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Abstract 

 
The aim of this study was to create a genomic resource for a typical plant genome from Illumina 

short reads, using Psidium guajava as a case study.  Here we present a bioinformatics approach 

to produce a de novo plant genome assembly, perform annotation, and compare the newly 

assembled and annotated genome to that of a reference genome, in this case Eucalyptus grandis. 

The assembly pipeline was constructed using a combination of the best results from four 

different assemblers namely (ABySS, Allpaths-LG, SGA and MaSurCA) with a combination 

of Illumina paired end and mate pair reads. Each assembler used a different graph-based 

approach in their assembly strategy, and the output from these assemblers were merged by 

Metassembler to produce a best assembly. We manage to create comprehensive genomic 

resource for the guava fruit tree from Illumina short reads. The annotated genome of Psidium 

guajava will serve a major genomic resource in the investigation of the interaction between the 

plant and pathogens such as Nalanthamala psidii (N. psidii). Also,our comparative genomics 

work is a starting point to learn more about the genetic diversity in the Myrtaceae family. 

 

In Chapter 1 a comprehensive literature review of the current state of sequencing technologies, 

with a focus on third generation sequencing technologies is presented. This is followed by a 

discussion on different whole genome assembly approaches and techniques, with examples of 

each type of approach implemented as a software package. The relevance and importance of 

the non-model organism that we used as a case study, Psidium guajava, is also discussed in 

Chapter 1 

 

In Chapter 2 the genome assembly and annotation pipelines and processes are discussed. 

Detailed materials and methods used in this study are provided. 

 

The main findings and results of the study is discussed in Chapter 3, with a concluding remarks 

chapter presented as the last chapter of this dissertation.  

 

The work presented here has been presented at the following conferences, and a manuscript on 

the genome resource is in preparation: 

1. Poster Presentation – SAGS/SASBI conference 2016 (Durban) 
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1 Chapter 1: Literature Review 

1.1 Introduction to whole genome sequencing 

Whole genome sequencing (WGS) is a method of determining the complete sequence 

identity of nucleotides that compose the genome from a DNA molecule. Technological 

advancements to perform WGS has developed exponentially over the past 10 years, a 

field that is continuously improving and innovating. In earlier years, technology used 

for WGS required extensive resources, was expensive and time consuming. Now, 

sequencing an entire genome is much less expensive and requires less time with the 

price dropping to less than US$1000 per human genome at 30x coverage from about 3 

billion US dollars for the first human genome (Muir et al., 2016).  

The first papers published on sequencing of entire genomes or genes were by Fred 

Sanger and Alan R. Coulson in 1977 (Schuster, 2007). DNA laboratories used Sanger 

sequencing for about 30 years. Demand for high DNA throughput led to development 

of technologies such as automated capillary electrophoresis. The first automatic 

sequencing machine (namely the ABI 370) which used capillary electrophoresis, was 

introduced by Applied Biosystems in 1987 and it made the sequencing more accurate 

and faster. The current model AB3730xl can output 2.88 M bases per day and read 

length could reach 900 bases since 1995 (Liu et al., 2012). 

The first genome to be sequenced was the viral genome Bacteriophage fX174 with a 

total of 5 368 base pairs (bp). The Human Genome Project (HGP) was introduced in 

1990 (Tsui and Scherer W., 2001) and 11 years later in February 2001, the first draft of 

the human genome was published (Lander et al., 2001). The cost of the project was 

about 3 billion US dollars. During this time, due to the high throughput requirements 

of the HGP, a new massive parallel technology referred to as Next Generation 

Sequencing (NGS) was introduced to meet some of these requirements. 

1.1.1 Next generation sequencing 

The NGS technologies differ from the Sanger method in the technology used 

(simultaneous fluorescence technology in NGS and single dye termination system in 

Sanger), cost (NGS is significantly cheaper) and that NGS uses massive parallel 

analysis with high throughput. Following the human genome project, three companies 
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454, Solexa and Agencourt,released three massive parallel sequencing systems with 

lower costs, higher accuracy and performance compared with Sanger sequencing. 454 

relased the 454 sequencer, Solexa released the Genome Analyzer and Agencourt 

released the Sequencing by Oligo Ligation Detection (SOLID) instruments in 1995. 

Applied Biosystems acquired Agencourt in 2006, followed by 454, which was bought 

by Roche in 2007, and Solexa bought by Illumina. In 2010 Pacific Biosciences released 

yet another sequencer, the PacBio RS and a new version PacBio RS II in April 2013. 

This was the first long read sequencing technology that produced reads of potentially 

several kilobases long. More long read sequencing platforms are currently being 

introduced, an example being the MinION introduced by Oxford Nanopore 

technologies. Table 1.1 shows a comparison of the different sequencing technologies. 

Sequencing technologies have greatly improved since their inception, with each 

company modifying their technologies to produce longer and more accurate reads. 

Below are examples of different systems used in NGS technology.  Figure 1.1 shows 

examples of different sequencing machines. Figure 1.1a shows the HiSeq 3000 machine 

from Illumina, Figure 1.1b shows the Minion sequencer from Oxford Nanopore, Figure 

1.1c is the Roche 453 sequencer, Figure 1.1d shows the PacBio RSII sequencer from 

PacBio and finally the Solid sequencer (Figure 1.1e). 

 

 

Figure 1.1: Examples of sequencing technologies used in genomic projects. The Illumina HiSeq 3000 (a), the 
pocket-sized MinIon from Oxford Nanopore Technologies (b), The Roche 454 seqeuncer (c), the PacBio RSII and 

the SOLiD sequencer (e). 
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Illumina systems 

The Illumina systems account for the largest share of the market (Fedurco et al., 2006). 

It has been the main sequencing platform in many genome projects including humans, 

plants and animals such as fish genomes (Narum, 2015). The Illumina sequencer 

adopted the technology of sequencing by synthesis (SBS) (Liu et al., 2012). The SBS 

technology takes advantage of the base-by-base sequencing where each dNTP is 

attached to a fluorescently labelled terminator. The reaction image from the terminator 

is easily taken before another base is added (Ju et al., 2006).  

Solexa introduced the Genome Analyzer (GA) in 2006 and it had an output of 1 million 

bases, or 1Gbp per run. Through improvements in software, flow cell, polymerase and 

buffer, the output increased to 50Gpb/run in December 2009 and the last interation in 

the GAIIx series eventually could attain 85Gbp/run and produce read lengths of up to 

100 base pairs (Quail et al., 2012). However, due to the high throughput requirements 

of most genomic projects, greater improvements needed to be made to the system. 

In early 2010, (after acquiring Solexa in 2006) Illumina launched the HiSeq 2000, 

which could output 600Gbp per run in 8 days. With that high throughput, Illumina 

posed an advantage over Sanger and the GA technologies in meeting high throughput 

requirements of most genome projects. Also, compared to other sequencing techniques, 

Illumina was relatively cheap with a cost of about US$0.07/million bases (Illumina Inc., 

2012). However, with a relatively short read length of up to 150bp (HiSeq Nextera kit), 

which is significantly shorter than that of Sanger (550bp – 900bp), it posed many 

bioinformatics related challenges in tasks such as genome assembly.  

In 2011, Illumina launched the MiSeq (Quail et al., 2012). It produced an output of 

15G/run and read lengths of up to 2x300bp. It is therefore most applicable for bacterial 

sample and amplicon sequencing. The MiSeq sequence data is better for contig 

assembly than HiSeq mainly because of the improvement in read length even though 

the low output is still a shortcoming. Over the years Illumina has further improved its 

platforms and introduced the HiSeq 3000 and HiSeq 4000 which could produce 

1500G/run (5 billion 2x150bp reads) in 1-3.5 days, the HiSeq X series that produces 

1800G/run in less than 3 days, the NextSeq series that produces 120Gbp/run (400 

million 2x150bp reads) in 12-30hours and most recently the NovaSeq series which 
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produces 6000G/run (20 billion 2x150bp reads) in 19-40 hours) and the MiniSeq which 

in 4-20 hours can produce 4.5Gbp/run (25 million 2x150bp reads).  

 

Roche 454 system 

The Roche 454 system was first introduced in 2000 by CuraGen before being acquired 

by Roche in 2007 but was shut down in 2013 as the technology became non-competitive 

(http://www.bio-itworld.com/2013/10/16/six-years-after-acquisition-roche-quietly-

shutters-454.html). The 454-sequencing system used pyrosequencing technology to 

perform the sequence analysis (Willer, GM and CJ, 2008). The 454 systems were used 

for many genome sequencing projects including the Neanderthal genome (Green et al., 

2010).  

Pyrosequencing technology relied on the luminometric detection of pyrophosphate that 

is released during primer-directed DNA polymerase-catalyzed nucleotide incorporation 

(Chowdhury et al., 2012). It used four enzymes to detect nucleic acid sequences during 

the synthesis. First a DNA segment is amplified, biotinylated and mixed with four 

enzymes; DNA polymerase, ATP sulfurylase, luciferase and apyrase, and the substrates 

adenosine 5’ phosphosulfate (APS) and luciferin (Gharizadeh et al., 2006). Then on a 

picotiter plate, one of the four dNTPs will complement to the bases of the template 

strand with the help of the four enzymes and release pyrophosphate (PPi) which equals 

the number of incorporated nucleotides. The ATP transformed from PPi drives the 

luciferin into oxyluciferin and generates visible light. The locations of these light 

signals are detected and used to determine which beads the nucleotides are added to. At 

the same time, the unmatched bases are degraded by apyrase. Then another dNTP is 

added into the reaction system and the pyrosequencing reaction is repeated (Liu, et al., 

2012). 

Roche 454 sequencing could sequence much longer reads than Illumina, achieving over 

700bp read lengths. Like Illumina, it does this by sequencing multiple reads at once by 

reading optical signals as bases are added. On top of the long-read length, another 

advantage of Roche 454 was that it can produce an output of 0.7Gbp in 24 hours which 

was improved to 14Gbp/run in 2009. However, one major disadvantage of the 454 

system was that the output of 0.7Gbp and 14Gbp per run was low, and the cost a lot 
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higher per base generated than Illumina technology, at an estimated US$10 per million 

bases (Liu et al., 2012). The Roche 454 also has a relatively high error rate in terms of 

poly-bases longer than 6bp, which was a major shortcoming. Roche, however, shut 

down 454 sequencing in 2013 when its technology became noncompetitive (Holmer, 

2013) 

SOLiD system 

The SOLiD sequencer adopts the di-base technology based on ligation sequencing 

(Huang et al., 2012). The SOLiD flow cell consists of  the ligation site, cleavage site 

and 4 different flourent dyes. The fluorescent signal will be recorded via the probes 

complementary to the template strand and vanished by the cleavage of probes’ last 3 

bases. The sequence of the fragment can be deduced after 5 rounds of sequencing using 

ladder primer sets (Liu et al., 2012). The current version of SOLiD, the SOLiD 5500W 

has a read length, accuracy, and data output of 50bp, 99.99%, and 160Gbp per run 

respectively. A complete run could be finished within 6 days for single end reads and 

12 days for paired end reads. The high accuracy of the AB SOLID system is a major 

advantage to genome sequencing. However, the short reads cause even more 

bioinformatics challenges than Illumina when applying it to processes like genome 

assembly, especially challenges in repeat resolution. 

Ion Torrent: Proton / PGM / S5 sequencing 

Ion Torrent launched the Personal Genome Machine (PGM) in the end of 2010 and uses 

semiconductor sequencing technology (Liu et al., 2012). Instead of optical signals, Ion 

torrent and Ion proton use hydrogen the (H)+ ion released when dNTP is added to a 

DNA polymer. This (H)+ ion decreases pH and changes in pH allow sensors to 

determine if that base, and how many thereof, was added to the sequence read. Since 

the PGM does not require florescence and camera scanning, it produces reads of stable 

quality at a lower cost and less time. The PGM can produce reads of 200bp in 2 hours. 

The PGM has an output of 10Mbp-100Mbp per run, a throughput that is very low when 

considering the amount of data needed for a large-scale genome project. 

Recently, in 2015, Ion Torrent launched and the Ion GeneStudio S5 series (Shin et al., 

2017) which produces from 2-3 million reads in approximately 3hours (Ion 510 Chip) 
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to 100–130million reads in approximately 11hours (Ion 550chip). This is more data in 

less time compared to Proton and PGM. 

 

1.1.2 Long read sequencers 

 

Due to the shortcomings that come with short reads in genome assemblies, long 

fragment reads became necessary to address some of these challenges such as 

scaffolding and resolving repeat regions within the genome.  Currently, sequencers 

have been introduced that produce long reads that are several kilobases long. There are 

two main types of long-read technologies: real-time sequencing approaches and 

synthetic approaches. Examples of real-time sequencing long read platforms are the 

PacBio sequencer from Pacific Biosciences (Quail et al., 2012) and Oxford Nanopore 

Technologies sequencers such as the MinION (Jain et al., 2015), and PromethION 

(Datema et al., 2016). Examples of synthetic long read platforms are the Illumina 

synthetic long-read sequencing platform and the 10x Genomics emulsion-based 

system. 

Real-time long-read sequencing  

 

PacBio 

The PacBio RS II uses Single Molecule Real Time sequencing (SMRT) (Quail et al, 

2012). A single DNA polymerase enzyme is immobilized at the bottom of a reaction 

cell called a zero-mode waveguide (ZMW) cell, with a single molecule of DNA as a 

template (Eid et al., 2009). Each sequencing plate contains ~3 000 individual cells with 

each holding only a single DNA molecule. During sequencing, a single labelled dNTP 

(each dNTP containing a different fluorophore) enters the polymerase and is held in 

position for a short period of time. A fluorescence signal is emitted in the ZMW during 

that time and signals are then collected from each ZMW. The dNTP leaves and then 

another molecule enters and the process continues. The DNA sequence of single 

molecule is determined by sequence of light pulses. The major advantage of PacBio 

technology is that it has a read length of about 10kb, which is significantly longer than 

all other short read sequencing technology available. However, the raw error rate is 

significantly higher than all the other sequencing technologies at 12.86% (Quail et al, 

2013). Illumina HiSeq 2000 for instance has a raw error rate of 0.26% (Quail et al, 
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2013). Also, at US$2000 per Gb, the PacBio technology is more expensive than the 

other sequencing technologies.  

