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ABSTRACT

In mathematical epidemiology, the threshold theory introduced by W.O. Kermack and

A.G. McKendrick (1927) can be expressed in terms of the basic reproduction number R0.

This is defined as the average number of secondary infections that occur when one infective

is introduced into a susceptible host population. In this setting and for many diseases, the

prediction of the likelihood of persistence or dying out of the disease within the population

reads as follows: the disease-free equilibrium is locally asymptotically stable (LAS) when

R0 < 1, it is unstable when R0 > 1 and at least one endemic equilibrium (EE) which is LAS

is born in this case. In other words, at R0 = 1, a forward bifurcation occurs.

However, some diseases undergo the backward bifurcation phenomenon whereby, for

R0 < 1, the LAS disease-free equilibrium coexists with a small positive unstable EE and a

large positive LAS EE.

In this thesis, we study theoretically, numerically, and computationally the existence of

the backward bifurcation phenomenon for dynamical systems, with emphasis on a “simple”

SIS model with vaccination and a “complex” malaria model. We re-centre the reduction

theorem in C. Castillo-Chavez and B. Song (2004) and highlight its advantage over the leg-

endary power series approximations in the use of the Centre Manifold Theory (CMT). We

propose and prove a Centre Manifold-based theorem for the existence of a backward bifur-

cation for discrete dynamical systems. We construct nonstandard finite difference (NSFD)

schemes and prove that they preserve the backward bifurcation property of the continuous

models.

We make the results more specific for the SIS and malaria models for which we also pro-
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vide numerical simulations that support the theory. In particular we prove for the malaria

model a conjecture by Chitnis et al. (2006) for the existence of the backward bifurcation.
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CHAPTER 1. INTRODUCTION

1.1 Brief history of diseases and mathematical epidemiology

Since time immemorial, the development of mankind has often been curtailed by severe

diseases. According to Hays [45], diseases have a long history dating as far back as 430

B.C. during the Peloponnesian war. Since then, several pandemics have been recorded with

the following timelines (see [45]): Antonine Plague (165 A.D.), Cyprian Plague (250 A.D.),

Justinian Plague (541 A.D.), Leprosy (11th century), The Black Death (1350), Fiji Measles

(1875), Yellow fever and malaria (1881), Russian Flu (1889), Spanish Flu (1918), Asian

Flu (1957) etc. Fevers related to malaria were reported as early as the fifth century B.C.

in Greece and Rome. The most common categories of known diseases are the communi-

cable (infectious) and noncommunicable (noninfectious) diseases. The list presented above

is endless. As reported in the edited book by Castillo-Chavez et al. [18] on emerging and

re-emerging infectious diseases, there is a recurrence of new diseases and old forms of new

diseases, such as cancer, HIV/AIDS, malaria, ebola, typhoid fever, cholera etc. that pose a

massive threat to the development of Africa and beyond.

It is clear that diseases have survived and will continue to survive the test of time. For this

reason, the control and management of diseases became such an important priority after the

World War 2 that the United Nations (UN) created the World Health Organization (WHO)

on 7 April 1948. Its first mandate was to assume an advisory role and compile reliable

statistics on the transmission, coverage, and morbidity rate of the following then prioritised

matters: Tuberculosis (TB), malaria, venereal diseases (also known as STDs), maternal and

child health, nutrition and environmental hygiene (see for instance WHO [81]). This initial
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mandate has expanded significantly to the extent that WHO is nowadays the compelling

reference regarding health issues such as public health policies, outbreaks of diseases etc.

A report issued by the WHO [82] indicates that TB disease accounted for an estimated

1.3 million deaths in 2017 among HIV negative people alone. On the other hand, malaria

remains a burden on many countries as it is reported by the WHO [83] that in 2017, a total

of 45.6 million cases of infection were confirmed in the Eastern and Southern Africa region

alone. It is not astonishing that the situation is worse in developing parts of the world such

as Africa, where new diseases such as ebola, with a very high morbidity rate, emerge from

time to time WHO [84].

