Forensic Attribution Challenges During

Forensic Examinations Of Databases
by

Werner Karl Hauger

Submitted in fulfilment of the requirements for the degree
Master of Science (Computer Science)
in the Faculty of Engineering, Built Environment and Information Technology

University of Pretoria, Pretoria

September 2018

Publication data:

Werner Karl Hauger. Forensic Attribution Challenges During Forensic Examinations Of Databases. Master's disser-
tation, University of Pretoria, Department of Computer Science, Pretoria, South Africa, September 2018.

Electronic, hyperlinked versions of this dissertation are available online, as Adobe PDF files, at:

https://repository.up.ac.za/

https://repository.up.ac.za/

Forensic Attribution Challenges During Forensic Examinations
Of Databases

by

Werner Karl Hauger

E-mail: whauger@gmail.com

Abstract

An aspect of database forensics that has not yet received much attention in the aca-
demic research community is the attribution of actions performed in a database. When
forensic attribution is performed for actions executed in computer systems, it is nec-
essary to avoid incorrectly attributing actions to processes or actors. This is because
the outcome of forensic attribution may be used to determine civil or criminal liabil-
ity. Therefore, correctness is extremely important when attributing actions in computer
systems, also when performing forensic attribution in databases. Any circumstances
that can compromise the correctness of the attribution results need to be identified and
addressed.

This dissertation explores possible challenges when performing forensic attribution in
databases. What can prevent the correct attribution of actions performed in a database?
The first identified challenge is the database trigger, which has not yet been studied in
the context of forensic examinations. Therefore, the dissertation investigates the impact
of database triggers on forensic examinations by examining two sub questions. Firstly,
could triggers due to their nature, combined with the way databases are forensically
acquired and analysed, lead to the contamination of the data that is being analysed?
Secondly, can the current attribution process correctly identify which party is responsible
for which changes in a database where triggers are used to create and maintain data?
The second identified challenge is the lack of access and audit information in NoSQL
databases. The dissertation thus investigates how the availability of access control and

logging features in databases impacts forensic attribution.

mailto:whauger@gmail.com

The database triggers, as defined in the SQL standard, are studied together with a
number of database trigger implementations. This is done in order to establish, which
aspects of a database trigger may have an impact on digital forensic acquisition, anal-
ysis and interpretation. Forensic examinations of relational and NoSQL databases are
evaluated to determine what challenges the presence of database triggers pose. A num-
ber of NoSQL databases are then studied to determine the availability of access control
and logging features. This is done because these features leave valuable traces for the
forensic attribution process. An algorithm is devised, which provides a simple test to
determine if database triggers played any part in the generation or manipulation of data
in a specific database object. If the test result is positive, the actions performed by the
implicated triggers will have to be considered in a forensic examination.

This dissertation identified a group of database triggers, classified as non-data trig-
gers, which have the potential to contaminate the data in popular relational databases
by inconspicuous operations, such as connection or shutdown. It also established that
database triggers can influence the normal flow of data operations. This means what the
original operation intended to do, and what actually happened, are not necessarily the
same. Therefore, the attribution of these operations becomes problematic and incorrect
deductions can be made. Accordingly, forensic processes need to be extended to include
the handling and analysis of all database triggers. This enables safer acquisition and
analysis of databases and more accurate attribution of actions performed in databases.
This dissertation also established that popular NoSQL databases either lack sufficient
access control and logging capabilities or do not enable them by default to support

attribution to the same level as in relational databases.

Keywords: Digital Forensics, Database Forensics, Forensic Attribution, Database Trig-
gers, Relational Databases, NoSQL Databases.

Supervisor : Prof. Martin S. Olivier
Department : Department of Computer Science

Degree : Master of Science

“We choose to ... do the other things, not because they are easy, but
because they are hard, because that goal will serve to organize and measure
the best of our energies and skills, because that challenge is one that we are
willing to accept, one we are unwilling to postpone, and one which we intend

to win.”

John F. Kennedy (1963)

“Quod scripsi, scripsi (What I have written, I have written)”

Pontius Pilate (AD 36)

Acknowledgements

I wish to express my sincere thanks and gratitude to:

e My parents who supported my decision to return to academia and continue with

my studies. You supported and encouraged me throughout this endeavour;

e Professor Martin S. Olivier for reactivating my academic mindset and his help,

guidance and support over all the years;

e All the members of the ICSA research group with whom I could exchange ideas

and discuss my research (Victor, Stacy, Richard, Avinash).

This dissertation is dedicated to my late father who unfortunately could not see its

conclusion.

Contents

List of Figures

List of Tables

Introduction

1.1 Motivation
1.2 Objective
1.3 Problem Statement
1.4 Approach
1.5 Dissertation Outline

Database Systems Overview

2.1 Database History
2.1.1 Network Era
2.1.2 Hierarchical Era
2.1.3 Relational Erao
2.1.4 Object Oriented Era
2.1.5 Object Relational Era
2.1.6 NoSQL Era

2.2 Relevant Database Models
2.2.1 Relational Databases
2.2.2 NoSQL Databases
2.2.3 NoSQL Database Types

2.3 Database Triggers

vi

24

Conclusion

Digital Forensic Science Overview

3.1

3.2

3.3

Forensics
3.1.1 Digital Forensics
3.1.2 Database Forensics
Attributiono
3.2.1 General Attribution.
3.2.2 Forensic Attribution
Conclusion

Database Forensics Research

4.1
4.2
4.3
4.4
4.5

Research Classification
Literature Survey
Discussion,
Possible Explanations

Conclusion

Database Trigger Implementations

5.1
5.2
2.3
0.4

2.5
0.6

Investigation Context
Specification
Standard Triggers
Non-standard Triggers
5.4.1 DDL Triggers
5.4.2 Non-data Triggers.
Trigger Objects

Conclusion

Forensic Examination of Relational Databases

6.1

6.2

Forensic Acquisition and Analysis Implications
6.1.1 SQL Server Examination
Forensic Interpretation Implications
6.2.1 Identification and Forensic Attribution

i

28
28
29
31
32
32
34
37

39
40
42
48
51
96

58
o8
60
61
63
64
65
68
68

6.3 Discussion of Implications oo

6.4 Conclusion

Trigger Identification Algorithm

7.1 Trigger Identification Considerations
7.2 Top-Down Approach
7.3 Bottom-Up Approach
7.4 Conclusion

Algorithm Implementation

8.1 Implementation Considerations
8.2 Prototype Design Lo
8.3 Prototype Implementation Details
8.4 Implementation Challenges
8.4.1 Scope/Visibility oo
8.4.2 Encryption
8.4.3 Case Sensitivityo
8.4.4 False-Positive Errorso
8.4.5 DataTypes
8.4.6 Recursion
8.4.7 Performance
8.5 Prototype Test Details,
8.6 Conclusion
Forensic Examination of NoSQL Databases
9.1 Survey Context
9.2 Surveyed NoSQL databases,
9.21 MongoDB
9.2.2 Cassandra
923 Redis.
9.24 Neodj e
9.3 NoSQL Survey

1ii

82
82
85
38
90

91
91
93
95
99
99
99
100
100
101
101
102
103
104

9.3.1 MongoDB 113

9.3.2 Cassandra 115

933 Redis. 117

9.34 Neodj 119

9.4 DiScussion 120
9.5 Forensic Implications Lo 122
9.5.1 Triggers L 122

9.5.2 Access Control 124

9.5.3 Logging 124

9.6 Conclusion 126
10 Conclusions 128
10.1 Summary of Conclusions L. 128
10.2 Contributions L 131
10.3 Future Work 132
10.3.1 Nested Triggers 132

10.3.2 Deleted Triggers.o 132
Bibliography 134
A Acronyms 149
B Derived Publications and Conference Papers 151

v

List of Figures

4.1

4.2

5.1
5.2
2.3

7.1
7.2

8.1
8.2
8.3
8.4
8.5
8.6

Web search interest over 2015 survey time period. Data Source: Google
Trends (www.google.com/trends), July 2015
Web search interest in the time period between the 2015 survey and the
current survey. Data Source: Google Trends (www.google.com/trends),
September 2018

DML Trigger Example. SQL Server Syntax.
DDL Trigger Example. SQL Server Syntax.
Login Trigger Example. SQL Server Syntax.

Procedure Execution. SQL Server.

Function Execution. SQL Server.

Algorithm Search Query. SQL Server.
Algorithm Search Query. Oracle.
Bottom-up Algorithm. Java Code.
Case Insensitive Search Query. Oracle.
Updated Algorithm Section. Java Code.
Prototype Search Result. SQL Server.

66

List of Tables

3.1

4.1

4.2

4.3

8.1

9.1
9.2

Attribution Processes Summaryo

2009 vs. 2015 vs. Current Survey (Data to the end of the previous year
for each survey where possible) 0000
Database Forensics vs. Cloud Forensics Prevalence (Data to the end of
the previous year for each survey where possible)
Google Books 2009 vs. 2015 vs. Current Survey (Data to the end of the

previous year for each survey where possible)
Test Database Objects. SQL Server

NoSQL Database Features
Features Enabled by Default

vi

Chapter 1
Introduction

Databases have, in some form or another, been used in computer systems since the early
1960s. They were first used by governmental organisations, big corporations and financial
institutions that also had the first computer systems. With the advent of general-purpose
database systems based on the relational model, databases became more common in the
1970s. When the desktop computer emerged in the 1980s, databases moved into the
offices and homes of users (Elmasri & Navathe, 1994, p. 21).

With the advent of mobile devices in the 1990s, databases slowly moved into the
pockets of users. A great deal of mobile applications (apps) now persist and manipulate
their data utilising compact and modest databases such as SQLite. Thus, databases
can no longer be considered niche products. In fact, databases are probably now used
everywhere where there is a computer system. In this age of Big Data, everyone with a
computer system appears to want to persist, query and manipulate data.

The normal day to day users of these modern systems and applications have become
completely unaware of the databases that are used inside them (Silberschatz, Korth,
& Sudarshan, 2011, p. 3). That is because the databases reside and operate in the
background and are never seen by the user of the system or application. Rather, the users
interact with these systems and applications through front-ends that in turn retrieve,
manipulate and store the data in the databases.

However, groups that have long ago recognised the value of databases include crim-

inals and malicious agents. They have understood that databases can be accessed and

Chapter 1. Introduction 2

manipulated to perform malicious and criminal activities (Casey, 2009, p. 2). These
groups constantly find new ways to compromise and abuse databases in computer sys-
tems and applications. Security practitioners have followed these malicious and criminal
activities and learned how to detect such activities on databases and how to protect
databases against such attacks. They have published books and training guides on how
to secure specific databases and how to perform forensic examinations on compromised
databases (Fowler, 2009; Litchfield, 2007).

Other groups, such as auditors and law enforcement agencies, have realised that
computer systems and their databases can be valuable sources of information to help
them with their tasks. In many cases, the systems and applications track all the activities
of their users and store them in the database (Casey, 2009). Besides the activities
themselves, the database can also contain useful information such as timestamps and
Global Positioning System (GPS) locations. This type of information can be used by
law enforcement agencies in various ways. It can provide digital evidence to implicate
specific persons of unlawful activity. It can also provide digital evidence that confirms an
alibi and thus exonerates specific persons. Auditors can use this information to confirm
that a computer system is being used as declared and that the correct duly authorised
persons operate and use the computer system.

The forensic examinations of databases fall under the broader field of digital forensics.
There has been a steady increase in scientific research in various other areas of digital
forensics in recent years (see chapter 4). However, the scientific community has not kept
pace with the developments in the database forensics area. Such research is needed to
make sure that these practices, which were developed and are performed, are scientific

and correct.

1.1 Motivation

One particular area in forensics where this correctness is very important is the process
of attribution. On the highest level, attribution deals with the question of “who did
it”. Thus, attribution attempts to find the responsible actor (individual or group) for a

particular action or event. Therefore, it would follow that always identifying the correct

Chapter 1. Introduction 3

actor is important. However, this actually depends on the reason why attribution is
being performed. If the goal is to act as a deterrence to prevent similar actions in the
future, the correct parties need to be identified and held accountable. Innocent parties
should not be implicated and punished. On the other hand, if the goal is to simply mount
a better defence against the actions that are being attributed, it might be sufficient to
identify possible groups and individuals.

Besides disparate starting goals, there are other reasons why all attribution being
performed is not of the same specificity. In their paper, Rid and Buchanan (2015) contend
that attribution is as much art as it is science. They describe attribution as being a whole
process that uses many technical and non-technical tools and skills that are applied at
various levels by various experts. Putting all this together provides attribution to a
certain degree, which is neither black-or-white, but rather a certain shade. In addition,
Rid and Buchanan argue that the accuracy of attribution depends on the political will
behind the attribution, because this determines the time and resources available.

In his work, Boebert (2010) breaks the attribution question down into two separate
attribution problems: technical attribution and human attribution. Technical attribu-
tion takes place in the digital world and analyses various traces to find the responsible
machine (the what) from where the questionable action or event was launched. Human
attribution then takes place in the physical world and takes the outcome of the technical
attribution and combines it with other information from the physical world to identify
the actor (the who) responsible.

Performing attribution in the physical world should be considered outside the scope
of digital forensics. This is because in the physical world attribution might require the
use of other expertise and non-technical means. This element is problematic for two
reasons. Firstly, the required expertise normally falls outside the technical speciality
of the digital forensic examiner. Secondly, some of the means may not be scientific in
nature but are rather based on intuition and “gut feel”.

In the digital world, however, things are simpler. All high-level events and actions
follow pre-programmed processes and algorithms. They in turn are executed by proces-
sors based on finite state machines. This means that there are predictable transitions

and a fixed number of known outcomes. Processes and algorithms executed by such

Chapter 1. Introduction 4

finite state machine based processors will thus always, barring outside interference such
as electromagnetic interference (EMI), produce the same traces and outcomes given the
same input.

This means that the traces left by these processes and algorithms can be used to
make scientifically sound inferences and conclusions about the events that generated
them. Because the traces are left by finite state machines, the inferences can be sci-
entifically proven to be correct. These inferences and conclusions that are made might
not necessarily help in the greater attribution process of identifying a root cause (the
what). However, standing on their own, these inferences and conclusions should always
be correct.

The correctness of any attribution technique or tool that is being used in the dig-
ital world is extremely important. Otherwise, failure to ensure absolute correctness or
correctness with a mathematically insignificant small error can lead to wrong conclu-
sions being made. These wrong conclusions can then lead to actions, consequences and
outcomes in the physical world that potentially cannot be undone. Therefore, any un-
intended effects, reactions or outcomes that occur when the attribution techniques and
tools are used, need to be known and managed properly.

These unintended effects, reactions or outcomes can be seen akin to the side-effects
that occur with the administration of drugs in the medical field. A drug has been created
and designed to have a specific effect on the human body. However, many drugs do not
only have the one desired effect, but may also have other unintended and unwanted
effects.

For example, aspirin was developed to treat the symptoms of pain and fever. However,
aspirin also suppresses platelet functioning leading to blood-thinning properties (Burch,
Stanford, & Majerus, 1978). When administered to a person without any disorders, the
aspirin will have the intended effect. However, when administered to a person with a
bleeding disorder, the aspirin can lead to uncontrollable bleeding and possibly death.
In this case, the side-effect of aspirin can completely overshadow the intended positive
effect and lead to a very negative outcome.

The same can happen with performing attribution. The attribution technique or tool

A may be utilised to achieve an intended outcome or effect E;. Nevertheless, there may

Chapter 1. Introduction 5

be additional effects E,..F, in play, whether initiated by the attribution technique or
tool, or being part of the forensic artefact under examination. These additional effects
Es..E, may cause doubts about the intended effect F; or may even overshadow the
intended effect F; completely leading to wrong conclusions.

In the area of database forensics, one mechanism that has the potential to create
such side-effects is the database trigger. A trigger is an automated action that occurs
in reaction to an event taking place in the database. A simple application would be
a trigger that is placed on a particular column in a table that is stored in a relational
database. As an example, the trigger is configured to operate as follows: every time any
value in the column is updated to a specific value, the trigger will perform an update on
a related value in another table.

Should attribution now be performed on the change of the related value, the correct
answer is no longer straightforward. Is the root-cause of the changed value the changing
of the original value or the presence of the trigger? The correct answer depends on
the context of the examination and the forensic examiner needs to be made aware of
all possible answers. Otherwise, a scenario where a database trigger might influence
the correctness of the attribution being performed, is plausible. Incorrect attribution
scenarios due to side-effects are nothing new. A well-known example of an attribution
technique that is used in the physical world, and which suffered from inaccuracies due
to side-effects, is DNA profiling.

Various DNA typing techniques have been developed and scientifically proven for
diverse types of DNA samples. This means that these tests can be independently re-
peated with the same samples and provide the same results every time. The correctness
is guaranteed to a very high mathematical probability if the sample meets certain phys-
ical and origin requirements (National Research Council, 1996). In the homogeneous
populations where the DNA tests were originally developed, the error rate was so low
that no accidental match was realistic.

However, as the usage of DNA profiling increased and spread all around the world, a
number of side-effects were discovered. The allele distribution frequency of the original
loci that were chosen as sufficient differentiators between individuals, was too different in

other population groups of the world (National Research Council, 1996). This increased

Chapter 1. Introduction 6

the probability of an accidental match between two unrelated DNA samples.

Thus, the selection of additional sets of loci to support different population groups
became necessary. DNA databases also needed to be created for every significant popu-
lation group. These databases are used to determine the allele frequencies for all tested
loci data. During DNA profiling, these databases are consulted to determine whether the
usage of a specific locus is appropriate for a specific population group (National Research
Council, 1996).

Furthermore, in heterogeneous populations the use of just one set of loci was ineffec-
tive since it would only have the necessary frequency spread for one population group.
Thus, single loci sets had to be combined to create extended sets with more alleles that
could be used to differentiate between individuals in the heterogeneous populations (But-
ler & Hill, 2012). The product rule then ensured that the combined probability of an
accidental match remained very low (National Research Council, 1992).

The envelope was also being pushed with regards to the quality of DNA samples
used for testing. The promise of leads or answers to questions in those cases led to
DNA tests being performed on old and degraded samples, contaminated samples and
damaged samples. As was discovered, those samples could produce DNA profiles with
faint or completely missing alleles or to alleles of incorrect length (Thompson, Mueller, &
Krane, 2012). One special type of contamination was the presence of DNA from multiple
individuals in a sample. Such samples are called mixtures and the correct separation
of alleles becomes problematic (Lubaale, 2015). Just a single incorrectly allocated allele
would produce two different DNA profiles in a mixture of two DNA samples. Depending
on the distribution of the incorrect alleles in the population group, the incorrect DNA
profile could actually match the DNA profile of a completely unrelated individual.

Another area where DNA testing was also introduced was for samples collected from
the surface of objects. Tiny amounts of skin cells can be left on objects after they have
been touched or handled by an individual. These samples are called touch DNA. It was
quickly discovered that using touch DNA can be problematic because it can be trans-
ferred. Originally it was thought that secondary touch DNA on an object could always
be identified as such and thus be excluded. However, recent research has shown that this

is not always the case (Cale, Earll, Latham, & Bush, 2016). In specific circumstances, it

Chapter 1. Introduction 7

is possible for an object to have no touch DNA of the primary individual who actually
touched the object, but rather the DNA of a secondary individual who has had contact
with the primary individual, but never with the object itself.

As the above example shows, even a scientifically proven technique such as DNA
profiling can produce incorrect results if previously unknown side-effects occur during
specific use cases. Forensic techniques and tools used in the digital world will not be
immune to incorrect results due to unknown side-effects. Consequently, research that
looks at new and unknown side-effects is needed to ensure better results of the forensic

tools and techniques that are being used.

1.2 Objective

Current database forensic research focusses mainly on two areas: The first research area
deals with how to perform forensic examinations of databases. This research highlights
commonalities and differences to other forensic examination fields such as file system
forensics and network forensics. This research also proposes new examination models
and processes to help with the task of examining a database in a forensically sound
manner.

The second research area deals with identifying what changes were made in database
to particular objects, especially when those changes were malicious and unauthorised.
This research provides new techniques and algorithms that can be used to find changes,
such as modifications and removals, which are no longer directly available. Many of these
techniques are developed to also handle cases where the perpetrators actively tried to
hide and obfuscate their actions. However, much of this research is particular to specific
Database Management System (DBMS) platforms and implementations.

Both research areas appear to work on the premise that the databases that need to
be examined are either corrupted or compromised. The corruption might be due to the
deletion of parts or the whole of the database. This could have been done on purpose in
order to destroy potential evidence or by accident. Another cause for database corruption
might be physical damage to the medium or device that the database is stored on. In the

case of a compromise, it is assumed that the perpetrator might have placed anti-forensic

Chapter 1. Introduction 8

tools to hide his presence and actions (Casey, 2009, p. 2). Alternatively, the perpetrator
might have modified and deleted traces to conceal his presence and actions. Therefore,
when a forensic examination is performed, all data is extracted using first principles and
analysed with clean tools.

The current research appears to imply that a forensic examination is only performed
when the database was breached and there is some foul play involved. However, data
breaches and suspected foul play are not the only reason why the forensic examination of
a database may be required. Databases can also be examined purely for the purpose of
the information they contain and the deductions that can be made from this information.
For example, as part of an audit of an information system to confirm the required
segregation of duties, the audit trail stored in a database can be examined. Database
permissions and logs might also be used to confirm that no violations of segregation are
possible or have occurred during the audit period.

Another example where the forensic examination of databases may be required is
during an investigation into the cause of an information system failure. The investiga-
tion may be internal to identify responsibility, or it may be an external investigation to
determine criminal or civil liability. In both examples, the database will be in a working
condition and no foul play is indicated or initially suspected. In these cases, the infor-
mation contained in the database is taken at face value. The database and its tools are
used to extract and analyse the data to retrieve the required information.

The information gained from the database can be correlated with other gathered in-
formation (Casey, 2009, p. 27). The other information may originate from the database
as well, from other components of the digital system or even from the physical world. If
the other information corroborates the knowledge gained from the database, then no fur-
ther action is required. Should the other information, however, contradict the database
information, then there is a possibility of database tampering and a deeper analysis
is required. It is, however, still not a given that the database has been compromised
because the other information source might just as well have been the target of a com-
promise. The information source, which is more likely to be incorrect in the particular
circumstances, should be the first target of a more in-depth examination.

Very limited database forensic research is conducted that specifically focusses on iden-

Chapter 1. Introduction 9

tifying who is responsible for accessing and/or changing information stored in databases
(see chapter 4). Given the previous two examples, it would follow that this type of
database examination is often required, especially given the increased usage of informa-
tion systems in all areas of the modern society. This described area of research can be
categorised as forensic attribution because it attempts to find the responsible process (or
what) in the digital world and the responsible actor (or who) in the physical world.

This lack of research in the area of attribution in databases could be due to what
Pollitt (2013) and Rid and Buchanan (2015) said about forensic attribution being a
combination of art and science. The portion of forensic attribution that is considered
art would not be formalised and written down. That means it cannot be scientifically
evaluated and tested for correctness. The science portion of forensic attribution would
refer to the attribution techniques and methods that have been scientifically developed
and tested for correctness. These attribution techniques and methods are the topics of
papers that have been published for public use and scientific scrutiny.

Research into the side-effects of triggers during forensic examinations of databases
has not yet been done. Thus far, only Khanuja and Adane (2012) have recognised
the potential influence of triggers on forensic examinations of a database. They have,
however, not analysed this further in their research.

The objective of this dissertation is to make contributions to both those areas of
database forensic research. Knowledge will be added to the forensic examination pro-
cesses as well as the activity of attribution. Specifically, this dissertation attempts to
help ensure that any deductions and conclusions made from database traces found in
memory, logs and database system tables are correct. This includes taking into account
any hidden side-effects that can occur in a database, whether it be due to the normal

operation of the database or due to malicious intentions and actions.

1.3 Problem Statement

This research explores possible unexpected challenges to the process of forensic attribu-
tion. The challenges of particular interest to this dissertation are those that can prevent

correct attribution in the digital world of the database. The specific research question

Chapter 1. Introduction 10

that needs to be answered is the following: What circumstances can prevent the correct
attribution of actions performed in a database?

This question is examined in the context of forensic examinations of the current
generation of relational and NoSQL databases. The scope of this research is restricted
to relational and NoSQL databases because these two are the most prevalent database
models used in computer systems (DB-Engines, 2018).

One candidate that could pose a challenge to forensic attribution is the mechanism
that was already introduced in section 1.1: the database trigger. Given that no research
on database triggers in relation to forensic examinations has been done yet, it might be
worthwhile to expand the research question with regards to database triggers as follows:
Do database triggers interfere with forensic examinations?

This question needs to be answered for at least two separate phases of the forensic
examination procedure. The first phase deals with the process of forensic acquisition
and forensic analysis of a database. The question that needs to be answered here is the
following: Do the current forensic acquisition and analysis processes make provision for
the presence of triggers during a forensic examination of a database?

The second phase deals with the process of interpreting the data from the acquired
database. Specific techniques or processes that are used in this step include reconstruc-
tion and attribution. The process of interest that is possibly vulnerable is attribution.
The question that needs to be answered here is the following: Can attribution be accu-

rately performed when dealing with actions that include those performed by triggers?

1.4 Approach

In order to answer the expanded research question, it is first necessary to understand
exactly what database triggers are and what actions they can accomplish. To determine
this, a survey of current available database triggers is performed. Firstly, the SQL stan-
dard is examined to identify all possible triggers and their operation, as defined. Then,
a number of relational database implementations are analysed to confirm the presence of
the triggers as defined in the standard. The same relational database implementations

are also analysed to identify any new triggers or triggers that deviate from the standard.

Chapter 1. Introduction 11

Once the available database triggers are known and understood, focus is placed on
general database forensics. The digital forensic processes that are followed during a foren-
sic examination of a relational database are evaluated. This is achieved by performing a
case study. The steps that are performed in a published forensic database examination
are scrutinised to determine if the presence of any of the known triggers could influence
or alter the outcomes as documented. Should any possible alterations be identified, the
implications of these changes are discussed and counter-measures contemplated.

Then the focus is narrowed down to the forensic interpretation process. Specifically,
the activity of forensic attribution is examined. Attribution techniques that are used in
database examinations are scrutinised to determine if the presence of any of the known
triggers could influence the root-cause as determined by the technique. Should the
determined initiators be influenced by triggers, it becomes necessary to confirm under
which circumstances the presence of triggers can be problematic.

Once the exact circumstances are known, an algorithm can be proposed to safely test
for the presence of database triggers. As a minimum, this will alert the forensic examiner
to be careful when applying attribution techniques to determine the initiators such as
processes and user profiles. Should the database being examined contain many triggers,
the algorithm can be extended to be applied to the specific database objects that the
forensic examiner is using to perform the attribution. The algorithm will then identify
specific triggers that the forensic examiner will need to examine for possible influence on

the attribution results.

1.5 Dissertation Outline

The remaining chapters of this dissertation are structured as follows:

e Chapter 2 provides an overview of the first of two core elements that form the
foundation of this dissertation: database systems. The historical development
of the various database models and types that exist today is presented. Special
attention is given to relational and NoSQL databases, which constitute the central

part of this dissertation.

e Chapter 3 continues with an overview of the second of the two core elements that

Chapter 1. Introduction 12

form the foundation of this dissertation: digital forensics. The concept of digital
forensics is described with specific emphasis on database forensics. Attribution,
one of the processes that can be used when performing forensic examinations, is

discussed. Various forensic attribution types and techniques are reviewed.

e Chapter 4 explores other research in the field of database forensics. Due to the
limited amount of research available, the chapter performs a survey of all the major
database forensic research performed since the first scholarly research on database
forensics was peer-reviewed. Then, the chapter also probes the possible reasons for

the lack of research in this field of database forensics.

e Chapter 5 takes an in-depth look at database triggers and their workings. The
database trigger implementations of several relational database management sys-

tems are analysed and evaluated for possible interference in forensic examinations.

e Chapter 6 studies the forensic examination of relational databases. Particular
emphasis is placed on the possible implications that the presence of database trig-
gers can have on the forensic examination. This includes possible interference of

database triggers with the interpretative process of attribution.

e Chapter 7 proposes an algorithm that can be used to identify potentially inter-
fering database triggers. Two variations of the algorithm are presented and their

implementability is evaluated.

e Chapter 8 discusses the implementation of the algorithm proposed in chapter 7.
A prototype implementation of one variation of the algorithms is presented and

the challenges encountered during implementation and usage are analysed.

e Chapter 9 moves the focus to the forensic examination of NoSQL databases.
The impact of triggers in this model of database is briefly discussed. The challenge
that the absence of certain security measures in these databases presents to forensic
attribution is then discussed in detail. Firstly, a survey is performed to ascertain
the default availability of these security measures in popular NoSQL databases.
Then the impact that the lack of security measures has on the process of forensic

attribution is established.

Chapter 1. Introduction 13

e Chapter 10 concludes this dissertation by summarising the major findings. Future

research is also contemplated based on the outcomes presented.

The following appendices are part of this dissertation:

e Appendix A provides a list of the important acronyms used in this work, as well

as their associated definitions.

e Appendix B lists all the publications that were derived from this work.

Chapter 2
Database Systems Overview

The aim of this and the following chapter is to provide an overview of some of the core
systems and aspects that underpin this dissertation. The key element that is discussed
in this chapter is the database system. The chapter first looks at the research and
development history of database systems. The discussion of two specific database models
and a database concept then follows.

Section 2.1 provides a historical background of database development by discussing
the major data models that were developed over the past five decades. Also, the main
actors involved in this research and development and the major products that came out
of this development are presented. In section 2.2, specific attention is given to relational
and NoSQL databases, which are the focus of this research. In section 2.3, the concept

of a database trigger is explored in more detail. Section 2.4 concludes this chapter.

2.1 Database History

A database can be defined as a collection of related data (Elmasri & Navathe, 1994). Fur-
thermore, a DBMS is a set of programs that allows users to create, access and maintain
this database. Together the database and the software form a database system.
Database systems arose in response to earlier methods of computerised management
of data such as files. File processing systems have quite a number of problems and disad-

vantages. They include data redundancy and inconsistency, data access difficulties, data

14

Chapter 2. Database Systems Overview 15

isolation, integrity and atomicity problems, and concurrency and security problems (Sil-
berschatz et al., 2011). This prompted the development of alternative data management
systems.

A chronological discussion of the major database development eras, and the systems

for data management developed during them, now follows.

2.1.1 Network Era

The first attempt at a data management system to overcome the limitations of files was
the Integrated Data Store (IDS) developed by Charles Bachman at General Electric in
1963. The IDS system formed the basis for the network data model developed by the
CODASYL Database Task Group (DBTG) in 1969 (Haigh, 2011).

In the network model, related data is represented as records. A format called a record
type is used to describe the structure of a record (Elmasri & Navathe, 1994). Each record
type has a name and consists of a number of data items or attributes. Each data item
also has a name and a format or data type.

Different record types can be related to each other by set types (Elmasri & Navathe,
1994). A set type describes a 1:N relationship between two record types. Diagrammat-
ically a set type is represented by an arrow. Each set type has a name and defines the
owner record type and the member record type. Set instances consist of a single owner
record of the owner record type and one or more member records of the member record
type.

Due to the 1:N relationship between two record types in a set type, a member record
can only appear in one set instance. A 1:1 relationship can be represented by only
having a single member record in a set instance. However, a M:N relationship cannot be
represented by a single set type between two record types. A third record type, called a
linking or dummy record type, is required (Elmasri & Navathe, 1994). One set type is
created between the first record type and the linking record type and another between
the second record type and the linking record type. A record of the linking record type
will then be a member record of both the first and the second set type.

Chapter 2. Database Systems Overview 16

2.1.2 Hierarchical Era

In 1966, IBM launched their first attempt at a data management system called the
Information Management System (IMS). Chief architect Vern Watts led the development
of a system where data was organised in multiple levels. This concept formed the basis
for the hierarchical data model.

In the hierarchical model, related data is also stored using record types that consist
of data items. Relationships between two record types are 1:N in the hierarchical model.
The record type on the 1-side is called a parent record type and the record type on the
N-side a child record type (Elmasri & Navathe, 1994).

This relationship is called a parent-child relationship (PCR) type (Elmasri & Navathe,
1994). An instance of a PCR type would contain one parent record and zero or more
child records. A number of record types and PCR types can be associated together in
a hierarchical schema or hierarchy. Hierarchical schemas can be visually displayed in a
hierarchical diagram with rectangular boxes and lines connecting them.

Hierarchical schemas also have a number of properties and restrictions. The one
record type that does not participate as a child record type in any PCR type is called
the root. On the other end side, a record type that does not participate as a parent in
any PCR type is called a leaf. While a record type can act as a parent record type in
any number of PCR types, it can act as a child record type in only one PCR type.