Oxford nanopore technologies 

Oxford Nanopore Technologies are currently developing a number of platforms that 

use nanopore technology to produce very long reads. Nanopore technology is often 

referred to as fourth generation sequencing. This technology utilizes nanometer sized 

pores that are either embedded in a biological membrane or formed in solid-state film 

which separates the reservoirs containing conductive electrolytes into cis and trans 

compartments (Feng et al., 2015). In nanopore sequencing the DNA strand is analysed 

directly as the molecule is drawn through a tiny pore (nanopore) suspended in a 

membrane. Changes in electrical current, or tunnelling currents, are read off a chain of 

bases and interpreted as particular k-mers (Wilhelm, 2015). Oxford has introduced a 

number of platforms that use nanopore technology. These include the MinION (Jain et 

al., 2016), PromethION (Datema et al., 2016), GridION (Karow, 2017) and the 

SmidgION which is still under development. The advantage of nanopore sequencers is 

the direct detection the DNA composition of native ssDNA and not a secondary signal 

like colour, pH or light as in other platforms.  Also, it does not need to monitor 

incorporations or hybridizations of nucleotides guided by a template DNA strand. 

Nanopore DNA sequencing do not require a great deal of sample preparation and 

complicated algorithms for data processing as is the case with most non-nanopore DNA 

sequencers (Feng et al., 2015). 

The MinION sequencer was introduced in 2014 and can produce data from 10G – 

20Gbp with reads of up to 200kb in 48 hours. The PromethION uses the same 

technology as the MinION but produces larger amounts of data for users who require 

sequencing of many samples in parallel or the same sample in larger depth. The 

GridION X5, whose release was announced on the 14th of March 2017, is able to run 

up to five flow cells at a time, enabling it to generate up to 50Gbp of sequence data per 

48-hour run with current chemistry and software (Karow, 2017). However, as with 

PacBio sequencer, the error rate for the MinION and PromethION was initially 

discouragingly high (~30%) (Feng et al., 2015) but fortunately, recent developments in 

the chemistry and base calling algorithms are improving accuracy with a current error 

rate between 2-13%. 
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Synthetic long-reads sequencers 

The synthetic long-read sequencing platforms rely on a system of barcoding to associate 

fragments that are sequenced on existing short-read sequencers (Voskoboynik et al., 

2013). Currently there are two systems available for generating long-reads; the Illumina 

synthetic long-read sequencing platform and the 10X Genomics system. The main 

difference between the Illumina system and the 10X Genomics system is that the 

Illumina system does not require special instrumentation to partition DNA into a 

microtiter plate while the 10X Genomics system uses emulsion to partition DNA and 

requires the use of a microfluidic instrument to perform pre-sequencing reactions. The 

error rate for Illumina long read sequencers as well as the 10X Genomics is similar to 

that of the existing short read sequencers but since the long-read sequencers require 

more coverage than the current short read systems, the cost of sequencing long reads is 

higher (Feng et al., 2015). The cost of the 10X Genomics sequencer is slightly higher 

because of the additional cost of the microfluidic instrument. 

Table 1.1: Comparison between different sequencing technologies. This table shows different sequencing 
mechanisms, read length and output per run for different sequencers. 

Platform Read length (bp) Throughput Reads Runtime Sequencing 

technology 

SHORT READ 

SEQUENCING 

     

Illumina Systems 
     

Illumina MiniSeq 

Mid output 

150 (SE) 2.1–2.4 Gb 14–16 M 17 h Sequencing by 
synthesis 

Illumina MiniSeq 

High output 

75 (SE) 1.6–1.8 Gb 22–25 M 
(SE) 

7 h 

75 (PE) 3.3–3.7 Gb 44–50 M 
(PE) 

13 h 

150 (PE) 6.6–7.5 Gb 24 h 

Illumina MiSeq v2 36 (SE) 540–610 Mb 12–15 M 
(SE) 

4 h 

25 (PE) 750–850 Mb 24–30 M 
(PE) 

5.5 h 

150 (PE) 4.5–5.1 Gb 24 h 

250 (PE) 7.5–8.5 Gb 39 h 

Illumina MiSeq v3 75 (PE) 3.3–3.8 Gb 44–50 M 
(PE) 

21–56 h 

300 (PE) 13.2–15 Gb 
 

Illumina NextSeq 

500/550 Mid output 

75 (PE) 16–20 Gb Up to 
260 M 
(PE) 

15 h 

150 (PE) 32–40 Gb 26 h 

Illumina 

NextSeq500/550 

High output 

75 (SE) 25–30 Gb 400 M 
(SE) 

11 h 

75 (PE) 50–60 Gb 800 M 
(PE) 

18 h 

150 (PE) 100–120 Gb 
 

29 h 

Illumina HiSeq 
2500 v2 Rapid run 

36 (SE) 9–11Gb 300 M 
(SE) 

7 h 
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50 (PE) 25–30 Gb 600 M 
(PE) 

16 h 

100 (PE) 50–60 Gb 27 h 

150 (PE) 75–90 Gb 40 h 

250 (PE) 125–150 Gb 60 h 

Illumina HiSeq 
2500 v3 

36 (SE) 47–52 Gb 1.5 B 
(SE) 

2 d 

50 (PE) 135–150 Gb 3 B (PE) 5.5 d 

100 (PE) 270–300 Gb 11 d 

Illumina HiSeq 

2500 v4 

36 (SE) 64–72 Gb 2 B (SE) 29 h 

50 (PE) 180–200 Gb 4 B (PE) 2.5 d 

100 (PE) 360–400 Gb 5 d 

125 (PE) 450–500 Gb 6 d 

Illumina HiSeq 
3000/4000 

50 (SE) 105–125 Gb 2.5 B 
(SE) 

1–3.5 d 

75 (PE) 325–375 Gb 

150 (PE) 650–750 Gb 

Illumina HiSeq X 150 (PE) 800–900 Gb 
per flow cell 

2.6–3 B 
(PE) 

<3 d 

      

Solid Systems 
     

SOLiD 5500 Wildfire 50 (SE) and 75 
(SE) 

up to 160Gb ~700 M 6 d Sequencing by 
ligation 

SOLiD 5500 xl 50 (SE) and 75 

(SE) 

up to 320Gb ~1.4 B 10 d 

      

BGI Systems 
    

 
 

Sequencing by 
Ligation 

BGISEQ-500 

FCS155 

50–100 (SE/PE) 8–40 Gb NA 24 h 

BGISEQ-500 

FCL155 

50–100 (SE/PE) 40–200 Gb NA 24 h 

      

Roche system 
     

      

454 GS FLX 

Titanium XL+ 

Up to 1,000; 700 
mode (SE, PE) 

up to 700 Mb ~1 M 23 h Sequencing by 
synthesis: SNA       

Ion Torrent Sytems 
     

Ion PGM 314 200 (SE) 30–50 400 
000–550 

000 

23 h Sequencing by 
synthesis: SNA 

 
400 (SE) 60–100 Mb 

 
3.7 h 

Ion PGM 316 200 (SE) 300–500 Mb 2–3 M 3 h 
 

400 (SE) 600 Mb–1 Gb 
 

4.9 h 

Ion PGM 318 200 (SE) 600 Mb–1 Gb 4–5.5 M 4 h 
 

400 (SE) 1–2 Gb 
 

7.3 h 

Ion Proton Up to 200 (SE) Up to 10 Gb 60–80 M 2–4 h 

Ion S5 520 200 (SE) 600 Mb–1 Gb 3–5 M 2.5 h 
 

400 (SE) 1.2–2 Gb 
 

4 h 

Ion S5 530 200 (SE) 3–4 Gb 15–20 M 2.5 h 
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400 (SE) 6–8 Gb 

 
4 h 

Ion S5 540 200 (SE) 10–15 Gb 60–80 M 2.5 h 
      

      

LONG READ 

SEQUENCING 

     

Pacific BioSciences 

Systems 

     

Pacific BioSciences 

RS II 

~20 Kb 500 Mb–1 Gb ~55,000 4 h Single-molecule 
real-time long reads 

Pacific Biosciences 

Sequel 

8–12 Kb 3.5–7 Gb ~350,00
0 

0.5–6 h 
 

      

Oxford Nanopore 

Technology 

     

Oxford Nanopore 

MK 1 MinION 

Up to 200 Kb Up to 1.5 

Gb159 

>100,00

0 

Up to 48 

h160 

Single-molecule 

real-time long reads 
Oxford Nanopore 

PromethION 

up to 200 Kb159 Up to 4 Tb 
   

      

Synthetic long reads 
     

Illumina Synthetic 

Long-Read 

~100 Kb 
synthetic length 

Same as 
HiSeq 2500 

same as 
HiSeq 
2500 

See HiSeq 
2500 

Synthetic read 
technology 

10X Genomics Up to 100 Kb 
synthetic length 

Same as 
HiSeq 2500 

Same as 
HiSeq 
2500 

See HiSeq 
2500 

 

1.2 The relevance of guava 

Guava (Psidium guajava), a member of the Myrtaceae family, is one of the most 

important fruit crops grown commercially across the tropics and sub-tropics (Hayes, 

1966; Pathak and Ojha, 1993). High in vitamin A and B, the fruit is exceptionally rich 

in vitamin C when compared to other common winter fruits (Table 1.2). Guava fruit is 

estimated to be higher in vitamin C (184 mg/100g), calcium (20g/100g) niacin 

(1.2mg/100g) and fiber, while having a comparative higher level of iron (0.3mg/100g) 

and beta carotene than most other winter fruit. Colloquially, the guava fruit is generally 

known as the ‘Apple of Tropics and Sub-tropics’(Prakash, Narayanaswamy and 

Sondur, 2002; Rai et al., 2010).  
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Table 1.2: The nutritional value of well-known winter fruits. Guava has the highest levels of Vitamin C, calcium 
and niacin when compared to more commercialized fruits (source http://www.guavaproducers.co.za/all-about-

guavas_history.html). 

Fruit Vitamin C 

(mg/100g) 

Iron 

(mg/100g) 

Beta 

Carotene. Re-

retinol Equivs 

g/100g 

 

Fibre 

g/100g 

Calcium 

g/100g 

Niacin 

mg/100g 

Guava 184 0.3 79 5.6 20 1.2 

Paw paw 62 0.1 201 0.9 0.1 0.3 

Orange 53 0.1 21 2.0 0.1 0.3 

Grapefruit 34 0.1 12 0.6 12 0.3 

Banana 9 0.3 8 3.0 6 0.5 

Apple 6 0.3 5 3.1 7 0.1 

 

In addition to the nutritional value of guava, it exhibits some pharmaceutical properties 

when used in traditional medicines. The fruit, bark and leaves have been used in folk 

medicine in treatment of ailments such as wounds, ulcers, bowls and cholera (Begum, 

Hassan and Siddiqui, 2002). The pharmacological properties of these plant parts have 

also been investigated for their antibacterial, hypoglycemic, anti-inflammatory, 

antipyretic, spasmolytic and central nervous system depressant activities (Begum, 

Hassan and Siddiqui, 2002). 

Guava (Psidium guajava) is grown in Mpumalanga, Limpopo and the Western Cape 

provinces of South Africa (Schoeman, 2011). The origin of the cultivated guava, 

Psidium guajava Linn, can be traced to South and Central America and its sister species 

include the Brazilian guava (Psidium guineense), mountain guava (Psidium 

montanum), strawberry or cherry guava (Psidium cattleianum), Pineapple guava (Acca 

sellowiana) and Chilean guava (Ugni myricoides) (Mehmood et al., 2013). In South 

Africa, approximately 1 200 ha are currently under guava production, mainly in the 

Western Cape, Limpopo and Mpumalanga. Total production is estimated at 27 000 

tons, of which most being used in the food processing industry (Schoeman, 2011). In 

2015, South Africa produced 33 574 tons of guava fruit with a gross value of R53 439 

000 (Department of Agriculture, Forestry and Fisheries, 2015).  

The guava fruit is botanically a berry and can vary in shape. It may be rounded, ovate, 
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or pear shaped (Fig 1.2). The fruit may also vary in diameter and weight, from 25 to 

102 mm and from 56 to about 450 respectively. The skin color of the ripe fruit is usually 

yellow, and the flesh color may be white, pink, yellow or cream. Guavas vary from 

thick-fleshed fruits with only a few seeds in a small central cavity, to thin fleshed fruits 

with numerous seeds imbedded in a large mass of pulp (Menzel, 1985). 

 

Figure 1.2: Photograph of a guava fruit (source: https://nurserylive.com). 

 

1.3 The guava genome 

The chromosome studies done on four species of Psidium (P. acutangulum, P. 

catteyanum, P. cinereum and P. guajava) from different populations showed that in the 

Psidium family only P. guajava is diploid (2n=22) while the other three family 

members are tetraploid (2n=4x=44) (da Costa Itayguara and Forni-Martins, 2006). 

Within Psidium guajava, studies have identified many diploid individuals or 

populations (2n=21, 22, 28, 20, 32 and 34) (D’Cruz and G.B, 1962; Majumder and 

Mukherjee, 1972), as well as polyploids, with 2n=33 (Kumar & Ranade, 1962) and 

2n=44 (Srivastava, 1977b). The Psidium can therefore be described as having several 

cytotypes (chromosomic races), with the chromosome number varying in a diploid 
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series (from 2n=21-34) or with different levels of ploidy (2n=22, 33 and 44) (da Costa 

Itayguara and Forni-Martins, 2006). 

