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Abstract

In this dissertation, the price of variance swaps under stochastic volatility

models based on the work done by Barndorff-Nielsen and Shepard (2001) and

Heston (1993) is discussed. The choice of these models is as a result of prop-

erties they possess which position them as an improvement to the traditional

Black-Scholes (1973) model. Furthermore, the popularity of these models in

literature makes them particularly attractive. A lot of work has been done

in the area of pricing variance swaps since their inception in the late 1990’s.

The growth in the number of variance contracts written came as a result of

investors’ increasing need to be hedged against exposure to future variance

fluctuations. The task at the core of this dissertation is to derive closed or

semi-closed form expressions of the fair price of variance swaps under the two

stochastic models. Although various researchers have shown that stochastic

models produce close to market results, it is more desirable to obtain the fair

price of variance derivatives using models under which no assumptions about

the dynamics of the underlying asset are made. This is the work of a use-

ful analytical formula derived by Demeterfi, Derman, Kamal and Zou (1999)

in which the price of variance swaps is hedged through a finite portfolio of

European call and put options of different strike prices. This scheme is practi-

cally explored in an example. Lastly, conclusions on pricing using each of the

methodologies are given.
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1 Introduction

In this chapter, a background of variance swaps is introduced. Furthermore, a

literature review on developments in the pricing of variance swaps is conducted.

Lastly, an overview of the objectives of this dissertation is presented.

1.1 Background

Derivatives whose underlying is the variance of asset returns first became popular in

the 1990s with an increasing need for investors to hedge themselves against future

volatility fluctuations in turbulent times such as those which saw the collapse of

the Long Term Capital Management (LTCM) in 1998 [49, 22]. Ideas of creating

a volatility index on options have since been suggested from the 1970s emanating

from the cornerstone option pricing ideas developed by Black and Scholes (1973)

[12]. These ideas were refined by Fleming, Ostdiek and Whaley (1995) amongst

other researchers to give the foundation which brought about the construction of the

CBOE (Chicago Board Options Exchange) volatility index (VIX) which is used to

predict expected future volatility by studying its short historic behaviour [32]. The

VIX is commonly referred to as the ’fear index’ because of its negative correlation

with asset prices presents an idea of market perception in a given period. This

index is particularly important to the establishment of derivatives on volatility which

began trading OTC (over-the-counter) before being incorporated into the CBOE in

2006. Variance swaps, being derivatives on the realised variance of asset returns are

closed tied to the activities of this index.

Throughout financial history, calm periods such as the boom before 2007 are followed

are almost always followed turbulent periods (a phenomena known as volatility

clustering) such as the 2007-2008 financial crisis in in which volatility soared to reach
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unprecedented levels. These volatility movements though at different magnitudes are

the same ones observed with political events such as the election of Donald Trump in

November 2016 and sudden market movements such as the 5 February 2018 ’stock

market correction’ which saw the Dow Jones Industrial Average (DJI) decreasing

by 4.2% (over 1000 points) - one of the highest single-day drops in history, higher

than the highest drop during the 2008 financial crisis and the 1987 black Monday.

The CBOE Volatility Index (VIX) consequently increased by 14.5% over the same

period [40].

With such events occurring unpredictably, the need for variance products is of

paramount significance especially amongst traders dealing in over-the-counter (OTC)

contracts. The need for trading variance products can be summarised by simple

speculation of future variance levels thus presenting a money-making opportunity

for the correctly positioned trades and the need to trade spreads between implied

variance (variance which the market has implicitly used for valuing a benchmark

option) and realised variance (actual historical variance over a fixed period) [11, 51].

1.1.1 Variance derivatives

Whilst the variance of asset returns has traditionally been seen as a measure of

risk, over the past two decades variance itself has developed it into an asset class.

Variance swaps are forward contracts or futures that provide direct exposure to

future realised variance (square-root of realised volatility) of the returns of stocks

rather than exposing the investors directly to the movements of the underlying stocks

themselves [8, 49]. Their payoff is the product between the notional amount of the

swap in dollars per annualised volatility point squared and the difference between

realised variance of the asset over a predetermined period and the strike price of the

variance agreed upon entry into the contract [8, 49]. This can be presented as:



1 INTRODUCTION 16

N
(
σ2
R(T )−Kvar

)
(1.1)

where N is the notional amount, σ2
R(T ) is the realised variance at expiry and Kvar

the predetermined strike level.

The attractiveness of variance swaps to investors and traders lies in this direct

exposure to the variance of the asset returns as well as the flexibility in pricing

them. Carr and Madan (1998) showed how volatility and variance can be traded and

priced through replicating a static portfolio of options. Furthermore, they showed

how buying or selling contracts with a payoff explicitly containing realised variance

as in the case of variance swaps and delta-hedging vanilla options is implemented

[22]. However, the latter is less attractive because of the need to continuously re-

balance and re-hedge the portfolio of options making contracts on variance more

attractive. Replicating a static portfolio of options has a drawback in that sampling

times of variance swaps are assumed to be continuous when they are discrete in

real-life scenarios thereby pausing an estimation error as pointed out by Carr and

Lee (2009) [20]. This leaves the contracts whose payoff contains variance more

favourable. Since variance swaps are futures contracts, there is zero cost of entering

into the contracts. This makes them even more appealing to some investors and

traders.

Variance swaps were originally established on the underlying of indices and traded

in over-the-counter (OTC) contracts. The payoff of such traded variance swaps is

generally a function of realised or historical variance which is discretely sampled

at predetermined times [51]. However, over the past decade variance swaps also

saw themselves being traded in a second category as standardized contracts such as

the CBOE S&P 500 variance futures. The payoff of such traded variance swaps is

normally a function of implied variance [51, 8].
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1.2 Stochastic volatility

In the pricing of many derivatives including variance swaps, the Black and Scholes

(1973) pricing model is widely utilised. The BS model assumes that the volatility

of the stocks is constant [12]. However, the constant volatility assumption fails

to capture the market dynamics observed in reality which led to the development

of stochastic models such as the Heston (1993) and the non-Gaussian Ornstein-

Uhlenbeck (OU) model discussed in Barndorff-Nielsen and Shepard (B-NS) (2001)

[5, 34].

Moreover, constant volatility models can not explain the volatility clustering under

which there are periods in which prices abruptly move in a single direction in an ob-

servable random pattern. Over the decade preceding the 2007-2008 financial crisis,

the volatility derivatives market received an increasing focus because of a grow-

ing need amongst market stakeholders to protect themselves against the risks from

volatility movements and to be able to quantify and hedge these risks. Trading in

instruments whose payoff has a component derived from stochastic volatility models

such as the non-Gaussian OU model has enabled market participants to replicate

the skewness and fat-tails observed in the returns of high-frequency assets markets

thereby giving a more realistic implied volatility which shows aspects such as smiles

experienced in reality [8].

Under the B-NS (2001) model, the volatility is given as a mean-reverting stationary

stochastic process of the OU type driven by a subordinator (a Lévy process with

no Gaussian component and positive increments) [5, 8, 44]. Another model that

will be considered in this dissertation is the Heston (1993) model which allows the

correlation between volatility and stock returns [34]. Zhu and Lian (2001) derived

a closed-form solution for the price of discretely sampled variance swaps under the

Heston (1993) model. The solution can be extended to continuous sampling as the
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sampling frequency approaches infinity [51]. The Heston model is also implemented

by Elliot, Siu and Chan (2006) to determine a martingale measure to price variance

and volatility swaps after the adoption of a regime-switching Esscher transform [30].

However, contrary to their ability to represent market dynamics more accurately,

stochastic volatility models are incomplete and thus most of the fundamental pricing

theory becomes is violated.

1.3 Literature review

Owing to their ability to effectively provide direct exposure to variance, it is no

surprise that there are various approaches to pricing discretely sampled variance

swaps. Jia, Bi and Zhang (2015) have categorised these valuation techniques into i)

numerical methods and ii) analytical methods [38]. Analytical methods of valuating

variance swaps usually aim at deriving closed-form expressions for the fair-price of

the variance swap under a risk-neutral measure. Examples of papers which analyt-

ically evaluate volatility and variance swaps are [8, 20, 28, 30, 44, 49]. Numerical

methods on the other hand, approximate complex analytical methods to an accept-

able degree and error.

An example of numerical method pricing is Little and Pant (2001) who approximate

the price of a discretely sampled variance swaps using a finite-difference approach to

solve a set of second-order parabolic partial differential equations [41]. The dimen-

sion reduction approach implemented in this numerical approach attains a high level

of efficiency and accuracy for valuing the discretely sampled variance swaps [38].

Even though a high degree of accuracy is obtained using this numerical method,

stochastic volatilities which are representative of actual market dynamics are not

incorporated [38]. Dupire (1993), points out that the volatilities which are implied

from the market prices of option prices valued under the BS framework exhibit a
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degree of dependence between the implied volatility and the strike prices (smiles).

However, attempting to prices the smiles into the BS model results in jumps and

stochastic volatility as shown in Merton’s 1976 model and Hull and White (1987)

[26, 36, 42].

Carr and Lee (2009) navigate through the timeline of the development of variance

derivatives and the earliest literature for the pricing of these derivatives [20]. Dupire

(1993), derived the price of options with stochastic volatility which was extended

by Carr and Madan (1998) to discuss ways in which variance can be traded. Carr

and Madan (1998), described the trading of variance through replicating a portfolio

of static positions in options, hedging of volatility exposure through dynamically

trading the underlying and construction of contracts whose payoff is a function of

variance [22, 20, 27]. Carr and Madan (1998), furthermore, derive the analytical

formula without specifying the process of the underlying [23]. The dynamic repli-

cation strategy, in reality, is costly as there is a need for constant re-adjustment of

the portfolio.

Literature categorises the pricing of variance swaps into those discretely sampled

and ones which are continuously-sampled. Zhu and Lian (2011) extended the work

done by Little and Pant (2001) to derive a closed-form exact solution for a partial

differential equation system based on the Heston (1993) model with two-factors

[51]. Under this framework, they look at the discretely sampled variance case. Most

researchers aim to obtain a closed-form expression to effectively price instruments

whose payoffs are functions of variance under a risk-neutral measure. However, this

may not always be easily achievable thus quicker methods have to be implemented

in some cases.

Furthermore, based on the Heston model, Elliot et al. (2006) [30] also developed a

model for pricing volatility derivatives including variance swaps under a continuous-
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time Markov-regulated version of the Heston (1993) stochastic model. They im-

plemented a regime-switching Esscher transform to determine a martingale pricing

measure for the valuation of volatility derivatives in an incomplete market [30]. After

comparing this model to one without regime-switching, they showed that proper-

ties and valuation of volatility and variance swaps based on the regime-switching

continuous-time Markov-regulated version of the Heston (1993) model were signifi-

cantly higher than those without regime-switching [30].

Researchers have studied the impact of using continuously sampled variance swaps

to estimated the discretely sampled variance swaps. Carr, Lee and Wu (2012), show

that discretely sampled variance swaps have an increased price under an indepen-

dence condition. This implies that the commonly quoted continuously-sampled ver-

sions often underestimate the price of variance swaps [21]. Broadie and Jain (2005)

investigated the impact of jumps on the price of the variance swaps together with

the impact of continuously sampling variance swaps compared to the price of actual

discretely sampled variance swaps under the Heston model [13]. This was extended

by Bernard and Cui (2013) who adopted a parametric approach that allowed the

derivation of explicit closed-form expressions and asymptotic behavior with respect

to key parameters such as the maturity of the contract, the risk-free rate, the sam-

pling frequency, the volatility of the variance process and the correlation between

the underlying stock and its volatility [10].

Carr, Madan and Yor (2005) suggest a method of pricing options on realised variance

that are based on quadratic variation [18]. Benth et al. (2006) consider the non-

Gaussian Ornstein-Uhlenbeck stochastic model suggested by Bandorff-Neilsen and

Shepard (2001) to price variance swaps. They derived an analytical formula for the

realized variance which enabled the price of the variance swap to be represented

in terms of Laplace transforms. The fast Fourier transform method was used and



1 INTRODUCTION 21

results compared to the approximation proposed by Brockhaus and Long [8]. Zhaoli

et al. (2015) also derive a similar analytical formula to price variance swaps under

the B-NS OU model and further compare the fair strike value based on the discrete

model, continuous model, and Monte Carlo simulations [38].

1.4 Structure and objectives of the dissertation

The main objective of this dissertation is to derive closed/semi-closed expressions

of the price of variance swaps under the stochastic volatility models by B-NS (2001)

and Heston (1993). Furthermore, a secondary objective is to hedge variance swaps

under a framework in which there are no assumptions made about the dynamics of

the variance process. This is achieved through the static replication of the variance

swap using a portfolio of vanilla options.

First, the instantaneous variance process is considered to have a non-Gaussian

Ornstein-Uhlenbeck (OU) process which exhibits positive jumps only as presented

by Barndoff-Nielsen and Shepard (2001) [5]. The analytical expression for the con-

tinuously sampled realised variance under the non-Gaussian OU model is derived

using a key formula drawn from inverse Laplace transform and Fourier transform

techniques. The work under Benth and Saltyte-Benth (2004) [9] and Benth et al.

(2006) [8] is closely followed.

Next, the stochastic variance process is investigated under the model proposed by

Heston (1993). The closed-form solution for pricing variance swaps with stochastic

volatility is obtained from solving the model’s partial differential equation (PDE)

using Fourier transform techniques under the Feynman theorem. The valuation of

the variance swap based on the discrete sampling and continuous sampling together

with Monte Carlo simulations are presented in this chapter. Lastly, the Demeterfi
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(1999) technique is implemented to a hypothetical portfolio of put and call options

to hedge variance swaps. The rest of the dissertation is structured as follows:

In Chapter 2, the preliminary mathematical, finance and statistical concepts which

form the building blocks of the concepts discussed in later chapters are introduced.

Although all of the concepts could not be exhausted in this chapter, core concepts

such as foundations of measure theory, stochastic calculus, stochastic processes,

finance issues such as the imperfections of the Black-Scholes model, specific stochas-

tic processes such as the Ornstein-Uhlenbeck processes and distributions considered

under these processes such as the normal inverse-Gaussian (NIG) distribution are

presented.

Chapter 3, presents the valuation of variance swaps under the B-NS non-Gaussian

OU model. The chapter begins by giving the dynamics of the stock price and

variance under this model. Next, the variance swap theory is re-introduced and then

a solution of the model is presented. The superposition of the OU process is discussed

then a transform approach is implemented to obtain the price of the variance swap

from its exponent rather than the realised variance itself. The price of the variance

swap is derived from inverse Laplace techniques. A semi-closed expression for the

price of variance swaps is obtained through the Fast Fourier Transform (FFT).

Lastly, simulations of the model and the variance swap valuations are presented.

Chapter 4, presents the Heston model. Here, the discretely sampled value of the

variance swap is first considered. The terminal PDE of the model is considered under

Feynman theory. An analysis of the payoff of the contingent claim changes the PDE

into a two-part problem. The Feynman-Kac theorem is utilised in solving the two

terminal-value problems. The closed-form of the variance swap is obtained as a

combination of the two solutions. The continuously sampled case is also considered

and lastly, the convergence of the discrete model to the continuous model considered
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in a numerical example.

Chapter 5, discusses the hedging of variance swaps using a portfolio of European

options. The chapter commences by showing that the fair price of a variance swap

can be hedged by a log-price contract. However, since log-price contracts are not

actively traded, the problem is shifted to replicating the payoff of the log-price

contract. The proposition from Carr and Madan (1998) [23] is introduced and

then the price of the variance swap is derived. However, the valuation requires a

continuum of European options of all strikes which is not the case in reality where

there are a finite number of options exist. A new approximation is derived for a

finite number of options and then a numerical example is given to illustrate the

price of variance swaps under this methodology.

Chapter 6, gives conclusions on the work considered in this dissertation together

with the limitations and challenges.

Figure 1.1: Structure of the dissertation
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Part I

Theoretical Concepts

In this part, theoretical concepts that are directly or indirectly applied in this dis-

sertation, are presented. These concepts cover a broad spectrum from variance

swaps theory, measure theory, stochastic calculus, stochastic processes, examples

of common stochastic processes such as the Ornstein-Uhlenbeck processes and the

distributions considered under these processes such as the Normal Inverse Gaussian

(NIG) distribution.

2 Probability and Measure theory fundamentals

The discussion begins with the definition of the probability space (Ω,F ,P) under

which the work in this dissertation will be considered. Where Ω is the whole space,

F is a σ − field (also called a σ − algebra) consisting of subsets of Ω and P is a

probability measure such that P : F → R.

Definition 1. (σ − field, Applebaum (2009) [1])

Let Ω be a non-empty set and F a collection of subsets of Ω. We call F a σ− field

if the following hold:

1. Ω ∈ F

2. If A ∈ F ,then Ac ∈ F ;

3. If A1, A2,A3,...is a sequence of elements of F , then
∞⋃
i=1

Ai ∈ F .



2 PROBABILITY AND MEASURE THEORY FUNDAMENTALS 25

Definition 2. (Measure and Measurable Space, Applebaum (2009) [1])

The pair (Ω,F) is called a measurable space. A measure on (Ω,F) is a mapping

µ : F → [0,∞] that satisfies:

1. µ(��O) = 0;

2. µ
(
∞⋃
i=1

Ai

)
=

∞∑
i=1

µ (Ai) for every sequence A1, A2, A3, ... of mutually disjoint

sets in F .

The triple (Ω,F , µ) is defined as measure space.

Definition 3. (Probability Measure and Probability Space, Bain and Engelhardt

(1992) [2])

Suppose that Ω is a sample space and that F is a σ − field of subsets of Ω, then

the function P : F → R is a probability measure function if:

1. P(A) ≥ 0, for all A ∈ F ;

2. P (∅) = 0 and P(Ω) = 1;

3. IfA1, A2,A3,... is a sequence of mutually disjoint elements of F , then P
(
∞⋃
i=1

Ai

)
=

∞∑
i=1

P (Ai).

The triple (Ω,F , P ) is defined as probability space.

Definition 4. (Filtration, Applebaum (2009) [1])

Let F be a σ−field of subsets of Ω, then a family of sub σ−fields, Ft := {F}0≤t≤T

, is denoted a filtration if
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Fs ⊆ Ft whenever s ≤ t.

The probability space (Ω,F ,Ft, P ) with the property defined above is called a Fil-

tered Probability Space. In general, it is assumed that the filtered probability space

satisfies the following ’usual’ conditions [47]:

1. F is P-complete;

2. F0 contains all the possible null sets of Ω;

3. {Ft}0≤t≤T is right continuous i.e. Ft =
⋂
s>tFs

Now that the fundamental concepts in probability theory have been presented, it is

important to state results that are useful for measures. Particularly for absolutely

continuous measures the Radon-Nikodým Theorem is presented. The theorem en-

ables one to shift measures which critical in financial mathematics when moving

from a probability measure in a risky world to that in a risk neutral world.

Definition 5. (Absolutely Continuous, Barra (1981) [7])

Let P and Q be measures on a measurable space (Ω,F) . It is said that Q is absolutely

continuous with respect to P, denoted by Q� P, if Q (A) = 0 for every A ∈ F for

which P(A) = 0 [7].

Two measures P and Q are said to be equivalent if they are mutually absolutely

continuous i.e. Q� P and P� Q [1].

Theorem 1. (Radon-Nikodým, Applebaum (2009) [1])

Let Q and P be σ − finite measures on a measurable space (Ω,F). Suppose that

Q � P, then there exists a measurable function g : Ω → R+ such that, for all

subsets A ∈ F
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Q(A) =

ˆ
A

gdP. (2.1)

The function g is referred to as the Radon-Nikodým derivative of ν w.r.t µ. It is

written g = dQ
dP or dQ = gdP.

Proof. Refer to Theorem 5 in [7].

3 Stochastic Processes and Lévy Processes

In this section, Lévy processes are introduced and properties associated with them

defined. The theoretical aspects discussed in the section are drawn mostly from

texts by Schoutens [47] and Sato [46] for more advanced concepts. A time horizon,

T <∞, and a probability space, (Ω,F ,P) is assumed. When T ⊆ N the stochastic

process X is referred to as a stochastic process being in discrete time. When T ⊆ R

then the stochastic process X is referred to as being in continuous time.

Definition 6. (Stochastic Process, Schoutens (2003) [47])

A Stochastic Process, X = (X(t), 0 ≤ t ≤ T ) adapted to the filtration {Ft}t≤0≤T

(i.e X(t) is Ft−measurable for every t ∈ T ) is a collection of random variables on

Ω× [0, T ] .

The definition above implies that X(t) is known at time t. Two stochastic processes

X(t) and Y (t) are identical in law if and only if X(t) converges in distribution to

Y (t). This is written as:

X(t)
d
= Y (t). (3.1)
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Definition 7. (Continuous in Probability, Benth et. al. (2006) [8])

A stochastic processes is stochastically continuous in probability if for every t ≥ 0

and ε ≥ 0,

lim
s→t

P [|X(s)−X(t)| > ε] = 0 (3.2)

Next, a class of stochastic processes called Lévy Processes with independent and

stationary increments is defined. This class is of particular interest because of the

its properties and practicality. In the most basic form, random motions such as the

Brownian Motion and random jump processes such as the Poison Process are typical

examples of Lévy processes.

Definition 8. (Lévy Process, Schoutens (2003) [47])

An Ft − adapted , càdlàg ( i.e one with sample paths that are a.s. right-continuous

and have limits from the left), real-valued stochastic process, X = (X(t), 0 ≤ t ≤ T ),

is called a Lévy process if the following conditions are true:

1. For any choice of n ≥ 1 and 0 ≤ t0 < t1 < ... < tn, the random variables

X(t0), X(t1) − X(t0), X(t2) − X(t1),......, X(tn) − X(tn+1) are independent

(independent increments property);

2. X(0) = 0 a.s;

3. The distribution ofX(t+s)−X(s) does not depend on s (stationary increments

property) ;

4. X is stochastically continuous i.e. for every t ≥ 0 and ε ≥ 0, lim
s→t

P [|X(s)−X(t)| > ε] =

0.
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Definition 9. (Martingale, Applebaum (2009) [1])

A stochastic process, X = (X(t), 0 ≤ t ≤ T ) is called a martingale relative to (P,F)

if

1. X is F -adapted;

2. E [|X|] <∞ for t ≥ 0;

3. E [X(t)|Fs] = X(s), a.s. (0 ≤ s ≤ t).

Definition 10. (Infinitely Divisible, Applebaum (2009) [1])

Let X be a random variable taking value in R with law µX . X is infinitely divisible,

if for all n ∈ N, there exists i.i.d random variables X1, ..., Xn such that

X
d
= X

(n)
1 + ..+X(n)

n . (3.3)

If X(n)
i has the law µX(n) then µX = µX(n) ∗ ... ∗ µX(n) the convolution of µX(n) n

times.

The definition above can be illustrated in a simple example. Consider,X ∼ N(µ, σ2),

and i.i.d random variables Yi ∼ N(µ
n
, σ2/n). Then from the properties of a Normal

distribution
n∑
i=1

Yi ∼ N(µ, σ2). Thus X d
=

n∑
i=1

Yi.

Definition 11. (Characteristic Function, Applebaum (2009) [1])

Let X be a random variable defined on (Ω,F ,P) and taking values in R with the

probability law pX . Then its characteristic function φX(u) : R→ C is defined by

φX(u) = E
(
eiuX

)
=

ˆ
Ω

ei(u,X(ω))P(dω) =

ˆ
R
eiuypX(dy) (3.4)
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for each u ∈ R.

Some useful properties of a characteristic function are [1]:

1. |φX(u)| ≤ 1;

2. φX(−u) = φX(u);

3. X is symmetric if and only if φX(u) ∈ R;

4. If E
(∣∣Xn

j

∣∣) <∞ for n ∈ N then

E (Xn) = i−n
dn

dun
φX(u)

∣∣∣∣
u=0

. (3.5)

Some functions closely related to the characteristic function are:

• Cumulant function k(u) = logE
(
e−uX

)
= logφX(iu),

• Moment generating function ϑ(u) = E
(
euX
)

= φX(−iu) and

• Cumulant characteristic function ψ(u) = logE
(
eiuX

)
= logφX(u)

Proposition 1. (Sato (1999) [46])

If X is a Lévy process, then for each t ≥ 0 , the random variable X(t) is infinitely

divisible. Conversely, if M is an infinitely divisible random variable, then there exists

a Lévy process X such that X(1)
d
= M .

Proof. For each n ∈ N we can write

X(t) = Y1(t) + ...+ Yn(t)
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where each

Yk(t) = X

((
kt

n

))
−X

(
k(n− 1)

n

)

The Yk(t) are i.i.d.

The proof of the converse statement is not provided for purposes of this dissertation.

The reader is referred to Sato (1999) [46].

Recalling the definition a cumulant characteristic function often referred to as the

characteristic exponent , ψ(u) = logE
(
eiuX

)
= logφX(u) we are led to the Lévy-

Khintchine Formula/Representation.

