

damaged rotor blade FSI model was reviewed in terms of the information that could be extracted from 

its flow field as supporting evidence to the claims made in the main investigation. 

The uncertainty quantification of the inlet velocity proved that the inlet velocity only influences the 

magnitude of the response and, for the given ranges tested, the distribution of the frequency spectra 

remains unaffected. This led to using the experimentally measured inlet velocity for the remainder of 

all FSI and CFD simulations. 

Studying the difference of the FSI and CFD-only pressure profiles, it was observed that the pressure 

differences between the FSI and CFD-only models were effectively the pressure changes produced by 

the pressure force exerted on the fluid by the blade. It was clearly shown that this blade pressure force 

made a significant contribution to the FSI model’s pressure profile as the major contributing 

frequencies of the FSI and CFD-only models were located at different 𝐸𝑂𝑠 for the same rotational 

speed. Furthermore, the spectrum of the pressure difference clearly showed the contributing 

frequencies of the blade’s pressure force exerted on the fluid, suggesting a strong coupling between 

the blade motion and the surrounding pressure field.    

The main analysis confirmed that blade condition information can be detected in the pressure field of 

a two-way FSI model. The blade condition information that was extracted from the pressure field, as 

well as the fluid mesh deformation field, coincided with the resonance frequency of the blade. In each 

case, the resonance frequency of the blade coincided with an 𝐸𝑂 equal to the second harmonic of the 

blade passing frequency. Other 𝐸𝑂 frequencies - within one order of the second harmonic of the blade 
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passing frequency - also showed low-amplitude vibration of the blade in the region of resonance. 

Collectively, this type of forced vibration is termed ultra-harmonic, or harmonic multiple forced 

vibration. 

The fact that the blade resonance frequency can be extracted from the pressure field of a two-way FSI 

model makes it a promising numerical diagnostics or prognostics tool. This is due to the resonance 

frequency being a strong indicator of blade health. As a more complex - and more realistic - 

representation of the turbomachinery flow physics is being observed through this strong two-way 

coupling, more accurate solutions for pressure and blade vibratory motion is achieved. Furthermore, 

as this has been proved numerically, it can be extended to non-intrusive condition-monitoring of the 

rotor blades using characteristics of the flow-field, in practice. Once the operating conditions are 

known and a baseline pressure profile has been recorded, the scenario can be recreated numerically 

to predict downstream flow characteristics or be coupled with a fatigue analysis to determine the 

remaining useful life of a blade as an example.  

The findings made in this study lay the foundation for a more complete diagnostic or prognostic model 

that is based on blade resonance frequencies. The novelty lies in the approach taken in this study, 

which offers improvements in certain areas over previous work by the likes of Forbes, Alshroof and 

Randall (2011), Alshroof et al. (2012) and Rao and Dutta (2014) in the sense that two-way fluid-

structure interaction was modelled for a three-dimensional blade passage domain and pressure 

profile spectra were subsequently studied for blade condition information.  

However, a few challenges were encountered when extending the FSI model to evaluate a damaged 

blade. This idea was far more complex than anticipated.  The damaged rotor configuration of the 

experimental turbine consisted of four healthy blades and a single damaged blade. Setting up the 

numerical model with a single stator and rotor blade assumed that identical flow profiles existed in 

each blade passage as all the rotor blades had the same profile. This was the key difference between 

the experimental and numerical model, and as such, the results could not be directly compared. A 

numerical analysis similar to the healthy blade analysis was conducted for the damaged blade in which 

analogous findings were made about the blade natural frequency being extracted from the pressure 

profile around the blade through ultra-harmonic forced vibration of the blade. 

Nonetheless, synchronous vibration is a major component in turbomachinery vibration. Engine-

ordered frequencies that are in close vicinity of the blade natural frequency lead to either an amplified 

response of the blade or to the resonance of the blade. It has been proved that this vibration profile 

can be extracted from the pressure field of a two-way FSI model of a turbine blade passage and that 

the further development of such a model will be beneficial, especially seeing that computational 

power has become more readily available. 
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5.2 Recommendations 

The following recommendations are made for future work to improve the numerical model: 

• Inclusion of damping in the structural analyses (modal and transient cases). 