The C-value of an organism is the amount of nuclear DNA in its unreplicated gametic 

nucleus (Swift, 1950), irrespective of the ploidy level of the taxon (da Costa, Dornelas 

and Forni-Martins, 2008). The first species of fleshy-fruited Myrtaceae to be 

investigated was Psidium guajava L., where the authors found different 2C-values, as 

estimated by Feulgen microdensitometry of 0.7pg (Bennett & Leitch, 2004) and 1.3pg 

(Ohri and Kumar, 1986) respectively, both samples having 2n = 22. Table 1.3 shows 

the genome size estimations in the Psidium genus. The values are given as the mean (at 

least 10.000 nuclei) and standard deviation of the mean of the haploploid nuclear DNA 

content (2C, pg DNA) of each species. The 2C range is presented by the minimum 

(Min.) and maximum (Max.) value obtained for each species. The monoploid nuclear 

DNA content (1Cx) in mass values (pg) and Mbp and the mean sample coefficient of 

variation of G0/G1 DNA peak (c.v., %) are also provided for each species. 1 pg DNA 

= 978 Mbp (Dolezel et al., 2003). 

 

 

 

Table 1.3: Chromosome numbers (2n) and genome size estimations for the fleshy-fruited Psidium genus. Two 
cultivars of P. guajava, the white cultivar and red cultivar genome sizes are 247.92Mbps and 269.44Mbps 

respectively (adapted from da Costa Itayguara & Forni- Martins, 2006). 

Species 2

n 

Ploidy Nuclear DNA content c.v. (%) 
   

2C(pg) 2C(range) 1Cx 1Cx  
 

    
min max (pg) (Mbps) 

 

P. pseudocariophyllus 22 2x 0.523±0.020 0.503 0.543 0.262 255.75 5.24 

P. acutangulum 44 4x 1.167 ± 0.044 1.123 1.211 0.584 572.32 3.27 

P. cattleianum 44 4x 1.053 ± 0.040 1.013 1.093 0.526 515.48 3.89 

P. guajava (white) 22 2x 0.507 ± 0.019 0.488 0.526 0.254 247.92 4.32 

P. guajava (red) 22 2x 0.551 ± 0.021 0.530 0.572 0.276 269.44 5.03 

Genomics is an area of genetics that concerns the sequencing and analysis of an 

organism’s genome (Miko and LeJeune, 2009). It applies DNA sequencing methods 

and bioinformatics algorithms to sequence, assemble and analyze the function and 

structure of genomes. We aim to explore bioinformatics methods used to create 
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resources that will serve as a starting point to utilize genomics resources in guava 

breeding and cultivation.  

The guava industry faces many challenges, one being the recent outbreak of Guava Wilt 

Disease (GWD), which is causing severe economic losses to the industry. Successful 

breeding techniques employed by the Agricultural Research Council’s Institute for 

Tropical and Subtropical Crops (ARC-ITSC) in the 1990’s (Schoeman, 2011) produced 

rootstocks resistant to the disease, but a resistant strain of the causal pathogen 

Nalanthamala psidii is currently causing severe losses in the industry. A genomic 

resource for guava will be a starting point in addressing this problem and others using 

genomics and bioinformatics. 

 

1.4 Guava wilt disease 

Guava wilt disease (GWD) was first reported in South Africa in the 1980s (Grech, 

1985) in Malane, Mpumalanga. The outbreak of the disease caused severe losses in the 

guava industry, both to guava plantations and in monetary terms. It spread across the 

whole Mpumalanga and Limpopo as the guava industry in these areas relied solely on 

a single, highly susceptible cultivar, ‘Fan Retief’ (FR) (Grech, 1987). The fungus 

causing GWD is classified as Nalanthamala psidii (Schroers et al., 2005). GWD causes 

the leaves of the plant to shrivel (Fig 1.4) and die resulting in complete defoliation 

(Schoeman et al., 1997). In 1995 two resistant rootstocks and one tolerant guava 

rootstock were developed by the Agricultural Research Council’s Institute for Tropical 

and Subtropical Crops (ARC-ITSC) (Schoeman, 2011). However, in 2009 there was a 

renewed outbreak caused by a resistant strain of N. psidii, placing the South African 

guava industry once again under threat.  
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Figure 1.3: Picture of a guava fruit tree affected by GWD. (Source: https://discuss.farmnest.com/t/guava-wilt-any-

organic-remedies/3699) 

Genome and transcriptome work on the guava genome present an opportunity to 

address the GWD problem and other challenges facing the guava industry. 

Understanding the molecular nature of host-pathogen interactions assists breeders to 

identify genomic resources for breeding against diseases (Meyer et al., 2005). Creating 

a genomic resource for Psidium guajava would start by determining the sequence of 

the host’s (P. guajava) genome, as well as that of pathogens such as N. psidii. 

 

1.5 Whole genome assembly 

Whole Genome Shotgun Assembly (often called simply Whole Genome 

Assembly or WGA) is the process of sequencing the entire genome of an organism by 

ordering and orienting sequenced reads. Overlapping reads are aligned together to form 

a contiguous sequence of base pairs called contigs. These are then used to make super 

contigs/scaffolds, which consist of many contigs separated by gaps of known or 

estimated sizes. Figure 1.4 shows the general workflow for whole genome assembly. 
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This illustrates how a genome is first fragmented into fragments, sequenced by 

sequencers to form reads and then finally stitching the reads to form the original 

genome sequence. The stitching of the reads involves various bioinformatics 

algorithms. 

 

Figure 1.4: Diagram showing the whole genome assembly process (Source: http://www.genome.gov). 

  

Studies done by Lander & Waterman (1988) explored conditions that are necessary for 

an assembly to be possible. They explored how read length, coverage of the genome 

and overlap between two reads can affect an assembly. The coverage of a genome is 

number of total bases in the set of reads divided by the length of the genome. Their 

work showed that genome sequences could be effectively reconstructed with as low as 

tenfold coverage of sequence reads (Simpson and Pop, 2015) when Sanger reads are 

used. Also, work by Ukkonen and others showed that finding the correct solution for a 

genome assembly may require exploring an exponential number of possible solutions. 

Research done to find the best solution led to the first practical genome sequence 

assemblers (Simpson & Pop, 2015). 

1.5.1 Challenges with whole genome assembly 

WGA is affected by many inherent challenges including sequencing errors, repeats and 

polymorphisms. Sequencing errors arise from miscalls from different sequencing 
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methods. These sequencing errors result in assemblers constructing contigs that 

consisting of unambiguous, unbranching regions of the genome (Simpson & Pop, 

2015). NGS reads come with quality scores associated with each nucleotide. These 

quality scores (PHRED scores) are values that are given to each base to show the 

likelihood of the base not being a miscall. Various packages like Trimmomatic (Bolger, 

Lohse and Usadel, 2014), Quake (Kelley, Schatz and Salzberg, 2010) and cut-adapt 

(Martin, 2011) are used to trim or filter these miscalls and improve the quality of reads.  

Repeats are sequences that occur in more than one place in the genome. Repetitive 

elements pose a serious problem for WGS assembly since it is mathematically 

impossible to reads sequenced from different but identical-looking regions (Simpson & 

Pop, 2015). Different reads with identical looking reads may form false overlaps which 

ultimately form misassembles. Moreover, genomes with repeats longer than read length 

are particularly harder to assemble as it is impossible to bridge that gap. However, mate-

pair information can be used to resolve these repeats. Since mate-pair information spans 

are made from large DNA fragments (between 3kb and 20kb in size), they offer 

valuable constraints on the relative placement of sequence reads in an assembly 

(Simpson & Pop, 2015). 

 

Genetic polymorphism can be defined as the existence of multiple alleles or forms at a 

genomic locus for genomes in the same population. A high level of with-in population 

polymorphisms may significantly increase the complexity of genome assembly and 

most assemblers assume a polymorphic rate of <1%. Assemblers such as Hapsembler 

(Donmez and Brudno, 2011), have been developed specially for highly polymorphic 

genomes by utilising a mate-pair graph that is essentially an overlap graph built from 

read pairs instead of single reads and is very useful in resolving repeats in addition to 

the ambiguities caused by polymorphisms (Donmez and Brudno, 2011). 

 

1.5.2 Types of whole genome assembly 

There are three general approaches to whole genome assembly. These include de novo 

genome assembly, reference-based genome assembly and combined genome assembly. 

NGS technologies typically produces libraries with fastq files containing nucleic acid 
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sequence reads together with quality scores that are used for performing in silico 

assemblies. 

1.5.2.1 De novo genome assembly 

De novo genome assembly is a form of assembly where no previously assembled 

genome (a reference genome) is present. There are various publicly available packages 

for de novo genome assembly. Examples of such packages (assemblers) are 

ALLPATHS-LG (Butler et al., 2008), SOAP-Denovo (Luo et al., 2012), AbySS 

(Simpson et al., 2009) and SGA (Simpson and Durbin, 2012) among others. The two 

basic approaches that assemblers use are (a) greedy-based approaches and (b) graph-

based approaches. 

 

(a) Greedy-based approach 

This strategy for assembling a genome sequence involves iteratively joining together 

the reads in decreasing order of the quality of their overlaps (Simpson & Pop, 2015) 

consequently growing contigs. The greedy approach has shown to be a good 

approximation for the optimal assembly and is the underlying approach to assemblers 

like phrap (Green, 1994) and TGIR Assembler (Sutton et al., 1995), which were used 

in the Human Genome Project. The greedy approach, however, has its limitations. It 

fails to effectively handle repetitive regions and this is due to its local assembly nature. 

It also has high computational times. Because of this, the greedy approach has been 

replaced by more effective graph-based approaches. 

(b) Graph-based approach 

The graph-based approach was developed from theoretical studies of graphs and graph 

theory. This approach converts reads into nodes/vertices and edges and the genome to 

be a path of ordered nodes joined by edges. Three basic models that use the graph-based 

approach are (i) overlap graph construction, (ii) the de Bruijn method and (iii) string 

graphs. 

(i) The overlap graph approach  

The overlap graph construction method was developed for Sanger reads, although some 

assemblers for next-generation sequence data also use this approach (Illumina Inc, 
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2012). The overlap graph approach assemblers compute all pair-wise overlaps between 

the reads and capture this information in a graph. Each node of the graph corresponds 

to a read, and an edge denotes an overlap between two reads. The graph construction is 

in three stages (i) overlapping reads are detected (ii) the graph is constructed, and an 

appropriate ordering and orientation (layout) of the reads are found and (iii) a consensus 

sequence is computed from the ordered and oriented reads (Simpson & Pop, 2015). 

This method is however computationally intensive such that only a small percentage of 

the available assemblers use this method (Illumina Inc., 2012). The overlap graph has 

been successful and has been used by assemblers such as the Celera assembler (Myers 

et al, 2000) and Newbler (Wheeler et al., 2008). Despite its success, however, the 

overlap graph strategy struggles when presented with the vast amounts of short-read 

data generated by the next generation of DNA sequencing instruments (Simpson and 

Pop, 2015). 

(ii) The de Bruijn method  

The de Bruijn method was first introduced by Pevzner (Pevzner, MYu and Mironov, 

1989) in the 1980s. It reduces computational effort by breaking reads into smaller 

sequences of DNA called k-mers, where k is the length of the small sequences. The de 

Bruijn graph captures overlaps of length k-1 between these k-mers and not between 

actual reads (Illumina Inc., 2012). The assembly problem can then be formulated as 

finding a walk through the graph that visits each edge in the graph once—also known 

as an Eulerian path problem (Simpson and Pop, 2015). However, in a typical genome 

assembly problem, the Eulerian path will produce an exponential number of paths. 

Because of this, most assemblers that use the de Bruijn method do not seek the 

completion of the Eulerian path, rather the assembler attempts to construct contigs 

consisting of the unambiguous, unbranching regions of the graph. De Bruijn graphs 

also reduce the challenges that repeats in the genome pose to genome assembly, as it 

can collapse repeats in the genome in the graph and does not lead to many spurious 

overlaps. Given a k-mer substring of a genome, coverage is defined as the number of 

reads to which this k-mer belongs (Compeau and Pevzner, 2015). Breaking reads into 

short k-mers ensures a better coverage of the k-mers. However, the smaller k results in 

a more tangled de Bruijn graph, making it difficult to infer the genome from this graph 

(Compeau and Pevzner, 2015). A bigger k on the other hand, is helpful in repeat 

resolution. Again, having a k value that is too big will lead to imperfect coverage 
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reducing the chances of obtaining a correct assembly size. Tools such as jellyfish 

(Marcais and Kingsford, 2012) and kmergenie (Chikhi and Medvedev, 2014) are used 

to estimate the best k value to use for a particular set of reads. Most recent assemblers 

use the de Bruijn construction. Examples are: The ABySS (Assembly by Short 

Sequences) assembler (Simpson et al., 2009), SOAP-Denovo assembler (Luo et al., 

2012) and ALLPATHS-LG (Butler et al., 2008). 

(iii) String graphs 

The approach is based on the overlap graph but performs two other transformations to 

collapse repeats just like the de Bruijn graph. The two transformations to the overlap 

graph are: firstly, contained reads that are substrings of some other read are removed. 

Secondly, transitive edges are removed from the graph (Simpson and Pop, 2015). This 

forms a graph (string graph), which has properties of de Bruijn without the need to 

break reads into k-mers. The Edena assembler (Hernandez et al., 2008) is the first 

assembler to use the string graph approach but other string graph algorithms such as 

the String Graph Assembler (Simpson and Durbin, 2012) have been developed since. 

1.5.2.2 Reference-based assembly 

As the name implies, the reference-based approach entails the use of a genome as a 

blueprint for assembly. This strategy requires three steps: read alignment; overlap graph 

construction and isoform resolution (Martin and Wang, 2011; Florea and Salzberg, 

2013). 