Theorem 2. (Lévy-Khintchine Formula, Schoutens (2003) [47])

Let X be a Lévy process with the cumulant characteristic function ψ. If γ ∈ R,

σ2 ≥ 0 and ν is a measure on R\{0} such that

+∞ˆ

−∞

inf
{

1, x2
}
ν(dx) =

+∞ˆ

−∞

(
1 ∧ x2

)
ν (dx) <∞

then from the given triplet (γ, σ2, ν), for each u ∈ R, we define

ψ(u) = iγu− 1

2
σ2u2 +

+∞ˆ

−∞

(
eiux − 1− iuxI{|x|≤1}

)
ν (dx) (3.6)

Conversely, given the triplet (γ, σ2, ν), there exists a Lévy process X with the cumu-

lant characteristic function given by the expression above.

The proof of the Theorem is not given for purposes of this dissertation. The formula



4 COMMON LÉVY PROCESSES IN FINANCE 32

above implies that the characteristic function is given by

φX(u) = exp

iγu− 1

2
σ2u2 +

+∞ˆ

−∞

(
eiux − 1− iuxI{|x|≤1}

)
ν (dx)

 (3.7)

When a Lévy measure is of the form ν(dx) = u(x)dx, the function u(x) is referred

to as the Lévy density. The Lévy density has the same properties as that of a

probability density with the exception of the integrability condition and that it

must be on R\{0} [47].

From the Lévy-Khintchine formula, one can observe that a Lévy process is char-

acterised by three parts which are independent i.e a linear deterministic part, a

diffusion part and a pure jump part [47]. In particular γ ∈ R is the drift part,

σ2 ∈ R+ is the Gaussian or diffusion coefficient and ν(dx) the Lévy measure.

4 Common Lévy Processes in Finance

In this section, some of the popular Lévy processes in finance are introduced. In-

finitely divisible distributions need to model the skewness and excess kurtosis present

in the distribution of the log-returns of most financial assets [47]. Properties of these

Lévy distributions such as their characteristic functions, density functions and Lévy

triplets are discussed as in Schoutens (2003) [47].

An understanding of these properties will help understand the Background Driv-

ing Lévy Processes (BDLP) or subordinators of Ornstein-Uhlenbeck (OU) Processes

which were introduced by Barndorff-Nielsen and Shephard (B-NS) (2001a,b, 2003b)

[5] to model stochastic volatility. The Gamma, Inverse Gaussian (IG) and Normal

Inverse Gaussian (NIG) processes are discussed in the following sections and will
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pave the pathway for their use in providing positive BDLPs for the OU process

described later on.

Definition 12. (Subordinator, Applebaum (2009) [1])

A subordinator, T := {T (t), t ≥ 0}, is a one-dimensional Lévy process that is non-

decreasing (a.s.). This means that

T (t) ≥ 0

a.s.

and

T (t1) ≤ T (t2)

a.s. whenever t1 ≤ t2.

The transformation of one stochastic process to another by an increasing Lévy pro-

cess (subordinator) independent of the original process under a random time change

is called Subordination. It is a transformation of a Lévy process to another indepen-

dent Lévy process [46].

Theorem 3. (Subordination of Lévy Processes, Sato (1999) [46])

Let Z := Z(t) : t > 0 be a subordinator (an increasing Lévy process on R) with a

Lévy measure ν, drift β0, and PZ1 = λ . Then it follows that

E
(
e−uZt

)
=

ˆ
[0,∞)

e−usλt(ds) = etψ(−u), u ≥ 0 (4.1)

where for any complex ω with R(ω) ≤0,

ψ(ω) = β0ω +

ˆ
[0,∞)
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with β0 ≥ 0 and
´

[0,∞)
(1 ∧ s)ν(ds) <∞.

Definition 13. (Subordination of Lévy Processes, page 198 [46])

Let X := {X(t)} be Lévy process on R with generating triplet (A, ν, γ) and let

µ = PX1 . Suppose X and Z are independent, then the transformation of X to Y ,

Yt(ω) = XZt(ω), t ≥ 0 (4.2)

is called the subordination by the subordinator Z(t).

4.1 Gamma Process

Any positive real-valued stochastic process L := {L(t), t ≥ 0} is called a Gamma

process with parameters a > 0 and b > 0 if L ∼ Γ(at, b) that is L has the distribution

given by

f(x; a, b) =
bat

Γ (a)
xat−1e−bx, x > 0 (4.3)

[47].

The parameters a, b > 0 are responsible for the tail thickness and spread/scale of

the distribution f .

Lemma 1. (Characteristic Function of the Gamma Process, Schoutens [47])

The characteristic function of L is given by

φ(u) =

(
1− iu

b

)−at
. (4.4)
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Proof. From the definition of a characteristic function it follows that

φ(u; a.b) = E
(
eiuX

)
=

∞̂

0

eiux
ba

Γ (a)
xa−1e−bxdx

=

∞̂

0

ba

Γ (a)
xa−1eiux−bxdx

=

∞̂

0

ba

Γ (a)
xa−1e−b(x−

iux
b

)dx

the if we set y = x− iux
b

it follows that

=

∞̂

0

ba

Γ (a)

(
by

b− iu

)a−1

e−by
(

b

b− iu

)
dy

=

(
b

b− iu

)a
ba

Γ (a)
ya−1e−bydy

=

(
1− iu

b

)−a
.

Then it follows that

φ(u; at, b) =

(
1− iu

b

)−at
.

If X ∼ Gamma(at, b) is a random variable with its characteristic function as shown

in the Lemma above, a random variable X(n)
n with distribution, Fn, which is a

Gamma(at
n
, b) implies that

(
φ(u; (

a

n
)t, b)

)n
=

((
1− iu

b

)−( a
n

)t
)n

= φ(u; at, b). (4.5)

It follows that the Gamma Process is infinitely divisible. The Lévy triplet of a
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Gamma(at, b) process is given by [47]

[
at(1− e−b)

b
, 0, ate−bxx−1I(x>0)dx

]
. (4.6)

Its characteristic exponent can be written as

ψ(u) = i

(
at(1− e−b)

b

)
u+

∞̂

0

(
eiux − 1− iuxI{|x|≤1}

)
ate−bxx−1I(x>0)dx. (4.7)

For the derivation of the triplet above refer to Corollary 8.9 in Sato (1999) [46]. In

this case the distribution of Gamma(at
n
, b) is

Fn(dx) =
b
a
n
t

Γ (at
n

)
x
at
n
−1e−bxdx (4.8)

so that for x > 0 if we set γn = n
´
|x|<1

xFn(dx) := γ then the limit of as n tends to
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infinity is

lim
n→∞

γn = lim
n→∞

n

1ˆ

0

xFn(dx)

= lim
n→∞

n

1ˆ

0

x
b
a
n
t

Γ (at
n

)
x
at
n
−1e−bxdx

= lim
n→∞

n

1ˆ

0

b
a
n
t

Γ (at
n

)
x
at
n e−bxdx

= lim
n→∞

1ˆ

0

atb
a
n
t

Γ (at
n

+ 1)
x
at
n e−bxdx

= at

1ˆ

0

lim
n→∞

(
b
a
n
t

Γ (at
n

+ 1)
x
at
n e−bx

)
dx

= at

1ˆ

0

e−bxdx

= at

(
1− e−b

b

)
.

Similarly for x > 0, if we set Gn (a) = n
´ a
−∞

x2

1+x2Fn (dx), then taking the limit as n

tends to infinity :

lim
n→∞

nFn(x) = lim
n→∞

n
b
a
n
t

Γ (at
n

)
x
at
n
−1e−bxdx

= atx−1e−bxdx.

The jump which G makes at x = 0 is σ2 = 4G (0).
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4.2 The Inverse Gamma Process

The probability density function of an Inverse Gaussian (IG) distribution with pa-

rameters a > 0 and b > 0 is given by [47]:

f(x; a, b) =
a√
2π
eabx−

3
2 e(−

1
2(a2x−1+b2x)) x > 0 (4.9)

If L ∼ IG (a, b), then for a positive constant c, cL ∼ IG
(√

ca, b√
c

)
.

Lemma 2. (Sato (1999) [46] and Schoutens (2003) [47] )

For u ∈ R, the characteristic function of the IG (a, b) is :

φ(u; a.b) = E
(
eiuX

)
= e(−a(

√
−2iu+b2−b)) (4.10)

Proof. Consider the Laplace transform F (s) that is:

F (s) = E(e−sX)

=

∞̂

0

e−sx
a√
2π
eabx−

3
2 e(−

1
2(a2x−1+b2x))dx

=

∞̂

0

a√
2π
eabx−

3
2 e(−

1
2(a2x−1+b2x+2sx))dx

=

∞̂

0

a√
2π
e(a
√

2s+b2−a
√

2s+b2)+abx−
3
2 e(−

1
2(a2x−1+(2s+b2)x))dx

=

∞̂

0

a√
2π
ea
√

2s+b2−a(
√

2s+b2−b)x−
3
2 e(−

1
2(a2x−1+(2s+b2)x))dx

= e−a(
√

2s+b2−b)

∞̂

0

a√
2π
ea
√

2s+b2x−
3
2 e(−

1
2(a2x−1+(2s+b2)x))dx

= e−a(
√

2s+b2−b).1

= e−a(
√

2s+b2−b).
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In familiar notation, setting u := s, it follows that

φ(u; a.b) = E
(
eiuX

)
= F (−iu) = e−a(

√
−2iu+b2−b)

From the expression above, one can easily observe that φ(u; a.b) = φ(u; a
n
.b)n hence

, the Inverse Gaussian distribution is infinitely divisible.

Proposition 2. ( Sato (1999) [46])

The Lévy triplet of an IG(a, b) process is derived in a process as the one for a Gamma

distribution as:

[
a

b
(2Φ(b)− 1) , 0,

a√
2πx3

e(−
1
2(b2x))I(x>0)dx

]
. (4.11)

Proof. The distribution of IG( a
n
, b) is

Fn(dx) =
a

n
√

2π
e
a
n
b−1x−

3
2 e−

1
2(a2x−1+b2x)dx (4.12)
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For x > 0

lim
n→∞

γn = lim
n→∞

n

1ˆ

0

xFn(dx)

= lim
n→∞

n

1ˆ

0

x
a

n
√

2πx3
e
a
n
b−1e−

1
2(a2x−1+b2x)dx

=
a√
2π

ˆ 1

0

x
1√
x3
e

(
− 1

2

(
a/n√
x

+b
√
x
)2
)

=
a√
2π

ˆ 1

0

x−
1
2 e

(
−b2x

2

)
dx

=
a

b

1√
2π

ˆ b2

0

y−
1
2 e(

−y
2 )dy

=
a

b

(
Y 2 ≤ b2

)
=

a

b
(Y ≤ b)

=
a

b
(2Φ(b)− 1) .

Where Y ∼ N(0, 1) and Y 2 ∼ χ2(1).

For a > 0

lim
n→∞

Gn(a) = lim
n→∞

n

aˆ

0

x2

1 + x2
Fn(dx)

= lim
n→∞

n

aˆ

0

x2

1 + x2

a

n
√

2πx3
e
a
n
b−1e−

1
2(a2x−1+b2x)dx

= lim
n→∞

aˆ

0

x2

1 + x2

a√
2πx3

e

(
− 1

2

(
a/n√
x

+b
√
x
)2
)
dx

=

aˆ

0

x2

1 + x2

a√
2πx3

e(−
1
2(b2x))dx = G(a).

For a ≥ 0 it follows that lim
n→∞

Gn(a) = G(a) ≡ 0. Since G is continuous at a = 0, it

implies that there is no Gaussian component.
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Moreover for x > 0,

lim
n→∞

nFn(x) = lim
n→∞

n
a/n√
2πx3

e

(
− 1

2

(
a/n√
x

+b
√
x
)2
)

= lim
n→∞

a√
2πx3

e

(
− 1

2

(
a/n√
x

+b
√
x
)2
)

=
a√

2πx3
e(−

1
2
b2x) := ν(dx).

The IG process L = {Lt : t ≥ 0} is a càdlàg process i.e one with independent and

stationary increments and Lt ∼ IG(at, b). Following the discussion on page 53 of

[47], if we let L(a,b) be the first time a standard Brownian motion with drift b > 0,

X(t) := {B(t) + bt, t ≥ 0}, reaches the positive level a > 0, then this random time

follows the IG(a, b) distribution. This first passage time defined on (0,∞) and

distributed according to an IG(a, b) distribution can be expressed as:

L(a,b) = inf {t > 0, X(t) = a} (4.13)

4.3 The Normal Inverse Gaussian Process

The Normal Inverse Gaussian (NIG) distribution (see [4]) has a probability density

function with parameters a, δ > 0 and β < |a| given by:

f(x; a, β, δ) =
aδ

π
e(δ
√
a2−δ2+βx)K1

(
a
√
δ2 + x2

)
√
δ2 + x2

(4.14)

where K1(x) is the modified Bessel function of the third kind.

Lemma 3. (Barndorff-Nielsen and Shepard (2001) [6])
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For u ∈ R, the characteristic function of the NIG (a, β, δ) is :

φ(u) = E
(
eiuX

)
= e

(
−δ
(√

a2−(β+iu)2−
√
a2−β2

))
. (4.15)

One can easily observe that φ(u; a, β, δ) = φ(u; a, β, δ/n)n, which implies that the

NIG distribution is infinitely divisible. The NIG process, X, can be defined by

defined by:

X := {X(t) : t ≥ 0}

with X(t) ∼ NIG(a, β, dt). The NIG process has no Gaussian component and its

Lévy triplet is given by [47]:

2aδ

π

1ˆ

0

sinh (βx)K1 (ax) , 0,
aδ

π
eβx

K1 (a |x|)
|x|

dx

 . (4.16)

The NIG process can be related to an Inverse Gaussian time-changed Brownian mo-

tion . IfW = {W (t) : t ≥ 0} is the standard Brownian motion and I = {I(t) : t ≥ 0}

an IG(a, b) where a = 1 and b = δ
√
α2 − β2 with α > 0, −α < β < α and δ > 0.

The stochastic process

X(t) = βδ2I(t) + δWI(t) (4.17)

is a NIG (α, β, δ). Furthermore, if X ∼ NIG (α, β, δ), then −X ∼ NIG (α,−β, δ).

When β = 0, the distribution is symmetric [47].

4.4 The Generalised Hyperbolic Process

The Generalised Hyperbolic distribution GH (α, β, δ, ν) has a p.d.f defined by [4]:

f (x) = a (α, β, δ, ν)
(
δ2 + x2

)(ν− 1
2)/2

Kν− 1
2

(
δ
√
α2 − β2

)
eβx, (4.18)



4 COMMON LÉVY PROCESSES IN FINANCE 43

where

a (α, β, δ, ν) =
(α2 − β2)

ν/2

√
2παν−

1
2 δνKν

(
δ
√
α2 − β2

)
and

δ ≥ 0, |β| < α if ν > 0;

δ > 0, |β| < α if ν = 0;

δ > 0, |β| ≤ α if ν < 0

where Kv(z) is the modified Bessel function of the third kind. The characteristic

function of the Generalised Hyperbolic distribution GH (α, β, δ, ν) originally defined

in Barndorff-Nielsen (1977) [3] is given by:

φ (u) =
(α2 − β2)

ν/2

(α2 − (β + iu)2)

Kν

(
δ
√
α2 − (β + iu)2

)
Kν

(
δ
√
α2 − β2

) . (4.19)

The Generalised Hyperbolic distribution is proved to be infinitely divisible in Barndorff-

Nielsen and Halgreen [3] . This implies that a Generalised Hyperbolic Lévy process

X(t) can be defined. The sophisticated Lévy measure of the GH process is defined

as [47]:

ν (dx) =


exp(βx)
|x|

(´∞
0

exp
(
−|x|
√

2y+α2
)

π2y(J2
ν(δ
√

2y)+N2
ν(δ
√

2y))
dy + νexp (−α|x|)

)
, ν ≥ 0

exp(βx)
|x|

´∞
0

exp
(
−|x|
√

2y+α2
)

π2y(J2
−ν(δ

√
2y)+N2

−ν(δ
√

2y))
dy , ν < 0

(4.20)
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where Jν(z) and Nν(z) are Bessel functions of the first and second kind respectively.

These are defined as:

Jν(z) =
(z

2

)ν ∞∑
k=0

(−z2/4)
k

k!Γ (ν + k + 1)
(4.21)

and

Nv (z) =
Jν(z)cos (νπ)− J−ν(z)

sin (νπ)
(4.22)

Special cases of the the Generalised Hyperbolic process are [47]:

1. The Variance Gamma process. This process can be derived from the GH by

taking ν = σ2/νV G, α =
√

(2/νV G) + (θ2/σ4), β = θ/σ2 and δ → 0.

2. The Normal Inverse Gaussian process. For ν = −1
2
the NIG process is ob-

tained. GH
(
α, β, δ,−1

2

)
= NIG (α, β, δ) .

4.5 Poisson Processes and Compensated Poisson Process

The Poisson process of mean/intensity λ > 0 is the stochastic processN = {N(t) : t ≥ 0}

whose values lie in the set N ∪ {0} such that each N(t) ∼ Poi (λt) [1] that is:

P (N(t) = n) =
e−λt (λt)n

n!
N (4.23)

for n ∈ {0, 1, 2, ...}. The characteristic function of the Poisson process is given by:

φ(u) = e(λt(e
iu−1)). (4.24)
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From this, it can be easily observed that φ(u;λ) = φ(u;λ/n)n. This implies that

the Poisson process is infinitely divisible.

The Compensated Poisson Process is the stochastic process Ñ =
{
Ñ(t) : t ≥ 0

}
[47]. The Compensated Poisson process is defined as:

Ñ(t) = N(t)− λt (4.25)

It is noted that E
[
Ñ(t)

]
= 0 and E

[(
Ñ(t)

)2
]

= λt.

4.6 The Compound Poisson Process

Suppose that (Zn) where n ∈ N is a sequence of i.i.d random variables with common

law µZ and let a Poisson process N(t) ∼ Poi (λt) independent of all Zn. The

Compound Poisson process Yt is defined as [1]:

Yt = Z1 + Z2 + ...+ ZN(t)

for all t ≥ 0.

5 Ornstein-Uhlenbeck Lévy processes

In this section the properties of a family of Lévy processes called Ornstein-Uhlenbeck

(OU) processes used to describe the dynamics of volatility in finance are discussed.

The OU process was first suggested by Barndorff-Nielsen and Shepard (2001) [5]

which in this dissertation is referred to as B-NS or in some instances B-NS. The
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general form of the OU process X(t) ≥ 0 is

dX(t) = −λ (X(t)− α) dt+ σdZ(t), X(0) > 0 (5.1)

with

Z(0) = 0

where λ > 0, α ∈ R, σ > 0 and Z(t) is a background driving Lévy process (BDLP)

i.e. a Lévy process which has independent and stationary increments. B-NS (2001)

focus on Lévy-driven processes known as non-Gaussian Ornstein-Uhlenbeck pro-

cesses in which the BDLP, Z(t), has positive increments and no Brownian part.

These BDLPs are referred to as subordinators see (13). Since, the process X(0) > 0

and Z(t) is an increasing process, it is clear that the process X(t) is strictly positive

[47]. If Z(t) is a Brownian motion, then X(t) is the usual Gaussian OU process.

5.1 D-OU and OU-D processes

The process X := X(t) : t ≥ 0 is strictly stationary on the positive half-line that is

there exists a law D, called the stationary law or the marginal law, such that X(t)

follows the law D for all t if the initial X(0) is chosen according to D. Given a

one-dimensional distribution D (not necessarily restricted to the positive half-line)

, there exists a (stationary) OU process whose marginal law is D (i.e. a D − OU

process) if and only if D is self-decomposable [47]. The processes in the previous

section can be used as D. According to Barndorff-Nielsen and Shephard’s results

(2001), it follows that if α = 0 in Equation (5.1) then the solution is:

X(t) = e−λtX(0) +

ˆ t

0

e−λ(t−s)dZλs (5.2)
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= e−λtX(0) + e−λt
ˆ λt

0

esdZs (5.3)

The process X is bounded below by e−λtX(0) and is strictly stationary on the

positive half-line. Let the Lévy measure of Z1 be denoted by W . It is assumed that

W has density w(x). If the u(x) is the Lévy density of D then u(x) and w(x) are

related by [5]:

w(x) = −u(x)− xu′(x). (5.4)

Let the tail mass function of W (dx) be

W+(x) =

ˆ ∞
x

w(y)dy (5.5)

then it follows from [6] that:

W+(x) = xu(x) (5.6)

and the the inverse of the function above is:

W−1(x) = inf
{
y > 0 : W+(y) ≤ x

}
(5.7)

Definition 14. (Self-decomposability, Schoutens (2002) [47])

Let φX be the characteristic function of a random variable X. Then X is self-

decomposable if there exists a random variable Yc independent of X such that:

φX(u) = φX(cu)φYc(u) (5.8)
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for all u ∈ R and all c ∈ (0, 1) for some family of characteristic functions {φc(u) : c ∈ (0, 1)}.

Furthermore, the law of X belongs to the class of Lévys called L. A random variable

with law in L is infinitely divisible.

5.1.1 Simulation via series representation

To simulate the OU process described in Equation (5.2), concentration is set on

the Lévy integral. One approach could be to simulate the integrals directly, but

this would be difficult due to the jumps present in the process. An estimate of the

integral via infinite series representations is instead used [6]. IfW is a Lévy measure

for Z1 and W−1 the inverse function for W+, the series representation is given by:

ˆ t

0

g(s)dZs
L
=
∞∑
i=1

W−1
(ai
t

)
g (tui) (5.9)

where {ai} and {ui} are two independent sequences of random variables with ui

independent replicas of a uniform U(0, 1) random variable and a1 < a2 < ... the

arrival times of a Poisson process with intensity 1 [47].

5.1.2 Simulating the IG process

To simulate the Inverse Gaussian process IG(a, b) random variates can be used. The

IG random variates are generated using the following algorithm [47]:

1. Generate a standard Normal random number v.

2. Set y = ν2 i.e y ∼ χ2(1).

3. Set x = (a
b
) + y

2b2
+

√
4aby+y2

2b2
.



5 ORNSTEIN-UHLENBECK LÉVY PROCESSES 49

4. Generate a uniform random number u.

5. If u ≤ a
(a+xb)

, then return the number x as the IG(a, b) random number, else

return a2

b2x
as the IG(a, b) random number.

Now to simulate the path of a process I(t) = {I(t) : t ≥ 0} an IG(at, b) is simulated

at time points n4t : n = 0, 1, ... as follows. First generate independent IG(a4t, b)

random numbers in;n ≥ 1, then

I(0) = 0

and

I(n4t) = I((n− 1)4t) + in (5.10)

for n ≥ 1.

5.1.3 The NIG process

The NIG process can be simulated as time-changed Brownian motion. TheNIG (α, β, δ)

process, X(t) = {X(t), t ≥ 0}, can be represented as in Equation (4.17):

X(t) = βδ2I(t) + δWI(t) (5.11)

where I(t) ∼ IG
(
t, δ
√
α2 − β2

)
for α, δ > 0, |β| < α and WI(t) is a Brownian

motion.

5.1.4 The IG-OU process

The IG-OU process with IG(a, b) marginals can be simulated via series representa-

tions in Equation (5.9). There is no explicit closed-form expression for the inverse

W−1 of the tail mass function [47]. Thus the following approximation is made:
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W−1 (x) ∼ a2

2πx2
(5.12)

It should be noted that convergence can be slow using this approximation.

As a sum of two independent processes The Lévy density of IG(a, b), u(x),

is given by [4, 47]:

u(x) =
a√

2π (
√
x)

3
e(−

1
2
b2x) (5.13)

Then the Lévy density of the corresponding BDLP, w(x) , is given by [4]:

w(x) =
a

2
√

2π

(
1

x
+ b2

)
x−

1
2 e(−

1
2
b2x) (5.14)

From [4], it is derived that the BDLP, Z(t), in Equation (5.2) of the IG(a, b)−OU

process is a sum of two independent processes, Z(t)1 and Z(t)2 i.e.

Z(t) = Z(t)1 + Z(t)2, (5.15)

where

Z(t)1 ∼ IG
(a

2
, b
)

(5.16)

and Z(t)2 is of the form:

Z(t)2 =
1

b2

Nt∑
n=1

c2
n, (5.17)
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where N = {N(t) : t ≥ 0} is a Poisson process with intensity ab
2
i.e N(t) ∼ Poi

(
abt
2

)
and {cn, n = 1, 2, ...} is a sequence of i.i.d N(0, 1) random variables independent of

the Poisson process N .

6 Finance

In this section, the finance theory in the valuation of contingent claims is presented.

This theory forms the building blocks for developing the most basic and well-known

continuous-time, continuous variable stochastic process for stock prices.