• Quantification of the effect that the viscous damping of the fluid has on the blade structure. 

• Modelling of the velocity inlet profile to better represent a physical turbine (instead of a near-

uniform inlet flow). The experimental model should be numerically recreated, essentially. 

• Investigation of higher-pressure flow (for an adequately sized domain) 

• To further develop the model to be able to identify blade damage. This would either require 

simulation of the full annulus or incorporation of the flow effects of healthy blade passages 

on the damaged blade passage. 

• Implementation of more sensitive microphones, or perhaps better suited sensors to measure 

the pressure experimentally.  
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Appendices 

A. Appendix A: Computational Run Times 

The computational times are listed in the table below for selected FSI and transient CFD runs. The 

simulations were run for six blade passing periods. The system used to perform the simulations is 

reiterated here as a reminder to the reader.  

System Specifications: 

• AMD Ryzen 7 2700X CPU (8 x cores, 16 threads, 3.7 (4.3 GHz Turbo)). All threads were utilised 

in each simulation performed. 

• 32GB DDR4 RAM (2667 MHz) 

Simulation Physical time 
simulated [s] 

Solve Time [hours] 

FSI 

Healthy - 1418 𝑟𝑝𝑚, 𝑉𝑖𝑛 =  65 𝑚/𝑠 0.050776 87.45 

Healthy - 1350 𝑟𝑝𝑚, 𝑉𝑖𝑛 =  65 𝑚/𝑠 0.053334 95.79 

Healthy - 1215 𝑟𝑝𝑚, 𝑉𝑖𝑛 =  65 𝑚/𝑠 0.05926 107.41 

Healthy - 1215 𝑟𝑝𝑚, 𝑉𝑖𝑛 =  52 𝑚/𝑠 0.05926 111.69 

Healthy - 1215 𝑟𝑝𝑚, 𝑉𝑖𝑛 =  41.6 𝑚/𝑠 0.05926 110.12 

Damaged - 1418 𝑟𝑝𝑚, 𝑉𝑖𝑛 =  65 𝑚/𝑠 0.050776 103.81 

Damaged - 1350 𝑟𝑝𝑚, 𝑉𝑖𝑛 =  65 𝑚/𝑠 0.053334 107.78 

Damaged - 787 𝑟𝑝𝑚, 𝑉𝑖𝑛 =  65 𝑚/𝑠 0.091487 224.43 

CFD 

Healthy - 1418 𝑟𝑝𝑚, 𝑉𝑖𝑛 =  65 𝑚/𝑠 0.050776 17.69 

Healthy - 1215 𝑟𝑝𝑚, 𝑉𝑖𝑛 =  65 𝑚/𝑠 0.05926 18.76 
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B. Appendix B: Natural Frequency Evolution of the Healthy 

Experimental Blade 

The table below shows the estimated natural frequency of the healthy experimental blade as a 

function of rotational speed. 

Rotational speed [rpm] Natural Frequency [Hz] 

                      0                      202.5 

                      175                      204.8 

                     202.4                      205.8 

                     235.5                      206.9 

                     312.3                        208 

                     378.8                        209 

                     432.3                      210.1 

                     506.7                      211.2 

                     551.4                      212.2 

                     624.7                      213.3 

                     678.5                      214.4 

                       738                      215.4 

                     813.5                      216.5 

                     916.5                      217.6 

                     927.2                      218.6 

                    1000.3                      219.7 

                    1024.8                      220.8 

                      1107                      221.8 

                    1206.6                        224 

                    1353.8                      226.1 

                    1380.3                      227.2 
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C. Appendix C: Additional FSI Simulation Results 

An additional simulation was performed using the damaged rotor blade model. The FFT magnitude 

plot of the is shown below for a rotational speed of 1350 𝑟𝑝𝑚. No frequencies pertaining to blade 

condition information are present in the spectrum. This is due to the 𝐸𝑂 frequencies not being near 

to the natural frequency of the damaged blade. The three frequencies that appear clearly in the 

spectrum are the blade passing frequency and its first two harmonics.     
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D. Appendix D: Test Turbine Technical Drawings 
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