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Then God said, ″Let Us make man in Our image, according to Our likeness; let them have 

dominion over the fish of the sea, over the birds of the air, and over the cattle, over all the 

earth and over every creeping thing that creeps on the earth.‟ Genesis 1: 26 
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Preface 

This dissertation argues that supplementation of animals or semen extender with 

antioxidants and the use of appropriate cooling rate as well as equilibration period might 

prevent detrimental effects of oxidative stress (OS), intracellular ice crystals formation and 

development of regions of high solute concentrations during the semen freezing process. 

This might offer a great opportunity for the improvement of post-thaw sperm quality and 

capturing of superior genetics from proven sires; therefore, promoting the use of 

cryopreserved Saanen buck semen. The general objective of this work was to determine the 

antioxidative capability of dietary selenium (Se) supplementation, addition to extenders of 

vitamin C, E and their combination (C+E) on post-thaw sperm quality in relation to cooling 

rates (slow and fast) and equilibration times (2, 4 and 6). The specific objectives were 

addressed in the following chapters, which have been published or are to be submitted for 

publication in peer review journals.  

 

1. K. Lukusa and K. C. Lehloenya. 2017. Selenium supplementation improves 

testicular characteristics and semen quality of Saanen bucks. Small Rumin. Res. 

151: 52-58. 

2. K. Lukusa., A. Hassen and K. C. Lehloenya. 2018. Dietary selenium 

supplementation and slow cooling improve freezability of Saanen buck sperm 

extended in clarified egg yolk medium (submitted for publication in cryobiology) 

3. K. Lukusa., A. Hassen., F. V. Ramukhithi., M. B. Matabane and K. C. Lehloenya. 

2018. Antioxidants and equilibration times improve post-thaw sperm kinematic 

parameters of Saanen buck semen (to be submitted for publication in cryobiology). 

 

The first chapter of this thesis introduces the study with emphasis on a brief background, 

justification for the study and highlights of the entire thesis. In the second chapter, the 

different factors affecting buck semen freezability and fertility are reviewed in detail. In the 

third chapter, the effects of dietary selenium supplementation on reproductive performance 

and semen characteristics of Saanen buck were investigated. In the forth chapter, the effects 

of cooling rates and selenium supplementation on post-thaw sperm characteristics diluted in 

different extenders were studied. In the fifth chapter of this thesis, the antioxidative capability 

of Se, vitamin C, vitamin E and their combination (C+E) as well as equilibration times on 

post-thaw sperm motility and kinematic parameters were studied. Finally, general 

conclusion, recommendations and critical analysis based on this research work were 

discussed in the sixth chapter. 
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Summary 

The present study investigated the effects of antioxidants supplementation, freezing 

extenders, cooling rates and equilibration times on Saanen buck reproductive performance 

and post-thaw sperm quality. For this reason, selenium was supplemented orally to evaluate 

its antioxidative potential on reproductive performance as well as on cooled and frozen-

thawed semen. The effects of cooling rates, and different extenders were also investigated 

on post-thaw sperm quality. This was followed by the addition of vitamin C, E and their 

combination vitamis (C+E) to freezing extender to evaluate their effects on the cooled and 

post-thaw sperm motility and kinematic parameters post-thaw in relation to equilibration time. 

 

Selenium is an integral part of glutathione peroxidase (GSH-PX), an enzyme which protects 

cell internal structures against free radicals and is an antioxidant for cellular membrane 

lipids. Its deficiency has been reported to cause impaired motility, reduced fertility and  

sperm production. In the present study dietary Se supplementation increased testes 

measures, semen attributes and hormone concentrations of Saanen buck. Therefore, Se 

supplementation is recommendable, especially for animals depending on Se deficient 

Lucerne diets or pastures, to boost their natural antioxidants and enhance the ability of the 

seminal plasma to fight oxidative stress (OS). 
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Although Saanen buck reproductive performance and fresh semen characteristics were 

improved with supplementation of Se, semen cooling and freezing is still a big concern due 

to excessive production of reactive oxygen species (ROS), leading to structural damage of 

sperm membranes. The suitable extenders, proper cooling rate and equilibration time are 

key elements to develop suitable protocol of semen cryopreservation. In this regard, a study 

was conducted to investigate the interactions between cooling rates (slow and fast) and 

freezing extenders: clarified egg yolk (CEY), whole egg yolk (WEY) and tris without egg yolk 

(TWEY) on post-thaw sperm quality in relation to dietary Se supplementation. The study 

revealed that the combination of clarified egg yolk (CEY) and slow cooling yielded higher 

percentages of cooled and frozen-thawed sperm characteristics of semen from Se 

supplemented bucks. This indicted that, supplementing animals with Se prior to the semen 

freezing process and using clarified egg yolk (CEY) in combination with slow cooling could 

be recommended for buck semen cryopreservation.  

 

Further to these results another study was conducted to determine the effects of both dietary 

selenium supplementation and addition of vitamin C (5 mM), E (4.8 mM) and their 

combination vitamins (C+E) to freezing extender as well as equilibration times (2, 4 and 6) 

on post-thaw sperm motility and kinematic parameters. Antioxidants supplementation prior to 

semen freezing led to higher post-thaw sperm motility and kinematic parameters when 2 or 4 

h equilibration time was used. It can be concluded that the use of dietary selenium or the 

addition to extender of the combination of vitamins (C+E) as antioxidants agents, associated 

with optimum equilibration time, may protect better spermatozoa against free radicals during 

semen cryopreservation. 

 

In general, the different experiments conducted in this thesis revealed that supplementing 

bucks with selenium, and the addition of the combination of vitamins (C+E) to clarified egg 

yolk (CEY) extender together with slow cooling and 2 or 4 h equilibration period, can be an 

alternative option to enhance reproductive performance and post-thaw sperm motility and 

velocity parameters. 
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CHAPTER 1 

General introduction 

Breeding buck selection is the most critical decision for improvement of a herd. Artificial 

Insemination (AI) is one of the most important techniques for increasing the rate of genetic 

improvement and breeding efficiency in livestock production (Anand and Yadav 2016). Male 

fertility is highly influenced by semen quantity and quality (Mittal et al., 2014). The quality of 

frozen-thawed semen is very important for success of AI. Therefore, understanding the 

sources of variation in semen quality and identification of highly fertile bucks with good 

quality of frozen-thawed semen would be of great interest to all livestock breeders 

(Arredondo et al., 2015). Although progress in this area of AI with reference to its application 

in the caprine species has not progressed as fast as with cattle, the need is still there for 

improving the cryopreservation process, as about 40 to 50% of the viable sperm are 

damaged during freezing and thawing processes (Watson, 2000). With the major 

populations of goats residing in the developing countries, there is obvious demand to 

accelerate the understanding in this field with the goal to boost the productivity for these 

countries, including South Africa. 

 

In that context, the Saanen goat breed has been considered in this study because it is well 

adapted to the South African climate and can better survive tick borne diseases better have 

been considered in the study (Malan, 2000; Erasmus, 2000). The choice of this breed has 

been motivated by their popularity in the South African goat farming industry. The 

implementation and popularity of frozen semen has opened the way for massive use of 

higher quality bucks. Furthermore, Genome Resource Banking through semen 

cryopreservation is a fundamental conservation strategy for any potential genetic resource. 

 

Artificial insemination (AI) has gained widespread acceptance in other animals such as dairy 

cattle, horse and swine industries of most developing countries in general and in particular 

South Africa. However, its application in the goat industry has been much more limited. The 

AI in goats with cryopreserved semen is still not as developed as it is with other animal 

breeding. The poor ability of goat sperm to resist the freezing-thawing process and its much 

reduced performance resulted from its use are the reasons for limited application of this 

technique in the breeding programs of various goat breeds.  

 

The major setback in semen cryopreservation technology is that the freezing-thawing 

process of mammalian sperm generally leads to a decrease in motility and viability of sperm 

cells as a result of damage to membrane integrity and ultrastructure (Watson, 2000). Frozen-
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thawed sperm are subjected to chemical, thermal, osmotic and mechanical stresses that 

occur during dilution, cooling, equilibration and thawing as well as semen collection method, 

which may result in reduced sperm motility and viability. These deteriorative changes are 

more profound in buck than cattle spermatozoa due to unique physiology of the buck 

spermatozoa and higher polyunsaturated phospholipids levels in its plasma membrane 

(Aitken et al., 1993).  

 

The most probable reason for poor post-thaw characteristics of buck semen is oxidative 

stress (OS) (Bucak et al., 2010). Spermatozoa are subjected to OS resulting from lipid 

peroxidation, which can lead to membrane damage, reduced sperm viability and lower 

fertility (Donghue and Donoghue, 1997). All sperm components including lipids, proteins, 

nucleic acids, and sugars are potential targets of OS (Agarwal et al., 2003). Although 

seminal plasma contains antioxidants that equilibrate lipid peroxidation and prevent 

excessive peroxide formation (Lewis et al., 1997), the seminal plasma antioxidants are not 

sufficient during semen storage (Maxwell and Salamon, 1993). In addition, the levels of 

antioxidant decreased during the cryopreservation process due to dilution of semen with 

extender and excessive generation of ROS (Andrabi, 2009; Kumar et al., 2011). The 

production of ROS at low concentration is a normal physiological event in various organs 

including the testis. Overproduction of ROS during cryopreservation has been associated 

with reduced post-thaw motility, viability, membrane and acrosome integrity, antioxidant 

status and fertility (Akiyama, 1999). 

 

Spermatozoa are protected by non-enzymatic and enzymatic antioxidants in the seminal 

plasma or in spermatozoa itself to prevent oxidative damage (Kim and Parthasarathy, 1998). 

An antioxidant that reduces OS and improves sperm motility and viability could be of great 

importance in the management of cryopreserved semen. Therefore, animal and/or diluted 

semen need to be supplemented externally with natural antioxidants for improved post-thaw 

semen quality (Ahmad, 1994). 

 

Selenium (Se) is an essential trace element in mammalian diet and its importance has been 

well established in goat (Ganabadi et al., 2010; Kumar et al., 2013; Lukusa and Lehloenya, 

2017). Se antioxidant function is mediated through glutathione peroxidase enzyme activity. 

Se is an essential element in spermatogenesis and male fertility (Chavarro et al., 2010) and 

its antioxidant. Several studies on the effect of Se supplementation on semen quality and 

reproductive performance have been conducted in cattle (Ceballos et al., 2009) and rams 

(Mahmoud et al., 2013).  
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There are several other antioxidants in semen that are known to improve sperm quality such 

as vitamin E and C, which are components of antioxidant systems. Vitamin C and E are the 

major antioxidants naturally present in mammalian semen that regulates ROS, protect the 

sperm from lipid peroxidation and provides higher integrity to plasma membranes and 

mitochondria, as well as improves kinematics for sperm post-cryopreservation (Akhter et al., 

2011; Silva et al., 2013; Mittal et al., 2014). 

 

Recent studies demonstrate that supplementation of cryopreservation extenders with 

antioxidants has been tested successfully to provide a cryoprotective effect on bull, ram, 

goat, boar and canine sperm quality, thus improving sperm parameters such as motility and 

membrane integrity after thawing (Bucak et al., 2010; Mittal et al., 2014). In spite of these 

encouraging results, the use of antioxidants in freezing extenders is not common and there 

is lack of data with respect to its use in Saanen buck semen cryopreservation. 

Supplementation with these antioxidants prior to the cryopreservation process may be 

recommended to facilitate the enhancement of sperm cryopreservation technique for the 

goat breeding industry (Bucak et al., 2010). This is because goats present a wider range of 

fertility when frozen-thawed semen is used, varying from 3% up to 70% (Corteel, 1973). 

Modification in cryopreservation protocol, and experimental methodology and antioxidant 

concentration may influence the effectiveness of the antioxidant capacity. 

 

The wider range fertility and the highly individual semen variability have resulted in a growing 

interest in the characterization of the sperm fertility and freezability of buck semen.  

Assessment methods of semen quality will help to improve early fertility prediction of semen 

following preservation. These methods will contribute significantly to improve animal 

reproductive techniques, and will aid in the selection of high-quality fertile animals. In the 

present study, traditional and CASA evaluation methods will be used to monitor changes that 

occur during cryopreservation. Understanding of the causes of phenotypic variation will offer 

some knowledge for the phenomenon of good and bad freezable buck semen, and provide 

the basis for improving the quality of cryopreserved semen through development of protocols 

of sperm cryopreservation with wide use. 
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CHAPTER 2  

Literature review 

2.1. Introduction 

Fertility is one of the most important economical traits in goat production, affecting both 

animal productivity and genetic progress (Bauersachs et al., 2010). Knowledge of 

reproductive physiology and use of artificial insemination (AI) technology are powerful tools 

to achieve acceptable fertility. The AI is one of the most important reproductive techniques to 

accelerate the genetic improvement of animals. However, fertilizing capability of sperm is 

one of the most important factors in achieving a successful AI program. Moreover, the 

successful utilisation of AI depends mainly on the use of cryopreserved semen and on the 

techniques that could produce a higher fertility rates. However, the poor fertility obtained 

when frozen-thawed buck semen is used has attracted more research interest in the goat 

industry.  

 

The insignificant result obtained when performing AI with cryopreserved semen in bucks has 

restricted its practical use in goat breeding, demanding for an improvement of AI technique 

itself and/or of the survival rate of the cryopreserved sperm.  To accomplish the selection of 

highly fertile buck based on reproductive traits is of great importance. The body condition 

score, body growth, scrotal growth and fertilizing ability of sperm are the most important 

traits to consider prior to an AI program. Implementation of AI in goat production could allow 

for the improvement of buck selection based on production traits, but at the same time, it 

stresses the importance of the individual buck‟s reproductive performance. Dietary energy 

profoundly affects spermatogenesis and overall animal growth. Dietary intake of certain 

vitamins and antioxidants agents can improve both reproductive performance (Abecia et al., 

1993)   and fertility (Kassa and Tegene, 1998). 

 

Buck reproductive performance is highly affected by semen quality such as sperm motility, 

acrosome integrity, morphology and viability. The quality of sperm after freezing is very 

important for success of AI. However, variations in sperm quality have been reported 

(Correa et al., 1997). Therefore, understanding the sources of variation in semen quality 

would be of great interest in goat the industry (Arredondo et al., 2015). AI with cryopreserved 

semen in goats is not common, and mostly fresh or cooled semen is utilised. In vitro survival 

of cooled semen decreases as the semen storage time is prolonged (Roca et al., 1997; 

Leboeuf and Restall Salamon, 2000). In addition, reports concerning fresh semen indicated 

that the sperm have a shorter fertile life span outside the body (Morrier et al., 2002) and this 

is due to increased cellular metabolism at higher temperatures. Even though Brinsko et al. 
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(2000) suggested that, the freezing of semen would increase its longevity, the biggest 

challenge is fertility of the sperm cell after thawing which prevents their widespread use. 

Therefore, knowledge of factors that could affect fertility after thawing is of great importance 

in goat breeding programs. 

 

A number of factors have been implicated in affecting the success and effectiveness of AI 

such as  nutrition, environmental conditions, breeding season, parity, farm, breed, depth of 

semen deposition and extender composition (Nunes and Salgueiro, 2011). Despite all these 

factors affecting AI, failure to implement it in goat breeding program will result in a massive 

loss of valuable genetics. Therefore, proper knowledge and management of all these factors, 

including variations that could compromise the success of AI are vital.  

 

2.2. Factors affecting buck semen production and fertility 

The reproductive performance of goat breeds depends on age of the buck, environment, 

management system and genetic makeup of the animal. The combination of these factors is 

what determines the adaptability of goats and their reproductive performance (Robertshaw, 

1982). Photoperiod and temperature are main factors that affect animals with seasonal 

reproductive parameters in temperate regions. In tropical regions, the rain is the 

environmental factor-affecting animals and has an influence on the quality of forage (Rege et 

al., 2000). However, additional factors related to climate including humidity and temperature 

fluctuations can induce thermal uneasiness, resulting in reduced feed intake and eventually 

affecting spermatogenesis and semen quality (Kunavongkrit et al., 2005). Therefore, the AI 

industry has to optimize the factors that alter semen production and sperm quality. Both 

genetic and non-genetic factors affect semen production (Chauhan et al., 2010). A number 

of these factors are discussed in this section. 

 

2.2.1. Environmental factors 

Sheep and goat are seasonal breeders (Rosa and Bryand, 2003). Seasonality has been 

demonstrated to affect semen quality in bucks (Thongtip et al., 2008). Ghalban et al. (2004) 

indicated that buck performance is most favorable during the period of increased daylight 

length. They further demonstrated that both semen quantity and quality were higher in spring 

and summer compared to winter or autumn in bucks.  Semen production of goats living in 

temperate environments is influenced by the season, with photoperiod being the main 

determining factor (Loubser and van Niekerk, 1983; Ritar, 1993). Concentrations of many 

proteins molecules are under seasonal control and are associated with sperm function 

during breeding and non-breeding seasons (La-Folic et al., 2002). The total protein 

concentration of the seminal plasma was reported to be affected by seasonal variations in 
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rams, with a higher concentration recorded in autumn compared to summer and winter 

(Gundogan, 2006). The concentration of fructose and total protein in the goat seminal 

plasma was consistently lower in the dry season compared to the rainy season (Anguiar et 

al., 2013). Juma et al. (2009) reported decreased total cholesterol concentration in ram 

semen during the summer season. Habeeb et al. (2008) reported that the hot conditions 

were accompanied by significantly increased cortisol level. The biochemical parameters like 

protein and cholesterol increased during the summer season, which may be responsible for 

poor motility and libido.  

 

A study conducted by Arrebola et al.  (2010) in the Mediterranean demonstrated that 

photoperiod treatment allowed adequate sperm production in winter. Ansari et al. (2017) 

reported a significant seasonal variation in buck semen characteristics. They recorded better 

quality semen during winter as compared to summer season. Schwab et al. (1987) recorded 

the highest sperm concentration, semen volume and sperm number per ejaculate during 

winter.  South African indigenous bucks have been reported to produce higher semen 

volumes and sperm motility in the hot summer months of December and January (Webb et 

al., 2004). The semen wave motion and sperm motility were found to be significantly lower 

during winter (June to August) period (Malejane et al., 2014). Zamiri et al. (2010) also added 

that high summer temperatures affected sperm motility to a lower degree. Gallego-Calvo et 

al. (2015a) reported that, in goats the values of sperm linearity coefficient (LIN), straightness 

coefficient (STR), curvilinear velocity (VSL), wobble (WOB), as well as motile, rapid and 

progressive sperm percentages, fluctuated between seasons. They observed lowest values 

and percentages during winter. They further reported seasonal effect on plasma 

testosterone content and body weight (BW). The plasma testosterone content increased in 

summer and autumn, and BW was higher during spring. 

 

Photoperiod is however, the main environmental factor that affects sheep and goat 

reproduction. Photoperiodic variations caused by season have a significant effect on the 

reproductive performance due to modification in the concentrations of the hormones 

released by the hypothalamus, pituitary, epiphysis and gonads (Pérez and Mateos, 1996). 

Seasonal fluctuations of fertility in bucks are mostly a result of day length change during the 

year (Chemineau et al., 1992; Talebi et al., 2009; La Falci et al., 2002). Short days stimulate 

the release of luteinizing hormone (LH). In turn, LH stimulates testicular growth and the 

secretion of testosterone, resulting in improvements of semen quality and production as well 

as increased sexual behavior. Perversely, long days decrease LH release and testicular 

growth. This result in a reduction in the plasma testosterone content, decreased sperm 

quality, and eventually reduced sexual behaviour (Delgadillo and Chemineau, 1992; 
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Zarazaga et al., 2009). The hormone responsible for spermatogenesis and sexual behaviour 

is testosterone. However, the seasonal variation of testosterone production could influence 

the buck reproductive performance during some seasons of the year (Chemineau and 

Delgadillo, 1994). The study conducted on bucks by Gallego-Calvo et al. (2015a) recorded 

high testosterone contents in summer and autumn. They also recorded less testosterone 

contents in winter and spring. They further reported lowest total numbers, concentrations 

and decreased motility of sperm in winter when plasma testosterone was low. In winter, 

values of sperm velocity parameters and percentages of rapid, progressive as well as motile 

sperm were lower than in summer. In contrast, no differences were observed concerning 

other seasons. 

 

2.2.2. Age of buck 

The age of the buck at semen collection has been reported to affect ejaculates 

characteristics such as volume of the ejaculate, the sperm concentration, and sperm motility 

(Fuerst-Waltl et al., 2006). Numerous reports have suggested that when the age of the male 

animal increases, there is a decline in some semen parameters (Centola and Eberly, 1999). 

In rodents, age seems to induce certain histological modifications such as degeneration of 

testicular tissue, leading to the decrease in number of spermatogenic cell layers as well as 

degeneration of seminiferous tubules (Sarma and Devi, 2016). This may lead to the 

decrease of sperm quality (Mahal et al., 2013). 

 

Osinowo et al. (1988) and Toe et al. (2000) reported that the scrotal circumference and 

semen volume normally increase when the ram age increases up to 5 years. Suggesting 

that, the genital system of the ram may undergoe certain maturational modifications during 

this period. The study of Mahal et al. (2013) reported that the age of buck affects all semen 

parameters except mass motility. Semen volume and sperm concentration were reported to 

increase with age, while live sperm percentages decreased significantly with age. The 

percentage of normal sperm was also reported to increase significantly with age. In addition, 

analysis of sperm motility parameters using CASA technique have also demonstrated an 

age-related decrease in values of LIN, VSL and average path velocity (VAP) (Sloter et al., 

2006). Osinowo et al. (1988) also indicated that older rams produce higher volumes of 

semen, sperm concentrations and total sperm per ejaculate compared to younger rams. In 

another study, Langford (1987) found sperm production to increase proportionately with 

scrotal circumference. 

 

The age of the buck is an indispensable physiological factor that changes the semen 

characteristics. Rajuana et al. (2008) reported a positive correlation of age with semen 
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volume in Black Bengal bucks. This implies that as the age of bucks increases, sperm 

production is expected to increase proportionately. In a research paper by Bitto and 

Egbunike (2012) that compares semen characteristics of pubertal and adult WAD bucks, 

they found that adult bucks were significantly superior to pubertal bucks in all the semen 

traits measured except semen colour. Incidences of abnormal and dead spermatozoa were 

higher in pubertal compared to adult bucks. In addition, Amann et al. (2000) found the 

percentages of abnormal sperm head shape to increase at younger and older age; while a 

gradual decrease was observed after sexual maturity. Abd-Allah et al. (2007) had earlier 

foundthat the optimal age of bucks for either natural service or AI was 2 years of age.  

 

2.2.3. Management 

The production and fertility of semen in buck depends largely on proper management of the 

animal, semen collection, preservation, storage and their application. However, handling the 

buck and how the semen is collected is also responsible for semen production and quality. 

Fuerst-Waltl et al. (2006) suggested that the handler must ensure appropriate sexual 

preparation of the animal before semen collection. Mathevon et al. (1998) reported a 

considerable variable effect of a group of people responsible for semen collection on the 

volume of ejaculates and total number of sperm. On the other hand, no significant effect was 

observed on sperm concentration and motility. The interval and frequency of semen 

collection largely affected the semen quality in the study conducted by Everett and Bean 

(1982) and Mathevon et al. (1998). Everett et al. (1978) and Everett and Bean (1982) found 

that, first ejaculates produced higher semen volumes, sperm concentration and total number 

of sperm. It was also further reported that if the intervals separating semen collections were 

shorter the number of sperm produced per ejaculate would decrease (Everett and Bean, 

1982; Schwab et al., 1987), while the volume of semen ejaculated increases (Mathevon et 

al., 1998). 

 

2.2.4. Genetics 

Buck fertility is an indispensable economic trait, controlled by genetic factors. Generally, 

genetic factor is considered narrow because the heritability of fertility is normally low 

(Rollinson, 1955; Foote, 1970). Numerous investigations done in different species 

demonstrated the importance of various genes in the process of male reproduction and 

fertilization. However, reports on genetic control of fertility in bucks are still in their early 

stage and need detailed investigation to meet the future needs. The application of AI in 

modern breeding programs allows breeders to use small number of healthy males for 

improving the livestock genetics of economically important traits. The widespread utilization 

of AI associated with proper genetic evaluation can speed up the spread of genetic material 
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of commercial importance. The genetic factor has been observed in some goat breeds such 

as the Alpina goat, which produces good semen quality at a younger age, while the 

Damascus and Murciano-Grandina breeds produce good semen quality at an older age 

(Ghalban et al., 2004). 

 

In South Africa goat genetic improvement programs are mainly done using a conventional 

method (Campbell, 2003; Casey and Webb, 2010). The method has resulted in a 

considerable number of genetic improvements mainly in the meat goat sector (Mohlatlole et 

al., 2015). Despite success accomplished by South Africa to develop meat goat breeds, the 

need to develop goats that meet smallholder production systems persist. The smallholder 

production system is generally characterized by elevated diseases prevalence and poor 

quality nutrition (Mohlatlole et al., 2015). 

 

2.3. Factors affecting the survival of cooled and frozen-thawed buck spermatozoa  

AI with frozen-thawed semen could be utilized favorably for preservation of goat breeds, ex 

situ conservation and dissemination of germplasm (Kharche et al., 2013). However, 

successful AI depends on good quality of frozen-thawed sperm. Semen freezing involves an 

adjustment of sperm to the thermal and osmotic stresses that happen throughout dilution, 

cooling, freezing and thawing procedures (Watson et al., 1992; Holt, 2000). After dilution, 

sperm is kept at approximately 4 or 5oC prior to cryopreservation. This process is 

responsible for the reduction of sperm cells metabolism and their adaptation to low 

temperatures, and cryoprotectants present in extenders (Dong et al., 2008; Gao and Zhou, 

2012). The cryoprotectants eventually penetrate the sperm cells and set up equilibrium 

between intra- and extracellular concentrations (Salamon and Maxwell, 1995). During this 

time thermal shock may occur resulting in the loss of the sperm‟s potential to fertilize 

properly (Watson, 1995). 

 

It is therefore important to develop a freezing protocol, which can preserve a considerable 

amount of functionally and structurally normal sperm (Sundararaman and Edwin, 2008).  

Therefore, acceptable cryopreservation of sperm would help in the provision of prolonged 

preservation of goat germplasm. This would also allow the preservation of genetic materials 

that could increase meat and milk production, and their related commercial benefits. The 

starting point in semen freezing is the use of an appropriate semen collection method 

(Marco-Jiménez et al., 2005; Jiménez-Rabadán et al., 2012). The method of collection may 

influence post-thaw sperm quality due to differences in their seminal plasma compositions. 

In addition, the survival of sperm in cryopreserved semen is also altered by other factors ( 
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including individual effect, seminal plasma composition and semen processing) that need to 

be well understood before any cryopreservation procedure can be initiated. 

 

2.3.1. Semen collection methods 

The starting point to establish a sperm cryo-bank is the utilisation of a suitable method for 

the collection of the semen. Normally the semen collection method should be appropriate 

and should not affect sperm quality (Morrell et al., 1996). For bucks, collection of the 

ejaculates can be done by artificial vagina (AV) and/or electro-ejaculation (EE) (Marco-

Jiménez et al., 2005; Jiménez-Rabadán et al., 2012; Lukusa and Lehloenya, 2017). The AV 

method is the most used procedure (Leboeufet al., 2000), but this method needs a training 

period prior to semen collection (Wulster-Radcliffe et al., 2001). Sometimes this technique 

can be impractical and time wasting if the buck is difficult to handle or becomes excessively 

sensitive. 

 

The EE technique is regarded as an alternative collection method where it is impossible to 

use an AV, as is the case for wild animals or when males are not trained. This technique is 

also a preferred method for collecting repeated ejaculates from animals without inducing any 

harm (Santiago-Moreno et al., 2009). However, differences between AV and EE methods in 

regard to sperm characteristics have been reported, with AV performing better than EE 

(Greyling and Gobbelaar, 1983). In addition, in certain species, sperm quality after thawing 

may present some variations inherent from semen collection methods. In a study conducted 

by Marco-Jiménez et al. (2005) ram sperm obtained by EE were found to be more resistant 

to cryo-damage than the one obtained using AV. In contrast, Jiménez-Rabadán et al. (2012) 

indicated that semen samples obtained by AV produced better post-thaw sperm quality than 

EE method. 

 

Semen collection using EE technique may modify the secretory function of some accessory 

sex glands, therefore changing the entire biochemical composition of the seminal plasma 

(Marco-Jiménez et al., 2008). Seminal plasma plays a great role as a vehicle for ejaculated 

sperm. It is composed with various biochemical components such proteins, enzymes, lipids, 

organic acids and minerals released by the accessory sex glands (Manjunath and Thérien, 

2002; Boisvert et al., 2004). These components are combined together with sperm during 

ejaculation; contributing to the volume and composition of semen. (Moura et al., 2006). Each 

biochemical component has an indispensable role in sperm function (Chacur, 2012; Sarsaifi 

et al., 2015; Marco-Jiménez et al., 2008). Their variation in the composition and content in 

seminal plasma is dependent on the collection method. It has been reported that proteins, 

sodium and potassium concentrations increased significantly when semen was collected 
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using EE (Marco-Jiménez et al., 2008). In a study conducted in bulls, total protein 

concentration was found to increase significantly when semen was collected by an EE 

method (Sarsaifi et al., 2015). However, these proteins and electrolytes may play 

indispensable roles in protecting sperm from the detrimental effects cold-shock (Barrios et 

al., 2005), and maintaining stability of the membrane before capacitation happens in the 

genital tract of the female animal (Manjunath et al., 2002). Therefore, modification in their 

relative balance in seminal plasma may lead to poor cryo-resistance and fertility of 

spermatozoa. 