6.1 The Black-Scholes (BS) market model and risk-neutral

pricing

Consider the probability space (Ω,F ,P). If investors are allowed to continuously

trade up to some fixed time horizon T > 0, then let {W (t) : 0 ≤ t ≤ T} be a Brow-

nian motion with {Ft : 0 ≤ t ≤ T} a filtration for this Brownian. Then under the

Black-Scholes model, the stock prices {S(t) : 0 ≤ t ≤ T} evolve according to [11]:

dS(t) = µS(t)dt+ σS(t)dW (t), 0 ≤ t ≤ T (6.1)

where µ is the drift parameter and σ constant volatility. The solution of this SDE

is given by:

S(t) = S(0)e(µ−
1
2
σ2)(T−t)+σ(W (T )−W (t)) (6.2)

The Black-Scholes model assumes that the market is complete and that there exist

a risk-less asset B(t) whose dynamics at t ≥ 0 are:
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dB(t) = rB(t) (6.3)

with initial condition

B(0) = 1

where r is the continuously compounded risk-free rate [11]. Since the BS market

model is complete, there exists only one equivalent martingale and the market can

be completely replicated. This is the statement of Second Fundamental theorem of

asset pricing.

Theorem 4. (First Fundamental Theorem of Asset Pricing, Bjork (2009) [11])

Assume that there exists a risk-free asset, and the corresponding risk-free interest

rate by R. Then the market is arbitrage free if and only if there exists a probability

measure Q such that:

S(0) =
1

1 +R
EQ [S(T )] (6.4)

This is the risk-neutral pricing formula.

Theorem 5. (Second Fundamental Theorem of Asset Pricing, Bjork (2009) [11])

Consider a market model in which there exists a risk-neutral martingale measure,

then the market is complete if and only if the martingale measure is unique.

The Black-Scholes market model is complete thus only one equivalent martingale

measure Q exists. Under this risk-neutral measure the stock price follows the ge-

ometric Brownian motion. The risk-neutral stock price process, St, has constant

volatility σ and the drift µ is the replaced by the continuously compounded risk-free

rate r [47]. Thus the stock price process follows:

S(t) = S(0)e(µ−
1
2
σ2)(T−t)+σ(W (T )−W (t)) (6.5)
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7 Empirical Data

In this section, the empirical data from the FTSE/JSE Top Index 40 over a 10

year period from April 2009 to May 2019 is investigated. The fit of the Black-

Scholes model to the data is investigated from a practical point of view. The BS

model assumptions amongst others include a friction-less market with no taxes,

transitional costs, no constraints in stock holding or short selling, normal log returns

and a constant volatility over time. The point of this section is to show how these

assumptions are not consistent with market data observations. This data will be

utilised throughout this dissertation unless specified.

The log-returns of the FTSE/JSE Top 40 index are shown in the figure below:

Figure 7.1: FTSE/JSE Top 40 log-returns

Next the closing prices of the index over the past decade are shown below:
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Figure 7.2: FTSE/JSE Top 40 Price

The figure 7 above shows the movement of the index price over the last decade.

There are observable jumps in some periods.

7.0.1 Asymmetry and Excess Kurtosis

Table 1: Descriptive statistics of daily log-returns
No. of data points Mean Variance SD Skewness Excess Kurtosis

2520 3.8344×10−4 1.1660×10−4 0.0108 -0.1348 4.2504
1000 5.8122×10−5 1.1193×10−4 0.0115 -0.1356 4.0184
500 1.1964×10−5 9.9860×10−5 0.0099 -0.1081 4.4812
250 -7.2189×10−5 1.2810×10−4 0.0113 -0.1272 3.7851

The data in the Table 1 above is observed from the empirical data. The moments of

the daily log returns from 6 April 2009 to 10 May 2019 are compared over different

time horizons.

Comments: The data is compared over different time horizons. The latest

1000 points, 500 points and 250 points by date are observed. The latest 250 days
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are expected to provide more accurate estimates of the moments as they contain

information relevant to the movements in that year.

Skewness measures the degree of a distribution’s asymmetry and for a symmetric

distribution like the N(µ = 0, σ2 = 1), the skewness is 0 [47]. The data above is

skewed although to a small degree. The market data for the JSE Top 40 Index shows

that the excess kurtosis is greater than 3. This is more than the kurtosis observed

for the Normal distribution.

The implication of modelling using a Normal distribution will be the inability to

capture the tail distribution of the log returns. The data shows that the tails of the

Normal distribution tend to zero quicker than the empirical data which in this case

indicates a higher peaked distribution [1, 48, 44].

7.0.2 Empirical density function compared to the Normal density func-

tion

The study of the log returns of the JSE Top Index so far have shown that they

do not fit a Normal distribution. However, further statistical analysis conducted

to further support the preliminary observations. The Kolmogorov-Smirnov test is

conducted as:

Ho: The index log returns follow a Normal distribution ;

H1: The index log returns are not Normal distributed.

Using the MATLAB’s kstest at 95% confidence level, we reject the null hypothesis

and conclude that the log returns of the JSE Top 40 Index do not follow a Normal

distribution. This is further illustrated graphically below using the Histogram and

QQ-plot methods.
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Figure 7.3: Histogram of the Log Returns Compared to the Normal Distribution

Figure 7.4: QQ Plot of the Empirical Data Compared to the Normal Distribution

Comments: The figures above further support the Kolmogorov-Smirnov test. The

QQ-plot shows that the log returns of the index do not fall perfectly on to the Normal

distribution. The histogram shows that the Normal distribution has a lower peak
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than the empirical distribution and it fails to capture the tail distribution as shown

below:

Figure 7.5: The Normal Distribution underestimating the Tail Log Returns

Comments: The Normal distribution does not capture the distribution of the

peak and tail log returns accurately. In the figure above some tail log returns can

be seen exceeding the Normal distribution density function. Benth et. al. (2006) [8]

show that distribution of the tail and peak of log-returns can be better approximated

by the Normal Inverse Gaussian (NIG) distribution. Using R’s ’nigFit’ function, a

better fit is indicated. The QQ-plot below shows this:
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Figure 7.6: QQ Plot of the Log Returns Compared to the NIG Distribution

7.0.3 Stochastic volatility

Many researchers including [6, 15, 37, 38, 44] have shown that volatility is better

approximated using models that show random change over time. The core of this

dissertation is to use such models to price derivatives whose underlying is the square

of volatility.

Historical volatility for the JSE Top 40 Index can be estimated by the standard

deviation of the daily log returns over one year preceding the day. The historic

volatility is calculated as an annualised value of the daily standard deviation by

multiplying the standard deviation with the square root of 250 days.
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Figure 7.7: JSE Top 40 Index Historical Volatility

Comments: The figure above shows that the volatility of the index is stochastic

over time. Furthermore, a mean-reversion effect is observed. This will be explained

in the chapter in which the Heston (1993) stochastic volatility model is discussed.

7.0.4 Volatility clustering

Figure below shows that there is evidence for volatility clustering. There are group-

ings of periods with high returns and groupings of periods with low returns. This

further supports the need for models that consider the stochastic pattern of volatility

rather than assuming that it is constant over time.



7 EMPIRICAL DATA 60

Figure 7.8: JSE Top 40 absolute log returns

7.0.5 Market price error

If the model parameters are estimated by minimizing the root-mean-square error

(RMSE) between market prices and BS model prices, a difference, is observed. This

is known as the calibration error. The figure below shows the difference between the

market call option prices and BS model prices for T = 0.19047619 (2-month data

using a year with 250 days). The MATLAB’s lsqnonlin function is used to calibrate

the BS model to the market prices. The calibration techniques are shown in detail

in a later chapter.
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Figure 7.9: BS versus market European call option prices

8 Statistical Considerations

In this section, methods for fitting Lévy distributions to the distribution of index

price log returns are shown. The NIG distribution is used in this dissertation under

the Barndorff-Nielsen and Shepard (2001) Ornstein-Uhlenbeck model. The param-

eters of this model are estimated using the method of moments estimation which is

described in this section. The density function of the Lévy distribution is denoted

f (x; θ) where θ represents the set of unknown parameters to be estimated. The log

returns are then used to determine an acceptable set of these parameters under an

assumption that they are i.i.d over non-overlapping periods in a Lévy setting [47].
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8.0.1 Method of Moments Estimation

The method of moments estimation (MME) is a popular point estimation methodol-

ogy which relies on the law of large numbers. Suppose X1, X2, ...Xn are i.i.d random

variables, then the kth population moment is given by [47]:

µ
′

k = E
(
Y k
)

=

ˆ ∞
0

ykf (y; θ) dy (8.1)

and the corresponding kth sample moment is given by:

µ̂k =
1

n

n∑
i=1

Y k
i . (8.2)

It then follows that µ̂k in an unbiased estimator of µ′k since E (µ̂k) = E
(

1
n

∑n
i=1 Y

k
i

)
=

1
n

∑n
i=1 E(Y k

i ) = µk. Then, the Method of Moments estimator for the unknown set

of parameters which solves the equation:

µ̂k = µ
′

k. (8.3)

The kth moment can also be calculated from the characteristic function as [47]:

E
(
Xk
)

= i−k
dk

duk
φ(u)

∣∣∣∣
u=0

.

However, it may be a tedious task to find the derivatives of most characteristic

functions.
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8.0.2 Maximum Likelihood Estimation

The maximum-likelihood estimator (MLE) is a set of parameters θ that maximises

the likelihood function as follows [2]:

L(θ) =
n∏
i=1

f(xi,θ) (8.4)

Since the log-function is monotonically increasing, maximising the function is equiv-

alent to maximising the logarithm of the function. The log-likelihood is:

logL(θ) =
n∑
i=1

logf(xi,θ) (8.5)

Example 1. MLE for the Normal Inverse Gaussian distribution

The NIG(α, β, δ, µ) is investigated in a later chapter in this dissertation. Its pdf is

known explicitly as [4, 44]:

f(x;α, β, δ, µ) =
αδK1

(
α
√
δ2 + (x− µ)2

)
π
√
δ2 + (x− µ)2

eδ
√
α2−β2+β(x−µ) (8.6)

Then the likelihood function is given by:

L(α, β, δ, µ) =
n∏
i=1

αδK1

(
α
√
δ2 + (xi − µ)2

)
π
√
δ2 + (xi − µ)2

eδ
√
α2−β2+β(xi−µ) (8.7)

=
(αδ)n

∑n
i=1K1

(
α
√
δ2 + (xi − µ)2

)
πn
∏n

i=1

√
δ2 + (xi − µ)2

enδ
√
α2−β2+β

∑n
i=1(xi−µ)

which implies that the log-likelihood function is given by:
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log (L(α, β, δ, µ)) = log

(
(αδ)n

n∑
i=1

K1

(
α
√
δ2 + (xi − µ)2

))

−nlog (π)− 1

2

n∑
i=1

log
(
δ2 + (xi − µ)2

)
+ nδ

√
α2 − β2 (8.8)

+β
n∑
i=1

(xi − µ)

= −nlog (π) + nlog (αδ) +
n∑
i=1

log
(
K1

(
α
√
δ2 + (xi − µ)2

))
−1

2

n∑
i=1

log
(
δ2 + (xi − µ)2

)
+ nδ

√
α2 − β2 + β

n∑
i=1

(xi − µ).(8.9)

Obtaining the partial derivatives of the log-likelihood function can be a cumbersome

task since it contains the Bessel function. However, practically, optimisation of the

NIG can be done easily using software.

9 Pricing Variance Swaps

In this section, the foundation of the theory behind the mechanism of a variance

swap is laid out for future chapters. The variance swap is defined and various

approaches to how variance swaps can be priced are discussed. In particular, the

discretely-sampled and continuously-sampled variance swaps are defined.

Definition 15. (Variance Swap Payoff, Zhaoli et. al. (2015) [38] )

A variance swap is a forward contract to exchange an agreed variance swap strike,

Kvar, for a future annualised realised variance, σ2
R(T ), such that the payoff of at

expiry is given by:
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N(σ2
R(T )−Kvar) (9.1)

for a given notional amount, N .

The definition above means that at maturity the holder of the variance swap contract

receives an amount N for every unit by which the realised variance exceeds the

variance swap price, Kvar. Since variance swaps are forward contracts, there is no

cost of entering the contract. Hence, from Asset Pricing Theory and the definition

of a forward contract, it follows that the risk-neutral price of the variance swap (Vt)

at t = 0 is given by [38]:

V0 = 0 = e−rTEQ
(
N(σ2

R(T )−Kvar)|Ft
)

(9.2)

for an equivalent martingale measure Q.

Thus,

Kvar = EQ
(
(σ2

R(T )|Ft
)

(9.3)

where the notional amount has been set to N = 1.

This implies that to price a variance swap in the risk-neutral world, the initial

problem can be reduced to calculating the expected future level of realised variance

in a risk-neutral world. The expected realised variance can be obtained discretely

or continuously. This gives rise to the discretely-sampled and continuously-sampled

versions of variance swaps.
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Definition 16. (Discretely-Sampled Expected Realised Variance, Little and Pant

(2001) [41] )

The expectation of the discretely-sampled level of realised variance of an underlying

asset, S, at maturity is given by:

EQ
[
(σ2

R(T )
]

=
1

N∆t

N∑
i=1

EQ

[(
S(ti)− S(ti−1)

S(ti−1)

)2
]
.1002 (9.4)

where S(ti) is the price of the underlying asset at time ti.

Its continuously-sampled counterpart is defined as:

Definition 17. (Continuously-Sampled Expected Realised Variance, Benth. et al.

(2006) [8])

The expectation of the continuously-sampled level of realised variance of an under-

lying asset, S, at maturity is given by:

EQ
[
(σ2

R(T )
]

=
1

T
EQ

 T̂

0

σ2(s)ds

 .1002. (9.5)

Now the fair price of variance swaps can be deduced. This leads to the next part of

this dissertation.
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Part II

Pricing variance swaps using

stochastic volatility models

In this part, the pricing of variance swaps under the Bandorff-Neilsen and Shepard

(2001) and Heston (1993) stochastic models is studied. The aim of this part is to

derive semi-closed and closed-form expressions of pricing variance swaps under these

models.

10 Variance swaps under the B-NS model

In this chapter, the semi-closed form expression for the price of continuously-sampled

realised variance swaps under a stochastic model is derived. The B-NS non-Gaussian

Ornstein-Uhlenbeck model where the log-returns are constructed using a mean-

reverting stationary process with a background-driving Lévy process is implemented.

10.1 Introduction

Volumes of traded variance swaps have rapidly expanded since the first variance

swaps were traded. This is an anticipated development as investors seek to be

directly exposed to realised variance which gives them an idea of the market’s per-

spective and hedges them against future variance fluctuations. Stochastic volatility

models were born out of the deficiencies of the classical Black-Scholes (1973) model
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including the constant volatility assumption, the volatility smile effect, and the kur-

tosis and skewness effects. Researchers in this light, are constantly trying to develop

pricing techniques that accurately capture real market conditions. This chapter

presents the movement of the price and variance processes as random independent

processes. The instantaneous volatility in this chapter is considered to have a pro-

cess as that under the non-Gaussian Ornstein-Uhlenbeck (OU) model with positive

jumps only as presented in Barndoff-Nielsen and Shepard (2001). The analytical

expression for the price of continuously-sampled realised variance swaps under the

non-Gaussian OU model is derived. The work under Benth and Saltyte-Benth (2004)

and Benth et al. (2006) is closely followed.

10.2 The B-NS non-Gaussian OU model

In 2001, Barndorff-Nielsen and Shepard constructed a stochastic model for the

continuously-sampled variance of stock returns. The variance is assumed to be

a superposition of positive non-Gaussian processes of the Ornstein-Uhlenbeck type.

Definition 18. (Ornstein-Uhlenbeck Process, [5])

An OU process is a stochastic process with dynamics given by:

dX(t) = −λ (X(t)− α) dt+ σdZ(t) (10.1)

Z(0) = 0

where λ > 0, α ∈ R and σ > 0. Z(t) is a background driving Lévy process (BDLP)

that is a Lévy process which has independent and stationary increments. In the

definition above, the parameters are defined as follows:
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• λ : how “strongly” the system reacts to perturbations (the “decay-rate” or

“growth-rate”)

• σ2 : the variation or the size of the noise.

• α : the asymptotic mean

In this chapter, the focus will be on a specific case where Z = {Z(t)}t≥0 has no

Gaussian component and has positive increments. In similar fashion to the Gaussian

Ornstein-Uhlenbeck process, Z = {Z(t)}t≥0 is also mean-reverting.

Definition 19. (The non-Gaussian OUmodel, Barndorff-Nielsen and Shepard (2001)

[6])

Consider a completely filtered probability space (Ω,F ,Ft, P ) with {Ft}t≥0 the com-

pletion of σ (Ws, LλS; s ≤ t) and assume the existence of a risk-neutral probability

measure (equivalent martingale measure (EMM)),Q, then the price, S(t), and the

variance, σ2(t), have dynamics given by:


dS(t) = (µ+ βσ2(t))S(t)dt+

√
σ2(t)S(t)dW (t) , S(0) = s > 0

dσ2(t) = −λσ2(t)dt+ dZ(λt) , σ2(0) = σ > 0

(10.2)

Z(0) = 0, λ > 0, µ, β ∈ R and W = {W (t)}t≥0, a Wiener process, independent from

the subordinator Z(t).

The variance process is said to be a non-Gaussian Ornstein-Uhlenbeck process [5].

It is a mean reverting process like its Gaussian counterpart. However, the vari-

ance process has positive jumps and revert downwards which results in σ2 (t) being

positive.

The unusual timing Z(λt) has been chosen so that the marginal distribution of

σ2 (t) does not change with the value of λ. The Lévy measure, is represented by
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z(dl) ∈ R+ since Z is a subordinator (BDLP) [4, 6]. In the generalised version of

(10.2), a leverage term ρdZ(λt) is added to the right-hand side of the stock process.

However, this case is not covered for purposes of this dissertation.

10.3 Stochastic volatility processes

The continuous-time models derived from Brownian motion such as the Samuelson

or Black-Scholes which model the log-price of the assets by a process whose solution

is of the general case of the first equation in (10.2) are important in derivative pricing

[6]. In B-NS (2001), the asset’s aggregate log-returns, {yn} are defined as:

yn =

n4̂

(n−1)4

dS (t) = S(n4)− S ((n− 1)4) (10.3)

where4 > 0 is the interval length are scaled mixtures of Normal distributions since:

yn|σ2
n ∼ N

(
µ4+ βσ24,4σ2

)
(10.4)

that is the aggregate log-returns conditional on variance follow a Normal distribution

[6]. BNS (2001), implement this to implicitly model the marginal distribution of the

log-returns under a specified stationary distribution for the variance, σ2(t). Under

this assertion, there exists a subordinator Z such that the variance is the solution of

the OU second equation of (10.2) [8].

Proposition 3. (Stationary OU process, Barndorff-Nielsen and Shepard (2001) [6])

The stationary process, σ2(t), is of Ornstein-Uhlenbeck type satisfying the second
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equation of (10.2) is a stationary OU process if it can be represented as:

σ2(t) =

0̂

−∞

esdZ(λt+ s), (10.5)

which can also be expressed (via the Itô formula for semi-martingales) as

σ2(t) = e−λtσ2(0) +

t̂

0

e−λ(t−s)dZ(λs), (10.6)

where λ>0, and Zλs is the BDLP.

Proof. If F (t, v(t)) ∈ C2, then by the Taylor series expansion we have that:

dF =
∂F

∂t
dt+

∂F

∂v
dv +

1

2

∂2F

∂t2
(dt)2 +

1

2

∂2F

∂ν2
(dν)2 +

∂2F

∂ν∂t
∂ν∂t.

Let

F (t, v(t)) = v(t)eλt

If we define F (0, 0) = v(0) and v(t) := σ2(t), then



∂F
∂t

= λv(t)eλt

∂F
∂v

= eλt

∂2F
∂v2 = 0.

Then by Itô’s Lemma we have that,

dF =
∂F

∂t
dt+

∂F

∂v
dv = λv(t)eλtdt+eλtdv = λv(t)eλtdt+eλt(−λv(t)dt+dZλt) = eλtdZλt.
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Then it follows from the definition of F that,

F (t, v(t)) = v(0) +

t̂

0

eλsdZλs.

It then implies that,

v(t) = e−λtv(0) + e−λt
t̂

0

eλsdZλs.

which gives (10.6) above. This does not contain the deterministic component, dt,

thus non-Gaussian.

10.4 Superposition of non-Gaussian OU-process

B-NS [6], suggested that a superposition of Ornstein-Uhlenbeck processes Yj(t) ,

with different mean-reversion speeds, λj , should be used to obtain a more general

correlation pattern in the volatility structure. The proposition below suggests the

dynamics of the weighted sum variance.

Proposition 4. (General non-Gaussian OU process, Benth et. al. (2006) [8])

Consider positive weights wj, for j = 1, 2, ...,m such that
m∑
j=1

wj = 1. Then define the

general structure of the stationary process, σ2(t), by the superposition of m different

non- Gaussian Ornstein-Uhlenbeck processes. Following the notation in Benth et

al.(2006), the stationary process is defined as:

σ2(t) =
m∑
j=1

wjYj(t) (10.7)

where the stochastic volatility processes Yj(t) are defined as

dYj(t) = −λjYj(t)dt+ dLj(λjt), (10.8)
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for j = 1, 2, ...,m and m independent BDLPs,Lj. Then Lévy measures, l(dz), which

correspond to the BDLPs, Lj are assumed positive since they are supported by these

BDLPs (subordinators). The dynamics of Yj(t) are then assumed to be as follows[8]:

Yj(t) = e−λtYj(0) +

t̂

0

e−λ(t−s)dLj(λjs) (10.9)

for 0 ≤ t.

Proof. Let v(t) := σ2(t) =
m∑
j=1

wjYj(t), and F (t, v(t)) = v(t)eλt ∈ C2. Then applying

Itô’s Lemma for semi-martingales (as above) and applying summation rules to the

definition of the stochastic integral we obtain (10.9). This completes the proof.

Recalling the definition, continuously-sampled realised variance over a period [0, T ]

is defined as,

σ2
R(T ) =

1

T

T̂

0

σ2(s)ds (10.10)

In the real world, the variance is sampled at discrete times and thus (10.10) above

becomes:

σ2
n(T ) =

1

n

n∑
i=1

σ2(si) (10.11)

where sampling is done at times si ∈ [0, T ]. In this chapter, however, all derivations

will be based on the continuously-sampled variance. As defined in Part I, a variance

swap pays the holder of the contract N(σ2
R(T ) − Kvar), where N is the notional

amount chosen to be N = 1 in order to simplify the expressions. Kvar, is the

fixed level of variance for the variance swap or its fair strike. It is expected that

lim
n→∞

σ2
n(T ) = σ2

R(T ). The quadratic variation of the log-price is connected to the

realised variance as follows [8]:
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For any sequence of partitions t0 = 0 < t1 < ... < tm with sup(ti+1 − ti) → 0 as

n→∞

lim
n→∞

n

(n− 1)t

n∑
i=1

ln

(
S(ti+1)

S(ti)

)2

=

t̂

0

σ2(s)ds (10.12)

The fixed level of variance, Kvar, is chosen so that the variance swap has a risk-

neutral value equal to zero. This the implies that at time 0 ≤ t ≤ T , the fixed

level is given by conditional expectation of realised variance under a risk-neutral

equivalent martingale measure (EMM), Q.

Kvar(t, T ) = EQ[σ2
R(T )|Ft] (10.13)

This is a forward contract written on realised variance. It follows that:

Kvar(0, T ) = EQ[σ2
R(T )] (10.14)

Kvar(T, T ) = σ2
R(T ) (10.15)

For a volatility swap we have,

Kvol(t, T ) = EQ[σR(T )|Ft] (10.16)

where σR(T ) is realised volatility. Hence in general we obtain,

K(t, T ) = EQ[σ2γ
R (T )|Ft]

for γ > −1.
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10.5 Using the Esscher transform

Benth and Saltyte-Benth (2004) pointed out that the B-NS non-Gaussian OU model

gives rise to an incomplete market [9] because of its positive jump feature which is

a result of the background driving Lévy process. However, in an incomplete market

setting, several martingale measures can be used to price the variance swaps in a

way consistent with no arbitrage [11]. If the price of the contingent claim, in this

case, the variance swap, is attainable, then all choices of Q will produce the same

price process. However, to specify one price, one choice of the equivalent martingale

measure must be utilised. This is the work of the Esscher transform. The Esscher

transform is used to develop a sub-class of the equivalent martingale measures which

results in a sub-class of variances which can be calibrated with market data [8]. The

equivalent martingale measure,Q, is the probability measure equal to the real prob-

ability measure, P, such that all continuously tradeable securities are martingales

after discounting. This EMM minimises the relative entropy.

The negation of the Second Fundamental Theorem of asset pricing implies that

for an incomplete market the requirement of no arbitrage is no longer sufficient to

determine a unique price for the derivative. There are several martingale measures,

all of which can be used to price derivatives in a way consistent with no arbitrage

[11]. This explains the need for the Esscher transform. Following the work in Benth

and Saltyte-Benth, an exponential integrability condition on the Lévy measure L

is imposed to ensure the existence of moments of the stock price process [9]. The

pricing of contingent claims such as options and variance swaps requires the first

moment of the underlying i.e. EQ[σ2
R(T )|Ft] in our case.