The discovery of more efficient disease control strategies by means of clinical research

through Government Departments of Health and Institutes or Centres for Control of Dis-

eases (e.g. South Africa’s National Institute for Communicable Diseases (NICD), United

States’ Centres for Disease Control and Prevention (CDC)) remains imperative. However,

these efforts alone are far from sufficient given the complex nature of the dynamics of diseases

such as HIV/AIDS, malaria, cancer to mention just a few. These complexities have led to a

need for much more multidisciplinary approaches to scientific research, a strategy that was

adopted in the works of Malthus [58], Ross [74], Hamer [43], and Kermack and McKendrick

[51] who were rather Physicians and Biologists. As part of this endeavour, mathematicians

have joined in and as a result the field of mathematical epidemiology came into being.

Mathematical epidemiology has a long history dating far back to as early as the 18th

century in the pioneering work of Bernoulli [11]. Since then, there has been a surge in the

development of mathematical models with the aim of giving insight into the critical dy-

namics of infectious diseases (see Brauer [12], Murray [67], Smith et al. [76], Bailey [10],

Malthus [58], Anderson and May [2]). Mathematical models seek to strike a balance between

effective disease control measures and their optimal cost given the fact that disease control

and prevention mechanisms are typically associated with huge demands for budget. Hence,
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mathematical models play an important role in influencing the policy direction of govern-

ments and institutions concerned. Depending on the nature and dynamics of the disease,

mathematical models often give insight into cost effective strategies. A typical example, is

the conclusion which came from a relatively simple malaria prevention model by Ross [74].

The main deduction from the model was that, reducing the population of mosquitoes below a

certain threshold could bring malaria under control. Even nowadays, the threshold concept,

as stated in Principles 1.1.3 and 1.1.4 below, still plays a major role in optimal disease con-

trol.

The pioneering works of non-mathematicians mentioned above need to be pointed out

again because they layout the three main principles of mathematical modelling in epidemi-

ology as outlined below (see for instance Anderson and May [2]).

Principle 1.1.1. (Malthus law, Malthus [58])

For a closed population, the rate of change of its size is proportional to the size of the

population.

Principle 1.1.2. (Mass-Action, Hamer [43] and Ross [74])

The spread of infection is proportional to the product of the susceptible individuals and the

infectious individuals. It should be noted that the mass-action principle (Principle 1.1.2) is

often replaced by the standard incidence law, which for several diseases, reflects better the

reality of the spread of diseases (Hethcote [46],[47]).

Principle 1.1.3. (Threshold theory, Ross [74] and Kermack and McKendrick [51])

The introduction of a few infectious individuals into a community of susceptibles will not

give rise to an epidemic outbreak unless the number of susceptibles is above a certain critical

value.

In mathematical epidemiology, the threshold theory is stated in terms of the basic repro-

duction number R0 as follows:
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Principle 1.1.4. (i.e. Principle 1.1.3 via R0)

If R0 < 1, then the disease dies out in the sense that the disease-free equilibrium is locally

asymptotically stable. If R0 > 1, then the disease-free equilibrium is unstable and the disease

is endemic.

Note that the basic reproduction number R0 is defined as the average number of secondary

infections arising from a single infectious individual during his or her entire infectious period

in a population of susceptibles (see Anderson and May [2], Hethcote [47]).

It has been observed that the threshold theory as stated above does not hold for some dis-

eases. More precisely, the backward bifurcation phenomenon can happen. This phenomenon

means the following: Though the basic reproduction number is less than 1, there exist a

small positive unstable equilibrium and a large positive locally asymptotically stable (LAS)

equilibrium, while the disease-free equilibrium is LAS (see Huang et al. [48], Castillo-Chavez

et al. [17], Gumel [39]). There are two major challenges when the backward bifurcation

occurs. Firstly, if R0 gets slightly greater than unity a massive number of infectives emerge

in the population and this makes it very difficult to control the epidemic (Dushoff et al.