A wide range of aligners exists for alignment of various types of nucleic acid and 

protein sequence information (Flicek and Birney, 2009; Martin and Wang, 2011). 

Aligners such as BWA (Li and Durbin, 2009) or Bowtie (Langmead et al., 2009) can 

be subdivided into two classes based on their underlying algorithms (Flicek and Birney, 

2009); seed-and-extend aligners use a hash table-based approach that relies on heuristic 

techniques to align ‘seed’ sequences to the genome followed by Smith-Waterman 

alignment algorithms to extend local alignments, and Burrows-Wheeler transform-

based (Burrows and Wheeler, 1994) aligners that use a condensed suffix array-based 

approach (Flicek and Birney, 2009). 

A typical BWA alignment will start by creating an index/database of the reference 

genome to speed up the mapping. Paired-end reads are aligned separately and then 
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combined. The next steps involve creating a sequence alignment map file and finally 

an index for the alignment file. Any unmapped reads can then be identified and used 

for a de novo assembly if necessary, to improve assembly. 

1.5.2.3 Combined assembly 

Both de novo and reference-based strategies of genome assembly have distinctive 

advantages and disadvantages. Consequently, if a suitable genome sequence is 

available, these strategies can be combined to complement each other (Martin and 

Wang, 2011; Jain, Krishnan and Panda, 2013). Conversely, a combined approach runs 

the risk of losing sensitivity due to compounded errors in the reference genome (Jain, 

Krishnan and Panda, 2013).  Two approaches to combined assembly are align-then-

assemble or assemble-then-align. (Martin et al., 2010). 

The align-then-assemble approach entails performing reference-guided assembly and 

then using the unmapped reads as input for de novo assembly. Alternatively, the align-

then-assemble approach can use both reference-guided assembled contigs and the failed 

reads in cases where the de novo assembler can use long reads (Martin and Wang, 

2011). The assemble-then-align approach is the reverse, where data is first used for de 

novo assembly of a genome, followed by scaffolding and extension of assembled 

contigs by aligning them to the reference genome. This approach is mainly used if the 

quality of the genomic data is in question. Tools such as AlignGraph (Bao, Jiang and 

Girke, 2014) use an algorithm for secondary de novo genome assembly guided by 

closely related references. This algorithm uses contigs obtained from a de novo genome 

assembler such as ALLPATHS-LG and an assembled genome of a closely related 

species. First it aligns paired-end reads to both the pre-assembled contigs and the 

closely related reference genome. It also aligns contigs to the reference genome. 

Secondly, the alignment mapping results are used to construct a positional variant of 

the de Bruijn graph, called the paired-end multipositional de Bruijn graph (Bao, Jiang 

and Girke, 2014). Finally, the resulting graph is edited and traversed to obtain extended 

contigs. 

1.5.3 Assembly pipeline 

Assembling a genome requires prior planning. An assembly pipeline can be proposed, 

implemented and modified depending on assembly output quality and challenges. A 
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typical pipeline is shown below in Figure 1.5. A major step in the assembly is the pre-

assembly process that involves quality control of NGS reads and trimming. Also, post-

processing like quality assessment is also essential. 

 

 

Figure 1.5: Typical assembly pipeline showing the pre-assembly steps (first 4 steps) the assembly and post 
assembly steps. Examples of tools used at each stage are given. 

 

1.5.3.1 Pre-assembly processing 

Before an assembler is used on NGS reads, the reads have to be assessed for quality 

using quality control tools such as FastQC (Andrew, 2016) and Prinseq (Schmieder and 

Edwards, 2011). These tools assess the quality of the raw reads by looking at aspects 

such as per base sequence quality, k-mer content and adapter content among others. 

Based on the results of quality control tools, appropriate action will be taken on the 

NGS reads to correct/clean up the reads depending on the assembler to be used. 

Trimming is a common action taken to reads. Several tools are publicly available and 

are used for removing adaptors and for trimming on quality of the reads. Examples of 

these trimming tools are Trimmomatic (Bolger, Lohse and Usadel, 2014) and Cutadapt 

(Martin, 2011). Other tools like FlaSh (Magoc and Salzberg, 2011) which is used to 

merge overlapping paired end reads can also be used to improve the length of input 

reads, hence improving assembly. A recommended practice is to use quality control 

tools on the reads again after trimming and merging reads before one can use them for 
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assembly. The processing done on the reads before assembly depends on the assembler 

to be used. For example, ALLPATHS-LG only requires reads to have its adapters 

removed since it does its quality trimming and merging on its own. SOAP-Denovo, 

however, requires reads to be trimmed for quality and merged if possible. 

1.5.3.2 Assessment of assembly quality 

Different assemblers use different methods to assemble the same genome. Because of 

this, the quality of assemblies tends to differ. Quality assessment of assemblies as well 

as comparing different assemblies is therefore essential. Recently, there has been a lot 

of work on developing comprehensive ways to compare different assemblers (Gurevich 

et al., 2013). Packages like Plantagora (Barthelson et al., 2011), GAGE (Salzberg et 

al., 2012) and QUAST (Gurevich et al., 2013) have been used to assess different 

assemblers. Plantagora and GAGE can only be used to evaluate assemblies of datasets 

with a known reference genome; thus, they are not suitable for evaluating assemblies 

of previously unsequenced genomes. QUAST however, is not restricted to assemblies 

with reference genomes. These use a number of metrics to assess the assembly quality 

and compare it with other assemblies. Comparing metrics that are given in each 

assembly report can also be done by hand. There are several metrics that can be used 

for assessment. These include: (i) contig sizes, (ii) genome misassemblies and structural 

variations, (iii) genome representation and its functional elements and (iv) variations of 

N50 based on aligned blocks among others. The contig N50 of an assembly is the length 

of the shortest contig in a list of contigs ordered in descending order of size where the 

cumulative length of the list is at least 50% of the total length.(Yandell and Ence, 2012). 

The longer the scaffold N50, the better the assembly, although erroneous N50 values 

can be calculated when unrelated reads are used. The percentage genome coverage and 

gene coverage can also determine the quality of an assembly. Genome coverage is the 

fraction of the genome represented in the assembly based on genome size estimates 

while gene coverage is the fraction of the genes in the genome that are contained in the 

assembly. A good genome coverage is between 90-95%. Based on these metrics a 

general comparison can be made between different assemblies. However, it should be 

noted that one assembly could be better when considering one metric and worse when 

considering another. This makes comparing assemblies a complicated task. Another 

way to determine the completeness of an assembly is using CEGMA (Parra, Bradnam 

and Korf, 2007), which checks the percentage of the universal eukaryotic single-copy 
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genes found in the assembly and also determines the percentage of each gene lying on 

a single scaffold. Also, BUSCO, Benchmarking Universal Single-Copy Orthologs 

(Simão et al., 2015) can be used to assess the completeness of a genome by using 

expectations of gene content from near-universal single-copy orthologs which are 

evolutionarily-informed. 

 

1.6 Genome annotation 

Genome annotation can be defined as a subfield in the general field of genome analysis, 

which includes the downstream analysis performed with genome sequences by 

computational means (Koonin and Galperin, 2003). It can also be defined as the 

description of an individual gene and its protein (or RNA) product. The curation of the 

genome assemblies by humans can be inconsistent and error-prone, hence the incentive 

for automating as much of the annotation process as possible. 

There are a lot of packages publicly available for genome annotation. These include 

MAKER (Campbell et al., 2002), GeneQuiz (Scharf et al., 1994), PEDANT (Walter et 

al., 2009) and MAGPIE (Gaasterland and Sensen, 1996) among others. Genome 

annotations are referred to as pipelines since a lot of tools are involved in the process 

(Yandell and Ence, 2012). These genome annotation pipelines share a set of common 

features that can be divided into two phases: (i) computation phase and (ii) annotation 

phase. 

1.6.1 The computational phase 

In this phase, evidence-driven gene predictions and/or ab initio evidence is generated 

by first identifying repeats in the genome and then aligning proteins expresses sequence 

tags (ESTs), transcriptomic data and proteins to the genome. Repeat detection is done 

by tools such as RepeatMasker (Smit et al., 2013) and alignment is done by various 

tools such as TBLASTX, BLAST (Korf, Yandell and Bedell, 2003), BLAT (Kent, 

2002), TopHat (Trapnell, Pachter and Salzberg, 2009) and GMAP (Wu and Watanabe, 

2005).  

Ab initio gene predictors use mathematical and statistical models rather than external 

evidence to identify genes and to determine their intron–exon structures while  evidence 
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driven gene predictors use ESTs, for example, to identify exon boundaries 

unambiguously. (Yandell and Ence, 2012). Ab initio gene predictors need to be trained 

on the genome that is under study, as even closely related organisms can differ with 

respect to intron lengths, codon usage and GC content. The MAKER pipeline provides 

a simplified process for training the predictors Augustus (Stanke and Waack, 2003) and 

SNAP (Korf, 2004) using the EST, protein and mRNA-seq alignments that MAKER 

has produced (Yandell and Ence, 2012).Table 1.4 below shows four basic categories of 

gene identification programs.  

 

Table 1.4: A table showing four basic categories of gene prediction programs (Source: Wei et al., 2002). 

Category Algorithm url 

Based on direct 

evidence of 

transcription 

EST_GENOME http://www.hgmp.mrc.ac.uk/Registered/Option/est_geno

me.html 

  Sim4 http://globin.cse.psu.edu/ 

Based on homology 

with known genes 

PROCRUTES http://igs-server.cnrs-mrs.fr/igs/banbury/Procrustes-

about.html 

Statistical/ ab initio 

approaches 

GeneScan http://genes.mit.edu/GENSCAN.html 

  Genie http://www.fruitfly.org/seq_tools/genie.html 

  FGENESH http://genomic.sanger.ac.uk/gf/Help/fgenes.html 

  GeneMark_hm

m 

http://opal.biology.gatech.edu/GeneMark/ 

  HMMGene http://www.cbs.dtu.dk/services/HMMgene/ 

  Glimmer http://www.tigr.org/software/glimmer/glimmer.html 

Using genome 

comparison 

Twin Scan http://genes.cs.wustl.edu/ 

  Rossetta http://crossspecies.lcs.mit.edu/ 

  SGP-1 http://soft.ice.mpg.de/sgp-1 

 

1.6.2 The annotation phase. 

In this phase, the evidence for each predicted gene is reviewed, either manually or by 

automated methods to decide on their intron-exon structures. In automated annotation, 

a ‘chooser algorithm’  is used to select the best prediction from different gene predictors 

(Yandell and Ence, 2012). This is the process used by JIGSAW, EvidenceModeler 

(EVM) (Haas et al., 2008) and GLEAN (Elsik et al., 2007). Alternatively, alignment 
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evidence can be fed to the gene predictors at run time to improve the accuracy of the 

prediction process and a chooser can then be used to identify the most representative 

prediction. This is the process used by PASA, Gnomon and MAKER (Yandell and 

Ence, 2012). 

1.7 Comparative genome analysis 

Comparative genomics is a process of comparing two or more genomes to discover the 

similarities and differences between the genomes and to study the biology of the 

individual genomes (Wei et al., 2002). It can be done on whole genomes or synthenic 

regions of different species/ subspecies/ strains of the same species. Comparisons can 

be done for: (i) genome structure (ii) coding regions and (iii) noncoding regions. 

1.7.1 Comparing genome structure 

Comparative genomics on genome structure can explore overall nucleotide statistics or   

genome structure at DNA level and gene level. Nucleotide statistics include genome 

size, overall GC content and regions of different GC content. Comparison of genome 

structure at DNA level can compare breakage and exchange of chromosomal fragments, 

which are common mode of genome evolution. This can also cause disruption of gene 

order. Comparisons of the conservation of these genomes can also be done and 

computational tools available, such as GRIMM (Tesler, 2002) can be used for this. 

1.7.2 Comparing coding regions 

Comparison of coding regions between two or more genomes can be used to discover 

similarities or differences between genomes by calculating the percentage of genes that 

are common among the genomes, unique genes for each genome compared to known 

sequences in all other species in databases such as Genbank and genes that are unique 

to each genome compared to the other genomes. Typically, performing such a 

comparison involves identifying of gene-coding regions, comparing gene and protein 

content (Wei et al., 2002). This is often done using a pairwise sequence comparison 

tool such as BLASTN or TBLASTX (Wei et al., 2002). 

Comparative genomic approaches can be used to assist in the functional assignment of 

genes in a non-similarity-based manner. These approaches include co-conservation 

across genomes, conservation of gene clusters and genomic context across species, and 
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physical fusion of functionally linked genes across species. Co-conservation across 

genome approach allows one to establish phylogenetic profiles for a gene by observing 

the presence or absence of a gene in a genome across many genomes. The conservation 

gene clusters approach uses the fact that functionally related genes tend to be located 

in close proximity to each other, and often in specific order.  

The “Rosetta Stone” sequence or “composite” protein is a protein chain formed when 

certain pairs of interacting and functionally related proteins are fused into one protein 

chain (Wei et al., 2002). If this composite protein is similar to two component proteins 

in another species, the two proteins are likely to be interacting and/or functionally 

related (Marcotte et al., 1999).  

1.7.3 Comparing noncoding regions 

Non–coding regions can comprise up to 97% of some genomes. These have been 

identified to be mostly regulatory elements for processes like replication. The 

functional non-coding regions are conserved regions mainly due to selective pressure 

which causes regulatory elements to evolve at a slower rate than that of non-regulatory 

sequences in the noncoding region. The specificity for regulatory region detection 

increases significantly when more than two species are used in the comparative analysis 

(Wei et al., 2002). 