 

2.3.2. Individual effect 

One major factor affecting the survival of buck sperm during cryopreservation is the buck 

itself. The buck may be categorised as freezable or unfreezable depending on suitability of 

their semen to be used for freezing. This does not only rely on the quality of fresh semen, 

but also on the make-up of their seminal plasma as well as sperm plasma membranes 

(Aurich, 2005). Semen from individual buck can be more sensitive to cooling and freezing to 

the point that semen freezing is impossible. Sperm from males of the same species may 

present physiological variations. 

 

Curry (2000) reported that physiological disparities among sperm from males of the same 

species might exist. In addition, Sultana et al. (2018) reported a significant individual 

variation on semen volume of five bucks of the same breed, similar age, nutritional status 

and general health condition. However, such disparities could be relatively genetic or non-

genetic. This demonstrates inter-buck variability in sperm freezeability as a source of 

variation during the cryopreservation procedure (Soler et al., 2003; Ramón et al., 2013). 

Several reports have demonstrated individual differences in goats concerning sperm 

freezeability and fertility (Furtoss et al., 2010; Medrano et al., 2010). Variability at the level of 

ejaculates within the same buck has  also been reported (Furtoss et al., 2010). 

 

2.3.3. Seminal plasma 

Seminal plasma is produced firstly from secretions of the epididymis and accessory sex 

glands. It is recognised to contain proteins, enzymes, lipids, electrolytes and other different 

components which play a major role in the regulation of sperm metabolism. There are 

different types and amount of seminal plasma proteins between individuals. Some proteins 

prevent sperm from damage caused by cold shock (Pérez-Pe et al., 2002). These proteins 

could be affected by some environmental factors including season, stress, feeding, 
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temperature (Pérez-Pe et al., 2001) and semen collection method (Marco-Jiménez et al., 

2008). 

 

The seminal plasma-induced detrimental effects on sperm during the process of cooling and 

storage may be related to the action of specific enzymes. The seminal plasma enzyme 

phospholipase A2 has been reported to play a role during acrosome reaction and 

spermatozoa-oocyte fusion (Yuan et al., 2003). In goats, coagulating egg yolk enzyme 

(EYCE) and bulbourethral III secretion (SBUIII) are secreted by bulbourethral glands and 

have phospholipase activity. The EYCE hydrolyses egg yolk lecithin (contained in freezing 

extenders) into fatty acids and lysolecithin, which is toxic to sperm (Sias et al., 2005). This 

hydrolysis causes acrosome reaction (Upreti et al., 1999) and chromatin decondensation 

(Sawyer and Brown, 1995). Similarly, SBUIII hydrolyses residual triglycerides in the skim 

milk from freezing extenders leading to production of fatty acids, which are toxic to 

spermatozoa (Pellicer-Rubio and Combarnous, 1998). This causes a decrease in the 

percentage of motile sperm, breakage of acrosome and cellular death. In order to avoid the 

detrimental effect of these enzymes (EYCE and SBUIII), it has been suggested that the 

removal of seminal plasma by means of centrifugation may increase the sperm motility, 

membrane integrity and fertility after the freeze/thawing procedure (Machado and Simplicio, 

1995; Kozdrowski et al., 2007). Other reports have found no effect of seminal plasma 

removal on sperm quality after thawing (Daskin and Tekin, 1996; Cabrera et al., 2005). 

Jiménez-Rabadán et al. (2013) indicated that the removal or not of seminal plasma before 

freezing by centrifugation did not affect sperm quality at thawing regardless of collection 

method and extender used. However, they observed a beneficial effect of seminal plasma 

removal when the semen collection was performed during the non-breeding season. 

 

2.3.4. Semen processing 

The success of cryopreservation depends upon many factors such as freezing extenders, 

cooling rate, equilibration time packaging and thawing (Cooter et al., 2005; Curry, 2007). 

During all of these processes, spermatozoa are exposed to damaging stresses such as 

temperature and osmotic changes. These stresses are produced by exposure to 

cryoprotectants, formation and dissolution of ice crystals in the extra-cellular space (Watson, 

2000). Therefore, understanding of all steps involved in semen processing prior to the 

cryopreservation program is of great importance. 

 

2.3.4.1. Extenders for freezing semen 

Extenders are used to dilute and protect sperm during liquid storage or freezing.  The 

successful storage of buck semen in liquid and frozen forms depends on the composition of 
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the extender used to ensure survival and fertility of the sperm for long period (Purdy, 2006; 

Mara et al., 2007). The major role of semen diluents is to provide nutrients as energy source 

and ensure appropriate physiologic at osmotic pressure as well as protection from cold 

shock during cooling and freezing procedures (Concannon et al., 1989). 

 

In general, the diluents used for cooling or freezing of semen include egg yolk, skimmed 

milk, glycerol or their combination (Maxwell and Watson, 1996; Sharafi et al., 2009; Kulaksiz 

et al., 2013). Several extender compositions containing different concentrations of these 

compounds have been studied for cryopreservation of goat semen (Bittencourt et al., 2007). 

Regardless of the good fertility rate after using egg yolk, skimmed milk or glycerol as 

extenders, some limitations following their utilisation have been reported in goats (Leboeuf et 

al., 2000). Goat semen contains lipases secreted from bulbourethral glands that interact with 

egg yolk and skimmed milk eventually producing harmful substances that have detrimental 

effects on sperm during storage. However, glycerol and egg yolk are the most popular 

cryoprotectants utilised. There is a need to stop utilization of egg yolk in freezing media, 

because it may contain microbial contaminants that can compromise fertilization ability of 

sperm (Bousseau et al., 1998; Bittencourt et al., 2007). To avoid the deleterious effects 

caused by egg yolk, Soybean lecithin-based extenders free of animal protein were proposed 

as alternatives (Bousseau et al., 1998). The soybean lecithin is naturally composed of 

phosphatidylcholine and some fatty acids (stearic, oleic and palmitic). Papa et al. (2010) had 

demonstrated the importance of soybean lecithin as the main source of lipoproteins in 

freezing extenders. It been also been indicated that addition of soybean lecithin to freezing 

extender increased the percentages of sperm motility, viability and acrosome integrity after 

thawing in ram and goat semen (Sharafi et al., 2009; Forouzanfar et al., 2010(Jiménez-

Rabadán et al., 2012; Salmani et al., 2014; Yodmingkwan et al., 2016). In addition, some 

researchers that compared egg yolk-based extender and soybean lecithin published 

contradictory reports (Aires et al., 2003; Gil et al., 2000; Thun et al., 2002; Vidal et al., 2013). 

They suggested that this might be attributed to different breeds of goats used and 

geographic regions. The seasons in which the semen was collected may also influence the 

semen quality (Leboeuf et al., 2000). The well-planned processes of storage of semen with 

appropriate extenders, suitable cooling rate and equilibration period are main key 

components to develop an acceptable and species-specific cryopreservation cycle. 

 

2.3.4.2. Cooling rates 

Cooling semen from temperature of 37oC to 4oC, defines the success of cryopreservation 

process concerning sperm viability (Holt et al., 2005). This process requires suitable cooling 

rate, physiologically equilibrated homeostasis and metabolism (Martorana et al., 2014). The 
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cooling process decreases metabolic function and increases the life of the sperm cells. 

However, inappropriate cooling rate initiates thermal discomfort and induces membrane 

damage due to proteins structural disturbance, disruption of ion channels and production of 

ROS as well as reduced potential of the mitochondrial membrane (Watson, 2000; Holt et al., 

2005; Martorana et al., 2014). 

 

Various cooling rates (rapid and slow) have been studied in different species. Even with slow 

cooling, sperm cells are subjected to thermal stresses and become compromised. 

Excessively slow or fast rates of cooling may cause irreparable damage to the spermatozoa 

integrity due to osmotic and oxidative changes (Koshimoto and Mazur, 2002; Ahmad et al., 

2015). The appropriate rate of cooling must be sufficiently slow in order to allow water to 

come out of sperm cells to avoid intra-cellular ice formation, and sufficiently fast to avoid 

excessive cell dehydration and damage due to the medium effect (Mazur, 1970). Apart from 

goat where no appropriate cooling rate has not been established, other species have been 

reported to have appropriate cooling rates, such as between 76 and 140°C/min in bull 

(Woelders et al., 1997), 30°C /min in boar (Fiser and Fairfull, 1990), 27°C to 130 °C / min in 

mouse (Koshimoto and Mazur, 2002) and 10°C/min in human (Henry et al., 1993). 

 

Even with an appropriately slow cooling rate, sperm cells face temperature stresses that 

lead to dysfunction. The intensity of damage is related to the rate of lowering temperature 

(Watson, 2000). Rapid cooling on the other hand, causes a lethal condition for sperm 

(Dhami et al., 1992), known as „„cold shock‟‟ (Fiser and Fairfull, 1986), which induces 

osmotic and oxidative damages. As a result there is a disruption in cell physio-chemical 

functions, inducing disturbed homeostasis and over-regulation of ROS (Ahmad et al., 2015). 

The magnitude of these negative changes is relatively associated to the sperm cell 

membrane composition. This is because the low ratio of poly-unsaturated fatty acids allows 

the sperm to be more resistant to cold shock (Bouchard et al., 1990), and have been 

explored in various species (Devireddy et al., 2002; Leboeuf et al., 2000). However, the 

effects of different rates of cooling on buck sperm have not yet been explored  in detail 

(Ahmad et al., 2015). In addition to cooling, sperm must retain their viability at thawing. It is 

believed that suitable cooling rate associated with appropriate equilibration time can help 

sperm to cope with detrimental effects caused by cold stresses during freezing (Holt et al., 

2005). 

 

2.3.4.3. Equilibration time 

Prior to freezing, diluted semen in extender is kept at a temperature of 4 or 5oC; this 

decreases the sperm cells metabolism, allowing them to adjust to low temperatures (Dong et 
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al., 2008). This is followed by the acclimatisation of the sperm to osmotic variations once in 

contact with the cryoprotectant (Gao and Zhou, 2012). The period during which the sperm 

cells stay mixed with the cryoprotectant in freezing extender, prior to freezing is generally 

named equilibration period.  This period allows cryoprotectants (e.g. glycerol) to penetrate 

the sperm cell to establish an equal intracellular and extra-cellular concentration. The 

equilibration time comes after the cooling stage during the freezing process (Leite et al., 

2010). This process affects the stabilization of sperm in extended medium to keep 

homeostasis, osmotic and cryo-tolerance (Herold et al., 2006). Therefore, various 

equilibration periods have been investigated in different species including goats (Ahmad et 

al., 2015), cattle (Shahverdi et al., 2014; Shah et al., 2016) and sheep (Câmara et al., 2016). 

It is noteworthy that the reports of several fertility studies developed to define suitable 

equilibration period for buck semen, proposed a longer equilibration time (2-8 h) at 5˚C prior 

to freezing to reach maximal fertility (Jiménez-Rabadán et al., 2013; Ahmad et al., 2015). 

 

Yi et al. (2002) reported the most suitable equilibration time for the cryoprotectant to 

penetrate sperm cells is to be between 2-4 h in boar. Ahmad et al. (2015) reported that 

equilibration of 2-8 h maintained better sperm quality of buck sperm. It has also been 

claimed that 2 h of equilibration time is suitable for buck semen (Sundararaman and Edwin, 

2008). However, all these studies used whole egg yolk based extenders. The equilibration 

time depends upon type and concentration of cryoprotectant used (Iaffaldano et al., 2012). 

 

2.3.4.4. Packaging, storage, freezing and thawing rates 

Following the dilution of buck semen with freezing extender, it is cooled to 4-5oC and 

packaged in either straws or pellets (Ritar, 1993; Gravance et al., 1997; Leboeuf et al., 

2000). Both straws and pellets are the most popular packaging system utilized since the 

inception of cryopreservation. 

 

The use of straws in sperm freezing is more expensive than using the pellets freezing 

technique, but allows labelling and precise identification of samples. It also decreases the 

risk of contamination between samples during storage and cryopreservation. In straw 

freezing, diluted and chilled semen samples are loaded to 0.25 or 0.5 ml straws, placed on a 

rack 3 to 4 cm above the liquid nitrogen (LN2) for 7 to 8 min on LN2 vapour in a Styrofoam 

box or in programmable freezer and straws are then plunged in LN2 for preservation (Evans 

and Maxwell, 1987). In pellet freezing, aliquots of 0.1-0.5 ml of cooled semen sample are 

indented on a block of solid carbon dioxide (−79°C). The pellets are then frozen for a period 

of 2-4 min followed by plunging them into LN2 for preservation (Evans and Maxwell, 1987; 

Chemineau et al., 1991). 
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Packaging of semen has great significance seeing that it allows the identification of each 

dose and its preservation in the LN2 container (Maxwell et al., 1995). However, the size and 

type of package may affect the semen cooling and freeze/thawing rates (Maxwell et al., 

1995). It has been reported that the use of 0.5 ml straws produced better preservation of 

goat sperm than 0.25 ml straw concerning sperm progressive motility and acrosome integrity 

after cryopreservation process (Bezerra et al., 2012). Ritar et al. (1990) reported increased 

motility of sperm frozen in pellets after thawing compared to sperm frozen in straws. 

However, no difference was recorded in terms of sperm motility between sperm frozen in 

0.25 and 0.5 ml straws. 

 

The detrimental effect caused by thawing occurs when the sperm passes through the critical 

zone between −50oC and −15oC or −5oC (Lahnsteiner, 2000). In addition, sperm undergoes 

osmotic stress when the period of thawing is insufficient to efflux the excess of 

cryoprotectants from inside the cells (Penitente-Filho et al. (2014). Sperm becomes turgid 

and smooth due to the abrupt dilution of the medium caused by thawing of extra-cellular ice 

(Andrabi, 2007). 

 

The entire processing of cryopreservation including dilution, cooling, packaging 

method, and freezing semen in straws or pellets determines the optimal rate of 

thaw. Sperm cells frozen by pellets method are thawed using the dry test tube method at 

37oC while the straws may be thawed using different techniques (Evans and Maxwell, 1987). 

A straw is normally thawed by submerging it in a 37oC water bath for about 12–30 s (Deka 

and Rao, 1987). This technique yielded higher sperm motility compared to a slow thawing 

technique, where the straw containing semen is placed in a 4-5oC water bath for 

approximately 2 min (Deka and Rao, 1987). In another study, when temperature of thawing 

was increased to 70oC and thawing rate for 7 s. The percentages of sperm progressive 

motility and plasma membrane integrity were increased significantly more than straws 

thawed at 37oC for 2 min or 40oC for 20 s, respectively (Gangwar et al., 2016). Penitente-

Filho et al. (2014) tested two different thawing rates in goats, 38oC for 60 seconds or 60oC 

for 7 s followed by 60 seconds at 38oC, and found no difference in terms of sperm motility 

and vigor. Nevertheless, thawing at 60oC for 7 seconds increased functional integrity of the 

sperm membrane. 

 

2.4. Oxidative stress (SO) 

The OS constitutes one of the most contributing factors to poor sperm quality during semen 

cryopreservation (Bucak et al., 2010). This phenomenon is related to higher rate of sperm 

damage caused by oxygen and ROS (Sikka et al., 1995). Excessive ROS production in 



 
 

17 
  

 

seminal plasma results in OS, which is detrimental to sperm cells (Desai et al., 2010). All 

cellular properties including lipids, proteins, nucleic acids, and sugars are potential targets of 

OS (Agarwal et al., 2003). 

 

2.4.1. Free radicals 

Free radicals are short-lived reactive chemical bonds which possess unpaired electrons that 

are highly unstable (Sanocka and Kurpisz, 2004; Kefer et al., 2009). To become stable, 

these electrons react immediately with other free radicals or non-radicals in their 

surroundings. Therefore, free radicals have the ability to capture the electrons from nucleic 

acids, lipids and proteins and eventually induce damages to sperm cells (Flora, 2009). They 

contribute to sperm cell destruction when they go through this unpaired electron onto 

surrounding cellular structures, thus leading to oxidation of cellular membrane lipids, amino 

acids in proteins or within nucleic acids (Ochsendorf, 1999). Membrane leakiness, DNA 

fragmentations and mitochondrial damage are the possible outcomes of free radical damage 

(Saraswat et al., 2016). Free radicals are unavoidable for intracellular signaling involved in 

the normal process of cell proliferation, differentiation, and migration (Ford, 2001; Agarwal et 

al., 2005). 

 

2.4.2. Reactive oxygen species (ROS) 

The term reactive oxygen species (ROS) is a diversity of reactive molecules derivative of 

oxygen (O2) or highly reactive oxidizing agents related to the group of free radicals (Bolisetty 

and Jaimes, 2013). ROS are a result of the excitation of O2 to form singlet (O2
1). They can 

also result from the transfer of one, two or three electrons to form a superoxide anion (O2
-), 

hydrogen peroxide (H2O2) or a hydroxyl radical (OH.) (Saraswat et al., 2014). The production 

of ROS is a normal physiological event but a discrepancy between ROS production and 

scavenging activity is harmful to the sperm and has been linked to male infertility (Sharma 

and Agarwal, 1996). ROS produced by spermatozoa play an indispensable role in normal 

physiological processes such as sperm capacitation, acrosome reaction and maintenance of 

fertilizing ability. The mitochondrial capsule in the sperm mid-piece is stabilized by ROS 

(Agarwal et al., 2008; Gonçalves et al., 2010). ROS are also involved in sperm motility 

initiation by enhancing the cAMP synthesis and protein phosphorylation during ejaculation 

(Baumber et al., 2000). 

 

Preserving normal physiological ROS concentration is, therefore, indispensable for efficient 

sperm functionality. The concentration of ROS present in the sperm cell and in the medium 

affects both sperm capacitation and acrosome reaction processes. Excessive concentration 

of ROS may have a negative effect in the male genital tract by altering antioxidant capability 
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to prevent sperm from undergoing capacitation (saraswat et al., 2014). The main targets for 

ROS have been reported to be in the plasma membrane of sperm and DNA integrity and 

physiological functions, therefore, altering the sperm quality. In the plasma membrane, ROS 

destroy mainly polyunsaturated fatty acids resulting in sperm damage leading to infertility 

(Saraswat et al., 2014). The DNA damage induced by ROS may also alter sperm function 

such as motility (Saraswat et al., 2012) by reducing the ATP needed for the sperm motion. 

 

Procedure of cryopreservation increases premature capacitation of spermatozoa because of 

the generation of excessive production of ROS. The over-production of ROS has been 

responsible for decreased sperm motility, viability and membrane integrity. The antioxidant 

activity, sperm fertility and functions are also altered by ROS over-production after thawing 

(Uysal and Bucak, 2007). Furthermore, antioxidant concentration and the period of storage 

have a considerable effect on sperm quality parameters such as motility, viability, acrosomal 

integrity and membrane integrity (Upreti et al., 1994). 

 

2.4.3. Physiology and mode of action of reactive oxygen species 

The ROS, at low concentrations, are involved in the maintenance of male fertility. As 

mentioned earlier, evidence suggests that ROS are involved in the activation of intracellular 

activities responsible for sperm maturation, capacitation and acrosomal reaction in order to 

ensure appropriate fertilization (Saleh and Agarwal, 2002). Excessive ROS may  negatively 

affect the sperm plasma membrane. The vulnerability of goat sperm to ROS is a result of the 

higher concentration of polyunsaturated fatty acids found in sperm‟s plasma membrane. The 

polyunsaturated fatty acids are responsible for the membranes fluidity and flexibility, which 

assist the sperm to take part in the membrane fusion processes related to the fertilization. 

However, the presence of double bonds in polyunsaturated fatty acids makes them 

susceptible to lipid peroxidation (LPO). LPO is a consequence of the detrimental effect 

induced by oxidation on the sperm membrane lipids (Sharma and Agarwal, 1996). The LPO 

reaction causes alterations on fluidity of the sperm membrane, damage of membrane 

integrity and non-remediable decrease of sperm motility (Storey, 1997). The functions of 

some enzymes (cytochrome oxidase, lactase dehydrogenase and glucose-phosphate 

dehydrogenase) are also altered by LPO (Ferrandi et al., 1992). In addition, mitochondria 

constitute a potential target for ROS by disrupting its functions. The synthesis of DNA, RNA 

and proteins is also inhibited. The DNA fragmentation has been reported to increase due to 

excessive ROS (De Lamirande and Gagnon, 1992). 

 

The mode of action of ROS consists of several physiological processes in sperm cells. The 

processes are organised in three different stages known as initiation, propagation and 
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termination (Nogushi and Niki, 1999). During the initiation stage, the ROS produce lipid 

radicals. The propagation stage is characterized by alterations of other unsaturated fatty 

acids by lipid radicals from the initiation stage. In this stage, lipid radicals may catch 

electrons from oxygen (O
2
) and transform them into hydrogen peroxide (H

2
O

2
). In turn, 

(H
2
O

2
) destroys other polyunsaturated fatty acids on the cell membrane. The final stage is 

known as termination stage of the LPO. During this stage,  free radicals are combined to 

form paired stable electrons. The termination stage can be prevented earlier by using 

antioxidant agents that can destroy free radicals (Silva, 2006; Saraswat et al., 2012). Due to 

limited reports in goats, information from other species was used in the present study. The 

production of superoxide radicals (O
2
˙⎯) has been reported during cryopreservation 

processes in Human, bovine and dog (Tselkas et al., 2000; Chatterjee and Gagnon, 2001; 

Michael et al., 2008). Furthermore, the low concentration in semen of antioxidants 

glutathione (GSH) or superoxide dimutase (SOD) was found to be related to freezing-

thawing processes in the bovine (Bilodeau et al., 2000) and human (Alvarez and Storey, 

1992). Therefore, it can be suggested that, sperm damage induced by ROS is more 

prevalent during cryopreservation processes. 

 

The ROS have double role in sperm functions which are both beneficial and detrimental. 

During normal concentrations, ROS play an indispensable role in various biochemical 

processes. At excessive concentrations, they cause damage to sperm cells. The excessive 

production of ROS may be responsible for their elevated concentration in the cells. This can 

be attributed to inadequate antioxidants of the cell to prevent over-production of the ROS or 

pathological conditions. In case where natural defences are unable to keep a normal 

physiological balance between ROS and antioxidants, there are numerous ways to combat 

over-production of ROS, such as dietary supplementation and addition of antioxidants to 

freezing extenders. Therefore, antioxidant supplementation may be required to boost the 

natural antioxidants and enhance the ability of the seminal plasma to fight OS (Agarwal et 

al., 2005). The following section discusses the different antioxidants, including non-

enzymatic and enzymatic, which can be used to fight OS. 

 

2.5. Supplementation of antioxidants in freezing extenders 

Sperm cells are protected by enzymatic and non-enzymes antioxidants present in the 

seminal plasma or in the sperm itself to reduce or prevent oxidative damage (Kim and 

Parthasarathy, 2008). However, it may happen that these natural antioxidants fail to maintain 

the physiological (normal) balance between ROS and antioxidants leading to OS. In such 

cases, strategies can be applied to suppress OS, such as supplementation of antioxidants 
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(both enzymatic and non-enzymatic). Recently, many researchers reported the beneficial 

effects of antioxidant addition to freezing extenders of goat semen (Bucak et al., 2010; 

Daramola and Adekunle, 2015), and other animal species  bull and ram (Mittal et al., 2014; 

Kirilova et al., 2015; Vichas et al., 2017). Vitamin C and E have been suggested as effective 

antioxidants. Daramolaand Adekunle (2015) reported higher spermatozoa motility, and 

acrosome and membrane integrities in extenders supplemented with vitamin C. While 

vitamin E is responsible for sperm structural integrity and kinematics after cryopreservation 

in rams (Silva et al., 2013). In contrast, in a study conducted by Vichas et al. (2017), the 

supplementation of vitamin E did not provide significant protection to sperm based on 

evaluated parameters. Câmara et al. (2011) reported that addition of three different 

antioxidants (glutathione, superoxide dismutase or catalase) in freezing extender failed to 

neither increase the total antioxidant potential of semen nor improve the quality of the ram 

sperm after cryopreservation. However, controversy surrounding the effect of antioxidant on 

sperm freezing still persists (Bucak et al., 2009; Vichas et al., 2017).  

 

2.5.1. Addition of non-enzymatic antioxidants in freezing extenders 

Various non-enzymatic antioxidants in seminal plasma prevent oxidative attack against 

sperm cells (Khan et al., 2012). However, in the event where there is excessive production 

of ROS above natural antioxidant defence, sperm DNA, proteins, and lipids will be subjected 

to damages. ROS can also have detrimental effect on mitochondrial ATP generation in 

sperm and induce LPO (Sikka, 2001). Thus, for better post-thaw sperm quality, 

supplementation of freezing extender with natural antioxidants has been shown to improve 

the quality of sperm against ROS damage (Memon et al., 2011). 

 

Vitamin C, E and reduced glutathione (GSH) are the most important natural and non-

enzymatic antioxidants present in mammalian semen. These antioxidants control the 

concentration of ROS, protect the sperm from LPO damage and maintain higher plasma 

membrane  and mitochondria integrity as well as increase sperm kinematics parameters 

post-thaw (Akhter et al., 2010; Silva et al., 2013). Excessive ROS generation and reduced 

antioxidant levels are a consequence of sperm cryopreservation. Therefore, semen freezing 

extenders require supplementation with natural antioxidants to enhance post-thaw semen 

quality (Maia et al., 2010). A study conducted by Azawi and Hussein (2013) and Aminipour 

et al. (2013) in rams  investigated the efficiency of both vitamin C and E on sperm quality 

and showed that there were significant beneficial effects of vitamins C and E addition to 

semen freezing extenders on sperm quality. 
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2.5.1.1. Supplementation of freezing extender with vitamin C (ascorbic acid) 

Vitamin C is among the most important antioxidants in seminal fluid released from the 

seminal vesicles. It has been reported to be a major antioxidant present in seminal plasma of 

fertile males (Lewis et al., 1995). Vitamin C represents the major water-soluble antioxidant in 

blood plasma and seminal plasma (Carr and Frei, 2002). The water solubility and low toxicity 

of vitamin C are claimed to be responsible for the protective effect from ROS damage on 

sperm (Asadpour et al., 2011; Daramola and Adekunle, 2015). It has the capability of 

alleviating OS (Min et al., 2016) and neutralizing hydroxyl, superoxide, and hydrogen 

peroxide radicals produced in a hydrophibic environment (Azawi and Hussein, 2013).  

 

The addition of vitamin C in freezing extender can have beneficial effect on sperm capability 

by preventing cell alterations through its unlimited radical-scavenging mechanism during 

sperm cryopreservation process. The addition of vitamin C to freezing extender of ram 

semen decreased sperm abnormalities and acrosomal defects values compared to the 

control group (Azawi and Hussein, 2013). Daramolaand Adekunle, (2015) indicated that the 

percentages of sperm quality parameters evaluated were increased when extenders were 

supplemented with vitamin C during freezing of buck semen. The increase in sperm motility, 

acrosome and membrane integrity was recorded in extenders supplemented with 8 mM of 

vitamin C. Memon et al. (2013) demonstrated that cooled and post-thaw sperm quality of 

Boer goat were improved when a Tris-based extender added with vitamin C was used. The 

antioxidant capability of vitamin C has been suggested extensively in other species such as 

bovine where it has been demonstrated that addition of vitamin C  in semen extender 

improved sperm motility, as well as acrosome and membrane integrity (Hu et al., 2010; Reza 

et al., 2011; Asadpour et al., 2011; Mittal et al., 2014).  Min et al. (2016) demonstrated that 

supplementation of vitamin C can suppress the negative effect of DEX-induced OS on sperm 

viability and motility of breeder roosters. Azawi and Hussein (2013) showed that vitamin C 

was more efficient in protecting ram sperm viability and acrosomal integrity.  

 

2.5.1.2. Supplementation of freeing extenders with vitamin E (α-Tocopherol)  

Vitamin E is believed to be the primary components of the antioxidant system of the 

spermatozoa, and is one of the major membrane protectors against ROS and LPO (Surai et 

al., 1998; Akiyama, 1999). It is a lipophilic antioxidant located in the sperm cell membrane 

known to act as chain-breaker. It acts by breaking and neutralizing the covalent bonds that 

ROS have established between fatty acid chains (Jeong et al., 2009). Vitamin E can also 

halt LPO reactions by removing peroxyl, alkoxyl, and other lipid-related radicals, therefore 

protecting the membrane against detrimental effect caused by ROS (Silva, 2006). 
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The efficiency of vitamin E was evidenced after dietary supplementation in cattle and rams, 

where the semen production and sperm concentration were increased considerably (Liu et 

al., 2005; Bansal and Bilaspur, 2009). The mammalian cells do not synthesize vitamin E. 