The previous restrictions thus allow both 1:1 and 1:N relationships. However, M:N
relationships cannot be represented. Only by deviating from the strict hierarchical model
by allowing either the duplication of child record instances or the creation of virtual PCR

types between two different hierarchical schemas, can M:N relationships be represented.

2.1.3 Relational Era

In 1970, IBM research fellow Edgar F. Codd (1970) published his relational model for
data organisation. This model included data manipulation operations based on relational
algebra. Two major research projects then set out to implement and test this new
relational model.

One research team worked at IBM’s San Jose Research Laboratory. The database

Chapter 2. Database Systems Overview 17

system they constructed was called System R (Chamberlin et al., 1981). In one of
the implementation phases, a non-procedural query language called SEQUEL was also
developed that allowed the usage of Codd’s data operations. SEQUEL was later renamed
to SQL due to an existing trademark.

IBM kept the source code for System R closed and used it to build two commercial
relational DBMSs (RDBMSs). In the early eighties, IBM first released SQL/DS and
then DB2 for various mainframe operating systems (Atzeni, Ceri, Paraboschi, & Torlone,
1999). However, IBM did not manage to release the first commercial RDBMS. In 1977,
Larry Ellison had formed his own company, which released Oracle for commercial use in
1979 (Lazenby & Lindquist, 2007).

At around the same time as IBM’s team, another research team worked on a relational
database at the University of California, Berkeley (UCB). The team around Michael
Stonebraker developed their own implementation of the relational model called INGRES
(Stonebraker, Held, Wong, & Kreps, 1976). As a consequence they also developed their
own query language called QUEL. Due to both languages being based on Codd’s work,
they had many similarities.

Unlike IBM, Berkeley made the source code to INGRES available for a fee. This
led to the development of a number of new commercial RDBMSs in the early eighties,
often by members of the original research project. These new RDBMSs included Sybase,
Informix and NonStop SQL (Epstein, 2013; Mendelsohn, 2013; Sippl, 2013). INGRES
was also commercialised by Stonebraker. In 1992, Sybase licensed their technology to
Microsoft, who re-branded it as Microsoft SQL Server.

Structured Query Language (SQL) was adopted as a standard by the American Na-
tional Standards Institute (ANSI) in 1986 and the International Organization for Stan-
dardization (ISO) in 1987. The standard was called SQL-86 and is also referred to as
SQL1 (Elmasri & Navathe, 1994). The standardisation of the SQL version query lan-
guage meant that the QUEL version, and RDBMSs using it, lost traction. It forced
these RDBMSs to switch over to SQL and eventually even INGRES had to add SQL to
their database.

The next major revision of the standard was SQL-92, which is also referred to as

SQL2. It was a much expanded standard that added many features that had already

Chapter 2. Database Systems Overview 18

been implemented by various RDBMS manufacturers. The next iteration of the ISO /TEC
9075 standard came in 1999 and was called SQL:1999 or SQL3 (Silberschatz et al., 2011).

2.1.4 Object Oriented Era

In the 1980s, databases started to appear in many application domains. However, there
were some more complex application domains where existing database systems had cer-
tain shortcomings. These included engineering design, image and multimedia processing
and geographic information systems (Elmasri & Navathe, 1994). Thus, object-oriented
databases were proposed to meet those needs. They supported object-oriented princi-
ples, which allowed database developers to specify their own complex object types and
the operations that they support.

A manifesto was released by Atkinson et al. (1989) that defined what constituted an
object-oriented database system (OODBMS). This included a new data language and
a new query language, which were both based on object-orientation. Essentially they
took a revolutionary approach by extending the DBMSs based on the characteristics of

object-oriented programming languages (Atzeni et al., 1999).

2.1.5 Object Relational Era

A group of researchers around Michael Stonebraker had divergent ideas on how to solve
the shortcomings of relational databases in the more complex application domains. They
released their own reply manifesto that defined a third generation of database systems
(Stonebraker et al., 1990). The group agreed on the usage of object orientation, but
differed on how to achieve this.

This third generation of database system assumed an evolutionary approach, by
integrating the object concept into the relational model (Atzeni et al., 1999). This
included retaining SQL as the data and query language, but extending it with declarative
elements. Some of these extensions eventually became part of the SQL3 standard. These
third generation database systems became known as object-relational database systems
(ORDBMSs).

Stonebraker implemented these ideas in a new research project called POSTGRES.

Chapter 2. Database Systems Overview 19

This ORDBMS used a query language call POSTQUEL which was based on the QUEL
language of INGRES. In 1994, this query language was replaced with SQL, and sub-
sequently the name of the DBMS was updated to PostgreSQL to reflect the new SQL
support.

2.1.6 NoSQL Era

The 2000s saw a huge explosion in the usage of databases to support the growth of the
internet. As the internet grew, so did transaction and data volumes that pushed existing
RDBMSs and ORDBMSs to the limit. This created a new movement that felt that the
rigid relational model and the restrictions of SQL limited the future growth of databases.
New web companies such as Amazon, Facebook, Google and Yahoo started to develop
their own alternative database systems, particularly around column stores (Silberschatz
et al., 2011). These original alternative databases and their successors are now grouped

together under the moniker of NoSQL databases.

2.2 Relevant Database Models

The relational database is a very established and well known entity. It has been studied
and used for decades, which has led to an extensive SQL standard. Consequently, only
a brief discussion is needed. The NoSQL database, on the other hand, is a new entity
that is still developing and changing. Therefore, a greater effort is required to provide
structure to the great variations of databases that are placed under the NoSQL umbrella.

Accordingly, a more in-depth discussion is provided.

2.2.1 Relational Databases

A relational database is based on the relational model and uses a collection of tables to
represent both data and the relationships among those data (Silberschatz et al., 2011).
A table consists out of multiple columns and each column has a unique name. The data
that the table contains, fills up multiple rows.

The relational model was first proposed by Codd (1970). He represented data as

Chapter 2. Database Systems Overview 20

relations (tables) and tuples (rows). The use of relations allowed him to use relational
algebra to manipulate the data. This included the usual set operations such as UNION,
INTERSECTION, SET DIFFERENCE and CARTESIAN PRODUCT (Codd, 1979).
He also defined new operations specifically for the relational model in databases. They
included THETA-SELECT, PROJECT, THETA-JOIN and DIVIDE (Codd, 1979).

A relational database also includes a Data Manipulation Language (DML) and a Data
Definition Language (DDL). The database schema is specified by a set of definitions,
which are expressed by a special language called a data definition language. The DDL
is also used to specify additional properties of the data.

A data manipulation language is a language that enables users to access or manip-
ulate data as organised by the appropriate data model. The four types of data access
are: retrieval of information stored in the database, insertion of new information into
the database, deletion of existing information from the database and modification of

information stored in the database (Silberschatz et al., 2011).

2.2.2 NoSQL Databases

The NoSQL movement was the development of new types of databases that were not
relational and did not use the SQL as data access language. These new database types
were being created to address new demands in data forms and size that could no longer
be met by existing relational databases and SQL.

NoSQL databases have more flexible data structures that can be completely schema-
less. This allows for easier storage of unstructured and heterogeneous data. They also
provide easier horizontal scalability to cater for big sets of data and data that grows
unpredictably.

The “NoSQL” moniker became popular when Eric Evans chose it as the name for
an event that Johan Oskarsson organised to discuss open source distributed databases
(Evans, 2009). Evans felt that the whole point of the event was to seek out alternatives
that one needed to solve a problem that relational databases were a bad fit for. The
event was the beginning of a movement that grouped together all database projects that
were not relational.

Some people have objected to the NoSQL term for these new databases (Eifrem,

Chapter 2. Database Systems Overview 21

2009; Ellis, 2009), as it sounded like a definition based on what these databases were not
doing rather than what they were. In recent years, it has been suggested that the NoSQL
term be changed from meaning “No SQL” to “Not Only SQL”. This is to express that
NoSQL no longer meant anti-SQL and anti-relational, but rather expressed the notion
that other database types besides relational ones existed that could help address the new
data types and storage demands of the current information society.

In recent years, NoSQL databases have gained popularity both with developers who
build new systems, and existing organisations who try to optimise and improve their
businesses (DB-Engines, 2017b). Both parties are trying to adapt their information
systems to the current data demands.

Certain NoSQL databases have even moved up from being niche products to leaders
in Gartners Magic Quadrant for Operational Database Management Systems (Feinberg,
Adrian, Heudecker, Ronthal, & Palanca, 2015). Gartner considers databases in the
leaders quadrant to be of operational quality. According to Gartner, leaders generally
represent the lowest risk for customers in the areas of performance, scalability, reliability
and support.

The forerunners of the current NoSQL databases were started by big web companies,
such as Google, Amazon and Facebook, to help them build and support their businesses
(Strauch, 2011). After they made these new databases public and open source, other
big web companies such as Twitter, Instagram and Apple started to use them as well
(Strauch, 2011). This has led to the development of a number of NoSQL databases based
on the ideas and models of the original databases.

The use of NoSQL databases has started to filter down to ordinary organisations
who are now also starting to use NoSQL databases for various purposes in their business
processes. The consequence of this is that more and more data is being placed in NoSQL
databases. This includes private and sensitive information, which has to be kept secure
and confidential.

Additionally, one big area of use for NoSQL is Big Data. As the name implies, Big
Data deals with vast amounts of data that needs to be stored, analysed and retrieved.
Copious amounts of this data are normally unstructured and make NoSQL databases

such an attractive proposition. However, this also means that unauthorised access to

Chapter 2. Database Systems Overview 22

such NoSQL databases has the potential to expose very large amounts of information.

2.2.3 NoSQL Database Types

As of now, a number of distinct types of NoSQL databases have established themselves. It
is thus worthwhile to take a closer look at the details of each of those NoSQL database
types. The main types of NoSQL databases are the following four types: Document
databases or stores, Key-value pair databases or stores, Column family store databases
or wide column stores and Graph databases or stores (Sullivan, 2014). A short summary

of each type now follows.

Document Stores

Document databases, also known as document stores or document-oriented databases,
use a document-oriented model to store data. They store a record and its associated data
within a single data structure called a document. Each document contains a number of
attributes and associated values. Documents can be retrieved based on attribute values
using various application programming interfaces (APIs) or query languages provided by
the DBMS (Sullivan, 2014).

Document stores are characterised by their schema-free organization of data. That
means that records do not need to have a uniform structure, i.e. different records may
have different attributes. The types of the values of individual attributes can be different
for each record. Records can also have a nested structure, while attributes can have more
than one value such as an array.

Document stores typically use standard formats such as JavaScript Object Notation
(JSON) or Extensible Markup Language (XML) to store the records (Sullivan, 2014).
This then allows the records to be processed directly in applications. Individual docu-
ments are stored and retrieved by means of a key. Furthermore, document stores rely on
indexes to facilitate access to documents based on their attributes (Robinson, Webber,
& Eifrem, 2015).

Chapter 2. Database Systems Overview 23

Wide Column Stores

Wide column stores, also called extensible record stores, store data in records with an
ability to hold very large numbers of dynamic columns. A column is the basic unit of
storage and consists of a name and a value (Sullivan, 2014).

Any number of columns can be combined into a super column, which gives a name
to a sorted collection of columns. Columns are stored in rows, and when a row contains
columns only, it is known as a column family. When a row contains super columns, it is
known as a super column family (Robinson et al., 2015).

As in document stores, column family databases do not require a predefined fixed
schema. Different rows can have different sets of columns and super columns. Since the
column names as well as the record keys are not fixed, and a record can have millions of
columns, wide column stores can be seen as two-dimensional key-value stores (Sullivan,
2014).

Key-Value Stores

Key-value stores are probably the simplest form of databases. They can only store pairs
of keys and values, as well as retrieve values when the key or identifier is known. These
systems can hold structured or unstructured data.

A namespace is a collection of identifiers. Keys need to be unique within a name-
space. A namespace could correspond to an entire database, which means all keys in
the database need to be unique. Some key-value stores provide for different namespaces
within a database. This is done by setting up data structures for separate collections of
identifiers within a database (Sullivan, 2014).

These plain systems are normally not adequate for complex applications. On the
other hand, it is exactly this simplicity that makes such systems attractive in certain
circumstances. For example, resource-efficient key-value stores are often applied in em-
bedded systems or as high performance in-process databases.

One of the earliest such embedded key-value databases is the Berkeley DB, which
was first released in 1991. It was developed at the University of California, Berkeley to
replace certain patented components in their Unix release BSD 4.3. In 1992, BSD 4.4
was released, which included Berkeley DB 1.85 (Olson, Bostic, & Seltzer, 1999).

Chapter 2. Database Systems Overview 24

Graph Stores

Graph stores, also known as graph databases, are DBMSs with Create, Read, Update,
and Delete (CRUD) methods that manipulate a graph data model. A graph database
represents data in structures called nodes and relationships. A node is an object that
has an identifier and a set of attributes. A relationship is a link between two nodes that
contain attributes about that relation (Sullivan, 2014).

Some graph databases use native graph storage, which is designed to store and man-
age graphs directly. Other graph databases serialize the graph data into relational or
object-oriented databases, or use other types of NoSQL stores (Robinson et al., 2015).
In addition to having a certain approach to storing and processing graph data, a graph
database will also use a specific graph data model. There are several distinct graph data
models commonly used, which include property graphs, hypergraphs, and triples.

Graph databases do not depend as much on indexes because the graph itself provides a
natural index. In a graph database using native graph storage, the relationships attached
to a node provide a direct connection to other related nodes. Graph queries use this
characteristic to traverse through the graph (Robinson et al., 2015). Such operations
can be carried out very efficiently, typically traversing millions of nodes per second. In

contrast, joining data through a global index can be many orders of magnitude slower.

2.3 Database Triggers

The database trigger is a technology that is based on ideas that originated in the mid-
1970s. It started with the adding of rule languages and rule processing to databases to
enhance functionality. In 1973, the CODASYL Data Description Language Committee
defined an ON clause, which triggered a database procedure when a data manipulation
language operation was performed (Eriksson, 1997). Morgenstern (1983) was the first
that referred to databases that used such mechanisms to perform automated view and
constraint maintenance as active databases.

Initially, the rule processing research was divided into two separate areas: deductive
databases and active databases. In deductive databases, programming rules were used

to extend the functionality of the user interface provided by the database query language

Chapter 2. Database Systems Overview 25

(Widom, 1994). In active databases, production rules were used to provide automatic
execution of database operations in response to certain events (Widom, 1994).

However, Widom (1994) contended that these two research areas were not actually
separate, but rather on opposite ends of a spectrum. This spectrum was created by
the level of abstraction of the rule language used. Deductive rules have the greater
abstraction, while active rules have the least.

Only in the 1990s did the trigger technology gain traction and make an appearance
in some commercial databases. The researchers of that time very descriptively referred
to triggers as event-condition-action rules (Simon & Kotz-Dittrich, 1995). These were
rules that executed their action when the condition was true after being initiated by a
triggering event. The condition was an optional part and rules without conditions were
called event-action rules.

This technology was formally added in 1999 to the ISO/IEC 9075 SQL standard
and subsequently updated in the 2008 version (ISO/IEC JTC1/SC32, 2011). The name
trigger was adopted when it was first incorporated into the SQL standard. Since then,
database triggers have become a well-known feature of many relational databases.

Triggers are implemented for variety of reasons to solve many divergent problems.
Ceri, Cochrane, and Widom (2000) distinguish between two types of triggers: hand-
crafted and generated. Handcrafted triggers are written by hand to solve specific appli-
cation problems. Generated triggers are produced automatically for a specific purpose
and parameterised for use in various applications. The authors suggest that there are
different uses for the different types of triggers.

For example, generated triggers are well-suited to maintain constraints and materi-
alised views in a database. The goal of the trigger would be to maintain a particular
constraint to guarantee referential integrity. For materialised views, the goal of the trig-
ger would be to keep the particular view consistent with the source data as it changes.
Once a constraint or view has been declared, a set of triggers can then be generated
automatically from the specification of the constraint or view.

One of the suggested uses for manually crafted triggers is to create internal audit
trails. Now, however, developers have leveraged this use for auditing in their own external

applications. When used for external auditing, these triggers normally take data from

Chapter 2. Database Systems Overview 26

the original tables and store them in dedicated audit tables. Since these tables are part
of the custom application, there is no particular layout or content. But generally the
audit tables are able to indicate, which user performed what operations and when the
operation was performed.

Independent of usage, all the actions performed by triggers can be classified into two
groups: general actions and condition specific actions. General action triggers perform
their action every time the triggering operation is performed. This is what makes this
group of triggers suitable for performing general auditing. For example, a financial
institution needs to keep track of all transactions being performed on their system.
They can utilize general action triggers to record relevant information for each and
every transaction performed. This information would include the exact nature of the
transaction, the time it was performed and who the user was that performed the action.

In contrast, condition specific action triggers only perform their action under spe-
cific circumstances. These circumstances can be based on either the data that is being
manipulated by the triggering operation or by the user that is performing the triggering
operation. For example, financial institutions might be legislated to report a certain type
of transaction that exceeds a specified amount. This requirement can be implemented
with a condition specific trigger that checks the data of all transactions being performed.
This specific trigger only fires when the transaction type matches the type that needs to
be reported and the transaction amount exceeds the legislated amount.

Consider the situation where the financial institution might, for security reasons only,
allow supervisors to perform certain transactions in their system. However, due to the
volume of these types of transactions and the ratio of supervisors to normal operators, it
is not possible to have only the supervisors perform those transactions. Therefore, they
might have implemented an override that the normal operator can invoke, that allows
him to also perform these restricted transactions after a supervisor has authorised the
transaction with his credentials.

Naturally, the financial institution wants to keep a very close eye on those override
transaction to spot any irregularities as soon as possible. A condition specific action
trigger can be used here to separately audit these restricted transactions. The trigger is

specified to only fire when a user, that is not part of the supervisor group on the system,

Chapter 2. Database Systems Overview 27

performs any of the restricted transactions.
The discussion of database triggers thus far is sufficient for introductory purposes.
Chapter 5 will continue this discussion with a look at trigger implementations. This also

concludes the introduction of database systems, the first key element of this dissertation.

2.4 Conclusion

This chapter started with providing an overview of some of the core aspects that form the
foundation of this dissertation. The first key element of this dissertation is the database
system. This chapter introduced database systems with a discussion of the historical
development of the major data models. Focus was then placed on relational and NoSQL
databases with emphasis on NoSQL databases. Finally, the concept of database triggers
was presented.

The next key element of this dissertation is the field of digital forensics. The specific
area of digital forensics that relates to the database system is called database forensics.
The next chapter provides a general overview of the field of digital forensics and a more
detailed discussion on the area of database forensics. The concept of attribution, and

how it relates to digital forensics, is also explored in this next chapter.

Chapter 3
Digital Forensic Science Overview

This chapter continues with the overview of some of the core systems and aspects that
underpin this dissertation. Another key element of this dissertation is the field of digital
forensics. Of particular interest are certain processes and techniques that are used to
perform forensic examinations.

Section 3.1 examines the field of forensic science and digital forensics. Different
forensic processes and approaches are presented and discussed. Specific focus is placed
on database forensics to explore how it relates to general digital forensics. In section
3.2, attention is given to the concept of attribution. Specifically, the process of forensic

attribution is explored in more detail. Section 3.3 concludes this chapter.

3.1 Forensics

Forensic science, or simply forensics, is now widely used by law enforcement to aid
them in their investigations of crimes committed. Forensic science technicians, which
are specifically trained law enforcement officials, perform a number of forensically sound
steps in the execution of their duties. These steps include the identification, collection,
preservation and analysis of physical artefacts and the reporting of results. One critical
part is the collection and preservation of physical artefacts. The collection needs to be
performed in such a manner that the artefacts are not contaminated. The artefacts then

need to be preserved in such a way that their integrity is maintained. The reason why

28

Chapter 3. Digital Forensic Science Overview 29

this part is so critical is so that any evidence gained from the analysis of these artefacts
cannot be contested. The evidence found would be used to either implicate or exonerate
any involved parties. Any doubt about the integrity of the artefacts collected could lead

to the evidence being dismissed or excluded from legal proceedings.

3.1.1 Digital Forensics

In digital forensics these steps are more commonly referred to as processes. There have
been a number of process models developed to guide the digital forensic examiner (Pol-
litt, 2007). The digital forensic process that matches the collection and preservation step
in the physical world is the acquisition process. Traditionally, this process involves the
making of exact digital copies of all relevant data media identified (Adelstein, 2006).
However, database forensics needs to be performed on information systems that are
becoming increasingly complex. Several factors influence the way that data is foren-
sically acquired and how databases are analysed. They include data context, business
continuity, storage architecture, storage size and database models.

Historically, digital forensics attempts to collect and preserve data media in a static
state, which is referred to as dead acquisition (Adelstein, 2006). Typically, this process
starts with isolating any device that is interacting with a data medium by disconnecting
it from all networks and power sources. The data medium is then disconnected or
removed from the device and connected via a write-blocker to a forensic workstation.
The write-blocker ensures that the data medium cannot be contaminated while being
connected to the forensic workstation. Software is then used to copy the contents to
a similar medium or to an alternative medium with enough capacity. Hashing is also
performed on the original content with a hash algorithm, such as the Message Digest 5
(MD5) or Secure Hash Algorithm 1 (SHA-1) (Adelstein, 2006). The hashes are used to
confirm that the copies made are exact copies of the originals and have not been altered.
The hashes are also used throughout the analysis process to confirm the integrity of the
data being examined. Once the copies have been made, there is no more need for the
preservation of the originals (Cohen, 2009). However, if the data being examined is to
be used to gather evidence in legal proceedings, some jurisdictions may require that the

originals are still available.

Chapter 3. Digital Forensic Science Overview 30

A different approach is to perform live acquisition. This involves the collection and
preservation of both volatile data (e.g. CPU cache, RAM, network connections) and non-
volatile data (e.g. data files, control files, log files). Since the acquisition is performed
while the system is running, there are some risks that affect the reliability of the acquired
data. These risks, however, can be mitigated by employing certain countermeasures
(Carrier, 2006).

In current information systems there are several instances where it has become nec-
essary to perform live acquisition. Firstly, in a permanently switched-on and connected
world, the context around the imaged data may be required to perform the forensic
analysis. This includes volatile items such a running processes, process memory, net-
work connections and logged on users (Adelstein, 2006). One area where the context
gained from live acquisition is particularly useful is when dealing with possibly encrypted
data. This is because the encrypted data might already be open on a running system and
the encryption keys used cached in memory (Hargreaves & Chivers, 2008). The increas-
ing prevalence of encryption usage to protect data by both individuals and organisations
increases the need for more live acquisitions to be performed.

Another instance where live acquisition is performed is when business continuity is
required. For many organisations, information systems have become a critical part of
their operations. The seizure or downtime of such information systems would lead to
great financial losses and damaged reputations. The shutdown of mission critical systems
might even endanger human life. During forensic investigations, such important infor-
mation systems can thus no longer be shut down to perform imaging in the traditional
way (Adelstein, 2006).

The complex storage architecture of current information systems also necessitates
the use of live acquisition techniques. To ensure availability, redundancy, capacity and
performance, single storage disks are no longer used for important applications and
databases. At the very least, a redundant array of independent disks (RAID) or a full
blown storage area network (SAN) is used. Both of these technologies group a variable
number of physical storage disks together using different methodologies. They present a
logical storage disk to the operating system that is accessible on the block-level.

In such a storage configuration, a write-blocker can no longer be efficiently used.

Chapter 3. Digital Forensic Science Overview 31

There simply may be too many disks in the RAID configuration to make it cost and
time effective to image them all (Adelstein, 2006). In the case of a SAN, the actual
physical disks holding the particular logical disk might not be known, or might be shared
among multiple logical disks. These other logical disks may form part of other systems
that are unrelated to the application or database system and should preferably not
be affected. Attaching the disks in a RAID configuration to another controller with
the same configuration can make the data appear corrupt and impossible to access.
RAID controller and server manufacturers only support RAID migration between specific
hardware families and firmware versions. The same would hold true for the imaged disks
as well.

While it is still technically possible to image the logical disk the same way as a
physical disk, it may not be feasible to do so either. Firstly, the size of the logical
disk may be bigger than the disk capacity available to the forensic examiner (Garfinkel,
2010). Secondly, the logical disk may hold a considerable amount of other unrelated
data, especially in a virtualised environment. Lastly, organisations may be running a
huge single application or database server containing many different applications and
databases. Due to hardware, electricity and licensing costs, the organisation may prefer

this to having multiple smaller application or database servers.

3.1.2 Database Forensics

Database systems have their own complexities that affect digital forensic examinations.
The models used by the database manufacturers are tightly integrated into their database
management systems and are many times of a proprietary nature. Reverse engineering
is purposely being made difficult to prevent their intellectual property being used by
a competitor. Sometimes reverse engineering is explicitly prohibited in the licensing
agreements of the usage of the DBMSs. To forensically analyse the raw data directly is
thus not very easy, cost-effective or always possible. The data also needs to be analysed in
conjunction with the metadata because the metadata not only describes how to interpret
the data, but can also influence the actual seen information (Olivier, 2009). The usage
of the DBMS itself, and by extension the model it contains, has become the necessary

approach to forensically analyse databases.

Chapter 3. Digital Forensic Science Overview 32

The database analysis can be performed in two ways: an analysis on site or an
analysis in a clean laboratory environment. On site the analysis is performed on the
actual system running the database. In the laboratory, a clean copy of the DBMS with
the exact same model as used in the original system is used to analyse the data and
metadata acquired (Olivier, 2009). Both ways can be categorised as live analysis due
to being performed on a running system. In the first instance, the real system is used,
while in the second, a resuscitated system in a more controlled environment is used (e.g.
single user, no network connection).

Due to all these complexities associated with applications and particularly databases,
live acquisition is the favoured approach when dealing with an information system of a
particular size and importance. Fowler documents such a live acquisition in a real world
forensic investigation he performed on a Microsoft SQL Server 2005 database (Fowler,
2007a). It should be noted that both the operating system and the DBMS are used
to access and acquire data after being authenticated. To preserve the integrity of the
acquired data, he uses his own clean tools that are stored on a read-only medium (Carrier,
2006). However, the mere accessing of the system will already cause changes to the
data, thus effectively contaminating it before it can be copied. Since all the operations
performed during the acquisition are documented, they can be accounted for during a
subsequent analysis. Hence, this type of contamination is acceptable as it can be negated

during analysis.

3.2 Attribution

Having completed the introduction of the field of digital forensics, focus is now placed on
attribution. First, an overview of the field is given to provide context for the remainder
of this dissertation. Forensic attribution processes and techniques are then discussed and

their implications on database forensics explored.

3.2.1 General Attribution

The Oxford English dictionary defines the term attribution as follows: “The action of

regarding something as being caused by a person or thing”. Attribution is performed in

Chapter 3. Digital Forensic Science Overview 33

a number of diverse application areas. These include, for example, clinical psychology
attribution, nuclear attribution, authorship attribution and cyber attack attribution.

In clinical psychology, attribution refers to the process by which individuals explain
the causes of behaviour and events (Kelley, 1973). In nuclear forensics, nuclear attribu-
tion is the process of tracing the source of nuclear material from a radiological incident,
whether accidental (e.g. nuclear waste spill) or intentional (e.g. nuclear explosion) (Wal-
lenius, Mayer, & Ray, 2006). Authorship attribution refers to the process of inferring
characteristics of the author from the characteristics of documents written by that author
(Juola, 2008).

Cyber attack attribution has been defined and researched by various authors. Wheeler
and Larson in their paper for the U.S. Department of Defense (DoD) defined it as “de-
termining the identity or location of an attacker or an attackers intermediary” (Wheeler
& Larsen, 2003). They define the resulting identity as a person’s name, an account, an
alias, or similar information associated with a person. A location is interpreted as a
physical (geographic) location, or a virtual location such as an Internet Protocol (IP)
address or Media Access Control (MAC) address.

Boebert (2010) breaks the attribution question down into two attribution problems:
technical attribution and human attribution. According to the author, technical attri-
bution consists of analysing malicious functionality and packets, and using the results
of the analysis to locate the node which initiated, or is controlling, the attack. Human
attribution, on the other hand, consists of taking the results of technical attribution and
combining it with other information to identify the person or organization responsible
for the attack.

Clark and Landau in their paper “Untangling attribution” contend that there are
many types of attribution and that different types are useful in different contexts (Clark
& Landau, 2010). For example, attribution on the internet could mean the identification
of the owner of the machine (e.g. the company or organisation), the physical location of
the machine (e.g. city or country) or the individual who is actually responsible for the
actions.

Clark and Landau also define three classes of attacks: bot-net based attacks (e.g.
distributed denial of service (DDoS) attack), identity theft, and data ex-filtration and

Chapter 3. Digital Forensic Science Overview 34

espionage. Based on these classes different attribution types and techniques are more
suitable or applicable than others. The timing of when attribution is performed also
plays an important role.

For example, during a DDoS attack, mitigation might be the most immediate concern.
Attribution is then needed to identify the machines launching the attack so that they
can be counteracted. However, after the DDoS attack is over, focus may shift towards
retribution as deterrence. Attribution is then needed to identify the actors responsible
so that they can be prosecuted (Clark & Landau, 2010).

3.2.2 Forensic Attribution

When attribution is done as part of an examination using scientific methods, the term
forensic attribution is used. Forensic attribution is performed during the digital evidence
interpretation step in a forensic examination (ISO/TEC JTC1/SC27, 2015). This step
is part of the investigative processes as defined in the ISO/IEC 27043 standard that
describes incident investigation principles and processes (ISO/IEC JTC1/SC27, 2015).

Forensic attribution processes

As already touched on in the introduction, a number of researchers have proposed dif-
ferent forensic attribution processes. These diverse processes define different levels, cat-
egories or steps of attribution that can be performed.

Cohen, for example, sees end-to-end attribution made up of four different levels of
attribution (Cohen, 2010). The first two levels are performed in the digital world. Level
1 attempts to identify the closest computer involved, while level 2 tries to pinpoint the
source computer that initiated the actions. However, the next two levels of attribution
are performed in the physical world. Level 3 attempts to identify the individual that
caused source computer to act as it did, while at level 4 the organisation behind the
individual is being sought.

Shamsi et al propose three steps of identification for attribution (Shamsi, Zeadally,
Sheikh, & Flowers, 2016). The first step deals with the identification of the cyber weapon
used to launch the actions. They use the definition of cyber weapon given by Rid and

McBurney. They, in turn, define cyber weapon as “computer code that is used, or

Chapter 3. Digital Forensic Science Overview 35

designed to be used, with the aim of threatening or causing physical, functional, or
mental harm to structures, systems, or living beings” (Rid & McBurney, 2012).

Thus, step 1 is executed in the digital realm. Step 2 deals with the identification of the
country or city of the actor, while step 3 addresses the identification of the actor, whether
it is a person or an organisation. The last two steps thus take place in the physical world.
Similarly, Clark and Landau define three categories into which attribution can fall (Clark
& Landau, 2010). These categories are the machine, the person, and the aggregate
identity, such as a state actor. Again, the first category of attribution is executed in the

digital realm, while the other two happen in the physical world.

Table 3.1: Attribution Processes Summary

Author(s) Digital Realm Physical Realm

o Identify closest computer e Identify individual behind

h 201
Cohen (2010) initiating computer

e Identify initiating computer | e Identify organisation be-

hind individual

e Identify cyber weapon e Identify country or city
Shamsi et al. (2016)

e Identify person or organi-

sation

e Identify computer e Identify individual
Clark and Landau (2010)

e Identify organisation

Table 3.1 summarises these different attribution processes. Even though the authors
use different terminology to describe the parts of their processes (steps/levels/categories),
the parts and their goals appear to be very similar. For the sake of clarity, this disser-
tation is going to overlook the deeper meaning of the authors’ chosen terminology and
from here on simply refer to the different parts as steps.

In the digital realm the steps from all authors have the same goal: to identify the
computing device(s) responsible for the actions that are being examined. Various digital

forensic attribution techniques can be used to achieve this goal. The more difficult

Chapter 3. Digital Forensic Science Overview 36

steps are performed in the physical realm. They attempt to identify the individuals or
actors responsible for the actions that are being examined. As already indicated in the
introduction, this type of attribution may not be always be needed. The dissertation

will therefore concentrate on attribution steps that are performed in the digital realm.

Forensic attribution techniques

There are a large number of digital attribution techniques with each technique having
certain strengths and weaknesses. A taxonomy of these attribution techniques is provided
by Wheeler and Larsen (2003). According to them, no single technique can replace
all others and a combination of techniques can help compensate for their respective
weaknesses.

In order to access and operate many digital systems, authentication is required. The
authentication mechanism is used to identify users and grant the corresponding access to
the system. The access available to a particular user depends on the authorisation given
to the user credentials. Unauthorised users are prevented from accessing and operating
the system.