1.8 Conclusion 

Creating a genomic resource for a tropical plant, Psidium guajava, is an extremely 

involved process, from sequencing of the DNA to annotation to comparative genomics 

analysis of the assembled genome. The choice of sequencing technology and library 

type is crucial for the other downstream processes as it can make an enormous 

difference in the budget and application of reads. Illumina technology has proved to be 

a cost efficient and effective way in sequencing a tropical plant like guava. However, 

strict quality control is required during library construction and pre-assembly to ensure 

that a good quality assembly is produced. A careful selection and careful use of 

bioinformatics packages is to be done for all the processes in the creation of this 

genomic resource. A lot of publicly available software packages and pipelines offers a 

wide range of choices in all the process involved. However, it should be noted that not 

one software package has all the best qualities; a software package can be good in one 
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aspect but not so good in another. Therefore, experimenting with these different 

packages is essential to come up with an optimal set of processes and packages that will 

produce the best result. 

The aim of this study is to create a genomic resource for Psidium guajava using NGS 

technologies and several bioinformatics packages.  We will create the first annotated 

draft assembly of the guava fruit tree and perform some comparative genomics work 

between the guava genome and another member of the Myrtaceae family, Eucalyptus 

grandis. This work will serve as a starting point in addressing problems in the guava 

industry such as the Guava Wilt Disease. Having a reference genome of P. guajava can 

be used to design SNP markers that will be used in marker assisted selection in breeding 

projects. 
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2 Chapter 2: De novo genome assembly and annotation of 

Psidium guajava 

2.1 Introduction 

De novo genome assembly involves joining together the contiguous regions 

contributing to an organism’s chromosomes from fragmented reads of DNA and 

performs some of the most complex computations in all of biology (Baker, 2012). Next 

generation sequencing technology has made the cost of generating massive amounts of 

DNA sequence data significantly cheaper compared to Sanger sequencing. However, 

despite these advances in technology, modern instruments can read only relatively 

small segments of the genomes of most organisms, ranging from approximately 100 

base pairs (bp) (e.g., Illumina technology) to approximately 300bp and now recently 

longer reads of approximately 10–20 kb (e.g., Pacific Biosciences technology) 

(Simpson and Pop, 2015) making it computationally difficult to join it back together 

during de novo genome assembly. Approaches to address the assembly problem are 

grouped under two main headings, these are greedy approaches (Jeck et al., 2007) and 

graph-based approaches (Kececioglu and Myers, 1995). 

Greedy approaches involve iteratively joining together the reads in decreasing order of 

the quality of their overlaps, while graph-based approaches represent sequence reads 

and their inferred relationships to one another as vertices and edges in a graph and 

attempts to find a walk that best reconstructs the underlying genome while avoiding 

generating misassemblies (Simpson & Pop, 2015). 

In this chapter, we aim to generate an assembly of the guava fruit tree, Psidium guajava 

from Illumina reads as part of creating a genomic resource for the species.  This will be 

done to provide a starting point in genomic studies on guava and its interaction with 

pathogens at genomic level. The Illumina sequence data was already available at the 

Agricultural Research Council, Biotechnology Platform (ARC-BTP). Since there is no 

publicly available genome for guava at the moment, the assembly approach used was 
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de novo genome assembly, although a closely related genome of Eucalyptus was used 

to improve on the assembly. The divergence time between eucalyptus and P. guajava 

is ~67mya (Biffin et al., 2010; Thornhill et al., 2015)  The genome size of guava is 

estimated to be ~269.44Mbps (da Costa, Dornelas and Forni-Martins, 2008), with a 

chromosome number 2n = 22 (diploid state) (da Costa, Dornelas and Forni-Martins, 

2008). 

One of the main challenges that the guava industry faces is Guava Wilt Disease (GWD), 

which has caused major losses in the guava industry. Genomics work on guava can 

apply bioinformatics methods to sequence, assemble and analyze the function and 

structure of genomes. This can serve as a starting point to utilize genomics resources in 

guava breeding and cultivation. 

Our approach to perform the de novo genome assembly was to utilize the three graph-

based approaches namely (i) OLC (overlap, layout, consensus) graphs (Kececioglu and 

Myers, 1995), (ii) De Bruijn graphs (Pevzner, MYu and Mironov, 1989) and (iii) String 

graphs (Myers, 2002) to generate contigs (contiguous sequences) from the Illumina 

reads. Various open source software packages are available to perform these 

assemblies. Examples of these packages are: Allpaths-LG (Butler et al., 2008) (de 

Bruijn graph), AbySS (Simpson et al., 2009) (de Bruijn graphs), String Graph 

Assembler (SGA) (Simpson and Durbin, 2012), MaSuRCA (Yorke, J.A et al, 2013) 

(Overlap graph and de Bruijn graph) and StriDe (Huang and Liao, 2016). Pre-assembly 

processes will include quality checking of reads, trimming, error correction and 

merging of overlapping reads using open source software like FastQC (Andrew, 2016), 

Trimmomatic (Bolger, Lohse and Usadel, 2014) and FlaSh (Magoc and Salzberg, 

2011). Post assembly processes will include ordering of contigs to form scaffolds, gap 

filling, merging assemblies, and evaluation of assemblies. This is done using various 

open source software including OPERA-LG (Gao et al., 2015), GapFiller (Nadalin et 

al., 2011), Metassember (Wences et al., 2015), and AlignGraph (Bao, Jiang and Girke, 

2014). 

The quality of assembly is difficult to assess since the available assembly methods are 

untraceable. However, certain metrics of an assembly can give an indication of the 

quality of an assembly. These metrics include the N50 (defined as the shortest sequence 

length at 50% of the genome), number of contigs, largest contig and the presence of 
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core genes in the assembly. The presence of core genes can be assessed by CEGMA 

(Parra, Bradnam and Korf, 2007) or BUSCO (Simão et al., 2015), which are both open 

source software packages. Reapr (Recognising Errors in Assemblies using Paired 

Reads) (Hunt et al., 2013) can also be used to find errors by re-mapping paired reads to 

the assembly. A representation of the bioinformatics pipeline used in the genome 

assembly process is shown in Figure 2.1. 

 

Figure 2.1: Flow diagram showing the assembly process for the guava genome. The first column shows how reads 
are preprocessed and organised into four datasets according read length (merged reads and un-merged reads) and 

number of reads. The second column shows how each dataset is assembled using four assemblers and how the 
config files are scaffolded and gap-filled. The third column describes how the gap=filled assemblies are then 

merged with Metassembler and scaffolded using PEP scaffolder. The assembly is then assessed for quality using 
Quast, BUSCO and samtools. 

Genome annotation are descriptions of different features of the genome, and they can 

be structural or functional in nature (Yandell and Ence, 2012). These features include 

positions of introns, exons and genes among other features of the genome. To annotate 

a new genome, various stages are involved including repeat masking, aligning ESTs 

and proteins to a genome and to perform ab-initio gene predictions. To annotate P. 

guajava the Maker-P pipeline which uses tools like RepeatMasker for masking repeat 

regions, ncbi-blast and rmblast for aligning nucleotides and proteins to the genome, 

exonerate to polish blast hits and gene prediction softwares such as snap, augustus, 
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GeneMark and FGENESH was used. The Maker-P algorithm finally curates all gene 

predictions and finds the best match evidence for every gene model. 

An annotated genome of P. guajava will serve as a good genomic resource for P. 

guajava and this is a good starting point in solving the problems facing the guava 

industry. This resource can be used to investigate the host-pathogen interaction between 

P. guajava and pathogens such as N. psidii. Also, this genomic resource can be used 

for comparative genomics between P. guajava with other members of the Myrtaceae 

family such as Eucalyptus and Metrosideros polymorpha.  

The term “Comparative genomics" describes the analysis of the similarities and 

differences between the genome sequences and resultant features of related biological 

strains or species (Bachhawat, 2006). A comparison between members of the 

Myrtaceae family can give us an indication of how closely related the different 

members of the family are. Besides Psidium guajava, two other genomes in the 

Mytaceae family have been sequenced assembled and annotated: Metrosideros 

polymorpha (Izuno et al., 2016) and Eucalyptus grandis (Myburg et al., 2014). In this 

chapter, we will also perform comparative genomics between Eucalyptus grandis and 

Psidium guajava to explore synteny and collinearity of homologous genes between the 

two genomes. 

Synteny can be referred to as the conservation of blocks of order within two sets of 

chromosomes that are being compared with each other (Myers, 2008). Various open 

source packages can be used to investigate synteny between genomes in comparative 

genomics. These include ADHoRe (Proost et al., 2012), Mauve (Darling et al., 2004), 

Cyntenator (Rödelsperger and Dieterich, 2010), GRIMM-Synteny (Pevzner and Tesler, 

2003) DiagHunter (Cannon et al., 2003), MCScanX (Wang et al., 2012) and SyMAP 

(Soderlund et al., 2006) among others. These packages are used to compare genomes 

by detecting homologous genes in conserved order or with micro rearrangements 

allowed. 

Comparisons of eukaryotic genomes has revealed various degrees to which 

homologous genes remain on corresponding chromosomes (synteny) and in conserved 

orders (collinearity) during evolution (Wang et al., 2012). To compare the guava and 

eucalyptus genomes, SyMAP was used. SyMAP computes the syntenic blocks between 
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the genomes and has the advantage of interactive java displays that allow graphical 

displays of alignments and syntenic blocks. Secondly, the distribution of terpene 

synthase gene family (TPS) in the guava genome was explored and compared to the 

Eucalyptus grandis assembly (v2.0 www.phytozome.net). 

 

Compounds associated with TPS gene family play a major role in many plant process 

such as attractants (Hume and Esson, 1993), mitigators to heat stress (Sharkey and Yeh, 

2001), determinants of leaf litter decomposition rates (Molina et al., 1991) and cues to 

other toxic constituents (Lawler et al., 1999) among others. The TPS gene family is 

divided into three classes: Class I consists of TPS-c (copalyl diphospate and ent-

kaurene), TPS-e/f (ent-kaurene and other diterpenes as well as some mono- and 

sesquiterpenes) and TPS-h (Selaginella specific); class II consists of TPS-d 

(gymnosperm specific) and class III of TPS-a (sesquiterpenes), TPS-b (cyclic 

monoterpenes and hemiterpenes) and TPS-g (acyclic monoterpenes) (Külheim et al., 

2015). A comparison of the TPS gene family between Eucalyptus grandis and Psidium 

guajava can further give us an indication on how closely related the two plants are. 

 

2.2 Materials and methods 

2.2.1 Library construction and pre-processing of data 

 

2.2.1.1 NGS Data available 

At the start of the project, two paired end libraries with varying insert sizes were 

available together with one mate pair library. The paired-end (PE) libraries were 

prepared using the HiSeq 2000 and HiScan Illumina machines. From the HiSeq 2000, 

a DNA library (HiSeq_Run14) was constructed using a size selection of approximately 

250bp and consisted of 550 292 550 (125bp x 125bp) PE reads. A mate pair library 

(HiSeq_Run12) was also constructed using a size selection of 5kbp on the HiSeq 2000, 

consisting of 186 642 714, 125bp x 125bp reads.  From the HiScan machine, a paired-

end library was created from a size selection of 500bp and consisted of 180 995 474, 

100bp x 100bp reads. Table 2.1 below shows a summary of these DNA libraries used 

during the assembly. 

http://www.phytozome.net/
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Two more mate pair libraries were sequenced from the HiSeq 2000. The first library 

was constructed using a size selection of approximately 6 kb and consisted of 

43 418 988, 125bp x 125bp paired end reads. The second library was constructed using 

a size selection of approximately 9 kb and consisted of 93 306 360, 125bp x 125bp 

reads.  

Table 2.2.1: Summary of initial libraries used in the Psidium guajava genomics project. 

Library name Number of reads Type of reads Read length Size selected 

HiSeq_Run14 550 292 550 Paired-end 125bp  250bp 

HiSeq_Run12 186 642 714 Mate-pair 125bp 5kbp 

HiScan_Run19 180 995 474 Paired-end 100bp 500bp 

6kb_Mate_Pair 43 418 988 Mate Pair 125bp 6000bp 

9kb_Mate_Pair 93 306 360 Mate Pair 125bp 9000bp 

 

2.2.1.2 Quality Control of NGS data 

Before reads could be used for any downstream processes, the quality of the reads was 

assessed using FastQC (v0.11.3, Andrew, 2015). Adapter removal and quality trimming 

was done using Trimmomatic v0.35 (Bolger et al., 2014). Trimmomatic make use of a 

fasta file containing Nextera adapter sequences to remove Illumina adapters from the 

reads by identifying seed matches (16 bases) allowing maximally 2 mismatches 

between the adapters and the reads. These seeds were extended and clipped if a score 

of 30 was reached. Trimmomatic would also remove leading and trailing low quality 

or N bases (below quality 3). Also, Trimmomatic scanned the reads with a 4-base wide 

sliding window, cutting when the average quality per base dropped below 15 and then 

finally dropping reads shorter than 36bps. Trimmomatic outputs four files, 2 for the 

'paired' output where both reads survived the processing, and 2 for corresponding 

'unpaired' output where a read survived, but the partner read did not. After trimming, 

quality of reads was again assessed using FastQC.  

Actual insert sizes of all the libraries were estimated by aligning the reads to the results 

from the first assembly and using Picard tools (http://broadinstitute.github.io/picard/) 

to estimate the insert sizes. Overlapping paired-end reads (trimmed) were then merged 

using FLASH (Fast Length Adjustment of SHort reads), (Magoc and Salzberg, 2011) 

before using these reads in the assembly. FLASH processes each read pair separately 

and searches for the correct overlap between the paired-end reads. When the correct 
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overlap is found, the two reads are merged, producing an elongated read that matches 

the length of the original DNA fragment from which the paired-end reads were 

generated (Magoc & Salzberg, 2011). The extending of reads was meant to improve 

assembly by providing the assembler with longer reads. 