Definition 20. (Esscher transform, Schoutens (2003) [47])

Consider the stochastic market model such that S(t) = S(0)eX(t) where X =
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{X(t) : t ≥ 0} is a Lévy process. Then let ft(x) be the probability density of X(t).

For θ ∈ R such that
∞́

−∞
eθxft(x)dx < ∞, a new probability measure ft(x; θ) can be

defined as [47]:

ft(x; θ) =
eθxft(x)

∞́

−∞
eθxft(x)dx

(10.17)

Now, θ, is selected such that the discounted price process is a martingale i.e S(0) =

e−rTEθ [S(t)] with the expectation taken with respect to the law with the new density

function ft(x; θ) [47]. Then for a stochastic process X(t) defined on the probability

space (Ω,F ,P), the Esscher transform is a change of probability measure P by the

process and a constant θ to the EMM, Q,such that [50]:

dQ
dP

∣∣∣∣Ft =
eθX(t)

E [eθX(t)]
. (10.18)

Now, the EMMs, Q, are constructed using the Esscher transform, following the

techniques in [9]. Assume that θk(t) : [0, T ] → R ,j = 1, 2, ...,m are real-valued

measurable and bounded functions. As in Benth and Saltyte-Benth (2004), consider

the stochastic exponent defined as:

Zθ(t) = exp

 m∑
j=1

 t̂

0

θj (s) dLj (λjs)−
t̂

0

λjψj (θj (s)) ds

 (10.19)

which can also be represented as:

Zθ(t) =
m∏
j=1

exp
 t̂

0

θj (s) dLj (λjs)−
t̂

0

λjψj (θj (s)) ds

 (10.20)

where ψj (x) are the log-moment generating functions of Lj (t) that is ψj (x) =
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lnE
(
exLj(1)

)
[9, 8]. To ensure the existence of the moments of the Lévy measure,

an exponential integrability is imposed by the following condition:

Remark 1. Integrability Condition (L): There exists a constant κ > 0 such that the

Lévy measure lj satisfies the integrability condition

t̂

0

ezκlj (dz) <∞. (10.21)

The constant κ > 0 determines the finite order of moments for the stochastic pro-

cesses Zθ(t). This follows from the following Lemma [9]:

Lemma 4. (Key formula, Eberlein and Raible 1999 [29]))

If g : [0, T ]→ R is a bounded and measurable function and the condition (L) holds

for κ = supsε[0,T ]|g(s)|, then

E

exp
 t̂

0

g(s)dLs

 = exp

 t̂

0

ψ(g(s))ds

 (10.22)

Proof. For any partition 0 = t0 < .... < tN+1 = t of the interval [0, t] we get by the

independence and stationarity of the increments of the Lévy process, Ls, that :

E

[
exp

(
N∑
j=o

g(tj)
(
Ltj+1

− Ltj
))]

=
N∏
j=o

E
[
exp

(
g (tj)

(
Ltj+1

− Ltj
))]

=
N∏
j=o

exp (ψ (g(tj)) (tj+1 − tj))

= exp

(
N∑
j=o

ψ (g(tj)) (tj+1 − tj)

)

Then, if with let the partition (tj+1 − tj)→ 0, the right-hand side of the equations
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above converges to exp
(

t́

o

ψ (g(s)) ds

)
and the left-hand side of the equations above

converges in measure to
t́

o

g(s)dLs. Hence:

exp

(
N∑
j=o

g(tj)
(
Ltj+1

− Ltj
))
→ exp

 t̂

o

g(s)dLs

 (10.23)

in measure.

Thus If we take g(s) := σ(s, T ), the immediate result from the Lemma above is that:

E

exp
 t̂

0

σ(s, T )dLs

 = exp

 t̂

0

ψ(σ(s, T ))ds

 (10.24)

Remark 2. The stochastic processes Zθ(t), as defined in (10.19), are well-defined

under the natural exponential integrability conditions on the Lévy measures lk (dz)

which were assumed to hold. This means that, the processes Zθ(t) are well de-

fined for t ∈ [0, T ] if the condition (L) holds for κ = supj=1,..,m,sε[0,T ]|θj(s)|. The

probability measure,

Qθ (A) = E[IAZ
θ(τmax)] (10.25)

where IA is the indicator function and τmax is a fixed time horizon including all

trading times. The measure Qθ is equivalent to P thus an EMM. The expectation

due to probability measure Qθ is denoted by Eθ[.]. The Lemma below ensures a

sufficient condition for the existence of price dynamics of the variance swaps under

EMM, Qθ.

Lemma 5. Suppose that condition (L) holds for κ := 1 + supj=1,..,m,sε[0,T ]|θj(s)|,

then
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Eθ[f(σ2(T ))] <∞. (10.26)

Proof. Let f be a real-valued measurable function with at most linear growth. Then

from the assumption in the Lemma, it follows that Zθ(T ) is well defined. Since Qθ

is equivalent to P we find that

Eθ
[
|f(σ2(T ))|

]
= E

[
|f(σ2(T ))|Zθ(T )

]
(10.27)

and by linear growth of f it follows that E
[
exp

(
T́

0

θ (s) + e−λ(T−s)dLs

)]
must be

finite for the Lemma to hold, and this is ensured by the assumption.

10.6 Formula for deriving variance swap prices using Laplace

transforms

In this section the formula for deriving the price of variance swaps in terms of

Laplace transforms is summarised by the Lemma below. This is simply the Laplace

transform of the conditional distribution of realised variance up to time t ≤ T [8].

Lemma 6. (Laplace transform of realised variance, Benth and Saltyte-Benth (2004)

[9, 8])

Consider real and measurable functions θj(t) : [0, T ] → R, j = 1, 2, ...,m and

complex number z. Suppose that condition (L) is satisfied and well-defined for

|Re(z)| <
(

1
λjT

(
1− e−λj(T−s)

))−1

κ, ∀j where κ = supj=1,..,m,sε[0,T ]|θj(s)|. Then,

Eθ
[
ezσ

2
R(T )|Ft

]
= exp

 m∑
j=1

λj

 T̂

t

ψj

(
zwj
λjT

(
1− e−λj(T−s)

)
+ θj(s)

)
− ψj (θj(s)) ds
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∗ exp

[
z

T

(
tσ2
R(t) +

m∑
j=1

1

λj

(
1− e−λj(T−t)

)
wjYj(t)

)]
(10.28)

Proof. From the definition of continuously-sampled realised variance we obtain,

Eθ
[
ezσ

2
R(T )|Ft

]
= Eθ

ez
(

1
T

T́

0

σ2(s)ds

)
|Ft



It then follows from the superposition ofm different non- Gaussian Ornstein-Uhlenbeck

processes that,

Eθ
[
ezσ

2
R(T )|Ft

]
= Eθ

ez
(

1
T

T́

0

(
m∑
j=1

wjYj(s)

)
ds

)
|Ft


then,

Eθ
[
ezσ

2
R(T )|Ft

]
= Eθ

ez
(

1
T

m∑
j=1

wj
T́

0

Yj(s)ds

)
|Ft


from Bayes’ formula we have that ,

Eθ
[
ezσ

2
R(T )|Ft

]
= E

ez
(
m∑
j=1

wj
T

T́

0

Yj(s)ds

)
Zθ(T )

Zθ(t)
|Ft


substituting Zθ(t) we have that ,

Eθ
[
ezσ

2
R(T )|Ft

]
= E

e
(
m∑
j=1

(
zwj
T

T́

0

Yj(s)ds+
T́

t
θj(s)dLj(λjs)

))
|Ft

 .e m∑
j=1
−λj

T́

t
ψj(θj(s))ds

now since σ2
R(s) is Fs-adapted, and from the linearity of integrals we have that,

Eθ
[
ezσ

2
R(T )|Ft

]
= E

e
(
m∑
j=1

(
zwj
T

(
t́

0

Yj(s)ds+
T́

t
Yj(s)ds

)
+
T́

t
θj(s)dLj(λjs)

))
|Ft

 .e m∑
j=1
−λj

T́

t
ψj(θj(s))ds
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then,

Eθ
[
ezσ

2
R(T )|Ft

]
= E

e
(
m∑
j=1

(
zwj
T

T́

t
Yj(s)ds+

T́

t
θj(s)dLj(λjs)

))
|Ft

 .e m∑
j=1

(
zwj
T

t́

0

Yj(s)ds−λj
T́

t
ψj(θj(s))ds

)

from the dynamics of the stochastic volatility processes Yj(t) in Equation (10.8) we

have that (integral form),

Yj(T ) = Yj(t)−
T̂

t

λjYj(s)ds+

T̂

t

dLj(λjs),

then,

λj

T̂

t

Yj(s)ds = Yj(t)− Yj(T ) +

T̂

t

dLj(λjs),

from the explicit expression of Yj(t) = e−λtYj(0) +
t́

0

e−λ(t−s)dLj(λjs) [44] it follows

that,

T̂

t

Yj(s)ds =
1

λj
Yj(t)

(
1− e−λj(T−s)

)
+

1

λj

T̂

t

(
1− e−λ(T−s)) dLj(λjs)

then,

Eθ
[
ezσ

2
R(T )|Ft

]
= E

e
(
m∑
j=1

(
T́

t

zwj
Tλj

(1−e−λ(T−s))+θj(s)dLj(λjs)

))
|Ft



∗e

(
z
T
tσ2
R(t)+

m∑
j=1

(
zwj
Tλj

(1−e−λ(T−t))Yj(t)−λj
T́

t
ψj(θj(s))ds

))
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implementing the independent increment property of the subordinator we have that

[8],

Eθ
[
ezσ

2
R(T )|Ft

]
= e

(
m∑
j=1

λj

(
T́

t
ψj

(
zwj
Tλj

(1−e−λ(T−s))+θj(s)

)
−ψj(θj(s))ds

))

∗e

(
z
T

(
tσ2
R(t)+

m∑
j=1

(
1
λj

(1−e−λ(T−t))wjYj(t)
)))

which completes the proof.

Now the Lemma above can be used to derive the Laplace transform of variance price

process.

Proposition 5. (Laplace transform of B-NS realised variance, Benth et. al (2006)[8])For

every γ > −1 and a > 0 satisfying a <
(
λj
T

(
1− e−λ(T−s)))−1

κ , for all j such that

κ = supj=1,..,m,sε[0,T ]|θj(s)|, it holds that

σ
2γ

(t, T ) =
Γ (γ + 1)

2πi

a+i∞ˆ

a−i∞

z
−(γ+1)

η(t, T, z)

∗ e

(
z
T

(
tσ2
R(t)+

m∑
j=1

(
1
λj

(1−e−λj(T−t))wjYj(t)
)))

dz

(10.29)

where

η(t, T, z) = e

(
m∑
j=1

λj

(
T́

t
ψj

(
zwj
Tλj

(1−e−λj(T−s))+θj(s)

)
−ψj(θj(s))ds

))

Proof. From the definition of the inverse Laplace transforms that for any a > 0 and

γ > −1:

x
γ

=
Γ (γ + 1)

2πi

a+i∞ˆ

a−i∞

z
−(γ+1)

e
zx

dz
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substituting the conditional realised variance under a well-defined moment ,

σ2γ(t, T ) =
Γ (γ + 1)

2πi

a+i∞ˆ

a−i∞

z
−(γ+1)

Eθ
[
ezσ

2
R(T )|Ft

]
dz

substituting Eθ
[
ezσ

2
R(T )|Ft

]
from Lemma 6 the result follows.

The proposition above gives the generalised formula for the dynamics of variance

swaps in terms of the Laplace transform. Benth et al. (2007) mention that the

generalised formula for the price of variance swaps derived above is applicable for

numerical calculations via the fast Fourier transform (FFT) and fast numerical in-

version techniques for the Laplace transform [8].

Proposition 6. (Variance swap price, Benth and Saltyte-Benth (2004) [9, 8])

The price of the variance swap is given by the following expression:

σ2(t, T ) =
1

T

(
tσ2
R(t) +

m∑
j=1

(
1

λj

(
1− e−λj(T−t)

)
wjYj (t)

))
(10.30)

+
m∑
j=1

wj
T

T̂

t

ψ
′

j (θj(s))
(
1− e−λj(T−s)

)
ds



Proof. Consider z ∈ R, differentiating the expression for Eθ
[
ezσ

2
R(t,T )

]
in Lemma 6,

it follows that:

d

dz
Eθ
[
ezσ

2
R(t,T )

]
= σ2

R(t, T ).ezσ
2
R(t,T ) , for t ≤ T
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then letting z = 0 one obtains σ2
R(T ), the realised variance at time T . Implementing

this to the expression in Lemma 6:

d

dz
Eθ
[
ezσ

2
R(t,T )

]
= e

(
m∑
j=1

λj

(
T́

t
ψj

(
zwj
Tλj

(1−e−λj(T−s))+θj(s)

)
−ψj(θj(s))ds

))

∗
m∑
j=1

wj
T

T̂

t

ψ
′

j (θj(s))
(
1− e−λj(T−t)

)
ds


∗e

(
z
T

(
tσ2
R(t)+

m∑
j=1

(
1
λj

(1−e−λj(T−t))wjYj(t)
)))

∗ 1

T

(
tσ2
R(t) +

m∑
j=1

(
1

λj

(
1− e−λj(T−t)

)
wjYj (t)

))

letting z = 0 it follows that:

σ2(t, T ) =
1

T

(
tσ2
R(t) +

m∑
j=1

(
1

λj

(
1− e−λj(T−t)

)
wjYj (t)

))

+
m∑
j=1

wj
T

T̂

t

ψ
′

j (θj(s))
(
1− e−λj(T−t)

)
ds

 .

It is of importance to observe that the explicit expression for the price of the variance

swaps obtained from the Laplace transforms is dependent on both σ2(t) and σ2
R(T )

(the current level of variance and the realised level of variance). The relationship

between the price of the variance swap and the variance level will be demonstrated

later in the chapter.

10.7 Theoretical Fourier Transform (FFT) Evaluation

In this section, the Fast Fourier Transform (FFT) is theoretically applied to obtain

the numerical solution of the expressions for realised variance in terms of the Laplace
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transforms obtained in the previous section. The representation of the price dynam-

ics of the variance swaps in terms of the Laplace transform as in Proposition 5 is well

suited to numerical evaluations based on the FFT and other inversion techniques

for the Laplace transform.

The FFT is a reliable and computationally efficient method of evaluating the discrete

Fourier Transform [24]. This method has been implemented in option pricing since

over 2 decades ago by Carr and Madan (1999) who assume that the characteristic

function of the risk-neutral density is known analytically then develop a simple

analytic expression for the Fourier Transform of the option value. The FFT is then

used to numerically solve for the option price or its time value [24].

10.7.1 Theoretical FFT in Pricing Variance Swaps

As mentioned above, the Fast Fourier Transform is a computationally efficient way

of calculating the sum (discrete Fourier transform) [24]:

w(k) =
N∑
j=1

e−i
2π
N

(j−1)(k−1)x(j) for k = 1, 2, ..., N (10.31)

in which N complex numbers are fed as inputs to obtain another sequence of N

complex numbers. The implementation of the sum above reduces the number of

multiplications required in the N summations from O(N2) to O(Nln2(N)) which is

a large reduction [24]. Although this method proposed by Carr and Madan (1999)

[24] is fast and reliable, one has to have in mind that the analytical form of the

characteristic function has to be known. The expression in Proposition 5, given

its form, can be implemented using the FFT. To achieve this, there is need to

approximate the integral with a finite sum thus z and σ̃2 := t
T
σ2
R needs to be
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discretised. Let

σ̃2(k) = 4σ̃2.(k − 1) (10.32)

and

z(j) = a+ i4z(j − 1) (10.33)

then the expression in Proposition 5 can be re-written in standard FFT form as:

σ2γ(t, T ) =
Γ (γ + 1)

2πi

a+i∞ˆ

a−i∞

z
−(γ+1)

Eθ
[
ezσ

2
R(T )|Ft

]
dz

≈
Γ (γ + 1)

2πi

N∑
j=1

z(j)
−(γ+1)

Eθ
[
ezσ

2
R(T )|Ft

]
i4z

=
Γ (γ + 1)

2πi

N∑
j=1

z(j)
−(γ+1)

e

(
m∑
j=1

λj

(
T́

t
ψj

(
z(j)wj
Tλj

(1−e−λ(T−s))+θj(s)

)
−ψj(θj(s))ds

))

.e(z(j)(
t
T
σ2
R(t)))e

z(j)
T

m∑
j=1

(
1
λj

(1−e−λ(T−t))wjYj(t)
)
i4z

=
Γ (γ + 1)

2πi

N∑
j=1

(a+ i4z(j − 1))
−(γ+1)

e

(
m∑
j=1

λj

(
T́

t
ψj

(
a+i4z(j−1)(wj)

Tλj
(1−e−λ(T−s))+θj(s)

)
−ψj(θj(s))ds

))

.e((a+i4z(j−1))(4σ̃2.(t−1))).e

m∑
j=1

a+i4z(j−1)
T

(
1
λj

(1−e−λ(T−t))wjYj(t)
)
i4z

=
Γ (γ + 1)

2πi

N∑
j=1

(a+ i4z(j − 1))
−(γ+1)

e

(
m∑
j=1

λj

(
T́

t
ψj

(
a+i4z(j−1)(wj)

Tλj
(1−e−λ(T−s))+θj(s)

)
−ψj(θj(s))ds

))

.ei
2π
N

(j−1)(t−1).ea(4σ̃
2.(t−1)).e

m∑
j=1

a+i4z(j−1)
T

(
1
λj

(1−e−λ(T−t))wjYj(t)
)
i4z

if we let 4z = 2π
N4σ̃2 then a sum of the form (10.31) is obtained as:

σ2γ(t, T ) ≈
Γ (γ + 1)

N4σ̃2

N∑
j=1

(a+ i4z(j − 1))
−(γ+1)

e

(
m∑
j=1

λj

(
T́

t
ψj

(
a+i4z(j−1)(wj)

Tλj
(1−e−λ(T−s))+θj(s)

)
−ψj(θj(s))ds

))

.ei
2π
N

(j−1)(t−1).ea(4σ̃
2.(t−1)).e

m∑
j=1

a+i4z(j−1)
T

(
1
λj

(1−e−λ(T−t))wjYj(t)
)
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for t = 1, 2, .., N .

Carr and Madan (1999) pointed out that Fourier transforms are expressed in terms

of the characteristic function of the log price. The characteristic function is known

analytically in many scenarios. Carr and Madan (1999) point out that where the

dynamics of the log-price are infinitely divisible processes, the characteristic func-

tion is obtained naturally from the representation of these processes [24]. Moreover,

to obtain the log-moment generating functions explicitly, there is a need to specify

the BDLP Lévy processes, Lj. A common approach is to specify a stationary dis-

tribution of the OU process and then derive the cumulant-generating (log-moment

generating) function for the Lévy process from the distribution [8]. Some of the

distribution classes used to specify the characteristic function are independent sta-

ble increments, the Variance-Gamma process [24] and the Inverse Gaussian (IG)

distribution [6].

10.7.2 The Inverse Gaussian distribution

In this section, the generalised Inverse Gaussian (IG) is specified for the OU process

and the cumulant-generating function of the Lévy obtained from the IG distribution.

If x ∼ IG(v, δ, γ) (note that the IG distribution is stated in this way since the

standard IG(λ, γ, δ) is unavailable due to the notation used in this chapter) then it

has the density function [6]:

(γ/δ)ν

2Kν(δγ)
xν−1exp

{
−1

2

(
δ2x−1 + γ2x

)}
, x > 0 (10.34)

where Kν is a Bessel function of the third kind with index ν, γ > 0,and δ > 0.

Special cases are [6]:

1. the Inverse Gaussian Law, where ν = −1
2
;
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2. the positive Hyperbolic Law, where ν = 1;

3. the inverse χ2 − Law with df degrees of freedom where ν = −df/2, δ =
√
df

and γ = 0;

4. Γ,where δ = 0 and ν > 0.

The law for IG(−1
2
, δ, γ), the Inverse Gaussian is given by:

δ√
2π
exp(δγ)x−

3
2 exp

{
−1

2

(
δ2x−1 + γ2x

)}
, x > 0 (10.35)

with γ > 0 and δ > 0. The impact of the parameters δ (shape parameter) and

impact of γ (scale parameter) is shown below in Figure 10.7.2 and Figure 10.7.2:

Figure 10.1: The impact of δ ∈ (2, 4, 6, 8) for γ = 2
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Figure 10.2: The impact of γ ∈ (2, 4, 6, 8) for δ = 2

Nicola to and Vernados (2003), state that it is possible to state the variance process

as the Inverse Gaussian Ornstein-Uhlenbeck process (IG-OU) with the stationary

distribution of the BDLP being given by an IG(δ, γ) law. The log-moment gener-

ating function (cumulant-generating function ψj (x) = lnE
(
exLj(1)

)
of IG(δ, γ) is

given by [44] :

ψIG(θ) = δγ − δ(γ2 − 2θ)
1
2 (10.36)

The cumulant generating function of, X, ψX(θ) = lnE[eθX ], is related to the cumu-

lant function, ψ(θ), of the BDLP by the formula:

ψ(θ) = θ
dψX(θ)

dθ
(10.37)

Thus the cumulant-generating function of the IG(δ, γ) law is:

ψ(θ) = θδ(γ2 − 2θ)−
1
2 (10.38)

If the stationary distribution of the OU process is inverse Gaussian i.e. IG-OU as

above, then the log-returns of the stock will be approximately Normal Inverse Gaus-
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sian (NIG) [8]. This four-parameter distribution fits well to the distribution of log-

returns of stock prices [44]. The probability density function of the NIG(α, β, δ, µ)

is given explicitly as follows [9]:

f (x;α, β, δ, µ) =
αδK1

(
α
√
δ2 + (x− µ)2

)
π
√
δ2 + (x− µ)2

eδ
√
α2−β2+β(x−µ) (10.39)

where µ ∈ R, δ > 0 and 0 ≤ |β| ≤ α

The method of moments estimation (MME) method can be implemented as an

initial point of numerical estimation of parametric models. In this chapter, the

MME estimation is applied to the NIG distribution’s first and second cumulant, the

skewness and the excess kurtosis to construct a system of non-linear equations for the

four parameters in the X ∼ NIG(α, β, δ, µ) distribution. The central moments for

X ∼ NIG(α, β, δ, µ) are [39]: E (X) = µ+ δ α
2

γ
, V ar (X) = δ α

2

γ3
, Skew (X) = δ 3β

α
√
δγ

and Kurt (X) = 3 + 3
(

1 + 4
(
β
α

)2
)

1
δγ
. The solution of the system of equations

yields the following parameter estimates (see Theorem 2 [31]):

β̂ =
3

s(ρ− 1)γ1

(10.40)

δ̂ =
3s
√

(ρ− 1)

ρ|γ1|
(10.41)

µ̂ = x̄− 3s

ργ1

(10.42)

α̂ =
3
√
ρ

(ρ− 1)s|γ1|
(10.43)
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where

ρ = 3

(
γ2

γ12

)
− 4 > 1 (10.44)

for s2 the sample variance of log returns, x̄ the sample mean for the log returns

series , γ1 the sample skewness and γ2 the sample kurtosis.

10.7.3 Numerical examples

In this section, numerical examples to evaluate variance swap prices are presented.

The parameters of the NIG distribution are derived using estimates from the method

of moments estimation (MME). These estimates are then used in the simulation of

the NIG process. Furthermore, the analytical formula derived in Proposition 6 used

to estimate the price of the variance swap in Equation (12.25) where the OU process

of the variance of log-returns is driven by the Normal Inverse Gaussian process.

10.7.4 Market Data

The data-set considered used this analysis consists of a set of 2520 FTSE/JSE Top

40 index daily closing prices over the period 6 April 2009 to 10 May 2019. This is

the empirical data introduced earlier in Part I. The summary statistics of the daily

log-returns on the JSE Top 40 index are stated again below as:

Table 2: Descriptive statistics for the JSE Top 40 daily log-returns
Variable Value

Mean return 3.8344×10−4

Standard deviation 0.0108
Variance 1.1660×10−4

Minimum -0.0405
Maximum 0.0468
Kurtosis 4.2504
Skewness -0.1348
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Parameter estimation

The parameters of the NIG(α, β, δ, µ) for the log-returns of the FTSE/JSE Top 40

index are estimated via the MME and MLE. To estimate the parameters via the

MME, the system of equations resulting from substituting central moments with

the observed sample moments of the log-returns empirical data is solved. In the

MLE method, the log-likelihood function in Equation (8.8) is optimised to a local

minimum in R.

Table 3: Estimates of the NIG Parameters
α β δ µ

MME 78.1947 -2.9565 0.009098 7.2828×10−4

MLE 117.82900 -12.59909 0.01363 1.85×10−3

The MME parameters are optimised to a local minimum using MATLAB’s fminunc

and the MLE are obtained using ’nigFit’ in R. The fit of the MLE parameters against

the empirical data shown below.

Figure 10.3: Parameter Fit to Empirical Data

The NIG captures the peak and tail distribution of the index log returns.
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10.7.5 Path simulation

Using the techniques shown a previous chapter and the parameters in the table

above, the sample IG and NIG processes are shown below:

Figure 10.4: Inverse Gaussian process

Positive jumps with mean-reversion are observed in the simulation.
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Figure 10.5: Normal Inverse Gaussian Process

The stock process can be described by the path above.