Thus, one of the techniques that the forensic examiner can employ is to make infer-
ences based on the authentication and authorisation information (Cohen, 2009) found
in a digital system. This information can enable him to create a basis for attribution as
follows: the authentication information provides the actors of the digital system, while
the authorisation information gives the actions that these actors can perform (Hauger
& Olivier, 2015a).

Many digital systems create and maintain audit records and metadata of different
sorts (Cohen, 2009). They include date, timestamps and ownership of files, authenti-
cation and program execution logs, output files generated as part of the execution of
programs, network traffic logs and assorted other traces. These records are created as
part of the normal operation of the system. They allow for the confirmation and review
of activities, as well as for debugging in the case of errors.

Due to this circumstance, another attribution technique that can be employed, is to
order and connect these different traces that can be found to build a chain of events

(Cohen, 2009). The sequence of these events will describe how the system arrived at the

Chapter 3. Digital Forensic Science Overview 37

current state. By going further and determining the actions that led to the events and
the actors that performed these actions, the person or program responsible can possibly
be identified (Hauger & Olivier, 2015a).

However, both the authentication information and the various traces are not infal-
lible. Attackers can bypass authentication or steal the credentials of an innocent user.
Traces can many times be easily modified or even removed to hide malicious activity.
Furthermore, these attribution techniques can be abused by malicious actors. They
can intentionally use user credentials and create traces that falsely attribute actions to
innocent third parties.

It is thus important for the forensic examiner to attempt to obtain multiple indepen-
dent traces that portray the same event. These independent traces can then be used to
correlate the actions and identify any manipulation. By either excluding the manipu-
lated information or reconstructing the original information, the forensic examiner can
move closer to identifying the real actor.

Performing forensic attribution in relational databases was investigated by Olivier
(2009). He showed that database forensics can use the same techniques as general digital
forensics to perform attribution. The traces in a relational database are available in
various log files and also stored inside system tables. Furthermore, the authentication
of database users and the authorisation of their operations is built into many relational
databases (Hauger & Olivier, 2015a). The same caveats as in general digital forensics

also apply to database forensics.

3.3 Conclusion

This chapter continued with the overview of the core aspects that form the foundation of
this dissertation. First, the concept of digital forensics was presented with the spotlight
on database forensics. The concept of attribution was then introduced with specific focus
on forensic attribution.

Since the field of database forensics is still relatively new, the amount of scientific
research in that field is limited. Instead of a traditional literature review, the next

chapter presents a survey of all major database forensic research conducted in a nine

Chapter 3. Digital Forensic Science Overview 38

year period from 2009 to 2017. It is a follow-up to a previous survey conducted in 2009.
The chapter also attempts to determine why research in this area has been lacking so

far.

Chapter 4
Database Forensics Research

This chapter takes a different approach to the traditional literature review, which has
a limited amount of related research material available to review. This perceived lack
of related research, and scientific research in database forensics in general, is echoed in
some of the recent research papers on database forensics. Different database forensic re-
searchers have also implied that not enough research is being conducted in this important
field (Fasan & Olivier, 2012; Pieterse & Olivier, 2012).

Therefore, this chapter investigates the claim of lacking research in the field of
database forensics as expressed by these researchers. Scientific material on digital foren-
sics published in the last nine years is surveyed. In order to be able to quantify the
research into database forensics, research into the currently active field of cloud forensics
is also surveyed. Similar to database forensics, cloud forensics is a relatively new sub dis-
cipline of forensic research and it does not have any significant material published before
2009. These inherent similarities make it a fitting benchmark for comparison purposes.
Various sources are consulted ranging from important forensic journals and conference
proceedings to academic search engines.

This chapter also attempts to establish reasons as to why there could be a lack of
research in the field of database forensics. To enable a systematic approach of finding
possible reasons, the research identified in the survey that was conducted in the field of
cloud forensics is analysed. The reasons given by the authors for performing the cloud

forensic research are identified and their work is broadly categorised. Parallels are then

39

Chapter 4. Database Forensics Research 40

drawn to the field of database forensics. This chapter extends on work from a previously
published paper (Hauger & Olivier, 2015¢).

Section 4.1 provides some context about the nature of databases and database forensic
research. Section 4.2 surveys the digital forensic scientific literature of the past nine
years. Section 4.3 analyses the results of the survey. Thereafter, section 4.4 discusses
some reasons for research and publication or the lack thereof in digital forensics. Section

4.5 concludes this chapter.

4.1 Research Classification

In this section some context is provided with regards to the different types of database
forensic research being conducted. The nature of databases is also examined to ascer-
tain how this determines the classification of the surveyed research as database forensic
research.

The forensic researchers working on databases appear to follow two different ap-
proaches. The first approach contends that a database is actually nothing more than
files that reside inside a file system on a storage medium. Some files are the container
for the database data and metadata, whilst other files are the software that runs the
database. This means databases can be analysed for clues similar to other important
software, such as email and web browser software (Chivers & Hargreaves, 2011; Pereira,
2009). This view places database forensics as a sub-discipline of file system forensics.
The same techniques, such as imaging and file carving, are used.

The other approach contents that databases are much more complex than plain files.
Databases have multiple dimensions that are interconnected and need to be analysed
together to provide an accurate depiction of the truth. Olivier advocated this approach
in his 2009 paper “On metadata context in Database Forensics” (Olivier, 2009). He
identified four layers that need to be considered: the data model, the data dictionary,
the application schema and the application data. After the integrity of each layer has
been established, the database management system (DBMS) itself can then be used to
perform a live forensic analysis.

The approach used to forensically analyse databases also appears to define the type

Chapter 4. Database Forensics Research 41

of research conducted. The group that treats databases as files builds on the file forensic
discipline and the scientific research already done in that area. It produces incremen-
tal research that specialises the existing scientific methodologies and knowledge for the
forensic analysis of database files.

The group that utilises the DBMS for the analysis of running databases performs
new scientific research in the area of forensics. The research is new because live forensic
analysis itself is a more recent technique that is being employed out of necessity. Further-
more, the live analysis of databases has to deal with the complexity of interconnected
layers, making it distinctive.

Olivier raised a number of concerns with the approach of analysing a database as
files. The application data is normally carved from the disk image and the application
schema is either inferred or reconstructed. The data model and data dictionary are not
considered in this process (Olivier, 2009). How can one then be certain that the data is
interpreted correctly without the data dictionary? How can one be certain that the data
was correctly carved without the data model? What complicates matters even further
is that many data models are proprietary and not documented.

Due to these concerns, the information or facts obtained from database file recon-
struction should only be used as leads. Should these facts be used as evidence, they
might be rightly challenged in a court of law. If the second approach of using the DBMS
is used, all four layers will be automatically considered. If the integrity of each layer has
been scientifically proven, then this approach can provide evidence that will hold up in
a court of law.

In order to be able to classify the forensic research done on database systems and
files, a definition of what constitutes a database is required. Since many different types
of database systems exist, a single generic definition might not be very useful. A better
option would be to define characteristics that make a system a database system. This is
exactly what Atkinson et al. did in their paper titled “The Object-Oriented Database
System Manifesto” (Atkinson et al., 1989). Their paper presents a number of mandatory
characteristics that, according to the authors, define an object-oriented database system.

The authors contend that a system qualifies as an object-oriented database sys-

tem if it is both a database management system (DBMS) and follows object-oriented

Chapter 4. Database Forensics Research 42

principles. The following characteristics define a DBMS: persistence, secondary storage
management, concurrency, recovery and an ad-hoc query facility (Atkinson et al., 1989).

Persistence implies that the data should survive the termination of the process with-
out the user having to make it explicitly persistent. Secondary storage management
refers to mechanisms provided by the DBMS to manage very large databases. These
mechanisms include index management, data clustering, data buffering, access path se-
lection and query optimisation. These mechanisms work behind the scenes to enhance
the performance when the database size becomes large.

Concurrency implies the management of simultaneous users interacting concurrently
with the DBMS, possibly manipulating the same data. Features such as atomic op-
erations and serialisation of a sequence of operations are required. Recovery refers to
the ability of the DBMS to bring the data back to a coherent state after hardware and
software failures. The ad-hoc query facility denotes the provision of a service that allows
the user to make elementary queries to the database using some structured language.

Based on this classification the research work of, for example, Chivers and Hargreaves
cannot be classified as database forensOics because the Windows Search Database is
not a database (Chivers & Hargreaves, 2011). The work of Pereira, however, could
be considered as database forensics because SQLite arguably satisfies the criteria for a
database (Pereira, 2009).

4.2 Literature Survey

This section surveys the scientific literature for forensic research conducted in the nine
years from 2009 to 2017, and compares the results to a previous survey done by Olivier
in 2008 that was published in March 2009 (Olivier, 2009). This same comparison survey
was already carried out at the start of 2015 for the first six years (Hauger & Olivier,
2015c¢). This section will thus compare the current results as well as the 2015 results to
the original 2009 survey.

In the 2009 paper, Olivier showed the lack of scientific work around database forensics
by searching for published information consulting various sources (Olivier, 2009). He

started with the leading digital forensic journals Digital Investigation and International

Chapter 4. Database Forensics Research 43

Journal of Digital Fvidence. Next, he looked at papers presented at the digital forensic
conferences International Federation for Information Processing (IFIP) WG 11.9 and
Digital Forensics Research Workshop (DFRWS).

He also consulted the digital libraries of the following professional societies: ACM
Digital Library from the Association for Computing Machinery (ACM) and IEEEXplore
from the Institute of Electrical and Electronics Engineers (IEEE). The digital library
ScienceDirect from the scientific publisher Elsevier was consulted as well. He then used
the research oriented search engines Google Scholar (scholar.google.com) and Live Search
Academic (academic.live.com) to find material on database forensics. He also looked to
see how many books were published on the topic of database forensics or addressed the
topic by consulting Google Books (books.google.com).

In this survey the exact same searches were repeated some six and nine years later.
By comparing the new numbers to those of the original survey, it is possible to determine
how the research output has changed over the survey period. However, to gauge the rate
of increase and volume of new research material published, it is necessary to compare
the numbers to some type of benchmark.

The first choice for a comparison benchmark would be the established general dis-
cipline of digital forensics, originally also referred to as “Computer Forensics”. The
problem with this choice is that the comparison of research output volume would only
confirm that database forensics is a particularly sized sub discipline of digital forensics.
It would not indicate if the research output in the area of database forensics is actually
poor or not.

One can also argue that research trends and output in a more mature area differ
from a new and emerging area. A more suitable choice for comparison would thus be a
similarly emerging sub discipline of digital forensics. What immediately comes to mind
is the currently very active area of digital forensics called cloud forensics. Since the
“Cloud” in general is an emerging technology, the forensic science research conducted
around it is similarly new and emerging.

The disciplines of database forensics and cloud forensics have inherent similarities.
Besides both being sub disciplines of digital forensics, they also have a similar age.

Furthermore, there would not have been any significant amount of cloud forensic work

Chapter 4. Database Forensics Research 44

published before 2009, making it a fitting choice for the survey period. Both disciplines

also deal with the storage and structured manipulation of data.

100 *
ﬂ E Database Forensics
g0 Em—

0’“‘ e Gloud Forensics

a0

70 E/\ >

. W WIS
’ S L
40 TS ‘\If ‘

30

Relative Interest (%)

20

0 Heeobottbtbe i b b e e e
u u u u u u

RN T S S VR S S Y
N U R I RN RN N G N
N S @ N W N

Period (Date)

& RO INCIICRN RIS
3‘5\@ & SSP?)@” o W W N

Figure 4.1: Web search interest over 2015 survey time period. Data Source: Google Trends

(www.google.com/trends), July 2015

Another striking similarity is the interest of internet users in both disciplines in
recent years. Figure 4.1 shows the search trends for Google web searches of the six years
from 2009 to 2014 on the topics “Database Forensics” and “Cloud Forensics”. The two
topics have a remarkably similar graph, but initial interest in cloud forensics appeared
somewhat later than the initial interest in database forensics. The graph depicts the
relative interest of each topic compared to the total number of web searches performed
on Google. Each graph is normalised to a hundred percent. The actual number of
searches performed might not necessarily be the same, but the level of interest follows
the same pattern.

An attempt to extend figure 4.1 to cover the full survey period failed due to the
changes made by Google to the way it samples and uses its search data to create the
trends data. Samples are now taken weekly instead of monthly and the included data

is a randomly selected subset of the actual search data (Google, 2018). This random

Chapter 4. Database Forensics Research 45

sampling might not have an impact on popular search topics that occur constantly at
very high volume, but for less popular search topics that may only occur once a week,
this is fatal.

Depending on when the weekly sample for such a less popular search topic is taken,
it may show as zero interest or some positive interest. This is manifested in completely
changing trend graphs when repeating the exact same trend search on different days or
when slightly changing the search period on the same day (e.g. adding or removing a
single day).

For completeness sake, a Google trends search on the topics “Database Forensics”
and “Cloud Forensics” for the remaining survey period was conducted. Figure 4.2 shows

the search trends for Google web searches of the last three years from 2015 to 2017.

100

Database Faorensics

g0

g (0L FoOrensics

a0

70
. | o |

(41
[}
P
I
PR
e
D

g

Relative Interest (%)

:
40
T% JLL DRI

20

___,_::=-
e —
sty
—
— | &
A —]
W‘Mb
- | i
= —
-

=
=
L —T7
—

——
=
=]
]

2015/11/04 ===

2018/01/04
2018/03/04
2018/05/04
2015/07/04
2018/09/04 -
2016/01/04 -
2016/03/04
2016/05/04 4
2016/07/04
2016/11/04 4
2017/01/04
2017/03/04
2017/05/04 +
2017/07/04
2017/09/04 4
2017411704 4

=T
o
=
o
=
=
=]
=
=

Period (Week

=

Figure 4.2: Web search interest in the time period between the 2015 survey and the current

survey. Data Source: Google Trends (www.google.com/trends), September 2018

Even though the random samples for both topics are taken at the same point in
time, an absolute comparison between them is meaningless. When the number of web

searches in a sample falls below a certain threshold, it is represented as zero. This creates

Chapter 4. Database Forensics Research 46

artificially big differences in the interest between the two topics at such points and leads
to an unnaturally moving graph.

However, what is evident in figure 4.2 is that the average interest in cloud forensics
is noticeably higher than in database forensics over the same time period. The accom-
panying averages provided by Google put the database forensics average at ten percent.
The average for cloud forensics is put twice as high at twenty percent.

The research oriented search engine from Microsoft (academic.live.com), which the
2009 paper also consulted, no longer exists. There appears to be a replacement search
engine called Microsoft Academic (MA). In 2015, this search engine was still in beta
and located at academic.research.microsoft.com. Since 2017, this search engine is in
version 2.0 and located at academic.microsoft.com. The first assumption, based solely
on the name, is that this search engine only covers research done or funded by Microsoft.
However, closer inspection revealed that it does actually cover all the research and was
thus used as a replacement.

The survey that was performed followed the same consultation order as the 2009
paper. The survey started with consulting the same digital forensic journals as the 2009
paper. All issues published since March 2009 were studied. The International Journal
of Digital Fvidence published its last issue in the fall of 2007. There was therefore no
need to search this journal for new material. The journal Digital Investigation, however,
has continued to publish regularly. In all subsequent issues published since the issues
that were contained in the original survey, there are exactly three articles on database
forensics. In contrast, there were twelve articles published on cloud forensics in the same
issues.

The survey continued with consulting the proceedings of the same digital forensic
conferences as the 2009 paper. The proceedings of the conferences held since the March
2009 were studied. Revised and heavily edited versions of the papers presented at the
IFIP WG 11.9 conferences are published in a series of books titled Advances in Digital
Forensics. The volumes V (2009) to XIII (2017) were consulted. A total of six pa-
pers were found on the topic of database forensics, while ten papers dealing with cloud
forensics were published.

The DFRWS conference keeps an archive of the proceedings on its website (dfrws.org).

Chapter 4. Database Forensics Research 47

The archives from DFRWS 2009 to DFRWS 2017 including the European conference
DFRWS EU, which started in 2014, were consulted. Only four papers pertained to
cloud forensics, while three recent papers addressed database forensics. A workshop on
OpenStack Cloud Forensics was also presented.

Subsequently the quoted phrases “Database Forensics” and “Cloud Forensics” were
used on the various digital libraries and search engines. IEEEXplore now returns 14
matches for database forensics, where originally there were no matches found. For cloud
forensics, however, IEEEXplore returns 77 matches. ScienceDirect searches still ignore
the quotation marks even though their own help on searching for phrases instructs one
to use double quotation marks. It returns 82 matches, but many of them refer to DNA
forensics in the medical field. If one limits the field to computer science only, there are 22
matches left, of which around 10 relate specifically to database forensics. Cloud forensics,
on the other hand, produces 50 matches, of which just more than half are relevant.

In 2015, the ACM Digital Library appeared to be not only searching ACM published
content, but also included content from the IEEE and other scientific publishers such as
Elsevier and Springer. Database forensics then produced 19 matches, some of which were
books about database security. Cloud forensics produced 45 matches, which contained
some articles about social networking forensics. Somewhere in the last three years, the
ACM updated their search portal and now, by default, the portal only searches their
own content. Unfortunately, this updated portal appears to only have material available
from 2012 onwards. Database forensics now only produces four matches, while cloud
forensics produces eleven matches. Due to changes in the sources as well as the period of
material searched by the ACM portal, any comparison to previous data is meaningless.

What is quite evident from all the matches found by the various search platforms
for the phrase “Cloud Forensics” is that there was nothing published on cloud forensics
before 2010. This supports the choice of using the area of cloud forensics for comparative
purposes.

Finally, attention was given to the research oriented search engines. Google Scholar
now produces 426 hits for the phrase “Database Forensics”. Due to the bigger number of
hits, the relevance of all hits has not yet been established. Microsoft Academic produces
336 hits which seems to include DNA databases. After excluding the DNA related

Chapter 4. Database Forensics Research 48

material, only 156 hits remain. In comparison there are 1640 hits for “Cloud Forensics”
on Google Scholar and 169 hits on Microsoft Academic.

The Google Books search engine was also consulted in the 2009 paper. Searches with
the same phrases as used before were repeated. For comparative purposes, the phrase
“Cloud Forensics” was also entered. Google Books now produces 1340 hits for the phrase
“Database Forensics”, while the phrase “Cloud Forensics” brings back 2560 hits. Hits
for the phrases “Digital Forensics” and “Computer Forensics” have shot up to 54600 and

60600 respectively.

4.3 Discussion

In this section the results from the survey examined in the previous section are discussed

using three comparative tables.

Table 4.1: 2009 vs. 2015 vs. Current Survey (Data to the end of the previous year for each

survey where possible)

Counts
Source

09 |15 | 18

Digital Investigation 0 1 3

Int. Journal of Digital Evidence | 0 0 0
IFIP WG 11.9 0 4 6
DFRWS 0 0 3
IEEEXplore 0 7 14
ScienceDirect 1 10 | 10
ACM 0 | 19 | 4
Google Scholar 12 | 236 | 426
Microsoft Academic 0 5 | 156

Table 4.1 compares the results from 2009 survey to the survey performed in the 2015

Chapter 4. Database Forensics Research 49

paper and to the current survey for the topic of database forensics. All sources show an
increase in published material in the current survey.

Initially, Google Scholar and the ACM showed the highest increases. Both these
sources consulted a variety of electronic libraries. As already discussed in the previous
section, the ACM search functionality used to connect to a number of other publishers
and thus had access to a big amount of published material. It was, therefore, not
unexpected that the ACM would return a greater amount of matches. However, due to
the change by the ACM to search its own material only, the ACM matches have reduced
significantly in the current survey.

In the current survey, Microsoft Academic and Google Scholar show the highest in-
creases. Both these academic oriented search engines use their companies’ main search
engines (Bing and Google respectively) to search the Internet. These search engines
will pick up all available electronic publications and libraries exposed on the web. Un-
fortunately neither Google Scholar nor Microsoft Academic provide a list of libraries
included.

It rather appears that Google is trying to be as comprehensive as possible. On
the positive side, this means that the libraries of scientific and academic institutions
are included, which enables material such as whitepapers, dissertations and theses to
be added. On the negative side, this also adds pseudo-science articles from predatory
journals which are not peer-reviewed (Beall, 2014). It is therefore not surprising that
Google would find the greatest amount of matches.

Google is known to regularly update its search technology. The two biggest changes
in the past nine years were the introduction of Google’s web indexing system Coaffeine
and the conversational search update (Grimes, 2010; Singhal, 2013). How those changes
have affected the Google Scholar and Books search services is not known. However, such
changes are not expected to have a significant impact on this research.

Table 4.2 compares the current survey results for database forensics with those for
cloud forensics. The results produced by the Microsoft academic search engine are not in
line with the trend shown by all other sources. Based on the low amount of matches on
both topics compared to the Google search engine, it appears that the Microsoft search

engine does not yet have enough material enabled for searching. This might be due to

Chapter 4. Database Forensics Research 50

Table 4.2: Database Forensics vs. Cloud Forensics Prevalence (Data to the end of the previous

year for each survey where possible)

Counts
Source
DB 15 | DB ’18 | Cloud ’15 | Cloud 18
Digital Investigation 1 3 9 12
IFIP WG 11.9 4 6 6 10
DFRWS 0 3 3 4
IEEEXplore 7 14 29 77
ScienceDirect 10 10 20 30
ACM 19 4 45 11
Google Scholar 236 426 428 1640
Microsoft Academic 5 156 3 169
Total 282 622 543 1953

the beta status of the Microsoft search engine. The results from the Microsoft engine
will thus not be considered any further in this discussion.

All other sources show a higher publication count for cloud forensics versus database
forensics over the same period. The differences vary between the different sources, but
all of them show a more than thirty percent higher count. Looking at the total amount
of material published for both topics, there are nearly twice as many publications on
cloud forensics than on database forensics.

Table 4.3 shows the amount of hits the Google Books search engine found for the
various search phrases. It compares the number of hits recorded in the 2009 paper to
the survey performed in the 2015 paper and the current survey. Based on the numbers,
it would appear that a huge amount of books were published on the various topics in the
last nine years. However, one has to keep in mind that Google Books will include books
in its results even if they contain the various phases just once in the entire text. That

means books from other disciplines that simply reference forensics in some way, will also

Chapter 4. Database Forensics Research 51

Table 4.3: Google Books 2009 vs. 2015 vs. Current Survey (Data to the end of the previous

year for each survey where possible)

Counts

Phrase
09 15 18

Database Forensics 1 284 1340

Cloud Forensics - 291 2560

Digital Forensics | 188 | 9510 | 54600

Computer Forensics | 716 | 33200 | 60600

be counted.

Another factor that can also influence the increase of books, is that Google has
steadily been adding older books to its library. Those would include books published
before 2009, which would not have been counted in the 2009 paper. What is interesting,
however, is that the amount of books referencing database forensics and cloud forensics
were similar in 2015. This means that, at that time, the awareness of both disciplines in
the literary community was still the same. Since then the books have followed the same
trend as all the other material and there are now twice as many books referencing cloud
forensics than database forensics.

The size of the sample for the survey might appear to be too small to be able to
make definite conclusions. However, given the specific sources that were used, one is
arguably dealing with a big enough portion of the entire population of peer-reviewed

digital forensic research material.

4.4 Possible Explanations

This section contemplates some possible reasons for the slow pace of scientific research
in database forensics compared to other digital forensic areas, such as cloud forensics.
Attempting to explain the absence of database forensics research in the absence of

research papers in this area is quite difficult. An alternate approach would be to analyse

Chapter 4. Database Forensics Research 52

research papers published in the same period in a different and more prolific research
area. Such an analysis could establish motivations and objectives that might be different
or not applicable to database forensics. Thus, the cloud forensic papers identified during
the survey were analysed to gain insight into the absence of database forensic research.

In order to establish motivations and objectives in a more structured manner, a
number of the identified research papers into cloud forensics were chosen to be analysed
in greater detail. They are the twelve papers from the Digital Investigation journal,
the four papers from the DFRWS conference as well as the ten papers from the IFIP
conference.

These specific papers were chosen because they focus exclusively on digital forensics
and have been peer-reviewed. Using these criteria ensures that the papers are relevant
and represent quality research. The abstract and introduction of a conference paper or
journal article normally follows a specific template. The template form prescribes that
both should contain a problem statement and a motivation for the research. Hence, the
abstract of each paper was consulted to establish what problem was being addressed and
the motivation. In the cases where the abstract was too abstract and did not follow the
template form, the introduction was also consulted to clarify the problem and motivation.

A significant amount of the selected papers deal with analysing how forensics can
be performed in the cloud environment utilising current scientific forensic methods and
processes. They identify challenges and propose solutions by adapting either the foren-
sic methods and processes, or the cloud infrastructure and processes. Hence, they are
evaluating the forensic readiness of the community to handle cloud environment inves-
tigations. Nine of the studied papers can be classified in such a category (Delport &
Olivier, 2012; Martini & Choo, 2012; O’Shaughnessy & Keane, 2013; Pichan, Lazarescu,
& Soh, 2015; Ruan, Carthy, Kechadi, & Baggili, 2013; Ruan, Carthy, Kechadi, & Cros-
bie, 2011; Ruan, James, Carthy, & Kechadi, 2012; Trenwith & Venter, 2015; Zawoad &
Hasan, 2015).

The remainder of the chosen papers, with the exception of three, can be divided
equally into two groups. The first group of papers investigates how to determine that
cloud systems and platforms were indeed utilised, and how to identify the specific cloud

service providers from their artefacts. They also discuss how to extract the necessary

Chapter 4. Database Forensics Research 53

information from these artefacts to allow the retrieval of data from various cloud systems
and platforms. Seven of the papers deal with artefacts from specific cloud services
(Chung, Parka, Lee, & Kang, 2012; Hale, 2013; Liu, Singhal, & Wijesekera, 2017; Martini
& Choo, 2013; Quick & Choo, 2013a; Ras & Olivier, 2012; Roussev & McCulley, 2016).

The second group of the remainder of papers proposes different methods and create
different tools to extract data and information from various cloud systems and platforms.
Some of them also investigate how forensically sound the retrieved data and information
is. A total of eight papers can be put into this category (Dykstra & Sherman, 2012,
2013; Federici, 2014; Leimich, Harrison, & J.Buchanan, 2016; Oestreicher, 2014; Quick
& Choo, 2013b; Roussev, Ahmed, Barreto, McCulley, & Shanmughan, 2016; Roussev,
Barreto, & Ahmed, 2016).

One of the exception papers argues that the general availability of cloud computing
provides an opportunity to help with the automated processing of huge amounts of
forensic data (Bhoedjang et al., 2012). Some of the other papers also hint at using cloud
computing to provide forensics-as-a-service.

The other exception paper deals with identifying malware and other malicious code
in virtualised cloud systems. The paper proposes and tests a specific method, to find and
block the calls made by such malicious code (Ahmed, Zoranic, Javaid, III, & Roussev,
2013).

Thus, the purpose for all 26 papers can be divided into five broad categories: cloud
forensic readiness, cloud artefact analysis, cloud data acquisition, forensics-as-a-service
and cloud security. The last two categories do not pertain directly to performing forensics
on cloud systems and are thus not discussed any further.

Databases never had the same challenges to be forensically ready as cloud systems.
They were built from the ground up with standard features such as authentication, au-
thorisation and auditing capabilities (Ramakrishnan & Gehrke, 2003). These traces are
stored as metadata inside the database and, depending on configuration, also externally
in various log files. They make it possible to forensically trace and attribute all events
that occur in a database.

Artefact analysis also does not play such an important role in databases. The identi-

fication of specific databases has never been a great forensic challenge. Usually, there is

Chapter 4. Database Forensics Research 54

some client or server DBMS software installed that identifies the database. Even if the
DBMS software is no longer present or not available, most database files can be easily
identified with the help of magic numbers (Kessler, 2014).

Version upgrades or multiple installations could create complications in database
identification, but they are not insurmountable. The artefacts of databases that are
forensically interesting, are the various log files. There already has been quite a bit of
research done in this area (Adedayo & Olivier, 2014; Fruhwirt, Kieseberg, Schrittwieser,
Huber, & Weippl, 2012).

Forensic data acquisition methods and processes were being developed, when databases
were already part of computer systems. Thus, these methods and processes already in-
directly addressed databases. The huge increase in the size of databases, however, has
forced forensic examiners to start using live acquisition, and live analysis methods and
processes. Some of these processes have already been researched and published (Fowler,
2007a).

In summary, the problem areas addressed by the analysed cloud forensic research are
either not relevant to databases or have already been addressed. This would explain why
researchers working in these particular forensic fields are not interested in databases.

As noted earlier, the motives for the forensic research where also explored. From
the various motivations given by the cloud forensic researchers for doing their research,
a number of reasons could be identified. Firstly, the researchers realised that cloud
computing systems and storage services (CCSSS) brought new challenges to performing
forensic investigations. They also recognised the fast adoption rate of these emerging
technologies and the need for the forensic community to keep pace with these develop-
ments.

From a forensic point of view, CCSSS can be regarded as disruptive technology. The
struggle that the forensic community has, is that these CCSSSs have distributed physical
structures and logical processes and that the conventional proven forensic acquisition and
analysis methods and processes cannot be easily applied any more, if at all.

A third of the selected papers focused on forensic readiness to address these chal-
lenges. This research followed two different approaches. The first group of researchers

investigated how one could adapt and enhance current forensic methods and processes

Chapter 4. Database Forensics Research 55

to deal with cloud forensics. The second group researched how one could structure or
modify CCSSSs to add the features that would allow the proven forensic concepts and
ideas to be applicable again.

The reality, however, is that many of these CCSSSs currently in use, were not designed
with forensics in mind at all. They rather focused on the performance, scalability, cost
and elegance of the solution. This is in contrast with database systems that were built
from the ground up with access control and auditing abilities. These abilities make it
possible to forensically trace all events occurring in a database.

This could be compared to having a conference venue that is rented out for events.
Items such as the event organisers, occupation dates and payment information are
recorded by the venue owner. However, the people attending the event or the actual
happenings during the event are not meticulously recorded by the venue owner.

Secondly, the researchers recognised the value of the information contained in the
CCSSS for forensic purposes. Forensic practitioners need new methods and tools to
acquire and analyse data from the current plethora of cloud platforms now available.

A majority of the researchers also felt that CCSSS would create an increase in cyber-
crime, as well as produce new forms of cybercrime. Firstly, they provide criminals with
new targets to attack and compromise and secondly, they provide powerful platforms to
use for their current and future criminal activities.

A recent example of the malicious use of cloud computing systems, was the rental of
a few thousand Google cloud computing instances by a hacker group calling themselves
the LizardSquad. They used the instances to build a botnet to help them perform
DDoS attacks (Krebs, 2015). Another example was the attack on the iCloud storage
service platform from Apple. The attackers appeared to have targeted the accounts
of arbitrary users and stolen the stored data including the private photos of various
celebrities (Higgins, 2014).

One final reason that can never be dismissed as research motivation, is the newness
factor of a specific subject. CCSSS is currently a new technology that promises new and
revolutionary applications. We are probably still somewhere on the rise section of the
hype cycle when it comes to CCSSS. The word “Cloud” has become a buzz word that

fills the technical media and has already made it into the main stream media (Mullich,

Chapter 4. Database Forensics Research 56

2011). This omni-present hype creates a pervasive idea in people’s minds. So when the
time comes to choose a topic for new research, cloud research will quickly present itself.

In contrast, databases represent old technology that has been around for many years.
They have matured to the point that they form a natural part of many current computer
systems. There have been some recent new developments in the field such as in-memory
databases and NoSQL databases. These developments will probably attract some new
forensic research as they become more widely used.

A deduction that can thus be made, is that the driving forces for the two research
areas are different. Various forces drive the research in the area of cloud forensics, but
these same forces are not present with database forensics. The research in the area of
database forensics was not at a standstill in the past six years. In fact, the research

increased during that period, indicating that there are still other driving forces.

4.5 Conclusion

Instead of a traditional literature review of related research material, this chapter per-
formed a literature survey of all major digital forensic research published since 2009 in
the areas of database forensics and cloud forensics. This was compared to the state of
affairs in a previous survey published in 2009.

The literature survey indicated that the speed of research into database forensics
has increased since the 2009 survey was published. There is quite a bit more published
information available than before. However, other newer areas, such as cloud forensics,
have produced twice the amount of new research in the same time period. Based on the
book analysis of the survey, at least the interest and awareness around both disciplines
appears to be the same.

The analysis of the motivations for performing research in the cloud forensics domain
has not identified a specific driving force. Rather, a number of different factors have
influenced the researchers. These same factors mostly do not apply to the database
forensics domain, explaining why these forensic researchers have given little attention
to databases. Those researchers that did perform database forensic research were thus

driven by different forces, probably inspired by the call for more research in the 2009

Chapter 4. Database Forensics Research 57

research paper.
The next chapter starts working towards answering the initial research question. To
this end, it performs an in-depth investigation of database triggers and their workings.