Once membrane tocopherol is reduced during period of OS, cell lipids are subjected to 

peroxidation, which can result in detrimental effect to spermatozoa (Zhang et al., 2001). The 

ascorbate and thiols are external agents responsible for the recycling as well as enabling 

vitamin E to maintain a stable and low concentration of peroxyl radical in the plasma 

membrane (Maia et al., 2009; Maia et al., 2010). 

 

AminiPour et al. (2013) reported that addition of vitamin E in semen extender improved 

sperm progressive motility and viability before and after cryopreservation. In another studies, 

it was demonstrated that the addition of vitamin E in freezing medium increased rams sperm 

survival, longevity, and decreased free radicals concentrations after cooled storage (Azawi 

and Hussein, 2013; Zeitoun and Al-Damegh, 2014). The experiments reported in other 

species, revealed the efficiency of vitamin E in protecting the sperm plasma membrane 

integrity after deep freezing of bull sperm (O‟Flaherty et al., 1997). Cerolini et al. (2000) 

reported similar results with boar semen stored at 19 °C in liquid form. A study conducted in 

mice revealed that male mice injected with vitamin E have a lower quantity of sperm with 

defective heads than non-injected mice (Raza et al., 2011). 

 

Addition of vitamin E to the semen extenders may prevent or reduce the production of free 

radicals that can damage the plasma membrane, therefore improving hypo osmotic swelling 

scores and sperm motility post-thaw. It has also been reported to reduce LPO, thus 

efficiently protecting the sperm against OS. The anti-oxidative property of vitamin E prevents 

the expression of apoptosis genes by lowering DNA fragmentations (Jeong et al., 2009). 

 

2.5.1.3. Supplementation of freezing extenders with reduced glutathione (GSH) 

Reduced glutathione (GSH) is a tripeptide that occurs naturally in semen and plays an 

important role in the intra-cellular defence mechanism against OS during sperm 

cryopreservation. It maintains the active forms of externally supplemented vitamin C and E 

(Gadea et al., 2004). The GSH is considered as catalyser of the reduction of H2O2 into water 

and hydro peroxides. It also involved in the maintenance of a normal level of free radicals 

(Bilodeau et al., 2001). However, dilution of seminal plasma with semen freezing extender is 

responsible for the decrease in GSH concentration, probably because of OS and cell death 

(Bilodeau et al., 2000; Gadea et al., 2004). 
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Glutathione supplementation in semen extender is reported to prevent detrimental effects 

caused by free radicals (Bilodeau et al., 2001). The supplementation of glutathione to semen 

extender protected sperm motility by inhibition of lipid peroxidation caused by ROS in 

cryopreserved buck semen (Sinha et al., 1996). Moreover, Saranji et al. (2017) reported that 

addition of glutathione in tris extender helped to preserve diluted buck semen up to 72 h at 

4°C in refrigerator. They also reported higher percentages of sperm progressive motility, 

liveability, and acrosome integrity. The decrease in lipid peroxidation followed by increase in 

antioxidant enzymes has also been reported. 

 

2.5.1.4. Selenium as an antioxidant 

Selenium (Se) is one of the most indispensable trace nutrient found in human andanimal 

cells. The most important role of Se in biological cell is prevention and/or removal of free 

radicals through glutathione peroxidise. Glutathione peroxide is the main enzyme activated 

by Se to combat OS. Selenium also acts as a cofactor of glutathione synthetase. Zhang et 

al. (2006) added Se in form of sodium selenite in a cell culture medium to protect cells 

against detrimental effects caused by oxidation. Se has been reported to improve semen 

quality by increasing SOD, GSH-Px level, total antioxidant capacity and decreased hydroxyl 

free radical in seminal plasma in goat (Shi et al., 2010; Li-guang et al., 2010). 

 

The reproductive performance of male goats can be improved through dietary Se 

supplementation. Dietary supplementation of Se has been found to improve semen quality 

by increasing the antioxidative defence of seminal plasma in buck (Shi et al., 2010), Boer 

goats (Li-guang et al., 2010) and ram (Kendall et al., 2000). Kumar et al. (2011) have also 

reported improved post-thaw sperm quality of Barbari bucks supplemented with Se. In 

another study, EIsheikh et al. (2014) reported a significant increase of Se and glutathione 

concentrations in serum of Aaradi goats after dietary Se supplementation. 

 

In sheep, inadequate supplementation of Se was linked to reproductive complications and 

reduced sperm quality (Baiomy et al., 2009). A deficiency of Se induces changes in the 

sperm‟s mid-piece leading to the breakage of the head and tail of sperm and impaired sperm 

motility (Maiorino et al., 2006). Furthermore, male hypogonadism, reduced production and 

semen quality have been reported to be prevalent in males kept on a low Se diet (Kleene, 

1993). 

 

2.5.2. Addition of enzymatic antioxidants in freezing extenders 

Mammalian spermatozoa have evolved defence mechanisms through an enzymatic 

antioxidant system to protect themselves against OS. The best known enzymatic antioxidant 
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system is super oxide dismutases (SOD), catalases (CAT) and glutathione reductase. The 

concentration of these antioxidative enzymes differs among species in both seminal plasma 

and spermatozoa (Asadpou, 2012). Under normal conditions, there is a balance in 

spermatozoa between ROS production and antioxidant enzyme system for sperm stability 

and function (Cassani et al., 2005; Kotheri et al., 2010; Guthrie and Welch, 2012). 

 

2.5.2.1. Super oxide dismutase (SOD) 

Superoxide dismutase (SOD) is one of the enzymes present in seminal plasma and naturally 

combats ROS (Weir and Robaire, 2007). The SOD converts O2- to H2O2, diminishing ROS 

activity and plays an indispensable role in decreasing LPO (Shiva et al., 2011). Its 

supplementation to freezing medium prevented ROS generation, leading to the increase of 

ram sperm survival and in vitro fertility of sperm stored in liquid form (Maxwell and Stojanov, 

1996). Shaflei et al. (2015) reported that the addition of SOD to freezing extender, such as 

Andromed, improved the viability and motility of goat semen samples after thawing. In 

another study conducted in boar, Roca et al. (2003) indicated that supplementation of SOD 

in sperm freezing extender reduced ROS production after thawing. They further reported an 

increase in sperm motility, viability and in vitro fertilizing capability of thawed sperm.     

 

2.5.2.2. Catalase (CAT) 

Among enzymatic antioxidants contained in both sperm cytoplasm and seminal plasma, 

catalase (CAT) plays a major role protecting sperm against ROS damage. Catalase also 

plays a vital role in detoxification of both intracellular and extracellular hydrogen peroxide 

(H2O2) by breaking it down into water (H2O) and oxygen (O2) (Foote, 1962). Besides 

maintaining low concentration of LPO and enhancing the quality of post-thaw sperm; It is a 

major antioxidant of ROS (Shiva et al., 2011). The existence of CAT in sperm cells has been 

confirmed in ram and bull and it plays an indispensable role in the ageing process and 

management of OS in cells (Saraswat et al., 2016). Shaflei et al. (2015) indicated that goat 

semen cryopreservation extenders supplemented with CAT increased sperm motility and 

viability post-thaw by destroying excessive ROS.  

 

Prior to sperm cryopreservation semen must be diluted with suitable freezing extender to 

provide nutrient and other cryogenic components. However, this process is responsible for 

the reduction of antioxidants content in seminal plasma exposing sperm to OS damage 

(Martinez-Páramo et al., 2012). It has been evidenced that controlled levels of ROS is 

beneficial to maintain normal physiological functions of sperm including acrosome reactions, 

capacitation and hyper-activation for acceptable fertilization. Therefore, ROS must be kept at 

low concentrations to avoid underlying detrimental effects to sperm. 
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2.6. Research problem statement 

The preservation of spermatozoa through cryopreservation process facilitates the 

dissemination of improved genetics across breeds and different geographical regions. 

However, there are some challenges during goat semen cryopreservation including its 

intolerance when egg yolk is used in the freezing extender. The components of egg yolk are 

shown to be the primary cause of damage in sperm. The egg yolk (lysolecithin) interacts with 

the seminal plasma lipase, a content of the bulbourethral secretion, and this interaction is 

known to be harmful for the sperm (Purdy, 2006). In addition, whole egg-yolk (WEY) has 

been reported to interfere with microscopic observations or biochemical assays as it 

contains granular material of the same size and shape as spermatozoa; it also reduces 

respiration and motility of sperm cells (Wall and Foote, 1999; Moussa et al., 2002). By 

centrifugation, egg yolk can be separated into its two main fractions (plasma and granules) 

(Pillet et al., 2011). Therefore, it is essential to remove large particles in WEY by 

centrifugation and allowing only plasma (clarified) to be used to obtain better sperm quality 

post-thaw. This clarified egg yolk (CEY) extender has been successfully used for stallion and 

bull semen cryopreservation (Vidament et al., 2000; Moussa et al., 2002). Therefore, it can 

be assumed that CEY extender in combination with antioxidants may better protect Saanen 

buck sperm against detrimental effects associated with egg-yolk components. In addition, 

the stages of semen freezing such as cooling and equilibration play important role for the 

survival of sperm after cryopreservation. However, cooling is a highly stressful process 

which leads to irreparable damages to the spermatozoa membrane (Garner et al., 2001). 

These detrimental effects can be reduced by optimizing cooling rates before freezing. The 

optimal cooling rates have been established in several species such as bull (Woelders et al., 

1997), boar (Fiser and Fairfull, 1990), mouse (Koshimoto and Mazur, 2002) and human 

(Henry et al., 1993). However, goat sperm, temperatures over which goat semen must be 

cooled are quite diverse (Memon et al., 2013; Ahmad et al., 2015), making it difficult to 

establish optimal cooling rates, therefore necessitating further investigation to find an 

appropriate cooling rate for goat semen cryopreservation. On the other hand, equilibration 

affects the sperm survival after freezing-thawing. While progress has been made in various 

species to establish suitable equilibration times only few studies have investigated the effect 

of equilibration time for goat semen (Sundararaman and Edwin, 2008; Ahmad et al., 2015; 

Ranjan et al., 2015). They reported the equilibration time of several hours varying from 2 to 8 

h. Therefore, the minimum period of equilibration with acceptable fertility after freezing 

remains controversial (Dhami et al., 1992; Dhami and Sahni, 1993). Antioxidants 

supplementation in combination with equilibration time has been reported to increase post-

thaw sperm motility and kinematic parameters (Câmara et al., 2011; 2016). Therefore, the 

dietary supplementation and addition of antioxidants in freezing extender in combination with 
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equilibration period to reduce damage of cold shock and free radicals still needs to be 

investigated in the goat semen cryopreservation process. Although semen contains 

antioxidants that control LPO and prevent excessive peroxide formation, these antioxidants 

are decreased by dilution and during storage (Kumar et al., 2011). The dietary 

supplementation of antioxidants and its addition to extenders has been demonstrated to be 

useful for the improvement of post-thaw sperm quality (Bucak et al. 2010; Kalthur et al., 

2011; Saraswat et al., 2014; Mittal et al., 2014; Lukusa and Lehleonya, 2017). Among them, 

Selenium (Se) has a biological function, which is present in various selenoproteins to protect 

membranes from oxidative damage due to free radicals (Burk and Hill, 2000). Vitamin C is a 

ROS scavenger and sperm membrane protector (Asadpour et al., 2011; Daramola and 

Adekunle, 2015) and Vitamin E provides greater structural integrity and sperm kinematics 

after cryopreservation (Silva et al. 2013). Despite this, the use of antioxidants both in diet 

and freezing extenders is not common with respect to its use in goat semen 

cryopreservation.  

 

2.7.   Hypothesis of the experiment 

In the present study, we tested the following hypothesis: 

 Oral supplementation of selenium could increase testes measures, semen attributes 

and hormone concentrations  

 Se supplementation could reduce sperm damage in cooled and frozen-thawed 

Saannen buck semen 

 The use of CEY extender will preserve better the quality of buck sperm before and 

after cryopreservation.  

 Slow cooling rate for cooled and frozen semen from Se supplemented bucks will 

preserve better then sperm quality.   

 The addition of combination of vitamin (C+E) to freezing extender will provide better 

motility and kinematics parameters of cooled and frozen-thawed buck sperm than 

vitamin C and E alone.  

 Equilibration times for frozen semen after dietary Se supplementation or addition to 

extender of the combination of vitamin (C+E) will improve post-thaw sperm quality. 

 

2.8. Aims and objectives of the project 

The overall aims of the current project were to investigate the effects of dietary 

supplementation of sodium selenite on reproductive performance of Saanen bucks and 

addition of vitamin C and E in freezing extender during cooling or freezing-thawing of buck 

semen. 
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In order to achieve these aims, the following objectives were set: 

 To determine the effect of orally supplemented sodium selenite on testes measures, 

semen attributes and hormone concentrations of Saanen bucks.  

 To evaluate the effects of cooling rates and dietary Se supplementation on post-thaw 

sperm characteristics of Saanen bucks.  

 To establish the most appropriate extender to cryopreserve buck sperm through 

comparison between clarified egg yolk, whole egg yolk and tris without egg yolk 

extenders. 

 To evaluate the effect of different types of extenders and cooling rates on cooled and 

frozen-thawed sperm of Se supplemented Saanen bucks. 

 To determine the effects of vitamin C, E, their combination (C+E) and selenium as 

well as different equilibration times on post-thaw sperm motility and kinematic 

parameters of Saanen buck semen. 
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CHAPTER 3 

Effects of dietary selenium supplementation on reproductive performance and semen 

characteristics of Saanen buck  

 

Abstract 

In the resent years, interest in goat sperm cryopreservation as a potential source of 

indispensable genes has escalated to improve reproductive performance and productivity in 

livestock. Based on this, the present study was conducted to determine the effect of orally 

supplemented sodium selenite on testes measures, semen attributes and hormone 

concentrations of Saanen bucks. Twenty mature healthy Saanen bucks were divided into 

two equal groups (10 bucks). The treatment bucks received sodium selenite at 10-day 

intervals for ninety days. Testicular measurements were recorded at 10-day intervals and 

fresh semen analysis was performed weekly. Testes and scrotal parameters of bucks were 

significantly (p<0.001) different between the groups. The testes length and left testis 

thickness were not affected by treatment. The semen pH was significantly (p<0.001) 

different between the groups. Moreover, the ejaculate volume, sperm mass activity, 

progressive motility and normal morphology were increased (p<0.001) in the selenium (Se) 

supplemented group compared to the control. The plasma glutathione peroxidase (GSH-Px), 

luteinizing hormone (LH), testosterone and selenium concentrations were significantly 

(p<0.001) higher in the Se supplemented group. No trace of plasma Se was found in the 

control group, therefore its supplementation proved to be beneficial. It can be concluded that 

supplementation with sodium selenite improved testicular parameters and semen quality of 

Saanen bucks. In addition, Se supplementation increases the concentration of GSH-Px, LH 

and testosterone in Saanen bucks. 

 

Keywords: Sodium selenite, Testes measures, Semen attributes, Testosterone, LH 

Glutathione peroxidase 

 

3.1. Introduction 

Selenium (Se) is currently acknowledged to be an essential dietary trace element required 

for various body functions such as growth, reproduction, immune system and protection of 

tissue integrity. It is an essential component which is found in all cells particularly in the 

kidneys, liver, and pancreas (Pilarczyk et al., 2013). A biological function associated with Se, 

which is present in various selenoproteins, is to protect membranes from oxidative damage 

due to free radicals. The most important antioxidants related to Se are glutathione 

peroxidases, iodothyronine deiodinases, selenoproteins P, W, R. T, N and thioredoxine 
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reductase (Birringer et al., 2002). The principal constituent of plasma Se is selenoprotein-P, 

which contributes to Se transportation from blood to testis (Kehr et al., 2009).  

Selenoprotein-P also has a redox function and may protect cell membranes (Burk and Hill, 

2000). Both testis and epididymis require dietary Se intake in order to synthesize a variety of 

known selenoproteins, whose precise role in spermiogenesis and post testicular sperm 

maturation are not clearly defined (Ali et al., 2009). Therefore, it is clear that Se deficiency in 

the testis can compromise its antioxidant role (Kryukov et al., 2003). 

 

Any Se deficiency in the soil leads to low Se concentrations in plants growing in that soil. In 

many parts of the world plants do not provide adequate Se to meet dietary requirements 

(Hogan et al., 1993). In South Africa, Cloete et al. (1994) and van Ryssen et al. (1992) 

reported subclinical Se deficiencies and production responses to supplementation in South 

African Southern Cape coastal area and the Kwa-Zulu Natal midlands, respectively. 

Selenium is not distributed evenly across the planet; rather concentrations differ markedly 

depending on local conditions. Climate also exerts a very significant effect on the incidence 

of Se deficiency, mainly during winter in South Africa Se supplementation might be 

necessary, especially for animals depending on lucerne diet or pastures (Harthoom and 

Turkstra, 1976). This is because the lucerne may be produced from Se-deficient 

environments, since not all Se-deficient areas in South Africa have been mapped. 

 

Supplementing ruminants with Se can be done in different ways as the use of trace element-

amended fertiliser, intraruminal Se pellets (Langlands et al., 1991) or glass boluses. 

Although they serve as a readily available source of Se, but these products are not available 

in South Africa. Oral supplementation of Se is widely used in other countries due to its fast 

response and has been demonstrated to be important for normal semen quality and 

reproductive function in different studies of sheep (El-Mokadem et al., 2012; Pilarczyk et al., 

2013). In South Africa, under an intensive production system, animals are given a balanced 

diet including Se and therefore, oral Se supplementation is not necessary. However, sheep, 

goats and beef cattle are produced under extensive production system in South Africa, in a 

way making oral Se supplementation a more applicable method. This method has been 

proposed as a preferred way to improve male reproductive performance by reducing the 

extent of oxidative damage (Barragry, 1994). Several studies on the effect of Se 

supplementation on semen quality and reproductive performance have been conducted in 

cattle (Ceballos et al., 2009) and rams (Mahmoud et al., 2013) and little has been done in 

goats. No studies have been done so far to ascertain the effects of oral Se supplementation 

on the reproductive performance of Saanen goats. 

 



 
 

30 
  

 

The use of artificial insemination (AI) with cryopreserved semen in goats is not a common 

practise as compared to cattle due to poor freezability of buck spermatozoa (Kumaresan et 

al., 2005). The poor freezability is mainly attributed to elevated amount of phospholipid and 

unsaturated fatty acid production in buck sperm, which makes it more vulnerable OS (Aitken 

et al., 1993). Furthermore, semen collection also plays a vital role in post-thaw sperm 

quality. Buck semen is commonly collected by an artificial vagina (AV) and electro-

ejaculation (EE). 

 

The collection of semen by AV is more preferable as it resembles natural mating, it is 

however more time consuming, as it requires training of animals for more than four weeks 

prior to semen collection (Matthews et al., 2003). The EE on the other hand, can be an 

alternative method in cases where males are not or impossible to train (Santiago-Moreno et 

al., 2009). However, differences in seminal plasma composition between semen collected 

with AV and EE have been reported in goats (Greyling and Gobbelaar, 1983; Marco-

Jiménez et al., 2008). These differences may have substantial effect on the response of 

sperm to different steps of cryopreservation. 

 

Cooling rate prior to sperm cryopreservation is an important step to minimise damages 

during the freezing process (Kumar et al., 2003). The cooling period decreases the effect of 

temperature changes and allows equilibration of the spermatozoa with the cryoprotectants 

before freezing (Foote et al., 2002). However, cooling is a highly stressful process, which 

leads to irreparable damages to the spermatozoa membrane that result in either cell death 

or premature capacitation-like changes (Garner et al., 2001). 

 

These detrimental effects can be avoided by using an appropriate cooling rate prior to 

semen freezing (White, 1993). According to the limited number of studies on comparison of 

cooling rates in which the cooled and post-thawing sperm quality and fertility were the 

criteria for evaluation in bucks (Memon et al., 2013; Ahmad et al., 2015), no clear preference 

can be established among the cooling rates examined.  Furthermore, the response of sperm 

to cooling rates of bucks semen obtained by AV or EE has not been explored yet in detail. 

The rates of cooling affecting freezability of goat semen in both collection methods are little 

understood especially in Se supplemented bucks. The specific aim of the present 

investigation is to study the preservability of sperm in relation to cooling rates in semen 

obtained by both AV and EE methods from Se supplemented bucks. This would help to 

establish appropriate freezing protocol with acceptable sperm quality post-thaw. 

 

The processes of semen cryopreservation are responsible for certain negative effects in 
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terms of sperm structure, biochemical and functional damage. These detrimental effects 

induce reduction of sperm motility, membrane integrity and fertilizing ability (Salamon and 

Maxwell, 2000). This can occur during dilution in an extender, as well as at any step, during 

or after the freezing process. Therefore, there is an urgent need to improve the reproductive 

potential of breeding with cryopreserved semen. This may involve increasing the post-thaw 

quality of sperm through improvements in cryopreservation extenders.The composition of 

extender and suitable cryoprotectants are important factors for successful semen 

cryopreservation (Hammerstedt et al., 1990; Curry et al., 1994). 

 

Currently, egg yolk is an important constituent of extenders for cryopreservation of semen of 

domestic animals. Their use has been encouraged because it provides protection for 

spermatozoa (Polge and Rowson 1952). However, this protection is affected to some extent 

by some limitations. This led to increasing needs to replace whole egg yolk in semen 

extenders because it presents microbiological contamination risks. It also contains 

particulate debris and greater viscosity in yolk that decreases the sperm motility and 

interferes in microscopic examination (Watson and Martin, 1975; Vishwanath and Shannon, 

2000). For these reasons, substitutes with defined compositions to limit the risks cited above 

and maintain a high protection of the cells need to be investigated. Jiménez-Rabadán et al. 

(2012) reported less detrimental effect of egg yolk based extender when clarified egg yolk 

was used. This clarified extender has been successfully used in stallion and bull (Wall and 

Foote, 1999; Vidament et al., 2000), rams (Watson and Martin, 1975), boars (Jiang et al., 

2007), and dogs (Bencharif et al., 2008) semen cryopreservation. However, the nature of the 

protection is still a matter for debate since clarified egg yolk is a main component of the 

commonly used whole egg yolk and because is easy to extract. It has been used in the 

present study to acquire a better knowledge of the events occurring during sperm 

preservation. Based on this, there is a necessity to investigate the cryoprotective effects of 

clarified egg yolk extender on post-thaw sperm quality of Se supplemented Saanen bucks 

following two cooling rates and different semen collection methods. 

 

Therefore, the aim of the present study was: (1) to determine the effect of orally 

supplemented sodium selenite on testes measures, semen attributes and hormone 

concentrations of Saanen bucks.  (2) to evaluate the effects of cooling rates and dietary Se 

supplementation on post-thaw sperm characteristics of Saanen bucks. In this context, 

clarified egg-yolk, whole egg-yolk and tris without egg-yolk extenders were also compared to 

establish the most appropriate extender of sperm cryopreservation. 
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3.2. Materials and methods 

 

3.2.1. Study area 

The study was conducted at the University of Pretoria, Hatfield Experimental Farm in 

Pretoria. The mean annual average air temperatures range from 11.8oC in June to 23.0oC in 

January. The average annual rainfall is 674 mm (Mengistu et al., 2016). 

 

3.2.2. Animals and their management 

All animal care and procedures used were performed in accordance with the Animal Ethics 

Committee of the University of Pretoria (Project no: EC079-14). The present study was 

carried out over a period of three months during autumn (February to May 2015). Figure 3.1 

shows the recap of the experimental design for chapter 3. A total number of 20 Saanen 

bucks aged between 16 to 17 months and weighing 50.7±2.27 kg were used in this study. 

Bucks were grouped according to body weight and age, thereafter, allocated randomly into 

two groups comprising of 10 animals per group. Each group was further subdivided into 

semen collection methods; artificial vagina (AV) and electro-ejaculator (EE). The animals 

were raised only on locally available milled lucerne from weaning with no access to fresh 

growing forages or other feed for four months before the start of the experiment. Fresh water 

was provided ad libitum during the experimental period. Lucerne hay was milled and tested 

for Se concentration prior to supplementation and no Se traces were detected using the 

spectrophotometer (Perkin-Elmer 2380 Atomic Absorption Spectrophotometer; Varian, 

Australia). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. 1. Recap of the experimental design for chapter 1 
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3.2.3. Animal treatment 

The treatment animals received sodium selenite (ACECHEM, South Africa) at a dose rate of 

0.34 mg/kg body weight and were adjusted according to Mahmoud et al. (2013). It was 

administered orally at 10-day intervals for three months, except for the third treatment on day 

30 that was skipped due to fear of Se toxicity as advised by the veterinarian.  

 

3.2.4. Testicular and scrotal measurement  

Scrotal circumference (SC) and testicular parameters were measured at 10-day interval. 

Scrotal length (SL) was measured with a digital caliper (KTV150, MAJOR tech) as the 

distance between the tip of the scrotal sack and its neck. The scrotal circumference was 

measured with a flexible tape at the point of maximum circumference of the paired testes. 

Testicular length (TL) was measured by placing the fixed arm of the calliper at the proximal 

end and the sliding arm at the distal end of the testes avoiding as much as possible the 

caudal aspects of the epididymis (Schinkel et al., 1983). Testicular thickness (TTh) was 

measured by placing the fixed arm of the caliper at the anterior part and the sliding arm at 

the posterior part of each testis, at the point of maximum depth (Perumal, 2014).  Testicular 

width (TW) of each testis was measured by placing one arm of the caliper at the medial part 

and the other at the lateral part, at the point of maximum width of testis Mahmoud et al., 

2013).  

 

3.2.5. Semen collection 

The collection of ejaculates was performed using artificial vagina (AV) and electro–ejaculator 

(EE). Half of control and treated groups were either collected with the EE or AV. Semen 

collection started 20 days following Se supplementation. Ejaculates were collected once 

weekly for a period of 10 weeks (Nur et al., 2010). 

 

For the artificial vagina (AV) collection method bucks were trained for more than six weeks 

prior to semen collection using a doe on heat. The AV consisted of an outer casing of rubber 

or plastic 15-20 cm x 5-6 cm and an inner liner made of latex (Ramsem, South Africa). The 

liner was folded back and secured over the end of the casing. On the day of semen 

collection the AV was prepared by filling the space between the casing and liner with 

approximately 55oC warm water (Matthews et al., 2003). The lubricant (K-Y* Lubricating 

Jelly, Johnson & Johnson Medical, South Africa) was applied to the inner liner at the open 

end of the AV before collection. At the other end of the AV, a graduated glass tube 

(Ramsem, South Africa) was inserted for semen collection.  A doe on oestrus was used and 

the semen was collected as described by Moore (1985). After ejaculation, the graduated 
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glass tube was separated from the AV, and then semen volume was recorded and 

transferred into the conical tube (Minitube, South Africa). 

 

For the electro-ejaculator collection method, Semen was collected using an electro-

ejaculator (Ramsem, South Africa) with a standardized rectal probe (28 cm long and 2 cm 

diameter) for small ruminants. Briefly, the animal was physically restrained in a lateral 

position on the floor and the rectum was cleaned of faeces. Then the prepuce area was 

shaved using a clean pair of scissors, cleaned with distilled water and dried with a paper 

towel (Kimberly-Clark, South Africa). The collection tube was placed over the penis in order 

to collect semen and a lubricated (K-Y* Lubricating Jelly) rectal probe was inserted into the 

rectum. Thereafter, the electro-stimulation of a maximum of 5 voltages was applied for 4 to 5 

times at the 4–6 s intervals between stimuli until the semen was collected in a conical tube.  

When the electro-stimulation was stopped briefly, further massage was applied with the 

probe. If the animal did not give semen after 5 repetitions, it was then released without 

semen collection. 

 

3.2.6. Semen evaluations 

The collected semen sample was evaluated macroscopically (volume, pH and colour), as 

well as microscopically (sperm mass motility, progressive motility, sperm concentration, 

morphologically normal and abnormal sperm and viability). 

 

3.2.6.1. Macroscopic evaluation 

Collected semen was placed immediately in a warm water bath (33°C) and evaluated for 

normal semen attributes. The Ejaculate Volume collected by AV was determined after 

ejaculation, the graduated glass tube was separated from the AV, and then semen volume 

was recorded and transferred into the conical tube. The semen volume collected by EE was 

determined immediately after collection by reading the volume on graduated conical tubes. 