10.7.6 Exploring the explicit formula for the price of the variance swap

Consider the price of the variance swap derived in Equation (10.30). Then since

the Inverse Gaussian distribution is self-decompasable, the law of the BDLP of the

variance process in Equation (10.2) can be specified as the IG (a, b) distribution.

Moreover, the cumulant generating function of the IG(a, b) distribution is given by

[44]:

ψIG(θ) = logE
(
e−θX

)
= ab− a

(
b2 − 2θ

) 1
2 . (10.45)

Thus to obtain the IG–OU process, the BDLP must have a cumulant function

given by Equation (10.38), given by ψ(θ) = θ
(
d
dθ
ψIG(θ)

)
. This gives ψ(θ) =

θa (b2 − 2θ)
− 1

2 . This case is of particular interest because when ρ = 0, the IG dis-

tributed stationary OU process results in NIG distributed log returns of the stock.

This class of distributions has been shown to provide a good fit to log returns of
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stock prices [44].

In the explicit formula for the price of a variance swap in Equation (10.30), m, is

assumed to be 2 to demonstrate the superposition of two different non-Gaussian

Ornstein–Uhlenbeck processes. The formula requires estimates of the weights wj,

Yj (t) the variance processes and θj(s) the decay rates. Using the MME parameters of

the NIG(α, β, δ, µ) we obtain the variance estimate as α2δ (α2 − β2)
−3/2

= 1.3163×

10−4 [47]. Assuming equal weights i.e. w1 = w2 = 0.5, then it follows that Y1 (t) =

Y2(t) = 6.5817 × 10−5. The decay rates are assumed to be θ1(s) = 0.9 and θ2(s) =

0.03 for the two OU processes respectively. For various levels of realised variance,

the value of the variance swap is given the following curve:

Figure 10.6: Explicit price of the variance swap

The price was obtained in MATLAB from the explicit price derived in (10.30).

The impact of the decay parameters θ1(s) and θ2(s) on the price of the variance

swaps is shown below:
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Figure 10.7: The impact of decay parameters on the price of variance swaps

Although the variance of the m = 2 OU processes is equally weighted, the decay
parameters have an impact on the price.

10.8 Conclusions

The model developed by Barndoff-Nielsen and Shepard (2001) provides attractive

features to the volatility process such as positive jumps that are observable in mar-

ket data. The analytical formula for continuously-sampled variance swaps was ob-

tained using Laplace transform under an integrability condition for Levy processes.

Although elementary results such as the Laplace transforms were implemented to

obtain the semi closed-form analytical formula for the price of variance swaps, the

formula itself is still practically complex. The estimates of the NIG were obtained

from the method of moments estimation (MME). An implementation of the formula

obtained showed that the price of continuously-sampled variance swaps is convex in

realised variance (smile effect). The this consistent with the derived formula for the
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price of variance swaps in which the realised variance is present.

11 Pricing Variance Swaps Under the Heston Model

The Heston Model(1993) [34] is amongst the most popular models to describe the

pathway of the volatility of an underlying asset. As in the B-NS model described

earlier, the dynamics of the asset’s volatility are described by a mean-reverting

stochastic process. In Zhu and Lian (2011) [51], an analytical closed-form solution for

pricing variance swaps under stochastic volatility with an OU process is derived. The

closed-form solution for pricing discretely sampled variance swaps with stochastic

volatility is obtained from solving the model’s two-part partial differential equation

(PDE) using Fourier transform techniques under Feynman theory. The asymptotic

form of the analytical formula for the value of the variance swaps based on the

discrete sampling is studied. In particular, convergence of the discretely-sampled

case to the continuously-sampled case under the Heston model is investigated.

11.1 The Heston Model

If (Ω,F ,F(t),P) is a probability space adapted to the filtration {F(t) : 0 ≤ t ≤ T},

then Heston (1993) suggests the following dynamics for the stock price and variance

processes:


dS(t) = µS(t)dt+

√
v(t)S(t)dW (t)1

dv(t) = κ (θ − v(t)) dt+ σν
√
v(t)dW (t)2

dW (t)1dW (t)2 = ρdt

(11.1)
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with initial conditions:


S(0) ≥ 0

ν(0) ≥ 0

where

• µ is the expected return of the underlying asset, which is r in a risk neutral

setting

• θ is the long-term mean of variance, which the variance is assumed to revert

to regardless of the initial level

• κ is a mean-reverting speed parameter of the variance towards θ

• σv is the ’volatility of volatility ’ which contributes to the variation in volatility

together with the kurtosis of the underlying asset’s distribution.

The notation for the volatility, ν(t) := σ2(t) in this section is changed to not be

confused with the volatility of volatility σν . The two Wiener processes dW (t)1 and

dW (t)2 describe the random noise in the underlying stock and its volatility respec-

tively. These two are assumed to be correlated with a constant correlation coefficient,

ρ [51]. The variance should be positive and this is ensured by fixing 2κθ ≥ σ2 [51].

This is known as the Feller condition. For purposes of this discussion, the expected

return of the underlying is assumed to be constant. However, this assumption does

not significantly affect any of the results presented in this section and the repre-

sentation can be easily generalized to incorporate the case of deterministic interest

rates [38].
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11.2 Risk neutral pricing

It should be observed that the stock and variance processes described in Equation

(11.1) are under the real-world probability P. The existence theorem of equivalent

martingale measure (EMM), enables us to change the real probability measure to a

risk-neutral probability measure under which contingent claims can be priced. This

is particularly achieved by the Girsanov Theorem (see [11], page 161). Define

dW̃ (t)1 = dW (t)1 + ϕ(t)dt (11.2)

and

dW̃ (t)2 = dW (t)2 + λ(S, ν, t)dt (11.3)

then let process L(t) be:

L(t) = e

{
t́

0

ϕ(s)dW (t)1+
t́

0

ϕ(s)dW (t)2− 1
2

t́

0

ϕ(s)2+λ2(S,ν,t)ds

}
(11.4)

where ϕ(t) = µ−r√
ν(t)

, W̃ (t) is the Q-Wiener process and W (t) is the P-Wiener

process. The new probability measure Q on F(t) is given by:

dQ
dP

= L(t).

The Heston Model (11.1) can now be redefined under Q as:


dS(t) = µS(t)dt+

√
v(t)S(t)dW (t)1

dv(t) = κ∗ (θ∗ − v(t)) dt+ σν
√
v(t)dW (t)2

(11.5)
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with {S(t)}t≥0 and {ν(t)}t≥0 with

κ∗ = κ+ λ (11.6)

θ∗ =
κθ

κ+ λ
(11.7)

The function λ(S, ν, t) is the market price of volatility risk. As explained in He-

ston (1993), the function yields a premium proportional to the variance so that

λ(S, ν, t) = λν(t) [35, 45].

Recalling the value of a variance swap at time t we have that:

V (t) = e−r(T−t)EQ
(
N(σ2

R(T )−Kvar)
)

(11.8)

and since the swap must be entered into with no cost at time t = 0 it implies that:

Kvar = EQ[σ2
R(T )] (11.9)

11.3 Approach for Pricing Discretely-Sampled Variance Swaps

In this section, the Fourier transform approach is used to obtain a closed-form

analytical solution for the fair delivery price of a variance swap. The associated

PDE is analytically solved and an explicit closed-form solution is obtained as in

Heston [34]. The expected value of realised variance under the risk-neutral measure

Q can be expressed as [38]:
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EQ
[
(σ2

R(T )
]

=
1

N∆t

N∑
i=1

EQ

[(
S(ti)− S(ti−1)

S(ti−1)

)2
]
.1002 (11.10)

Looking at the expression above, the problem of valuing a variance swap can be

reduced to:

EQ

[(
S(ti)− S(ti−1)

S(ti−1)

)2
]

(11.11)

To calculate the expectation two cases need to be considered:

1. i = 1 and,

2. i > 1.

This is due to the difference in the calculation procedures. The i is fixed as a

constant, hence both ti and ti−1 are regarded as known constants [38].

Case i > 1 In this case the time ti−1 > 0 and S(ti−1) > 0 are unknown at the cur-

rent time t = 0. This means that the payoff function depends on two unknown values

that is S(ti−1) and S(ti) (the future underlying price value). The two-dimensional

problem becomes difficult to solve, thus a new function I(t) is introduced to solve

the two-dimensional problem as in Little and Pant (2001) [41]:

I(t) =

t̂

0

δ (ti−1 − τ)S(τ)dτ (11.12)

where δ(x) is the Dirac delta function (see Appendix). Then

I(t) =


0, ; 0 ≤ t < ti−1

S(ti−1), ; t ≥ ti−1

(11.13)
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The expected value of an expression involving S(t) and I(t) have to be evaluated . A

contingent claim whose payoff at expiry ti depends on S(ti) and I(ti) is considered.

Under the assumptions made regarding the dynamics of the underlying asset, the

set of historical prices are independent variables [51]. Following the notation in

Heston(1993), the value of a contingent claim, U, can be written as a function of

three independent variables Ui = Ui (S(t), ν(t), I(t), t) . If we let the payoff of

this contingent claim at expiry be
(
S(ti)
I(ti)
− 1
)2

then under standard no-arbitrage

arguments we obtain the following PDE (subscripts removed for the simplicity of

the expression) for the value of the contingent claim [51]:


∂Ui
∂t

+ 1
2
νS2 ∂U

2
i

∂S2 + ρσV νS
∂Ui
∂S∂ν

+ 1
2
σ2
V ν

∂U2
i

∂ν2 + rS ∂Ui
∂S

+ [κ∗(θ∗ − ν)] ∂Ui
∂ν
− rUi + δ (ti−1 − t) ∂Ui

∂I
= 0

Ui (S, ν, I, t) =
(
S
I
− 1
)2

(11.14)

From Feynman Kac Theorem (see Appendix), the solution of this terminal PDE can

be written as [51]:

EQ

[(
S(ti)

I(ti)
− 1

)2
]

= ertiUi (S(0), ν(0), I(0), t0) . (11.15)

This is the expression that needs to be solved to obtain the price of the variance

swap. Therefore, it is sufficient to solve the PDE and terminal condition stated

above to obtain the expected value. If properties of the Dirac delta function and the

indicator variable It are implemented for t 6= ti−1, the terminal PDE is to reduced

to:
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∂Ui
∂t

+ 1
2
νS2 ∂U

2
i

∂S2 + ρσV νS
∂Ui
∂S∂ν

+ 1
2
σ2
V ν

∂U2
i

∂ν2 + rS ∂Ui
∂S

+ [κ∗(θ∗ − ν)] ∂Ui
∂ν
− rUi = 0

Ui (S, ν, I, t) =
(
S
I
− 1
)2

(11.16)

This implies that the indicator variable has been eliminated from the equation except

at t = ti−1 . However, as seen above the variable, It, is still present in the terminal

condition. By definition, It experiences a jump in value at t = ti−1. Under no-

arbitrage theory, this variable should be continuous so that the option remains

continuous across time. Therefore, the original PDE system is split into two systems

across times [0, ti−1] and [ti−1, ti] as jump conditions [38, 51]:


∂Ui
∂t

+ 1
2
νS2 ∂U

2
i

∂S2 + ρσV νS
∂Ui
∂S∂ν

+ 1
2
σ2
V ν

∂U2
i

∂ν2 + rS ∂Ui
∂S

+ [κ∗(θ∗ − ν)] ∂Ui
∂ν
− rUi = 0

lim
t↑ti−1

Ui (S, ν, I, t) = lim
t↓ti−1

Ui (S, ν, I, t) , 0 ≤ t ≤ ti−1

(11.17)

in which I(t) = 0 and


∂Ui
∂t

+ 1
2
νS2 ∂U

2
i

∂S2 + ρσV νS
∂Ui
∂S∂ν

+ 1
2
σ2
V ν

∂U2
i

∂ν2 + rS ∂Ui
∂S

+ [κ∗(θ∗ − ν)] ∂Ui
∂ν
− rUi = 0

Ui (S, ν, I, t) =
(
S
I
− 1
)2

, ti−1 ≤ t ≤ ti

(11.18)

in which I(t) = S(ti−1).

The latter system is solved analytically using the generalised Fourier transform

method.
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Definition 21. (Fourier Transform, Zhaoli et. al. (2015) [38])

If f(t) satisfies Dirichlet conditions, and absolutely integrable, then the Fourier

transform F (ω) of f(t) is defined as:

F [f(t)] = F (ω) =

∞̂

−∞

f(t)e−iωtdt (11.19)

where i2 = −1.

Proposition 7. ( Zhu and Lian (2011) [51])

By using Fourier transform algorithms, the PDE system of a derivative which has

a payoff function of the form U(S, ν, t) = H(S) at expiry T and whose underlying

asset follows the dynamics of the Heston stochastic volatility model (11.1) is:


∂U
∂t

+ 1
2
νS2 ∂U2

∂S2 + ρσV νS
∂U
∂S∂ν

+ 1
2
σ2
V ν

∂U2

∂ν2 + rS ∂U
∂S

+ [κ∗(θ∗ − ν)] ∂U
∂ν
− rU = 0

U (S, ν, T ) = H (S) , t ≤ T

(11.20)

and its solution can be expressed as:

U (x, ν, t) = F−1
[
eC(ω,T−t)+D(ω,T−t)νF [H (ex)]

]
(11.21)
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where x = ln (S) and ω is the Fourier transform variable, and



C (ω, τ) = r(ωi− 1)τ + κ∗θ∗

σ2
V

[
(a+ b) τ − 2ln

(
1−gebτ

1−g

)]
D (ω, τ) = a+b

σ2
V

(
1−ebτ
1−gebτ

)
a = κ∗ − ρσV ωi

b =
√
a2 + σ2

V (ω2 + ωi)

g = a+b
a−b

(11.22)

Proof. The outline of the proof is given below.

Considering PDE (11.20) above, the following transforms are used:


τ = T − t

x = lnS

(11.23)

The PDE then becomes:


∂U
∂τ

= 1
2
ν ∂U

2

∂x2 + ρσV ν
∂U
∂x∂ν

+ 1
2
σ2
V ν

∂U2

∂ν2 +
(
r − 1

2
ν
)
∂U
∂x

+ [κ∗(θ∗ − ν)] ∂U
∂ν
− rU

U (x, ν, 0) = H (ex)

(11.24)

The solution of this PDE is obtained from generalised Fourier transform with respect

to x. Then utilising a Lemma on generalised Fourier transforms (see Lemma 8 in

the Chapter Appendix), it follows that if the transform is applied to the PDE w.r.t

x, the following terminal value problem for Ũ (ω, ν, τ) = F [U (ω, ν, τ)] is obtained:
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∂Ũ
∂τ

= 1
2
σ2
V ν

∂Ũ2

∂ν2 + [κ∗θ∗ − (ρσνωi− κ)ν] ∂Ũ
∂ν
−
[
(rωi− r)− 1

2
(ωi+ ω2)ν

]
Ũ

Ũ (ω, ν, 0) = F [H (ex)]

(11.25)

Following the discussion in Heston (1993) , the solution of the PDE can be assumed

to have a form:

Ũ (ω, ν, τ) = eC(ω,τ)+D(ω,τ)νŨ (ω, ν, 0) (11.26)

Substituting the function above into the PDE ((11.25)) , C (ω, τ) and D (ω, τ) will

satisfy ordinary differential equations (ODEs):


dD
dτ

= 1
2
σ2
VD

2 + (ρσνωi− κ∗)D − 1
2
(ωi+ ω2)

dC
dτ

= κ∗θ∗D + r(ωi− 1)

(11.27)

where C (ω, 0) = 0 and D (ω, 0) = 0 are initial conditions. Considering the first

equation in the system of ODEs above, the solution for D can be obtained analyt-

ically (see the Chapter Appendix). The MATLAB function ode45 can be used to

obtained the solution for C via numerical integration. The solutions as in [51] are:


C (ω, τ) = r(ωi− 1)τ + κ∗θ∗

σ2
V

[
(a+ b)τ − 2ln

(
1−gebτ

1−g

)]
D (ω, τ) = a+b

σ2
V

(
1−ebτ
1−gebτ

) (11.28)

where
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a = κ∗ − ρσV ωi

b =
√
a2 + σ2

V (ω2 + ωi)

g = a+b
a−b

(11.29)

Since the Fourier transform parameter, ω, still appears in C (ω, τ) and D (ω, τ), the

solution of the original PDE can be obtained via the inverse Fourier transform as

[38]:

U (x, ν, τ) = F−1
[
Ũ (ω, ν, τ)

]
= F−1

[
eC(ω,T−t)+D(ω,T−t)νF [H (ex)]

]
(11.30)

In order to solve PDE ((11.18)) using the Proposition above, the payoff function

H(S) is substituted by
(
S
I
− 1
)2. Considering x = lnS and taking into account that

I is a constant, the generalized Fourier transform performed to the terminal payoff

function H(ex) =
(
ex

I
− 1
)2as:

F

[(
ex

I
− 1

)2
]

= 2π

[
δ−2i(ω)

I2
− 2

δ−i(ω)

I
+ δ0(ω)

]
(11.31)
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Now using Proposition (7), the solution of PDE ((11.18)) is:

Ui (S, ν, I, t) = F−1

[
eC(ω,ti−t)+D(ω,ti−t)ν2π

[
δ−2i(ω)

I2
− 2

δ−i(ω)

I
+ δ0(ω)

]]
=

∞̂

−∞

1

2π
eC(ω,ti−t)+D(ω,ti−t)ν2π

[
δ−2i(ω)

I2
− 2

δ−i(ω)

I
+ δ0(ω)

]
eiωxdω

=

[
1

I2
eC(ω,ti−t)+D(ω,ti−t)ν+iωx

]
ω=−2i

−
[

2

I
eC(ω,ti−t)+D(ω,ti−t)ν+iωx

]
ω=−i

+
[
eC(ω,ti−t)+D(ω,ti−t)ν+iωx

]
ω=0

=
e2x

I2
eC̃(ti−t)+D̃(ti−t)ν − 2ex

I
+ e−r(ti−t) (11.32)

where C̃(t) := C(−2i, t) , D̃(t) := D(−2i, t), and x = lnS for ti−1 ≤ t ≤ ti. These

can be expressed as:


C̃ (τ) = rτ + κ∗θ∗

σ2
V

[
(ã+ b̃)τ − 2ln

(
1−g̃eb̃τ

1−g̃

)]
D̃ (τ) = ã+b̃

σ2
V

(
1−eb̃τ
1−g̃eb̃τ

) (11.33)

where



ã = κ∗ − ρσV ωi

b̃ =
√
ã2 + 2σ2

V

g̃ =
(

ã
σV

)2

− 1 +
(

ã
σV

)√(
ã
σV

)2

− 2

(11.34)

This forms the explicit form solution of the PDE ((11.18)) and completes the first

stage of the two PDEs for calculating the expectation in Equation ((11.11)).

Next we solve PDE ((11.17)) to conclude the calculation of the expectation in

Equation ((11.11)). By definition of I := I(t) in Equation ((11.13)), it can be
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deduced that lim
t↓ti−1

ln(S(t)) = lnI. Then it follows from Equation ((11.32)) that:

lim
t↓ti−1

Ui (S, ν, I, t) = lim
t↓ti−1

[
e2x

I(t)2
eC̃(∆t)+D̃(∆t)ν − 2ex

I(t)
+ e−r(∆t)

]
= lim

t↓ti−1

[
e2lnSt

I(t)2
eC̃(∆t)+D̃(∆t)ν − 2elnSt

I(t)
+ e−r(∆t)

]
=

e2lnIt

I(t)2
eC̃(∆t)+D̃(∆t)ν − 2elnI(t)

I(t)
+ e−r(∆t)

= eC̃(∆t)+D̃(∆t)ν − 2 + e−r(∆t) (11.35)

To simplify the notation we can let the r.h.s of Equation ((11.35)) be denoted by

f(ν) as:

f (ν) = eC̃(∆t)+D̃(∆t)ν + e−r(∆t) − 2. (11.36)

which is the terminal condition of PDE ((11.17)) in the period 0 ≤ t ≤ ti−1 according

to the jump conditions lim
t↑ti−1

Ui (S, ν, I, t) = lim
t↓ti−1

Ui (S, ν, I, t) . As seen in Equation

((11.36)), the terminal condition for PDE ((11.17)) in period 0 ≤ t ≤ ti−1 contains

a single independent variable ν. The advantage of this in solving the PDE ((11.17))

can be exploited using the following Proposition from Zhu and Lian (2011) [51]

which is stated without proof for purposes of this dissertation.

Proposition 8. (Zhu and Lian(2011) [51])

The solution of the PDE


∂U
∂t

+ 1
2
νS2 ∂U2

∂S2 + ρσV νS
∂U
∂S∂ν

+ 1
2
σ2
V ν

∂U2

∂ν2 + rS ∂U
∂S

+ [κ∗(θ∗ − ν)] ∂U
∂ν
− rU = 0

U (S, ν, T ) = f (ν)

(11.37)
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is obtained analytically in the form,

U (S, ν, t) =

∞̂

0

e−r(T−t)f (ν(T ))

∞̂

0

e−r(T−t)f (ν(T )) p (ν(T )|ν(t)) dν(T )dν(T )

(11.38)

where

p (ν(T )|ν(t)) = ce−W−V
(
V

W

)q/2
Kq

(
2
√
WV

)
(11.39)

with

c = 2κ∗

σ2
V (1−e−κ∗(T−t))

W = cνte
−κ∗(T−t)

V = cνT

q = 2κ∗θ∗

σ2
V
− 1

(11.40)

and Kq(· ) is the Bessel function of the first kind of order q.

Then it follows from Proposition (8) that the solution of the PDE ((11.17)) can be

expressed in the form:

Ui (S, ν, I, t) =

∞̂

0

e−r(ti−1−t)f (ν(ti−1)) p (ν(ti−1)|ν(t)) dν(ti−1) (11.41)

where f(ν(ti−1)) and p (ν(ti−1)|ν(t)) is transition probability density function of

OU process. The expectation in Equation ((11.11)) has been obtained for the Case

i > 1 by solving PDE ((11.18)) and PDE ((11.17)).

EQ
0

[(
S(ti)− S(ti−1)

S(ti−1)

)2
]

= ertiUi (S(0), ν(0), I(0), 0) (11.42)
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=

∞̂

0

er(∆t)f (ν(ti−1)) p (ν(ti−1)|ν(0)) dν(ti−1) (11.43)

The form of f(ν) used in deriving a solution for PDE ((11.18)) can now be imple-

mented again to obtain a closed form solution. Zhu and Lain (2011), set χ2
t = 2cνt.

This implies that the stochastic variable is subject to a non-central chi-squared dis-

tribution, χ(t)2 ∼ χ2 (2V ; 2q + 2, 2W ) with a pdf denoted pχ(t)2(x). Then it follows

that p (ν(T )|ν(t)) = 2cpχ(T−t)2(2cν(t)). The parameters are defined as in Proposi-

tion (8) . Then, using the MGF of a non-central chi-squared distribution it follows

that:

EQ
0

[(
S(ti)− S(ti−1)

S(ti−1)

)2
]

=

∞̂

0

er(∆t)f (ν(ti−1)) p (ν(ti−1)|ν(0)) dν(ti−1)

= er(∆t)EQ
0

[
eC̃(∆t)+D̃(∆t)ν(ti−1) + e−r(∆t) − 2

]
= er(∆t)

(
eC̃(∆t)EQ

0

[
eD̃(∆t)ν(ti−1)

]
+ e−r(∆t) − 2

)
= er(∆t)

(
eC̃(∆t)EQ

0

[
eD̃(∆t)

χ2
ti

2c

]
+ e−r(∆t) − 2

)
(11.44)

= er(∆t)
(
eC̃(∆t)

[
(1− 2ξ)−(q+1) e

2Wξ
1−2ξ

]
ξ=

D̃(∆t)
2c

+ e−r(∆t) − 2

)

= er(∆t)

eC̃(∆t)+
WD̃(∆t)

c−D̃(∆t)

[(
c

c− D̃ (∆t)

) 2κ∗θ∗

σ2
V
e

2WΦ
1−2Φ

]
Φ=

D̃(∆t)
2c


+er(∆t)

(
e−r(∆t) − 2

)
(11.45)

The parameters c and W were determined by replacing time t = 0 and T = ti−1 in

Equation ((11.40)). Thus,

fi (ν(0)) = e
C̃(∆t)+

cie
−κ∗ti−1

ci−D̃(∆t)
D̃(∆t)ν0

(
ci

ci − D̃ (∆t)

) 2κ∗θ∗

σ2
V

+ e−r(∆t) − 2 (11.46)
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where,

ci =
2κ∗

σ2
V (1− e−κ∗ti−1)

then the solution of the expectation is obtained as:

EQ
0

[(
S(ti)− S(ti−1)

S(ti−1)

)2
]

= er(∆t)fi (ν(0)) . (11.47)

Then the sum in Equation ((11.10)) for the calculation of the variance swap case be

determined for all i > 1.