It also analyses the interference potential during a forensic examination.

Chapter 5
Database Trigger Implementations

Chapter 2 introduced the database trigger by providing a brief history and their purpose
in relational databases. This chapter takes a more in-depth look at triggers and their
workings. The different types of triggers that are defined in the standard, as well as other
non-standard triggers, are examined. Specifically, this chapter investigates the database
triggers as they have been implemented by a chosen number of DBMSs. This chapter is
based on work from a previously published paper (Hauger & Olivier, 2015b).

Firstly, section 5.1 provides the context and database selection against which the
database triggers will be investigated. To start the investigation, section 5.2 first exam-
ines what types of triggers are defined in the standard. Then, section 5.3 inspects the
implementations of the standard triggers by the selected DBMSs. Thereafter, section
5.4 looks at other non-standard triggers that some DBMSs have implemented. For each
type of trigger the question was asked as to how the usage of that particular trigger could
impact the forensic process or method. To conclude the investigation, the database ob-
jects that triggers can be applied to, are examined in section 5.5. Section 5.6 concludes

this chapter.

5.1 Investigation Context

In chapter 2, it was established that database triggers are designed to perform automatic

actions based on events that occur in a database. This implies that there is a wide variety

o8

Chapter 5. Database Trigger Implementations 59

of commission and omission actions that can be performed by triggers. These actions
can potentially have an effect on data inside and outside of the DBMS. Thus, triggers,
and the actions they perform, are forensically important. This was already recognised by
Khanuja and Adane (2012) in a framework for database forensic analysis they proposed.

The effect that triggers can have on data raises the concern that they could compro-
mise the integrity of the data being examined. Could triggers, due to their nature in
combination with the way databases are forensically analysed, lead to the contamination
of the data that is being analysed? This chapter attempts to establish if these concerns
around triggers are justified.

In chapter 2, it was ascertained that the database trigger is defined in the ISO/IEC
9075 SQL standard (ISO/IEC JTC1/SC32, 2011). This specification could thus be ex-
amined to determine, on a theoretical basis, if there is reason for concern. However, the
standard is merely used as a guideline by DBMS manufacturers and there is no require-
ment to conform to the standard. Certain manufacturers also use feature engineering to
gain a competitive advantage in the marketplace (Turner, Fuggetta, Lavazza, & Wolf,
1999). They might implement additional triggers based on actual feature requests from
high profile clients. Standard triggers might also be enhanced, or other additional triggers
implemented, based on the perceived usefulness by the manufacturers. These features
could be used to overcome certain limitations in their DBMS implementations. It is
therefore necessary to study actual trigger implementations, rather than the standard
itself.

There are thousands of database implementations available and to investigate the
trigger implementations of all those databases that use triggers would be prohibitive.
Thus, the database trigger implementations of a number of proprietary and open-source
DBMSs were chosen. The DBMSs investigated were Oracle, Microsoft SQL Server,
Mysql, PostgreSQL, DB2, SyBase and SQLite. These selected relational database man-
agement systems (RDBMS) are widely adopted in the industry. SQLite is particularly
interesting since it is not a conventional database. SQLite has no own server or running
process, but is rather a single file that is accessed via libraries in the application using it.
SQLite is being promoted as a file replacement for local information storage. Some well

known applications, such as Adobe Reader, Adobe Integrated Runtime (AIR), Firefox

Chapter 5. Database Trigger Implementations 60

and Thunderbird, use SQLite for information storage. SQLite is also very compact and
thus well suited for use in embedded and mobile devices. Mobile operating systems iOS
and Android make use of SQLite (SQLite Cons., 2014a, 2014c).

The dominance of the selected RDBMSs in the market means that they would be
encountered fairly often by the general digital forensic examiner. These RDBMSs are also
the most popular based on the number of web pages on the Internet according to solid
IT’s ranking method (DB-Engines, 2014). The official documentation of these RDBMSs
was used to study their trigger implementations. The latest published version of the
documentation was retrieved from the manufacturer’s website (IBM, 2012; Microsoft,
2012a; Oracle, 2009a; Oracle Corp., 2015; PostgreSQL Group, 2013; SQLite Cons., 2014b;
Sybase Inc., 2011). At the time of the investigation, the latest versions available were
as follows: Oracle 11.2g, Microsoft SQL Server 2012, Oracle Mysql 5.7, PostgreSQL 9.3,
IBM DB2 10, Sybase ASE 15.7 and SQLite 3.8.6.

5.2 Specification

The ISO/IEC 9075 SQL standard part 2: Foundation defines a trigger as an action or
multiple actions taking place as a result of an operation being performed on a certain
object. These operations are known as trigger events, and are defined as changes made
to rows by inserting, updating or deleting them. Therefore, three trigger types are being
defined: the insert trigger, the delete trigger and the update trigger.

The timing of the triggered actions are also defined in the standard. An action can
take place immediately before the operation, instead of the operation or immediately
after the operation. A trigger is thus additionally defined as a BEFORE trigger, an
INSTEAD OF trigger or an AFTER trigger. A BEFORE trigger would perform its
action first and only then the operation that activated it would be performed. In the
case of the AFTER trigger, the activation operation would be performed first, and then
the trigger action would follow. In both cases the trigger action is executed in addition to
the activation operation. The INSTEAD OF is different because the activation operation
is replaced by the trigger action.

Another trigger property that is also defined in the standard, is how the triggered ac-

Chapter 5. Database Trigger Implementations 61

tion is to be applied to the object. T'wo cases are defined: the action can take place only
once, or it can occur for every row in the object that the operation manipulates. The
trigger is thus further defined as a statement-level trigger or as a row-level trigger. A com-
plete trigger specification thus needs to indicate the trigger event (insert/update/delete),
the trigger action time (BEFORE/INSTEAD OF/AFTER) and the application level

(statement-level /row-level).

5.3 Standard Triggers

The first aspect that was looked at, was the conformance to the ISO/TEC 9075 SQL
standard regarding the type of triggers. It was found that all surveyed DBMSs im-
plement the three types of DML triggers defined in the standard. However, the only
implementations that match the specification exactly with regards to trigger types, are
those of Oracle and PostgreSQL. These DBMSs have implemented all combinations of
BEFORE/AFTER/INSTEAD OF/Statement-level/Row-level triggers. The implemen-
tations of the other DBMSs either restrict the available combinations or implement only
a subset of the definition from the specification.

Specifically, DB2 has no BEFORE statement-level trigger, but all the other com-
binations are implemented. Furthermore, SQL Server and Sybase do not implement
BEFORE triggers at all. Also, they both do not have row-level triggers and all triggers
are per default statement-level triggers. On the other hand, Mysql and SQLite do not
have any statement-level triggers and all triggers are per default row-level triggers. This
fact should be kept in mind when designing trigger actions since row-level triggers will
have a significant overhead in tables with many rows of data.

PostgreSQL goes one step further and differentiates between the DELETE and TRUN-
CATE operation. Because the standard only specifies the DELETE operation, most
databases will not execute the DELETE triggers when a TRUNCATE operation is per-
formed. Depending on the viewpoint, this can be advantageous or problematic. It allows
for the quick clearing of data from a table without having to perform possibly time con-
suming trigger actions. However, if a DELETE trigger was placed on a table to clean up
data in other tables first, a TRUNCATE operation on that table might fail due to ref-

Chapter 5. Database Trigger Implementations 62

erential integrity constraints. The linked tables will have to be truncated in the correct
order to be successfully cleared. PostgreSQL allows additional TRUNCATE triggers to

be placed on such linked tables, facilitating easy truncation of related tables.

CREATE TRIGGER [test dml]
ON dbo.Benefitc
AFTER DELETE

13

BEGIN

IF [ORIGINAL LOGIN()= 'sa' OR ORIGINAL LOGIN()= 'HOMEVM\whauger')
INSERT INTO dbo.Benefit VWALUES('S15', 'MY DML BENEFIT') :

END;

Figure 5.1: DML Trigger Example. SQL Server Syntax.

Figure 5.1 shows a plain example of a standard (DML) trigger as used in SQL Server.
As can be deduced from the keywords “DELETE” and “AFTER”, this is a delete trigger
where the specified SQL statement takes place immediately after a delete operation is
performed. This trigger has been placed on a table called dbo.Benefit.

The SQL statement it contains, checks the user id that is performing the delete
operation and if it matches specific privileged user accounts, it will insert a new row
into the same table. Specifically, this example trigger will insert a single row into the
table dbo.Benefit when one or more rows are deleted from the table dbo.Benefit by the
privileged users “sa” or “whauger”.

Since all three types of DML triggers defined by the standard rely on changes of data
taking place i.e. either the insertion of new data, or the changing or removal of existing
data, the standard methods employed by the forensic examiner are not impacted. These
methods are specifically chosen because they do not cause any changes and can be used
to create proof that, in fact, no changes have occurred.

Some members of the development community forums have expressed the need for a
select trigger (Oracle, 2006). A select trigger would be a trigger that fires when a select
operation takes place on the object on which it is defined. None of the DBMSs surveyed
implement such a select trigger. Microsoft, however, is working on such a trigger and its
researchers have presented their work already (Fabbri, Ramamurthy, & Kaushik, 2013).

Oracle, on the other hand, has created another construct that can be used to perform

Chapter 5. Database Trigger Implementations 63

one of the tasks that the developers want to perform with select triggers: manipulate
SQL queries that are executed. The construct Oracle has created is called a group
policy. It transparently applies the output from a user function to the SQL executed on
the defined object for a certain user group. The function can be triggered by selecting,
inserting, updating or deleting data. The good news for the forensic examiner is that
these functions will not be invoked for users with system privileges. As long as the
forensic examiner uses a database user with the highest privileges, the group policies
will not interfere with his examination.

The existence of a select trigger would have greatly impacted on the standard methods
used by the database forensic examiner. One of the methods used to gather data and
metadata for analysis, is the execution of SQL select statements on system and user
database objects, such as tables and views. This would have meant that an attacker
could have used such a trigger to hide or, even worse, destroy data. A hacker could use
select triggers to booby-tap his root kit. By placing select triggers on sensitive tables
used by him, he could initiate the cleanup of incriminating data or even the complete
removal of his root kit should somebody become curious about those tables and start

investigating.

5.4 Non-standard Triggers

The second aspect that was investigated was the additional types of triggers that some
DBMSs define. The main reason for the existence of such extra trigger types is to allow
developers to build additional, and more specialised auditing and authentication func-
tionality, than what is supplied by the DBMS. However, that is not the only application
area and triggers can be used for a variety of other purposes. For example, instead of
having an external application monitoring the state of certain elements of the database
and performing an action once certain conditions become true, the database itself can
initiate these actions.

The non-standard triggers can be categorised into two groups: DDL triggers and
other non-data triggers. From the DBMSs investigated, only Oracle, SQL Server and

Sybase provide non-standard triggers.

Chapter 5. Database Trigger Implementations 64

5.4.1 DDL Triggers

The first group of non-standard triggers are the DDL triggers. These are triggers that
fire on changes made to the data dictionary with DDL SQL statements (e.g. create,
drop, alter). Different DBMSs define different DDL SQL statements that can trigger
actions. SQL Server has a short list that contains just the basic DDL SQL statements.
Oracle has a more extensive list and also a special DDL indicator that refers to all of
them combined. Since DDL SQL statements can be applied to different types of objects
in the data dictionary, these triggers are no longer defined on specific objects. Rather,
they are defined on a global level, firing on any occurrence of the event irrespective of
the object being changed. Both SQL Server and Oracle allow the scope to be set to a

specific schema or the whole database.

CREATE TRIGGER [test ddl]
O DATABASE
AFTER DROP_TAELE

L3

BEGIN

IF [ORIGINAL LOGIN()= 'sa' OR ORIGINAL LOGIN()= 'HOMEVN\whauger')
INSERT INTO dbo.Benefit VALUES|('S16', 'MY DDL BENEFIT'):

END;

Figure 5.2: DDL Trigger Example. SQL Server Syntax.

Figure 5.2 shows a plain example of a DDL trigger as used in SQL Server. The special
reserved word “DROP_TABLE” indicates that this is a trigger that fires when tables are
dropped. As can be deduced from the keyword “AFTER”, this is a drop trigger where
the specified SQL statement takes place immediately after the drop operation. Instead
of being placed on a specific database object, this trigger has been associated with the
entire database.

The SQL statement it contains, once again checks the user id that is performing the
drop table operation and if it matches specific privileged user accounts, it will insert a
new row into a table called dbo.Benefit. Specifically, this example trigger will insert a
single row into the table dbo.Benefit when a table is dropped by privileged users “sa” or

“whauger” in the database, where the trigger resides

Chapter 5. Database Trigger Implementations 65

As with DML triggers, such DDL triggers once again rely on data changes being
made in the database to fire and thus they pose no problem of interference during the

forensic examination.

5.4.2 Non-data Triggers

The second group of non-standard triggers are non-data triggers. These are triggers that
fire on events that occur during the normal running and usage of a database. Since these
triggers do not need any data changes to fire, they potentially have the biggest impact
on the methods employed by the forensic examiner. Fortunately, the impact is isolated
because only some DBMSs have implemented such triggers.

SQL Server, Oracle and Sybase define a login trigger. This trigger fires when a user
logs into the database. SQL Server’s login trigger can be defined to perform an action
either before or after the login. Authentication, however, will be performed first in both
cases, meaning only authenticated users can activate the trigger. That means the login
trigger can be used to perform conditional login or even completely block all logins. An
attacker could use this trigger to easily perform a denial of service (DoS) attack. Many
applications now use some type of database connection pool that dynamically grows
or shrinks depending on the load of the application. Installing a trigger that prevents
further logins to the database would cripple the application during high load. It would
be worse after an idle period where the application would have reduced its connections
to the minimum pool size.

Oracle’s login trigger only performs its action after successful login. Unfortunately,
that distinction does not make a significant difference and this trigger can also be used to
perform conditional login or completely prevent any login. That is because the content
of the trigger is executed in the same transaction as the triggering action (Oracle, 2009a).
Should any error occur in either the triggering action or the trigger itself, then the whole
transaction will be rolled back. Simply raising an explicit error in the login trigger will
reverse the successful login.

Sybase distinguishes between two different types of login triggers. The first is the
login-specific login trigger. The trigger action is directly linked to a specific user account.

This type of trigger is analogous to the facility some operating systems provide, which

Chapter 5. Database Trigger Implementations 66

can execute tasks on login. The second type is the global login trigger. Here, the trigger
action will be performed for all valid user accounts. Sybase allows both types of login
triggers to be present simultaneously. In this case, the global login trigger is executed
first and then the login-specific trigger (Verschoor, 2007).

Both types of login triggers are not created with the standard Sybase SQL trigger
syntax. Instead a two-step process is used. First, a normal stored procedure is created,
that contains the intended action of the trigger. Then this stored procedure is either
linked to an individual user account or made applicable to all user accounts with built-in
system procedures. Like with Oracle, the action procedure is executed after successful
login, but within the same transaction. Thus, it can be similarly misused to perform a
DoS attack.

CREATE TRIGGER [test login]

oM ALL SERVER

AFTER LOGON

13

EEGIN

IF (ORIGINAL LOGIN()= 'sa' OR ORIGINAL LOGIN(j= 'HOMEVM'whauger')
INSERT INTO dho.Benefit VALUES |('S17', 'MY LOGIN BEEMEFIT'):

END ;

Figure 5.3: Login Trigger Example. SQL Server Syntax.

Figure 5.3 shows a plain example of a login trigger as used in SQL Server. The
special reserved word “LOGON” indicates that this is a trigger that fires when users
login. Together with the keyword “AFTER”, it can be deduced that this is a login
trigger where the specified SQL statement takes place immediately after successful login.
Instead of being placed on a specific database or object inside this specific database, this
trigger has been placed on the entire database server.

Once again, the SQL statement it contains, checks the user id that is logging into
the database server and if it matches specific privileged user accounts, it will insert a
new row into a table called dbo.Benefit. Specifically, this example trigger will insert a
single row into the table dbo.Benefit when privileged users “sa” or “whauger” log into
the database server.

Microsoft has considered the possibility of complete account lockout and subsequently

Chapter 5. Database Trigger Implementations 67

created a special method to login to a database that bypasses all triggers. Oracle, on the
other hand, has made the complete transaction rollback not applicable to user accounts
with system privileges or the owners of the schemas to prevent a complete lockout.
Additionally, both SQL Server and Oracle have a special type of single-user mode the
database can be put into, which will also disable all triggers (Microsoft, 2012b; Oracle,
2009b). Sybase, on the other hand, has no easy workaround and the database needs to
be started with a special flag to disable global login triggers (Verschoor, 2007).

A hacker could use this trigger to check if a user with system privileges, that has the
ability to look past the root kits attempts to hide itself, has logged in. Should such a user
log in, he can remove the root kit almost completely, making everything appear normal
to the user, even on deeper inspection. He can then use Oracle’s BEFORE LOGOFF
trigger to re-insert the root kit, or use a scheduled task (Kornbrust, 2005) that the root
kit hides, to re-insert itself after the user with system privileges has logged off.

Another non-data trigger defined by Oracle is the server error trigger. This trigger
fires when non-critical server errors occur and could be used to send notifications or
perform actions that attempt to solve the indicated error.

The final non-data triggers defined by Oracle only have a database scope due to their
nature: the database role change trigger, the database startup trigger and the database
shutdown trigger. The role change trigger refers to Oracle’s proprietary Data Guard
product that provides high availability by using multiple database nodes. This trigger
could be used to send notifications or to perform configuration changes relating to the
node failure and subsequent switch over.

The database startup trigger fires when the database is opened after successfully
starting up. This trigger could be used to perform certain initialisation tasks that do
not persist, and subsequently do not survive a database restart. The database shutdown
trigger fires before the database is shut down and could be used to perform cleanup tasks
before shutting down. These last two triggers can be similarly exploited as the login and

logoff triggers by a hacker to manage and protect his root kit.

Chapter 5. Database Trigger Implementations 68

5.5 'Trigger Objects

The third aspect that was investigated, was which database objects the DBMSs allowed
to have database triggers. The standard generically defines that triggers should operate
on objects, but implies that the objects have rows. It was found that all DBMSs allow
triggers to be applied to database tables. Additionally, most DBMSs allow triggers to be
applied to database views with certain varying restrictions. Only Mysql restricts triggers
to be applied to tables only.

None of the DBMSs allow triggers to be applied to system tables and views. Triggers
are strictly available only on user tables and views. Additionally, there are restrictions
to the type of user table and user views that triggers can be applied to.

This is good news for forensic examiners, since they are very interested in the internal
objects that form part of the data dictionary. However, there is a move by some DBMSs
to provide system procedures and views to display the data from the internal tables
(Lee & Bieker, 2009). To protect these views and procedures from possible user changes
they have been made part of the data dictionary. The ultimate goal appears to be to
completely remove direct access to internal tables of the data dictionary.

This might be unsettling news for forensic examiners as they prefer to access any data
as directly as possible to ensure the integrity of the data. It will then become important
to not only use a clean DBMS, but also a clean data dictionary (at least the system
parts). Alternatively, the forensic examiner first needs to show that the data dictionary
is not compromised by comparing it to a known clean copy (Olivier, 2009). Only then

can he use the functions and procedures provided by the data dictionary.

5.6 Conclusion

To determine if triggers could possibly interfere with a forensic examination by contami-
nating data, a more in-depth investigation of triggers was performed. First, the ISO/IEC
9075 SQL standard was examined on a theoretical basis. However, it was determined
that various DBMSs manufacturers do not follow the standard exactly for different rea-
sons. Thus, the actual trigger implementations of a number of prominent DBMSs were

investigated.

Chapter 5. Database Trigger Implementations 69

This chapter established that there was indeed cause for concern. It was found
that certain of the investigated DBMSs implemented additional triggers that were not
specified in the standard. Of particular interest are the group of non-data triggers. One
of the goals that the forensic examiner has, is to keep the data he is examining unchanged.
Thus, triggers that rely on data changes to activate, are not a contamination risk. On
the other hand, triggers that activate due to other actions, such as database startup or
login, can be a risk.

This is because these actions might be performed by a forensic examiner during the
cause of his examination. How exactly these non-data triggers can interfere with the

forensic acquisition performed by the forensic examiner, is explored in the next chapter.

Chapter 6

Forensic Examination of Relational

Databases

This chapter takes a closer look at the forensic examination of relational databases.
Specifically, the implications of the presence of triggers during a forensic examination of
a database are analysed. The previous chapter already indicated that certain types of
triggers can potentially interfere with the acquisition process of a forensic examination.
This chapter also looks at how the presence of triggers could interfere with the forensic
interpretation process.

An analysis of a sample forensic examination on a relational database is conducted
in section 6.1 in order to explore the potential interference of non-data triggers. Section
6.2 investigates how the presence of triggers, including standard triggers, can interfere
with forensic attribution performed during the interpretation process. Section 6.3 then

discusses the results further. Section 6.4 concludes this chapter.

6.1 Forensic Acquisition and Analysis Implications

In order to make the implications of the presence of non-data triggers more concrete, a
look at some real-world forensic database examinations would be beneficial. Unfortu-
nately, there is little scientific material available on such examinations. However, there

is one examination that has been cited in a number of scientific papers: The forensic

70

Chapter 6. Forensic Examination of Relational Databases 71

examination of a SQL Server 2005 database performed in 2007 by Kevvie Fowler (2007b)
for one of his clients. He provides a full account that lists in detail the exact steps that
he followed during his examination.

Even though this detailed examination of a SQL Server database might be the only
available scientific reference, certain fundamental activities carried out in this examina-
tion will be performed in all database examinations. These activities include accessing
the database in order to extract information and data for preservation and analysis.
Thus, it is worth testing what implications the presence of triggers has on the acquisi-
tion and analysis processes performed in this examination.

Of particular interest is the question if these processes are able to deal with the pres-
ence of triggers adequately. In order to do that, one needs to go through the examination
one step at a time and question each step with regards to database triggers. Taking such
a systematic approach will ensure that all areas where triggers could possibly interfere,
are identified. The next section follows this step by step approach, up to a certain point,

in the examination account of Fowler.

6.1.1 SQL Server Examination

In this examination, Fowler related how he was called out to a client company to in-
vestigate a possible security incident after a suspicious transaction was flagged by the
credit card company of a client. The client company was running an online sales appli-
cation that used a Microsoft SQL Server 2005 database. Since the system was mission
critical for the client company, they did not want to take the application down unless a
compromise could be detected. Fowler thus needed to perform a live analysis, acquiring
and viewing volatile and non-volatile data using the live operating system directly on
the database server

After having been logged into the console of the database server, Fowler inserted his
Forensic Response CD, which contained trusted binaries of all the tools and utilities he
might need. He used his own copy of the “net” utility to mount a remote shared drive
from his forensic workstation that was connected to the network and accessible from the
database server. He used this mapped drive to store all the information he gathered,

including any forensic images he made.

Chapter 6. Forensic Examination of Relational Databases 72

The first tool that Fowler ran was the Windows Forensic Toolchest (WFT'), which
he used to gather volatile database and operating system information. WE'T is a foren-
sically enhanced batch processing shell that is capable of running other security tools
and utilities. It provides a simplified way of scripting data collection activities, while
computing MD5 or SHA1 checksums and logging all activities in an auditable fashion
(Fool Moon, 2014). Since this output produced by WET is forensically sound, it can be
used in legal proceedings.

Fowler has provided the portion of his WFT configuration file that he added for SQL
Server. A closer look shows that he scripted five SQL queries, which provide the database
and system information he wants. He executes those queries with a command line utility
called “sqlemd” that is provided by Microsoft. He uses two command line options: one
to specify the query and another to use a trusted connection. What a trusted connection
means, is that instead of using provided or configured username/password credentials,
the utility will use the logged in user account details to access the database server. In
Fowler’s case, this was the local administrator account.

This first step that Fowler performed, provides the exact scenario that was described
in chapter 5: A privileged user logs into a potentially compromised database. A login
trigger placed with malicious intent can now execute and interfere in various ways with
the examination that Fowler was performing. It is therefore necessary to take precau-
tions, in regard to triggers, before this first step is performed.

There are two obvious approaches one can take: Either, one needs the ability to
assess the triggers in a database before one logs into the database, or one needs to access
the database in such a manner that triggers are disabled or bypassed. However, triggers
are just another database element that is stored and maintained inside the database.
Providing direct access to them via some alternate mechanism, possibly without the same
authentication and authorisation as used in the standard mechanism, would compromise
the whole security model of the database.

The other option, to disable or bypass triggers, could also be seen as a possible
security compromise. However, there are practical considerations that might force the
hands of manufacturers of databases that support triggers to provide such an option. As

already discussed in chapter 5, a login trigger could be used to perform a DoS attack on

Chapter 6. Forensic Examination of Relational Databases 73

the database. This could be either intentional or simply due to a mistake. The question
is how one would regain control of a database when this has happened.

In the case of SQL Server, Microsoft has recognised this problem and consequently
provided an option to bypass login triggers. Their option is a dedicated administrator
connection (DAC) that runs on a separate TCP port (Microsoft, 2015). This connection
is for diagnostic purposes with limited functionality, which can be used when the standard
connection options no longer work. When connecting to the database using the DAC,
no login triggers are executed; they are temporarily disabled (Microsoft, 2012a).

This DAC is accessed by simply specifying a specific command line option to the
different Microsoft database clients and tools. In Fowler’s case, the solution would have
been as easy as adding another command line option to “sqlemd” in the WFT configura-
tion file. This would then allow Fowler to access the database without any login triggers
running, thus mitigating the risk of a possible malicious trigger.

However, this additional command line option would only get Fowler into the database
without setting off any login triggers. He would still need to check, if there are any login
triggers present and active in the database. This could be done by adding another SQL
query to the WFT configuration file, which lists all login triggers and their status.

After the WFT scripts had completed running, Fowler analysed the output that was
produced. As part of this analysis, he could now also check for the presence of login
triggers. If there are active login triggers in the database, he has two choices as to
how to continue his examination safely. First, he could continue to use the DAC for all
further database interaction. Alternatively, he could disable all the login triggers while
connected via the DAC and then continue to use the standard connection for all further
database interaction.

After having confirmed that there was indeed unauthorised access to the database,
Fowler then continued by obtaining database configuration information. He used the
same command line utility “sqlemd” as in the WF'T scripts. Different command line
options were used that time to allow Fowler to log all output generated during his
session to his forensic workstation.

What precautions Fowler would need to take regarding login triggers depends on

what choice he made in the previous step. If he did disable any active login triggers, he

Chapter 6. Forensic Examination of Relational Databases 74

can continue using “sqlemd” as he normally would. If, however, he decided not to make
any changes to the database, he would need to add the same command line option to
“sqlemd” as was required in the WFT configuration file.

Once Fowler had completed acquiring the volatile data and configuration information,
he shut down the database. Then, he continued acquiring the non-volatile data located
in various files on the file system. He imaged them in a forensically sound manner using
the “dcfldd” tool.

This tool was developed by Nicholas Harbour in 2002 while working for the Depart-
ment of Defense Computer Forensics Lab (DCFL). “dcfldd” is an enhanced version of
GNU “dd” file copy utility with features useful for forensics and security. These features
include on-the-fly hashing of the input data being transferred, as well as the logging of
all its output to files (Harbour, 2002).

Fowler then moved to his forensic workstation to start the analysis of the acquired
data. He used various tools, including Microsoft Excel, to view the various captured
and acquired files. However, to view the raw database pages, he attached the acquired
database files to his SQL server. He then logged on to this database and used built-in
tools to show raw data pages of interest.

Before Fowler logs into the database on his forensic workstation, he needs to take the
same precautions as before. If he did disable any active login triggers, he can continue
logging into the database as he normally would. If, however, he decided not to make
any changes to the database, he would need to connect to the database using the DAC
first. If the built-in tools are available via the DAC, he can continue using it. Otherwise
he would have to examine any active login triggers present and disable those that make
changes. Then he could logout and login again as he normally would.

Fowler has now completed the acquisition process and is busy with the analysis pro-
cess. Since this example database examination is performed on a SQL Server database,
the login trigger is the only non-data trigger available that could interfere. The areas
in the examination process where login triggers could potentially interfere, have already
been identified and discussed.

Continuing the step by step analysis at this point will provide no further insights.

Had this been an examination of an Oracle database, then it would have been prudent to

Chapter 6. Forensic Examination of Relational Databases 75

continue analysing the example database examination in order to discover further areas

of potential interference by some of the other non-data triggers that Oracle provides.

6.2 Forensic Interpretation Implications

The previous section concentrated on the potential impact that the presence of non-data
triggers has on forensic acquisition and analysis during a forensic examination. This
section moves the focus to forensic interpretation, specifically forensic attribution.

The concern of this section revolves around the automatic nature of actions performed
by triggers. As an example, consider a database table that contains an AFTER update
trigger that updates a value in the same table. This table with the trigger is then updated
by a database user. Can the current attribution process correctly identify which party
is responsible for which changes? This section attempts to establish if these concerns

around triggers are justified.

6.2.1 Identification and Forensic Attribution

The login trigger problem identified in section 6.1.1 raises another interesting problem.
Once the forensic examiner has pieced together all the actions, which occurred at the
time when the user with system privileges was logged in, the attribution of those actions
can then be performed. Since the forensic examiner can now make the assumption that
the picture of the events that took place is complete, he would attribute all the actions
to this specific user. This is because all the individual actions can be traced to this
user account by the audit information. Without looking at triggers, the examiner will
miss, that the particular user might have been completely unaware of certain actions
that happened, even though they were activated and executed with his credentials.
The actions that are performed by triggers can be categorised into two groups: com-
mission actions and omission actions. The trigger action time discussed in section 5.1
determines in which group a particular trigger action can fall. The BEFORE/AFTER
trigger can be used to commission additional actions before or after the intended opera-
tion is performed. Since the original operation is still performed unchanged, no omission

actions can be performed. The outcome of the original operation can still be changed or

Chapter 6. Forensic Examination of Relational Databases 76

completely reversed by actions performed in an AFTER trigger, but those actions are
still commission actions.

The INSTEAD OF trigger, on the other hand, can be used to perform actions in
both groups. Normally, this trigger is intended to commission alternative actions to the
original operation requested. Similar to the BEFORE/AFTER trigger, it can also be
used to commission actions in addition to the original operation. But importantly, it
provides the ability to modify the original operation and its values. This ability also
makes it possible to either remove some values or remove the operation completely.
Operations that were requested, simply never happen and values that were meant to be
used or stored, disappear. These removal actions therefore fall into the omission action
group.

Consider a database in a medical system that contains patient medical information.
An additional information table is used to store optional information, such as organ
donor consent and allergies, in nullable columns. This system is used, among other
things, to capture the information of new patients being admitted to a hospital. The
admissions clerk carefully enters all the information from a form that is completed by
the patient or his admitting physician. The form of a specific patient clearly indicates
that he is allergic to penicillin. This information is dutifully entered into the system by
the admissions clerk.

However, an attacker has placed an INSTEAD OF trigger on the additional infor-
mation table that changes the allergy value to null before executing the original insert.
After admission, the medical system is then used to print the patient’s chart. A medical
doctor then orders the administration of penicillin as part of a treatment plan after con-
sulting the chart, which indicates no allergies. This action ultimately leads to the death
of the patient due to an allergic reaction. An investigation is performed to determine the
liability of the hospital after the cause of death has been established. The investigation
finds that the allergy was disclosed on the admissions form, but not entered into the
medical system. The admissions clerk that entered the information of the patient that
died is determined and questioned. The admissions clerk, however, insists that he did
enter the allergy information on the form and the system indicated that the entry was

successful. However, without any proof substantiating this, the admissions clerk will be

Chapter 6. Forensic Examination of Relational Databases 7

found negligent.

Depending on the logging performed by the particular database, there might be no
record in the database that can prove that the admissions clerk was not negligent. The
application used to capture the information might, however, contain a log that shows a
disparity between the data captured and the data stored. Without such a log, there will
possibly be only evidence to the contrary, implying gross negligence on the part of the
admissions clerk. This could ultimately lead to the admissions clerk being charged with
having performed an act of omission. However, should triggers be examined as part of
a forensic examination, they could provide a different perspective. In this example, the
presence of the trigger can, as a minimum, cast doubts on the evidence and possibly
provide actual evidence to confirm the version of events, as related by the admissions
clerk.

The next example shows commission actions by using a trigger to implement the
salami attack technique. An insurance company pays its brokers commission for each
active policy they have sold. The commission amount is calculated according to some
formula and the result stored in a commission table with five decimal precision. At
the end of the month, a payment process adds all the individual commission amounts
together per broker and stores the total amount, rounded to two decimals, in a payment
table. The data from the payment table is then used to create payment instructions for
the bank.