The ejaculate pH was determined using a litmus pH paper (colour-fixed indicator strips: 

(MACHEREY-NAGEL, Düran, Germany). The litmus paper was dipped into the semen and 

colour change was evaluated after 5 minutes by comparing colour between litmus pH paper 

and colour indicators suggested. The colour of semen was determined by visual observation 

for indication of the sperm density and the possibility of semen contamination (Greyling and 

Grobbelaar, 1982).  The scoring system for sperm density was 1 (watery-cloudy) – 5 

(creamy) according to Shamsuddin et al. (2000).  
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3.2.6.2. Microscopic evaluation 

Mass sperm motility and progressive motility were determined subjectively by evaluating the 

degree of movement observed using a drop of semen under a microscope.  The ejaculate 

mass motility was evaluated by placing a drop (10 µl) of semen on a pre-warmed slide 

without cover slip and examined under a phase contrast microscope (OLYMPUS, CX21FS1, 

Tokyo, Japan) at 40x magnification. The mass motility score of 1 (no motion) - 5 (dense, 

very rapidly moving waves) was used (Avdi et al., 2004). For sperm progressive motility, a 

drop (5 µl) of fresh semen diluted at 1: 50 with saline solution was placed on a pre-warmed 

slide and covered with a coverslip. The motility was estimated according to Biswas et al. 

(2002) using a phase contrast microscope at 200x magnification. At least 200 spermatozoa 

selected randomly from a minimum of four microscopic fields were examined. The sperm 

motility was scored as 0 (no sperm movement) – 5 (very rapid progression in which cells are 

difficult to follow visually (100%) (Martin et al., 2013). 

 

The sperm concentration was determined by means of a haemocytometer (Hausser, 

Horsham, PA USA) where the semen samples were diluted with water 1: 200 to kill the 

spermatozoa (Salisbury et al., 1978; Mitchell and Doak, 2004. A drop of 10 μl diluted semen 

was then loaded on each side of the counting chambers using a micropipette (Socorex ISBA 

SA, Switzerland) and covered with a coverslip. The content was then placed on the phase 

contrast microscope under a (x10) magnification and allowed to settle for 5 min. The 

concentration of spermatozoa per mL of semen was calculated as: Concentration/mL = 

(Dilution Factor) (Count in 5 squares)(0.05x106). 

 

The morphologically normal and viable spermatozoa were assessed using nigrosin/eosin-

stain smears (Evans and Maxwell, 1987; Mamuad et al., 2004). After mixing 5 µL of semen 

and 20 µL of nigrosin/eosin into a 1 mL eppendorf tube, 5 µL of the mixture was placed on a 

warmed microscope slide and smeared using another slide. The smeared slide was then 

allowed to dry for 5 min. A drop of immersion oil was placed on top of the slide followed by a 

coverslip and examined using a microscope to determine the percentages of live and dead 

sperm by counting a total of 100 sperm across the slide. The sperm that did not absorb stain 

appeared as white or clear and were considered as live while those that absorbed stain and 

appeared pinkish were considered dead (Malejane et al., 2014). 

 

The live spermatozoa were classified into normal and abnormal sperm. Sperm abnormalities 

were evaluated for the abnormalities that occurred at a specific location by observing the 

head, mid-piece and tail of the sperm cell (Bearden et al., 2004). The head sperm 

abnormalities included detached head, and defects in size and shape. The mid-piece sperm 
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abnormalities observed were distal mid-piece reflex and proximal droplet. The tail sperm 

abnormalities included distal droplet, dag-like defects, bent tail and coiled. The slide was 

examined using a phase contrast microscope at 1000x magnification under oil immersion 

objective and bright fields (Yildiz et al., 2000). 

 

3.2.7. Blood collection and analysis 

Blood samples from each buck were collected using BD vacutainer® needle 18G x 1.5” (1.2 x 

38 mm) (BD, Plymouth PL67BP, UK) and heparinised BD vacutainer® tubes (4.0 mL 13 x 75 

mm) (BD, Plymouth PL67BP, UK). The blood was collected from the jugular vein at 10 day 

intervals throughout the experimental period. Immediately after collection, the blood samples 

(4 mL) were centrifuged at 3000 rpm for 20 min. Plasma aliquots of about 2 mL were 

harvested and then stored at -20oC until subsequent analysis for Se, glutathione peroxidase 

(GSH-Px), luteinizing hormone (LH) and testosterone concentrations were done. 

 

Plasma samples were analysed to determine Se concentration using the continuous hydride 

generation atomic absorption method (AOAC, 2000) and samples were read using a Perkin-

Elmer 2380 Atomic Absorption Spectrophotometer (Varian, Australia) with the absorbency of 

196 nm. Bovine pancreas powder was used as standard reference material and included in 

each batch of analyses to verify the accuracy of the Se assays.  

 

Plasma GSH-Px, LH and testosterone analyses were performed using a spectrophotometer 

(MultiskanTMGo Microplate, Thermo scientific). Plasma GSH-Px concentration was 

determined using GSH-Px assay kit (ab102530) (Abcam, England).  100 µL standard from 

the kit was mixed with 50 µL blood plasma samples in the wells. After preparing reaction 

mix, 40 µL was added to the blood plasma samples. Positive controls and reagent control 

wells and contents were incubated for 15 min. Following incubation 10 µL were then 

analysed to determine the concentration of GSH-Px using a microplate reader at optical 

density (OD) of 340 nm. 

 

The LH concentration was determined using sheep LH ELISA kits (Elabscience 

Biotechnology Co. Ltd, E-ELS0783, Beijing). Briefly, 25 µL blood plasma samples together 

with kits standard were mixed into the wells containing antibody. After the addition of the 

enzyme conjugate the samples were incubated at room temperature for 30 min. After 

washing with the provided buffer, the substrate solution was added to the wells followed by 

10 min incubation period at room temperature. After that, the top solution was added. The 

concentration of the LH was determined using microplate reader set at an absorbency of 

450±10 nm. 
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The testosterone concentration was determined using ELISA kits (Demeditec Diagnostics 

GmbH, D-24145 Kiel, Germany). To accomplish this, 25 µL blood plasma sample and 

standards from the kits were added into the wells containing antibody of testosterone 

hormone. The enzyme conjugate was added to the wells followed by a 60 min incubation at 

room temperature. After washing with the provided buffer, a substrate solution was added to 

the wells and eventually incubated for 15 min at room temperature followed by the addition 

of the top solution. The concentration of the testosterone was then determined using a 

microplate reader set at an absorbency of 450±10 nm.  

 

3.2.8. Statistical analysis 

Statistical analysis was performed with the General Linear Model using statistical software 

SPSS (Version 23) (2015). The results were expressed as mean±SEM. Data of sperm 

characteristics and testicular measures were compared using one-way ANOVA for repeated 

measures. When ANOVA revealed a significant effect, values were compared using the 

Duncan‟s multiple range tests (Duncan, 1955). A probability of p<0.05 was considered to be 

statistically significant. Pearson‟s correlation coefficients were also calculated to verify the 

relationships among the different traits when the variances of the pairs of observations were 

independent. 

 

3.3. Results 

The testicular parameters of bucks are illustrated in Table 3.1. The overall average scrotal 

length, scrotal circumference, right and left testes were significantly (p<0.001) larger for the 

treated group, compared to the control. The right testes thickness was significantly (p<0.001) 

larger respectively for the treated group than the control.  

 

Table 3.1. Overall (mean ± SEM) testicular measurements and plasma selenium 
concentration of Saanen bucks supplemented with selenium over a period 90 days 
Items Selenium supplemented Control 

Scrotal length (cm) 12.8±0.08
a
 11.9±0.13

b
 

Scrotal circumference (cm) 29.7±0.29
a
 27.4±0.15

b
 

Right testes width (cm) 6.2±0.07
a
 5.6±0.04

b
 

Left  testes width (cm) 5.7±0.07
a
 5.3±0.04

b
 

Right testes length cm) 9.1±0.05
a
 8.9±0.10

a
 

Left testes length (cm) 8.7±0.05
a
 8.5±0.09

a
 

Right testes thickness (cm) 6.4±0.08
a
 5.8±0.05

b
 

Left testes thickness (cm) 5.8±0.09
a
 5.7±0.06

a
 

Plasma Se concentration (ng/ml) 0.2±0.00
a
 0.000

b
 

Means with different superscripts in a row differ significantly at P<0.001 
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Table 3.2 and 3.3 present the effect of Se supplementation, semen collection technique and 

their interaction on quality and quantity of goat semen. Semen quality and quantity were 

significantly affected (p<0.001) by Se supplementation and methods of semen collection. 

Regardless of the method of semen collection, Se supplementation had a significant 

(p<0.001) effect on semen characteristics. The volume of semen was significantly higher 

(p<0.001) in the supplemented group, compared to the control. The percentages of all sperm 

attributes were significantly higher (p<0.001) in the supplemented group compared to the 

control group. The ejaculate volume and sperm viability were significantly (p<0.001) higher 

in semen collected with AV than EE.  

 

The interaction between treatment and semen collection methods were significant (p<0.001).  

Treatment group resulted in higher (p<0.001) sperm concentration and acrosome integrity 

when AV was used but when EE was used the defference between TG and CG was not 

observed. Similarly, TG yielded higher (p<0.001) sperm motility when EE was used but 

when AV was used no difference was observed between TG and CG. 

 

Table 3.2. Overall (mean±SEM) semen characteristics collected with AV or EE of Saanen 
bucks supplemented with selenium over a period of 90 days 
Items Ejaculate 

volume  
(ml) 

Sperm 
progressive 
motility (%) 

Sperm  
viability  
(%) 

Normal 
morphology  
(%) 

Seleniumsupplementation 

TG  1.5±0.05
a
 88.5±1.41

a
 82.3±0.64

a
 83.6±0.38

a
 

CG  1.3±0.04
b
 80.7±1.30

b
 79.6±0.38

b
 80.8±0.32

b
 

Semen collection methods 

AV  1.5±0.04
a
 83.2±1.48

a
 83.8±0.52

a
 82.4±0.45

a
 

EE  1.3±0.04
b
 86.0±1.35

a
 78.8±0.05

b
 82.1±0.31

a
 

For each factor, Means with different superscripts in a column differ significantly at (p<0.001).TG: 
treatment group, CG: control group, AV: artificial vagina, EE: electro ejaculator.  
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Table 3.3. Interaction effect between Se treatment and collection methods in terms of overall 
semen characteristics (mean±SEM)  
Parameter Se treatment Semen collection method 

   Artificial vagaina Electro ejaculator 

Semen pH Se suppelmented 6.6±0.11
aA

 6.5±0.11
aA

 

 Control 6.4±0.07
aA

 5.8±0.11
bB

 

    

Mass motility (score 1-5) Se suppelmented 4.4±0.10
aA

 4.5±0.08
aA

 

 Control 4.2±0.00
aA

 4.1±0.10
bA

 

    

Sperm concentration(x109/ml) Se suppelmented 2.9±0.10
aA

 2.4±0.12
aB

 

 Control 2.4±0.11
bB

 2.7±0.13
aB

 

    

Acrosome integrity (%) Se suppelmented 77.3±0.70
aA

 75.9±1.15
aA

 

 Control 72.4±0.79
bA

 73.9±1.05
aA

 

For each factor, within a column means followed by small letter differ significantly at p<0.05. Within a 
row means followed by different capital letter differ significantly at p<0.001. 

 

Table 3.4 present the effect of Se supplementation on sperm morphological abnormalities of 

Saanen bucks. The mean percentage of abnormalities such as detached head (DH), defects 

in size and shape (DSS), distal mid-piece reflex (DMR), distal droplet (DD) and proximal 

droplets were significantly lower (p<0.001) in TG compared CG. Bent and Coiled 

abnormalities were significantly higher (p<0.001) in TG compared to CG group. Dag-like 

defects (DLD) did not differ significantly (p<0.001) among treatments. 

Table 3.4. Effect of selenium on sperm morphological abnormalities of Saanen bucks 
(mean±SEM) 
Parameters  Selenium 

supplemented 
Control  

Head defects Detached head (%) 3.4±0.08
b
 4.7±0.10

a
 

 Defects in size and 
shape (%) 

0.5±0.03
b
 0.8±0.04

a
 

Mid-piece defects  Distal mid-piece reflex 
(%) 

3.5±0.09
b
 3.7±0.10

a
 

 Proximal droplet (%) 3.2±0.12
b
 3.6±0.10

a
 

Tail defects Distal droplet (%) 1.2±0.06
b
 1.5±0.07

a
 

 Dag-like defects (%) 0.7±0.04
a
 0.7±0.05

a
 

 Bent tail (%) 1.4±0.06
a
 1.0±0.07

b
 

 Coiled tail (%) 1.6±0.08
a
 1.0±0.06

b
 

 Means with different superscripts in a row differ significantly at p<0.001  



 
 

40 
  

 

 

Table 3.5 presents the effect of semen collection methods and Se supplementation on 

sperm morphological abnormalities of Saanen bucks. The mean percentage of abnormalities 

such as detached head (DH), defects in size and shape (DSS), distal mid-piece reflex (DMR) 

and bent tail, were significantly (p<0.001) lower in Se supplemented samples when semen 

was collected using AV method. Proximal droplet (PD) defects were significantly (p<0.001) 

lower in the Se supplemented group when semen was collected by EE. Coiled tail defects 

were significantly (p<0.001) higher in the Se supplemented group when semen was 

collected by AV. No significant (p<0.001) difference was observed regarding distal droplets 

and dag-like defects in both AV and EE group. 

Table 3.5. Effects of semen collection methods and selenium supplementation on sperm 
morphological abnormalities of Saanen bucks (mean±SEM) 
 Artificial vagina Electro-ejaculator 

Sperm Defects (%) Selenium 
supplemented  

Control  Selenium 
supplemented 

Control 

Head defects 

Detached head (DH) 2.9±0.15
c
 3.8±0.13

b
 3.8±0.07

b
 5.5±0.11

a
 

Defects in size and shape 
(DSS) 

0.5±0.05
c
 0.7±0.05

b
 0.5±0.05

cb
 0.9±0.06

a
 

Mid-piece defects 

Distal mid-piece reflex (DMR) 2.8±0.13
c
 3.3±0.14

b
 3.6±0.11

b
 4.2±0.12

a
 

Proximal droplet (PD) 3.5±0.15
b
 4.4±0.15

b
 2.7±0.11

c
 1.23±0.07

b
 

Tail defects 

Distal droplet (DD) 1.2±0.11
b
 1.7±0.13

a
 1.2±0.06

b
 1.2±0.07

b
 

Dag-like defects (DLD) 0.5±0.06
b
 0.7±0.07

ba
 0.8±0.06

b
 0.6±0.05

a
 

Bent tail  1.1±0.08
c
 1.5±0.09

ba
 1.7±0.08

b
 0.9±0.08

c
 

Coiled tail  1.8±0.14
a
 1.2±0.11

b
 1.3±0.07

b
 0.9±0.08

c
 

Total abnormalities 15.5±0.87
c
 16.4±0.87

b
 15.6±0.61

c
 17.5±0.71

a
 

Means with different superscripts in a row differ significantly at p<0.001  

 

Table 3.6 shows the correlation analysis between scrotal and testicular measurements of 

Saanen bucks. The results showed that scrotal length and scrotal circumference were 

positively correlated (p<0.001) with right and left testicular length. Right testicular thickness 

was positively (p<0.001) correlated with left testicular thickness. Sperm mass motility was 

positively (p<0.001) correlated with sperm progressive motility. Sperm concentration had a 

positive (p<0.001) correlation with sperm viability and acrosome integrity. 
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Table 3.6. Pearson correlation coefficients (r) among scrotal measures, testicular measures, 
and semen characteristics in Saanen bucks over a period of 90 days of selenium 
supplementation 
Parameters R Parameters r 

Scrotal length and right testicular 
length 

0.590** Right testicular length and left testicular 
length 

0.901** 

Scrotal length and scrotal 
circumference 

0.590** Right testicular thickness  and left testicular 
thickness 

0.940** 

Scrotal length and right testicular 
width 

0.571** Mass motility and progressive motility 0.731** 

Scrotal length and left testicular 
width 

0.527** Sperm concentration and sperm viability 0.533** 

Scrotal circumference and 
selenium concentration 

0.598** Sperm concentration and sperm acrosome 
integrity 

0.523** 

**. Correlation coefficient is significant at p<0.001.  

 

The effect of Se supplementation on plasma concentration of glutathione peroxidases (GSH-

Px), luteinizing hormone (LH), testosterone and Se is presented in Fig.3. 2, 3.3, 3.4 and 3.5. 

The GSH-Px concentration in blood plasma increased significantly (p<0.001) in treatment 

group from day 30 (8.55±0.21 U/mL) to 80 (10.47±0.19 U/mL) of the experiment, whereas no 

changes in GSH-Px were recorded in the control group.  The increase in plasma LH was 

significant (p<0.001) and started rising from day 30 to 80 of Se supplementation in treatment 

compared to control group for day 30 and 80 respectively when the animals reached 19 and 

20 months of age. The concentration of blood plasma testosterone increased significantly 

(p<0.001) in the treated group from day 40 to 80, compared to the control group. There were 

no traces of Se picked up in the control group throughout the experimental period. The sharp 

increase in plasma Se occurred from day 10 (37.2±4.35 ng/mL) to 30 (128.6±6.86 ng/mL) of 

supplementation. The decrease in day 40 (61.4±2.04 ng/mL) occurred due to skipping of Se 

supplementation on day 30. Blood plasma GSH-Px, LH and testosterone concentrations 

increased with the age of animal and reached its peak at day 80 of the trial. 
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Fig. 3.2. Gluthathione peroxidase concentration of Saanen bucks supplemented with 

selenium for 90 days. TG: Selenium supplemented group. CG: control group. 

 

 

 

 

 

 

 

 

 

 

Fig. 3.3. Luteinizing hormone concentration of Saanen bucks supplemented with selenium 

over a period of 90 days. TG: Selenium supplemented group. CG: control group. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.4. Testosterone concentration of Saanen bucks supplemented with selenium over a 

period of 90 days. TG: Selenium supplemented group. CG: control group. 
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Fig. 3.5. Selenium concentration of Saanen bucks supplemented with selenium over a 

period of 90 days. TG: Selenium supplemented group. CG: control group. 

 

3.4. Discussion  

Plasma Se concentration at the start of the experiment revealed that all of the experimental 

bucks did not have any trace of Se in their blood plasma. This lack of Se confirms that the 

lucerne fed to the animals was Se deficient, as they had no access to pastures. This 

observation emphasizes the need for Se supplementation in regions such as Midlands and 

mountainous areas of the KwaZulu-Natal province and southern coastal region of the 

Western Cape where Se is deficient (van Ryssen, 2001).  Moreover, during winter times 

when animals are fed with Lucerne that may be produced from these areas and other areas 

that are not yet marked as Se deficient in South Africa. Three animals died from the control 

group just after the experiment ended, although they did not show subclinical symptoms 

related to Se deficiency. It might be necessary to supplement the animals with Se even if 

they do not show subclinical signs of deficiency. 

 

There was a rapid increase of Se concentration in the supplemented group at 30 days 

following the onset of treatment, with the highest level reaching 128.6 ng/ml. This might have 

been due to rapid absorption of orally supplemented Se as sodium selenite, especially when 

the animals are deficient in Se as was the case in this study. The sharp increase observed at 

day 20 to 30 followed by rapid decline of plasma Se concentration at day 40 after skipping 

day 30 supplementation, may also suggest that plasma Se in goat may be a sensitive 

indicator of Se intake. Therefore, when animals are deficient, excessive supplementation 

might lead to Se toxicity (Mehdi and Dufrasne, 2016). Selenium has a very narrow margin of 

safety (Ramirez-Bribiesca et al., 2005). Blood plasma Se concentration of greater than 3000 

ng/ml is considered to be in the toxic range (Hodges et al., 1986). The highest peak of Se 
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concentration recorded in blood plasma at the end of experiment was 170 ng/ml. This falls 

within the range of 80 ng/mL-400 ng/mL considered as adequate for blood plasma Se 

concentration in sheep (Puls, 1994; Grace, 1995). 

 

From the results it was observed that Se has more physiological effects on testicular 

measures, hormones and enzyme activities than semen parameters. The increase in 

glutathione peroxidase enzyme confirms that Se acts as cofactor of glutathione peroxidase 

enzyme. Selenium is also a component of some hormones and therefore is directly 

regulating the endocrine system and metabolism of animal body (Dumont et al., 2006).  

 

In the present study, the results observed in terms of semen characteristics, scrotal and 

testes measures are in agreement with the report of Marai et al. (2009). This can be 

explained by the fact that Se plays a major role in metabolism of thyroid hormones known to 

be involved in growth mechanisms (Chadio et al., 2006). 

 

The significant increase in scrotal circumference and scrotal length in Se the supplemented 

group confirms the involvement of Se as an antioxidant, on the stability of cell membranes, 

processes of cell growth and testicular morphology (Behne et al., 1996). The increases in 

testes measurements including the right and left testes width and right testes thickness, 

could be ascribed to the role of Se for development of germ and Sertoli cells, hence, 

increasing the size and volume of the developing testes (Griswold, 1998). 

 

The increased quality and quantity of seminal attributes such as ejaculate volume, sperm 

mass and progressive motility, sperm concentration, morphologically normal sperm, sperm 

viability, and acrosome integrity in Se supplemented group is in agreement with earlier 

published findings (Mahmoud et al., 2013; Kumar et al., 2014). 

 

The increase in ejaculate volume supports the findings of Kendall et al. (2000) and Shi et al. 

(2010) in bucks and rams, respectively.  The increased ejaculate volume may be linked to 

the involvement of Se in the development of primary and secondary sex glands, 

spermatogenesis, and prostate function. Therefore, the ejaculate volume increased due to 

the increase in secretion of seminal plasma from the secondary sex glands and 

spermatogenesis (Gabryszuk and Klewiec, 2002; Kolodziej and Jacyno, 2005). 

 

The increased sperm motility in the supplemented group was also noted in bucks and rams 

(Xu et al., 2003; Mahmoud et al., 2013). The increase in sperm motility was expected, as Se 

has been reported to facilitate the transport of glucose across cell membranes required to 
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support aerobic and anaerobic glycolysis (Furnsinn et al., 1996). Selenium may also act in 

the maintenance of mitochondrial structural integrity, which is reflected by increase in ATP of 

spermatozoon, thus causing an increase in sperm motility (Liang et al., 2007). It also shows 

that Se supplementation played a major role to provide a sufficient protection to the sperm 

membrane against lipid oxidation (Mahmoud et al., 2013). 

 

The increase in sperm concentration of supplemented group supports the report of Marin-

Guzman et al. (2000). This implies that Se supplementation can increase the Se 

concentration in testes and epididymides and therefore supports the process of sperm 

production and maturation as well as metabolism and conformation of spermatozoa (Marin-

Guzman et al., 1997). Se is also indispensable for the development of sperm and plays an 

important role in increasing the number of the germ cells (Liu et al., 1982). Furthermore, Se 

is also responsible for the proliferation of Sertoli cells in the developing testes, which in turn 

participate in the health and nourishment of the germ cells which in turn leads to an increase 

in the number of sperm cells, thereby increasingsperm concentration (Marin-Guzman et al., 

2000). 

 

The observed increase in sperm acrosome integrity and of percentages of morphologically 

normal sperm is in agreement with the reports of Ball et al. (2001) and Speight et al. (2012), 

respectively. The increase in sperm acrosome integrity may be due to Se protection of lipid 

component of the plasma membrane over the entire sperm acrosome (Kumar et al., 2014). 

Marai et al. (2009) reported a decline in acrosome damage when rams were supplemented 

with sodium selenite. 

 

The increase in morphologically normal sperm may be linked to the activity of selenoprotein 

P, which supplies Se for spermatogenesis (Kehr et al., 2009). It has been observed in the 

present study that the concentration of GSH-Px increased when bucks were supplemented 

with Se. An increase in GSH-Px concentration demonstrates that there was higher Se 

concentration in bucks since Se is an integral component of GSH-Px enzyme (Rotruck et al., 

1973). It can be suggested that an increase in GSH-Px concentration might have contributed 

to the increase of morphologically normal sperm. This enzyme has been reported to provide 

protection for the sperm membrane against oxidative damage, which causes sperm 

dysfunction, especially in terms of the loss of membrane fluidity or sperm membrane 

damage (Agwaral et al., 2003). 

 

The increase in viable sperm in Se supplemented bucks supports the findings of Shi et al. 

(2010) who reported similar results. It believed that Se acts as a powerful antioxidant which 
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protects the sperm from structural damage by altering free radicals from damaging sperm 

cells (Marin-Guzman et al., 2000). Chen et al. (2012) suggested that Se plays an 

indispensable role during the maturation process of spermiogenesis for the formation of the 

structural normal and viable sperm. 

 

The slightly basic semen pH in the Se supplemented group clearly demonstrates the 

involvement of Se in semen pH. Our results show for the first time that Se can maintain or 

balance semen pH depending on the semen collection method used. The EE method led to 

more acidic semen pH compared to semen pH of ejaculates obtained when using the AV 

semen collection method. Patel (1967) reported that the average semen pH range of buck 

semen is between 6.5 and 7.4. This supports the present study where semen pH was within 

the suggested range of goat semen when the animals were supplemented with Se and 

semen was collected using AV method. When semen was collected with an EE, semen was 

below the suggested range and more acidic in the control group. Ramukhithi (2011) also 

reported acidic pH (6.1±0.2), suggesting that the EE method leads to more acidic semen pH 

possibly by the modification of seminal plasma biochemical composition caused by 

excessive accessory glands secretion due to electrical stimulation (Ortiz-de-Montellano et 

al., 2007; Ramukhithi et al., 2011). 

 

The more acidic semen pH 6.1 obtained by EE may still indicate good quality semen since 

highly active sperm samples produce lactic acid as a metabolic waste product (Aghangari, 

1992). However, if the acidity is not neutralized during a certain time period, and the 

metabolism of sperm continue to produce waste products, lactic acid will accumulate and 

that may lead to sperm damage. This can be noticed through the decrease in spermatozoa 

motility and viability. The altered pH of the semen above or below the normal range will 

affect the sperm ability to move and finally cause sperm death (Wahjuningsih et al., 2012). 

 

Greater semen volume (1.5±0.04 mL) obtained when using the AV method compared to the 

EE method (1.3±0.04 mL) confirms the report of Martin et al. (2013) and Malejane et al. 

(2014). The authors obtained higher semen volume with the AV method in summer, autumn 

and winter. However, another study is contradictory to the present study, where higher 

semen volume was obtained when using the EE method (Marco-Jimenez et al., 2008). The 

main difference in these studies is the season of semen collection, therefore, suggesting 

season of semen collection to be a more determining factor than the method of semen 

collection. This suggestion is supported by the report that the AV method may give a higher 

semen volume than the EE method during the breeding season as is the case for the 

present study this is because the sexual glands are more active (Loubser and van Niekerk, 
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1983). 

 

Semen ejaculates obtained by AV was also reported to be of higher sperm concentration 

than those obtained by EE (Memon et al., 1986; Marco-Jiménez et al., 2005; Jiménez-

Rabadán et al., 2012; Jiménez-Rabadán et al., 2016). The lower semen concentration 

obtained by EE might be attributed to the intense stimulation of the accessory sex glands by 

electric pulses that led to the secretion of higher amount of seminal fluid (Marco-Jiménez et 

al., 2008). These results suggest that if semen is collected regularly for AI, AV is a suitable 

method as it produces higher sperm concentration as recommended by Matthews et al. 

(2003). The higher sperm concentration presents the advantage of getting more 

insemination doses in AI. 

 

The result obtained for sperm viability is in agreement with Greyling and Grobbelaar (1983) 

and Matthews et al. (2003) who reported the higher percentage of viable sperm when using 

the AV method compared to the EE method in bucks and rams respectively. In addition, 

Carter et al. (1990) indicated that the percentage of normal sperm is also improved by using 

the AV technique, supporting the present results. The results in the present study, suggest 

that samples collected by AV should be preferred as they result in a higher percentage of 

live sperm cells, indicating better semen quality. Matthews et al. (2003) is also of the same 

opinion. 

 

Our results presented for the first time to our knowledge, the interaction between Se 

supplementation and method of semen collection for ejaculate volume, sperm concentration, 

and sperm viability. Thus, values for these sperm parameters were increased when semen 

samples were collected using the AV method on the Se supplemented group compared to 

both AV and EE methods on the control group. In the present study, Se supplementation 

improved the semen quality in terms of high ejaculate volume, sperm concentration and 

viability when collected with the AV method compared to the EE method. For the results of 

this experiment, it can be said if semen is collected frequently for the purposes of AI, it 

seems that Se should be supplemented as it result in higher ejaculate volume (more 

production), higher concentration (more insemination doses) and higher percentage of live 

sperm cells (better semen quality). 

 

In the present study, it was observed that Se supplementation reduced head and mid-piece 

defects such as detached head (DH), defects in size and shape (DSS), distal mid-piece 

reflex (DMR), distal droplet (DD) and proximal droplet (PD) compared to the control group. 