2.2.2 De novo genome assembly 

De novo genome assembly was done using four different assemblers namely 

ALLPATHS-LG (Butler et al., 2008), ABySS (Simpson et al., 2009), SGA (Simpson 

and Durbin, 2012) and MaSuRCA (Yorke, J.A et al., 2013)). To investigate the effects 

of types of dataset (read length, type of reads and coverage) on assembly quality, 

different datasets and parameters were used for each of the assemblers and basic metrics 

of the assemblies were obtained using QUAST (Gurevich et al., 2013).  

Four different datasets were prepared from the available Illumina reads. Datasets 

differed in number of libraries used and whether they were merged with FlaSh or not. 

This was done to vary number of reads and the length of reads. However, for MaSuRCA 

and Allpaths-LG, FlaSh was not used on any of the datasets since the assembler 

requirements suggest that no trimming or merging of reads should be done when using 

these assemblers. The following datasets were prepared for each assembler. 

Table 2.2.2: Datasets used for each of the four assemblers. 

Dataset Type of reads 

Dataset 1 HiSeq reads (NOT merged with FlaSh) + Mate pair reads 

Dataset 2 HiSeq reads (Merged with FlaSh) + Mate pair reads 

Dataset 3 HiSeq reads, HiScan reads (Not merged with FlaSh) + Mate pair reads 

Dataset 4 HiSeq reads, HiScan reads (Merged with FlaSh) + Mate pair reads 

Before any of the assemblers could be used, KmerGenie (Chikhi and Medvedev, 2014) 

was used to predict the k value that maximizes the assembly size. KmerGenie first 

computes the k-mer abundance histogram for many values of k on a set of reads. It then 

computes the number of distinct k-mers for each value of k and returns the k-mer value 

that maximizes this number. For each de Bruijn graph-based graph assembler, two k 

values were used, (i) the assembler’s default k-value and (ii) the k value suggested by 

KmerGenie. 

Scaffolds were formed from the contigs formed by each assembler using the 

assemblers’ own scaffolder and OPERA-LG (Gao et al., 2016). In addition to 
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scaffolding the assemblies, a tool called GapFiller (Nadalin, Vezzi and Policriti, 2012) 

was used to improve each assembly by closing the gap within paired reads. GapFiller 

differs from FlaSh in that FlaSh closes gaps between overlapping reads while GapFiller 

fills gaps between reads that do not overlap. Both contig assembly, scaffolding and gap 

filling was done on the High-Performance Cluster (HPC) at the Agricultural Research 

Council, Biotechnology Platform (ARC-BTP), University of Pretoria (UP) and the 

Centre of High-Performance Computing (CHPC) servers in Cape Town. To assess and 

compare the quality of the assembly QUAST was used. QUAST displays essential 

metrics used to assess assembly quality in a way that make it easy to compare the 

metrics. 

2.2.2.1 Improving assembly: Merging Assemblies, Gap filling and PEP Scaffolder 

The available assembly algorithms vary most significantly in the techniques and 

heuristics applied to assemble repetitive sequences and resolve errors present, 

especially in response to the ever-changing landscape of available biotechnologies 

(Schatz, Delcher and Salzberg, 2010). As a result, the performance of different 

assemblers varies greatly even with the same dataset. Therefore, to get a consensus of 

all these different assemblies, contigs and scaffolds produced by different assemblers 

from de novo assembly step were merged using Metassembler (Wences et al., 2015). 

The best gap filled assemblies from each assembler in the assembly step were merged 

in order to enhance contiguity and correctness between them. Also, PEP Scaffolder 

(Zhu et al., 2016) was used to scaffold the contigs produced. PEP scaffolder uses 

proteins from E. grandis and BLAT to scaffold contigs and ensuring completeness of 

gene regions. 

2.2.2.2 Quality assessment of assembly 

 

To assess the quality of assembly, different metrics about the assembly including the 

N50, the number of contigs and the size of the largest contigs are generally assessed. 

QUAST was used to calculate and display these metrics in a way that a comparison 

could be made between any two different assemblies. Also, as a way of assessing the 

completeness of assembly, BUSCO (Simão et al., 2015) was used to check the presence 

of core eukaryotic genes in the assembly. This was done using the plant dataset.  The 

transcriptome data was also mapped on to the assembly using BWA (Li and Durbin, 
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2009) and the SAMtools package (flagstat) (Li et al., 2009) was used to calculate 

mapping rates. 

2.2.3 Annotation 

Annotation was performed using Maker-P (Campbell et al., 2014). Maker is a pipeline 

that uses a variety of other tools to predict genes and curate all annotations. The 

assembled genome of P. guajava, RNAseq data extracted from different parts of the 

guava plant at different stages of growth, and a protein database from Uniprot were 

used as input to annotate the guava genome. Tools used in the Maker Pipeline included 

(i) Perl and many perl modules, (ii) RepeatMasker, (iii) NCBI–BLAST, (iv) SNAP 

(Korf, 2004), (v) Augustus (Stanke and Waack, 2003) (vi) GeneMark-ES and 

GeneMark-ET (Lomsadze, Burns and Borodovsky, 2014) (vii) Exonerate (Slater and 

Birney, 2005) and (viii) BRAKER (Hoff et al., 2016). The steps followed to annotate 

the guava genome were as follows (i) assemble RNAseq data (ii) train Augustus using 

BRAKER (ii) run the Maker Pipeline with GeneMark, SNAP and Augustus as gene 

predictors. 

 

2.2.3.1 Transcriptome assembly of RNAseq data 

 

RNAseq data was extracted from different parts of the plant namely leaves, roots, fruit, 

flowers and stem at different stages of growth. A total of 336 472 772 RNA-seq reads, 

trimmed on quality using trimmomatic, were used for transcriptome assembly. The 

Trinity transcriptome assembler (Grabherr et al., 2011) was used to assemble the 

transcriptome of RNA-seq reads from each plant part used. These assembled mRNA 

were then concatenated into one fasta file. The resulting fasta file was deduplicated 

using CD-HIT (Li and Godzik, 2006) to produce a fasta file with unique transcripts. 

This assembled fasta file was then used as one of the inputs in the Maker-P pipeline. 

 

2.2.3.2 Training Augustus 

 

To train Augustus, the tool Braker was used. Braker uses Genemark-ET to train and 

evaluate Augustus and Augustus makes the final gene predictions. Braker was given 

the final assembly from Metassembler as input together with a bam file of RNA-seq 

data to the assembled genome. RNA-seq data is aligned to the assembly using Tophat 
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(Trapnell, Pachter and Salzberg, 2009) to create the bam file. First, GeneMark-ET 

performs iterative training and generates initial gene structures. Second, AUGUSTUS 

uses predicted genes for training and then integrates RNA-Seq read information into 

final gene prediction (Hoff et al, 2011). Braker creates a new species gene model in the 

config directory of Augustus which will be used for gene prediction in Maker. 

 

2.2.3.3 Running Maker-P 

 

Maker v2.32 was used to annotate the assembled genome of the guava fruit tree. To run 

maker, a few pre-requisite tools are installed. These include: (i) RepeatMasker – To 

identify and mask repeats in the genome (ii) Exonerate – polished protein and EST 

alignment to genome using protein2genome and est2genome respectively (iii) NCBI 

BLAST - to align proteins and ESTs to genome using TBLASTX and BLASTN 

respectively and (iv) Gene prediction software namely (a) SNAP, (b) GeneMark and 

(c) Augustus. As input, Maker takes (i) the assembled genome of guava, (ii) an 

assembled mRNA-seq fasta file, (iii) a protein sequence fasta file from Uniprot and (iv) 

an Augustus species created from the Braker run, for gene prediction.  

A bootstrap method was used to train SNAP. First, the initial Maker run was run 

without a snap model. The GFF3 models produced are then converted to ZFF format 

using a maker script make2zff. The ZFF is then converted to a hmm model using snap 

scripts fathom, forge and hmm-assembler.pl. Maker is then run with snap supplied with 

the hmm model produced. The same process is done again after the second maker run 

and the new hmm file produced is fed into snap and maker is run again. The output of 

Maker, gff files and fasta files, are then analyzed by SOBA (Moore, Fan and Eilbeck, 

2010). SOBA (sequence ontology bioinformatics analysis) generates general metrics of 

the gff file produced by Maker. 

 

2.2.4 Comparative genomics 

 

2.2.4.1 Synteny 

 

Synteny between Psidium guajava and Eucalyptus grandis was explored with the aid 

of an open source package called SyMAP. SyMAP uses the assembly fasta files and 
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annotation gff files for both species as input. It uses MUMmer for whole genome 

alignment and finding genome or amino acid matches. MUMmer uses NUCmer for 

finding nucleotide matches and PROmer for finding amino acid matches when genomes 

are different. Interactive graphical output of alignments was produced from SyMAP. 

The java views produced by symap are; 1) a circle two-genome display, 2) a block-to-

chromosome display, 3) an annotation and location search page and 4) a summary page 

of statistics with a table of blocks. These views can be used to explore synteny blocks 

from multiple chromosomes that may be displayed in a high-level dot plot or three-

dimensional view where details of interesting regions. SyMAP was run using default 

settings except for the minimum contig size which was set to 500 000. It used 8 threads 

on a 64bit intel Core i7 machine with 32G ram and a 3.40GHz processor and took under 

two hours to complete. Assembly and annotation files used for E. grandis were obtained 

from www.phytozome.com and version 2.1 was used. Sixty-three scaffolds of P. 

guajava and nineteen scaffolds of E. grandis with scaffold size of more than 500 000, 

with 83 161 and 309 554 annotations respectively, were loaded into SyMAP and run 

with default settings.  

 

Terpene synthase gene family (TPS) 

 

Comparative genomics was performed on the TPS gene family in both E. grandis and 

P. guajava. The 133 E. grandis TPS genes that were found in the paper by Külheim et 

al., (2015) were used as a starting point in this comparison. The aim was to find the 

compare availability and distribution of TPS genes between E. grandis and P. guajava. 

Besides, the fact that TPS is one of the few well studied gene families in E.grandis, we 

also chose the TPS family to investigate the relationship the effects of the number of 

TPS genes in plants, such as branch size. A method similar to the method used to 

discover TPS genes in Eucalyptus globus described in the the paper by Külheim et al., 

(2015) was adapted to find the TPS genes present in the guava genome.  First, genomic 

sequences of the E. grandis TPS genes were blasted to the guava genome and all hits 

with e-values of less than 10-10 were considered. Unique genomic regions surrounding 

the blast hits were then extracted and reverse blasted against the non-redundant blast 

database. Only regions that returned blast hits to TPS genes with an e value of less than 

10-10 were considered. Full and partial genes found the TPS gene containing genomic 

http://www.phytozome.com/
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regions were extracted and blasted again to the non-redundant nucleotide blast database 

and only TPS genes were considered. 
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3 Chapter 3: Results 

In this chapter we evaluate the results from our assembly, annotation and comparative 

genetics. First, we look the quality of the reads used in the assembly as assessed by 

FastQC. We then explore quality metrics of all assemblies assembled from all 

assemblers. Metrics such as N50, contig size and number of contigs, all calculated using 

the tool QUAST, gave an indication of the quality of the assembly. Assemblies with a 

larger N50 metric, bigger contig sizes and smaller number of contigs are considered 

better assemblies as most reads will have been stitched together to make contigs. We 

also proceed check completeness of the assembly and annotation. We analyse the 

results from BUSCO and Maker to assess the number of genes found in our best 

assembly. Finally, we look at the results from our comparative genomics studies done 

between the assembled and annotated genomes of P. guajava and E. grandis. We 

explore the results from synteny calculations between the two genomes and also terpene 

synthase gene distribution in P. guajava. 

 

 

3.1.1 Quality control, trimming and merging 

The FastQC reports for raw reads, trimmed reads and merged reads showed that 

Nextera adapters were present in the raw reads and removed in the trimmed and merged 

reads. After adapter removal of HiSeq 2000 PE reads, 493 242 216 (89.6%) reads were 

properly paired and 473 941 948 (86.1%) PE reads after quality trimming. Only 178 

548 075 (65%) of the properly paired reads overlapped and were merged with FlaSh. 

Fig 5.1 – Fig 5.7 (Supplementary files) show basic statistics and per base sequence 

quality of raw reads, trimmed reads and merged reads extracted from the FastQC report. 

After adapter removal of HiSeq 2000 mate-pair reads, 38 355 096 (80%) were properly 

paired and 34 548 616 (72%) reads after quality trimming. The HiScan library was also 

trimmed and yielded 163 406 356 (90.3%) properly paired reads after adapter removal 

and 152 515 260(84%) properly paired reads after quality trimming. When FlaSh was 

used to merge the trimmed reads, 17 466 027 (19.2%) between 36 and 190bp were 
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merged. Table 3.1 below show the basic statistics regarding the number of reads before 

and after processing. 

Table 3.1: Table showing the number of PE reads before and after adapter removal and quality trimming. 

Library name Number of raw 

reads 

Number of 

properly paired 

reads with only 

adapters 

removed 

Number of 

properly paired 

reads after 

quality trimming 

Number of reads 

merged 

HiSeq_Run14 550 292 550 493 242 216 473 941 948 178 548 075(37-

240bp) HiScanRun12 47 966 562 38 355 096 34 548 616 3 749 681 (36-

140bp) HiScan_Run19 180 995 474 163 406 356 152 515 260 17 466 027 (36-

190bp) 

 

The insert sizes of each library were estimated using Picard tools and insert size 

distribution were plotted and insert size metrics calculated for each library. Picard tools 

produces an insert size metric file with metrics such as mean insert size, standard 

deviation and median from bam files and a histogram showing insert size distribution. 

Fig 3.1 shows the insert size histograms of four of the main libraries used in this project. 

As seen in the figure, the insert sizes of some of the mate-pair libraries were smaller 

than the expected. For instance, the 6kbp library was actually thought to have an insert 

size of 6kbp but turned out to have an insert size of ~3kbp. 

KmerGenie predicted a k value of 99 as the best k value to maximize genome size. It 

also predicted a genome size of 334 274 499bp. For each de Bruijn graph-based 

assembler, the predicted k value of 99 was used together with the assembler’s default k 

value, to test the effects of k on assembly quality. 