Now, an attacker could add an INSTEAD OF trigger on the insert /update/delete op-
erations of the commission table, which would get executed instead of the insert /update/delete
operation that was requested. In the trigger, the attacker could truncate the commis-
sion amount to two digits, write the truncated portion into the payment table against a
dormant broker and the two decimal truncated amount, together with the other original
values, into the commission table. The banking details of the dormant broker would be
changed to an account the attacker controlled and the contact information removed or
changed to something invalid so that the real broker would not receive any notification
of the payment.

When the forensic examiner gets called in after the fraudulent bank instruction gets

discovered, he will find either of two scenarios: The company has an application that

Chapter 6. Forensic Examination of Relational Databases 78

uses database user accounts for authentication or an application that has its own built-in
authentication mechanism and uses a single database account for all database connec-
tions. In the first case, he will discover from the audit logs that possibly all users that
have access in the application to manage broker commissions, have at some point up-
dated the fraudulent bank instruction. Surely not all employees are working together to
defraud the company. In the second case, the audit logs will attribute all updates to the
fraudulent bank instruction to the single account the application uses.

In both cases, it would now be worthwhile to query the data dictionary for any triggers
that have content that directly or indirectly refers to the payment table. Both Oracle
and SQL Server have audit tables that log trigger events. If the trigger events correlate
with the updates of the payment table as indicated in the log files, the examiner will have
proof that the trigger in fact performed the fraudulent payment instruction updates. He
can then move on to determine when, and by whom, the trigger was created. Should
no trigger be found, the examiner can move on to examining the application and its
interaction with the database.

Another more prevalent crime that gets a lot of media attention is the stealing of
banking details of customers of large companies (Osborne, 2014). The most frequent
approach is the breach of the IT infrastructure of the company and the large scale down-
load of customer information, including banking details. This normally takes place as a
single big operation that gets discovered quickly afterwards. A more stealthy approach
would be the continuous leaking of small amounts of customer information over a long
period of time.

Triggers could quite easily be used, to achieve the continues leaking of customer
information at the insurance company in our previous example. The attacker can add
an AFTER trigger on the insert/update operations of the banking details table. The
trigger takes the new or updated banking information and writes it to another table.
There might already be such a trigger on the banking details table for auditing purposes
and so the attacker simply has to add his part. To prevent any object count auditing
from picking up his activities, the attacker can use an existing unused table. There is
a reasonable chance he will find such a table, because there are always features of the

application that the database was designed to have, that simply were not implemented

Chapter 6. Forensic Examination of Relational Databases 79

and might never be. This is due to the nature of the dynamic business environment the
companies operate in.

Suppose, every evening a scheduled task runs that takes all the information stored in
the table, puts it in an email and clears the table. There is a possibility that some form
of email notification method has already been setup for the database administrator’s own
auditing process. The attacker simply needs to piggy back on this process and as long as
he maintains the same conventions, it will not stand out from the other audit processes.
Otherwise, he can invoke operating system commands from the trigger to transmit the
information to the outside. He can connect directly to a server on the Internet and
upload the information if the database server has Internet connectivity. Otherwise, he
can use the email infrastructure of the company to email the information to a mailbox
he controls.

The forensic examiner that investigates this data theft will find the same two scenarios
as in the previous example. The audit information will point to either of the following:
All the staff members are stealing the banking information together or somebody is
using the business application to steal the banking details with a malicious piece of
functionality. Only by investigating triggers and any interaction with the table that
contains the banking information, will he be able to identify the correct party responsible
for the data leak.

The actual breach of the IT infrastructure and the subsequent manipulation of the
database could have happened weeks or months ago. This creates a problem for the
forensic examiner that tries to establish who compromised the database. Some log files
he would normally use, might no longer be available on the system because they have
been moved according to archive polices. If the compromise was very far back, some
archives might also no longer be available because, for example, the backup tapes have
already been rotated through and reused. It is very useful to the forensic examiner that
a trigger was used in this example. The creation date and time of a trigger can give him
a possible beginning for the timeline, and more importantly, the time window in which
the IT infrastructure breach occurred. He can then use the log information that is still

available for that time window to determine who is responsible for the data theft.

Chapter 6. Forensic Examination of Relational Databases 80

6.3 Discussion of Implications

This section summarises the findings made so far in this dissertation and then starts

working towards addressing the issues raised.

Finding 1:

Chapter 5 identified a group of triggers classified as non-data triggers that do not
require any data changes to activate. These triggers have the potential to contaminate
the data in a database by inconspicuous operations such as connecting to it or shutting
it down.

Section 6.1.1 showed that the way databases are acquired and analysed during a
forensic examination, will make use of those operations. Thus, databases may be con-
taminated by the very person attempting to acquire and analyse the database without
altering it. It does not matter whether the triggers in the database were placed inten-

tionally or maliciously.

Finding 2:

In section 6.2.1, it was established that triggers can introduce side effects into the
normal flow of operations. These side effects include performing additional actions or
preventing the completion of the triggering operations. Certain types of triggers can also
manipulate, or completely replace, the original operation. This means what the original
operation intended to do, and what actually happened, are not necessarily the same.

As noted in that section, triggers can lead to incorrect conclusions when attributing
operations performed in the database. This is because a trigger performs its actions
with the same user credentials as the original operation that caused the trigger to fire.
Some databases might log additional information with an operation to indicate that it
was performed by a trigger. However, one cannot assume that such an extended log will
be available to the forensic examiner.

In summary, the consequence of both findings is that the forensic examiner needs to
be aware of triggers during an examination. Thus, the first step is to determine if there
are actually any triggers present in the database under investigation. In order to do
that, however, one needs to connect to the database. According to the first finding this

can already lead to contamination of the data and thus precautions need to be taken.

Chapter 6. Forensic Examination of Relational Databases 81

A possible approach that one can take, was already given in section 6.1.1: one needs to
access the database in such a manner that triggers are temporarily disabled or bypassed.
Since there is no standard way of accessing a database in this manner, this special manner
of accessing the database will be manufacturer specific and implementation dependent.

Once connected, all active non-data triggers can then be disabled properly. There-
after, a full check for all types of database triggers can be performed. If triggers are
indeed present, the next step is to establish if any of those triggers could have influenced

the data that is to be analysed.

6.4 Conclusion

This chapter investigated the potential implications that the presence of triggers can
have on forensic database examinations. First, the impact of non-data triggers on the
acquisition and analysis process was explored in more detail. Then, the influence that
the presence of triggers, including standard triggers, has on forensic attribution was
investigated.

Based on the implications discovered in this chapter, it has become clear that database
triggers have to be considered during the acquisition, analysis and interpretation phases
of a forensic examination. A database under investigation can potentially contain hun-
dreds or even thousands of triggers. It is thus not feasible for the forensic examiner to
analyse every single one to determine if any of them had an impact on the data that is
being examined.

A more efficient way is required to identify any potential triggers that need to be
analysed as part of the examination. It would also be valuable for a forensic examiner to
have a standard method to test for the presence of triggers before commencing a forensic
examination of a database. A method to test for triggers, and identify the ones that are

potentially relevant, is devised and presented in the following chapter.

Chapter 7
Trigger Identification Algorithm

This chapter introduces a systematic approach to identify triggers that are potentially
significant to the examination of a specific database object. The intention is to formally
define a general algorithm that is database independent and practical to implement.
This chapter is based on work from a previously published paper (Hauger & Olivier,
2015a).

Section 7.1 explores a general procedure that can be followed to determine the pos-
sible influence of a trigger on a specific database object. Thereafter, section 7.2 explores
the steps of an algorithm that follows this approach and provides a formal definition.
The implementability of the steps in a programming language is also assessed. Section
7.3 introduces another less intuitive algorithm that is based on the previous algorithm.
This algorithm takes a different approach that provides the same outcome as the orig-
inal algorithm, but promises better implementability. A formal definition of the new

algorithm is also provided. Section 7.4 concludes this chapter.

7.1 Trigger Identification Considerations

A database stores a collection of data that may be related. In a relational database, this
data is stored in tables. A DBMS allows the data to be accessed and manipulated. When
this database is part of an active system, the data in the database will be constantly

changing. The purpose of the system and the way the database has been employed will

82

Chapter 7. Trigger ldentification Algorithm 83

determine how the data is changing.

In an archival system, for example, data will be mainly added and accessed. In a
transactional system, on the other hand, data will also be updated and deleted. When
the data in a specific database object is forensically examined to determine the events
that led to the current state of the data, an important question needs to be asked. Could
a database trigger have influenced the creation or change of a specific object, or a value
that the object contains?

An easy way to answer this question would be to check if the name of that object
was mentioned in any trigger. If such triggers are identified, the next step would be to
manually check what type of SQL statement referred to the database object in question.
If the SQL statement in question only read data, such as a SELECT statement, then
there would be no impact on the data in the target object. Should the SQL statement,
however, write or modify data using a statement such as INSERT, UPDATE or DELETE,
then there is an impact on the data if the specific database object is the target of this
SQL statement.

However, a trigger can not only change data in database objects directly. The trigger
could also call user functions and procedures that contain similar SQL statements that
refer to the same database object. Therefore, it is not enough to search just the trigger
content since the SQL statements that refer to the specific database object could be
encapsulated in a called user function or procedure.

The content of any called user function or procedure also needs to be checked in the
same way. Since more user functions and procedures can be called inside a user function
or procedure, the content of all those called also needs to be checked. This process needs
to be repeated until the lowest level user function or procedure has been reached that
calls no further user function or procedure.

The SQL standard classifies both SQL functions and SQL procedures as SQL invoked
routines (ISO/IEC JTC1/SC32, 2011). Both are considered to be types of SQL invoked
routines and there are only some defined differences between them. Firstly, functions and
procedures are called differently to encourage different use cases for each. Procedures are
invoked on their own with the keyword CALL. Functions, on the other hand, can also

be called inside a SQL statement. Secondly, functions always return something, while

Chapter 7. Trigger Identification Algorithm 84

the parameter definition of a procedure determines whether it returns something or not.
Thirdly, parameters defined for a function are always input parameters. The RETURNS
keyword defines the type of the returned data, which can be either a value or a table. In
the case of a procedure, parameters can be defined as either input or output parameters,
or both.

Even though the syntax for SQL routines is standardised, many databases implement
non-standard versions of this syntax (Silberschatz et al., 2011). SQL Server, as shown
in figure 7.1, uses the keyword EXECUTE or EXEC to call procedures. In certain

circumstances, procedures can even be called without any keyword.

—— Procedure

EXECUTE dbo.test procedure;

G0

-— Qr

EZEC dbo.test_procedure;

0

—-— 0Or, i1f thi=s procedure i= the first statement
dbo.test_procedure;

—— Procedure with parameter

EXECUTE dbo.test proc '31';

e

-— Qr

EXEC dbo.test_proc '31':

0

—— 0r, 1if thi=z procedure iz the first statement
dbo.test _proc 'Z1':

Figure 7.1: Procedure Execution. SQL Server.

One of the reasons for this is that these databases implemented user functions and
procedures before they were standardised. To maintain backward compatibility with
their original implementations, they now continue to support their own versions of the
syntax. These versions can place additional or different restrictions on user functions
and procedures, which leads to differences between functions and procedures that are
database specific.

To simplify the formal definition of trigger identification algorithms, such as the one

described above, the term routines as used in the SQL standard, which includes both

Chapter 7. Trigger ldentification Algorithm 85

procedures and functions, will be used going forward.

7.2 Top-Down Approach

The procedure that is described in the previous section starts with a pool that contains
all the triggers found in the database. The content of each trigger is searched for the
name of the specific database object. If the object name is found, the trigger is then
placed in another pool that requires further SQL statement analysis. If the object name
is not found, the trigger is searched again for all routines that it calls. The content of
each routine found, is then also searched for the name of the database object. If the
object name is found, the trigger that called the routine is also placed into the SQL
analysis pool. If the object name is not found, the routine is searched again for all
routines that it calls in turn. This process is repeated until the triggers or routines call
no further routines.

In this way, an exhaustive search is performed that drills down in each trigger, through
the used routines, to the bottom routines. A search tree is created in the process, where
the root at the top represents the trigger. The nodes below the root represent all the
called routines inside the trigger content and the leaves represent the lowest routines,
which call no further routines. Due to the possible structure of the created tree, this
algorithm can be considered a top-down algorithm.

This top-down procedure that searches the content of triggers has been formalised in
algorithm variation 1.

Algorithm Variation 1 (Top-down): Identify all triggers that access directly or
indirectly a specific database object.

1. Assume triggers are ordered pairs (¢, b;) where ¢ is the name of the trigger and b,
is the code (or body) of ¢. Assume further that routines exist and have a similar form
(f,bf) where f is the routine name and by is the body of f. The body b, of a trigger or
routine = consists of primitive statements as well as calls to other routines. Let f € b,
indicate that f is used in the body of trigger or routine x.

2. Let T be the set of all triggers and F' be the set of all routines. Let w be the
name of the object being searched for. Let w € b, indicate that w is used in the body of

Chapter 7. Trigger ldentification Algorithm 86

trigger or routine x. Let Ry be all triggers that access w directly. In other words
Rlz{t€T|w€bt} (71)

3. Routines may be called by a trigger, where the routine accesses w, thereby provid-
ing the trigger with indirect access to w. Therefore, the € notation is extended to also

indicate indirect access. The new relationship is denoted as €*. Then

€ b, direct case
fe b { gby >feb,&ye*b, indirect case } (7:2)
The complete set of routines used directly or indirectly by a trigger ¢ is therefore
F'={f|feb>teT} (7.3)
The subset of those routines that access w is then simply
Ry={teT|3feF >webs} (7.4)
The triggers that directly and indirectly access w are then combined as
R=RUR; (7.5)

This algorithm will produce a set R of all triggers that refer directly or indirectly to the
object of which the data is being analysed.

At first glance, this algorithm appears to be easy and straightforward to implement.
However, when one translates the steps into a programming language (or query language
such as SQL), one encounters a problem: How does one reliably identify other routines
inside the trigger content?

The SQL standard specifies that procedures are always invoked with the CALL key-
word. But that is only true for SQL procedures. However, as already highlighted in
section 7.1, some databases use a different syntax from the standard. SQL Server, as
shown in figure 7.1, uses the EXECUTE or EXEC keyword instead. In certain cases
procedures can even be invoked without the keyword.

Regarding functions, the SQL standard specifies that SQL functions can also be used

directly in other SQL statements. This makes functions even more difficult to identify.

Chapter 7. Trigger ldentification Algorithm 87

-— Secalar funetion

declare dresult int:

EXEC Bresult = dbo.test funct:
select Bresult:

jele)

-— or

select dbo.test_funet (] as result:

—-— Takble function with parameter
gelect * from dbo.test_func('51']:

Figure 7.2: Function Execution. SQL Server.

Function names are generally followed by “()” brackets which contain zero or more
parameters. However, the SQL Server syntax, as shown in figure 7.2, does not require
them in certain cases.

Therefore, simply searching for all strings that follow a specific keyword to identify
procedures is not nearly enough. Similarly, to scan for the “(” bracket to identify func-
tions is also not sufficient. As figures 7.1 and 7.2 show, routines can also be invoked in
other ways. An additional complication is that the SQL syntax for invoking routines can
also differ between databases.

Another approach to identifying routines could be to perform string matching of
known strings in the trigger or routine content. One could retrieve the list of names, of
all the user-defined SQL routines, and then search for each of those names in the content
of the trigger.

However, this approach has its own drawbacks. Depending on the naming convention
used by the developers of the database, the names of different object types could overlap.
For example, a table, a view and a procedure could all have the exact same name. Should
such an overlapping name appear in a trigger and not refer to a routine, the algorithm
will unnecessarily evaluate the routine of that name.

The problem does not stop there. Should the unnecessarily evaluated routine directly
or indirectly reference the object being examined, a false link will be made back to
the trigger that initiated the evaluation. Therefore, this approach could produce false

matches, leading to the incorrect identification of triggers.

Chapter 7. Trigger ldentification Algorithm 88

7.3 Bottom-Up Approach

Due to the potential problems with the top-down approach, it is prudent to try and
identify a different approach for finding the triggers that directly or indirectly refer to a
database object being examined. Alternatively, one can begin with all triggers, functions
and procedures and then narrow them down to only those, which refer to the object under
investigation. Following this bottom-up approach, algorithm variation 2 is now formally
defined.

Algorithm Variation 2 (Bottom-up): Identify all triggers that access directly or
indirectly a specific object.

1. Assume triggers are ordered pairs (¢, b;) where ¢ is the name of the trigger and b,
is the code (or body) of t. Assume further that routines exist and have a similar form
(f,by) where f is the routine name and by is the body of f. The body b, of a trigger or
routine x consists of primitive statements as well as calls to other routines. Let f € b,
indicate that f is used in the body of trigger or routine x.

2. Let T be the set of all triggers and F' be the set of all routines. Let w be the
name of the object being searched for. Let w € b, indicate that w is used in the body
of trigger or routine x. Let C' be the combined set of all triggers T" and routines F'. In

other words
C=TUF (7.6)

3. Let U be the set of all triggers and routines that access w directly. That is
U={ceClweb} (7.7)
Let U' be the subset of all the triggers in set U. Expressly
U={teU|teT} (7.8)
The subset U’ of U without any triggers is then simply
U=U-U" (7.9)

Let U; be the first iteration of a set of triggers and routines that access the routines in

set U’ directly. Specifically

U={deCl|3ecb;3eclU’} (7.10)

Chapter 7. Trigger ldentification Algorithm 89

Let U{ be the first subset of all the triggers in the first set U;. Namely
U ={telU|teT} (7.11)
The first subset of U; without any triggers is then simply
U =U,—-Uj (7.12)

Congruently sets Uy, Ut and Uj can be constructed. Specifically, the construction of
those sets can be repeated i times where i = 1,2, 3, ... Consequently, the " iteration of
set U; is then

U={xeC|3yeb,dyecU_;} (7.13)

Furthermore, the it subset of all the triggers in the set U; is
U={teU|teT} (7.14)
Finally, the i*" subset of set U; without any triggers is
U =U,-U! (7.15)
The combined set of all identified triggers U*, U}...U} is then
R=U'UUlU..UU! (7.16)

Since the set C' is a finite set of triggers and routines, the algorithm will reach a point
where set R no longer grows. Specifically, this is when the n* set U,, becomes empty, in
other words U,, = {}. At this point the algorithm can be terminated.

As can be seen, this variation of the algorithm also produces a set R of all triggers
that refer directly or indirectly to the specified database object. However, it eliminates
the need to identify calls to routines, which proved to be difficult and database specific.
Rather, it repeatedly searches the content of routines and triggers for known routine
names in the same way it searches for the specified object name.

The important difference to the previous algorithm variation is that only the names
of routines that are known to reference the specified database object are being searched
for. This will improve the performance of the algorithm and reduce the number of false

positives.

Chapter 7. Trigger ldentification Algorithm 90

7.4 Conclusion

This chapter proposed a systematic procedure to identify triggers that can potentially
influence a specified database object. Two algorithm variations that followed different
approaches were offered and formally defined. The implementability of both algorithm
variations into a programming language was also assessed. It was found that the second
algorithm variation would allow a more generic implementation that is also database
independent. The first algorithm variation would require a database specific implemen-
tation that also had a greater potential of false matches.

The following chapter now investigates the implementation of the second variation of
the algorithm. A prototype is built to evaluate the algorithm on a number of different
databases using test cases. The results of the implementation and test cases are also

analysed in this chapter.

Chapter 8
Algorithm Implementation

An algorithm to determine if triggers are present in a relational database was presented
in the previous chapter. In order to verify this algorithm in practice, a prototype was
built and used on a number of databases with certain test objects. The goal was to
evaluate the usability of the prototype. During the implementation and usage of the
prototype, a number of challenges were encountered. This chapter is based on work
from a previously published paper (Hauger & Olivier, 2015a).

Section 8.1 explores the intended implementation of the proposed algorithm by look-
ing at different implementation languages and options. Thereafter, section 8.2 presents
the prototype that was subsequently built to verify the algorithm presented in chapter
7. Section 8.3 provides the prototype implementation details. Then section 8.4 discusses
the challenges that were encountered with the implementation of the algorithm as well
as the usage of the prototype. In section 8.5, the test setup is detailed. Section 8.6

concludes this chapter.

8.1 Implementation Considerations

The algorithm implementation is considered against the same databases that were dis-
cussed in chapter 5. In that chapter, it was shown that those chosen relational databases
represented the biggest market share of used databases.

The databases considered are all relational databases, so it can be assumed that data

91

Chapter 8. Algorithm Implementation 92

and metadata about triggers, functions and procedures are stored in relations. The most
straightforward choice therefore, is to implement the algorithm using SQL. Each step of
the algorithm can be written as a simple SQL statement. SQL statements that need to
be repeated, can be placed into functions. All the separate SQL steps and functions can
then be combined into a procedure.

One important aspect to keep in mind is that the database implementations available
from various manufacturers vary considerably. This includes the design of the data
dictionary. Which information is stored and how it is stored will differ between various
databases. The retrieval of all triggers, for example, could be a single SELECT statement
in one database implementation. In another database implementation, it might require
performing multiple SELECT statements from multiple differently structured tables.
Due to these considerable differences, it is not possible to create template SELECT
statements that could be completed with the column and table names corresponding to a
particular database. Instead, it is necessary to provide database-specific SQL statements
for each database implementation.

A pure SQL implementation has two major drawbacks. The first drawback is that
database manufacturers use different SQL dialects to extend the standard SQL state-
ments. These extended features, such as variables, loops, functions and procedures, are
required to implement the algorithm. Oracle uses an extension called PL/SQL which
IBM’s DB2 since version 9.7 now also supports (Chan, Ivanov, & Mueller, 2013; Feuer-
stein & Pribyl, 2014). Microsoft has a competing extension called Transact-SQL, or
T-SQL in short, which SQL Server and Sybase use (Jones, 2005; Turley & Wood, 2009).
Other databases, such as MySQL, more closely follow the official SQL/PSM extensions
that are part of the SQL standard (ISO/IEC JTC1/SC32, 2008). These differences would
require a separate implementation for every particular database product. The second
drawback is that this implementation has to be stored and executed within the database
being examined. However, this conflicts with the goal of the forensic examiner to keep
the database uncontaminated.

Another approach is to implement the algorithm using a pure programming language.
This provides the advantage of being able to create only one application using a single

syntax. The application is designed to read the database data from a file that conforms

Chapter 8. Algorithm Implementation 93

to a specific format. The drawback with this design is that the data first has to be ex-
tracted from the database being examined in the correct format. This requires a separate
extraction procedure for every database implementation. The extraction procedure also
may have to be stored and executed on the database, which potentially contaminates
the database.

The latter implementation choice requires a more involved two-step process. First, the
required data is extracted from the database and transformed into the format expected
by the application by using an extraction procedure. Next, the standalone application
is invoked with the created data file.

A combined approach that eliminates the drawbacks of both previous choices ap-
pears to be a better solution. A single application can be built using a conventional
programming language that provides a database independent framework for accessing
and using databases. Next, database-specific formatted SQL statements in the applica-
tion are used to select and retrieve the data from the particular database being examined.
The database would remain unchanged because the algorithm logic, as well as the SQL

statements, are being stored and maintained external to the database.

8.2 Prototype Design

To verify the algorithm practically, a prototype that uses the presented combined ap-
proach was built. This prototype implements the bottom-up version of the algorithm
that was presented in the previous chapter in section 7.3. The prototype consists of a
stand-alone application that has been created in the Java programming language. It
connects to the database that is being examined via the Java Database Connectivity
(JDBC) application programming interface (APT).

JDBC is the industry standard for database-independent connectivity between the
Java programming language and a wide variety of SQL databases and other tabular data
sources, such as spreadsheets and flat files (Oracle, 1998a). The JDBC API contains two
different types of interfaces: the higher level API for application developers and the lower
level API for database driver developers.

Database independence is achieved by the JDBC API as follows. The higher level

Chapter 8. Algorithm Implementation 94

API provides a single, standardised set of database methods to the Java programming
language. These methods allow the connection to a data source and the manipulation
of the data that the data source contains.

A JDBC driver will then convert these method calls to a database or middleware
specific protocol. The type and level of translation performed by the JDBC driver de-
termines the type of JDBC driver. The lower level API ensures the same static interface
for each JDBC driver. This allows different JDBC drivers to be used interchangeably.
It enables, for example, the exchange of JDBC drivers of different types for the same
database. Similarly, the change to a database from a different manufacturer is achieved
by the substitution to a matching JDBC driver.

A JDBC driver can be classified in four different types : type 1 and 2 drivers make
use of existing database client libraries, while type 3 and 4 drivers use pure Java im-
plementations. Type 1 drivers use the Open Database Connectivity (ODBC) bridge to
access the client libraries, while type 2 drivers interface directly with them. Type 3
drivers connect via database middleware to the database, while type 4 drivers connect
directly to the database via native protocols (Oracle, 1998b).

The type of the JDBC driver can thus influence the integrity of the data returned by
the database. Only a type 4 JDBC driver will connect directly via the native network
protocol to the database in the same way a forensic examiner would connect to it (see
section 6.1.1). The other JDBC driver types access the database via an intermediary:
type 1 and 2 via client libraries and type 3 via middleware. Should a type 4 driver not
be available for a particular database, untainted versions of the database client libraries
or middleware will need to be used to ensure that the returned data is uncontaminated.

A suitable JDBC database driver is thus required by the prototype to handle the
database communication for each particular database and its configuration. In order to
use a selected JDBC driver, its driver file needs to be made available to the Java applica-
tion execution environment and configured to use with the database under investigation.
The configuration information can be placed either inside the code or in an external
configuration file.

Once the database connection has been established, the required data for the al-
gorithm is retrieved. This is achieved by executing database specific SQL SELECT

Chapter 8. Algorithm Implementation 95

statements against the database being examined. This can be a simple SELECT state-
ment from a single table, or multiple varying SELECT statements from the same or
multiple tables. This depends on the complexity and layout of the database dictionary
in question.

These SQL statements, together with the database and JDBC driver configuration,
have been externalised to a definition file. This is realised using the Java object called
“Properties”. An instance of this object stores a list of key/value pairs. The list is
populated from a specifically formatted text file called a properties file. The properties
file stores information in key/value pairs. This setup allows these pieces to be updated
or changed without the need to modify the application.

Consequently, the architecture of this prototype allows it to be extended to support
any SQL database with triggers. This is achieved by simply defining the new database,
adding the required database and JDBC driver configuration information, and providing
the database specific SQL statements for each required part of the algorithm. The
availability of a JDBC or ODBC driver, however, is a pre-requisite.

8.3 Prototype Implementation Details

The prototype was implemented using Java Standard Edition 7 (SE7). The two databases
that were evaluated with the prototype are Microsoft SQL Server 2005 and Oracle
Database 11g Release 2.

The JDBC database driver that was used for the SQL Server database is the jTDS
v1.1 driver. jTDS is an open-source type 4 JDBC driver for Microsoft SQL Server
and Sybase Adaptive Server Enterprise (ASE) (jJTDS Project, 2018). For the Oracle
database, the Oracle JDBC Thin client-side driver v10.2 was used. This is also a type 4
JDBC driver (Oracle, 2018).

SQL Server places triggers into three separate groups: DML, DDL and Non-data.
These categories were already discussed in chapter 5. The DML and DDL triggers are
tied to a specific database schema and stored in set of system views. The non-data
triggers are global to all database schemas and are stored in a different set of system

views.

Chapter 8. Algorithm Implementation 96

Therefore, to retrieve a complete trigger list, two separate SQL retrieval queries are
required. The DML and DDL triggers returned are also limited to only those that are
in the same scope as the database connection used.

User functions and procedures are placed together, and can be retrieved from another
set of system views. SQL Server does distinguish between three types of user functions:
scalar functions that return single values, in-line table functions and normal table func-
tions that both return result sets. The SQL retrieval query needs to cater for all types

of user functions.

select t.object id, t.nawe, 'T' as type_code,
te.type_desc as type, t.create date, t.wodify date
from sys.Zerver Lriggers t, SyS.3erver Lrigger events te
where t.object id = te.object id

and OBJECT DEFINITICH(t.ohject id) like ?

T TN

gelect t.object id, t.names, 'T' a3 type code,
te.type desc as type, t.create date, t.wodify date
from sys.triggers t, sys.trigger events te

where t.object id = te.object id

and OBJECT DEFINITICON(t.object id) like 2

T IO

gelect m.okhject id, &o.name,

case hhen ao.type = 'P' then 'P!
when ao.type = 'FN' then 'F!
when ao.type = 'TF' then 'F!

when ao.type '"IF' then 'F!

end as type code,

ao.type desc as type, ao.create date, ao.modify date
from sy=.all =gl modules m, sys.all obhjects ao

where m.object id = ao.object id

and ao.type in ('R FN','TF!'VIF')

and m.definition like 2

Figure 8.1: Algorithm Search Query. SQL Server.

Figure 8.1 shows the combined SQL query required for SQL Server to retrieve all
triggers, functions and procedures. The “?” place-holder will be replaced dynamically
by the Java code with the name of the database object being examined.

Oracle also differentiates between the same three trigger groups. However, instead of

storing them in separate locations, they are all stored in the same system view. A field

Chapter 8. Algorithm Implementation 97

in the view indicates what a trigger is tied to. DML triggers are tied to a specific table
object, while DDL triggers are tied to a schema. Non-data triggers can be tied either to
a single schema or the whole database.

As with SQL Server, the returned triggers are also limited to only those that are in
the same scope as the database connection used. User functions and procedures are also
placed together and can be retrieved from the same set of system views as the triggers.
The content of all the database objects is handled differently by Oracle. While SQL
Server stores all the content of a database object in a single field, Oracle stores each
content line separately. This implies that when the name of the database object is found
more than once in the content, the owner of the content will be returned multiple times.

To eliminate these duplicates, the DISTINCT keyword is needed.

select distinct o.object_id, o.object_name,

case when o.object_type '"TRIGEER' them 'T!
when o.ohject_tyme '"PROCEDURE' then 'P!
when o.object_type 'FUMCTION' then 'F'

enid as type_code,

o.object_type as type , o.created, o.last_ddl_time

from s¥s.all _objects o, 3ys.all_source s

where o.object _name = 3.name

and o.object_type in ['TRIGGER', 'FROCEDURE', 'FUNCTION')
amd =.text like 7

Figure 8.2: Algorithm Search Query. Oracle.

Figure 8.2 shows the comparatively simple SQL query required for Oracle to retrieve
all triggers, functions and procedures. As before, the “?” place-holder will be replaced
dynamically by the Java code with the name of the database object being examined.

Figure 8.3 shows the Java code that contains the core of the bottom-up search algo-
rithm. In line 372 the query either from figure 8.1 or 8.2 is loaded. The object name
being searched for is set in line 374 and the query is then executed.

The results returned by the query are evaluated one by one. If the object returned
is a trigger, it will be added to the final trigger list. All other returned objects have
their name added to a temporary object list in line 388. A search-depth level is being
maintained in line 392 so that the triggers added to the trigger list can be correctly

Chapter 8. Algorithm Implementation 98

371

372 String dbQuery = objectContentMatchMap.get (dbms [dbmsNumber]) ;
373 stat = Conn.preparedtatement (dbQusry) ;

374 stat.set3tringi(l, name)

375 rs = stat.executeuervy|() :

378

377 while (rs.nexti)) {

378 long obijId = rs.getlongil) ;

379 String obdllams = r=.getString(2) :

380 String obgType = rs.getString(3) ;

381 if (okbiTyvpe.equalslgnoreCass ("T")) |

382 if (lewvel == 1)

383 dbTriggerlList.add("Direct - " + obdId + " " + obName +
384 zlse

385 dbTriggerlist.add("Indirect — " + okbjId + " " + objName
3ga }

387 else |

388 dbCbjectList . add (objllame=) ;

38g }

390 }

391 cleanupinull, stat, rs):

392 leveld+:

383

3594

385 if (!'dbObjectlist.isEmptvy()) |

396 for (String findname : dbilbijesctList) |

397 doSearchfbdect (conn, findname);

398 }

389 }

Figure 8.3: Bottom-up Algorithm. Java Code.

labelled as direct or indirect references to the database object.

If the object list is not empty, it will now be iterated through. For each name in the
list, the core of the search algorithm will be repeated. This is done using recursion in
line 397.

Chapter 8. Algorithm Implementation 99

8.4 Implementation Challenges

In this section, some of the challenges that were encountered with the implementation
and usage of the proposed trigger identification algorithm are discussed. Some of the
challenges are related to the general SQL syntax while others are related to database-

specific implementation decisions.

8.4.1 Scope/Visibility

Most of the evaluated databases do not allow direct access to the data dictionary tables.
These tables contain, among other things, the lists of all triggers, functions and proce-
dures in the database. Instead, these databases provide access to the data in the tables
via system views. The problem with these views is that they limit the results based on
the permissions possessed by the user who accesses the view, and on the scope of the
database connection.