Case i = 1 For the case i = 1, ti−1 = 0 and S(ti−1) = S(0) which is the current

price of the underlying, and therefore known. It is important to note that for the

case i > 1, the S(ti) were unknown values. The expectation in Equation ((11.11))

then reduces to a form:

EQ
0

[(
S(ti)

S(0)
− 1

)2
]

(11.48)

The expectation can be obtained as:

EQ
0

[(
S(ti)

S(0)
− 1

)2
]

= er(∆t)f (ν(0)) . (11.49)

Therefore, the case i > 1 and case i = 1 can be combined to deduce the fair value

of a discretely sampled variance swap as:

Kvar = EQ
0 [σ2

R(T )] = 1002.
er(∆t)

T

[
f (ν(0)) +

N∑
i=2

fi (ν(0))

]
(11.50)

where N is the finite number of sampling times of the swap contract.
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11.4 The Continuously-sampled Variance Swap

The continuously-sampled Heston (1993) model case has been proposed by many

researchers such as Elliot and Siu (2007) [30] and Swishchuk (2011) [49] to price vari-

ance swaps for stochastic volatility. In the continuously-sampled case the expected

realised variance is given by:

Kvar = EQ[σ2
R(T )] = 1002.EQ

 1

T

T̂

0

ν(t)dt

 (11.51)

Swishchuk (2004) [48], defines a transformation of the variance process by:

h(t) := eκt(ν(t)− θ) (11.52)

and then applying Itô’s formula we obtain the stochastic equation for h(t) as :

dh(t) = σνe
κt
√
e−κth(t) + θdW (t) (11.53)

then the solution for Equation (11.53) is [48]:

h(t) = ν(0)− θ + W̃
(
φ(t)−1

)
(11.54)

then from Equation (11.52) :

ν(t) = e−κt
(
ν(0)− θ + W̃

(
φ(t)−1

))
+ θ (11.55)
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where W̃ (·) is a F(t)-measurable Wiener process and φ(t) is defined as:

φ(t) = σ−2
ν

t̂

0

{
eκφ(s)

(
ν(0)− θ + W̃

(
φ(t)−1

))
+ θe2κφ(s)

}−1

ds.

Then it follows that:

E (ν(t)) = e−κt (ν(0)− θ) + θ. (11.56)

The expectation EQ[σ2
R(T )] and thus the delivery price of the variance swap is

EQ
(
σ2
R(T )

)
=

1

T

T̂

0

EQ (ν(t)) dt

=
1

T

T̂

0

e−κt (ν(0)− θ) + θdt

=
1

−κT
[
e−κt (ν(0)− θ)

]T
0

+ θ

=
1− e−κT

κT
(ν(0)− θ) + θ

Which can be re-written in familiar notation as :

EQ
(
σ2
R(T )

)
= ν(0)

1− e−κ∗T

κ∗T
+ θ

(
1− 1− e−κ∗T

κ∗T

)
(11.57)

The expression above is also found in Brockhaus and Long (2000) [16] and is trans-

lated as the weighted average spot variance, ν(0),and the mean of the variance over

a long term, θ [51]. Theoretically, the discrete model should converge to the contin-

uous model as the sampling times increases that is ∆t → 0. This will be explored

practically in the next section.
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Proposition 9. (Convergence, Zhaoli et. al. (2015) [51, 38])

If we consider the stochastic volatility in Equation (11.1) , then the risk-neutral price

of a variance swap obtained from a finite number of discrete sampling times can be

approximated by a continuum of sampling times as the sampling times increase that

is:

lim
∆t→0

er(∆t)

T

[
f (ν(0)) +

N∑
i=2

fi (ν(0))

]
= ν(0)

(
1− e−κ∗T

κ∗T

)
+ θ∗

(
1− 1− e−κ∗T

κ∗T

)
(11.58)

where the parameters are defined as in Equation (11.40) and Equation (11.46).

Proof. Using the L‘Hopital’s rule, it can be deduced that:

lim
∆t→0

C̃ (∆t) = lim
∆t→0

(
r∆t+

κ∗θ∗

σ2
V

[
(ã+ b̃)∆t− 2ln

(
1− g̃eb̃∆t

1− g̃

)])
= 0 (11.59)

lim
∆t→0

D̃ (∆t) = lim
∆t→0

(
ã+ b̃

σ2
V

(
1− eb̃∆t

1− g̃eb̃∆t

))
= 0 (11.60)

then,

lim
∆t→0

f (ν(0)) = lim
∆t→0

(
eC̃(∆t)+D̃(∆t)ν(0) + e−r(∆t) − 2

)
= 0 (11.61)

lim
∆t→0

f (ν(0))

∆t
= lim

∆t→0

(
eC̃(∆t)+D̃(∆t)ν(0) + e−r(∆t) − 2

∆t

)
= ν0 (11.62)

and
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lim
∆t→0

fi (ν(0))

∆t
= ν(0)e−κ

∗(i−1)∆t + θ∗
(
1− e−κ∗(i−1)∆t

)
(11.63)

thus we can derive the limit as:

lim
∆t→0

er(∆t)

T

[
f (ν(0)) +

N∑
i=2

fi (ν(0))

]
=

1

T
lim

∆t→0

N∑
i=2

∆t

(
ν0 +

fi (ν(0))

∆t

)

= 0 +
1

T
lim

∆t→0
∆t

N∑
i=2

(
ν(0)e−κ

∗(i−1)∆t + θ
(
1− e−κ∗(i−1)∆t

))
=

1

T

T̂

0

(
ν(0)e−κ

∗t + θ
(
1− e−κ∗t

))
dt

= ν(0)

(
1− e−κ∗T

κ∗T

)
+ θ∗

(
1− 1− e−κ∗T

κ∗T

)
.

which concludes the proof.

11.5 Numerical examples

The results which were derived are practically implemented in this section. The

stock and price processes as in the Heston Model (11.1) are simulated using Monte

Carlo methods. To be able to simulate the model, calibration is done to minimise

the mean square-error between the market and model prices of European style calls.

The closed-form exact solution for the discretely and continuously sampled variance

swaps was extensively studied. The price of variance swaps is compared in these two

scenarios of the Heston model. The price of variance swaps with increase in years

to maturity of the variance swap contract is also studied in a practical setting.
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11.5.1 Model Calibration

To approximate the Heston model parameters, a popular approach is loss function

estimation (that is mean square-error (MSE), sum of square-error (SSE) etc). In

this methodology the model parameters are chosen so that market option prices are

as close as possible to the model option prices [45]. Let the Heston parameters we

wish to approximate be the vector Θ := (ν(0), κ∗, θ∗, σν , ρ). If there are a set of NT

maturities τi(t = 1, 2, ..., NT ) and a set of NK strikes Kj(j = 1, 2, ...NK), then each

strike-maturity combination has a market call option price Cmarket(τi, Kj) := Cmarket
ij

and corresponding model price CΘ(τi, Kj) := CΘ
ij . The calibration problem in this

dissertation is set as

min
1

N

∑
i,j

(
Cmarket
ij − CΘ

ij

)2
. (11.64)

This is the minimum MSE for each combination of market and model prices. The

parameters obtained from the MATLAB calibration are:

Table 4: Parameters estimates for the Heston Model
ν(0) κ∗ θ∗ σν ρ µ

6.6602×10−7 0.01238 0.00735 0.003446 -0.7576 3.8344×10−4

µ is set mean of the FTSE/JSE Top 40 Index data in Chapter 3. The maturity

is chosen as one year, i.e. T = 1 and the initial price of the underlying set at

earliest price in the data set, S(0) = 263.68. In the calibration, the Heston Model’s

vanilla call option values were compared with the market values (assumed to be

Black-Scholes model prices). The calibration results using the parameters above are

shown below:
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Figure 11.1: Calibration of the Heston model to the FTSE/JSE Top 40 Index

11.5.2 Monte Carlo simulation of the Heston Stochastic volatility

Monte Carlo simulation are a number of techniques to ’artificially’ generate the

movement of the stock and variance in the Heston Model (11.1) over given period.

There are many Monte Carlo techniques which can be implemented to this effect.

Rouah (2013), in his text mentions standard approaches such as the Euler and the

Milstein, or the implicit Milstein scheme. The advantage of these schemes is that

they are easy to understand, and their convergence properties are well-known [45].

Recalling the dynamics of the variance process in the Heston Model (11.1), a simple

Euler discretization of the variance process could be:

ν(t+ 1)− ν(t) = κ∗(θ∗ − ν(t))∆t+ σν
√
ν(t)
√

∆tZ (11.65)

where Z ∼ N (0, 1). However, the problem with this simple discretization is that the
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variance process could result in negative values even if the Feller condition, 2κθ ≥ σ2
ν ,

is met [45]. To make the variance process, ν(t), non-negative the following schemes

can be used:

1. Full trunctation - the negative values for ν(t) are floored at 0. This means

that ν(t) is replaced by ν(t)+ = max (0, ν(t)).

2. Reflection - negative values for ν(t) are reflected with −ν(t). This means that

ν(t) is replaced by |ν(t)|.

The flaw in the Reflection approach is that large negative variances are reflected

to large positive variances which means that realisations of low volatility are trans-

formed into high volatility. Various approaches to simulate values of the variance

process, ν(t), which do not produce negative values are investigated in the CIR

variance process [45]. A clever approach could be to simulate the log process or the

square-root process of ν(t) then exponentiate and square the results respectively.

Simulating the stock process, S(t), then becomes straight forward. However, the log

price process x(t) = lnS(t) can instead be simulated and the result exponentiated.

From Itô’s Lemma, the Heston Model (11.1) log stock price process becomes :


dx(t) =

(
µ− 1

2
ν(t)

)
dt+

√
ν(t)dW (t)1

dν(t) = κ∗ (θ∗ − ν(t)) dt+ σν
√
ν(t)dW (t)2

(11.66)

Simulating the Heston model follows the following algorithm [45]:

1. Set the S(0) to the current spot price (or x(0) to the current log spot price),

and set ν(0) to the current variance.
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2. Generate two independent standard normal random variables Z1 and Z2. De-

fine Zν = Z1 and ZS = ρZν +
√

1− ρ2Z2. Generate the Wiener process by

dW (t)1 =
√

∆tZSand dW (t)2 =
√

∆tZν .

3. Obtain the updated variance ν(t+ 1).

4. Given ν(t+ 1), obtain S(t+ 1) (or x(t+ 1) in the log process case) then return

to (1).

Note that E [ZS] = E [Zν ] = 0 and then E [ZνZS] = ρE [Z2
ν ]+

√
1− ρ2E [Z1Z2] = ρ.

Figure 11.2: Example: Variance Process under the Heston Model

The variance process above can have multiple simulations for the same number of

days to produce the following:



11 PRICING VARIANCE SWAPS UNDER THE HESTON MODEL 121

Figure 11.3: Simulations of the Variance Process

It should be noted that the variance process is non-negative in the Figure above.

The reflection scheme was applied to this effect. This is also reproduced in a more

appealing graph as:
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Figure 11.4: Variance Process representation

Figure 11.5: Simulations of the Stock Price under the Heston Model

The price of variance swaps based on the parameters of the Heston model calibrated
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to the JSE Top 40 Index market data are presented below. The variance swap strikes

for the discretely-sampled and continuously-sampled are compared for increasing

sampling times.

Table 5: Variance Swap Strike for the Discrete and Continuous Models

Sampling Frequency Discrete model Kvar Continuous model Kvar

N=4 4.5990036×10−5 4.5971609×10−5

N=12 4.5977199×10−5 4.5971609×10−5

N=52 4.5972850×10−5 4.5971609×10−5

N=252 4.5971863×10−5 4.5971609×10−5

N=504 4.5971735×10−5 4.5971609×10−5

N=1512 4.5971680×10−5 4.5971609×10−5

N=5 000 4.5971650×10−5 4.5971609×10−5

N=10 000 4.5971620×10−5 4.5971609×10−5

N=100 000 4.5971631×10−5 4.5971609×10−5

Thus the discrete model converges to the continuous model as the frequency of

sampling increases that is ∆t → 0. However, in this case converge was slow with

sampling required for up to 1512 times a day to reach the continuous model result.

The information in Table 5 above is plotted in Excel as:
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Figure 11.6: Convergence of the discrete approximation on to the continuous model

The variance swap prices have been scaled by a factor of 107.

Comments: Figure 11.6 above shows that for a few sampling times the relative error

between the discrete and the continuous model is large. The relative error however

decreases with increasing sampling times and becomes negligible as N →∞ that is

as ∆t→ 0. This depicts the assertions in Proposition 9.

Next, the continuously-sampled price for variance swaps relationship with the ma-

turity is investigated.
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Figure 11.7: Variance swap price against maturity (years)

In this simulation ν0 < θ .

Comments: With the parameters given in Table 4, the rate of change of the price

for variance swaps with maturity is high for short-dated maturities but however,

gradually becomes low for long-dated maturities. This is observed from the steepness

of the curve.

The calibration of the model to market data resulted in a specific set of parameters

and the prices as shown in the previous figure. The general sensitivity of the variance

swap prices to changes in parameters is studied below:
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Figure 11.8: Sensitivity of variance prices to parameter changes

κ∗ = 0.01238, θ∗ = 0.000735,
σv = 0.0034458, ν0 = 0.03

κ∗ = 0.01238, θ∗ = 0.000735,
σv = 0.0034458, ν0 = 0.00003
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Figure 11.9: Sensitivity of variance prices to kappa

κ∗ = 0.01238, θ∗ = 0.000735,
σv = 0.0034458, ν0 = 0.00003

κ∗ = 12.38, θ∗ = 0.000735,
σv = 0.0034458, ν0 = 0.00003
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11.6 Conclusions

The Heston (1993) model provides an alternative to the Black-Scholes model for

pricing derivatives. The Heston Model (11.1) provides a more realistic description

of the paths of the stock price and volatility processes. However, the analytical

formula for the discretely-sampled variance swaps was not obtained as easy as in

the continuously-sampled case. The analytical formula for the discretely-sampled

variance swaps was obtained from solving two-part PDE using Fourier transform

techniques under Feynman-Kac theory. In a practical setting, to obtain the pa-

rameters of the Heston model in a risk-neutral setting, the parameters had to be

estimated using historical data. The calibration problem was set in to minimise the

MSE (mean squared error) between the market European call prices and the Euro-

pean call prices under the Heston Model. In the approximation of the parameters

lies a challenge of the long computational time required to produce the parameter

estimates. This makes the Heston Model particularly unattractive.

Furthermore, it was shown that the continuously-sampled model overstates the price

of variance swaps when compared to the discretely-sampled model for a few sampling

times. However, the discrete model was both shown analytically and practically to

converge to the continuous model at the sampling times tend to infinity. The sensi-

tivity of the variance swap prices to changes in parameters was investigated. Further-

more, the rate of change of the price of continuously-sampled variance swaps with

maturity was shown to be higher for shorter maturities than for longer-maturities.
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Chapter Appendix

Definition 22. (Dirac Delta Function)

The Dirac delta δ (x) for x ∈ R is a function defined as:

δ (x) =


+∞, x = 0

0 x 6= 0

and

∞̂

−∞

δ(x)dx = 1

Some useful function of the Dirac Delta function is that δ(x− a) = 0 for x 6= a.

The Fourier Transform is defined as:

Definition 23. (Fourier Transform, [38])

If f(t) satisfies Dirichlet conditions, and absolutely integrable, then the Fourier

transform F (ω) of f(t) is defined as:

F [f(t)] = F (ω) =

∞̂

−∞

f(t)e−iωtdt (11.67)

where i2 = −1.

The Fourier Transform is then coupled with the following theorems to be used in

the valuation of the expression of the expected value of realised variance under the

risk neutral measure.
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Lemma 7. (Zhaoli et. al (2015), [38])

If f(t) → 0 for |t| → ∞, then

F

[
df(t)

dt

]
= iωF [f(t)] . (11.68)

In general,

F[anf
(n)(t) + an−1f

(n−1)(t) + ··· + a1f
′(t) + a0f ]

=
[
an(iω)n + an−1(iω)n−1 + ··· + a1(iω) + a0

]
F[f(t)]. (11.69)

Lemma 8. (Zhaoli et.al (2015), [38])

Let δs(ω) be the Dirac delta function, then F[eist] = 2πδs(ω). If φ(t) is continuous

function, then

∞́

−∞
δs(t)φ(t)dt = φ(s).

The derivation of the Heston PDE In this section the Heston PDE is derived.

Unlike the Black-Scholes case where the source of stochasticity is the underlying

stock, in the Heston case the random changes in volatility also need to be hedged in

order to form a riskless portfolio [33]. As in the text by Gatheral (2011) a portfolio,

Π := Πt, which is made up of the option being priced V = V (S, v, t), ∆ units of

the stock S, and φ units of another option U = U(S, v, t) that is used to hedge the

volatility is considered. The value of the portfolio is then:

Π = V + ∆S + φU (11.70)

Assuming that this portfolio is self-financing then
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dΠ = dV + ∆dS + φdU (11.71)

Then Itô’s Lemma is then applied to dV and differentiation with respect to variables

S, t and ν is conducted. We then obtain:

dV =
∂V

∂t
dt+

∂V

∂S
dS +

∂V

∂ν
dν +

1

2
νS2∂

2V

∂S2
dt+

1

2
νσ2∂

2V

∂ν2
dt+ ρσνS

∂2V

∂S∂ν
dt

It is easy to show that applying Itô’s Lemma to dU results in a similar PDE with

terms in V replaced by U [33]. By grouping terms in dt, dS and dν , the change in

the value of the portfolio in a time dt is given by:

dΠ =

{
∂V

∂t
+

1

2
νS2∂

2V

∂S2
+

1

2
νσ2∂

2V

∂ν2
+ ρσνS

∂2V

∂S∂ν

}
dt (11.72)

+φ

{
∂U

∂t
+

1

2
νS2∂

2U

∂S2
+

1

2
νσ2∂

2U

∂ν2
+ ρσνS

∂2U

∂S∂ν

}
dt

+

{
∂V

∂S
+ φ

∂U

∂S
+ ∆

}
dS +

{
∂V

∂ν
+ φ

∂U

∂ν

}
dν

For the portfolio to be instantaneously risk-free (that is hedges against stock and

volatility in this case) the terms in dS and dν must be equal to zero [33].Then it

follows that:
∂V

∂S
+ φ

∂U

∂S
+ ∆ = 0 (11.73)

and
∂V

∂ν
+ φ

∂U

∂ν
= 0 (11.74)

then it implies that the hedging parameters are given by:
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φ = −∂V
∂ν

/
∂U

∂ν
(11.75)

and

∆ = −φ∂U
∂S
− ∂V

∂S
(11.76)

The change in the value of the portfolio is then left as:

dΠ =

{
∂V

∂t
+

1

2
νS2∂

2V

∂S2
+

1

2
νσ2∂

2V

∂ν2
+ ρσνS

∂2V

∂S∂ν

}
dt (11.77)

+φ

{
∂U

∂t
+

1

2
νS2∂

2U

∂S2
+

1

2
νσ2∂

2U

∂ν2
+ ρσνS

∂2U

∂S∂ν

}
dt

which can be re-written as:

dΠ = (A+ φB)dt (11.78)

Using the fact that the return on a risk-free portfolio must equal the risk-free rate

r, which is assumed to be deterministic for purposes of this discussion, it follows

dΠ = rΠdt. Then,

(A+ φB)dt = rΠdt (11.79)

= r (V + ∆S + φU) dt

Then it follows that,

A+ φB = r (V + ∆S + φU)
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Substituting φ = −∂V
∂ν
/∂U
∂ν

and rearranging produces:

A− rV + rS ∂V
∂S

∂V
∂ν

=
B − rU + rS ∂U

∂S
∂U
∂ν

. (11.80)

The right-hand sided of the equation above is in terms of U alone and the left-hand

side in terms of V only. Thus, a function f(S, ν, t) = −κ(θ − ν) + λ(S, ν, t) of S, ν

and t can be written for both sides of the equation as in Heston (1993). The term

λ(S, ν, t) is the market price of volatility risk [35]. Now if, f(S, ν, t) is substituted

for the left-hand side of the equation above, it follows that:

− κ(θ − ν) + λ(S, ν, t) =
B − rU + rS ∂U

∂S
∂U
∂ν

(11.81)

− [κ(θ − ν)− λ(S, ν, t)]
∂U

∂ν
= B − rU + rS

∂U

∂S

B − rU + rS
∂U

∂S
+ [κ(θ − ν)− λ(S, ν, t)]

∂U

∂ν
= 0

now substituting for B, it follows that:

∂U

∂t
+

1

2
νS2∂

2U

∂S2
+

1

2
νσ2∂

2U

∂ν2
+ ρσνS

∂2U

∂S∂ν
(11.82)

−rU + rS
∂U

∂S
+ [κ(θ − ν)− λ(S, ν, t)]

∂U

∂ν
= 0

which is the Heston(1993) PDE.

Theorem 6. (Feynman-Kac Theorem)

Consider the terminal PDE:
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∂U
∂t

+ a(t, x)∂U
∂x

+ 1
2
b2(t, x)∂

2U
∂x2 −G(t, x)u(t, x) + f(t, x) = 0

u(t, x) = Φ(x)

for all x ∈ R and t ∈ [0, T ] where a,b,Φ and G are known functions and u : R→ [0, T ]

is the unknown function. Then the solution of the PDE can be written as:

u(x, t) = EQ

 T̂

t

e
−
ś

t
G(Xu)du

f (Xs) ds+ e
−
T́

t
G(Xs)ds

Φ (XT ) |Xt = x

 (11.83)

under the probability measure Q such that X is an Itô process driven by:

dXt = a (Xt) dt+ b (Xt) dWt

where Wt is a Wiener process and the initial condition is Xt = x.

Solution of the ODE in Equation (11.27)

Considering the ODE

dD

dτ
=

1

2
σ2
VD

2 + (ρσνωi− κ∗)D −
1

2
(ωi+ ω2) (11.84)

for

To simplify notation let 
α := κ∗ − ρσνωi

β := −1
2
(ωi+ ω2)

γ := 1
2
σ2
V

(11.85)
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then it follows that 11.84 can be rewritten as:

dD

dτ
= γD(τ)2 − αD(τ) + β (11.86)

where D (ω, 0) := D(0) = 0 is the initial condition. This is the form of a Riccati

Equation.

The general solution of the Riccati Equation can be obtained via substitution as

follows:

Assume that β, γ 6= 0 then define

m = Dγ

and assume that that m, γ ∈ C1. The it follows, from the chain rule that

m′ = (Dγ)′ = D′γ + γ′D

=
(
γD2 − αD + β

)
γ + γ′D

= γ2D2 − αDγ + βγ + γ′D

= γ2

(
m2

γ2

)
− αm+ βγ + γ′D

= m2 − αm+ βγ +m

(
γ′

γ

)
= m2 +m

(
γ′

γ
+ α

)
+ βγ

(11.87)

This is the form of a linear second order differential equation. Then 11.87 can be

re-written in the following form:

m′ = m2 +mP (τ) +Q(τ) (11.88)
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then if we use the substitution m = −u′
u

where u ∈ C2, it follows that

m′ =
−u′′

u
+

(
u′

u

)2

(11.89)

⇐⇒
m′ =

−u′′

u
+m2

−u′′

u
= m′ −m2 = mP +Q

(11.90)

⇐⇒
−u′′

u
=

(
−u′

u

)
P +Q

u′′ =u′P −Qu

u′′ − u′P +Qu =0

(11.91)

Equation 11.91 is a homogeneous second linear differential equation. Substituting

back P := γ′

γ
+ α = −α and Q := βγ we obtain:

u′′ + αu′ + βγu = 0 (11.92)

This homogeneous ODE has characteristic equation r2 + αr + βγ = 0. This implies

that r1 =
−α+
√
α2−4βγ

2
and r2 =

−α−
√
α2−4βγ

2
thus u1 = er1τ and u2 = er2τ are

solutions.

Checking the solution u1 = er1τ , it follows that u′1 = r1e
r1τ and u′′1 = r2

1e
r1τ . Then:

0 = u′′ + αu′ + βγu =r2
1e
r1τ + αr1e

r1τ + βγer1τ

=
1

4

(
α2 − 2α

√
α2 − 4βγ + α2 − 4βγ

)
er1τ

+ α

(
−α +

√
α2 − 4βγ

2

)
er1τ + βγer1τ

(11.93)
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This is a solution if for c1,c2 ∈ C, it follows that:

u = c1u1 + c2u2 = c1e
r1τ + c2e

r2τ (11.94)

but we recall that m = −u′
u

then it follows that D = −−u′
uγ

. Therefore,

D (τ) =
− (c1r1e

r1τ + c2r2e
r2τ )

γ (c1er1τ + c2er2τ )
(11.95)

and since D (0) = 0 it implies that

− (c1r1 + c2r2)

γ (c1 + c2)
= 0 (11.96)

⇒

c1 = −c2

(
r2

r1

)
(11.97)

Thus

D (τ) =
−
(
−c2

(
r2
r1

)
r1e

r1τ + c2r2e
r2τ
)

γ
(
−c2

(
r2
r1

)
er1τ + c2er2τ

)
=

er1τ + er2τ(
γ
r1

)(
r2
r1
er1τ − er2τ

)
=

1− er2τ−r1τ
−γ
r2

(
1− r2

r1
er2τ−r1τ

)
=

1− e−dτ
−γ
r2

(1− ge−dτ )

(11.98)

where d = r2 − r1 =
√
α2 − 4βγ and g = r2

r1
=
−α−
√
α2−4βγ

−α+
√
α2−4βγ
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Part III

Hedging variance swaps

12 Static replication of variance swaps

Demeterfi, Derman, Kamal and Zou (1999) mention that the volatility of an asset

is the simplest measure of risk and uncertainty of the asset [25]. As mentioned

earlier, the need to hedge oneself from volatility risk saw the increase in the trading

of volatility and variance-based derivatives over the past two decades. The payoff

of a variance swap is a function of realised variance (the variance of the underlying

asset’s return over the lifetime of the variance swap). In this section, a methodology

discussed in Demeterfi et al. (1999) and Carr and Lee (2009) to replicate the payoff

of variance swaps is discussed.