These results are in agreement with Wanatabe and Endo (1990) who reported similar 
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findings in rats.  This was expected since these kinds of defects usually occur during 

spermatogenesis (Memon et al., 2012) and maturation phase in the epididymis (Salisbury et 

al., 1978). So, the reduced defects caused by Se supplementation may be attributed to the 

increased concentration of GSH-Px recorded in the present study. The higher concentration 

of GSH-Px is indispensable for the protection of germ cells and sperm membranes against 

OS during spermatogenesis (Shi et al., 2010). The reduced percentages of proximal and 

distal droplets indicate that Se was sufficient in the epididymis to enhance proper sperm 

maturation as evidence by semen from the control group that produced high proximal and 

distal droplet defects. Se supplementation did not have any effect on bent tail, coiled tail and 

dag-like defects (DLD). These defects are mainly caused by mishandling after ejaculation 

(Chenoweth and Lorton, 2014). 

 

In the present study, it was observed that when bucks were supplemented with Se and 

semen was obtained using the AV method, the sperm defects affecting sperm head and mid-

piece were reduced. These reduced sperm abnormalities may be attributed to Se 

supplementation and not the AV method because these abnormalities are usually related to 

disruptions during spermatogenesis and sperm maturation in the epididymis (Roca et al., 

1992) and not during ejaculation. The higher percentages of head and mid-piece 

abnormalities in Se treated bucks with the EE method may be due to the stress induced 

during semen collection (Ortiz-de-Montellano et al., 2007), therefore leading to lower GSH-

Px activity. The lower GSH-Px has been reported to be associated with damage of the 

chromatin structure of the sperm in the epididymis thereby leading to increased number of 

abnormal sperm morphology (Hansen, 2009). This observation suggests that Se should be 

supplemented when semen is collected using EE method. As evidenced in the present 

study, when bucks were supplemented with Se and semen was collected using the EE 

method buck produced better semen quality compared to control group. On the other hand, 

the AV method produced higher percentages of coiled tail defects. This was expected 

because the method has been reported to produce higher percentages of tail abnormalities 

compared to the EE method (Adenji et al., 2010). 

 

The positive correlation between paired testicular volume with scrotal lengths and scrotal 

circumferences has been reported in bulls (Mahmood et al., 2014; Perumal, 2014). As would 

be expected the different measurements of testicular size were positively correlated with 

each other supporting the study of Perumal (2014) who reported positive correlation 

between right and left testicular length, and right and left testicular thickness. Sperm mass 

motility was also positively correlated with sperm progressive motility. This was in agreement 

with another study in bulls where a significant positive correlation was reported between 
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sperm mass activity score and the percentage of progressively motile spermatozoa (Ray and 

Ghosh, 2013). 

 

Selenium has antioxidant activity and one of the mechanisms it uses is through GSH-Px 

activity. In this study, this enzyme activity was increased in Se supplemented bucks. The 

increase of plasma GSH-Px concentration in Se supplemented group has been reported 

previously in bucks (Kumar et al., 2014) and rams (Mahmoud et al., 2013). Confirming that, 

Se induces the biosynthesis of GSH-Px, a seleno-dependent enzyme, which regulates 

cellular peroxidases (Bengoumi et al., 1998). Furthermore, the GSH-Px concentration has 

been considered as an indicator of Se status (Ganther et al., 1976). 

 

The present study demonstrates that Se supplementation increased testosterone 

concentrations in blood plasma of Saanen bucks. Similar observations were reported in the 

blood serum of bucks (EI-Sisy et al., 2008). It may be possible that the metabolic pathway of 

testosterone biosynthesis requires protection against peroxidation since glutathione 

peroxidase (Se-dependant) has been found in the Leydig cells (Murakoshi et al., 1983). In 

this study glutathione peroxidase was increased by Se supplementation. Therefore, it is 

assumed that it protected the testes from ROS (EI-Sisy et al., 2008). 

 

The results also revealed increase in plasma concentrations of LH in the group 

supplemented with Se. Similar results have been reported by Hezarjaribi et al. (2016) in 

male broiler breeders. It has been reported that testicular function is controlled by 

gonadotropin releasing hormones (GnRH) secretion which is responsible for stimulating the 

gonadotrophes of the pituitary gland to secrete LH (Griswold, 1998). As Se is known to 

accumulate in the anterior pituitary (Thorlacius-Ussing and Jensen, 1988), it is possible that 

increase in plasma Se concentration may have activated GnRH receptors in the anterior 

pituitary gonadotrophes, leading to increased LH production in the Se supplemented group 

(Ottinger et al., 2004). 

 

3.5. Conclusion 

In conclusion, oral supplementation with sodium selenite for ninety days significantly 

improved testis measures and semen characteristics of Saanen bucks. Better quality semen 

can be obtained by supplementing goats with Se and collecting the semen using the artificial 

vagina method, whereas the electro-ejaculator method of semen collection did not improve 

semen quality, but did improve mass and progressive sperm motility. Selenium 

supplementation increased plasma concentration of luteinizing hormone (LH), and 

testosterone as well as glutathione peroxidase (GSH-Px) activity. 
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CHAPTER 4  

Effects of cooling rates and selenium supplementation on semen characteristics 

extended in different extenders 

 

Abstract 

Two experiments were conducted to evaluate the effect of three extenders, cooling rates and 

selenium (Se) supplementation on cooled and frozen-thawed Saanen buck sperm. Twenty 

bucks were divided into two groups: Se-treated (TG) and control (CG). Ejaculates were 

collected once weekly by artificial vagina (AV). In the first experiment, pooled semen was 

diluted with triladyl extender and split into two aliquots (slow and fast cooling). The second 

experiment was conducted in two steps. The first step analyzed the effect of extenders and 

cooling rates on post-thaw sperm quality. The mixed ejaculates regardless of Se 

supplementation were divided into three aliquots and diluted with clarified egg yolk (CEY), 

whole egg yolk (WEY) and tris without egg-yolk (TWEY) extenders. The diluted samples 

were further subdivided into two aliquots (slow and fast cooling). The second step analyzed 

the effect of selenium supplementation and extenders on post-thaw sperm quality. 

Ejaculates from each treatment samples (Se and control) were divided into three aliquots 

and diluted with the three extenders (CEY, WEY, TWEY). All samples were cooled for 2 h at 

4oC and frozen at −196oC. Slow cooling resulted in higher (p<0.001) percentages of all 

sperm parameters compared to fast cooling. All sperm parameters were significantly 

(p<0.001) higher in Se treated samples when slow cooling was used. The post-thaw sperm 

motility and viability were significantly (p<0.001) higher in CEY with slow cooling. All post-

thaw sperm parameters diluted with CEY were significantly (p<0.001) higher in Se treated 

bucks. In conclusion, clarified egg yolk combined with slow cooling yielded higher 

percentages of cooled and frozen-thawed sperm parameters in Se treated bucks. In 

addition, tris without egg yolk did not present any advantage over whole egg yolk extender. 

Keywords: extenders, sperm characteristics, cooled semen, selenium 

 

4.1. Introduction 

Artificial insemination (AI) in goats is mostly done using freshly collected semen due to low 

fertility rates obtained with cryopreserved sperm. However, sperm freezing is an 

indispensable tool for genetic improvement or conservation programs in various species, 

including goats. For this reason, numerous investigations have been conducted recently with 

the objective of optimizing sperm cryopreservation protocols in goats.  Irrespective of the 

protocol, viability of spermatozoa deteriorates at low temperatures during the storage. During 
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the freezing process, sperm cells are subjected to OS and ROS that can lead to harmful 

effects on sperm (Serviddio et al., 2013).  

 

Antioxidants have the ability to prevent or reduce oxidative process by scavenging released 

free radicals. There are several antioxidants in semen that are known to improve sperm 

quality such as vitamin E and C, as well as Se and Zn which are components of antioxidant 

systems. These antioxidants may be insufficient in seminal plasma to protect spermatozoa 

against OS and ROS during the freezing-thawing process. 

 

Se can be added to freezing extender to combat ROS in case animals are Se deficient, but 

the addition of Se to the medium sometimes results in contradictory results. Some authors 

have reported a protective effect of Se on sperm against free radical-induced damage 

(Dorostkar et al., 2012), while deleterious effect on sperm quality has been reported by 

others (Seremak et al., 1999). Oral supplementation of Se has been proposed as a potential 

way to reduce the oxidative damage due its fast response (El-Mokadem et al., 2012; 

Pilarczyk et al., 2013). There are several studies on the effect of oral Se supplementation to 

improve reproductive performance in sheep and goats (Mahmoud et al., 2013; Lukusa and 

Lehloenya, 2017). Consequently, it was hypothesized that Se supplementation could reduce 

sperm damage in cooled and frozen-thawed Saanen buck semen.  

 

To cryopreserve semen, dilution with a protective extender is important in order to maintain 

fertilizing capacity of sperm during in vitro storage at low temperatures. The most widely 

used extenders for freezing goat semen are tris-egg yolk and skim milk extenders and their 

components are shown to be the primary cause of damage in semen. Egg yolk (lysolecithin) 

and milk-based diluents (SBUIII) interact with the seminal plasma lipase, a content of the 

bulbourethral secretion, and this interaction is known to be harmful for the sperm (Purdy, 

2006). In addition, whole egg yolk (WEY) has been reported to interfere with microscopic 

observations or biochemical assays as it contains granular material of the same size and 

shape as spermatozoa; it also reduces respiration and motility of sperm cells (Wall and 

Foote, 1999; Moussa et al., 2002). By centrifugation, egg yolk can be separated into its two 

main fractions, plasma and granules (Pillet et al., 2011). Therefore, it is essential to remove 

large particles in WEY by centrifugation and only plasma (clarified) is used to obtain better 

sperm quality post-thaw. This clarified egg yolk (CEY) extender has been successfully used 

for stallion and bull semen cryopreservation (Vidament et al., 2000; Moussa et al., 2002). 

The advantage of CEY is that the concentrations of egg yolk or egg yolk constituents are 

reduced without decreasing sperm survival (Wall and Foote, 1999). Therefore, it can be 
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assumed that the use of CEY extender will preserve better the quality of buck sperm before 

and after cryopreservation.  

 

Cooling of semen prior to sperm cryopreservation is an important step to minimize damages 

during the freezing process. The cooling step is important to minimize the effect of 

temperature variations and to allow equilibration of the spermatozoa with the extenders prior 

to freezing. However, cooling is a highly disturbing process, which induces irreparable 

damages to the spermatozoa membrane that result in either cell death or premature 

capacitation-like changes (Garner et al., 2001).These detrimental effects can be reduced by 

optimizing cooling rates before freezing. The optimal cooling rates have been established in 

several species such as 76 and 140°C/min in bulls (Woelders et al., 1997), 30°C /min in 

boars (Fiser and Fairfull, 1990), 27°C to 130 °C /min in mice (Koshimoto and Mazur, 2002) 

and 10°C/min in human (Henry et al., 1993). But for goat sperm, temperatures over which 

goat semen must be cooled are quite diverse for frozen sperm; ranging from -0.3oC/min to 

0.55oC⁄min (Memon et al., 2013; Ahmad et al., 2015). These cooling rates lead to different 

results, making it difficult to establish optimal cooling rates. It was then hypothesized that an 

appropriate cooling rate in combination with oral Se supplementation will preserve buck 

sperm quality better following cryopreservation. Therefore, the objectives of the present 

study are to evaluate the effect of different types of extenders and cooling rates on cooled 

and frozen-thawed sperm of Se supplemented Saanen bucks. 

 

4.2. Materials and methods 

  

4.2.1. Animals 

All animal care and procedures used were performed in accordance with the Animal Ethics 

Committee of the University of Pretoria (Project no: EC079-14). The present study was 

carried out over a period of 10 months from autumn to summer (from April to January). A 

total number of 20 Saanen bucks aged between 18 to 19 months and weighing 55.13±0.75 

kg average body weight were used. The same animals used in chapter 3 section (3.2.2) 

were utilized for this experiment under the same management.  

 

4.2.2. Semen collection 

The semen collection was performed using an artificial vagina (AV). Ejaculates were 

collected twice weekly at 3 day intervals throughout the experiment. The bucks were trained 

for more than six weeks prior to successful semen collection using a doe on heat. On the 

day of semen collection, the AV was prepared according to Matthews et al. (2003).  A doe 

on oestrus was used and the semen was collected as described by Moore (1985).  
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4.2.3. Evaluation of semen 

All semen samples were evaluated macroscopically for ejaculate volume and pH, and 

microscopically for sperm mass motility, progressive motility, concentration, normal 

morphology, acrosome integrity and viability as described previously in chapter 3 section 

(3.3.6). 

 

4.2.4. Extenders preparation 

Three different freezing extenders namely the ready-to-use triladyl, clarified Egg yolk (CEY), 

whole egg yolk (WEY) and tris without egg yolk (TWEY) extenders were used. Triladyl 

extender was purchased from University of Pretoria, faculty of veterinary sciences. The CEY 

was prepared as described by Wall and Foote (1999). The WEY-based extender consisted 

of Tris 2.422 g, Citric acid monohydrate 1.36 g, Glucose 1 g, Gentamycin 1000µg/mL, 

Kanamycin 1000µg/mL, Egg yolk (v/v) 20%, Glycerol (v/v) 16%, and Distilled H2O to final 

volume (mL) (Liu et al., 1982). The composition of TWEY-based extender comprised of Tris 

4.54 g, Citric acid monohydrate 2.61 g, Glucose 0.82 g, Gentamycin 1000µg/mL, Kanamycin 

1000µg/mL and Distilled H2O to final volume (mL). The pH was then adjusted to 

approximately 7.2.  

 

4.2.5. Cooling and freezing procedures 

In the Fig 4.1 showed the experimental design for cooling and freezing procedures. The 

study was subdivided into two sets of experiments. Experiment 1 assessed the effects of 

cooling rates (slow and fast) and dietary Se supplementation on semen characteristics. In 

the experiment 2, the cryoprotective effects of CEY, WEY and TWEY extenders on cooled 

and frozen/thawed sperm of Se supplemented bucks was determined 
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Fig 4.1. Experimental design for cooling and freezing procedures 

 

Experiment 1: Effects of cooling rates and selenium supplementation on semen 

characteristics of Saanen bucks. 

The animals were divided into two equal groups: treatment (TG) and control (CG) groups 

containing 10 animals in each group. The semen samples for both group (TG and CG) were 

diluted with no glycerolated fraction of freezing extender (fraction A) and further subdivided 

into two equal aliquots each. One aliquot was cooled using a slow cooling rate and the other 

used a fast cooling rate for 24 h at 4oC. The samples were evaluated for both slow and fast 

cooling at 0 h and 24 h following storage. The collection of ejaculates started three months 

after first administration of Se. For each male, twelve collections of ejaculates were 

performed once weekly for three months.  

 

Semen was considered for cooling using standard criteria established by Hidalgo et al. 

(2007). The semen samples used for cooling were those presenting the following 

characteristics: ejaculate volume of 1 to 2 mL, sperm concentration >1.5x109 sperm⁄mL, 

>70% progressive motility and >70% morphologically normal sperm. The ready-to-use 

triladyl extender (Veterinary Sciences, University of Pretoria) was used as a cooling 

extender. Individual ejaculates were diluted at a ratio of 1:2 (semen: extender) and mixed 
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gently to ensure homogeneity of the mixture. The extended semen was transferred into two 

15 mL conical tubes for either slow or fast cooling. 

 

For slow cooling a 15 mL conical tube containing extended semen was placed inside a 50 

mL conical tube, and the space between the tubes was filled with warm water at 33oC. The 

combined tubes were transferred into a 500 mL beaker containing water at 33oC. The 

beaker was placed directly in a refrigerator (4oC) and kept for 2 h. This allowed a gradual 

cooling of the semen from 33oC to 4oC in 2 h at 0.22oC⁄min (Memon et al., 2013). For fast 

cooling a 15 mL conical tube containing extended semen was placed inside a 50 mL conical 

tube and the space between the tubes was filled with warm water at 33oC. The combined 

tubes were placed inside a 500 mL beaker containing tap water and ice blocks. The beaker 

was immediately placed in a refrigerator (4oC) and kept for 30 min. This allowed a faster 

cooling rate from 33oC to reaching 4oC after 30 min at 0.55oC⁄min (Memon et al., 2013). The 

sperm characteristics were evaluated immediately after cooling at 0 h and at 24 h following 

storage at 4oC. For evaluation, the samples were removed from the refrigerator and placed 

in a water bath at 33oC for 5 min prior to semen evaluation.  

 

Experiment 2: Effects of freezing extenders on cryosurvival of Saanen buck spermatozoa. 

The experiment was conducted in two steps the first step analyzed the effect of extenders 

and cooling rates, and the second step analyzed the effect of selenium supplementation and 

extenders. Sixteen semen collections were performed once weekly for seven months with 14 

collections in each step.  

 

First step: The ejaculates from Se supplemented and control groups were mixed together 

and divided into three equal aliquots. Each aliquot was diluted at 33°C to a final 

concentration of 150×109/mL with different type of extenders CEY, WEY and TWEY. The 

diluted samples for each extender were further subdivided into two equal aliquots. One 

aliquot was cooled using the slow cooling rate and the other aliquot used fast cooling. 

 

Second step: Since the slow cooling rate produced better results at thawing in the first step, 

it was used in the second step to evaluate the effect of Se supplementation and extenders 

on cooled and frozen-thawed sperm. The animals remained in their main two groups of 

treatment and control groups as described in experiment I. The semen samples from 

treatment and control groups were divided into three equal aliquots that were diluted with 

CEY, WEY and TWEY using a 2-step dilution method. The samples were diluted to a ratio of 

1:2 (semen: extender) with extender A (no cryoprotectant) and cooled to 4 °C for 2 h. The 

cooled semen was further diluted to a ratio of 1:1 (semen: extender) with extender B (8% 
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glycerol). After equilibration time at 4°C for 2 h, semen samples were aspirated into 0.25 mL 

French straws. Thereafter, the straws were sealed with polyvinyl alcohol powder followed by 

their suspension in liquid nitrogen vapour inside a cooler box container at a height of 4 cm 

above liquid nitrogen for 10 min. Then they were subsequently submerged into liquid 

nitrogen at –196 °C where they were stored for 24 h. A minimum of 3 straws from each 

treatment (CEY, WEY and TWEY) were thawed at 37 °C for 30 s in a water bath 24 h after 

freezing to evaluate post-thaw semen characteristics. 

 

4.3. Statistical analysis 

Statistical analysis was performed with the General Linear Model using statistical software 

SPSS (Version 23) (2015). The results were expressed as mean±SEM. Data of sperm 

characteristics were compared using one-way ANOVA for repeated measures. When 

ANOVA revealed a significant effect, mean±SEM were compared using the Duncan‟s 

multiple range tests (Duncan, 1955). A probability of p<0.05 was considered to be 

statistically significant. 

 

4.4. Results 

Experiment 1: Effects of cooling rates and selenium supplementation on semen 

characteristics of Saanen bucks. 

Table 4.1 presents the effect of cooling rates and Se supplementation on quality of goat 

sperm. Sperm quality were significantly affected (p<0.001) by cooling rates and Se 

supplementation. Slow cooling provided higher percentages of sperm progressive motility, 

normal morphology, acrosome integrity and viability when semen was collected from Se 

supplemented bucks compared to the control group. Irrespective of Se supplementation, 

slow cooling resulted in significantly (p<0.001) higher percentages of sperm progressive 

motility and viability in comparison with fast cooling. No difference was observed for sperm 

acrosome integrity and normal morphology between Se-treated and control group. The 

interaction between treatment and cooling rates were significant (p<0.001). The sperm 

progressive motility, acrosome integrity, normal morphology and viability in supplemented 

samples with slow cooling rate were significantly (p<0.001) higher compared to sperm 

cooled with both slow and fast cooling in the control group. 

 

Table 4.1 and 4.2 presents the effect of cooling rates and Se supplementation on quality of 

goat sperm. Sperm quality was significantly affected (p<0.001) by cooling rates and Se 

supplementation. Slow cooling provided higher percentages of sperm progressive motility, 

normal morphology, acrosome integrity and viability when semen was collected from Se 
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supplemented bucks compared to the control group. Irrespective of Se supplementation, 

slow cooling resulted in significantly (p<0.001) higher percentages of sperm progressive 

motility and viability in comparison with fast cooling. No difference was observed for sperm 

acrosome integrity and normal morphology between Se treated and control group. The 

interaction between treatment and cooling rates were significant (p<0.001). The sperm 

progressive motility, acrosome integrity, normal morphology and viability of semen cooled 

using slow cooling rate in Se supplemented samples were significantly (p<0.001) higher 

compared to sperm cooled with both slow and fast cooling in the control group. 

 

Table 4.1. Overall (mean±SEM) sperm fertility parameters of slow and fast cooled semen of 
of Saanen bucks supplemented with selenium over a period of three months 
Treatment Sperm 

motility (%) 
Acrosome 
integrity (%) 

Normal  
Morphology (%) 
 

Viability (%) 
 

Overall cooling rates 
Slow cooling  70.8±1.30

a
 68.2±0.60

a
 79.3±0.70

a
 74.6±0.61

a
 

Fast cooling 59.6±1.50
b
 68.5±0.41

a
 78.5±0.62

a
 67.5±1.10

b
 

     
Overall selenium supplementation 
TG 71.8±1.40

a
 69.5±2.02

a
 73.1±1.83

a
 72.1±1.03

a
 

CG 65.1±2.80
b
 65.2±2.03

b
 67.8±0.70

b
 59.4±0.05

b
 

Means with different superscripts in a column differ significantly at p<0.001.  

 

Table 4.2. Interaction effect between Se treatment and cooling rates in terms of overall 
semen characteristics (mean±SEM)  
Parameter Se treatment Cooling rates 

  Slow cooling Fast cooling 
Sperm motility (%) Selenium supplemented 74.2±0.98

aA
 69.5±1.02

aB
 

 Control 67.7±2.01
bA

 62.5±1.60
bB

 
    
Acrosome integrity (%) Selenium supplemented 70.3±1.70

aA
 68.7±1.15

aA
 

 Control 66.8±1.79
bA

 63.6±1.15
bB

 
    
Normal Morphology (%) Selenium supplemented 76.2±1.60

aB
 70.0±0.50

aA
 

 Control 71.4±0.48
bA

 64.2±0.44
bB

 
    
Viability (%) Selenium supplemented 75.1±1.80

aA
 69.1±0.80

aB
 

 Control 67.7±0.26
bA

 51.2±0.64
bB

 

For each factor, within a column means followed by small letter differ significantly at p<0.001. Within a 
row means followed by different capital letter differ significantly at p<0.001. 

 

Figure 4.2 shows the overall mean percentages of progressive motility, acrosome integrity, 

normal morphology and viability of Saanen bucks sperm subjected to different cooling rates. 

Slow cooling resulted in higher (p<0.001) percentages of sperm progressive motility, 

acrosome integrity, morphologically normal sperm and viability compared to fast cooling. 
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Fig. 4. 2. Mean values (±SEM) for sperm progressive motility, viability, normal morphology 

and acrosome integrity of slow and fast cooling rates. SC: slow cooling, FC: fast cooling. 

Error bar = SEM and 
ab

 bars with different letters differ significantly at p<0.001. 

Table 4.3 Shows Overall (Mean±SEM) of Saanen goat sperm characteristics cooled using 

slow and fast cooling rates for 24 h. Slow cooled semen had significantly (p<0.001) higher 

sperm progressive motility immediately after cooling (0 h). However, there was a significant 

(p<0.001) decrease on sperm progressive motility at 24 h following storage, although still 

>50 %. Progressive motility following fast cooling immediately (0 h) and 24 h following 

storage was significantly (p<0.001) lower compared to slow cooling. The progressive 

motility, morphologically normal sperm and viability was significantly (p<0.001) higher 

following slow cooling immediately (0 h) and 24 h following storage compared to fast cooling. 

On the other hand, the percentages of acrosome integrity after 24 h of storage using slow 

cooling rate and 0 h storage using fast cooling rate did not differ significantly (p<0.001). 

 

Table 4.3. Overall (Mean±SEM) of Saanen goat sperm characteristics cooled using slow and 
fast cooling rates at different times 
Treatment Sperm motility 

(%) 
Acrosome 
integrity (%) 

Normal 
morphology (%) 

Viability (%) 

Slow Cooling 0 h 72.9±1.03
a
 66.7±0.06

a
 76.3±0.42

a
 71.9±0.14

a
 

24 h 54.6±1.05
b
 58.0±1.02

b
 67.6±1.30

b
 63.2±1.13

b
 

Fast  Cooling 0 h 47.6±1.13
c
 56.0±0.61

b
 64.0±0.45

c
 56.4±0.09

c
 

24 h 32.7±1.20
d
 46.6±1.22

c
 55.8±1.21

d
 46.8±1.04

d
 

Means followed by different superscripts in a column differ significantly at p<0.001.  

 

Experiment 2: Effects of freezing extenders on cryosurvival of Saanen buck spermatozoa.  

The overall (mean±SEM) sperm characteristics of cooled and frozen-thawed semen 

extended in clarified egg yolk (CEY), whole egg yolk (WEY) and tris without egg yolk 

(TWEY) freezing extenders are presented in Table 4.4. The overall percentages of sperm 

motility, acrosome integrity, normal morphology and viability were affected by extender type 
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in cooled semen. The CEY extender yielded higher (p<0.001) values of acrosome integrity 

and morphologically normal sperm than both WEY and TWEY extenders. The values of 

sperm motility and viability did not differ significantly (p<0.001) between CEY and TWEY 

extenders, however, there were lower in the WEY extender. The post-thaw sperm quality 

resulted in significantly (p<0.001) higher percentages of all studied sperm parameters in the 

CEY extender compared to both WEY and TWEY extenders. 

 

Table 4.4. Overall (mean±SEM) sperm characteristics of cooled and frozen-thawed Saanen 
goat semen extended in different types of freezing extenders 
Extenders Sperm motility 

(%) 
Acrosome 
Integrity (%) 

Normal 
morphology (%) 

Viability (%) 

Cooled semen 

Clarified egg yolk 69.1±1.30
a
 70.3±0.81

a
 71.9±0.80

a
 70.1±1.10

a
 

Whole egg yolk 59.6±1.91
b
 62.8±1.30

c
 61.2±1.81

b
 60.8±1.40

b
 

Tris without egg 
yolk 

67.8±2.21
a
 66.1±1.20

b
 64.8±1.52

b
 67.9±1.22

a
 

Frozen-thawed semen 

Clarified egg yolk 52.6±1.71
a
 53.5±0.91

a
 62.3±1.31

a
 54.4±1.03

a
 

Whole egg yolk 37.7±1.26
b
 47.4±1.21

b
 55.1±1.60

b
 46.2±1.71

b
 

Tris without egg 
yolk 

34.7±1.70
b
 40.3±1.22

c
 42.4±1.73

c
 42.2±1.61

c
 

Means with different superscripts in a column differ significantly at p<0.001.  

 

Figure 4.3 presents the effect of CEY, WEY and TWEY extenders on cooled sperm 

characteristics of Saanen buck sperm using slow cooling rate. The percentages of sperm 

normal morphology and viability were significantly (P<0.001) higher in the CEY when slow 

cooling was used, whereas no significant differences were observed between CEY and 

TWEY extenders in terms of sperm motility and acrosome integrity. 
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Fig. 4.3.Mean values (±SEM) for cooled sperm characteristics of Clarified egg yolk and Tris 

without egg yolk extenders in slow cooling rate. Error bar = SEM andabc bars with different 

letters differ significantly at p<0.001. 

Figure 4.4 presents the effect of CEY, WEY and TWEY extenders on sperm characteristics 

of Saanen buck semen frozen-thawed using slow cooling rate. The sperm characteristics 

were significantly (p<0.001) affected by extenders. Higher percentages of sperm motility and 

viability were found for frozen-thawed spermatozoa from CEY extender when slow cooling 

was used compared to WEY and TWEY extenders. However, no significant (p<0.001) 

differences were observed in term of acrosome integrity and normal morphology in slow 

cooled samples. 

 

 

 

 

 

Fig. 4.4.Mean values (±SEM) for post-thaw Saanen buck sperm characteristics of slow 

cooled in clarified and whole egg yolk extenders. Error bar = SEM andabc bars with different 

letters differ significantly at p<0.001. 
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Figure 4.5 presents the effect of slow and fast cooling rates on post-thaw sperm 

characteristics of Saanen buck semen in clarified egg yolk extender. The results revealed 

significantly (P<0.001) higher percentages of sperm motility and viability when slow cooling 

rate was used in combination with clarified egg yolk extender. However no significant 

differences were observed in term of acrosome integrity and normal morphology. 

 

 

 

 

 

 

Fig. 4.5. Mean values (±SEM) for post-thaw sperm characteristics of slow and fast cooling 

rates in Clarified egg extender. Error bar = SEM and 
ab

 bars with different letters differ 

significantly at p<0.001. 