Therefore, the user account that is being used to query the views needs to have access
to all the objects. However, even if the user account has the permissions necessary to
view all the objects, only those that fall within the scope of the connection will be listed.
To work around that challenge, it is necessary to obtain a list of all the database scopes
and iterate through them, changing the scope of the connection and repeating the query.

The results of all the individual queries are then combined.

8.4.2 Encryption

Some of the evaluated databases have the functionality to encrypt the contents of
database objects including triggers, functions and procedures. This makes it impos-
sible to search the content for the name of the database object under investigation. Due
to flaws in the current encryption implementations of the evaluated databases, it is pos-
sible to retrieve the decrypted content of an encrypted object (Cherry, 2012; Litchfield,
2007).

The prototype showed that these mechanisms can be used to work around this chal-

lenge. However, it was found that these workarounds are not very efficient and practical.

Chapter 8. Algorithm Implementation 100

Furthermore, the current flaws that are being exploited might be corrected in a future

version, making the implemented workaround worthless for those updated versions.

8.4.3 Case Sensitivity

Since SQL is mostly case insensitive, the name of the database object that is being
searched can be spelled in many different ways. Therefore, searching the content for an
exact match, based on a particular spelling, would be a hit and miss affair. The standard
solution to overcome this challenge, is to lower case the content, as well as the name of
the database object being looked for, prior to the comparison (Gulutzan & Pelzer, 2003).

This is usually done using a built-in function.

select distinct o.object_id, o.object_name,
'"TRIGGER' then 'T!
'FROCEDTEE' then 'F!
'FUNCTION' then 'F'

case when o.ohject_type

when o.object_type
when o.object_type
end as type_code,
o.object_type as type , o.created, o.last_ddl_time
from s¥s.all _objects o, 3ys.all_source s
where o.object _name = 3.name
and o.object_type in ('TRIGGER', 'PROCEDURE', 'FUNCTION')
aml lower(s.text] like lower(?)

Figure 8.4: Case Insensitive Search Query. Oracle.

Figure 8.4 shows how this solution can be applied to the Oracle search query shown
earlier. For databases with not many objects that need to be searched, this solution
is feasible. However, in a database with thousands of objects that could each have a
content of thousands of lines, this could become very inefficient and impractical. In that
case, a more efficient approach would be to change the collation of the database to enable

case-insensitive comparison.

8.4.4 False-Positive Errors

Since basic string matching is performed, any string in the trigger, procedure or function

would match the database object name that is being searched for. This could include

Chapter 8. Algorithm Implementation 101

comments, variable names and the names of other object types.

To deal with this challenge, it will be necessary to manually inspect all the triggers
listed by the algorithm. Any false-positives discovered can then be removed from the
list. Since the SQL parser can identify comments based on the syntax, it is possible
to pre-process the triggers, procedures and functions to remove the comments before
initiating the search. However, that still leaves the other sources of matching strings

that could produce false-positives.

8.4.5 Data Types

Not all of the evaluated databases store the content of triggers, functions and procedures
in a table column with the same data type. Many databases have moved from using the
simple VARCHAR data type to one that can hold more data. Microsoft SQL Server,
for example, uses the Character Large Object (CLOB) data type to store content while
Oracle uses an older LONG data type.

The challenge is that all the data types that are used, cannot be handled in the same
way in the code. To prevent having to create different code paths for each encountered
data type in order to accommodate these specific databases, a more generic approach is
needed. The approach would entail querying the database table metadata first, to detect
the data types that are used, and then invoke the relevant code to handle the specific
data types.

8.4.6 Recursion

Database functions and procedures are allowed to call themselves either directly or in-
directly. The level and depth of recursion allowed differs between various evaluated
databases. Additionally, each database can be setup and configured differently for re-
cursion. Thus, this challenge needs to be addressed at the algorithm level.

The possible recursion of functions and procedures would produce an endless loop
in both variations of the algorithm. In the bottom-up algorithm, set R would still stop
growing at some point because no new elements are added. However, set U,, would not

become empty, which means the termination criteria are never met. To deal with this

Chapter 8. Algorithm Implementation 102

problem, the algorithm needs to keep track of all elements seen in U] before. U] should

not contain any elements evaluated before, specifically the following should hold true:
unuuu,u..ul,_,={} (8.1)

To achieve this, line (7.15) of the bottom-up algorithm can be modified as follows:
i—1
vl =U;,-U - U (8.2)
j=1

This change will ensure that each function and procedure is only evaluated once.

405

40& if (!'dbCbjectlist.isEmptv ()] |

407 for (String findname : dbCbhijectList) {
408 if (!db3eenlist.contains({findname))
409 {

410 dbSeenlist.add |({findname) ;

411 doZearchtbiject (conn, findname) ;
412 }

413 }

414 }

Figure 8.5: Updated Algorithm Section. Java Code.

Figure 8.5 shows how this solution can be applied to the recursive section of the

search algorithm shown earlier.

8.4.7 Performance

Maintaining adequate performance of the algorithm is another challenge. The string
matching component of the bottom-up algorithm emerged as a potential bottleneck. In
the previous chapter in section 7.3, the string matching component was defined as w € b,.
This indicates that w is used in the body of trigger or routine x.

This step can be performed with the SQL “LIKE” command. The object name w
being searched for can be located anywhere in the body of the trigger or function being
searched. Thus, the SQL wild-card character “%” needs to be added around the object

Chapter 8. Algorithm Implementation 103

name as in “%object_-name%”. This makes the execution of the SQL statement very
slow since no index can be utilised.

In a database with not many procedures, functions and triggers, this does not pose a
big problem. However, should there be many such objects, this SQL statement can take
quite a while to complete. This may occur in systems where auditing is performed with
triggers or where the application utilising the database might perform a lot of transaction
processing in procedures and functions. Depending on the time available to the forensic
examiner, this might take too long to execute. It is also in contrast to the goal of being

a quicker test to establish trigger involvement.

8.5 Prototype Test Details

Both evaluated databases were populated with different test triggers, procedures and
functions that all referenced the same database table. Care was taken to ensure that

there was at least one test trigger of every category that the database supported.

Table 8.1: Test Database Objects. SQL Server

Object Name | Object Type | Reference
test_func Function Direct
test_proc Procedure Direct
test_dml Trigger Direct

test_ddl Trigger Direct

test_login Trigger Direct
test_dml_again Trigger Indirect
test_ddl_again Trigger Indirect

Table 8.1 lists all the test objects that were placed in the SQL Server database. All
three trigger categories are represented, where the “test_login” object is the non-data

trigger. There is also a test function and a test procedure. All test objects that are

Chapter 8. Algorithm Implementation 104

marked “Direct” contain SQL code that references a table called dbo.Benefit. The other
two triggers call the test function and test procedure respectively. Some of these test
triggers were already introduced earlier during the trigger implementation discussion in
chapter 5 (see figures 5.1 to 5.3).

Informal testing was conducted to establish if the prototype implementation was able
to find all the test triggers that referred to the object dbo.Benefit, whether directly, or

indirectly via the function or procedure.

Menu

1 - List DBs/schemas

2 - Change DEB/5chema

- List triggers

Search triggers for object
Display trigger content
qQuit

V=W, g NN]

Enter menu option : 4

Enter object name : Benefit

Triggers referring to Db?ect Benefit :

Direct - 503672842 test_login LOGON 2014-05-23 2014-05-26
Direct - 583673127 test_dml DELETE 2017-11-20 2017-11-20

Direct - 631673298 test_dd] DROP_TABLE 2017-11-20 2017-11-20
Indirect - 759673754 test_dml_again DELETE 2018-10-13 2018-10-13

Indirect - 823673982 test_ddl_again DROP_DATABASE 2018-10-13 2018-10-13

Figure 8.6: Prototype Search Result. SQL Server.

Figure 8.6 shows the result for a test run performed on the SQL Server database. The
prototype menu option “4” was selected and the object name “Benefit” was provided
to the search algorithm. Not only were all the test triggers listed in table 8.1 correctly
returned, but how they reference the specified database object was also correctly recog-
nised.

The test setup for the Oracle database was very similar and produced the same

results. Therefore, no separate discussion for the Oracle testing is provided.

8.6 Conclusion

The prototype demonstrated that the algorithm works in principle. In a simple test
database the prototype was able to identify all the triggers associated with a specific

Chapter 8. Algorithm Implementation 105

database object. However, various challenges where identified that the prototype might
encounter in real-world databases. These would require mainly changes in the imple-
mentation, rather than to the algorithm itself. For the prototype to become a usable tool
for the forensic examiner, a number of the identified challenges first need to be resolved,
depending on which databases are targeted.

Thus far, this dissertation has concentrated on forensic examination of relational
databases in general and particularly on how triggers can impact acquisition and analysis.
However, the increasing adoption of databases built on the NoSQL model to supplement,
and in some cases even replace, relational databases requires a closer look. The next
chapter takes a brief excursion into the field of NoSQL databases and explores if forensic

attribution can be performed analogous to relational databases.

Chapter 9

Forensic Examination of NoSQL

Databases

Thus far, this dissertation has focused on forensic aspects of relational databases. How-
ever, a new generation of databases, known collectively as NoSQL databases, have started
to make their appearance in current computer systems. These databases are either used
to supplement the usage of relational databases or even completely replace them in cer-
tain environments. Thus, they have become forensically important and can no longer be
ignored when studying and performing database forensics.

This chapter focuses on the presence of database triggers and the availability of
certain security features in NoSQL databases. How they impact forensic examinations
in general, and forensic attribution in particular, is explored. This chapter is based on
work from a previously published paper (Hauger & Olivier, 2018).

Section 9.1 motivates the increasing forensic importance of NoSQL databases. In
section 9.2, some detailed background information on some popular NoSQL databases
is provided. Section 9.3 then surveys the same popular NoSQL databases regarding the
availability of triggers, authentication, authorisation and logging. Thereafter, the results
of this survey are analysed in section 9.4. Section 9.5 then discusses the implications of
the results on digital forensics and specifically forensic attribution. Section 9.6 concludes

this chapter.

106

Chapter 9. Forensic Examination of NoSQL Databases 107

9.1 Survey Context

To achieve greater flexibility and easier usage, NoSQL databases make use of much
simpler models compared to relational databases. This includes simplified data storage
models (see chapter 2). The departure from SQL as the query language has the added
consequence that many of the other features in the SQL standard (such as triggers) may
also not be present. This chapter explores the implications these simpler models used in
NoSQL databases have on the process of forensic attribution.

Performing forensic attribution in digital systems is difficult. This is because the
actions that need to be attributed occurred in the digital world, but the actors that are
ultimately responsible are located in the physical world. Since it is difficult to tie digital
world events to the physical world events, the next best option is to tie the actions in
question to a program or process inside the digital realm (Cohen, 2009).

However, even tying actions to processes can be difficult without enough information
sets that can be correlated to form a consistent chain of events (Cohen, 2009). Relational
databases provide one such set of information in the form of traces in various log files
and in system tables (Olivier, 2009). This information can then be used in conjunction
with other information sets from outside the database to help perform attribution of the
actions that occurred inside the database.

These traces can be left by measures such as access control and logging/auditing,
which are part of the security model of all relational databases that follow the SQL
standard. Consequently, this chapter scrutinises the security features that are available
in NoSQL databases and how useful their traces can be for forensic attribution. A survey
of these specific security measures in NoSQL databases was conducted, to determine what
information they can provide to aid with forensic attribution in the case of a forensic
examination.

There are more than two hundred NoSQL database implementations available (Edlich,
2017) and to examine the security measures of all those databases would be prohibitive.
Many of those databases are still experimental or being used in low volumes. Thus,
only some NoSQL DBMSs were chosen of which the trigger, access control and logging
features were studied. The choice was based on popularity and to be representative of

the main types of data models used by NoSQL databases (see chapter 2).

Chapter 9. Forensic Examination of NoSQL Databases 108

The NoSQL DBMSs examined were MongoDB, Cassandra, Redis and Neo4j. These
selected NoSQL databases are among the most popular based on the number of web
pages on the Internet according to DB-Engines ranking method (DB-Engines, 2017a).
They are being adopted in various markets in the industry and their prominence in those
markets means that they would be encountered fairly often by the general digital forensic
examiner.

To study the trigger and security features, the official documentation of the latest
version of the selected NoSQL DBMS as found published on the manufacturer’s website
was used (Apache Cassandra, 2016; MongoDB Inc., 2017b; Neodj, 2017¢; Redis Labs,
2017a). At the time of the examination the latest versions available were as follows:
MongoDB 3.4, Cassandra 3.10, Redis 3.2 and Neo4j 3.1.3.

Even though each one of the selected NoSQL databases support scaling and data
distribution via multi-node configurations, these databases were only considered as sin-
gle node installations. Therefore, a discussion on distributed log files and the added

complexities falls outside the scope of this survey.

9.2 Surveyed NoSQL databases

Currently, the top five ranked NoSQL databases according to DB-Engines DBMS ranking
are in order: MongoDB (document store), Cassandra (wide column store), Redis (key-
value store), HBase (wide column store) and Neodj (graph store) (DB-Engines, 2017a).
The top five thus represent all four NoSQL database types introduced in chapter 2. To
eliminate any possible bias of the survey due to multiple databases of the same type,
the second wide column store HBase was excluded. More details about each of the other

four databases now follow.

9.2.1 MongoDB

MongoDB is an open-source document database that provides high performance, high
availability, a rich query language and automatic scaling. It is published under a combi-

nation of the GNU Affero General Public License (AGPL) and the Apache License. The

name MongoDB is derived from “humongous database”, which alludes to the huge size

Chapter 9. Forensic Examination of NoSQL Databases 109

a MongoDB database can have.

The software company 10gen began developing MongoDB in 2007 as a component of
a planned platform as a service product. In 2009, the company shifted to an open source
development model, with the company offering commercial support and other services.
In 2013, 10gen embraced the database it had created and changed its name to MongoDB
Inc. (Harris, 2013).

A record in MongoDB is a document, which is a data structure composed of field
and value pairs. MongoDB documents are similar to JSON objects. The values of
fields can include other documents, arrays, and arrays of documents. MongoDB lists the
advantages of using documents as follows: Firstly, documents (and by extension objects)
correspond to native data types in many programming languages. Secondly, embedded
documents and arrays reduce the need for expensive joins. Finally, dynamic schemas
support fluent polymorphism (MongoDB Inc., 2017a).

MongoDB provides high performance data persistence and access through the use
of the following features: Firstly, it supports embedded data models which reduce 1/O
activity on the database system. Secondly, its indexes can include keys from embedded
documents and arrays, thereby supporting faster queries. MongoDB uses B-trees for
both data and index persistence. MongoDB has a rich query language that supports
create, read, update and write (CRUD) operations, as well as data aggregation, text
search and geo-spatial queries (MongoDB Inc., 2017a).

MongoDB uses a replication facility called a “replica set” to provide automatic
failover and data redundancy. A replica set is a group of MongoDB servers that main-
tain the same data set. Furthermore, MongoDB provides horizontal scalability by using
sharding, which distributes data across a cluster of machines. It also supports the cre-
ation of zones of data based on a shard key. In a balanced cluster, MongoDB will direct
reads and writes covered by a zone only to those shards inside the zone (MongoDB Inc.,
2017a).

Prominent users of MongoDB include Metlife, Expedia, Ebay, SAP, SAGE, KPMG
and Forbes (MongoDB Inc., 2017c¢).

Chapter 9. Forensic Examination of NoSQL Databases 110

9.2.2 Cassandra

Cassandra is a free and open-source distributed wide column store DBMS. It is an Apache
project published under the Apache 2.0 license. Cassandra is designed to handle large
amounts of data across many commodity servers, thereby providing high availability
with no single point of failure. Cassandra offers support for clusters either in a sin-
gle datacenter or spanning across multiple datacenters, with asynchronous masterless
replication.

Avinash Lakshman and Prashant Malik initially developed Cassandra at Facebook to
power the Facebook inbox search feature. They named their database after the Trojan
mythological prophet Cassandra, who was given the power of prophecy by Apollo in
order to seduce her. When she refused him favours, he cursed her prophecies to be never
believed. The name thus alludes to a cursed oracle.

Facebook released Cassandra as an open-source project on Google code in July 2008
(Hamilton, 2008). In March 2009, it became an Apache Incubator project and graduated
to a top-level Apache project in February 2010. Cassandra is written in Java and thus
available on any platform that can provide a Java virtual machine (JVM).

Cassandra’s column family (also called table) resembles a table in a relational database.
Column families contain rows and columns. Each row is uniquely identified by a row
key. Each row has multiple columns, each of which has a name, value, and a timestamp.
Unlike a table in a relational database, different rows in the same column family do not
have to share the same set of columns, and a column can be added to one or multiple
rows at any time without blocking updates or queries.

Cassandra Query Language (CQL) is the primary interface into the Cassandra DBMS
(DataStax, 2017). Using CQL is similar to using SQL. CQL and SQL share the same
abstract idea of a table constructed of columns and rows. The main difference from SQL
is that Cassandra does not support joins or sub-queries. Instead, Cassandra emphasises
de-normalisation through CQL features such as collections and clustering specified at
the schema level.

Cassandra uses a combination of memory tables (Memtables) and sorted string tables
(SSTables) for persistence. Memtables are in-memory structures where Cassandra buffers

all of its writes. When the Memtables are full, they are flushed onto disk by sequentially

Chapter 9. Forensic Examination of NoSQL Databases 111

writing to the SSTables in append mode. Once written, the SSTables become immutable.
Using this approach makes it possible for Cassandra to avoid having to read before
writing. Reading data involves combining the immutable sequentially-written SSTables
to retrieve the correct query result (DataStax, 2017).

In Cassandra, data is automatically replicated to multiple homogeneous nodes for
fault-tolerance. A replication strategy determines the nodes where the replicas are
placed. Cassandra employs a peer-to-peer distributed system across the nodes, whereby
the data is distributed among all nodes in the cluster (DataStax, 2017). Failed nodes in
a cluster can be replaced with no downtime.

Prominent users of Cassandra include CERN, Netflix, Reddit and eBay (Apache
Cassandra, 2017).

9.2.3 Redis

Redis is an open source key-value store that is published under the Berkeley Software Dis-
tribution (BSD) license. The in-memory data structure store can be used as a database,
a cache or a message broker. The name Redis stands for REmote Dlctionary Server.
Redis was developed by Salvatore Sanfilippo, who released the first version in May 2009.
He was hired by VMware in March 2010 to work full time on Redis (Sanfilippo, 2010).
In 2015, Salvatore Sanfilippo joined Redis Labs which now sponsors development.

Redis maps keys to different types of values. It not only supports plain data structures
such as strings but also abstract data structures such as hashes, lists, sets and sorted
sets. Geo-spatial data is now supported through the implementation of the geohash
technique.

The type of a value determines what operations (called commands) are available
for the value itself. Redis supports high-level, atomic, server-side operations such as
appending to a string, incrementing the value in a hash, pushing an element to a list,
computing set intersection, union and difference, and sorting of lists, sets and sorted sets
(Redis Labs, 2017b).

Redis is written in ANSI C and works in most POSIX systems such as Linux, various
BSD operating systems and OS X without external dependencies. It works with an in-

memory dataset, which can be optionally be persisted either by dumping the dataset to

Chapter 9. Forensic Examination of NoSQL Databases 112

disk every once in a while, or by appending each command to a log file.

Redis has built-in replication using a master-slave configuration, which can be per-
formed either via the dump file or directly from process to process. Redis also supports
memory eviction methods, such as Least Recently Used (LRU), which allows it to be
used as a fixed size cache. Additionally, Redis supports the publish/subscribe messaging
paradigm, which allows it to be used a messaging platform.

Redis has a built-in Lua interpreter, which can be used to write complex functions
that run in the Redis server itself. Lua is a lightweight multi-paradigm programming
language. Add-on Redis products provide additional features, such as high availability
via Redis Sentinel and automatic partitioning with Redis Cluster.

Prominent users of Redis include Twitter, Pinterest and Flickr (Redis Labs, 2017c).

9.2.4 Neo4j

Neo4j is an open-source graph database management system that is an ACID-compliant
transactional database with native graph storage and processing (Neo4j, 2017a). It is
published under dual licence of the GNU Affero General Public License (AGPL) and the
GNU Public License (GPLv3).

Neo4j is developed by Neo Technology, Inc. which released the first version in Febru-
ary 2010. It is implemented in Java and accessible from software written in other
languages using the Cypher Query Language (CQL') through a transactional HTTP
endpoint, or through the binary “bolt” protocol.

The main features and capabilities of CQL are as follows: Firstly, it works by match-
ing patterns of nodes and relationships in the graph, to extract information or modify
the data. Secondly, it has the concept of variables, which denote named, bound elements
and parameters. Thirdly, it can create, update, and remove nodes, relationships, labels,
and properties. Lastly, it is used to manage indexes and constraints (Neodj, 2017d).

In Neodj, everything is stored in the form of either an edge, a node, or an attribute.
Each node and edge can have any number of attributes. Both the nodes and edges can

be labelled. Labels can be used to narrow searches. Neo4j uses on-disk linked lists for

Not related to Cassandra Query Language (CQL)

Chapter 9. Forensic Examination of NoSQL Databases 113

persistence.

Joining data together in Neo4j is performed as navigation from one node to another,
which provides linear performance degradation compared to relational databases, where
the performance degradation is exponential for an increasing number of relationships
(Neodj, 2017a).

Prominent users of Neo4j include Walmart, Monsanto and Ebay (Neo4j, 2017c¢).

9.3 NoSQL Survey

A survey of the documentation for the chosen four NOSQL databases was conducted.
Comparable information was obtained on the availability of the following features: trig-
gers, authentication, authorisation and logging. The official documentation was used
as far as possible, but in some cases document gaps were supplemented with additional
sources. In some cases, the information was readily available, while in other cases it was
necessary to delve into the database software files. This section presents the results of
this survey.

It should be noted, that only the features available in the official free and community
editions of the selected NoSQL databases were analysed. Some of the NoSQL databases
also have paid-for enterprise editions available that provide additional features®. These
additional features include enhancements and additions to authentication, authorisation
and logging.

The results for the four features are presented in the same order for all the selected
databases. This is to enable direct comparison between the different NoSQL databases

and allow commonalities and/or differences to be established for later discussion.

9.3.1 MongoDB

Unless otherwise indicated, this section uses the official MongoDB documentation (Mon-
goDB Inc., 2017b) to paraphrase the relevant information to indicate the availability of

the surveyed features.

2See for example Neodj Editions (Neo4j, 2017b)

Chapter 9. Forensic Examination of NoSQL Databases 114

MongoDB does not provide or support trigger functionality. A number of external
add-on solutions have been developed by various MongoDB users to emulate specific
trigger-like functionality (Gino, 2018; Torchlight Software, 2018). All these approaches
make use of a transactional log file that is maintained when MongoDB replication is
enabled.

MongoDB supports a number of authentication mechanisms that clients can use
to verify their identity. These include SCRAM-SHA-1 and x.509 client certificates.
SCRAM-SHA-1 is an authentication mechanism from the Salted Challenge Response
Authentication Mechanism (SCRAM) family that uses the SHA-1 hash function. It is a
mechanism for authenticating users with passwords and defined by the Internet Engineer-
ing Task Force (IETF) in the Request for Comments (RFC) 5802 standard (Newman,
Menon-Sen, Melnikov, & Williams, 2010).

MongoDB employs role-based access control to govern access to a MongoDB system.
A user is granted one or more roles that determine the user’s access to database resources
and operations. Outside of role assignments, the user has no access to the system.
MongoDB does not enable access control by default, but it can be enabled via the
configuration file or a start-up parameter.

Since MongoDB does not have a built-in default user, an appropriate administration
user needs to be created before authentication is enabled. Alternatively, MongoDB pro-
vides an exception where it allows an unauthenticated connection on the local loopback
interface to the admin database. Once an appropriate administration user has been cre-
ated via this connection, no further actions can be performed and this connection needs
to be terminated to establish a new authenticated one.

MongoDB provides a number of built-in roles that can be used to control access to
a MongoDB system. Each of these roles have specific privileges assigned to them. The
roles are divided into different categories, such as database user, database administrator
and superuser. However, if the specific privileges of the built-in roles are not sufficient,
one can create new roles with the desired privileges in a particular database.

A role grants privileges to perform sets of actions on defined resources. A given
role applies to the database on which it is defined. Access can be granted on a whole

cluster, a specific database in the cluster or to individual collections inside a database.

Chapter 9. Forensic Examination of NoSQL Databases 115

Privileged actions that are available to roles are grouped together as follows: query and
write actions, database management actions, deployment actions, replication actions,
sharding actions and server administration actions.

MongoDB database instances can report on all their server activity and operations.
Per default, these messages are written to standard output, but they can be directed
to a log file via the configuration file or a start-up parameter. MongoDB’s default log
verbosity level includes just informational messages. This can be changed to include
debug messages by setting the verbosity to a higher level.

Additionally, MongoDB allows logging verbosity to be controlled at a finer grain by
providing verbosity settings on a component level. These components include items,
such as access control, commands and queries. Unless explicitly set, each component has
the verbosity level of its parent. MongoDB verbosity levels range from the informational
default of 0 to the most verbose debug level of 5.

When logging to a file is enabled, MongoDBs standard log rotation approach archives
the current log file and starts a new one. This normally occurs when the MongoDB in-
stance is restarted. While the MongoDB instance is running, this can also be triggered by
either issuing the “logRotate” command inside the database or by sending the SIGUSR1
signal from the OS to the MongoDB process id.

9.3.2 Cassandra

Unless otherwise indicated, this section uses the official Cassandra documentation (Apache
Cassandra, 2016) to paraphrase the relevant information to indicate the availability of
the surveyed features.

Cassandra does provide trigger functionality that is similar to the SQL standard DML
trigger. Triggers can be attached to tables and removed from them with the CREATE
TRIGGER and DROP TRIGGER CQL commands. However, the trigger logic itself is
not defined in the CQL but exists outside the database. The trigger invokes external
Java code that needs to conform to a specific interface (Vajda, 2018).

The Java code is invoked before the DML statement is executed, thus making Cas-
sandra triggers BEFORE statement-level triggers. The Java code is provided with all the
intended data changes to the table in a mutation object. The Java code has the ability

Chapter 9. Forensic Examination of NoSQL Databases 116

to manipulate the given mutation object. Since any intended data changes will only be
applied to the database after the trigger has executed, the trigger can be converted to
an INSTEAD OF trigger.

The Java code also has the ability to add other database table changes to the mutation
object. This gives the Cassandra trigger the ability to operate similar to a standard
SQL trigger: a change of data in one table can be used to affect changes in other tables.
Besides standard operations, the triggers can also be used for auditing, data transfer and
communication purposes.

Cassandra provides pluggable authentication that can be configured via settings in
the configuration file. The default Cassandra configuration uses the AllowAllAuthenti-
cator, which performs no authentication checks and therefore requires no credentials. It
is used to disable authentication completely. Cassandra also includes the PasswordAu-
thenticator, which stores encrypted credentials in a system table. This is used to enable
plain username/password authentication.

Cassandra uses a role-based access control framework, but provides no fixed or pre-
defined roles. Cassandra roles do have a login property and a superuser property. The
default Cassandra user has these properties set, so that it can be used to setup further
users and roles once authentication has been enabled. Users and roles are the exact
same concept, but to preserve backward compatibility they are both still used. User
statements are simply synonyms of the corresponding role statements.

Cassandra also provides pluggable authorisation that can be configured in the same
configuration file as authentication. By default, Cassandra is configured with the Al-
lowAllAuthorizer, which performs no checking and so effectively grants all permissions
to all roles. This is used if the AllowAllAuthenticator is the configured authenticator.
Cassandra also includes the CassandraAuthorizer, which implements full permissions
management functionality and stores its data in Cassandra system tables.

Permissions on various resources are granted to the roles. The permissions available
depend on the type of resource. Cassandra provides the following resource types: data
resources such as keyspaces and tables, function resources, database roles and Java man-
aged beans (MBeans). The resource types are structured as hierarchies and permissions

can be granted at any level of these hierarchies and they flow downwards.

Chapter 9. Forensic Examination of NoSQL Databases 117

Cassandra provides all of the following permissions: CREATE, ALTER, DROP, SE-
LECT, MODIFY, AUTHORIZE, DESCRIBE and EXECUTE. A matrix determines
which permissions can be applied to which resources. One can grant individual permis-
sions to resources or use the GRANT ALL syntax to grant all applicable permissions to
a resource.

Cassandra uses the Java logging framework Logback to create various log files about
everything that occurs in the system. Java logging classifies messages in levels (Oracle,
2006), where a lower level of messages will include all the higher level ones as well.
For example, the INFO level will include messages from the higher ERROR level, while
the lower DEBUG level will include the higher level INFO and ERROR messages. By
default the following two log files are created: the system log file which contains all the
INFO level messages produced in the system and the debug log file which contains all
the DEBUG level messages. The debug log file additionally contains caller information
as well.

Another log file available in Cassandra is the commit log. To enhance performance,
Cassandra keeps column updates in memory and periodically flushes those changes to
disk. To prevent data losses when the system goes down before flushing, these updates
are also written to the commit log. When Cassandra starts up again, it reads the commit
log back from the last known good point in time and re-applies the changes in the commit
log so it can get into the same state as when it went down. Although the commit log
only contains the most recent changes that have not been flushed to disk yet, there is a

configuration option that will archive the contents of the commit log.

9.3.3 Redis

Unless otherwise indicated, this section uses the official Redis documentation (Redis
Labs, 2017a) to paraphrase the relevant information to indicate the availability of the
surveyed features.

Redis does not provide or support trigger functionality. However, Redis does provide
a publish/subscribe messaging platform, which clients can connect to, in order to send
and receive event notifications. When keyspace notifications are enabled in Redis, all
events that effect key data will be published on this platform (Redis Labs, 2018). Since

Chapter 9. Forensic Examination of NoSQL Databases 118

only the key name and the event performed on the key are published, this allows only
uses such as communication and limited auditing.

Since Redis is an in-memory database, it is designed to be run inside trusted environ-
ments and accessed by trusted clients. Untrusted access is expected to be mediated by an
intermediary layer that implements access control, validates user input and determines
what operations may be performed against the Redis database instance.

Although Redis does not implement access control, it does provide a tiny layer of au-
thentication that can be enabled by editing the configuration file and setting a password.
When the authentication layer is enabled, Redis will refuse any queries by unauthenti-
cated clients. A client then needs to authenticate itself by sending the AUTH command,
followed by the password. The AUTH command, such as every other Redis command,
is sent unencrypted.

The purpose of the authentication layer is to serve as a protection layer against the
accidental exposure of a Redis database instance to external untrusted environments.
To force the setting of a password, a Redis instance in default configuration will only
start in protected mode. In protected mode, the Redis instance only accepts clients on
the local loopback interface, while throwing errors on all other available interfaces. Once
the password has been set, the other configured interfaces will accept client connections.

Redis has no form of authorisation. Once a client is authenticated, any command
can be called, including the FLUSHALL command, which will delete the whole data set.
As mitigation, Redis allows commands to be renamed into unguessable names, so that
normal clients can be limited to a specified set of commands. Systems that provide and
manage Redis instances would then still be able to execute the renamed commands.

Redis does have some form of logging, although it is advised that it be only used for
debugging purposes. The Redis “Slow Log” is a system to log queries that exceeded a
specified execution time. However, by setting the execution time threshold to zero, all
commands, including queries, will be logged. Keeping with its in-memory nature, Redis
keeps the slow log in memory. To prevent over usage of memory for logging purposes, by
default only the last 1024 slow log entries will be kept. To retrieve the slow log entries,
the SLOWLOG GET command needs to be used (Seguin, 2012).

Another form of command logging happens when append-only file (AOF) persistence

Chapter 9. Forensic Examination of NoSQL Databases 119

is enabled. When enabled, every time the Redis database instance receives a command
that changes the dataset (e.g. SET), it will append it to the AOF. The purpose of the
AQF is to rebuild the state after the database was shut down without a snapshot of
the current state. To prevent the file from growing uncontrollably, Redis can, from time
to time, rewrite the actual stored commands with the shortest sequence of commands

needed to rebuild the current dataset in memory.

9.3.4 Neo4j

Unless otherwise indicated, this section uses the official Neo4j documentation (Neo4j,
2017e) to paraphrase the relevant information to indicate the availability of the surveyed
features.

Neo4j does not provide SQL standard trigger functionality. It does, however, provide
the ability to invoke actions based on data transactions via the TransactionEventHandler
mechanism (Marzi, 2018). This allows the invocation of external Java code that can
interrogate the transaction data and perform any action possible from the Java code.
Uses for this ability include auditing, data transfer and communication.

Neodj provides a basic authentication layer that is enabled by default. It has a
built-in default user, for whom the password can be set during installation. Should the
password not be changed during installation, Neo4j will prompt for a password change
on first connection. Additional users can be added to the database by the default user
once authenticated.