In a non-parametric setting, the underlying asset and vanilla options are traded in

quantities which are expressed in terms of options (vanilla options) without specify-

ing parameters of a particular distribution [19, 25]. This is in contrast to the price

of variance swaps developed under stochastic volatility models as indicated earlier.

Neuberger (1994) showed that the hedging error obtained from delta-hedging a log

contract accumulates the difference between realised variance and the fixed variance

implemented in the hedge [43].

Carr and Lee (2009) postulate that under an independence condition, the risk-

neutral distribution of path-dependent realised variance can be used to determine

the value of a stock option [19]. This relationship is inverted in a generalised setting

to given market prices of options at a given expiry and invert a Hull-White-type [36]
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relationship to infer the entire risk-neutral distribution of the stochastic realised

volatility [19].

Thus, a profile of option prices with expiry T, will therefore, in a non-parametric

way, infer the non-arbitrage prices of claims whose payoffs are a function of re-

alised variance (variance derivatives). Furthermore, the option prices will allow the

replication of variance derivatives by dynamic trading in standard options and the

underlying stock [19, 22]. In this section, the call prices on S for maturity T are

assumed to be known for all strike prices. The realised variance can be replicated

by hedging a log contract whose payoff at time T is −2log
(
ST
S0

)
[24, 28, 43]. As

mentioned in Demeterfi et al. (1999) [25], the risk-neutral price of a variance swap

in this context is thus based on:

1. The capability of replicating a log contract through a portfolio of options which

has a continuous range of strike prices,

2. Adherence to the fundamental options valuation theory, under which the stock

price is assumed to evolve under continuous dynamics.

In reality, however, the range of strikes are limited to a finite range [25].

Neuberger [43] showed that by delta-hedging a contract paying the log of the price,

the hedging error accumulates to the difference between the realized variance and

the fixed variance used in the delta-hedge. The contract paying the log of the price

can be created with a static position in options.

12.1 Assumptions

Fixing an arbitrary time horizon T > 0, it is assumed that there exists a risk-

neutral world with a constant risk-free rate r . Furthermore, assume that markets
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are frictionless. Then on a filtered probability space (Ω,F , {F(t)} ,P) and under an

equivalent probability measure, Q, the underlying stock’s dynamics are as follows:

dS(t) = rdt+ σ(t, ..)S(t)dW (t) (12.1)

for some (F(t),Q) -Wiener process W (t) and a measurable process F(t)− adapted

process σ(t, ..) which satisfies

T̂

0

σ2 (t, ..) dt < m ∈ R (12.2)

with σ and W being assumed independent.

12.2 Theoretical replication of the fair strike of a variance

swap using an options portfolio

As in Demeterfi et. al. (1999), the only assumption made about the dynamics of

the underlying asset in this section is that the price of the underlying is continuous

[25].

This implies that the underlying stock’s dynamics can be represented by:

dS(t) = µ(t)S(t)dt+ σ(t)S(t)dW (t) (12.3)

where Wt represents the Wiener process, with the drift, µ, and the continuously-

sampled volatility, σ, assumed to be arbitrary functions of time and other parame-

ters. It is assumed that the underlying stock does not pay dividends.
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The definition of realised variance presented earlier can now be represented theoret-

ically as :

σ2
R(T ) =

1

T

T̂

0

σ2 (t) dt (12.4)

As shown earlier, since variance swaps are forward contracts on realised variance,

the fair future fixed level of variance, Kvar, is given by:

Kvar = E
[
σ2
R(T )

]
(12.5)

Which can be rewritten as:

Kvar =
1

T
E

 T̂

0

σ2 (t) dt

 (12.6)

The expression forKvar shown above does not give insight into the replication scheme

using options since the future value for variance is unknown. The general idea behind

a replicating scheme is to derive a position which over the next instance of time

generates a payoff which is proportional to the incremental variance of the stock

[25].

From Equation (12.3), the approach is shifted by implementing Itô’s Lemma to

ln (S(t)) as follows:

dln (S(t)) =

(
µ(t)− 1

2
σ2(t)

)
dt+ σ(t)dWt (12.7)

Then subtracting Equation (12.7) from Equation (12.3) it follows that,
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dS(t)

S(t)
− dln (S(t)) =

1

2
σ2(t) (12.8)

Then integrating both sides from 0 to T ,

T̂

0

dS(t)

S(t)
dt− ln

(
S(T )

S(0)

)
=

T̂

0

1

2
σ2(t)dt. (12.9)

We then obtain the continuously-sampled realised variance as ,

2

T

 T̂

0

dS(t)

S(t)
dt− ln

(
S(T )

S(0)

) =
1

T

T̂

0

σ2(t)dt = σ2
R(T ). (12.10)

From Equation (12.10), it thus can be obtained that realised variance can be repli-

cated by a static short position in a contract which at expiration pays the logarithm

of the total return and a dynamic long position of 1
S(T )

shares of stock until expiry

[14, 25]. The first term in on the left-hand side of Equation (12.10) can be thought

of as the result from continuously re-balancing a stock position so that it always

pays $1 and the second term represents a short position in a contract which pays

the log of total return at expiry [25].

Broadie and Jain (2008) specify that the result in Equation (12.9) holds for both

stochastic models such as the Heston model and the the classic Black-Scholes model

[14].

Equation (12.10) thus provides an alternative method for deducing the fair strike

price of a variance swap contract. Now, rather than taking the average of future

expected realised variance as in Equation (12.6), one can can take the expected value

of the L.H.S of Equation (12.10) under the risk-neutral measure to obtain the cost

of replication directly as [25]:
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Kvar =
2

T
E

 T̂

0

dS(t)

S(t)
dt− ln

(
S(T )

S(0)

) (12.11)

In a risk-neutral world with a constant risk-free rate r, the dynamics of the under-

lying price can be represented by:

dS(t)

S(t)
= rdt+ σ(t)dWt (12.12)

Now if one integrates Equation (12.12) and takes the risk-neutral expected value on

both sides one obtains:

E

 T̂

0

dS(t)

S(t)
dt

 = rT (12.13)

This then implies that the fair value of the variance swap strike is:

Kvar =
2

T

(
rT − E

[
ln

(
S(T )

S(0)

)])
(12.14)

Now since log-contracts are not actively traded the second term on the R.H.S of

Equation (12.14) can be duplicated by decomposing the shape of the log payoff into

linear and curved components [25]. To this regard the following should be noted:

1. The linear component can be replicated with a forward contract on the under-

lying stock with delivery time T

2. The curved component can be replicated using vanilla options with all strike

levels and same expiry T.
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Demeterfi et al. (1999) [25], suggest that for practical reasons there is need to

replicate the log payoff with liquid options. The liquid options in this regard are a

mixture of out-of-the-money calls for high stock values and out-of-the-money puts for

low stock values. A new parameter, S∗, following the notation in [25] is introduced

to separate puts and calls. With this new parameter, the log payoff can now be

rewritten as:

ln

(
S(T )

S(0)

)
= ln

(
S(T )

S∗

)
+ ln

(
S∗
S(0)

)
(12.15)

The second term on the R.H.S in Equation (12.15) is a constant thus there is need

to only replicate the first term on the R.H.S. To replicate this term a proposition is

implemented as in Demeterfi et al. (1999) and proof from Carr and Madan (1998)

[25, 22] :

Proposition 10. (Carr and Madan (1998), [22])

Any twice-differentiable function f(S(T )) can be re-written as:

f (S(T )) = f (K) + f ′ (K)
[
(S(T )−K)+ − (K − S(T ))+]+

K̂

0

f ′′(K) (K − S(T ))+ dK

+

∞̂

K

f ′′(K) (S(T )−K)+ dK (12.16)

Proof. For any payoff f(S(T )) the Dirac delta sifting property implies that :
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f (S(T )) =

∞̂

0

f(K)δ (S(T )−K) dK,

=

κ̂

0

f(K)δ (S(T )−K) dK +

∞̂

κ

f(K)δ (S(T )−K) dK,

for any κ ∈ R+. Then integrating each term by parts, it follows that,

f (S(T )) =
[
f (K) 1{S(T )<K}

]κ
0
−

κ̂

0

f ′(K)1{S(T )<K}dK

+
[
f (K) 1{S(T )≥K}

]∞
0

+

∞̂

κ

f ′(K)1{S(T )≥K}dK

Integrating by parts for the second time, it follows that:

f (S(T )) = f(κ)1{S(T )<K} −
[
f ′(K) (K − S(T ))+]κ

0
+

κ̂

0

f ′′(K) (K − S(T ))+ dK

+f(κ)1{S(T )≥K} −
[
f ′(K) (S(T )−K)+]∞

κ
+

∞̂

κ

f ′′(K) (S(T )−K)+ dK

= f(κ) + f ′(κ)
[
(S(T )− κ)+ − (κ− S(T ))+]

+

κ̂

0

f ′′(K) (K − S(T ))+ dK +

∞̂

κ

f ′′(K) (S(T )−K)+ dK

This concludes the proof.

Proposition 11. The payoff of the log-contract, ln
(
S(T )
S∗

)
, can be decomposed as :
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ln

(
S(T )

S∗

)
=
S(T )− S∗

S∗
−

S∗ˆ

0

1

K2
(K − S(T ))+ dK −

∞̂

S∗

1

K2
(S(T )−K)+ dK

(12.17)

for S∗, K ∈ R+

Proof. Since the logarithm function is twice differentiable, if we let κ = S∗ and

f(X) = ln(X), the result follows directly from the expression in the statement of

Proposition 10.

Equation (12.17) means that the payoff of a short log contract can be represented

by:

• long 1
S∗ forward contract struck at S∗

• short in 1
K2 puts struck at K, for all strike prices less than S∗

• and short in 1
K2 calls struck at K, for all strike prices greater than S∗

• (K − S(T ))+ is the payoff of a European Put Option and (S(T )−K)+ the

payoff of a European Call Option

all expiring at time T.

In the absence of arbitrage, the decomposition in Proposition 10 must exist [22].

Thus using the initial values of the Proposition 11 above implies that the fair strike

in Equation (12.14) can be re-written as:
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Kvar =
2

T

(
rT − E

[
ln

(
S(T )

S(0)

)])
=

2

T

(
rT − E

[
ln

(
S(T )

S∗

)
+ ln

(
S∗
S(0)

)])
=

2

T

(
rT − E

[
ln

(
S(T )

S∗

)]
− ln

(
S∗
S(0)

))

=
2

T

rT − E
S(T )− S∗

S∗
−

S∗ˆ

0

1

K2
(K − ST )+ dK −

∞̂

S∗

1

K2
(S(T )−K)+ dK


− 2

T
ln

(
S∗
S(0)

)
(12.18)

=
2

T

rT − (S(0)

S∗
erT − 1

)
+ erT

S∗ˆ

0

1

K2
(K − S(0))+ dK

 (12.19)

+
2

T

+erT
∞̂

S∗

1

K2
(S(0)−K)+ dK + ln

(
S∗
S(0)

)

If one denotes P0 (K) = (K − S(0))+ and C0 (K) = (S(0)−K)+ as initial values of

a European put and call with strike K, respectively, then it follows that,

Kvar =
2

T

rT − (S(0)

S∗
erT − 1

)
+ erT

S∗ˆ

0

1

K2
P (K) dK

 (12.20)

+
2

T

+erT
∞̂

S∗

1

K2
C (K) dK − ln

(
S∗
S(0)

)

The integrals in the equation above sum an infinite number of vanilla options and

calls in a continuum of strike prices. The same underlying asset as the one for the

variance swap which is being replicated is used to write the options. The above
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expression can be be simplifies by setting S∗ = S(0). Then one obtains:

Kvar =
2

T

rT − (erT − 1
)

+ erT
S(0)ˆ

0

1

K2
P (K) dK + erT

∞̂

S(0)

1

K2
C (K) dK


(12.21)

12.3 Replication in a practical setting

In the previous section it was shown that the log price can be re-written as a sum

ln
(
S(T )
S∗

)
+ ln

(
S∗
S(0)

)
with S∗ the boundary between European calls and puts. Thus

the recalling the expression for the variance swap strike, Kvar it can be written as:

Kvar =
2

T

(
rT − E

[
ln

(
S(T )

S(0)

)])
(12.22)

=
2

T

(
rT − E

[
ln

(
S(T )

S∗

)
+ ln

(
S∗
S(0)

)])
=

2

T

(
rT − E

[
ln

(
S(T )

S∗

)
− S(T )− S∗

S∗
+
S(T )− S∗

S∗
+ ln

(
S∗
S(0)

)])

after taking the expectation then,

Kvar =
2

T

[
rT −

(
S(0)

S∗
erT − 1

)
− ln

(
S∗
S(0)

)]
+

2

T
E

[
S(T )− S∗

S∗
− ln

(
S(T )

S∗

)]
.

(12.23)

The problem is now centered on solving the second term. The portfolio has the

payoff at expiry denoted by

f (S(T )) =
2

T

[
S(T )− S∗

S∗
− ln

(
S(T )

S∗

)]
(12.24)
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If V is the present value of the portfolio, then strike of the variance swap can be

re-written as:

Kvar =
2

T

[
rT −

(
S(0)

S∗
erT − 1

)
− ln

(
S∗
S(0)

)]
+ erTV. (12.25)

The objective, as shown before is to estimate f (S(T )). If a portfolio of European

call options with strikes S(0) = S∗ < Kc
0 < Kc

1 < Kc
2 < ... and European put

options with strikes S(0) = S∗ > Kp
0 > Kp

1 > Kp
2 > .... To replicate f(S(T )), a

piece-wise function of these individually weighted options can be used as:

V =
∑
i=0

wci (Kc
i )C (Kc

i ) +
∑
i=0

wpi (Kp
i )P (Kp

i ) (12.26)

where wci (Kc
i ) and wpi (Kp

i ) are weights for calls and puts respectively. The weights

are derived for the curve approximating f(ST ), as follows:

Figure 12.1: Approximation of f(S(T ))

Source: Demeterfi et. al. (1999) [25]
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From the Figure above Kc
0 to Kc

1 can be approximated by a payoff of w (Kc
0) Euro-

pean call options with strike Kc
0. Then it follows that:

w (Kc
0) =

f(Kc
1)− f(Kc

0)

Kc
1 −Kc

0

(12.27)

Similarly for w (Kc
1), the part fromKc

1 toKc
2 is derived as a combination of European

calls options with strikes Kc
0 and Kc

1. Assuming we already hold w (Kc
0) European

call options, then:

w (Kc
1) (S −Kc

1) + w (Kc
0) (S −Kc

0) = f(S) (12.28)

for S =Kc
0, K

c
1 . Then solving the previous equation, by substitution results in:

w (Kc
1) =

f(Kc
1)− f(Kc

0)

Kc
1 −Kc

0

− w (Kc
0)

which in general can be written for European call options as:

w
(
Kc
n+1

)
=
f(Kc

n+1)− f(Kc
n)

Kc
n+1 −Kc

n

−
n−1∑
i=0

w (Kc
i ) (12.29)

and for European put options as:

w
(
Kp
n+1

)
= −

f(Kp
n+1)− f(Kp

n)

Kp
n+1 −K

p
n

−
n−1∑
i=0

w (Kp
i ) (12.30)

12.4 Numerical Example

In this section, linear programming techniques are implemented in the hedging of

the log contract which entails the hedging of variance swaps using vanilla European
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options. The problems that arise in this implementation are discussed in numerical

examples. Particularly, it is difficult to select the range of strike prices to be used

and also the number of vanilla options to be included in the replicating options

portfolio. Consider the following parameters:

Table 6: Hypothetical Parameters
S(T) volatility r T dividend rate

292.373 0.0108 0.00038344 1 0%

Now considering the parameters above. The European call options and put options

are calculated for twenty strike prices ranging from 10 points below the stock price

to 10 points above the stock price. The formula for calculating weights results in

heavier weights for out-of-the-money (OTM) options. The resulting variance swap

prices for standard maturities is:

Table 7: Price of variance swaps
Maturity Kvar

T=0.0833 0.0019
T=0.25 0.0026
T=0.5 0.0035
T=1 0.052
T=2 0.081

The payoff approximation as in Figure 12.3 is replicated in MATLAB as:
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Figure 12.2: Payoff using the Demeterfi approximation

The price of variance swaps at various maturities is also investigated.

Figure 12.3: Variance Swap Price Term Dependence
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Comments: The Figure 12.4 above shows that the price of variance swaps relies

on the maturity. Although the price monotonically increases with maturity, the rate

of change of the price with maturity is higher for shorter maturities than for longer

maturities.

12.5 Empirical evidence

The implementation in the previous example is re-performed using market data of

10 European call options and 45 European put options on the JSE Top 40 index

as at 3 May 2019. The expiry date of the contracts chosen is on 20 June 2019

(T = 0.1315068). The price of variance swaps as in Equation (12.25) is derived

using the Demeterfi et. al (1999) [25] non-linear payoff approximation. The table

below shows how V in Equation (12.25) is derived from the market options data.

Table 8: Static Replication of the Price of Variance Swaps
Contracts Expiry: 20 June 2020
Spot Price (ZAR) 533.43

Puts Strike (ZAR) Price (ZAR) Weight Contribution
400.00 0.10 9.112038×10−3 0.000911204
408.50 0.17 8.651058×10−3 0.00147068
410.00 0.19 8.137902×10−3 0.001546201
420.00 0.33 7.275507×10−3 0.002400917
430.00 0.58 6.653711×10−3 0.003859152

... ... ... ...
523 7.93 1.36668×10−5

Calls 535 89.3 7.92073×10−5 0.0014184807
537 80.36 7.87176×10−5 0.007444697
538 44.22 3.09882×10−4 0.007029486
540 21.23 5.02838×10−4 0.024902153
550 4.55 6.26138×10−4 0.022235494
... ... ... ...

628.50 0.01 2.41311×10−2 0.026544310
Total Portfolio Cost (V ) 1.22199

Variance Swap Price (Kvar) 1.22205
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Comments: In the Table above, the weights are calculated using Equation (12.30)

and Equation (12.29). More weight is given to more OTM options when calculating

the total portfolio cost, V .

The MATLAB code for the generating the weights above is as follows:
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MATLAB Code:

S0=Spot(1);%S0=S* the boundary between puts and calls;

r=0.00038344;

T= Term(1);

K=Strike; % Conversion to familiar notation

m=sum(Contract_Type=="Put"); %position of last Put value

n=length(K);

f=@(x)((2/T)*((x-S0)/S0 -log(x/S0))); %Demeterfi

Approximation

Df =zeros(n,1); weight=zeros(n,1); Contrib=zeros(n,1);

%Puts

for i=1:m

Df(i)= ((f(K(i))- f(K(i+1)))/ (K(i+1)-K(i)));

if i==m weight(i)=Df(i);

elseif i< m weight(i)=Df(i)-Df(i+1);

end

Contrib(i)=Price(i)*weight(i);

end

%Calls

for i=m+1:n-1

Df(i)= ((f(K(i+1))- f(K(i)))/ (K(i+1)-K(i)));

if i==m+1 weight(i)=Df(i); elseif i>m

weight(i)=Df(i)-Df(i-1);

end

Contrib(i)=Price(i)*weight(i);

end

V= sum(Contrib);

Kvar = (2/T)*(r*T-(exp(r*T)-1))+(exp(r*T)*V); %Price of

Variance Swap
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12.6 Comparison of the Pricing Methods

So far, three methods for pricing variance swaps have been considered. The stochas-

tic volatility approach have been useful in closely estimating the real-world dynamics

of the stocks and their variance processes. The non-parametric replication approach

has also been successful in pricing the variance swaps. Each of the models has had

flaws in the pricing process. In particular, the stochastic models have been not

straight forward to implement and moreover required the calibration of models to

market data which weighs more on computational time. However, although the

replication scheme does not have this flaw, it is difficult to determine the number of

options to be considered in the hedging of variance swaps. Furthermore, in the real

world there are challenges with obtaining market prices for a continuum of strikes.

The price of variance swaps under each model is compared below:

Table 9: Comparison of variance swap pricing schemes

Models Maturity (Years)
0.083 0.25 0.5 1

Heston 1.2032 ×10−4 1.2778×10−4 1.3894 ×10−4 1.6119×10−4

B-NS 1.0543×10−4 1.0553×10−4 1.0569×10−4 1.0605×10−4

Demeterfi Replication 3.7101 ×10−5 1.7863×10−4 4.0796×10−4 8.7716×10−4

The pricing of variance swaps under the three schemes produces inconsistent results.

However, there seems to be cohesion between the stochastic models. The initial

variance is low which means that the Replication scheme is overstating the prices

for longer maturities.

12.7 Conclusion

The Demeterfi et al. (1999) methodology provides an alternative approximation

method of obtaining the price of variance swaps without specifying the dynamics of
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the stock and variance processes. The value of a variance swap was obtained from

replicating a static short position in a contract that pays the logarithm of the total

return at expiry and a dynamic long position of 1
S(T )

shares of stock until expiry

in Equation (12.11). In a risk-neutral setting, this value of the variance swap is a

function of the expectation of the log-contract. Thus the problem of obtaining the

value of the variance swap can be translated into a problem of estimating the log

contract’s payoff.

Since log-contracts are not actively traded, the payoff is replicated by a continuum of

out-of-the-money (OTM) vanilla call and put options of all strike as in Proposition

11 from an approximation obtained in Carr and Madan (1998) [23]. In practice,

however, the options have a finite number of strikes. This is the key aspect of the

Demeterfi et al. (1999) methodology, which computes the price of variance swaps

via the estimate of the value of the portfolio of OTM European call and put options

with a finite number of strike prices using a linear approximation of the payoff of the

log-contract. The numerical example shows that the price of the variance swaps is

dependent on the term, differing significantly for shorter maturities and differing less

for longer maturities. However, in this case, the price of the variance swaps peaks

at a maturity of 3 years and slowly declines for maturities higher than 3 years. The

shape of the curve is consistent with the one obtained in the stochastic volatility

models shown in earlier sections. The price of variance swaps is hedged using market

prices of European call and put options. The replication approximation gives more

weight to options which are further out-of-the-money. Furthermore, a comparison

of the pricing methods shows inconsistencies between the different schemes.
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Part IV

Conclusions

13 Summary

In this research, the closed and semi-closed form expressions for the price of vari-

ance swaps whose underlying processes were assumed to have the B-NS (2001) non-

Gaussian OU and Heston (1993) stochastic models were derived. Furthermore, using

the Demeterfi et. al. (1999) closed-form expression it was shown that variance swaps

can be hedged by a portfolio of out-of-the-money vanilla call and put options with

a finite number of strike prices.

In Chapter 2, the mathematical, finance and statistical theory used in this disser-

tation was discussed. Although it was shown that the Black-Scholes model is not

entirely perfect in determining the dynamics of the underlying asset, it is a more

tractable model whose constructs can be easily understood and have a wide arsenal

of computational tools available. Deriving the price of the variance swaps under the

more accurate Heston (1993) and B-NS (2001) models involved enhanced techniques

that were mostly made difficult by the complexity of the expressions.

In Chapter 3, the model developed by Barndoff-Nielsen and Shepard (2001) pro-

vided attractive features to the volatility process such as positive jumps which are

observable in market data. The analytical formula for continuously-sampled variance

swaps was obtained using Laplace transform and Fourier transform theory under an

integrability condition for Levy processes. Although elementary results such as the

Laplace transform and Fourier transform were implemented to obtain the analytical
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formula, it was practically challenging to obtain the price of variance swap using

the formula compared to the traditional results as those under the Black-Scholes

model. The initial estimates of the NIG were obtained from the method of moments

estimation (MME) but however more accurate estimates were obtained from max-

imum likelihood estimation (MLE). Theoretical assumptions about the individual

OU processes had to be made to derive the price of the variance swap in a practical

setting. The solutions obtained thus relied on the accuracy of the approximations.

Lastly, it was shown that the price of continuously-sampled variance swaps is convex

in realised variance.