 

Table 4.5 presents the effects of Se supplementation on sperm characteristics of cooled and 

frozen-thawed Saanen goat semen cryopreserved in different extenders. In cooled semen, 

sperm motility, normal morphology and viability were significantly (p<0.001) higher in both 

CEY and TWEY extenders in Se supplemented samples compared to WEY extender. After 

freezing-thawing, CEY Se supplemented samples, sperm parameters were all significantly 

(p<0.001) higher compared TWEY extenders. However, in whole egg yolk Se supplemented 

samples, normal morphology and acrosome integrity were similar (p<0.001) to CEY 

extender. 
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Table 4.5. Effects of selenium supplementation on sperm of Saanen bucks in cooled and 
frozen-thawed semen stored in different extenders (mean±SEM) 
Extenders Se 

treatment 
Sperm 
motility (%) 

Acrosome 
integrity (%) 

Normal 
morphology (%) 

Viability (%) 

Cooled semen 

Clarified egg yolk TG 72.1±0.11
a
 74.1±0.21

a
 74.1±0.61

a
 73.1±0.52

a
 

CG 67.1±0.32
b
 70.1±0.12

b
 73.5±0.42

a
 70.0±0.42

b
 

Whole egg yolk TG 66.5±0.44
b
 69.5±0.53

b
 67.0±1.23

b
 70.5±0.13

b
 

CG 64.7±0.21
bc

 66.7±1.53
c
 64.0±0.33

cb
 62.0±0.14

c
 

Tris without egg 
yolk 

TG 70.5±0.32
a
 70.3±1.14

b
 73.1±1.24

a
 72.5±0.35

a
 

CG 67.5±0.43
b
 68.8±0.15

bc
 66.1±0.44

b
 71.1±0.36

b 

Frozen-thawed semen 

Clarified egg yolk TG 51.2±0.21
a
 56.2±0.32

a
 64.3±0.44

a
 60.5±0.11

a
 

CG 46.3±0.11
b
 53.8±1.13

b
 60.1±2.34

b
 58.5±2.81

ba
 

Whole egg yolk TG 45.4±2.13
cb

 55.6±0.41
a
 63.2±1.23

a
 52.0±2.93

c
 

CG 45.0±2.62
cb

 44.6±1.23
c
 54.5±2.82

c
 50.5±2.92

dc
 

Tris without egg 

yolk 

TG 38.0±2.71
d
 33.5±1.52

d
 40.1±1.40

d
 49.5±2.41

dc
 

CG 37.5±2.72
d
 35.3±0.32

d
 39.5±2.10

d
 39.5±2.41

e
 

Means with different superscripts on a column differ significantly at p<0.001.  

 

4.5. Discussion 

Experiment 1: Effects of cooling rates and Se supplementation on semen characteristics of 

Saanen bucks. 

The increased percentages of Saanen buck sperm characteristics observed with slow 

cooling rate in Se supplemented samples demonstrated clearly that Se had a significant 

protective effect against LPO on slow cooled sperm. This Indicates that Se is more effective 

in protecting different sperm parameters of slow cooled sperm against OS. It is evident that 

Se might have enhanced the protective effects during slow cooling rate by reducing the 

production of ROS and maintaining better sperm quality during cooling (Dorostkar et al., 

2012). However, it can be suggested that in order to start the freezing process with 

acceptable sperm quality, supplementing the animals with Se to boost their antioxidant 

status is necessary. Then use slow cooling for better results. 

 

The increase in sperm motility in slow cooled semen indicated that stabilization of sperm 

cells with slow cooling rate coupled with Se supplementation enables the sperm to cope with 

detrimental effects of physical, osmotic and cold stresses during cooling. This may be 
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attributed to the combined role of Se and slow cooling in the protection of sperm membrane 

integrity and lowering enzyme leakages during the cooling process (Memon et al., 2013). In 

addition, Se may also act in the maintenance of mitochondrial structural integrity, leading to 

the increase in ATP of spermatozoon, therefore causing an increase in sperm motility (Liang 

et al., 2007). In the present study, it was also observed that fast cooling could maintain 

sperm acrosome integrity equal to slow cooling in Se supplemented bucks. Similar to our 

results, Zhao et al. (2009) also reported also no differences between slow and fast cooling 

rates in terms of acrosome integrity.  

The higher percentages of morphologically normal sperm in slow cooled semen from Se 

supplemented bucks in the current study may be attributed to higher level of GSH-Px 

activity. Kehr et al. (2009) documented that higher GSH-Px activity plays an indispensable 

role in chromatin structure protection of the sperm in the epididymis thereby leading to 

increased population of morphologically normal sperm. Similar results were observed by 

Rezaeian et al. (2016) who indicated that the addition of 5 mg/mL of Se to human sperm 

before freeze-thawing procedures caused an increase in spermatozoa with normal 

morphology. 

 

In the present study, improvement was observed in viability of spermatozoa with slow 

cooling in Se supplemented bucks. Indicating that slow cooling rate in combination with Se 

have significant protective effects on sperm viability, and there is a strong interaction 

between cooling rate and Se supplementation. Similar results were reported by Memon et al. 

(2013) with slow cooling in Boer goat semen. Salazar et al. (2011) also reported increased 

percentages of sperm characteristics when slow cooling rate was used on stallion sperm 

compared to fast cooling. The present results confirm that slow cooling rate is required to 

reduce damage to Saanen buck sperm cells during the freezing process. The temperature of 

4oC must be attained within 2 h for desirable viability to result after thawing. On the otherr 

hand, the beneficial effects of Se can be attributed to the fact that Se is a very efficient 

antioxidant and a scavenger of oxygen free radicals that are toxic to metabolic activity and 

cellular viability of cryopreserved spermatozoa.  

 

Cooling processes are known to damage sperm membranes and reduce sperm viability and 

their fertilising ability. The cooling rate of semen from 37oC to 4oC determines the success of 

freezing protocols in terms of sperm quality. The results of the present study regarding 

cooling rates are similar to the report of Memon et al. (2013) who observed that slow cooling 

increased percentages of sperm motility, acrosome integrity, normal morphology and 

viability. However, it is obvious that all sperm characteristics are low in fast cooled semen as 
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evidenced in the decline of the percentages of sperm parameters during storage at 4oC from 

0 h to 24 h. This confirm the report which stated that fast cooling induces damaging effect in 

sperm structure and function as well as intracellular ice crystal formation and loss of osmotic 

tolerance (Mazur, 1984). The results also showed that slow cooled sperm could be stored at 

4oC for more than 24 h; and will still maintain its fertilising ability while fast cooled sperm 

should be stored for less than 24 h at 4oC. This Indicates that short-term storage of buck 

sperm is possible when AI cannot be performed immediately after semen collection or in the 

case where a selected buck is geographically distant from the doe requiring that fresh 

semen be shipped overnight. This is advantageous, as it reduces the expense and stress of 

transporting female or animals. 

 

Experiment 2: Effects of freezing extenders on cryosurvival of Saanen buck spermatozoa  

In cooled semen, the extender containing WEY was more deleterious for buck sperm than 

with CEY or TWEY. Better survival of spermatozoa was observed when CEY or TWEY 

extender was used. The CEY provided better sperm quality in terms of sperm acrosome 

integrity and normal morphology while no differences were observed between CEY and 

TWEY in terms of sperm motility and viability. The present results contradict the findings of 

Tabarez et al. (2017) who did not find any superiority of CEY extender in buck semen over 

WEY. However, our result is in agreement with Wall and Foote (1999) who indicated that 

CEY preserved better motility and fertility of cryopreserved bull sperm. Differences in results 

may be due to the different protocols used. For example, Tabarez et al. (2017) removed 

seminal plasma by centrifugation before sperm cryopreservation; this may affect the quality 

of sperm. In the present study we did not remove seminal plasma.  

 

Our results with TWEY extender in cooled samples did not differ significantly from CEY 

extender in term of sperm motility and viability, showing that it is possible to preserve buck 

semen at low temperatures (4oC) for short-term storage in the absence of egg yolk. The 

present results disagree with the report of Yodmingkwan et al. (2016) who indicated higher 

sperm motility and viability with WEY extender, while TWEY did not affect these parameters 

in the cooled stored sperm of Boer buck. This may be the result of the differences in goat 

breeds or extender composition which may affect the quality of semen (Leboeuf et al., 2000). 

They used low concentration of tris (2.4 g) and low percentages (1.4%) of glycerol in the 

freezing extender. In this study we used high concentration of tris and glycerol percentages. 

However, Silva et al. (2002) observed similar results to our study with canine semen. This 

can be explained by the fact that tris buffer removes the hydrogen ions originating from 

sperm metabolism during the thermal shock caused by the freezing process. Tris plays a 

major role in preserving sperm energy by reducing fructolysis (Silva et al., 2002). 
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In frozen semen, the current study demonstrated clearly that the type of semen extender 

used had an effect on sperm characteristics of Saanen buck semen during the freezing 

process. Overall sperm quality was improved when frozen-thawed semen was extended in 

CEY extender. Higher percentages of sperm motility, acrosome integrity, normal morphology 

and viability obtained after thawing with CEY extender confirm the results of earlier studies 

(Vidament, 2000; Nouri et al., 2013), where similar observations were reported with frozen-

thawed semen. Also, Fernández-Santos et al. (2006) observed higher sperm quality using 

CEY during the cryopreservation of Iberian red deer spermatozoa. This may be explained by 

the fact that CEY extender contains less particles than WEY extender. Watson and Martin 

(1975) observed that some substances or particles in WEY extender inhibit respiration of 

spermatozoa or decrease their motility and acrosome integrity. The procedure of 

centrifugation used for obtaining CEY might have removed substances harmful to 

spermatozoa.  Another possibility is that during the cryopreservation process, phospholipids 

of CEY were not hydrolyzed by enzymes of seminal plasma (phospholipase A2 and 

lysophospholipase), as has been shown by Chauhan and Anand (1990).  

 

Application of a slow cooling rate combined with CEY revealed that buck sperm can maintain 

better motility, acrosome integrity, normal morphology and viability. Confirming the reports 

which indicated that a slow cooling rate is optimal and necessary to maintain membrane 

integrity and motility, and limit oxidative damage to sperm (Salazar et al., 2011; Martorana et 

al., 2014). This suggests that damages of spermatozoa are generally reduced if the cooling 

rate is slower than fast due the absence of intracellular ice crystal formation. 

 

Despite the fact that fast cooling induces cold shock to sperm, the rapidly cooled samples 

can maintain acrosome integrity and normal morphology post-thaw equal to slow cooled 

samples when extended with CEY extender.  This confirms the previous report which stated 

that slow and fast cooling resulted in similar membrane integrity after thawing in buck semen 

(Fernández-Santos et al., 2006; Memon et al., 2013). Utilisation  of fast cooling associated 

with CEY extender may have lead to resistance of the outer acrosomal membrane and 

overlying plasma membrane to cooling and cryo-injury, indicating that reducing the period of 

contact between spermatozoa and seminal plasma during the cooling step could minimize 

detrimental effects for sperm extended in CEY post-thaw (Pradiee et al., 2016).  

 

The results of post-thaw analysis of both slow and fast cooling methods combined with three 

extenders (CEY, WEY and TWEY) have produced interesting results in the present study. 

Before freezing sperm motility and viability must be at least 60% to obtain 30% progressive 

motility post-thaw for acceptable fertility (Ahmed et al., 2014). Considering this the current 
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study demonstrated that most of the sperm attributes regardless of cooling method and 

extender used reached above this limit (30% and 60%) before and after freezing. Slow 

cooling rate combined with CEY extender yields better results than fast cooling rate based 

on post-thaw sperm attributes. The post-thaw values of sperm acrosome integrity and 

normal morphology were similar in both CEY and WEY extenders when slow cooling was 

applied. This observation suggested that the acrosome was more resistant to membranous 

damage following cold shock when slow cooling was applied (Salazar et al., 2011). 

 

Our results showed clearly that, supplementing Se as a component of the antioxidant system 

increased percentages of cooled sperm parameters in both CEY and TWEY extenders. The 

present results are in agreement with the findings of earlier researchers who reported that 

Se supplementation led to significant increases of sperm viability as well as motility before 

and after freezing (Dorostkar et al., 2012). The protective effect of Se supplementation on 

cooled sperm motility, acrosome integrity, normal morphology and also viability in both CEY 

and TWEY extenders observed in the current study may be explained by the increase of 

GSH-Px in Se-treated bucks as reported by Lukusa and Lehloenya (2017). These findings 

suggest that Se supplementation could increase antioxidative status of seminal plasma and 

spermatozoa to reduce excessive production of ROS during the cooling process. Regardless 

of Se supplementation, these results differ from those observed by Tabarez et al. (2017) and 

Yodmingkwan et al. (2016) who reported no superiority in the use of CEY and TWEY over 

the effectiveness of WEY. However, the results from this study are in agreement with the 

report of El-sheshtawy et al. (2016) who stated that sperm motility and semen characteristics 

improved with CEY extender as compared to WEY in bull cooled-stored semen. In our study, 

the improved sperm quality observed with CEY and TWEY extenders are mainly due to the 

absence of large particles and some components of egg yolk toxic to sperm (Wall and Foote, 

1999).  

 

In the present study, all frozen sperm parameters analyzed post-thawing were higher on Se 

supplemented samples preserved in CEY extender. These results support the report of Wall 

and Foote (1999) who indicated that the concentration of egg yolk or egg yolk constituents 

could be reduced by centrifugation without decreasing sperm cryosurvival of bull semen. 

Fernandez-Santos et al. (2006) added that centrifuged egg yolk provided a higher protection 

than whole egg yolk during the freeze-thawing of Iberian red deer epididymal spermatozoa. 

Similarly, El-Sheshtawy et al. (2016) revealed that bull sperm motility and semen 

characteristics improved with CEY extender supplemented with strawberry juice as 

antioxidant compared to WEY. It is clear that buck semen frozen using CEY extender 

supplemented with antioxidant such as Se can produce acceptable sperm quality post-thaw 
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that can be used an AI program.  The removal of some detrimental components from egg 

yolk by centrifugation in CEY also played a greater role on the effectiveness of Se to provide 

the best cryoprotective effect on post-thaw sperm quality during the freeze-thawing process. 

Therefore, antioxidant such as Se may be necessary to protect sperm against ROS in both 

CEY and WEY for cryopreservation of Saanen buck semen.  

 

4.6. Conclusion 

The fast cooling rate did not improve semen quality. However, it can maintain acrosome 

integrity and normal morphology post-thaw equal to slow cooling with clarified egg yolk 

extender. The use of tris without egg-yolk extender did not present any advantage to the 

whole egg-yolk extender. However, cooled and frozen-thawed sperm parameters are higher 

when clarified egg yolk extender in combination with slow cooling rate is used in semen from 

Se supplemented bucks. This suggestes that before starting freezing process, 

supplementing animals with Se to boost their antioxidant status followed by the use of 

clarified egg yolk extender with slow cooling rate may be beneficial to yield acceptable 

sperm quality post-thaw.The cooled and post-thaw percentages of sperm acrosome integrity 

and normal morphology were similar in both clarified egg yolk and whole egg yolk extenders 

in Se supplemented bucks. 
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CHAPTER 5  

Antioxidative capability of selenium, vitamin C, vitamin E and equilibration times on 

post-thaw sperm and kinematic parameters of Saanen buck semen 

 

Abstract 

Three experiments were conducted to determine the effects of the combination of vitamins 

(C+E) and dietary selenium supplementation in relation to equilibration times on post-thaw 

sperm quality of Saanen buck. Ejaculates were collected once weekly by artificial vagina 

(AV) from 16 bucks for eight months. In the first experiment, pooled ejaculates from eight 

bucks (no Se treated) were divided into five aliquots and diluted with extender containing 

different concentrations of vitamin C (3 and 4 mM), vitamin E (2.4 and 4.8 mM) and control. 

Cooled and post-thaw sperm characteristics were analyzed subjectively. The second 

experiment was conducted in two steps: the first step determined the antioxidative capacity 

of the best concentrations of vitamin C and E obtained in the first experiment, and their 

combination (C+E) on post-thaw sperm kinematics. The pooled ejaculates (no Se treated) 

were divided into four aliquots and diluted with extender containing vitamin C (4 mM), 

vitamin E (4.8 mM), vitamin (C: 4 mM+E: 4.8 mM) and control. The second step, since 

vitamin (C+E) produced better results in the first step; it was used to determine optimal 

equilibration time. The pooled ejaculates were divided into two parts: vitamin (C: 4 mM+E: 

4.8 mM) and control. In the third experiment, bucks were grouped into two groups 

comprising eight animals per group (Se treated and control). The pooled ejaculates were 

diluted with no antioxidant added extender and divided into three aliquots for each group: 

with three aliquots corresponding to equilibration times (2, 4 and 6 h) and other three as their 

controls. Frozen-thawed spermatozoa were evaluated for kinematic parameters. The 

concentration of vitamin C (4 mM) and vitamin E (4.8 mM) resulted in significantly (p<0.001) 

higher percentages of cooled and frozen-thawed sperm characteristics. The post-thaw 

percentages of sperm total motility, rapid and medium-speed, curvilinear velocity (VCL), 

straight-line velocity (VSL) and beat cross frequency (BCF) were significantly (p<0.001) 

higher with the combination of vitamin (C+E) after 2 or 4 h of equilibration time. The VCL, 

VSL, average path velocity (VAP), BCF and total motility, rapid, medium-speed, and 

progressive motility were significantly (p<0.001) higher when semen was equilibrated for 2 or 

4 h in Se supplemented bucks. In conclusion, to improve and maintain the quality of frozen-

thawed buck spermatozoa, 2 and 4 h equilibration time in combination with vitamin (C+E) or 

selenium supplementation may be the best option. 

 

Keywords: Antioxidant, cryopreservation, equilibration time, buck, spermatozoa 
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5.1. Introduction  

Modern livestock breeding depends on artificial insemination (AI) to accelerate genetic 

improvement, although its application in the goat breeding sector is not common. This is due 

to inconsistent and often low fertility rates especially when frozen-thawed semen is used. 

Indicating that buck semen cryopreservation still needs improvements (Mata-Campuzano et 

al., 2015). The success of AI resides in fertilizing capability of the diluted, cooled or frozen-

thawed semen, as well as the suitability of the extender to maintain the motility of 

spermatozoa. However, the cryopreservation process induces sperm cryo-damage due to 

excessive production of ROS. Therefore, leading to the loss of sperm and mitochondrial 

membrane integrity, inhibition of sperm adenosine triphosphate (ATP) production decreased 

motility and fertilizing capability (Bucak et al., 2007). These detrimental effects are more 

profound in goat spermatozoa due to high content of polyunsaturated fatty acids in their 

membranes (Foote et al., 2002), making sperm vulnerable to lipid perooxidation (Perumal et 

al., 2011). Although semen contains antioxidants that control LPO and prevent excessive 

perooxide formation, these antioxidants are decreased by dilution and during storage 

(Kumar et al., 2011). However, dietary or additions of antioxidants to extenders have been 

reported to protect sperm against LPO (Azawi et al., 2013; Kowalczyk et al., 2017). 

Antioxidants such as vitamin C and E are naturally occurring free radical scavengers that 

protect the sperm from LPO and provide higher integrity to the plasma membrane and 

mitochondria as well as better kinematics for sperm post-cryopreservation (Azawi et al., 

2013; Sarangi et al., 2017).  

 

Although both vitamin C and E are free radical scavengers, vitamin C represents the major 

water-soluble antioxidant in plasma and may reduce ROS induced DNA fragmentation and 

recycle inactive vitamin E (Keshtgar et al., 2012). Beconi et al. (1993) reported that the 

addition of 5mM vitamin C in the freezing diluents exerted an antioxidant effect during 

freezing and thawing of bovine sperm. On other hand, Vitamin E as a lipid soluble 

antioxidant defends the sperm against OS. Vitamin E is one of the major membrane 

protectants against ROS and has been reported to improve sperm motility and kinematic 

parameters in bull semen (Motemani et al., 2017). Sarangi et al. (2017) reported that 3 mM 

vitamin E helped in maintaining the buck seminal parameters at 4oC up to 72 h and 

protected the spermatozoa form oxidative damage. However, the ability of vitamin E to 

maintain a steady-state rate of ROS reduction in the plasma membrane depends on its 

recycling by vitamin C (Maia et al., 2009; 2010). Therefore,  it was hypothesized that addition 

of combination of vitamin C and E to freezing extender will effectively provide better motility 

and kinematics parameters of cooled and frozen/thawed buck sperm than vitamin C and E 

alone. 
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Another antioxidant substance is Se. It is known that Se serves as a component of the 

enzyme GSH-Px that protects cellular membranes and lipid containing organelles from 

peroxidative damage. Dietary Se supplementation has been reported to increase the 

percentages of motile sperm and reproductive performance in buck (Lukusa and Lehloenya, 

2017). However, as an antioxidant its interaction with equilibration times on sperm motility 

and kinematics has not yet been proven.   

 

Equilibration time is the period where cryoprotectants (glycerol) penetrate within sperm cell 

to establish a balanced intracellular and extracellular concentration. The results of several 

studies designed to determine the optimal equilibration time for buck semen established the 

beneficial effect of a period between 2 to 8 h of equilibration to obtain acceptable fertility 

(Sundararaman and Edwin, 2008; Ahmad et al., 2015). All these studies did not add 

antioxidant compound to freezing extenders. It is believed that equilibration period can 

interact with other osmotically active extender components such egg yolk, buffers and 

antioxidants (Muiño et al., 2007; Ranjan et al., 2015;Câmara et al., 2016). Câmara et al., 

(2011; 2016) reported that the equilibration time in combination with antioxidants may results 

in increased post-thaw sperm motility and velocity parameters. Suggesting that, antioxidants 

and equilibration times play a major role on the protection of sperm against ROS. This 

relationship of antioxidants and equilibration times is indispensable in ordeer to establish a 

suitable extender and optimal duration of equilibration. This interaction effect is still needed 

to be investigated during the buck semen cryopreservation process. Consequently, it can be 

hypothesized that equilibration times for frozen semen after dietary Se supplementation or 

addition to extender of the combination of vitamin (C+E) may improve post-thaw sperm 

quality due to their great effect on decreasing the ROS production.  

. 

Therefore, the objective of the present study was to determine the effects of vitamin C, E, 

their combination (C+E) and selenium as well as different equilibration times on post-thaw 

sperm motility and kinematic parameters of Saanen buck semen. 

 

5.2. Materials and methods 

 

5.2.1. Animals and their management  

The study was carried out in spring (September to November). The same animals used in 

chapter 3 were used for this study under the same management and treatment conditions. 

The animals were fed only locally available milled lucerne and they had no access to fresh 

growing forages or other feed. Fresh water was provided ad libitum during the experimental 

period as described in section (3.2.2). The experimental animals were 8 no Se 
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supplemented bucks and 4 Se supplemented Saanen bucks, ranging between 30 to 31 

months of age and weighing 80.3±2.14 to 120.6±3.23 kg at the start of the experiment. The 

Se treated animals received sodium selenite at dose rate of 0.34 mg/kg body weight as 

described in chapter 3 section (3.2.3). The animals were kept on the experimental farm in 

Hatfield, University of Pretoria. 

 

5.2.2. Semen collection and evaluation 

The collection of ejaculates was performed using an artificial vagina (AV) (55oC) (lukusa et 

al., 2017). Ejaculates were collected once, weekly for a period of 12 weeks and evaluated 

subjectively for semen attributes as described previously in chapter 3 section (3.2.6). Sperm 

kinematics were evaluated using the CASA system (Sperm Class Analyzer, (SCA, Microptic 

SL., Barcelona, Spain). The semen samples used for freezing were those presenting the 

following characteristics: ejaculate volume of 1 to 2 mL, sperm concentration >1.5 x109 

sperm⁄mL, >70% progressive motility and >70% morphologically normal sperm (Hidalgo et 

al., 2007). 

 

5.2.3. Sperm motility and kinematic assessment 

Sperm motility, VAP, VCL, and VSL parameters were assessed with a CASA, using existing 

species-specific evaluation parameters for bucks. Preset values for the instrument were as 

follows: for the Basler camera, which can take 60 frames per second, image brightness of 

60, contrast of 750, and light of 1000 were adjusted. The minimum average path at 50 μm/s 

and >50% progressive motility were accepted. Motility parameters of static, slow (>40 μm/s), 

medium (>70 μm/s), and rapid (>100 μm/s) were set; and kinematic parameters of VCL (>80 

μm/s), VSL (>50 μm/s), and VAP (>25 μm/s) were set. 5 µL of each sample was evaluated 

on microscopic slides covered with a coverslip.  

 

For each sample, 200 to 300 spermatozoa in three different areas were analyzed to evaluate 

the motility. Total motility was taken as the sum of progressive and non-progressive motility. 

The curvilinear velocity (VCL: μm/s) is the time-averaged velocity of a sperm head along its 

actual curvilinear path as perceived in two dimensions with the microscope. The VSL is a 

measure of the time-average velocity (μm/s) of the centroid of the sperm head along the 

straight-line trajectory between its first and last points. It is computed by finding the total 

distance travelled along the linear path divided by the acquisition time. The VAP is a 

measure of the time-average velocity (μm/s) of the centroid of the sperm head along the 

smoothed trajectory, which is constructed by averaging several points on the actual 

curvilinear path. It is computed by dividing the length of the smoothed track by the 

acquisition time. 
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The LIN (%) refers to the linearity of the curvilinear path and is calculated as (VSL/VCL) X 

100, it was previously described as a progressiveness ration. Straightness STR (%) 

measures the linearity of the average path and is calculated as (VSL/VAP) X 100, the STR 

was formerly known as linear index (Stephens et al., 1988). The Wobble WOB (%) 

measures the magnitude of the oscillation of the actual path around the average path, 

formerly called curvilinear progressiveness ratio and is calculated as (VAP/VCL) X 100 

(Stephens et al., 1988). 

 

The amplitude of lateral head displacement (ALH) measures the degree of lateral 

displacement of the sperm head's centroid around its average path (μm). The ALH can be 

determined mathematically by measuring the length of the risers, which are straight lines 

extending between each point on the average path and its corresponding point on the actual 

curvilinear path. The ALH value can be calculated from the maximum riser value, which is 

then doubled to give the track-maximum measurement (ALHmax), or from the averaged riser 

values to be doubled and expressed as the track-average measurement (ALHmean) 

(Mortimer, 1994). 

 

Beat/cross frequency (BCF) indicates the frequency (hertz [Hz]) with which the curvilinear 

path crosses the average path; such crossovers occur two times within each flagellar beat 

cycle. Therefore, BCF is considered a measure of the flagellar beating frequency as a new 

flagellar beat is initiated once the actual sperm trajectory crosses the average path. BCF 

provides further indication of the frequency of the rotational movement of the sperm head 

around its longitudinal axis of progression, providing the sperm head rotates by 180 degrees 

at the peak of each lateral displacement with each beat initiation (Mortimer, 1997). 

 

Sperm were classified as medium-speed spermatozoa when their velocity was between 45 

and 75 µm/s, and as rapid spermatozoa when their velocity was >75 µm/s. Spermatozoa 

were considered progressively motile when they travelled straight over at least 80% of their 

trajectory. 

 

5.2.4. Semen cryopreservation 

In the Fig. 5.1 is showed the experimental design of semen cryopreservation process for 

experiment 1 and 2. For all experiments, clarified egg yolk extender supplemented with 

vitamin C, E and their combination was used except for the extender considered as control 

and Se experiment where extender was not supplemented with antioxidant. The clarified 

egg-yolk extender was prepared as described by Wall and Foote (1999). 
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Fig. 5.1. The experimental design of semen cryopreservation process for experiment 1 and 

2. 

 

Experiment 1: Effects of different concentrations of vitamin C and E added in freezing 

extender on cooled and post-thaw sperm quality of Saanen buck semen. 

Ejaculates from eight bucks (no Se supplemented) collected on the same day were pooled 

to eliminate individual differences. Each pool of semen was divided into 5 aliquots and 

diluted with five extenders containing different vitamin concentrations of vitamin C (3 and 4 

mM), vitamin E (2.4 and 4.8 mM), and control (no-supplemented). The extenders were 

added in two steps: solution A (without glycerol) was added in the first step at 33oC, to obtain 

a sperm concentration of 150x109 sperm/ml. Diluted semen was cooled for 2 h in a 

refrigerator at 4oC, followed by the addition of an equal volume of solution B (containing 16% 

glycerol) at 4oC to obtain a final sperm concentration of 75×109 sperm/ml and equilibrated for 

2 h. After equilibration time, the semen samples were aspirated into 0.25 mL French straws 

and sealed with polyvinyl alcohol powder and suspended in liquid nitrogen vapor inside a 

Styrofoam box container at height 4 cm above liquid nitrogen for 10 min. They were 

subsequently submerged into liquid nitrogen at –196 °C, where they were stored at –196 °C 

for 24 h before analysis (Naing et al., 2010). Immediately after cooling, semen samples were 
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evaluated subjectively for pre-freezing sperm parameters, while post-thaw evaluation was 

performed 24 h after freezing using a phase contrast microscope (OLYMPUS, CX21FS1; 

Tokyo, Japan). 

 

Experiment 2: Effects of equilibration times and different antioxidants on frozen-thawed 

Saanen buck sperm 

Since 4 mM of vitamin C and 4.8 mM of vitamin E produced better results in experiment 1 at 

thawing, these concentrations were used in this experiment. The experiment was conducted 

in two steps: the first step determined the antioxidative capacity of vitamin C, E and their 

combination (C+E) on post-thaw sperm motility and kinematic parameters of Saanen buck 

semen. In the second step, since the combination of vitamin (C+E) produced higher sperm 

quality at thawing in first step it was used to determine optimal equilibration time. 