Neo4j has no form of authorisation. This implies that once a client is authenticated,
any operation can be performed on the database. Additionally, Neo4j only accepts client
connections on the local loopback interface in default configuration. External interfaces
for remote connectivity need to be configured explicitly.

Neodj does provides some logging. Traffic on the HTTP/HTTPS connector is logged
to a file called http.log. However, this traffic logging is not enabled by default.

The enterprise version of Neo4j, however, does provide a role-based access control
framework that furnishes built-in roles, as well as the ability to add custom roles. It also
provides additional logging capabilities to audit security events and queries executed.

These capabilities need to be configured first, since they are not enabled by default.

Chapter 9. Forensic Examination of NoSQL Databases 120

9.4 Discussion

In this section, the results from the feature survey in the previous section are discussed
using two summary tables. The next section then discusses the implications of these

results on forensic attribution.

Table 9.1: NoSQL Database Features

Database | Triggers | Authentication | Authorisation | Logging

MongoDB No Yes Yes Yes

Cassandra Yes Yes Yes Yes
Redis No Yes No Yes
Neod;j No Yes No Yes

Table 9.1 summarises the results from the survey of triggers, access control and
logging of the selected NoSQL databases. The first result presented by the summary,
indicates that only Cassandra provides a native trigger mechanism that is comparable
to a trigger as specified in the SQL standard. All the other surveyed NoSQL databases
do not have native trigger mechanisms.

The second result this summary shows, is that all of the surveyed NoSQL databases do
support authentication. However, the third result is that two of the NoSQL databases do
not provide authorisation. This divides the surveyed NoSQL databases into two groups:
The first group of databases control both who can access them and what operations the
authenticated users can perform. The second group of databases only control who can
access them, but not what the authenticated users can do.

Specifically, Redis only provides a thin authentication layer that does not have dif-
ferent users, but rather restricts client access via a plain password. Since it has no
differentiated user access, Redis also does not provide any authorisation. Neo4j also
does not provide any role based authorisation, even though differentiated user authenti-
cation is supported. This implies that in both these databases, all clients have the same
full control over all database operations once they have been authenticated.

The fourth result that the summary in Table 9.1 shows, is that all of the surveyed

Chapter 9. Forensic Examination of NoSQL Databases 121

NoSQL databases do provide some form of logging. It should be noted that this survey
looked at all the log files that were being generated by the chosen NoSQL databases,
not only audit logs. Some of the log files that were surveyed, are only created when
special features in the database are enabled, while other log files are created by the
storage mechanism that the particular database uses. This means that rather than
being general log files, these files are specialised log files that contain only specific type
of messages.

Some NoSQL databases, such as MongoDB and Redis, include the ability to log
queries that took particularly long to complete. In the case of Redis, the threshold used
to determine when to log slow queries can be changed to zero, which will make Redis
log every query executed. Thus, the normal Redis slow log can be turned into a query

audit log.

Table 9.2: Features Enabled by Default

Database | Access Control | Logging

MongoDB No No

Cassandra No Yes
Redis No Yes
Neodj Yes No

Table 9.2 summarises the default state of the security features that are available for
the surveyed NoSQL databases. This summary shows that only one of the surveyed
NoSQL databases comes with access control enabled by default. The implication of this
result is that the installations of all those other NoSQL databases will be accessible to
anyone without explicit configuration changes.

A small security consolation is that some of these NoSQL databases will, per default,
only accept client connections on the local loopback interface. This means that no remote
access is possible and only clients on the same machine as the database can connect.

In the case of MongoDB, this default “local loopback only” state is created with the

chosen value of the network configuration option, which can easily be changed to the

Chapter 9. Forensic Examination of NoSQL Databases 122

network interface of the machine. This single change will then open up the MongoDB
database to remote clients without access control. In the case of Redis, this “local loop-
back only” state is enforced by a separate configuration option. However, by changing it
and the network configuration option, the Redis database can be opened up to remote
clients without authentication.

Table 9.2 also shows that logging is not enabled by default on some databases. Even
though, for example, MongoDB has great logging capabilities that can audit database
access and operations, none of that is available by default. Only after careful configu-
ration of the various settings will the same information be available, as found in many
relational databases.

In the case of Neo4j, it is not a great loss that logging is not enabled by default. This
is because only HTTP traffic logging is available in the community edition of Neo4j.
The logging capabilities for security events and queries is only available in the paid-for

enterprise edition.

9.5 Forensic Implications

This sections considers the implications of the results from the previous section on foren-
sic examinations and particularly forensic attribution. The availability of triggers, access

control and logging /auditing in the surveyed NoSQL databases is considered individually.

9.5.1 Triggers

The survey found that only Cassandra provides native trigger functionality. The other
three surveyed NoSQL databases do not have native triggers and can only emulate
a particular subset of trigger capabilities via other mechanisms and add-on solutions.
Cassandra only provides one of the three types of triggers identified in chapter 5: DML
triggers.

The immediate implication of this finding is that forensic acquisition and analysis of
these surveyed NoSQL databases is not impacted by triggers as was the case with certain
relational databases. This is because these NoSQL databases do not provide non-data

triggers.

Chapter 9. Forensic Examination of NoSQL Databases 123

Due to the presence of DML triggers in Cassandra, the process of forensic attribution
could be impacted in the same way as for relational databases. The Java interface used
by the trigger implementation allows it to behave as both a BEFORE trigger and an
INSTEAD OF trigger. This means that actions of both commission and omission are
possible for a Cassandra trigger.

When these trigger actions need to be attributed, they could be incorrectly attributed
to the initiator of the original trigger action. Therefore, the forensic examiner needs to
be aware of the presence of triggers. As with relational databases, the first step would
be to determine if triggers are present in the Cassandra database under investigation.
This could be achieved similarly to relational databases by executing a CQL query on
the necessary tables.

If triggers are found to be present in the database, the next step would be to estab-
lish if any of those triggers could have influenced the data being examined. The idea
of the trigger identification algorithm is still valid, however, the process will have to
change quite a bit for the Cassandra trigger implementation. This is because the trigger
implementation is located outside the database in a compiled Java class.

Although the other surveyed NoSQL databases do provide some trigger-like capa-
bilities, these capabilities are limited to sending information out of the database. This
information is used by other applications and systems for the purposes of auditing, data
transfer and communication. Since any changes affected by the processing of this in-
formation occur outside of the primary database, they do not have an impact on the
forensic examination of the primary database itself.

With some of the mechanisms, it might be theoretically possible to connect back to
the primary database and affect data changes there. However, these changes would be
made with a different connection and transaction context and one would expect this to
be evident in some available trace. This is very different from a trigger, which would
perform the additional or alternative data changes entirely inside the database within

the same transaction.

Chapter 9. Forensic Examination of NoSQL Databases 124

9.5.2 Access Control

The traces or artefacts from access control in a database can help the forensic examiner as
follows: firstly, the authentication traces can provide a list of users that connected around
the time the operations being examined were performed. Secondly, the authorisation
matrix can narrow down this list based on who was authorised to perform the operations
in question. The first group of NoSQL databases that was identified in the previous
section, can aid forensic attribution in this way.

The second group of NoSQL databases that the survey identified, only have authen-
tication available, but no authorisation. The implication is that in those databases, all
clients have the same full control over all database actions once they have been authen-
ticated. This means, it will not be possible to narrow down the list of users based on
the operations they are authorised to perform, since, theoretically, all of the users had
the authority to perform the operations being examined.

One of the databases in the second group also has no concept of a database user and
just provides plain password based access. From a security standpoint, this elementary
authentication layer provides an improvement over having no authentication, but from a
forensic attribution standpoint, it adds almost no additional value. The forensic examiner
can only deduce that the responsible person was in possession of the correct password,
provided the security model of the database is sound and no unauthenticated access is
possible.

The survey also showed that none of the selected NoSQL databases have authen-
tication enabled by default. The forensic examiner is thus dependent on the database
administrator to have enabled authentication for possible access control traces. But
without these access control traces being persisted into a log file or some other data
file, the mere presence of access control in the database is not sufficient to aid forensic

attribution.

9.5.3 Logging

The different log files that were encountered during the survey of the selected NoSQL

databases can be divided into three groups: audit logs, system logs and storage logs.

Chapter 9. Forensic Examination of NoSQL Databases 125

Audit Logs

Audit logs maintain a record of various activities in the database for later review or
possible debugging in case of errors. Two pieces of information normally found in the
audit logs that the forensic examiner can use for forensic attribution, are the access
records and the operation records.

The access records show who connected to the database and when, while the operation
records show what operations or queries were performed when, and by whom. However,
without authentication enabled or available, there will be no access records and the
operations will not have any user associated with them.

None of the surveyed NoSQL databases provided specific audit logs in the free and
community versions. This means that to perform forensic attribution in those database

versions, the forensic examiner will have to look at the other groups of log files.

System Logs

System or operational logs are created by the databases during the normal running of the
system and can contain many different informational and error messages. How valuable
these system log files are to the forensic examiner, depends on their content.

The survey showed that some of the NoSQL databases include the ability to configure
what messages and operations are written to the system log. This includes, to a certain
extent, access and operation records. Thus, the normal system log file can be turned
into an audit log as well.

Therefore, if the database administrator has enabled logging and configured the sys-
tem log appropriately, the forensic examiner can use them to aid forensic attribution.
Unfortunately, this makes the availability of system logs not something the forensic ex-

aminer can depend on when performing forensic attribution.

Storage Logs

Storage logs that are available on some of the surveyed NoSQL databases, are created
by their persistence mechanisms. These storage logs contain the information of all the

operations that modified the data. Storage logs may, or may not, be archived after the

Chapter 9. Forensic Examination of NoSQL Databases 126

information they contain, has been transferred to the data files. This depends on the
configuration of the database storage and available space.

The storage logs perform two functions in the NoSQL databases that use them.
Firstly, they speed up the write speed of the database by first writing the change op-
erations to a small linear file, before applying them to the bigger complex data files.
Secondly, they maintain a record of changes in case the database goes down before the
change operations have been fully applied to the data files.

After a failure, the database can re-apply the operations from the storage log file to
the data files to get them to the current state. In the same way, the forensic examiner
can use the storage logs to roll back the state of the database to an earlier point in time.
This process is called reconstruction and can help identify changes that were made and
information that was removed (Adedayo & Olivier, 2015).

In order to save space, Cassandra uses a technique called compaction. Compaction
is the process where the DBMS goes through the storage log and replaces individual
operations that made changes to the same data, with a single operation that has the
same outcome (Ellis, 2011). The problem for the forensic examiner is that he no longer
can see the individual operations that were performed, possibly by different users.

It ultimately depends on the scenario the forensic examiner is dealing with, as to
whether these storage logs will aid forensic attribution or not. In the case where data
was accessed or taken, there will be no changes to the storage log file. However, in the
case where data was modified or removed, there will be entries in the storage log file

that could contain clues as to who was responsible.

9.6 Conclusion

This chapter examined NoSQL databases in order to determine the presence of triggers
and the availability of certain security features. The purpose of this examination was to
ascertain the impact that these features have on performing forensic examinations in gen-
eral, and specifically forensic attribution. A survey of four top ranked NoSQL databases
was performed to determine what features they provide. The survey specifically looked

at the areas of triggers, authentication, authorisation and logging.

Chapter 9. Forensic Examination of NoSQL Databases 127

The survey found that only the Cassandra NoSQL database provides trigger func-
tionality. However, only DML triggers are provided. The forensic examiner therefore
needs to take trigger actions into account when performing forensic attribution. Foren-
sic acquisition and analysis of these NoSQL databases are, however, not impacted by
triggers.

It was also found that even though the surveyed NoSQL databases MongoDB and
Cassandra have the same security features available as in widely used relational databases,
they are not enabled and configured appropriately in default configuration mode. When
performing a forensic examination, the forensic examiner is thus completely reliant on
the configuration that the database administrator performed on the particular database.

Furthermore, the surveyed NoSQL databases Redis and Neo4j did not provide secu-
rity features that left relevant traces. In those databases, the forensic examiner is thus
forced to only use traces from outside the database to help perform attribution of the
actions that occurred inside the database. The lack of these traces can negatively impact

the accuracy of the attribution result.

Chapter 10
Conclusions

Forensic attribution is a lesser studied area of digital forensics. Particularly in the area of
database forensics, this forensic process has not received much attention. Since forensic
attribution is a difficult undertaking, the specific challenges presented by databases need
to be known and understood.

This chapter presents a summary of the attribution challenges that this research
identified and studied in further detail. Certain aspects that were out of scope for this
research, and other areas that this research did not address, are also listed for possible
future work.

Section 10.1 summarises the findings and conclusions from this research. The various
contributions made by the research are highlighted in section 10.2. In section 10.3, some
suggestions for future research are provided. These include areas that fell outside the

scope of this research.

10.1 Summary of Conclusions

The main research question that this dissertation set out to answer was the follow-
ing: What circumstances can prevent the correct attribution of actions performed in a
database?

The research conducted in this dissertation identified and confirmed the following

two challenges:

128

Chapter 10. Conclusions 129

e The presence of database triggers.
e Insufficient access control and auditing traces.

The first identified challenge presented a completely new research aspect and conse-
quently the scope of this challenge was extended to a more general research question:
Do database triggers interfere with forensic examinations? This more general research
question was divided into two parts that each target different processes in the forensic
examination procedure.

The first focus point was the forensic acquisition process and the forensic analysis
process. The specific research question for this focus point was formulated as follows: Do
the current forensic acquisition and analysis processes make provision for the presence
of triggers during a forensic examination of a database?

The research identified a group of triggers that it classified as non-data triggers. This
class of trigger does not require any data changes in order to be activated. Therefore,
triggers of this class have the potential to contaminate the data in a database by in-
conspicuous operations, such as connecting to the database, or by starting it up and
shutting it down.

The research showed that the way databases are acquired and analysed during a
forensic examination will make use of these inconspicuous operations. Thus, databases
may be contaminated by the very person attempting to acquire and analyse the database
without affecting the integrity and/or original condition. It does not matter whether the
triggers present in the database were placed for operational or malicious purposes.

The second focus point was the forensic interpretation process, specifically the foren-
sic attribution activity. The specific research question for this focus point was formulated
as follows: Can attribution be accurately performed when dealing with actions that in-
clude those performed by triggers?

The research established that triggers can introduce side-effects into the normal flow
of operations. These side-effects include performing additional actions or preventing the
completion of the triggering operations. Certain types of triggers can also manipulate
or completely replace the original operation. This means what the original operation

intended to do, and what actually happened, are not necessarily the same.

Chapter 10. Conclusions 130

The research also identified that a trigger performs its actions with the same user
credentials as the original operation that caused the trigger to fire. Some databases
might log additional information with an operation to indicate that it was performed by
a trigger. However, one cannot assume that such an extended log will be available to
the forensic examiner.

Both these effects of triggers can lead to incorrect conclusions when attributing opera-
tions performed in the database. Modified and additional operations might be incorrectly
attributed to a user when, in fact, triggers were responsible.

The second identified challenge is caused by two connected issues. The first issue
relates to user authentication and authorisation. Without proper access control, it is
not possible to obtain a list of users, who have access to the database. It is also not
possible to narrow down the user list according to who has permission to perform specific
database operations.

The second issue relates to auditing/logging features that are either not available or
are not enabled. Without sufficient logging, it is not possible to retrieve or construct an
audit trail of who accessed the database, what operations were being performed and by
whom.

The research found that all studied NoSQL databases had deficiencies when it came
to providing traces for forensic attribution of database operations. This situation is a
particular occurrence in NoSQL databases. Relational databases, in general, follow the
SQL standard, which prescribes a security model that includes access control.

Two of the studied NoSQL databases did have security features similar to those found
in relational databases. However, the security features were not enabled and configured
appropriately in default configuration mode. When attempting forensic attribution,
the forensic examiner is thus completely reliant on the configuration that the database
administrator performed on the particular database.

Furthermore, the two other NoSQL databases did not provide security features that
left relevant traces. In those databases, the forensic examiner can thus only use traces
from outside the database to help perform forensic attribution of the operations that
occurred inside the database. This situation will consequently influence the attribution

accuracy negatively.

Chapter 10. Conclusions 131

10.2 Contributions

As part of this research to address the problem statement, a number of other contribu-
tions were made to the fields of databases and database forensics.

One of the aims of this research was to perform a comprehensive evaluation of the im-
pact that database triggers have on forensic examinations of databases, and particularly
forensic attribution. This required an exhaustive list of trigger types and features.

Therefore, an investigation was conducted to determine all the types of triggers that
are defined in the SQL standard, as well as those found in various popular relational
databases. This investigation provided a new classification of available database triggers
based on type and functionality.

Since there was not enough related research material available for an in-depth liter-
ature review, a literature survey of all major database forensic research was conducted
instead. A previous literature survey performed in 2008 provided the starting point for
this survey.

The results of this literature survey not only provide a picture of the current state
of database forensic research, but they also give an indication of the research trend in
this field. The amount of information available is increasing as the field is maturing.
The research output, however, remains constant, which is in contrast to the similarly
maturing field of cloud forensics, where research output is increasing.

Database triggers were found to impact various phases of the forensic examination
process of databases. Therefore, database triggers have to be considered during a forensic
examination. However, a database could potentially contain hundreds or more triggers
that would need to be analysed and only some of them might be relevant to the exami-
nation.

In order to assist the forensic examiner with this task, an algorithm was developed
to help identify only triggers that are relevant to the specific data being examined. The
application of this algorithm allows the forensic examiner to focus only on the identified
triggers, instead of all the triggers present in the database.

Insufficient or lacking security features are one of the by-products of the simplified
models used by the NoSQL databases. In order to quantify the impact of unavailable

security features on forensic attribution, a survey to determine the access control and

Chapter 10. Conclusions 132

logging capabilities of a number of popular NoSQL databases was conducted.

The results of this survey not only provide a comparison of the current availability
of access control and logging features in these popular NoSQL databases, but they also
indicate whether these features are enabled by default. This information can provide the
forensic examiner with a reasonable grasp of what traces he can expect to find, or not

find, when he needs to perform a forensic examination of one of these NoSQL databases.

10.3 Future Work

Some aspects of triggers were not considered in this research in order to allow the fun-
damentals around the usage of triggers to be established first. Since a foundation has
now been laid, these additional aspects can now be studied and added on top of the

foundation.

10.3.1 Nested Triggers

This research only considered triggers on a single level. However, it is possible that
the action performed by one trigger becomes a new event of either the same trigger or
another trigger. This process of a trigger initiating another trigger is called nesting.
There are two types of nested triggers. If each trigger activates another different trigger
without repetition, then the triggers are cascading triggers. However, should all the
nested triggers form a cycle, or a single trigger activate itself again, then the triggers are
considered recursive triggers.

Different DBMSs have various configuration options that determine if trigger nesting
is allowed and how many levels of nesting can be performed. These settings would form
a suitable starting point for extending the current research. They would determine if

further trigger identification and analysis may be required.

10.3.2 Deleted Triggers

Finding a database to be trigger free during a forensic examination does not always

imply that triggers were never present. There is a possibility that triggers were present

Chapter 10. Conclusions 133

at an earlier time and have since been deleted. The implication of this possibility is
that some actions may have been performed by the deleted triggers and could now be
incorrectly attributed to the initiator of the trigger event.

Foul play in a breached database may be a possible reason for this situation. Malicious
agents may have created and used the triggers for nefarious purposes. When the triggers
had served their purpose, they were then deleted together with other traces to hide the
intrusion and related activities.

However, databases are not static and evolve over time as the computer systems
that use them, need to adapt to change. Transactions that were initially performed by
triggers, might have been moved to the application for greater flexibility. Therefore,
when the new application version was deployed, the now obsolete triggers were deleted.

From a forensic perspective, it would have been valuable to still keep the triggers in
the database in a disabled state. However, accidental reactivation of the triggers might
have been considered too great of a risk. This would have led to duplicate transactions

being performed and damaged the integrity of the data.

References

Adedayo, O. M., & Olivier, M. S. (2014). Schema Reconstruction in Database Forensics.
In G. Peterson & S. Shenoi (Eds.), Advances in Digital Forensics X (p. 101-116).
Heidelberg, Germany: Springer.

Adedayo, O. M., & Olivier, M. S. (2015, March). Ideal log setting for database forensics
reconstruction. Digital Investigation, 12, 27-40.

Adelstein, F. (2006). Live forensics: diagnosing your system without killing it first.
Communications of the ACM, 49(2), 63-66.

Ahmed, 1., Zoranic, A., Javaid, S., III, G. R., & Roussev, V. (2013). Rule-Based Integrity
Checking of Interrupt Descriptor Tables in Cloud Environments. In G. Peterson
& S. Shenoi (Eds.), Advances in Digital Forensics IX (p. 305-328). Heidelberg,
Germany: Springer.

Apache Cassandra. (2016). Apache Cassandra Documentation v3.2. Retrieved from
https://cassandra.apache.org/doc/latest/ (Accessed: April 2017)

Apache Cassandra. (2017). Apache Cassandra. Retrieved from https://cassandra
.apache.org/ (Accessed: April 2017)

Atkinson, M., Bancilhon, F.; DeWitt, D., Dittrich, K., Maier, D., & Zdonik, S. (1989,
December). The Object-Oriented Database System Manifesto. In Proceedings of
the First International Conference on Deductive and Object-Oriented Databases
(p. 223-240). Kyoto, Japan.

Atzeni, P., Ceri, S., Paraboschi, S., & Torlone, R. (1999). Database Systems concepts,
languages and architectures. London, England GB: McGraw-Hill International
(UK) Limited.

Beall, J. (2014, November). Google Scholar is Filled with Junk Science. Retrieved

134

https://cassandra.apache.org/doc/latest/
https://cassandra.apache.org/
https://cassandra.apache.org/

References 135

from http://scholarlyoa.com/2014/11/04/google-scholar-is-filled-with
-junk-science/ (Accessed: May 2015)

Bhoedjang, R., van Ballegooij, A., van Beek, H., van Schie, J., Dillema, F., van Baar,
R., ... Streppel, M. (2012, November). Engineering an online computer forensic
service. Digital Investigation, 9, 96-108.

Boebert, W. E. (2010, June 10-11,). A Survey of Challenges in Attribution. In Pro-
ceedings of a Workshop on Deterring CyberAttacks: Informing Strategies and De-
veloping Options for U.S. Policy (p. 41-52). Washington, DC.

Burch, J. W., Stanford, N., & Majerus, P. W. (1978, February). Inhibition of Platelet
Prostaglandin Synthetase by Oral Aspirin. The Journal of Clinical Investigation,
61(2), 314-319.

Butler, J. M., & Hill, C. R. (2012, January). Biology and Genetics of New Autosomal
STR Loci Useful for Forensic DNA Analysis. Forensic Science Review, 24 (1),
15-26.

Cale, C. M., Earll, M. E., Latham, K. E., & Bush, G. L. (2016, January). Could
Secondary DNA Transfer Falsely Place Someone at the Scene of a Crime? Journal
of Forensic Sciences, 61(1), 196-203.

Carrier, B. D. (2006). Risks of live digital forensic analysis. Communications of the
ACM, 49(2), 56-61.

Casey, E. (2009). Handbook of Digital Forensics and Investigation. Burlington, MA:
Elsevier Academic Press.

Ceri, S., Cochrane, R. J., & Widom, J. (2000). Practical Applications of Triggers and
Constraints: Success and Lingering Issues. In Proceedings of the 26th International
Conference on Very Large Data Bases (p. 254-262). Morgan Kaufman Publishers
Inc.

Chamberlin, D. D., Astrahan, M. M., Blasgen, M. W., Gray, J. N., King, W. F., Lindsay,
B. G., ... Yost, R. A. (1981, October). A History and Evaluation of System R.
Communications of the ACM , 24(10), 632-646.

Chan, Y., Ivanov, N., & Mueller, O. (2013). Oracle to DB2 Conversion Guide: Com-
patibility Made Easy (3rd ed.). IBM ITSO.

Cherry, D. (2012). Securing SQL Server (2nd ed.). Waltham, MA: Elsevier.

http://scholarlyoa.com/2014/11/04/google-scholar-is-filled-with-junk-science/
http://scholarlyoa.com/2014/11/04/google-scholar-is-filled-with-junk-science/

References 136

Chivers, H., & Hargreaves, C. (2011, April). Forensic data recovery from the Windows
Search Database. Digital Investigation, 7, 114-126.

Chung, H., Parka, J., Lee, S., & Kang, C. (2012, November). Digital forensic investiga-
tion of cloud storage services. Digital Investigation, 9, 81-95.

Clark, D. D., & Landau, S. (2010, June 10-11,). Untangling Attribution. In Proceedings
of a Workshop on Deterring CyberAttacks: Informing Strategies and Developing
Options for U.S. Policy (p. 25-40). Washington, DC.

Codd, E. F. (1970, June). A Relational Model of Data for Large Shared Data Banks.
Communications of the ACM, 13(6), 377-387.

Codd, E. F. (1979, December). Extending the Database Relational Model to Capture
More Meaning. ACM Transactions on Database Systems, 4(4), 397-434.

Cohen, F. B. (2009). Digital Forensic Evidence Examination (4th ed.). Livermore, CA:
Fred Cohen & Associates.

Cohen, F. B. (2010, January 5-8,). Attribution of messages to sources in digital foren-
sics cases. In Proceedings of the 43rd Hawaii International Conference on System
Sciences (p. 4459-4468). Honolulu, HI.

DataStax. (2017). Apache Cassandra 3.0 for DSE 5.0. Retrieved from http://docs
.datastax.com/en/cassandra/3.0/ (Accessed: April 2017)

DB-Engines. (2014). DB-Engines Ranking of Relational DBMS. Retrieved from http://
db-engines.com/en/ranking/relational+dbms (Accessed: May 2014)

DB-Engines. (2017a). DB-Engines Ranking. Retrieved from https://db-engines.com/
en/ranking (Accessed: April 2017)

DB-Engines. (2017b). DB-Engines Ranking - Trend Popularity. Retrieved from
https://db-engines.com/en/ranking trend (Accessed: April 2017)

DB-Engines. (2018). DBMS popularity broken down by database model. Retrieved from
https://db-engines.com/en/ranking categories (Accessed: May 2018)

Delport, W., & Olivier, M. S. (2012). Isolating Instances in Cloud Forensics. In G. Pe-
terson & S. Shenoi (Eds.), Advances in Digital Forensics VIII (p. 187-200). Hei-
delberg, Germany: Springer.

Dykstra, J., & Sherman, A. T. (2012, August 6-8,). Acquiring forensic evidence from

infrastructure-as-a-service cloud computing: Exploring and evaluating tools, trust,

http://docs.datastax.com/en/cassandra/3.0/
http://docs.datastax.com/en/cassandra/3.0/
http://db-engines.com/en/ranking/relational+dbms
http://db-engines.com/en/ranking/relational+dbms
https://db-engines.com/en/ranking
https://db-engines.com/en/ranking
https://db-engines.com/en/ranking_trend
https://db-engines.com/en/ranking_categories

References 137

and techniques. In Proceedings of the Twelfth Annual DFRWS Conference (p. S90-
S98). Washington, DC, USA.

Dykstra, J., & Sherman, A. T. (2013, August 4-7,). Design and implementation of
FROST: Digital forensic tools for the OpenStack cloud computing platform. In
Proceedings of the Thirteenth Annual DFRWS Conference (p. S87-S95). Monterey,
CA, USA.

Edlich, S. (2017). NOSQL Databases. Retrieved from http://nosql-database.org/
(Accessed: April 2017)

Eifrem, E. (2009, October). Emil Eifrem on Twitter. Retrieved from https://twitter
.com/emileifrem/statuses/5200345765 (Accessed: April 2017)

Ellis, J. (2009, November). The NoSQL Ecosystem. Retrieved from https://blog
.rackspace.com/nosql-ecosystem (Accessed: April 2017)

Ellis, J. (2011, October). Leveled Compaction in Apache Cassandra.
Retrieved from http://www.datastax.com/dev/blog/leveled-compaction-in
-apache-cassandra (Accessed: April 2017)

Elmasri, R., & Navathe, S. B. (1994). Fundamentals of Database Systems (2nd ed.).
Redwood City, CA: The Benjamin/Cummings Publishing Company Inc.

Epstein, B. (2013, April). History of Sybase. IEEE Annals of the History of Computing,
35(2), 31-41.

Eriksson, J. (1997, September 8-9,). Real-Time and Active Databases: A Survey.
In Second International Workshop on Active Real Time and Temporal Database
Systems. Como, Italy.

Evans, E. (2009, October). NoSQL: What’s in a name? Retrieved from
http://blog.sym-1link.com/2009/10/30/nosql_whats_in_a name.html (Ac-
cessed: April 2017)

Fabbri, D., Ramamurthy, R., & Kaushik, R. (2013). SELECT triggers for data auditing.
In Proceedings of the 29th International Conference on Data Engineering (p. 1141-
1152). IEEE.

Fasan, O. M., & Olivier, M. S. (2012). Reconstruction in Database Forensics. In
G. Peterson & S. Shenoi (Eds.), Advances in Digital Forensics VIII (p. 273-287).
Heidelberg, Germany: Springer.

http://nosql-database.org/
https://twitter.com/emileifrem/statuses/5200345765
https://twitter.com/emileifrem/statuses/5200345765
https://blog.rackspace.com/nosql-ecosystem
https://blog.rackspace.com/nosql-ecosystem
http://www.datastax.com/dev/blog/leveled-compaction-in-apache-cassandra
http://www.datastax.com/dev/blog/leveled-compaction-in-apache-cassandra
http://blog.sym-link.com/2009/10/30/nosql_whats_in_a_name.html

References 138

Federici, C. (2014, March). Cloud Data Imager: A unified answer to remote acquisition
of cloud storage areas. Digital Investigation, 11, 30-42.

Feinberg, D., Adrian, M., Heudecker, N., Ronthal, A. M., & Palanca, T.
(2015, October). Magic Quadrant for Operational Database Management Sys-
tems. Retrieved from https://www.gartner.com/doc/3147919/magic-quadrant
-operational-database-management (Accessed: April 2017)

Feuerstein, S., & Pribyl, B. (2014). Oracle PL/SQL Programming (6th ed.). Sebastopol,
CA: O’Reilly Media Inc.

Fool Moon. (2014). Windows Forensic Toolchest. (WFT). Retrieved from http://
www.foolmoon.net/security/wft/ (Accessed: May 2017)

Fowler, K. (2007a, April). Forensic Analysis of a SQL Server 2005 Database Server. Re-
trieved from http://www.sans.org/reading-room/whitepapers/application/
forensic-analysis-sql-server-2005-database-server-1906 (Accessed:
May 2015)

Fowler, K. (2007b). A real world scenario of a SQL Server 2005 database forensics
investigation. Black Hat USA. Retrieved from https://www.blackhat.com/
presentations/bh-usa-07/Fowler/Whitepaper/bh-usa-07-fowler-WP.pdf
(Accessed: July 2014)

Fowler, K. (2009). SQL Server Forenisc Analysis. London, Great Britain: Pearson
Education.

Fruhwirt, P., Kieseberg, P., Schrittwieser, S., Huber, M., & Weippl, E. (2012, August 20—
24,). InnoDB Database Forensics: Reconstructing Data Manipulation Queries from
Redo Logs. In Proceedings of the Seventh International Conference on Availability,
Reliability and Security (p. 625-633). Prague, Czech Republic.

Garfinkel, S. L. (2010). Digital forensics research: The next 10 years. Digital Investiga-
tion, 7(Supplement), S64-S73.

Gino, I. (2018). MongoDB Triggers. Retrieved from https://www.npmjs.com/package/
mongo-triggers (Accessed: May 2018)

Google. (2018). How Trends data is adjusted. Retrieved from https://support.google
.com/trends/answer/43655337hl=en&ref topic=6248052 (Accessed: Septem-
ber 2018)

https://www.gartner.com/doc/3147919/magic-quadrant-operational-database-management
https://www.gartner.com/doc/3147919/magic-quadrant-operational-database-management
http://www.foolmoon.net/security/wft/
http://www.foolmoon.net/security/wft/
http://www.sans.org/reading-room/whitepapers/application/forensic-analysis-sql-server-2005-database-server-1906
http://www.sans.org/reading-room/whitepapers/application/forensic-analysis-sql-server-2005-database-server-1906
https://www.blackhat.com/presentations/bh-usa-07/Fowler/Whitepaper/bh-usa-07-fowler-WP.pdf
https://www.blackhat.com/presentations/bh-usa-07/Fowler/Whitepaper/bh-usa-07-fowler-WP.pdf
https://www.npmjs.com/package/mongo-triggers
https://www.npmjs.com/package/mongo-triggers
https://support.google.com/trends/answer/4365533?hl=en&ref_topic=6248052
https://support.google.com/trends/answer/4365533?hl=en&ref_topic=6248052

References 139

Grimes, C. (2010, June). Our new search index: Caffeine. Retrieved from http://
googleblog.blogspot.com/2010/06/our-new-search-index-caffeine.html
(Accessed: May 2015)

Gulutzan, P., & Pelzer, T. (2003). SQL Performance Tuning. Boston, MA: Addison-
Wesley Professional.