In Chapter 4, the Heston (1993) model provided a more realistic description of

the paths of the stock price and volatility processes. However, the analytical for-

mula for the discretely-sampled variance swaps was not obtained as easy as in the

continuously-sampled case. The analytical formula for the discretely-sampled vari-

ance swaps was obtained from solving two-part PDEs using Fourier transform tech-

niques under Feynman-Kac theory. Parameter calibration was then conducted in a

way that minimised the mean squared error between the market European call prices

and the European call prices under the Heston Model. Long computational time was

required to produce the parameter estimates in MATLAB making the Heston model

particularly unattractive in this regard. Furthermore, the continuously-sampled case

overstated the price of variance swaps when compared to the discretely-sampled case

where fewer sampling times were considered. However, the price of variance swaps

under the discretely sampled case model was shown to converge to the price under

the continuous model as the sampling times were increased. The convergence was

however slow with the number of sampling times required reaching more than 1512

times per annum (about 6 times per day). The price of continuously-sampled vari-

ance swaps was shown to differ significantly for shorter maturities and became more

consistent for longer-maturities.
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In Chapter 5, it was shown that variance swaps can be theoretically hedged using a

continuum of vanillas options of all strike prices. However, in practice, there are a

finite number of vanilla options. Thus an expression for the fair price of the variance

swap for a finite number of European call and put options for a finite number of

strikes was derived. Demeterfi et al. (1999) provide a methodology which computes

the price of variance swaps via the estimate of the value of the portfolio of OTM

European call and put options with a finite number of strike prices using a linear

approximation of the payoff of the log-contract. A numerical example showed that

the price of the variance swaps is dependent on the term, increasing significantly

for shorter maturities and slowing down for longer maturities. The shape of the

curve was consistent with the ones obtained under stochastic assumptions for the

variance process models as in the Heston (1993) and B-NS (2001). Furthermore,

a comparison of the three pricing approaches studied did not produce consistent

results.

14 Future research considerations

Since the stochastic volatility models considered are path dependent, it would be of

interest to study the models under a delayed time-process. There would be need to

prove whether the pricing principles remain the same under a delayed-time setting.

Furthermore, jumps can also be considered in an adjusted Heston model.
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Appendix

A Theoretical Concepts

In this Appendix, some theoretical comments which were applied in this dissertation

are shown. Furthermore, some MATLAB function implemented are presented.

Definition 24. (Borel sets, Sato (1999) [46])

Let Ω be a non-empty set. The σ − field generated on Ω by subsets A of the

non-empty set Ω,denoted by σ(A) is defined as:

σ(A) :=
⋂
{F :A ⊆ F} and F is a σ-field on Ω.

This implies that the σ − field generated by A is the smallest σ − field which

contains A. This leads us to the definition of Borel sets.

The Borel σ−algebra of R, denoted B, is the σ−algebra generated by the family of

all open sets on the real line. That is, if O denotes the collection of all open subsets

of R , then B = σ (O). A real-valued function f(x) on R is called measurable, if it

is B (R)-measurable that is {x : f(x) ∈ B} is in O for each B ∈ B (R) [46].

Now a random variable can be defined.

Definition 25. (Random Variable, Applebaum (2009) [1])

Given a probability space (Ω,F , P ) , a random variable, X, is the mapping X : Ω→

R.

The measurable mapping Z = X + Y i from Ω to C is called a complex random

variable. If X is a random variable, its law (or distribution) is the Borel probability



A THEORETICAL CONCEPTS 162

measure PX on R. One can write, P [ω ∈ Ω : X (ω) ∈ B] = P [X ∈ B], the mapping

of B which is a probability measure on R. This probability measure can be denoted

PX (B) and is called the distribution (or law) of X [46]. Now the fundamental

concepts of a the Expectation and Variance of a random variable can be introduced

as they are particularly important in probability theory.

Definition 26. (Expectation, Bain and Engelhardt (1992) [2])

If X is a real-valued (R−valued) random variable and if the integral
r

Ω
X (ω)P (dω)

exists then it is called the Expectation of X, denoted by E [X]. If X is a random

variable on R and if f(X) is a bounded and measurable function on R, then

EP [f (X)] =
w

Ω

f (x)PX (dx) . (A.1)

The variance of f(X) is given by,

V ar [f(X)] =
w

Ω

(f (x)− EP [f (x)])2 PX (dx) (A.2)

A random variable X is said to have a Property A almost surely (a. s.) or with

probability 1, if there is a Ω0 ∈ F with P [Ω0] = 1 such that X (ω) has Property A

for every ω ∈ Ω0.

Next, the concept of a Conditional Expectation is introduced. This is the usual

expectation is conditioned on a σ − algebra, set or random variable. Now we let

(Ω,F ,P) be a probability space and G a sub-σ − algebra of F so that:

1. G is a σ − algebra ;

2. G ⊆ F .
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Definition 27. (Conditional Expectation, Bain and Engelhardt (1992) [2])

Let f(X) be an integrable function on R and let H ⊆ F be a sub-σ − field, then

given the usual probability space (Ω,F , P ) , the conditional expectation of f(X)

given H is the random variable, E [f (X) |H] such that

1. E [f (X) |G] is H−measurable;

2. For any A ∈ H,
w

A

EP [f (X) |H] dP =
w

A

XdP.

The conditional expectation has the some useful properties which are implemented

in this dissertation. The proposition below highlights some of these properties.

Proposition 12. ( ´Brzezniak and Zastawniak (2000) [17])

Let H be a sub−σ−algebra of F , then the conditional expectation has the following

properties:

1. E (αX + βY |H) = αE (X) + βE (Y ) for α, β ∈ R;

2. E (E (X|H)) = E (X);

3. E (XY |H) = XE (Y |H) if X is H−measurable;

4. E (X|H) = E (Y X) if X is independent of H;

5. E (E (X|G) |H) = E (X|H) if H ⊂ G;

6. If X ≥ 0 then E (X|H) ≥ 0

Proof. See [17], Proposition 2.4 on pages 29-31.
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Definition 28. (Càdlàg Function, Schoutens [47])

A function, f : E → R, is called a càdlàg if for every t ∈ E if the left limit

f(t−) = lims↑tf(s) exists and the right limit f(t+) = lims↓tf(s) exists and are

equal to f(t). This is often abbreviated RCLL (right continuous left limit).

Definition 29. ( Lévy Measure, Sato (1999) [46])

If X is a Lévy process on R,then its Lévy measure ν on R is defined as

ν(A) =
1

t
E

(∑
0≤s≤t

I{(Xs−Xs−)∈A}

)
, A ∈ B (R) (A.3)

The jump at time s is defined as4X(s) = X(s)−X(s−) with X(s−) = lims↑tX(s).

The measure is an average number of number of jumps whose size is an element of

A for a given period, t. This measure is defined on R\{0} and

+∞ˆ

−∞

inf
{

1, x2
}
ν(dx) =

+∞ˆ

−∞

(
1 ∧ x2

)
ν (dx) <∞ (A.4)

Lévy measures are characterised with no mass at the origin but infinitely many

jumps called singularities.

B Stochastic Calculus

In this section, some fundamentals about stochastic calculus are presented. These

preliminaries form a core part of asset pricing theory in mathematical finance which

recognises the fact that asset prices behave randomly under uncertainties . This

section is mostly drawn from the [11].
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Definition 30. (Wiener Process,[11])

A process W = (W (t), 0 ≤ t ≤ T ) is called a Wiener process if the following

conditions hold:

1. W (0) = 0

2. W has independent increments. For any choice of n ≥ 1 and 0 ≤ t0 < t1 < ... <

tn, the random variables W (t0), W (t1) −W (t0), W (t2) −W (t1),....,W (tn) −

W (tn−1) are independent stochastic random variables.

3. For s < t distribution ofX(t)−X(s) has the normal distributionN
(
0,
√
t− s

)
.

4. X is stochastically continuous i.e. for every t ≥ 0 and ε ≥ 0, lim
s→t

P [|W (s)−W (t)| > ε] =

0

B.1 Construction of the Stochastic Integral

Consider the Wiener process, W , and another stochastic process Y .The class L2

ensures the existence of the stochastic integral under certain integrability conditions.

Definition 31. (Class ·2, page 40[11])

The stochastic process Y belongs to class E2 [a, b] if the following conditions are

satisfied:

1.
´ b
a
E [Y 2(s)] ds <∞

2. The process Y is adapted to the filtration FWt (i.e Y can be completely deter-

mined given the observations of the path W = (Wt, 0 ≤ t ≤ T ) ).
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The stochastic integral, Y,belong to the class L2 if Y ∈ L2 [0, t] for t > 0. The task

now is to define a stochastic integral
´ b
a
YsdWs for the process Y ∈ E2 [a, b]. This

can be carried out in two steps:

Suppose Y ∈ L2 [a, b] is simple, that is the interval [a, b] can be partitioned as

a = t0 < t1 < ... < tn = b such that Y is constant on each sub-interval. This means

that Y (s) = Y (tj) for each s ∈ [tj, tj+1]. Then the stochastic integral can be defined

as: ˆ b

a

Y (s)dWs =
n−1∑
j=0

Y (tj) (W (tj+1)−W (tj)) . (B.1)

For a general Y ∈ E2 [a, b], to define the stochastic integral, Y is approximated by

a sequence of simple stochastic processes Yn as [11]:

1.
´ b
a
E
{

(Yn(s)− Y (s))2} ds→ 0.

2. For each integral Zn :=
´ b
a
Yn(s)dWs there exists Z ∈ L2 such that Zn → Z as

n→∞.

3. The stochastic integral is then defined as:
´ b
a
Y (s)dWs = lim

n→∞

´ b
a
Yn(s)dWs.

The most important properties of the stochastic integral can be summarised by the

following proposition:

Proposition 13. (Properties of the stochastic integral, [11])

Let Y be an FWt − adapted stochastic process that satisfies the following condition:

ˆ t

0

E
[
Y 2(s)

]
ds <∞ (B.2)

then the following hold:

E
[ˆ t

0

Y (s)dWs

]
= 0 (B.3)
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and

E

[(ˆ t

0

Y (s)dWs

)2
]

= E
[ˆ t

0

Y (s)2ds

]
(B.4)

Proof. Let the interval [0, t] be partitioned as 0 = t0 < t1 < ... < tn = t and let

∆Wj = Wtj+1
−Wtj .

Consider a random variable Zn =
∑n−1

j=0 Y (tj)∆Wj. If we let n→∞ as ∆Wj → 0 ,

then the sequence of random variables (Zn) converges to
´ t

0
Y (s)dWs (mean-square).

Then if we consider

E

[
n−1∑
j=0

Y (tj)∆Wj

]
=

n−1∑
j=0

E [Y (tj)]E [∆Wj] . (B.5)

Looking at the random variables, since ∆Wj is independent to Wtj so are Y (tj) and

∆Wj. Thus the product on the right-hand side is 0. This implies that E [Zn] = 0

from which the first result in Equation (B.3) follows.

The proof of (B.4) follows as:

Since Zn →
´ t

0
Y (s)dWs (mean square) then it follows that

E
[
Z2
n

]
→ E

[(ˆ t

0

Y (s)dWs

)2
]
. (B.6)

This means that the we only look at E [Z2
n]. Using the property of independent

increments of the Wiener process it follows that E [∆Wj] = 0. We also utilise the

fact that E
[
(∆Wj)

2] = ∆js . then,
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Z2
n =

(
n−1∑
j=0

Y (tj)∆Wj

)2

=
n−1∑
j=0

n−1∑
k=0

Y (tj)Y (tk)∆Wj∆Wk

=
n−1∑
j=0

(Y (tj))
2 (∆Wj)

2 + 2
n−1∑
k<j

Y (tj)Y (tk)∆Wj∆Wk (B.7)

Since Y (tj) and ∆Wj are independent we have that :

E
(
(Y (tj))

2 (∆Wj)
2) = E

(
(Y (tj))

2)∆js (B.8)

and for k < j

E (Y (tj)Y (tk)∆Wj∆Wk) = E (Y (tj)Y (tk)∆Wj)E (∆Wk) = 0 (B.9)

then from Equations (B.7), (B.8) and (B.9), it follows that:

E
[
Z2
n

]
=

n−1∑
j=0

E
(
(Y (tj))

2)∆js (B.10)

Looking at Equation (B.10) above, the right-hand side is the Riemann sum which

converges to
´ t

0
Ysds. Then it follows that:
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E

(∣∣∣∣ˆ t

0

Y (s)dWs

∣∣∣∣2
)

= lim
n→∞

E
[
Z2
n

]
= lim

n→∞

n−1∑
j=0

E
(
(Y (tj))

2)∆js

=

ˆ t

0

E
(
Y (s)2

)
ds

= E
[ˆ t

0

Y (s)2ds

]

The last step is obtained from the fact that the definition of an expected value is in

essence an integral , thus the order of integration can be reverse to give the second

result. This concludes the proof.

B.2 The Itô formula

Definition 32. (Itô Process)

A stochastic process X = (X(t), t ≥ 0) is an Itô process is it is defined by the

equation:

X(t) = X(0) +

ˆ t

0

Y (s)ds+

ˆ t

0

Z(s)dWS (B.11)

where Y (s), Z(s) are driven by the Brownian motion and satisfy:

ˆ t

0

E
[
Y (s)2

]
ds <∞ (B.12)

and, ˆ t

0

E
[
Z(s)2

]
ds <∞ (B.13)
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The Itô process can be re-written in stochastic differential form as:

dX(t) = Y (t)dt+ Z(t)dWt. (B.14)

The following theorem presents the Itô formula without proof. It’s heuristic proof

can be given from second Taylor expansion where higher order terms are considered

negligible.

Theorem 7. (Itô formula, [11])

Let the stochastic process X have a stochastic differential equation defined by:

dX(t) = µ(t)dt+ σ(t)dWt

where µ(t) and σ(t) are adapted process and let H ∈ C1,2 be a real-valued function.

If we define a stochastic process Zt = H(t,X(t)), then Z has a stochastic differential

equation given by:

dH(t,X(t)) = H1(t,X(t))dt+H2 (t,X(t)) dXt +
1

2
H22(t,X(t)) (dX(t))2(B.15)

where we define the notation as:

H1(t, x) =
∂

∂t
H(t, x)

H2(t, x) =
∂

∂x
H(t, x)

H12(t, x) =
∂2

∂t∂x
H(t, x)

H22(t, x) =
∂2

∂x2
H(t, x)
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and (dX(t))2 is calculated form the Itô multiplication table:

dt dWt

dt 0 0
dWt 0 dt

Table 10: Itô multiplication table

B.3 Stochastic Calculus for Lévy processes

In this section stochastic integrals whose integrators are Lévy processes are exam-

ined. The Itô’s formula for Lévy-type stochastic integrals together with the condi-

tions for existence and uniqueness is presented.

Definition 33. (One-dimensional Lévy-type stochastic process, [1])

Let W = {W (t) : 0 ≤ t ≤ T} be Wiener process and N(dt, dx) a Poisson ran-

dom measure on R+ with a corresponding compensated Poisson random measure

Ñ(dt, dx). Then the Lévy-type stochastic process Y = {Y (t) : 0 ≤ t ≤ T} on (Ω,F ,P)

has a stochastic integral of the form:

Yt = Y0 +

ˆ t

0

g(s)ds+

ˆ t

0

f(s)dWs +

ˆ t

0

ˆ
R
h (s, x) Ñ(ds, dx) (B.16)

+

ˆ t

0

ˆ
R
k (s, x)N(ds, dx)

where g : [0, T ] → R, f : [0, T ] → R, h : [0, T ] × R → R and k : [0, T ] × R → R are

real-valued functions satisfying the following conditions:

´ t
0
|g(s)|ds <∞;

´ t
0
f 2(s)ds <∞;

´ t
0

´
R h

2 (s, x) ν(dx)ds <∞ and
´ t

0

´
R k

2 (s, x) ν(dx)ds <

∞.
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The stochastic integral in (B.16) above can be re-written in the form:

dYt = g(t)dt+ f(t)dWt +

ˆ
R
h(t, x)Ñ(dt, dx) (B.17)

+

ˆ
R
k(t, x)N(dt, dx)

Theorem 8. (Itô’s Theorem 2, [1])

Let Y be a Lévy-type stochastic integral given by:

dYt = g(t)dt+ f(t)dWt +

ˆ
R
h(t, x)Ñ(dt, dx)

+

ˆ
R
k(t, x)N(dt, dx)

then for each real-valued function H ∈ C2, a.s we have that:

H (Yt)−H (Y0) =

ˆ t

0

H1 (g(t)dt+ f(t)dWt) +
1

2

ˆ t

0

H12 (g(t)dt+ f(t)dWt)
2

+

ˆ t

0

ˆ
R

[H(Ys−) + k (s, x)−H(Ys−)]N(ds, dx)

+

ˆ t

0

ˆ
R

[H(Ys−) + h (s, x)−H(Ys−)]N(ds, dx)

+

ˆ t

0

ˆ
R

[H(Ys−) + h (s, x)−H(Ys−)

−h (s, x)H1] ν(dx)ds

where H1 = ∂
∂t

(H(Ys−));H2 = ∂
∂x

(H(Ys−)) and H12 = ∂2

∂t∂x
(H(Ys−)).

Proof. See [1] page 226.

Theorem 9. (Existence and Uniqueness of Lévy-type SDE, [1])
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Consider the modified SDE

dX(t) = b(X(t))dt+ σ(X(t))dWt +

ˆ
R
F (X(t), x)Ñ(dt, dz) (B.18)

with initial condition

X(0) = X0.

where b : [0, T ]×Ω→ RN×M ;σ : [0, T ]×Ω→ RN×M and F : [0, T ]×Rl×Ω→ RN×l.

If we impose the following conditions:

• (C1) Lipschitz Condition . There exists a K1 > 0 such that for all y1, y2 ∈

RN

|b(y1)− b(y2)|2 + ‖σ(y1)− σ(y2)‖2

+

ˆ
R
|F (y1, x)− F (y2, x)|2 ν(dx) ≤ K1 |y1 − y2|2

• (C2) Growth Condition. There exists a K2 > 0 such that for all y ∈ RN

|b(y)|2 + ‖σ(y)‖2 +

ˆ
R
|F (y, x)|2 ν(dx) ≤ K2

(
1 + |y|2

)

Then the process X = {Xt : t ≥ 0} has a unique solution.

Proof. See [1] page 305.
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C MATLAB Code

%This code demonstrates the Demeterfi et al. (1999) hedging of variance %swaps

function y= Replication2(S0,Val,T,r,sigma)

%Replication2(292.373,10,T,0.00038344,0.0108)

K=linspace(S0-Val,S0+Val)’;

% length of the Strike price column vector /array n=length(K);

f=zeros(n,1); P=zeros(n,1); C=zeros(n,1); Df=zeros(n,1);

weight=zeros(n,1); Contrib=zeros(n,1);

%Puts for i=1:(length(K)/2)-1 %Demeterfi (1999) approximation

f(i,1) = (2/T)*(((K(i,1)-S0)/S0)-log(K(i,1)/S0)); % Df(i,1)=

(f(i,1)-f(i+1,1))/(K(i+1,1)-K(i,1)); if i==(length(K)/2)-1 weight(i,1)= Df(i,1);

end P(i,1)= bsput(S0,K(i,1),r,T,sigma); if i<(length(K)/2)-1 weight(i,1)=

Df(i,1)-Df(i+1,1); end Contrib(i,1)=P(i,1)*weight(i,1); end

%Calls for i=(length(K)/2):(length(K))-1 %Demeterfi (1999) approximation

f(i,1) = (2/T)*(((K(i,1)-S0)/S0)-log(K(i,1)/S0)); % Df(i,1)=

(f(i+1,1)-f(i,1))/(K(i+1,1)-K(i,1)); if i==(length(K)/2) weight(i,1)= Df(i,1);

end C(i,1)= bscall(S0,K(i,1),r,T,sigma); if i>(length(K)/2) weight(i,1)=

Df(i,1)-Df(i-1,1); end Contrib(i,1)=C(i,1)*weight(i,1); end V=sum(Contrib);

Kvar = (2/T)*(r*T-(((S0/S0)*exp(r*T))-1))+(exp(r*T)*V);

y= Kvar;

end
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%Estimate of Price of a variance swap under the B-NS Model
%Parameters for NIG(alpha,beta,delta,mu=0)
alpha= 78.1947; %The tail-heaviness parameter of the NIG distribution
beta=21.9762; %The asymmetry parameter of NIG distribution delta=0.009098;

%The scale parameter of the NIG lambda1=0.9; %Decay rate estimate for the first

OU lambda2=0.03; %Decay rate estimate for the second OU Y1=0.000065817;

%Variance 1 (of the 2 superpositioned variance processes) Y2=0.000065817;

%Variance 2 w1=0.5; %Weight for variance 1 w2=0.5; %Weight for variance 2

Vstart=0;

%The initial realised variance Vend=0.3; %The realised variance at T NumOfVs=10;

%Number of Spaces between Vstart and Vend nSims=10; %Number of Variance prices

to be calculated

gamma=sqrt(alpha^2-beta^2); %The gamma from NIG
Price=zeros(nSims,1); Price1=zeros(nSims,1); Price2=zeros(nSims,1);
%realised variances at t vt=0.041304663; t=1; %Current time or time zero T=10;
%maturity (in years)
%integral 1 in the variance price

syms s f1= (delta*((gamma^2)- s)/((gamma^2)-2*s)^(3/2))*(1-exp(-lambda1*(T-t)));

m1=vpaintegral(f1,s,[t T]);

%integral 2 in the variance price

syms s f2= (delta*((gamma^2)- s)/((gamma^2)-2*s)^(3/2))*(1-exp(-lambda2*(T-t)));

m2=vpaintegral(f2,s,[t T]);

%The price for various realised variances for i=1:T Price=
(t/T)*(vt) + ((w1/(T*lambda1))*(1-exp(lambda1*(T-t)))*Y1)+
((w2/(T*lambda2))*(1-exp(lambda2*(T-t)))*Y2);

Price2(i,1)= ((w1/T)*m1)+ ((w2/T)*m2); Price(i,1)=(Price1(i,1)+Price2(i,1)); end

figure hold on plot(x0,Price,’:bs’) title(’Price of a variance swap’)

xlabel(’Realised Variance’) ylabel(’Price’)
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%This script impliments the Disrete model for pricing variance swaps which was %

obtained using PDEs of the Heston model.

%Heston Parameters: N = 100000;% Number of sampling times

kappa=0.0123800596307453; theta=0.00735002387651258; mu=0.00038344;

sigmaV=0.00344581787186608; S0=263.68; V0=6.66019106816959e-07;

rho=-0.757595353042044;

T=1; dt=T/N; %parameter for calculating f(V0) a = kappa-2*rho*sigmaV; b =

sqrt(a^2-(2*sigmaV^2));

%g = ((a/sigmaV)^2)-1+(a/sigmaV)*sqrt(((a/sigmaV)^2)-2); g= (a+b)/(a-b); C_dt =

mu*dt+ ((kappa*theta)/sigmaV^2)*((a+b)*dt-2*log((1-g*exp(b*dt))/(1-g)));

D_dt =((a+b)/sigmaV^2)*((1-exp(b*dt))/(1-(g*exp(b*dt))));

%Formula for f(V0) f_V0=exp(C_dt+(D_dt*V0))+exp(-mu*dt)-2;

%Calculating sum fi(V0) for N sampling times f=zeros(N,1);

for i=2:N f(1,1)=f_V0; c_i=(2*kappa)/((sigmaV^2)*(1-exp(-kappa*((i-1)/N))));

f(i,1)= exp(C_dt + (c_i* (exp(-kappa*((i-1)/N))/(c_i-D_dt))*D_dt*V0))*...

((c_i/(c_i-D_dt))^((2*kappa*theta)/sigmaV^2))+exp(-mu*dt)-2; end

sum_f=sum(f);

Kvar=((exp(mu*dt)/T)*(sum_f)); Kvar1=(V0*((1-exp(-kappa*T))/(kappa*T)) +

theta*(1- ( (1-exp(-kappa*T))/(kappa*T))));
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% This Script defines the pdf of the Normal Inverse Gaussian distribution % fx =

NIGPDF(X, ALPHA, BETA, MU, DELTA) returns the pdf of the NIG i.e

% fx = (((alpha*delta)/pi)*bessek(1, (alpha*z)))/(pi*z)*exp(delta*sqrt(alpha^2 -

beta^2)) % *exp(beta(x-mu)) % function y=NIG_distribution(x,alpha,beta,mu,delta)

%%Constraints for the parameters if alpha <= 0 error(’ALPHA must be positive.’);

end if delta <= 0 error(’DELTA must be positive.’); end

if abs(beta)>=alpha error(’|BETA| must be smaller than ALPHA’); end % transform

input into column vector [nx, mx] = size(x); x = reshape(x, nx * mx, 1);

% calculate leading factor q = (delta * alpha / pi) * exp(delta * sqrt(alpha^2 -

beta^2)); xbar = x - mu; z = sqrt(delta^2 + xbar .* xbar);

% modified Bessel function of the third kind K = besselk(1, (alpha * z)); y = q

./ z .* K .* exp(beta * (x - mu));

% transform input vector back to input format y = reshape(y, nx, mx);

y(isinf(x)) = 0;
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