 

In the first step: The pooled ejaculates from no Se supplemented animals were divided into 

four aliquots. The first aliquot was diluted with extender containing 4 mM of vitamin C, the 

second aliquot with extender containing 4.8 mM of vitamin E, the third aliquot with extender 

containing combination of vitamin C (4 mM) and E (4.8 mM) and the fourth aliquot was 

considered as a control (without antioxidant).  

 

In the second step: The pooled ejaculates were divided into two parts. The first part was 

diluted with extender containing the combination of vitamin (C+E) and the second part was 

considered as the control. After cooling at 4oC for 2 h, each part (treatment and control) was 

diluted with Fraction B containing 16% glycerol at 4oC and subdivided into three aliquots 

each and maintained at 4oC for 2, 4 and 6 h (equilibration time) respectively. After 

equilibration, samples were frozen as described in experiment 1. Post-thaw sperm quality 

evaluation was carried out 24 h after freezing using CASA system as described in previous 

section. 

 

Experiment 3: Effect of selenium supplementation on sperm motility and kinematic 

parameters of cooled and post-thaw based on different equilibration times 

Figure 5.2 illistrates experimental the design for experiment 3 on the effect of selenium 

supplementation based on different equilibration times. Bucks were grouped into two groups 

comprising of 4 animals per group (Se-supplemented and control group). The Se 

supplemented animals were from a group that was continuously fed Se from chapter 3 

section (3.2.3). Semen was collected using the AV method, diluted and evaluated as 

described in chapter 3 sections (3.2.5) and (3.2.6). The pooled ejaculates from main groups 

(Se-treated and control) were diluted with no antioxidant added freezing extender as 
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described in chapter 4 section (4.2.5). The diluted samples were further subdivided into 

three aliquots corresponding to equilibration times (2, 4 and 6 h) respectively and frozen as 

in experiment 1 paragraph (5.2.4). 

 

 

 

 

 

 

 

 

Fig. 5.2. Experimental design for experiment 3 on effect of selenium supplementation based 

on different equilibration times 

5.2.5. Post-thawing sperm analysis 

Sperm quality was evaluated after thawing. A minimum of 3 straws from each treatment 

were thawed at 37 °C for 30 s in a water bath 24 h after freezing for quality evaluation. A 

sample of semen was transferred to a warm slide and the motility variables were measured 

as described in section (5.2.3) using CASA system. 

 

5.3. Statistical analysis  

The effects of treatment (vitamin C, E or their combination) and equilibration times were 

analyzed using the repeated measures option of the General Linear Model procedure of 

SPSS (Version 13) computer program (2015). In this model, the different treatments and 

equilibration time were considered as intra-subject factors. ANOVA for repeated measures 

with the treatments (vitamin C. E or their combination C+E) as intra-subject factors was also 

performed to determine their effect on the quality of frozen-thawed semen. When ANOVA 

revealed a significant effect the values were compared using the Duncan‟s multiple range 

tests. A probability of p<0.05 was considered to be statistically significant. Pearson‟s 

correlation coefficient was also calculated to verify the relationships among the different 

variables when the variance of the pairs of observations was independent. 
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5.4. Results  

Experiment 1: Effects of different concentrations of vitamin C and E added in freezing 

extender on cooled and post-thaw sperm quality of Saanen buck semen. 

Table 5.1 and 5.2 show the effect of different concentrations of vitamin C and vitamin E on 

cooled and frozen-thawed buck sperm evaluated subjectively. In cooled semen, the 

percentages of sperm motility and acrosome integrity increased significantly (p<0.001) in the 

extender supplemented with 4 mM of vitamin C compared to other concentrations and the 

control group. No differences were observed between extenders supplemented with 4 mM 

vitamin C and 4.8 mM vitamin E in terms of sperm normal morphology and viability which 

were lower in other concentrations and the control group. The percentages of abnormal 

sperm decreased significantly (p<0.001) in the control group compared to supplemented 

groups. 

No differences were observed in frozen-thawed semen between extenders supplemented 

with 4 mM of vitamin C and 4.8 mM of vitamin E regarding percentages of sperm motility and 

viability which were significantly (p<0.001) lower when other concentrations (3 mM of vitamin 

C and 2.5 mM of vitamin E) and control group were used. The percentages of sperm normal 

morphology increased significantly (p<0.001) in extender supplemented with 4.8 mM of 

vitamin E compared to other vitamin concentrations and control group. The percentages of 

sperm acrosome integrity were significantly (p<0.001) higher in extender supplemented with 

4 mM of vitamin C compared to other vitamin concentrations (3 mM of vitamin C and 2.5 mM 

of vitamin E) and control groups. The percentages of abnormal sperm decreased 

significantly (p<0.001) in extender supplemented with 4.8 mM of vitamin E compared to 

other concentrations and control groups. 

 

Table 5.1. Effects of different concentrations of vitamin C and E in buck semen extender on 
overall cooled sperm characteristics (Mean±SEM)   
Parameter Vitamin 

concentration 
(mM) 

Sperm 
motility 
(%) 

Normal 
morphology 
(%) 

Acrosome 
integrity 
(%) 

Viability 
(%) 

Abnormal 
sperm (%) 

Vitamin C 4 69.9±0.79
a
 77.5±0.21

a
 76.7±0.02

a
 76.0±0.02

a
 22.4±0.24

d
 

3 63.7±0.71
b
 74.7±0.23

b
 73.9±0.23

c
 70.7±0.21

c
 25.1±0.28

c
 

Vitamin E 2.4 61.3±0.70
c
 72.9±0.50

c
 72.7±0.32

d
 73.1±0.31

b
 26.8±0.56

b
 

4.8 64.4±0.71
b
 76.4±0.51

a
 74.9±0.31

b
 76.8±0.32

a
 23.5±0.61

d
 

Control 0 60.3±0.74
c
 70.5±0.30

d
 70.6±0.44

e
 69.7±0.03

c
 29.4±0.38

a
 

Means with different superscripts in a column differ significantly at P<0.001  
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Table 5.2. Effects of different concentrations of vitamin C and E in buck semen extender on 
overall frozen-thawed sperm characteristics (Mean±SEM)   
Parameter Vitamin 

concentration 
(mM) 

Sperm 
motility (%) 

Normal 
morphology 
(%) 

Acrosome 
integrity 
(%) 

Viability 
(%) 

Abnormal 
sperm (%) 

Vitamin C 4 57.1±0.8
a
 68.9±1.00

b
 71.2±0.50

a
 72.6±0.51

a
 31.3±0.08

a
 

3 52.5±0.8
cb

 66.7±1.21
b
 69.1±0.61

bc
 68.4±0.42

b
 33.1±0.28

a
 

Vitamin E 2.4 53.5±0.1
b
 67.2±0.25

b
 68.1±0.50

c
 68.2±0.34

b
 33.0±0.19

a
 

4.8 57.6±0.6
a
 72.7±0.56

a
 70.1±0.32

ba
 71.9±0.33

a
 27.2±0.23

b
 

Control 0 50.8±0.5
c
 68.6±0.17

b
 69.2±0.41

bc
 67.6±0.40

b
 32.3±0.14

a
 

Means with different superscripts in a column differ significantly at P<0.001 

 

Experiment 2: Effects of equilibration times and different antioxidants on frozen-thawed 

Saanen buck sperm 

Overall motility patterns exhibited by spermatozoa during the cooling and freezing-thawing 

process as determined by CASA method are presented in Figure 5.3 and 5.4. In cooled 

semen, significantly (p<0.001) higher percentages of total motility, rapid-speed sperm and 

progressive motility were observed in extender supplemented with the combination of 

vitamins (C+E) compared to vitamin C and E alone. In frozen-thawed semen, the proportions 

of total motility, rapid and medium-speed sperm in extender supplemented with the 

combination of vitamin C+E were significantly (P<0.001) higher compared to vitamin C and E 

alone.  
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Fig. 5.3. Overall (Mean±SEM) for sperm motility parameters of cooled Saanen buck semen 

stored in extenders supplemented with vitamin C, E and their combination (C+E). Error bar = 

SEM and 
ab

 bars with different letters differ significantly at p<0.001. 

 

 

 

 

 

 

 

 

Fig. 5.4. Overall (Mean±SEM) for sperm motility parameters of frozen-thawed Saanen buck 

semen stored in extenders supplemented with vitamin C, E and their combination (C+E). 

Error bar = SEM and 
ab

 bars with different letters differ significantly at p<0.001. 

 

Overall sperm kinematic parameters exhibited by spermatozoa during the cooling and 

freezing-thawing process as determined by CASA method are presented in Table 5. 3 and 

5.4. In cooled semen, significantly (p<0.001) higher values were recorded for sperm 

kinematic parameters such as VCL, VSL and LIN in the extender supplemented with the 

combination of (C+E) compared to vitamin C and E alone. Similarly, the values of WOB were 

significantly (p<0.001) higher in extender supplemented with vitamin C alone. In frozen-

thawed semen, sperm kinematic parameters such as VCL, VSL and BCF in extender 

supplemented with the combination of vitamin C and E were significantly (p<0.001) higher 

compared to semen suspended in vitamin C and E alone. The parameter LIN in vitamin C 

supplemented semen was significantly higher compared to semen extender with vitamin E 

and their combination vitamins (C+E).  
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Table 5.3. Overall (Mean±SEM) of Saanen buck sperm kinematic parameters of cooled semen diluted in extenders supplemented with vitamin 
C, E and their combination (C+E)  

 VCL(µm/s) VSL(µm/s) VAP(µm/s) LIN (%) STR (%) WOB (%) ALH (µm) BCF (Hz) 

Vitamin C 100.6±0.63
c
 54.1±0.11

b
 78.2±1.16

a
 67.8±1.23

b
 85.6±0.93

a
 86.0±0.81

a
 3.1±0.36

b
 17.1±1.42

a
 

Vitamin E 105.1±0.33
b
 53.1±1.13

b
 75.6±1.31

b
 66.2±1.32

b
 86.6±1.00

a
 70.1±0.61

c
 4.6±0.38

a
 14.1±1.26

b
 

Vitamin (C+E) 111.1±0.11
a
 57.2±1.20

a
 79.2±0.03

a
 71.1±1.24

a
 86.3±0.66

a
 82.1±1.09

b
 4.1±1.73

a
 17.3±0.42

a
 

Control 98.3±1.11
d
 48.2±1.11

d
 73.1±0.11

cb
 63.1±0.32

c
 85.1±1.20

a
 71.2±1.71

c
 2.6±1.38

c
 14.4±0.43

b
 

Means with different superscripts in a column differ significantly at p<0.001. 

 
Table 5.4. Overall (Mean±SEM) of Saanen buck sperm kinematic parameters of frozen-thawed semen stored in extenders supplemented with 
vitamin C, E and their combination (C+E)  
 VCL(µm/s) VSL(µm/s) VAP(µm/s) LIN (%) STR (%) WOB (%) ALH (µm) BCF (Hz) 

Vitamin C 61.8±1.53
bc

 37.2±1.21
b
 53.2±1.16

a
 64.8±1.23

a
 78.6±0.93

a
 83.1±0.71

a
 1.8±0.36

b
 14.3±4.32

b
 

Vitamin E 62.3±1.43
b
 38.8±1.13

b
 50.2±1.31

b
 60.2±1.32

b
 77.6±1.00

a
 79.2±0.61

b
 2.6±0.38

a
 13.9±0.46

b
 

Vitamin (C+E) 64.1±1.10
a
 41.1±1.01

a
 52.2±1.52

a
 61.0±1.00

b
 77.1±1.15

a
 84.5±0.12

a
 2.6±0.55

a
 18.1±3.02

a
 

Control 59.4±0.13
c
 36.8±1.15

b
 49.1±0.11

b
 57.1±0.32

c
 78.1±1.20

a
 78.2±1.71

b
 1.6±1.38

c
 12.±1.43

b
 

Means with different superscripts in a column differ significantly at p<0.001
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Significant differences were recorded between the vitamins (C+E) supplemented extender 

and control with respect to the kinematic parameters of the rapid (Fig. 5.5) and medium-

speed spermatozoa (Fig. 5.6). In these treatments, the VCL, VSL, VAP and LIN values 

recorded after addition to freezing extender of the combination of vitamins (C+E) were 

significantly (P<0.001) higher for the rapid spermatozoa compared to control samples. No 

differences were observed in term of STR, WOB, ALH and BCF (Fig. 5.5). For the medium-

speed spermatozoa, the VCL, VSL, VAP, STR and BCF values were significantly (P<0.00) 

higher in vitamins (C+E) supplemented samples than the control. No differences were 

observed in term of LIN, WOB and ALH (Fig. 5.6). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.5. Effects of the combination of vitamins (C+E) on kinematic parameters for rapid-

speed spermatozoa in frozen-thawed sperm (mean±SEM).Error bar = SEM and 
ab

 bars with 

different letters differ significantly at p<0.001. 
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Fig. 5.6. Effects of the combination of vitamins (C+E) on kinematic parameters for medium-

speed spermatozoa in frozen-thawed sperm (mean±SEM). Error bar = SEM and 
ab

 bars with 

different letters differ significantly at p<0.001. 

Table 5.5 shows sperm motility and velocity parameters in frozen-thawed semen stored in 

extender supplemented with the combination of vitamins (C+E) and different equilibration 

times. Rapid and medium speed spermatozoa were significantly (p<0.001) higher during 2 h 

of equilibration time compared to 4 and 6 h. Sperm total and progressive motility were similar 

for both 2 and 4 h of equilibration times. Equilibration time did not have any effect on non-

progressive motility. 

 
Table 5.5. Effect of the combination of vitamins (E+C) on post-thaw sperm motility 
parameters of Saanen buck semen equilibrated at 2, 4 and 6 h (mean±SEM) 
Equilibrati
on times 

 Total 
motility (%) 

Rapid 
speed (%) 

Medium 
speed (%) 

Progressive 
motility (%) 

Non-
progressive 
motility (%) 

2 h Vitamin (C+E) 66.4±1.23
a
 26.9±0.01

a
 31.2±1.10

a
 42.6±1.81

a
 24.1±2.01

a
 

 Control 58.4±1.12
b
 22.4±1.11

cb
 27.9±1.45

b
 38.0±1.63

b
 20.2±0.15

b
 

4 h Vitamin (C+E) 65.7±1.24
a
 24.7±1.11

b
 28.1±1.04

b
 42.2±0.63

a
 23.3±0.45

a
 

 Control 57.3±0.12
c
 21.1±1.11

c
 26.3±1.45

bc
 37.0±0.63

b
 20.2±1.15

b
 

6 h Vitamin (C+E) 60.2±2.12
b
 23.1±1.01

b
 28.1±1.03

b
 36.5±1.34

bc
 24.3±1.65

a
 

 Control 54.4±0.12
d
 20.2±1.11

c
 25.0±1.45

c
 34.0±0.63

c
 19.1±1.15

b
 

Means with different superscripts on a column differ significantly at P<0.001. 

 

Table 5.6 shows sperm kinematic parameters in frozen-thawed semen stored in extender 

supplemented with the combination of vitamins (C+E) and different equilibration times. 

Kinematic parameters VCL, VSL and VAP were significantly (p<0.001) higher during 2 h of 

equilibration compared to 4 and 6 h, while LIN and WOB were significantly (p<0.001) higher 
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during 4 h of equilibration time. The BCF was significantly (p<0.001) higher during 6 h of 

equilibration compared to 2 and 4 h.  
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Table 5.6. Effect of the combination of vitamins (C+E) on post-thaw sperm kinematic parameters of Saanen buck sperm equilibrated at 2, 4 and 
6 h (mean±SEM) 
Equilibration 

times 

Selenium 

treatment 

VCL(µm/s) VSL(µm/s) VAP(µm/s) LIN (%) STR (%) WOB (%) ALH (µm) BCF (Hz) 

2 h Vitamin (C+E) 67.3±1.53
a
 42.1±1.13

a
 56.3±2.16

a
 61.0±1.11

b
 79.5±0.93

a
 77.2±0.67

b
 2.8±0.36

a
 14.3±4.32

b
 

 Control 63.1±0.12
b
 38.1±0.23

b
 53.5±0.13

b
 59.9±1.15

b
 63.1±1.17

b
 76.1±0.09

b
 1.3±1.16

b
 13.2±1.82

b
 

4 h Vitamin (C+E) 62.8±1.43
b
 39.5±0.21

b
 52.3±1.31

b
 65.7±0.23

a
 77.8±1.10

a
 82.3±1.71

a
 2.6±0.38

a
 14.9±0.46

b
 

 Control 60.1±1.12
c
 37.1±1.23

b
 51.5±1.53

b
 55.9±1.15

c
 62.2±1.97

b
 68.0±0.09

c
 1.02±1.14

b
 13.2±0.82

b
 

6 h Vitamin (C+E) 63.0±1.10
b
 38.2±1.01

b
 51.2±1.42

b
 60.3±1.01

b
 78.2±0.15

a
 78.5±0.12

b
 2.6±0.55

a
 18.1±3.02

a
 

 Control 60.1±0.12
c
 34.1±1.23

c
 48.1±1.53

c
 54.9±1.15

c
 63.1±1.97

b
 68.1±0.09

c
 1.2±1.15

b
 14.2±0.82

b
 

Means with different superscripts on a column differ significantly at p<0.001.
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Experiment 3: Effect of selenium supplementation on sperm motility and kinematic 

parameters of cooled and post-thaw based on different equilibration times 

Fresh, cooled and frozen-thawed sperm motility parameters from Se supplemented and 

control bucks are shown in Figure 5.7, 5.8 and 5.9. In fresh semen total, rapid, medium and 

progressive motility were significantly (p<0.001) higher from Se treated bucks compared to 

the control group while the percentage of non-progressive spermatozoa were higher in 

control groups. 

 

In cooled semen the rapid, medium and progressive motile spermatozoa were significantly 

(p<0.001) increased in the Se treatement compared to the control group. No differences 

were observed between semen from the treated and control groups in terms of medium 

speed spermatozoa while non-progressive sperm motility was higher from the control group 

semen. In frozen-thawed semen total, rapid, medium and progressive motile spermatozoa 

were significantly (p<0.001) higher from Se treated bucks compared to control groups while 

no differences were observed between the Se treated and control group semen concerning 

non-progressive sperm motility.  

 

 

 

 

 

Fig. 5.7.Mean values (±SEM) for sperm motility parameters of fresh semen from selenium 

supplemented Saanen buck determined by CASA. Error bar = SEM and 
ab

 bars with different 

letters differ significantly at p<0.001. 
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Fig.5. 8. Mean values (±SEM) for sperm motility parameters of cooled semen from selenium 

supplemented Saanen buck determined by CASA. Error bar = SEM and 
ab

 bars with different 

letters differ significantly at p<0.001. 

 

 

 

 

 

 

Fig. 5.9. Mean values (±SEM) for sperm motility parameters of frozen-thawed semen from 

selenium supplemented Saanen buck determined by CASA. Error bar = SEM and 
ab

 bars 

with different letters differ significantly at p<0.001. 

 

Fresh, cooled and frozen-thawed sperm kinematic parameters from Se supplemented and 

control bucks are shown in Table 5.7 and 5.8. In fresh semen, the spermatozoa VCL, VSL, 

VAP, LIN and STR were significantly (p<0.001) higher in semen from Se treated bucks 

compared to the control group. No differences were observed between the Se treated and 

control group with respect to the spermatozoa with the WOB, ALH and BCF. In cooled 

semen the spermatozoa VCL, VSL, VAP and BCF were significantly (p<0.001) increased in 

semen from Se treated compared to the control group. No differences were observed in 

semen from the treated and control group in terms of LIN, STR, WOB and ALH 

spermatozoa. In frozen-thawed semen the spermatozoa VCL, VSL, VAP, STR and BCF 

were significantly (p<0.001) higher in semen from Se treated bucks compared to control 
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group while no differences were observed between semen from the Se treated and control 

group concerning LIN, WOB and ALH spermatozoa.  
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Table 5.7. Overall (means±SEM) sperm kinematic parameters in fresh semen from selenium supplemented goats  
Selenium treatment VCL(µm/s) VSL(µm/s) VAP(µm/s) LIN (%) STR (%) WOB (%) ALH (µm) BCF (Hz) 

TG 136.1±1.23
a
 92.3±0.16

a
 111.5±1.02

a
 67.4±0.72

a
 69.5±1.52

a
 83.1±1.26

a
 4.2±1.02

a
 14.8±1.43

a
 

CG 123.2±0.32
b
 69.2±1.15

b
 95.2±1.02

b
 60.2±0.42

b
 64.3±1.42

b
 84.2±1.11

a
 4.4±1.01

a
 13.2±0.11

a
 

Means with different superscripts in a column differ significantly at p<0.001. TG: treatment group, CG: control group. 

 

 

Table 5.8. Overall (means±SEM) sperm kinematic parameters in cooled and frozen-thawed semen from selenium supplemented goats 
Selenium treatment VCL(µm/s) VSL(µm/s) VAP(µm/s) LIN (%) STR (%) WOB (%) ALH (µm) BCF (Hz) 

Cooled semen 

TG 108.2±0.02
a
 56.2±1.20

a
 79.2±0.03

a
 57.1±1.24

a
 63.3±1.66

a
 74.1±1.09

a
 4.1±1.73

a
 16.2±0.92

a
 

CG 95.1±0.13
b
 51.3±1.32

b
 73.1±2.23

b
 58.0±0.12

a
 62.1±0.01

a
 73.2±1.05

a
 3.7±0.13

a
 17.1±0.47

b
 

Frozen-thawed semen  

TG 72.5±1.71
a
 54.4±0.42

a
 70.1±1.52

a
 55.2±0.34

a
 68.4±1.11

a
 71.2±0.32

a
 2.2±1.74

a
 16.2±1.12

a
 

CG 65.3±1.12
b
 49.1±1.23

b
 59.2±1.53

b
 54.9±1.15

a
 64.1±1.97

b
 67.1±0.09

b
 2.3±1.16

a
 15.1±0.82

b
 

Means with different superscripts between row, within cooled and frozen semen differ significantly at p<0.001. TG: treatment group, CG: control 

group.
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Significant differences were recorded between the Se treated and control with respect to the 

kinematic parameters of the rapid (Fig. 5.10) and medium-speed spermatozoa (Fig. 5.11). In 

the present study, the spermatozoa VCL, VSL, VAP, STR and ALH values observed in Se 

treated bucks were significantly (P<0.001) higher for the rapid spermatozoa compared to 

control bucks. No differences were observed for LIN, WOB and BCF spermatozoa between 

both Se treated and control (Fig. 5.10). For the medium-speed spermatozoa, the 

spermatozoa VCL, VSL, VAP, STR and BCF values were significantly (P<0.001) higher in 

Se treated bucks than in the control. No differences were observed in term of LIN, WOB and 

ALH spermatozoa (Fig. 5.11). 

 

 

 

 

 

 

 

 

 

 

 

Fig 5.10. Effects of selenium supplementation on kinematic parameters for rapid-speed 

spermatozoa in frozen-thawed sperm (mean±SEM).Error bar = SEM and 
ab

 bars with 

different letters differ significantly at p<0.001. 
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Fig. 5.11.Effects of selenium supplementation on kinematic parameters for medium-speed 

spermatozoa in frozen-thawed sperm (mean±SEM).Error bar = SEM and 
ab

 bars with 

different letters differ significantly at p<0.001. 

Table 5.9 shows the correlation analysis between post-thaw sperm motility and kinematic 

parameters of semen from Se supplemented Saanen bucks. The results showed that sperm 

total motility, rapid, medium-speed and progressive motility were positively correlated 

(p<0.001) with spermatozoa VCL, VSL, VAP, LIN, STR, ALH and BCF. Sperm total motility 

was positively correlated (p<0.001) with rapid, medium-speed and progressive motility. 

Rapid-speed sperm were positively correlated (p<0.001) with medium-speed and 

progressive motility spermatozoa. Medium-speed sperm was positively correlated (p<0.001) 

with progressive motility spermatozoa. 

 

Table 5.9. Pearson correlation coefficients (r) between post-thaw sperm motility and 
kinematic parameters of selenium supplemented Saanen bucks ejaculates 
Parameters r Parameters R 

Total motility and rapid-speed 
sperm 

0.817** Rapid-speed sperm and VSL 0.952** 

Total motility and medium-speed 
sperm 

0.684** Rapid-speed sperm and VAP 0.783** 

Total motility and progressive 
motility 

0.935** Medium-speed sperm and 
progressive motility 

0.591** 

Total motility and VCL 0.892** Medium-speed sperm and VCL 0.784** 
Total motility and VSL 0.956** Medium-speed sperm and VSL 0.852** 
Total motility and VAP 0.794** Medium-speed sperm and VAP 0.563** 
Rapid-sperm and medium-speed 
sperm 

0.583** Progressive motility and VCL 0.792** 

Rapid-speed sperm and 
progressive motility 

0.924** Progressive motility and VSL 0.874** 

Rapid-speed sperm and VCL 0.894** Progressive motility and VAP 0.713** 

**. Correlation coefficient is significant at p<0.001.  
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Table 5.10 shows the correlation analysis among sperm kinematic parameters of Saanen 

bucks. The results showed that sperm VCL was positively correlated (p<0.001) with sperm 

VAP and BCF. Sperm VSL was positively correlated (p<0.001) with spermatozoa VCL, VAP, 

LIN, STR and WOB. Sperm LIN was positively correlated (p<0.001) with sperm STR and 

WOB. A positive correlation (p<0.001) was observed between STR and WOB spermatozoa, 

and between ALH and BCF spermatozoa. 

 

Table 5.10. Pearson correlation coefficients (r) among sperm kinematic parameters of 
selenium supplemented Saanen bucks ejaculates 
Parameters r Parameters R 

VCL and VCL 0.891** VAP and LIN 0.782** 
VCL and VAP 0.912** VAP and STR 0.712** 
VCL and BCF 0.711** VAP and WOB 0.732** 
VSL and VAP 0.952** LIN and STR 0.901** 
VSL and LIN 0.801** LIN and WOB 0.981** 
VSL and STR 0.743** STR and WOB 0.843** 
VSL and WOB 0.812** ALH and BCF 0.666** 

**. Correlation coefficient is significant at p<0.001.  

 

The mean values of sperm motility parameters in frozen-thawed semen of Se supplemented 

and control group equilibrated using different equilibration times are shown in Table 5.11. 

Sperm parameters such as total motility and progressive motility increased significantly 

(p<0.001) when semen was equilibrated for 2 h in Se supplemented bucks compared to 4 

and 6 h of equilibration, and control group. However, rapid and medium spermatozoa were 

similar in both 2 and 4 h of equilibration.  

 

Table 5.11. Sperm motility parameters in frozen-thawed semen of Saanen buck 
supplemented with selenium and equilibrated at different times (mean±SEM) 
Equilibration 
times 

Selenium 
treatment 

Total 
motility (%) 

Rapid 
speed (%) 

Medium 
speed (%) 

Progressive 
motility (%) 

Non-
progressive 
motility (%) 

2 h TG 66.1±0.13
a
 28.1±0.01

a
 36.8±1.13

a
 41.0±0.61

a
 25.1±1.01

a
 

 CG 61.3±0.32
cb

 23.3±1.11
b
 33.0±1.45

b
 37.1±1.63

b
 24.2±0.15

a
 

4 h TG 63.8±1.02
b
 26.8±0.33

a
 37.1±1.03

a
 38.4±1.04

b
 25.4±2.65

a
 

 CG 60.4±0.23
c
 23.3±1.23

b
 30.7±1.23

cb
 37.1±1.41

b
 23.0±1.21

b
 

6 h TG 59.1±1.22
c
 20.1±1.61

c
 28.9±1.75

c
 33.3±0.53

c
 26.1±0.45

a
 

 CG 60.2±0.12
c
 21.4±0.41

c
 27.4±1.43

c
 34.1±1.44

c
 26.2±0.35

a
 

Means with different superscripts on a column differ significantly at P<0.001. 