 

3.1.2 Assembly quality metrics 

Each assembler produced a contig file and a scaffold file for each assembly. To ensure 

a fair comparison of the assembly quality, QUAST was used to calculate the metrics 

used evaluate assembly quality. Each assembler was run on each of the four datasets at 

different parameters. Each of the contig files produced was scaffolded with OPERA-

LG. A summary of the quality metrics (N50, number of contigs, largest contig/scaffold 
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and others) are shown in Table 3.2. The table shows the statistics of each assembly 

produced by each assembler for each dataset and using different k-mer sizes and other 

parameters. Metrics such as number of contigs, number of scaffolds, number of Ns and 

N50 were used to compare these assemblies. For instance, ABySS was run on each of 

the four datasets and for each dataset 2 k-mer sizes were used, k = 64 and k = 99. The 

quality metrics from the contigs fasta files produced in each run were evaluated using 

Quast to calculate the number of contigs in each fasta file (> 500bp), the length of the 

largest contig and the N50 statistic of each fasta file. These contigs are then scaffolded 

using OPERA-LG and the quality metrics of each of the fasta files produced was again 

evaluated using Quast to calculate the number of scaffolds (>500bp), the N50 statistic, 

the largest scaffold and the number of Ns in each fasta file. 

The four best assemblies, shown in Table 3.3, were merged with Metassembler and 

produced 8 480 scaffolds with an N50 of 106 594bp and a total length of 385 786 388bp 

with the largest scaffold being 5 288 581bp (Table 3.4). The criteria used to select the 

best assemblies was as follows: a good assembly should have a lower number of 

contigs/scaffolds, a bigger N50 and fewer Ns. When the PEP scaffolder was used to 

scaffold contigs produced by Metassembler, the N50 improved to 111 511bp. These 

results are shown in Table 3.5. BUSCO was used to assess the Metassembler assembly 

completeness and showed that 1349 out of the 1440 BUSCO plant genes (93,7%) were 

found within the genome, an indication that 93.7% of gene regions were covered by the 

assembly. BUSCO was also run on the Metassembler assembly which was scaffolded 

with PEP scaffolder and showed that 1351 out of the 1440 BUSCO plants genes 

(93,9%) were found in that assembly, a slight improvement from the 1349 found in the 

assembly that was not scaffolded with PEP scaffolder. 
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Figure 3.1: Histograms showing insert size distributions of reads in four datasets. These show the count of each insert size found in each data set. 
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Table 3.2: Summary of assembly quality metrics for each assembler used of the different datasets. 

  
Contig statistics Scaffold Statistics (using Opera-LG except for MaSurca 

 
Assembler Parameters #Contigs Largest Contig N50 #Scaffolds Largest Scaff N50 #Ns 

D
a

ta
se

t 
1
 

ABySS k = 64 130 126 56 368 4 214 66 158 167 303 24 087 72 481 244 
 

k = 96 194 983 33 593 2 942 78 240 130 278 24 200 81 520 311 

Allpaths-LG k = 96 49 858 88 728 5 509 36 245 445 331 23 395 30 568 283 
 

k= 96 (Haplodify) 61 043 70 160 6 098 27 348 234 320 31 777 50 228 535 

MaSurCA k = auto 143 701 136 607 7 862 87 521 12 552 775 31 905 71 110 658 
 

k = 99 147 326 98 801 7 350 89 642 6 906 985 29 492 74 879 807 

SGA m =75 & k = 41 199 424 39 661 2 148 110 826 135 952 19 064 127 323 142 

          

D
a

ta
se

t 
2
 ABySS k = 64 132 424 41 763 3 637 55 010 153 761 30 116 82 257 793 

 
k = 96 154828 45 100 3 632 72 214 140 468 27 636 88 821 034 

SGA m= 75 & k = 41 298 966 39 709 1 704 49 300 133 500 26 712 81 715 003 
          

D
a
ta

se
t 

3
 

ABySS k = 64 117 953 66 797 5 130 70 475 193 515 21 546 62 712 790 
 

k = 96 184 471 33 734 3 343 135 980 104 562 8 540 87 997 404 

Allpaths-LG k = 96 47 560 102 204 5 933 26 861 323 901 26 743 33 876 984 
 

k = 96 (Haplodify) 58 650 135 442 7 022 26 661 256 825 33 154 47 742 440 

MaSurCA k = auto 107 877 148 599 11 549 61 801 3 862 027 53 841 40 946 738 
 

k = 99 107 659 191 598 11 697 61 182 5 312 630 56 932 41 497 850 

SGA m = 75 & k = 41 193 197 41 074 2 205 102 545 162 164 20 266 122 239 837 
          

D
a

ta
se

t 
4
 ABySS k = 64 116 010 66 909 4 888 55 217 250 301 28 887 67 602 762 

 
k = 96 143 129 59 711 4 506 74 916 145 459 23 742 75 257 971 

SGA m= 75 & k = 41 161 609 24 376 1 870 80 013 159 542 18 099 102 055 802 
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Table 3.3: The best assemblies from each assembler following gap filling. 

    Scaffold Statistics before new mate pair data Scaffold statistics with Mate Pair data (Gap filled) 

Datasets Assembler Parameters #Scaffolds Largest 

Scaffold 

N50 #Ns #Ns #Scaffolds Largest Contig N50 Total Length 

Dataset 4 ABySS k = 64 55 217  250 301 28 887  67 602 762 26 816 773 40 812 423 026 43 787  371 049 004 

Dataset 3 Allpaths -

LG 

k=96(Haplodify) 26 661 256 825 33 154 47 742 440 34 667 727 18 006 505 250 51827 281 486 143 

Dataset 3 MaSurCA k = 99 61 182 5 312 630 56 932 41 497 850 36 064 996 61 181 5 382 318 58 058  463 304 571  

Dataset 3 SGA m = 75 & k = 41 102 545 162 164 20 266 122 239 837 75 019 057 102 545 162 729 20 839 424 335 802 

 

Table 3.4: Statistics of the Metassembler assembly. 

Assemblers Used Contigs Statistics Scaffolds statistics 
 

#Contigs Largest contig N50 #Scaffolds Largest 

Scaffold 

N50 Total Length #Ns 

Best assembly 

from each 

assembler 

20 954 

 

447 404 

 

43 276 

 

8 480 

 

 

 

5 288 581 

 

 

 

106 594 

 

 

 

385 786 388 

 

 

19 984 729 

 

 
 
 

Table 3.5: Statistics of assembly scaffolded by PEP Scaffolder. 

Scaffold Statistics 

#Scaffolds Largest Scaffold N50 Total Length #Ns 

8357 5 288 581 111 511 385 798 688 19 996 850 
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3.1.3 Annotation 

 

A total of 336 472 772 RNA-seq reads from different parts of the guava fruit tree, collected at 

different times were assembled with Trinity and the resulting fasta file de-duplicated by CD-

HIT. In total, 369 742 contigs were produced, with the smallest being 201bp and the largest 

being 16 599bp, with an N50 for the transcript of 1 959bp. This assembled mRNA set was used 

as input in the Maker annotation pipeline. Maker was run using Augustus version 3.2.2 and 

SNAP as ab-initio gene predictors and produced a gff file with gene positional information and 

a fasta files containing transcripts and proteins as output. SOBA was used to count the number 

of genes found in the assembly annotation together with other metrics. There were 24 134 genes 

from the 8 435 scaffolds found in the assembly. Table 3.6 below shows basic statistics 

calculated by SOBA from the Maker gff output. Maker also generates an Annotation Edit 

Distance (AED) score associated with every gene to measure the gene quality. The AED score 

ranges from zero to one, with zero being the best quality score and one being the worst. AED 

provides a means to distinguish between a new gene release with no changes, and one wherein 

the intron-exon coordinates alone have been altered and also provides a means to quantify the 

extent of these changes (Eilbeck et al., 2009). A cumulative frequency plot of the AED scores 

(Figure 3.2) shows that more than 80% of the genes are of high quality with AED scores < 0.4. 

GenomeTools (Gremme et al., 2013) was used to calculate the lengths distribution of genes 

and exons in the genome annotations and summary statistics calculated using R (Table 3.7). 

 

Table 3.6: SOBA output showing counts of different genome features 

Feature Count 

CDS 143 629 

Contig 8 435 

Exon 152 657 

Expressed sequence match 2 663 140 

Five prime UTR 18 083 

Gene 24 134 

mRNA 24 134 

Match 309 185 

Match part 7 278 678 

Protein match 662 941 

Three prime match 19 183 
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Figure 3.2: Cumulative frequency graph of AED scores of genes in the newly annotated genome. 

 
Table 3.7: Summary statistics of gene and exon lengths distribution in P. guajava in bp. 

Feature Min length (bp) Mean length (bp) Median length (bp) Max length (bp) 

Gene 180 6726 5428 56500 

Exon 2 293.9 158.0 7905 

 

3.1.4 Comparative genomics 

 

3.1.4.1.1 Synteny 

 

SyMAP ran for under two hours and produced plots that showed syntenic blocks between E. 

grandis and P. guajava. Figure 3.3 below show a dot plot produced by SyMAP showing 

syntenic blocks scaffold by scaffold. The numbers in each of the axes represent the 

scaffold/chromosome number for each of the genomes, E. grandis scaffolds/chromosomes in 

the x-axis and P. guava’s in the y-axis. The synteny blocks between a pair of scaffolds is 

represented by blue boxes and the anchors by dots. A synteny block is a collection of 

contiguous genes located on the same chromosome (Sinha & Meller, 2007). The number of 

synteny blocks in any scaffold intersection show strongly syntenic the two scaffolds are.  The 

syntenic blocks between the two genomes give us an indication of how closely related the two 

plants are, at the same time exploring which contigs/scaffolds from guava are found on the 
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same chromosome. For instance, E. grandis chromosome 1 has relatively stronger synteny 

blocks with P. guajava scaffold 3, 4, 12, 15 and 16 than any other scaffold as shown by the 

number and size of the syntenic blocks in Figure 3.3. This suggests that the scaffolds 3, 4, 12, 

15 and 16 are most likely to be from the same chromosome. Figure 3.3 – 3.5 give pictorial 

views of how best each of the contigs from guava match the eucalyptus chromosomes.  Figure 

3.4 shows a pictorial block view of how the P. guajava blocks anchor on to the 11 E. grandis 

chromosomes. Figure 3.5 is a circular view of syntenic blocks between the two genomes. 

Figure 3.6 is a 3D representation of guava contigs anchoring around chromosome 1 of 

eucalyptus. Here we zoomed into only the synteny on chromosome 1 of E. grandis to look in 

more detail on the synteny with P. guajava. The same can be done to other chromosomes to 

explore them in more detail. Table 3.8 - 3.10 show summary statistics for synteny between the 

two genomes. Table 3.11 contains descriptions and explanations for each of the terms / metrics 

used to describe the synteny in Table 3.8 – 3.10. Table 3.8 are basic statistics of the scaffolds 

used for synteny studies. Only 16 scaffolds and 63 scaffolds from eucalyptus and guava, 

respectively, were used for synteny. Table 3.9 shows that only 5% of the eucalyptus genome 

was covered by alignment regions while only 28% of the guava genome was covered. Table 

3.10 shows that 64% of the P. guajava genome and 39% of the E. grandis genome are covered 

by synteny blocks.  

 

3.1.4.1.2 Terpene synthase gene family (TPS) 

 

1 543 unique hits where found when 113 E. grandis TPS genes were blasted on to the guava 

genome with e-value < 10-10.  All the annotated genes in genomic regions +/- 2 500bp around 

1 543 hits on guava, were collected and blasted to the non-redundant nucleotide blast database, 

36 of the genes found in those regions were TPS genes. This implies that, of the 113 TPS genes 

found in E.grandis, only 36 were found in guava.  
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Figure 3.3: Dot plot showing synteny between E. grandis and P. guajava. The blue boxes show synteny between the 2 chromosomes. More or bigger the blocks indicate stronger synteny 
between the 2 chromosomes. 
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Figure 3.4: Symap Block view. This shows how the different blocks of P. guajava genome anchor to E. grandis chromosomes. 
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Figure 3.5: The Symap circle view, showing every syntenic block between E. grandis and P. guajava. 
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Summary statistics for synteny between P. guajava and E. grandis. (Symap) 

 

 
Table 3.8: Genome and Annotation Statistics. 

Species #Seqs Total Kb #genes Max Kb Min Kb <100kb 100kb- 

1MB 

1Mb-

10Mb 

> 10Mb 

E. grandis 19 618334 36376 83952 503 0 7 34 11 

P. guaiava 63 101116 6328 5288 511 0 29 0 0 

 

 

 
Table 3.9: Anchor Statistics. 

Species #Anchors %InBlocks %Annotated %Coverage <100bp 100bp - 1kb 1kb-1Okb >10kb 

E. grandis 15725 42% 64% 5% 188 6526 8761 250 

P. guajava 15725 42% 34% 23% 204 6714 8492 315 

 

 
Table 3.10: Block Statistics. 

Species #Blocks %Coverage %DoubleCov Inverted %GenesHit <100kb 100kb-1 

Mb 

1Mb-

10Mb 

>10Mb 

E. grandis 290 39% 6% 152 25,0 40 171 79 0 

P. guajava 290 64% 15% 152 60,0 75 209 6 0 
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Table 3.11: Key: Descriptions of key terms used in Table 3.8 – 3.10. 