Haigh, T. (2011, April). Charles W. Bachman: Database Software Pioneer. IEEE Annals
of the History of Computing, 33(4), 70-80.

Hale, J. S. (2013, October). Amazon Cloud Drive forensic analysis. Digital Investigation,
10, 259-265.

Hamilton, J. (2008, July). Facebook Releases Cassandra as Open Source. Retrieved from
http://perspectives.mvdirona.com/2008/07/facebook-releases-cassandra
-as-open-source/ (Accessed: April 2017)

Harbour, N. (2002). dcfldd. Department of Defense Computer Forensics Lab. Retrieved
from http://dcfldd.sourceforge.net/ (Accessed: May 2017)

Hargreaves, C., & Chivers, H. (2008). Recovery of Encryption Keys from Memory Using
a Linear Scan. In Proceedings of the Third International Conference on Availability,
Reliability and Security (p. 1369-1376). IEEE.

Harris, D. (2013, August). I0gen embraces what it created, becomes MongoDB
Inc. Retrieved from https://gigaom.com/2013/08/27/10gen-embraces-what
-it-created-becomes-mongodb-inc/ (Accessed: April 2017)

Hauger, W. K., & Olivier, M. S. (2015a). Determining trigger involvement during
Forensic Attribution in Databases. In G. Peterson & S. Shenoi (Eds.), Advances
in Digital Forensics XI (p. 163-177). Heidelberg, Germany: Springer.

Hauger, W. K., & Olivier, M. S. (2015b, June). The Impact of Triggers on Forensic
Acquisition and Analysis of Databases. SAIEE Africa Research Journal, 106(2),
64-73.

Hauger, W. K., & Olivier, M. S. (2015¢, August 12-13,). The state of database foren-
sic research. In Proceedings of the 2015 Information Security for South Africa
Conference (p. 1-8). Johannesburg, South Africa.

Hauger, W. K., & Olivier, M. S. (2018, June). NoSQL Databases: Forensic Attribution
Implications. SAIEE Africa Research Journal, 109(2), 118-131.

http://googleblog.blogspot.com/2010/06/our-new-search-index-caffeine.html
http://googleblog.blogspot.com/2010/06/our-new-search-index-caffeine.html
http://perspectives.mvdirona.com/2008/07/facebook-releases-cassandra-as-open-source/
http://perspectives.mvdirona.com/2008/07/facebook-releases-cassandra-as-open-source/
http://dcfldd.sourceforge.net/
https://gigaom.com/2013/08/27/10gen-embraces-what-it-created-becomes-mongodb-inc/
https://gigaom.com/2013/08/27/10gen-embraces-what-it-created-becomes-mongodb-inc/

References 140

Higgins, K. J. (2014, September). Apple Not Hacked In Celebrity Nude Photo
Breaches. Retrieved from http://www.darkreading.com/cloud/apple-not
-hacked-in-celebrity-nude-photo-breaches/d/d-1d/1306906 (Accessed:
May 2015)

IBM. (2012). CREATE TRIGGER. DB2 reference information. Retrieved from
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index. jsp
7topic=/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_sql createtrigger.htm
(Accessed: May 2014)

ISO/IEC JTC1/SC27. (2015, March). Information Technology — Security Techniques
— Incident Investigation Principles and Processes (ISO/IEC No. 27043:2015).
Geneva, Switzerland: International Standards Organization and International
Electrotechnical Commission.

ISO/IEC JTC1/SC32. (2008, July). Information Technology — Database Languages —
SQL - Part 4: Persistent Stored Modules (ISO/IEC No. 9075-4:2008). Geneva,
Switzerland: International Standards Organization and International Electrotech-
nical Commission.

ISO/IEC JTC1/SC32. (2011, December). Information Technology - Database Languages
- SQL - Part 2: Foundation (ISO/IEC No. 9075-2:2011). Geneva, Switzerland:
International Standards Organization and International Electrotechnical Commis-
sion.

Jones, A. (2005). SQL Functions Programmer’s Reference. Indianapolis, IN: Wiley
Publishing Inc.

jTDS Project, T. (2018). jTDS JDBC Driver. Retrieved from http://jtds
.sourceforge.net/ (Accessed: April 2018)

Juola, P. (2008, March). Authorship Attribution. Foundations and Trends in Informa-
tion Retrieval, 1(3), 233-334.

Kelley, H. H. (1973, February). The processes of causal attribution. American Psychol-
ogist, 28(2), 107-128.

Kessler, G. (2014, December). File Signatures Table. Retrieved from http://www
.garykessler.net/library/file sigs.html (Accessed: May 2015)

Khanuja, H. K., & Adane, D. (2012). A framework for database forensic analysis.

http://www.darkreading.com/cloud/apple-not-hacked-in-celebrity-nude-photo-breaches/d/d-id/1306906
http://www.darkreading.com/cloud/apple-not-hacked-in-celebrity-nude-photo-breaches/d/d-id/1306906
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp?topic=/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_sql_createtrigger.htm
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp?topic=/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_sql_createtrigger.htm
http://jtds.sourceforge.net/
http://jtds.sourceforge.net/
http://www.garykessler.net/library/file_sigs.html
http://www.garykessler.net/library/file_sigs.html

References 141

Computer Science and Engineering, 2(3).

Kornbrust, A. (2005, April). Database rootkits. Black Hat Europe. Retrieved from
http://www.red-database-security.com/wp/db_rootkits us.pdf (Accessed:
May 2014)

Krebs, B. (2015, January). Lizard Stresser Runs on Hacked Home Routers.
Retrieved from http://krebsonsecurity.com/2015/01/1lizard-stresser-runs
-on-hacked-home-routers/ (Accessed: May 2015)

Lazenby, A., & Lindquist, M. T. (2007, May). Innovative From The Start, Oracle Looks
To The Future. Oracle Profit Magazine, 12(2), 26-33.

Lee, M., & Bieker, G. (2009). Mastering SQL Server 2008. Indianapolis, IN: Wiley
Publishing Inc.

Leimich, P., Harrison, J., & J.Buchanan, W. (2016, September). A RAM triage method-
ology for Hadoop HDF'S forensics. Digital Investigation, 18, 96-1009.

Litchfield, D. (2007). The Oracle Hacker’s Handbook: Hacking and Defending Oracle.
Indianapolis, IN: Wiley Publishing Inc.

Liu, C., Singhal, A., & Wijesekera, D. (2017). Identifying Evidence for Cloud Forensic
Analysis. In G. Peterson & S. Shenoi (Eds.), Advances in Digital Forensics X111
(p. 111-130). Heidelberg, Germany: Springer.

Lubaale, E. C. (2015, June). Bokolo v S 2014 (1) SACR 66 (SCA). SA Crime Quar-
terly(52), 39-47.

Martini, B., & Choo, K. R. (2012, November). An integrated conceptual digital forensic
framework for cloud computing. Digital Investigation, 9, 71-80.

Martini, B., & Choo, K. R. (2013, December). Cloud storage forensics: ownCloud as a
case study. Digital Investigation, 10, 287-299.

Marzi, M. D. (2018). Triggers in Neojj. Retrieved from https://dzone.com/articles/
triggers-neo4j (Accessed: May 2018)

Mendelsohn, A. (2013, April). The Oracle Story: 1984-2001. IEEE Annals of the History
of Computing, 35(2), 10-23.

Microsoft. (2012a). CREATE TRIGGER. Data Definition Language (DDL) State-
ments. Retrieved from http://msdn.microsoft.com/en-us/library/ms189799
.aspx (Accessed: May 2014)

http://www.red-database-security.com/wp/db_rootkits_us.pdf
http://krebsonsecurity.com/2015/01/lizard-stresser-runs-on-hacked-home-routers/
http://krebsonsecurity.com/2015/01/lizard-stresser-runs-on-hacked-home-routers/
https://dzone.com/articles/triggers-neo4j
https://dzone.com/articles/triggers-neo4j
http://msdn.microsoft.com/en-us/library/ms189799.aspx
http://msdn.microsoft.com/en-us/library/ms189799.aspx

References 142

Microsoft. (2012b). Logon Triggers. Database Engine Instances (SQL Server). Retrieved
from http://technet.microsoft.com/en-us/library/bb326598.aspx (Ac-
cessed: May 2014)

Microsoft. (2015). Diagnostic Connection for Database Administrators. Database Engine
Instances (SQL Server). Retrieved from https://msdn.microsoft.com/en-us/
library/ms189595.aspx (Accessed: May 2017)

MongoDB Inc. (2017a). Introduction to MongoDB. Retrieved from https://docs
.mongodb. com/manual/introduction/ (Accessed: April 2017)

MongoDB Inc. (2017b). The MongoDB 3./ Manual. Retrieved from https://docs
.mongodb . com/manual/ (Accessed: April 2017)

MongoDB Inc. (2017c). Our Customers — MongoDB. Retrieved from https://www
.mongodb. com/who-uses-mongodb (Accessed: April 2017)

Morgenstern, M. (1983, October). Active Databases as a Paradigm for Enhanced Com-
puting Environments. In Proceedings of the Ninth International Conference on
Very Large Data Bases (p. 34-42). Florence, Italy.

Mullich, J. (2011, January). 16 Ways The Cloud Will Change Our Lives. The Wall Street
Journal. Retrieved from http://online.wsj.com/ad/article/cloudcomputing
-changelives (Accessed: May 2015)

National Research Council. (1992). DNA Technology in Forensic Science (First ed.).
Washington, DC: The National Academies Press.

National Research Council. (1996). The Evaluation of Forensic DNA Evidence (First
ed.). Washington, DC: The National Academies Press.

Neodj. (2017a). Chapter 1. Introduction. Retrieved from https://neo4j.com/docs/
operations-manual/current/introduction/ (Accessed: April 2017)

Neodj. (2017b). Compare Neo4j Editions. Retrieved from https://neodj.com/
editions/ (Accessed: April 2017)

Neodj. (2017c). Neojj Customers. Retrieved from https://neodj.com/customers/
(Accessed: April 2017)

Neodj. (2017d). Neo4j Cypher Refcard 3.1. Retrieved from https://neodj.com/docs/
cypher-refcard/current/ (Accessed: April 2017)

Neodj. (2017e). The Neo4j Operations Manual v3.1. Retrieved from https://neo4]

http://technet.microsoft.com/en-us/library/bb326598.aspx
https://msdn.microsoft.com/en-us/library/ms189595.aspx
https://msdn.microsoft.com/en-us/library/ms189595.aspx
https://docs.mongodb.com/manual/introduction/
https://docs.mongodb.com/manual/introduction/
https://docs.mongodb.com/manual/
https://docs.mongodb.com/manual/
https://www.mongodb.com/who-uses-mongodb
https://www.mongodb.com/who-uses-mongodb
http://online.wsj.com/ad/article/cloudcomputing-changelives
http://online.wsj.com/ad/article/cloudcomputing-changelives
https://neo4j.com/docs/operations-manual/current/introduction/
https://neo4j.com/docs/operations-manual/current/introduction/
https://neo4j.com/editions/
https://neo4j.com/editions/
https://neo4j.com/customers/
https://neo4j.com/docs/cypher-refcard/current/
https://neo4j.com/docs/cypher-refcard/current/
https://neo4j.com/docs/operations-manual/current/
https://neo4j.com/docs/operations-manual/current/
https://neo4j.com/docs/operations-manual/current/

References 143

.com/docs/operations-manual/current/ (Accessed: April 2017)

Newman, C., Menon-Sen, A., Melnikov, A., & Williams, N. (2010, July). Salted
Challenge Response Authentication Mechanism (SCRAM) SASL and GSS-API
Mechanisms (RFC No. 5802). RFC Editor. Internet Requests for Comments.
Retrieved from http://www.rfc-editor.org/rfc/rfc5802.txt (Accessed:
November 2017)

Oestreicher, K. (2014, August 3-6,). A forensically robust method for acquisition of
iCloud data. In Proceedings of the Fourteenth Annual DFRWS Conference (p. S106-
S113). Denver, CO, USA.

Olivier, M. S. (2009, March). On metadata context in Database Forensics. Digital
Investigation, 5, 115-123.

Olson, M. A., Bostic, K., & Seltzer, M. (1999, June 6-11,). Berkeley DB. In Proceedings
of the 1999 USENIX Annual Technical Conference. Monterey, CA.

Oracle. (1998a). Java SE Technologies - Database. Retrieved from http://www.oracle
.com/technetwork/java/javase/jdbc/index.html (Accessed: October 2015)

Oracle. (1998b). JDBC Overview. Retrieved from http://www.oracle.com/
technetwork/java/overview-141217 .html (Accessed: October 2015)

Oracle. (2006). Java Logging Package. Retrieved from https://docs.oracle.com/
javase/6/docs/api/java/util/logging/package-summary.html (Accessed:
April 2017)

Oracle. (2006). Oracle Community. Retrieved from https://community.oracle
.com/community/developer/search. jspa?peopleEnabled=true&userID=
&containerType=&container&q=select+trigger (Accessed: May 2014)

Oracle. (2009a). CREATE TRIGGER Statement. Database PL/SQL Language
Reference 11g Release 2 (11.2). Retrieved from http://docs.oracle.com/cd/
E11882_01/appdev.112/e17126/create trigger.htm (Accessed: May 2014)

Oracle. (2009b). PL/SQL Triggers. Database PL/SQL Language Reference 11g Release
2 (11.2). Retrieved from http://docs.oracle.com/cd/E11882_01/appdev.112/
el17126/triggers.htm (Accessed: May 2014)

Oracle. (2018, April). Oracle JDBC FAQ. Retrieved from http://www.oracle.com/
technetwork/database/enterprise-edition/jdbc-faq-090281.html (Ac-

https://neo4j.com/docs/operations-manual/current/
https://neo4j.com/docs/operations-manual/current/
https://neo4j.com/docs/operations-manual/current/
http://www.rfc-editor.org/rfc/rfc5802.txt
http://www.oracle.com/technetwork/java/javase/jdbc/index.html
http://www.oracle.com/technetwork/java/javase/jdbc/index.html
http://www.oracle.com/technetwork/java/overview-141217.html
http://www.oracle.com/technetwork/java/overview-141217.html
https://docs.oracle.com/javase/6/docs/api/java/util/logging/package-summary.html
https://docs.oracle.com/javase/6/docs/api/java/util/logging/package-summary.html
https://community.oracle.com/community/developer/search.jspa?peopleEnabled=true&userID=&containerType=&container&q=select+trigger
https://community.oracle.com/community/developer/search.jspa?peopleEnabled=true&userID=&containerType=&container&q=select+trigger
https://community.oracle.com/community/developer/search.jspa?peopleEnabled=true&userID=&containerType=&container&q=select+trigger
http://docs.oracle.com/cd/E11882_01/appdev.112/e17126/create_trigger.htm
http://docs.oracle.com/cd/E11882_01/appdev.112/e17126/create_trigger.htm
http://docs.oracle.com/cd/E11882_01/appdev.112/e17126/triggers.htm
http://docs.oracle.com/cd/E11882_01/appdev.112/e17126/triggers.htm
http://www.oracle.com/technetwork/database/enterprise-edition/jdbc-faq-090281.html
http://www.oracle.com/technetwork/database/enterprise-edition/jdbc-faq-090281.html

References 144

cessed: April 2018)

Oracle Corp. (2015). CREATE TRIGGER Syntax. MySQL 5.7 Reference
Manual. Retrieved from http://dev.mysql.com/doc/refman/5.7/en/create
-trigger.html (Accessed: May 2014)

Osborne, C. (2014, February 13,). How hackers stole millions of credit card records
from Target. ZDNet. Retrieved from http://www.zdnet.com/how-hackers-stole
-millions-of-credit-card-records-from-target-7000026299/ (Accessed:
May 2014)

O’Shaughnessy, S., & Keane, A. (2013). Impact of Cloud Computing on Digital Forensic
investigations. In G. Peterson & S. Shenoi (Eds.), Advances in Digital Forensics
IX (p. 291-303). Heidelberg, Germany: Springer.

Pereira, M. T. (2009, March). Forensic analysis of the Firefox 3 Internet history and
recovery of deleted SQLite records. Digital Investigation, 5, 93-103.

Pichan, A., Lazarescu, M., & Soh, S. T. (2015, June). Cloud forensics: Technical
challenges, solutions and comparative analysis. Digital Investigation, 13, 38-57.

Pieterse, H., & Olivier, M. S. (2012). Data Hiding Techniques for Database Environ-
ments. In G. Peterson & S. Shenoi (Eds.), Advances in Digital Forensics VIII
(p. 289-301). Heidelberg, Germany: Springer.

Pollitt, M. M. (2007). An Ad Hoc Review of Digital Forensic Models. In Proceedings of
the Second International Workshop on Systematic Approaches to Digital Forensic
Engineering (p. 43-54). Morgan Kaufman Publishers Inc.

Pollitt, M. M. (2013). The Hermeneutics Of The Hard Drive: Using Narratology, Natural
Language Processing, And Knowledge Management To Improve The Effectiveness
Of The Digital Forensic Process (Doctoral thesis). College of Arts and Humanities,
University of Central Florida, Department of English, Orlando, FL.

PostgreSQL Group. (2013). CREATE TRIGGER. PostgreSQL 9.3.4 Documen-
tation. Retrieved from http://www.postgresql.org/docs/9.3/static/sql
-createtrigger.html (Accessed: May 2014)

Quick, D., & Choo, K. R. (2013a, June). Dropbox analysis: Data remnants on user
machines. Digital Investigation, 10, 3-18.

Quick, D., & Choo, K. R. (2013b, October). Forensic collection of cloud storage data:

http://dev.mysql.com/doc/refman/5.7/en/create-trigger.html
http://dev.mysql.com/doc/refman/5.7/en/create-trigger.html
http://www.zdnet.com/how-hackers-stole-millions-of-credit-card-records-from-target-7000026299/
http://www.zdnet.com/how-hackers-stole-millions-of-credit-card-records-from-target-7000026299/
http://www.postgresql.org/docs/9.3/static/sql-createtrigger.html
http://www.postgresql.org/docs/9.3/static/sql-createtrigger.html

References 145

Does the act of collection result in changes to the data or its metadata? Digital
Investigation, 10, 266-277.

Ramakrishnan, R., & Gehrke, J. (2003). Database Management Systems. New York
City, NY: McGraw-Hill Education.

Ras, D., & Olivier, M. S. (2012). Finding File Fragments in the Cloud. In G. Peterson
& S. Shenoi (Eds.), Advances in Digital Forensics VIII (p. 169-185). Heidelberg,
Germany: Springer.

Redis Labs. (2017a). Documentation. Retrieved from https://redis.io/
documentation (Accessed: April 2017)

Redis Labs. (2017b). Introduction to Redis. Retrieved from https://redis.io/topics/
introduction (Accessed: April 2017)

Redis Labs. (2017c). Who's using Redis? Retrieved from https://redis.io/topics/
whos-using-redis (Accessed: April 2017)

Redis Labs. (2018). Redis Keyspace Notifications. Retrieved from https://redis.io/
topics/notifications (Accessed: May 2018)

Rid, T., & Buchanan, B. (2015, January). Attributing Cyber Attacks. Journal of
Strategic Studies, 38(1-2), 4-37.

Rid, T., & McBurney, P. (2012, February). Cyber-Weapons. The RUSI Journal, 157(1),
6-13.

Robinson, 1., Webber, J., & Eifrem, E. (2015). Graph Databases (Second ed.). Se-
bastopol, CA: O’Reilly Media, Inc.

Roussev, V., Ahmed, 1., Barreto, A., McCulley, S., & Shanmughan, V. (2016, Septem-
ber). Cloud forensics — Tool development studies and future outlook. Digital
Investigation, 18, 79-95.

Roussev, V., Barreto, A., & Ahmed, I. (2016). API-Based Forensic Acquisition of Cloud
Drives. In G. Peterson & S. Shenoi (Eds.), Advances in Digital Forensics XII
(p. 213-235). Heidelberg, Germany: Springer.

Roussev, V., & McCulley, S. (2016, March 29-31,). Forensic analysis of cloud-native
artifacts. In Proceedings of the Third Annual DFRWS Europe Conference (p. S104-
S113). Lausanne, Switzerland.

Ruan, K., Carthy, J., Kechadi, T., & Baggili, I. (2013, June). Cloud forensics definitions

https://redis.io/documentation
https://redis.io/documentation
https://redis.io/topics/introduction
https://redis.io/topics/introduction
https://redis.io/topics/whos-using-redis
https://redis.io/topics/whos-using-redis
https://redis.io/topics/notifications
https://redis.io/topics/notifications

References 146

and critical criteria for cloud forensic capability: An overview of survey results.
Digital Investigation, 10, 34-43.

Ruan, K., Carthy, J., Kechadi, T., & Crosbie, M. (2011). Cloud Forensics. In G. Peterson
& S. Shenoi (Eds.), Advances in Digital Forensics VII (p. 35-46). Heidelberg,
Germany: Springer.

Ruan, K., James, J., Carthy, J., & Kechadi, T. (2012). Key Terms for Service Level
Agreements to Support Cloud Forensics. In G. Peterson & S. Shenoi (Eds.), Ad-
vances in Digital Forensics VIII (p. 201-212). Heidelberg, Germany: Springer.

Sanfilippo, S. (2010, March). VMware: the new Redis home. Retrieved from
http://oldblog.antirez.com/post/vmware-the-new-redis-home.html (Ac-
cessed: April 2017)

Seguin, K. (2012). The Little Redis Book. Self-Published.

Shamsi, J. A., Zeadally, S., Sheikh, F., & Flowers, A. (2016, October). Attribution
in cyberspace: techniques and legal implications. Security and Communication
Networks, 9(15), 2886-2900.

Silberschatz, A., Korth, H. F., & Sudarshan, S. (2011). Database System Concepts (6th
ed.). New York, NY: McGraw-Hill.

Simon, E., & Kotz-Dittrich, A. (1995). Promises and Realities of Active Database
Systems. In Proceedings of the 21th International Conference on Very Large Data
Bases (p. 642-653). Morgan Kaufman Publishers Inc.

Singhal, A. (2013, May). A multi-screen and conversational search ezperience.
Retrieved from http://insidesearch.blogspot.com/2013/05/a-multi-screen
-and-conversational.html (Accessed: May 2015)

Sippl, R. (2013, April). Informix: Information Management on Unix. IEEE Annals of
the History of Computing, 35(2), 42-53.

SQLite Cons. (2014a). Appropriate Uses For SQLite. Categorical Index Of SQLite
Documents. Retrieved from http://www.sqlite.org/famous.html (Accessed:
September 2014)

SQLite Cons. (2014b). CREATE TRIGGER. SQL As Understood By SQLite. Retrieved
from http://www.sqlite.org/lang createtrigger.html (Accessed: Septem-
ber 2014)

http://oldblog.antirez.com/post/vmware-the-new-redis-home.html
http://insidesearch.blogspot.com/2013/05/a-multi-screen-and-conversational.html
http://insidesearch.blogspot.com/2013/05/a-multi-screen-and-conversational.html
http://www.sqlite.org/famous.html
http://www.sqlite.org/lang_createtrigger.html

References 147

SQLite Cons. (2014c). Well-Known Users of SQLite. Categorical Index Of SQLite
Documents. Retrieved from http://www.sqlite.org/famous.html (Accessed:
September 2014)

Stonebraker, M., Held, G., Wong, E., & Kreps, P. (1976, September). The design
and implementation of INGRES. ACM Transactions on Database Systems, 1(3),
189-222.

Stonebraker, M., Rowe, L. A.; Lindsay, B. G., Gray, J., Carey, M. J., Brodie, M. L.,
... Beech, D. (1990, September). Third-Generation Database System Manifesto.
ACM SIGMOD Record, 19(3), 31-44.

Strauch, C. (2011). NoSQL Databases. Retrieved from http://www.christof-strauch
.de/nosqldbs.pdf (Accessed: April 2017)

Sullivan, D. (2014). NoSQL for Mere Mortals (First ed.). Hoboken, NJ: Addison-Wesley
Professional.

Sybase Inc. (2011). Create Trigger. Adaptive Server Enterprise 15.7: Reference Manual
- Commands. Retrieved from http://infocenter.sybase.com/help/index. jsp
?topic=/com.sybase.infocenter.dc36272.1570/html/commands/X19955.htm
(Accessed: September 2014)

Thompson, W. C., Mueller, L. D.; & Krane, D. E. (2012, December). Forensic DNA
Statistics: Still Controversial in Some Cases. Champion: The Official News Report
of the National Association of Criminal Defense Lawyers, 12-23.

Torchlight Software. (2018). Mongo Watch. Retrieved from https://www.npmjs.com/
package/mongo-watch (Accessed: May 2018)

Trenwith, P., & Venter, H. (2015). Locating and Tracking Digital Objects in the Cloud.
In G. Peterson & S. Shenoi (Eds.), Advances in Digital Forensics XI (p. 287-301).
Heidelberg, Germany: Springer.

Turley, P., & Wood, D. (2009). Beginning T-SQL with Microsoft SQL Server 2005 and
2008. Indianapolis, IN: Wiley Publishing Inc.

Turner, C. R., Fuggetta, A., Lavazza, L., & Wolf, A. L. (1999). A conceptual basis for
feature engineering. The Journal of Systems and Software, 49(1), 3-15.

Vajda, V. (2018). Cassandra to Kafka Data Pipeline Part 1. Retrieved from https://wuw
.smartcat.io/blog/2017/cassandra-to-kafka-data-pipeline-part-1/ (Ac-

http://www.sqlite.org/famous.html
http://www.christof-strauch.de/nosqldbs.pdf
http://www.christof-strauch.de/nosqldbs.pdf
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.dc36272.1570/html/commands/X19955.htm
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.dc36272.1570/html/commands/X19955.htm
https://www.npmjs.com/package/mongo-watch
https://www.npmjs.com/package/mongo-watch
https://www.smartcat.io/blog/2017/cassandra-to-kafka-data-pipeline-part-1/
https://www.smartcat.io/blog/2017/cassandra-to-kafka-data-pipeline-part-1/

References 148

cessed: May 2018)

Verschoor, R. (2007, January). Login triggers in ASE 12.5+. Retrieved from http://
www.sypron.nl/logtrig.html (Accessed: September 2014)

Wallenius, M., Mayer, K., & Ray, I. (2006, January). Nuclear forensic investigations:
Two case studies. Forensic Science International, 156(1), 55-62.

Wheeler, D. A.; & Larsen, G. N. (2003, October). Techniques for Cyber Attack Attribu-
tion (No. P-3792). Institute for Defense Analyses. VA.

Widom, J. (1994). Deductive and Active Databases: Two Paradigms or Ends of a
Spectrum? In N. W. Paton & M. H. Williams (Eds.), Rules in Database Systems
(p. 306-315). London, Great Britain: Springer.

Zawoad, S., & Hasan, R. (2015). A Trustworthy Cloud Forensics Environment. In
G. Peterson & S. Shenoi (Eds.), Advances in Digital Forensics XI (p. 271-285).
Heidelberg, Germany: Springer.

http://www.sypron.nl/logtrig.html
http://www.sypron.nl/logtrig.html

Appendix A

Acronyms

The following is a list of the important acronyms that were used in this dissertation.

ACM

ANSI

API

DBMS

DDL

DDoS

DFRWS

DML

DoS

EMI

GPS

IEEE

IETF

Association for Computing Machinery
American National Standards Institute
Application Programming Interface
Database Management System

Data Definition Language

Distributed Denial of Service

Digital Forensics Research Workshop
Data Manipulation Language

Denial of Service

Electromagnetic Interference

Global Positioning System

Institute of Electrical and Electronics Engineers
Internet Engineering Task Force

149

Appendix A. Acronyms 150

IFIP International Federation for Information Processing
P Internet Protocol

1ISO International Organization for Standardization
JDBC Java Database Connectivity

JSON JavaScript Object Notation

MAC Media Access Control

MD5 Message Digest 5

ODBC Open Database Connectivity

RAID Redundant Array of Independent Disks

RFC Request for Comments

SAN Storage Area Network

SCRAM Salted Challenge Response Authentication Mechanism
SHA1 Secure Hash Algorithm 1

SQL Structured Query Language

XML Extensible Markup Language

Appendix B

Derived Publications and

Conference Papers

The following is a list of all the publications and conference papers that were derived

from this dissertation.

e W.K. Hauger and M.S. Olivier (2014, August): “The role of triggers in database
forensics”, In Proceedings of the 2014 Information Security for South Africa Con-
ference, pp. 1-7. Johannesburg, South Africa.

e W. Hauger and M. Olivier (2015): “Determining trigger involvement during foren-
sic attribution in databases”, In G. Peterson & S. Shenoi (Eds.), Advances in

Digital Forensics XI, pp. 163-177. Heidelberg, Germany: Springer.

e W.K. Hauger and M.S. Olivier (2015, June): “The impact of triggers on forensic
acquisition and analysis of databases”, In SAIEE Africa Research Journal, 106(2),
pp. 64-73.

e W.K. Hauger and M.S. Olivier (2015, August): “The state of database forensic
research”, In Proceedings of the 2015 Information Security for South Africa Con-
ference, pp. 1-8. Johannesburg, South Africa.

e W.K. Hauger and M.S. Olivier (2017, August): “Forensic attribution in NoSQL

151

Appendix B. Derived Publications and Conference Papers 152

databases”, In Proceedings of the 2017 Information Security for South Africa Con-

ference. Johannesburg, South Africa.

e W.K. Hauger and M.S. Olivier (2018, June): “NoSQL Databases: Forensic Attri-
bution Implications”, In SAIEE Africa Research Journal, 109(2), pp. 118-131.

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Objective
	1.3 Problem Statement
	1.4 Approach
	1.5 Dissertation Outline

	2 Database Systems Overview
	2.1 Database History
	2.1.1 Network Era
	2.1.2 Hierarchical Era
	2.1.3 Relational Era
	2.1.4 Object Oriented Era
	2.1.5 Object Relational Era
	2.1.6 NoSQL Era

	2.2 Relevant Database Models
	2.2.1 Relational Databases
	2.2.2 NoSQL Databases
	2.2.3 NoSQL Database Types

	2.3 Database Triggers
	2.4 Conclusion

	3 Digital Forensic Science Overview
	3.1 Forensics
	3.1.1 Digital Forensics
	3.1.2 Database Forensics

	3.2 Attribution
	3.2.1 General Attribution
	3.2.2 Forensic Attribution

	3.3 Conclusion

	4 Database Forensics Research
	4.1 Research Classification
	4.2 Literature Survey
	4.3 Discussion
	4.4 Possible Explanations
	4.5 Conclusion

	5 Database Trigger Implementations
	5.1 Investigation Context
	5.2 Specification
	5.3 Standard Triggers
	5.4 Non-standard Triggers
	5.4.1 DDL Triggers
	5.4.2 Non-data Triggers

	5.5 Trigger Objects
	5.6 Conclusion

	6 Forensic Examination of Relational Databases
	6.1 Forensic Acquisition and Analysis Implications
	6.1.1 SQL Server Examination

	6.2 Forensic Interpretation Implications
	6.2.1 Identification and Forensic Attribution

	6.3 Discussion of Implications
	6.4 Conclusion

	7 Trigger Identification Algorithm
	7.1 Trigger Identification Considerations
	7.2 Top-Down Approach
	7.3 Bottom-Up Approach
	7.4 Conclusion

	8 Algorithm Implementation
	8.1 Implementation Considerations
	8.2 Prototype Design
	8.3 Prototype Implementation Details
	8.4 Implementation Challenges
	8.4.1 Scope/Visibility
	8.4.2 Encryption
	8.4.3 Case Sensitivity
	8.4.4 False-Positive Errors
	8.4.5 Data Types
	8.4.6 Recursion
	8.4.7 Performance

	8.5 Prototype Test Details
	8.6 Conclusion

	9 Forensic Examination of NoSQL Databases
	9.1 Survey Context
	9.2 Surveyed NoSQL databases
	9.2.1 MongoDB
	9.2.2 Cassandra
	9.2.3 Redis
	9.2.4 Neo4j

	9.3 NoSQL Survey
	9.3.1 MongoDB
	9.3.2 Cassandra
	9.3.3 Redis
	9.3.4 Neo4j

	9.4 Discussion
	9.5 Forensic Implications
	9.5.1 Triggers
	9.5.2 Access Control
	9.5.3 Logging

	9.6 Conclusion

	10 Conclusions
	10.1 Summary of Conclusions
	10.2 Contributions
	10.3 Future Work
	10.3.1 Nested Triggers
	10.3.2 Deleted Triggers

	Bibliography
	A Acronyms
	B Derived Publications and Conference Papers