 

The mean values of sperm kinematic parameters in frozen-thawed semen of Se treated and 

control group equilibrated using different equilibration times are shown in Table 5.12. The 

sperm kinematic parameters such as VCL, STR, WOB and ALH increased significantly 

(p<0.001) when semen was equilibrated for 2 h in semen from Se treated bucks compared 

to the control 4 and 6 h of equilibration, while, sperm VSL, VAP and BCF were similar in both 

2 and 4 h of equilibration of semen from Se treated bucks.  
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Table 5.12. Sperm kinematic parameters of frozen-thawed semen from Saanen bucks supplemented with selenium and equilibrated at different 
times (mean±SEM) 

Equilibration 

times 

Selenium 

treatment 

VCL(µm/s) VSL(µm/s) VAP(µm/s) LIN (%) STR (%) WOB (%) ALH (µm) BCF (Hz) 

2 h TG 69.4±0.51
a
 58.1±0.42

a
 63.2±1.52

a
 66.6±0.34

a
 86.4±0.11

a
 76.2±0.42

b
 3.1±0.74

a
 18.2±1.12

a
 

 CG 66.1±0.12
b
 53.2±1.23

b
 57.5±0.53

b
 65.9±1.15

a
 82.1±1.97

b
 75.1±0.09

b
 2.4±1.16

b
 15.1±0.82

b
 

4 h TG 65.3±0.24
b
 57.9±2.06

a
 59.2±1.65

b
 65.7±7.11

a
 87.5±0.40

a
 79.8±1.37

a
 2.0±0.72

b
 17.2±0.57

a
 

 CG 62.6±0.02
cd

 48.8±1.22
b
 55.8±0.58

bc
 64.9±1.44

a
 86.8±2.11

a
 72.4±0.42

c
 1.3±1.02

c
 13.6±0.60

dc
 

6 h TG 54.9±0.85
e
 47.6±1.41

b
 53.2±0.36

c
 65.4±0.52

a
 87.1±0.71

a
 76.1±0.51

b
 2.2±0.07

a
 11.3±0.06

d
 

 CG 60.0±0.68
e
 48.1±1.45

b
 54.1±1.31

c
 66.9±1.30

a
 86.0±0.15

a
 73.4±1.12

c
 1.3±1.17

c
 14.1±0.17

bc
 

Means with different superscripts on a column differ significantly at p<0.001.
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5.5. Discussion  

Experiment 1: Effects of the different concentrations of vitamin C and E added in freezing 

extender on cooled and post-thaw sperm quality of Saanen buck semen 

The results in the present experiment showed increased percentages of all sperm 

parameters in cooled and frozen-thawed sperm when freezing extender was supplemented 

with 4 mM of vitamin C or 4.8 mM of vitamin E. This suggests that to obtain acceptable 

sperm quality after thawing these vitamins concentrations may be recommended. 

 

The results observed in cooled semen are in agreement with that of Asadpour et al. (2011) 

and Silva et al. (2013), in which they reported increased sperm motility with the addition of 

vitamin C in extender. It seems that vitamin C added to freezing extender protects sperm 

cells better against ROS and consequently improves sperm motility.  

 

The increased percentages of sperm acrosome integrity, normal morphology and viability 

when vitamin C or E was added to freezing extender in cooled semen agrees with the 

findings of   Azawi and Hussein (2013) and Memon et al. (2013).The authors reported an 

increase in percentages of sperm acrosome integrity, normal morphology and viability 

following addition to extender of vitamin C or E in ram and Boer goat semen respectively. 

This can be likely related to an inhibition of lipid peroxidation by these antioxidants in the 

sperm plasma membrane as was revealed by Barati et al. (2011). 

 

On frozen-thawed sperm, it was observed that, 4 mM of vitamin C and 4.8 mM of vitamin E 

showed a suitable protective effect against freezing damages. This indicates that addition of 

vitamin C or E in freezing extenders is necessary due to its ability to quench ROS 

accumulation during cryopreservation. The present results support several studies in bull 

that reported protective effects of vitamin C and E at thawing (Asadpour et al., 

2011;Motemani et al., 2017). The increased sperm motility and viability obtained with 

extender supplemented with vitamin C or E post-thaw is in agreement with other researchers 

who reported increased recovery rate of sperm motility and viability when vitamin C or E was 

added to freezing extender in ram (Silva et al., 2013), buck (Memon et al.,2013) and rooster 

(Min et al., 2016). Memon et al. (2013) also observed an increase in the percentages of 

sperm normal morphology and acrosome integrity post-thaw with the addition of vitamin C or 

E to extender, confirming the findings of the present study. These beneficial effects of adding 

vitamin C to freezing extenders can be attributed to its ability as a water soluble antioxidant 

to react with ROS and thereby protecting sperm cell components such as proteins, lipids and 

nucleic acids against oxidative damages (Donnelly et al., 1999). On the other hand, vitamin 

E, because of its solubility in lipids, might have played a major protective role against OS 
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and prevents the production of lipid peroxides by scavenging free radicals which are toxic 

byproducts in biological membranes (Takanami et al., 2000; Verma and Nair, 2001). On the 

basis of the present results, it is clear that vitamin C and E are very efficient antioxidants and 

their addition to an extender can reduce the OS induced during sperm cryopreservation 

process. 

 

Experiment 2: Effects of equilibration times and different antioxidants on frozen-thawed 

Saanen buck sperm 

Sperm motility and velocity are the most affected parameters during the semen freezing 

process and thus are the main cause for the reduced fertility after freezing-thawing 

processes. In the present study, their increased percentages and values in cooled and 

frozen-thawed sperm suggested that the addition of the combination of vitamins (C+E) better 

protected the sperm membranes against ROS and lipid peroxidation attack than the addition 

of vitamin C or E alone.  

 

Several reports have indicated that increased levels of ROS were significantly correlated 

with decreased motility parameters, including total motility, progressive motility and rapid 

motility (Agarwal et al., 1994; Khosravi et al., 2014). The higher percentages of these 

parameters in cooled semen demonstrate the possible role of the combination of vitamins 

(C+E) in the protection of sperm cells against ROS and lipid peroxidation damage. This 

study also revealed higher values of sperm kinematic parameters such as VCL, VSL and LIN 

when vitamins (C+E) were added to freezing extender in cooled semen. These observations 

suggest that the combined actions of vitamin C and E as water and lipids soluble 

antioxidants may have played a vital role in reducing the oxidation process that 

accompanied sperm metabolism (Bansal and Bilaspurl, 2009). In this way, the sperm 

membrane phospholipids are being maintained in a stable condition and their sensitivity to 

peroxidation is being decreased. Similar to our study, Mittal et al. (2014) reported increased 

sperm motility with the combination of vitamins (C+E), although the authors did not use 

CASA evaluation method. 

 

From frozen-thawed semen, our study shows that the combination of vitamins (C+E) 

produce higher total motility, rapid and medium speed spermatozoa, and also higher sperm 

kinematic parameters such as sperm VCL, VSL and BCF. These results are similar to that 

reported by Mittal et al. (2014) in bull and Min et al. (2016) in roosters sperm evaluated, 

subjectively. They found that supplementing freezing extender with the combination of 

vitamins (C+E) better protected sperm cells against ROS production and increases sperm 

motility in frozen-thawed semen. This indicates that vitamin C and E have considerable 
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synergistic effect and their addition to freezing extender is essential for the maintenance and 

improvement of Saanen buck sperm fertilizing ability post-thaw. It has been reported that 

progressive motility and kinematic parameters such as sperm VCL, VSL and VAP could be 

used to predict the fertilizing capability of the bull spermatozoa (Kathiravan et al., 2011). 

 

This can be explained by the fact that vitamin C can penetrate into mitochondria through 

facilitated glucose transporter and as water-soluble antioxidant with ability to scavenge 

aqueous peroxyl radicals (Wainer et al., 1986). Daramola and Adekunle (2015) reported that 

vitamin C supplementation in stored buck semen improved motility of spermatozoa. On the 

other hand, vitamin E is a major chain-breaking antioxidant in the sperm membrane. Vitamin 

E can inhibit lipid peroxidation reaction in the membrane by eliminating peroxyl (ROO-), 

alkoxyl (RO-), and other lipid-derived radicals (Silva, 2006). The combination of the two 

vitamins (C+E) is superior to individual supplementation due to the ability of vitamin C to 

recycle inactive vitamin E and recover its antioxidant effect (Keshtgar et al., 2012). 

 

In our study, the addition of the combination of the two vitamins (C+E) improved the VCL, 

VSL, VAP and LIN in rapid-speed spermatozoa. The post-thaw sperm velocity (VCL, VSL 

and VAP) parameters also showed the same trend as well as medium-speed spermatozoa, 

including STR and BCF. These findings are in agreement with the findings of Casao et al. 

(2010) and Gallego-Calvo et al. (2015b) in ram and buck semen, respectively. Although the 

authors did not add vitamins (C+E) to freezing extender, they reported an increase in all 

motility parameters except for WOB in the rapid-speed spermatozoa, and all motility 

parameters except for VCL and VAP in the medium-speed spermatozoa of cooled semen in 

the melatonin-treatment period. Therefore, it possible that the combination of vitamins (C+E) 

in the present study played a vital role in protecting and maintaining rapid and medium-

speed spermatozoa motility variables after cryopreservation. The reason for this protective 

effect can be attributed to the ability of the combination of the two vitamins (C+E) to induce 

neutralization of some detrimental metabolic substances, as evidenced by the improvement  

and stabilization of velocity parameters such as VCL, VSL and VAP post-thaw both in rapid 

and medium-speed spermatozoa. It can be assumed that that the combination of vitamins 

(C+E) exerts its influence by moderating or inhibiting the oxidation process that 

accompanies sperm metabolism. In this way, the sperm membrane phospholipids are being 

maintained in a stable condition and their sensitivity to peroxidation is being decreased 

(Kirilova et al., 2015). 

 

The higher post-thaw rapid and medium-speed sperm motility, and kinematic parameters 

such VCL, VSL and VAP when the combination of vitamins (C+E) and 2 h of equilibration 
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were used, suggest that addition of antioxidant to freezing extender is very important during 

equilibration time to protect sperm cells against LPO induced damages. Contrary to our 

results Almeida et al. (2017) found no beneficial effects of the combination of catalase or 

superoxide dismutase and 0, 4 or 6 h of equilibration on sperm kinetics, plasma and 

acrosomal membrane integrity of frozen-thawed bull epididymis spermatozoa. Mehdipour et 

al. (2016) also observed no differences between equilibration times (0 and 4 h) for sperm 

samples frozen with or without antioxidants in ram. This discrepancy can be attributed 

mainly to differences in antioxidants and animal species used. 

 

The higher post-thaw sperm total motility and progressive motility when the combination of 

vitamins (C+E) and 2 or 4 h equilibration time were used confirm the results of 

Sundararaman and Edwin (2008) and Ranjan et al. (2015) who reported an optimal 

equilibration time of 2 and 4 h when freezing buck semen. This suggestes that the 

equilibration time of 2 or 4 h is appropriate to allow glycerol in the freezing extender to work 

optimally to prevent the formation of ice crystal, thereby inhibiting the death of spermatozoa 

(Eriani et al., 2017). It has also been reported that 2 to 4 h is the most suitable duration for 

sperm cryopreservation (Yi et al., 2002). 

 

The higher post-thaw sperm LIN and WOB when the combination of vitamins (C+E) and 4 h 

of equilibration were used implies that the addition of antioxidant to freezing extender 

allegedly affects equilibration period. Regardless of the antioxidant addition to freezing 

extender, similar to our results Shah et al. (2016) observed maximum post-thaw recovery 

with 4 h of equilibration than other equilibration periods. This equilibration period is 

considered as a long equilibration time in buck cryopreservation. Anzara et al. (2011) stated 

that in the long equilibration time, lipoproteins in egg yolk interact with the plasma membrane 

of spermatozoa to be prepared for low temperature.  

 

The improved post-thaw sperm BCF when the combination of vitamins (C+E) and 6 h 

equilibration were used support the findings of Belala etal. (2016) who reported increased 

post-thaw percentages of motile and progressive spermatozoa when freezing canine semen. 

The higher sperm BCF indicated that longer equilibration time was more effective at 

preserving some sperm kinematic parameters. Câmara et al. (2016) also observed higher 

sperm total motility at thawing with the combination of catalase and prolonged equilibration 

time of 12 h. This can be attributed to the modifications occurring in the spermatozoa 

membrane enabling adaptation to low temperature and increasing of cryo-tolerance of 

spermatozoa (Okano et al., 2004). These modifications may be associated with the duration 

of equilibration time. It is, therefore, suggested that if the equilibration time is within the 
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range of 2 and 6 h it will help spermatozoa to stabilize in extended environment to maintain 

homeostasis, osmotic and cryo-tolerance (Herold et al., 2006). 

 

Experiment 3: Effect of selenium supplementation on sperm motility and kinematic 

parameters of cooled and post-thaw based on different equilibration times 

The observed higher values of sperm kinematic parameters such as VCL, VSL, VAP, STR 

and BCF in fresh, cooled and frozen-thawed semen in Se supplemented bucks agrees with 

other studies in human (Rezaeian et al., 2016) and ram (Baiomy et al., 2009). The authors 

reported that the use of Se as a component of antioxidant system optimized sperm 

parameters such motility after freeze-thawing procedures. The parameters VCL, VSL and 

VAP are measures of sperm progressive velocity and are revealed to play a vital role in 

sperm competition (Malo et al., 2005). They have also been suggested as potential reliable 

indicators of male fertility (Farooq et al., 2017; Santolaria et al., 2015). BCF is one of the 

useful parameters that contribute substantially to the overall sperm linear progression. It 

indicates the rate at which the curvilinear path crosses the average path. The sensitivity of 

these parameters to the deleterious effects of LPO has been reported to be higher than that 

of the total motility (Ayad, 2018). Therefore, the increases of these parameters in the current 

study indicate the importance of Se in the alleviation of ROS-induced oxidative damage, thus 

reducing the cytotoxicity to spermatozoa. This suggestes that Se was more effective at 

preserving flagellar structures and stimulate ATP production, by affecting sperm 

mitochondrial oxidative phosphorylation. Therefore, enhancing enzymatic rates of adenosine 

triphosphate (ATP)-utilizing and ATP-regenerating pathways of the sperm, which are 

assessed by motility and oxygen consumption of the sperm (Marin-Guzman et al., 2000).  

 

The higher values of sperm kinematic parameters such as VCL, VSL, VA P and STR in both 

rapid and medium-speed spermatozoa, in Se supplemented bucks indicates that Se played 

an indispensable role to protect sperm cells against ROS, thus increasing sperm motility 

after cryopreservation. The same increase was observed for ALH in rapid-speed and BCF in 

medium-speed spermatozoa. However, there is no study about the protective effect of Se on 

the buck‟s rapid and medium-speed spermatozoa for comparison with our study. Other 

authors also examined separately post-thaw rapid and medium-speed spermatozoa in 

bucks. They found no differences in terms of kinematic parameters in both sperm 

subpopulations (Gallego-Calvo et al., 2015a; Gallego-Calvo et al., 2015b). This can be 

explained by the fact that, authors did not supplement animals with Se or any other 

antioxidant prior to semen cryopreservation. Their studies focused on seasonal changes in 

sperm variables. It is known that during the cryopreservation the OS levels and ROS 

production are increased. The supplementation of animal with a suitable antioxidant ensures 
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a good protection of the spermatozoa. In the present study, Se supplementation may have 

contributed to the preservation of the energy potential of the rapid and medium-speed 

sperm, which is important for the fertilization ability (Kirilova et al., 2015).  

 

As would be expected the positive correlation between spermatozoa motility and kinematic 

parameters (VCL, VSL, VAP, LIN, STR, ALH and BCF) in Se supplemented bucks support 

the findings of Perumal et al. (2014) who reported positive correlation between total motility, 

progressive motility and kinematic parameters in freezable Mithun Semen. Some studies 

also reported also in bull and rabbit a strong correlation between sperm progressive motility 

and velocity parameters (Januskauskas et al., 2003; Lavara et al., 2005), indicating that 

spermatozoa with forward motility and a straight linear path may cover more distance in a 

short period of time so that they can reach the oocyte and be able to penetrate the zona 

pellucida (Conell et al., 2002). Sperm motility and some kinematic parameters are essential 

for the sperm to achieve fertilization. Farrell et al. (1996) and Perumal et al. (2011) found 

that sperm motility and kinematic parameters such as progressive motility, VSL, VCL, ALH, 

and LIN were correlated with bull fertility. 

 

The rapid and medium-speed sperm were also positively correlated with sperm progressive 

motility and kinematic parameters (VCL, VSL, VAP, LIN, STR, ALH and BCF). This indicates 

that there is similarity of sperm velocity pattern between both subpoputation of buck‟s 

ejaculates. However, there is no study describing correlations between rapid and medium-

speed with sperm kinematic parameters of post-thawed buck semen assessment by CASA.  

The positive correlation between various spermatozoa kinematic parameters detected in the 

present study has also been reported previously by Inanç et al. (2018) in bull. The authors 

detected the highest positive correlationbetween the VCL and VAP followed by WOB and 

LIN. They also reported a positive correlation between VSL with LIN and STR. The same 

trend was observed between VAP with LIN, STR and WOB. In a study conducted on Mithun 

semen, Perumal et al. (2014) reported positive correlations between VCL, VSL, VAP, and 

BCF, between VSL and VCL, and between ALH and BCF in accordance with the present 

study. In other studies, a strong and highly significant correlation was also found between 

STR and LIN in bulls (Januskauskas et al., 2003). These observations suggested that sperm 

kinematic parameters are correlated and interrelated among themselves. 

 

The combination of equilibration time plus the beneficial effects of Se supplementation 

significantly increased the post-thaw percentages of sperm total and progressive motility as 

well as the values of sperm kinematic parameters such as VCL, VAP, STR and ALH when 

semen was equilibrated for 2 h. These results are similar to those reported in ram by 



 
 

98 
  

 

Câmara et al. (2016), who tested other antioxidants (catalase) besides Se, although they 

used a longer equilibration time of 12 h. Anzar et al. (2011) reported the beneficial effects of 

equilibration on plasma and acrosomal membranes of sperm.  

 

The higher percentages of rapid and medium speed spermatozoa as well as the values of 

sperm kinematic parameters such as VSL, WOB and BCF in Se supplemented samples 

when 2 or 4 h of equilibration were used agrees with previous study which reported 

increased sperm motility and viability post-thaw when semen samples were equilibrated for 2 

or 4 h (Ahmad et al., 2015), although the authors did not use CASA technique to evaluate 

sperm quality. It can be suggested that the combination of Se supplementation and 

equilibration time of 2 and 4 h used in the present study enabled the sperm to resist cold 

shock stresses during cryopreservation of buck semen, as it yielded some improvements in 

motility and kinematic parameters of frozen-thawed buck sperm. It is believed that this 

duration of equilibration may help sperm reach an osmotic equilibrium following 

supplementation of Se, probably due to biochemical balance between ROS generation and 

scavenging and supporting physiological aspects of sperm cell metabolism. We inferred that 

the interaction between equilibration time and Se supplementation was necessary to 

preserve sperm motility and velocity parameters during cryopreservation. 

 

5.6. Conclusion  

In summary, according to subjective evaluation, our findings suggested that vitamin C and E 

at the concentrations of 4 and 4.8 mM respectively, can be efficient for preservation of buck 

spermatozoa in cooled and frozen-thawed semen. Based on objective analysis, there were 

some significant interactions between antioxidants and equilibration time which lead to an 

increasing trend of sperm survival.The combination (4 mM vitamin C and 4.8 mM vitamin E) 

added to freezing extender yielded an increased tendency of post-thaw sperm motility and 

velocity parameters, and when combined with 2 or 4 h equilibration, resulted in increased 

quality of frozen-thawed semen. Furthermore, dietary Se supplementation and 2 or 4 h 

equilibration during cryopreservation was essential for maintaining motility and velocity 

parameters as evidenced by higher sperm survival in cooled and frozen-thawed semen. 
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CHAPTER 6 

General conclusion, recommendations and critical evaluation  

 

6.1. General conclusion and recommendations 

Maintaining the highest fertilizing potential of semen through the freezing-thawing process 

requires the best available conditions for cryopreservation. Despite many attempts to 

optimize the freezing-thawing conditions to improve post-thaw sperm quality, spermatozoa 

still fail to survive the freezing and thawing process. Specific problems limiting post-freezing 

properties of goat semen are the LPO, formation of ice crystals when fast cooling rates are 

used and development of regions of high solute concentrations when slow rates of cooling 

are employed. The quality of cryopreserved semen depends on the interactions between 

extender, cooling rate and equilibration time. In this regard, dietary antioxidant 

supplementation or its inclusion to well defined extender prior to the freezing process is 

essential to combat excessive production of ROS. This includes optimization of cooling rate 

to prevent sperm cell damage due to formation of intracellular ice and hypertonic solutions. 

 

The experiment, which was conducted to determine the antioxidative effect of orally 

supplemented sodium selenite on reproductive performance, showed that oral 

supplementation with selenium in the form of sodium selenite significantly improved testis 

measures and semen characteristics of Saanen bucks. In addition, better quality semen can 

be obtained by supplementing bucks with Se and collecting the semen using AV method. 

Selenium supplementation also increased plasma concentration of LH and testosterone as 

well as GSH-Px activity. The oral supplementation of sodium selenite could possibly be used 

as supplementary diet, since in many parts of the world plants do not provide adequate Se to 

meet dietary requirements. In South Africa goats and sheep are produced under an 

extensive production system. Therefore, oral selenium supplementation may be a preferred 

method .In addition, Se is not distributed evenly across the planet; rather concentrations 

differ markedly depending on local conditions. Climate also exerts a very significant effect on 

the incidence of Se deficiency, mainly during winter in South Africa. Based on this, oral 

supplementation of Se might be necessary and a more applicable method, especially for 

animals depending on Lucerne diet or pastures. This is because the Lucerne or pastures 

may be produced from Se-deficient environments, since not all Se-deficient areas in South 

Africa have been mapped.  

 

It can be noted that, the oral selenium supplementation may not be applicable to commercial 

semi-intensive producers, since these farmers supplement their animals with diets 

containing vitamins, minerals and trace elements such as selenium (in the form of a premix). 
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The use of various premixes is necessary as they have positive effects on maintenance, 

growth, health and milk production as well as reproductive performance.  

The current work demonstrated that buck sperm total motility decreased with every step of 

cryopreservation (cooling, equilibration and frozen storage). However, the outcome of the 

cryopreservation process depends on the protocol used in diluting semen with different 

extenders and additives as well as the use of different cooling, freezing and thawing rates. 

The influence of freezing medium composition is of great importance for sperm survival 

during cryopreservation. The experiment conducted to study the effects of dietary Se 

supplementation, cooling rates and different extenders on buck semen cryopreservation 

demonstrated that, spermatozoa survived the freezing-thawing cycle better in clarified egg 

yolk extender under conditions where slow cooling was used. This indicates that clarified 

egg yolk can be used to replace whole egg yolk thus ensuring less viscosity due to removal 

of granules through centrifugation process and a more homogeneous composition of the 

extender. In addition, all sperm parameters studied showed an increasing trend when bucks 

were supplemented with Se prior to sperm cryopreservation. This suggests that 

supplementing animals with Se, then using clarified egg yolk extender followed by slow 

cooling; may be a useful combination to improve sperm quality post-thaw. It improves sperm 

quality by preventing the production and propagation of reactive oxygen species in goat 

semen. Furthermore, some sperm parameters were similar in both clarified egg yolk and 

whole egg yolk extenders in Se supplemented bucks. This suggests that, regardless of 

freezing extender type, spermatozoa were more resistant to cryo-injury when bucks were 

supplemented with Se before starting cryopreservation process. Sodium selenite seems to 

be more effective in enhancing the antioxidant enzyme capacity of the sperm cells by 

increasing the activities of plasma glutathione peroxidase (GSH-Px) content as evidenced in 

the previous chapter. However, the fertilizing ability of sperm preserved using this 

combination still need more detailed investigation. 

 

The semen cryopreservation process causes oxidative stress on the sperm membrane, 

leading to irreversible sperm cells damage and changes in enzymatic activity associated with 

a reduction in sperm motility, functional membrane integrity and fertilizing ability. Our 

preliminary experiments on the addition of vitamin C at the concentration of 4 mM and 

vitamin E at 4.8 mM to freezing extender provided superior results of cooled and frozen-

thawed sperm compared to other concentrations. These preliminary experiments were the 

basis for the current study where it was proposed that addition of the combination of vitamins 

(C+E) to semen extender could improve spermatozoa motility and velocity parameters in 

cooled and frozen-thawed semen. In the context of this proposition, clarified egg yolk 
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extender was added with the combination of vitamins (C+E) and compared to vitamin C and 

E alone to establish the extender most suitable for buck semen cryopreservation. It was 

observed that the combination of vitamins (C+E) yielded an increased post-thaw sperm 

quality with substantial improvement of sperm motility and velocity parameters. Furthermore, 

addition of the combination of vitamins (C+E) to freezing extender before freezing, combined 

with 2 or 4 h equilibration time also increased the resistance of the outer acrosomal 

membrane and overlying plasma membrane to cryo-injury. This resulted in an increased 

tendency of sperm motility and velocity parameters in cooled and frozen-thawed 

semen.Thus, it is possible to use the combination of vitamins (C+E), especially when 

animals are not supplemented with an antioxidant prior to semen cryopreservation, to 

maintain an acceptable percentage of motile sperm and values for most kinematic 

parameters related to sperm progressive motility. 

 

The antioxidant capacity of the sperm cell is limited due to a small cytoplasmic component, 

which contains these antioxidants to scavenge the oxidants. In addition, the concentration of 

these antioxidants may decrease considerably by the dilution of the semen. Sperm may 

however be incapable in preventing LPO during the freezing–thawing process. Based on 

this, utilization of dietary Se supplementation prior to semen cryopreservation to boost 

natural antioxidants of animals could be recommended. In the present study, dietary Se 

supplementation reduced the impact of ROS induced damage due to LPO as evidenced by 

the increased sperm motility and velocity parameters in fresh, cooled and frozen-thawed 

semen. In an attempt to establish the relationship between Se supplementation and 

equilibration times for buck semen in the current study, the effect of the dietary 

supplementation of Se and different equilibration times on frozen-thawed sperm motility and 

velocity parameters was investigated. The results show that the combination of Se 

supplementation and 2 or 4 h equilibration period yielded an increasing trend of sperm 

motility and velocity parameters.This implies that Se supplementation in combination with 

short period of equilibration proved to be better than longer period.  

 

Thus, this improvement in sperm motility and kinematic parameters might indicate that, if 

animals are supplemented with dietary Se or freezing extender is supplemented with the 

combination of vitamin (C+E), there is more chance of reducing ROS responsible for 

reduced sperm quality and fertility during cryopreservation. However, the extent of vitamin C 

and E addition to freezing extender and oral Se supplementation need further attention in 

order to clarify their optimal concentration levels for sperm protection when used in 

combination. 
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6.2. Critical evaluation 

Although the present study has reached its aims and objectives, there are always avenues 

to explore for improvement and a number of shortcomings and limitations were identified. 

Firstly, this study highlights the effect of different antioxidants on buck spermatozoa during 

semen cryopreservation. Further, the study addresses many aspects of sperm protection, 

sperm motility, viability and membrane stabilization of sperm cells during storage. Various 

enzymatic and non-enzymatic antioxidants are available that play an important role in 

protecting sperm from free radical species during cryopreservation. Therefore, the current 

need is to improve existing techniques for semen processing, cooling, packaging and 

freezing with the use of those antioxidants. 

 

Due to to unexpected damage to the pH at the start of the trail we were forced to use a 

litmus pH paper to monitor the pH of the semen. While litmus pH paper is great for quick 

qualitative work, it will not provide accurate quantitative data. Therefore, it can be noted that, 

the pH obtained in the present study may not be exact pH values but can be used as an 

indication, since the litmus pH paper only allow us to know whether the solution is basic or 

acidic but will not tell the degree of acidity or alkalinity. The pH meter is far more accurate 

compared to a pH paper. In a pH meter results are obtained and analysed within the set 

ranges according to the set standards. 

The Se concentration adjustment studies should be conducted to determine the precise 

dosage with maximal beneficial and minimal detrimental effects on buck health and sperm 

quality post-thaw. A major limitation of the current study was its design based on single 

administration route. However, various administration routes such injection and addition to 

extender can provide a better understanding of the blood plasma Se concentration and its 

effects on male hormone. Such determinations should be covered in further studies. 

 

With the aim of defining an adequate extender composition, we tested whether the addition 

of vitamin C, E and their combination to the sperm freezing extender was able to protect 

buck spermatozoa during the cryopreservation process. However, only one extender was 

tested. It may be important to study different extenders, especially whole egg yolk and tris 

without egg-yolk extender. The dose and duration of these antioxidants should also be 

determined and standardized. With the increase in the use of assisted reproductive 

technology procedure, there should be an effort to develop optimum combinations of 

antioxidants to supplement sperm preparation media. 
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The findings of the present work may have been more defined with an expended animal 

sample pool, but because of time and other practical restrictions, the amount of samples had 

to be limited. Therefore, the study provides a great opportunity for future research to 

determine the optimum cooling rates and equilibration periods for goat breeds. It will be 

beneficial if other indigenous goat breeds are included in future study on this topic to develop 

new techniques that can be used as standard for buck semen cryopreservation. 

 

Critical studies to establish the minimum number of frozen-thawed sperm per inseminating 

dose for acceptable fertility (about 60%) and strict quality control of the frozen semen at 

various stages of production, processing, storage and final use are necessary.  

 

The findings in this dissertation are obtained through laboratory experiments that might not 

reflect the true fertilizing capability of cooled and frozen-thawed spermatozoa. Further in vitro 

or in vivo fertilization studies are needed in order to determine their success rates at 

insemination. 

 

There is a need to identify the seminal characteristics which directly affects the freezing 

ability of spermatozoa. Critical studies to establish the fertility marker-based selection of the 

bucks for use in semen cryopreservation might be of great importance in years to come. 
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