Genome and Annotation Statistics 

# Seqs Total number of sequences loaded for the project 

Total Kb Total kilobases of the loaded sequences 

#genes Number of annotated genes 

Max Kb, Min Kb Size of largest and smallest sequences 

Size range columns Number of sequences in these size ranges 

 
Anchor Statistics 

#Anchors Total number of anchors loaded between the two projects (same for each project) 

%1nBlocks Percentage of anchors in synteny blocks (same for each project) 

%Annotated Percentage of anchors intersecting a gene annotation on the project 

%Coverage Percent of total project sequence length covered by anchor alignment regions 

Size range columns Number of anchors having alignment lengths in the given ranges (can be slightly 

different between projects) 

 
Block Statistics 

#Blocks Total number of synteny blocks found between the two projects (same for each 
project) 

%Coverage Percent of total project sequence length covered by synteny blocks 

%DoubleCov Percent of total project sequence length covered by two or more synteny blocks 

(i.e.,mapping to a putative duplication in the other genome) 

Inverted Number of blocks which are inverted (note, blocks may contain local regions of 

opposite orientation) 

%GenesHit Percentage of genes located in synteny block regions which have syntenic hits ("gene 

retention") 

Size range columns Number of blocks whose total coverage region on the project is in the given range 
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Figure 3.6: A 3D view from SyMAP showing synteny between E. grandis chromosome 1 and P. guajava scaffolds. The central bar is E. grandis chromosome 1 surrounded by selected P. 

guajava scaffolds with strong synteny. 
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3.2 Discussion 

Psidium guajava (Guava) is one of the most important crops grown commercially in South 

Africa and Southern Africa. Production of the fruit amounted to about 33 574 tons of guava 

fruit in South Africa in 2013 with an estimated gross value of R53 439 000. Guava has been 

shown to have very high nutritional value with exceptionally high vitamin C content (Prakash 

et al., 2002; Rai et al., 2010) and possess various pharmaceutical properties such that it has 

been used for treatment of ailments such as wounds ulcers, bowls and cholera (Begum et al., 

2002). The outbreak of Guava Wilt Disease caused by a resistant strain of the fungus 

Nalanthamala psidii, has caused major loses in the guava industry. A genomic resource for 

guava will be a starting point in addressing this problem and others using genomics and 

bioinformatics.  Having an annotated genome of the guava tree can be very useful resource in 

development of markers for Marker Assisted Selection (MAS) that could lead to breeding of a 

Guava Wilt Disease resistant plant. 

Creating such a genomic resource would involve assembling and annotating the genome of 

Psidium guajava. This study has produced the first annotated genome of Psidium guajava.  

3.2.1 De-novo genome assembly 

 

Many factors affect the quality of assembly. These include (i) the dataset used e.g. size of reads 

or type of data (paired end (PE), single end (SE) or mate pair reads (MP)), (ii) assembly method 

used by assembler and (iii) parameters used by the assemblers e.g. k-mer size. Our de-novo 

genome assembly approach was to use multiple assemblers on different datasets using various 

assembly parameters and then merging the best assemblies with Metassembler. The length, 

amount and quality of reads can greatly affect the quality of assembly. With this in mind, four 

datasets were created from the two pair-end libraries available. These datasets differed in read 

length and number of reads. To vary the read lengths between datasets, the tool FlaSh was used 

to merge overlapping reads in some of the datasets to increase the read length. To vary number 

of reads in datasets, some datasets had reads from the Illumina HiSeq 2500 machine only and 

other datasets included the ones from the Illumina HiScan machine as well as the Illumina 

HiSeq 2500 machine. The assemblers were selected based on the graph-based approach used. 

All assemblers used some variation of graph-based approaches to generate contigs. The four 

assemblers used included Allpaths-LG, ABySS, SGA and MaSurCA. Allpaths-LG and ABySS 
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use the de-bruijn graph method for contig generation, SGA uses the string graph method and 

MaSurCA used both De Bruijn graph method and Overlap Layout Consensus method. Since 

these assemblers use different contig generation and repeat resolving methods, the contigs and 

scaffolds produced differed from assembler to assembler. Metassember was therefore used to 

construct a consensus assembly by merging the best assembly from each of the four assemblers. 

As expected, the merged assembly was significantly better that all the individual assemblies 

when considering quality metrics such as N50, largest conting and number of contigs. The best 

assembly among the individual assemblies was the MaSuCA assembly with 61 181 scaffolds 

with a N50 of 58 058bp and a largest scaffold of 5 312 630bp while the merged assembly had 

8 480 scaffolds with a N50 of 106 594bp and a largest contig of 5 288 581bp (Table 3.2). PEP 

Scaffolder then also improved the Metassembler assembly as the N50 statistic improved to 

111 511bp and the number of scaffolds dropped to 8 357. A smaller number of scaffolds show 

that contig generation was more effective in stitching together the reads and the scaffolding 

more effective in resolving repeats and laying out the contigs into scaffolds. A larger N50 

reveals that there were generally longer scaffolds in the merged assembly and the PEP 

scaffolder assembly. PEP scaffolder greatly improved the completeness of gene regions (Zhu 

et al., 2016) by using homologous proteins from a closely related species. In this case, well 

curated proteins from E. grandis were used and this greatly improved the assembly. 

 

3.2.2 Annotation 

 

The final assembly was annotated using the MAKER pipeline. The MAKER pipeline uses both 

ab- initio and EST and protein-based evidence. Ab- initio gene predictors utilizes genomic data 

only and MAKER combines the genes/exons predicted from these predictors with EST 

evidence to produce final gene models. The ab-initio gene predictors were SNAP and 

Augustus. Both predictors were used to make gene models prediction more reliable since gene 

models with support from different sources are more reliable. 24 134 genes were predicted with 

a mean length of 6 726bp. This is slightly less that the 36 376 genes found in Eucalyptus 

grandis. The MAKER gff output contains AED scores to show the quality of each gene. A plot 

of the AED scores shows a significantly high number of genes with high quality genes (> 0.4). 

This indicates that over 80% of the annotated genes were of high quality. PEP scaffolder played 

an important role in resolving gene regions in the Metassembler assembly as it uses a protein 

database to resolve gene regions. This is shown by the number of BUSCO plant genes found 

in the scaffolded genome which had 1351 genes out of the 1440 BUSCO plant genes which is 



70 
 

3 genes more than the original metassembler assembly. Since 1351 out of the 1440 BUSCO 

plants genes (93,9%) were found in that assembly, this gives an indication that our assembly 

was about 93.9% complete. 

 

3.2.3 Comparative Genomics 

 

Comparative genomics was performed to give us an indication of the genetic difference 

between E. grandis and P. guajava. According to Biffin et al., 2010 and Thornhill et al., 2015 

the divergence time between E. grandis and P. guajava is ~67mya. We first explored synteny 

between the two genomes to see which blocks are conserved between the two genomes. 

Syntenic blocks were found between each of E. grandis chromosomes and at least one of the 

P. guajava scaffolds. We used 16 E.grandis scaffolds with 42% of its sequence lengths covered 

with genes, and 64 P.guajava scaffolds with only 28% covered with genes. Symap searched 

for syntenic blocks between E. grandis and P. guajava and only 39% of E. grandis sequence 

length was covered in syntenic blocks while 64% of P.grandis sequence length was covered in 

syntenic blocks.  42% of these blocks were covered in anchors, meaning 23% of total P. 

guajava sequence length and 5% of E. grandis sequence length were covered by anchor 

alignment regions. This gives an indication of how genetically similar P. guajava is to E. 

grandis, at least 23% similar. 

 

To further explore comparative genomics between P. guajava and E. grandis the terpene 

synthase (TPS) gene family was chosen to compare the presence and distribution of TPS genes 

in these two genomes. The 113 Eucalypus TPS genes that were identified in Külheim et al., 

2015 were used. We found 36 out of the 113 E. grandis TPS genes in P. guajava. The lower 

number of TPS genes was expected since the number of TPS genes in a plant has been shown 

to be inversely proportional to the branch length (Külheim et al., 2015). 

 

The comparative genomics work done between P. guajava and E. grandis is only a starting 

point in investigating the genetic diversity between members of Mytaceae family. However, 

this work is a good indication of the genetic diversity between the two genomes. 
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4 Chapter 4: Concluding Remarks 

The guava fruit tree is one of the most important commercial fruit trees in South Africa and 

Sub Saharan Africa (Hayes, 1966; Pathak & Ojha, 1993). It has the absence of a genetic 

resource for guava had made it difficult to tackle problems the guava industry faces using 

genomics. This project was aimed at creating a genomic resource that will be used as a starting 

point in tackling problems such as the guava wilt disease (Grech, 1985). 

 

The genomic resource was made by first assembling the genome of the guava fruit tree using 

next generation sequence data and bioinformatic tools to create the first   draft genome 

assembly of guava. Next, the assembly was annotated with the aid of RNA-seq data and 

bioinformatic tools. Finally, comparative genomics work was done between P. guajava and E. 

grandis which another member of the Myrtaceae family which guava belongs to.  

 

The pipeline used for de novo genome assembly harnessed the power of all three graph-based 

genome assembly techniques, namely De-bruijn graph method, string graph method and 

Overlap graph assembly (Pevzner et al., 1989; Myers, 2002; Hernandez et al., 2008; Simpson 

& Durbin, 2012). The assembler Metassembler (Wences et al., 2015) was used to create a 

consensus genome assembly of different assemblies made from different datasets and different 

assembly methods. PEP scaffolder (Zhu et al., 2016) was used to improve the assembly by 

making scaffolds using BLAT (Kent, 2002) and protein sequences, ensuring that gene regions 

were properly assembled. Assembly completion was assessed by using BUSCO (Simão et al., 

2015) which checks the percentage of BUSCO genes present in the assembled genome. Also, 

metrics such as N50 and length of longest scaffolds were used to check the quality of assembly. 

The final assembly had 8 357 scaffolds, an N50 statistic of 111 511bp and the longest scaffold 

was 5 288 581bp. BUSCO predicted that 93,9% of core plant genes were found in the final 

assembly. This implies that the assembly is at least 93.9% complete. 

 

Maker-P (Campbell et al., 2002) was used to annotate the genome assembly with the assistance 

of RNA-Seq data extracted from plant tissue obtained on different parts of the guava tree and 

at different stages of development. Obtaining genetic material for RNA-Seq this way ensured 

that we maximize RNA extraction since different genes are expressed from different parts of 

the plant at different stages of development.  Different gene predicters were used such as SNAP 

(Korf, 2004), Augustus (Stanke & Waack, 2003) and GeneMark-ET (Lomsadze et al., 2014). 
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These were all trained in a bootstrap fashion till a final gene model for guava was created.  A 

total of 24 134 genes were found in the guava assembly. Over 80% of these had an AED score 

of less than 0.4.  These annotation quality metrics show our pipeline captured high quality full 

length genes. 

 

The comparison genomics work done on guava and eucalyptus was aimed to explore the 

genetic diversity of members of the Mytaceae family.  Using SyMap (Soderlund et al., 2006) 

to calculate synteny between the genome of Psidium guajava and Eucalyptus grandis (Myburg 

et al., 2014a), we observed that guava is at least 23% similar to eucalyptus since SyMap showed 

that only 23% of the P. guajava genome was covered by anchor alignment regions. We 

discovered that only 36 of the 113 Eucalyptus terpene synthase genes (TPS) (Külheim et al., 

2015) were found in the new guava assembly. This small number may be attributed to many 

factors including incomplete assembly and annotation. 

 

The pipeline used in this project can be used to further create more genomic resources for other 

plants in the Mytaceae family such as Metrosideros (Izuno et al., 2016). Having these genomic 

resources will not only work as a starting point in solving problems faced by plants in the 

Mytaceae family but will also help us to explore genetic diversity between members of this 

family and others. One such use of such a resource is for marker assisted selection (MAS) 

during breeding. An annotated genome will be pivotal in marker development. The first 

annotated genome of guava will act as a reference genome for guava where other sequence 

data from different guava lines can be aligned to and this will form the basis of polymorphism 

detection. Detecting polymorphism such as SNPs and INDELs is pivotal in marker 

development and creating trait associated markers is the essence of MAS. The assembly of P. 

guajava is therefore a starting point to solving problems in the guava industry such as breeding 

for the guava wild disease using MAS and also understanding how closely related guava is to 

other plants in the Myrtaceae family.  
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5 Supplementary files 

5.1 FastQC files 

HiSeq2000 raw reads (with adaptors) 

 
Figure 5.1: Summary and basic statistics of the HiSeq 2000 forward reads (raw reads) quality statistics extracted from the FastQC report. 
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Figure 5.2: Summary and basic statistics of the HiSeq 2000 reverse reads (raw reads) quality statistics extracted from the FastQC report. 
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HiSeq 2000 reads trimmed 

 

Figure 5.3:  Per base sequence quality statistics for HiSeq 2000 forward, properly paired reads with adapters removed. The PHRED scores (y axis) represent quality of base calls. The bigger the 

PHRED score, the better the base quality of bases at that position. 
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Figure 5.4: Per base sequence quality statistics for HiSeq 2000 forward, properly paired reads with adapters removed. The PHRED scores (y axis) represent quality of base calls. The bigger the 

PHRED score, the better the base quality of bases at that position. 
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FastQC report for HiSeq2000 PE overlapping reads, merged with FlaSh 

 

Figure 5.5: Per base sequence quality statistics for HiSeq2000 overlapping pair-end reads merged with FlaSh. The PHRED scores (y axis) represent quality of base calls. The bigger the PHRED 
score, the better the base quality of bases at that position. 
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Figure 5.6:Per base sequence quality statistics for HiSeq 2000 unmerged forward reads. The PHRED scores (y axis) represent quality of base calls. The bigger the PHRED score. the better the 
base quality of bases at that position. 
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Figure 5.7: Per base sequence quality statistics for HiSeq 2000 unmerged reverse reads. The PHRED scores (y axis) represent quality of base calls. The bigger the PHRED score, the better the 
base quality of bases at that position. 
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Project data (assemblies and annotations) found at: https://www.dropbox.com/sh/v6vb8e7nocw5gkg/AADloBXU0Gc_3XIaAhPpz2nda?dl=0 
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