[30]). Secondly, reducing R0 to less than unity is, although necessary, but not sufficient to

eradicate the disease as is the case in the stated Principle 1.1.4 above.

1.2 Purpose of the thesis

The general setting of this thesis is constituted by n-dimensional dynamical systems that

undergo the backward bifurcation phenomenon. It is known that the theorem by Castillo-

Chavez and Song [16] is one of the leading and widely used mathematical tools to determine

the existence of a backward bifurcation in continuous epidemiological models. The problem

statement of this thesis is broadly as follows:

• What is the analogue of the theorem for discrete dynamical systems?
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• How to construct reliable numerical methods that capture the backward bifurcation

phenomenon for continuous epidemiological models?

The ultimate goal is to investigate the dynamics of a malaria model and a simple model for

a disease without permanent immunity, that exhibit a backward bifurcation. The specific

purpose of the thesis is as follows:

(i) To get a better understanding of the theorem in Castillo-Chavez and Song [16] regard-

ing the conditions under which a backward bifurcation occurs.

(ii) To highlight the advantage of reducing the dimension of the dynamical system in

Castillo-Chavez and Song [16] compared to the power series approximation in the

implementation of the Centre Manifold Theory (CMT) in Wiggins [85].

(iii) To state and prove, for discrete dynamical systems, a discrete analogue of the main

theorem in Castillo-Chavez and Song [16].

(iv) To prove the conjecture formulated in Chitnis et al. [23] for a malaria model by

determining the critical threshold of the disease-induced death rate above which the

model undergoes a backward bifurcation.

(v) To construct Nonstandard Finite Difference Schemes (NSFD) which are dynamically

consistent with respect to the backward bifurcation property of both the malaria and

SIS models.

1.3 Literature review

As mentioned earlier, the general setting of this thesis is the qualitative analysis of n-

dimensional dynamical systems. Classically, when the equilibrium point under consideration

is hyperbolic, the local analysis of the system is readily obtained by the linearisation tech-

nique through the Hartman-Grobman theorem (Stuart and Humphries [77]), which is widely

used in the literature (see Wiggins [85] for general systems, Brauer and Castillo-Chavez [13]).
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When the equilibrium point is nonhyperbolic, the linearisation technique does not apply.

This situation is well known. For instance, in epidemiology, when a forward bifurcation oc-

curs at the value R0 = 1 of the basic reproduction number, the global asymptotic stability of

the disease-free equilibrium cannot be obtained by linearisation. One has to use deeper tools

such as the LaSalle Invariance Principle and Lyapunov functions (see LaSalle [56], [55]).

The context of this thesis is more difficult because we are dealing with the situation where

the system undergoes a backward bifurcation. The investigation of the backward bifurcation

phenomenon is a challenging assignment which is not new in epidemiology (see for instance

Castillo-Chavez et al. [17] and Hadeler and Van den Driessche [41]). It is worth mentioning

the paper by Gumel [39] in which some of the causes of the backward bifurcation phenomenon

are outlined. These include:

(a) Imperfect vaccine.

(b) Exogenous re-infection (e.g. Tuberculosis).

(c) Vaccine-derived immunity waning at a slower rate than natural immunity.

(d) Disease-induced mortality in vector borne diseases.

(e) Differential susceptibility in risk-structured models.

In this thesis, we determine the local dynamics of systems by using the Centre Manifold

Theory in [85]. The theory amounts to considering the system on a manifold of reduced

dimension. We first follow the approach proposed by Carr [15] and presented in Wiggins [85]

for the construction of the Centre Manifold. In this approach, the dynamics of the system

of the reduced manifold is eventually obtained by power series approximations. The latter

tool is one of the reasons why this approach is not easily applicable to complex systems. As

a result, this approach is not popular in epidemiology. Among the few authors that have

used it, we can mention Kribs-Zaleta and Velasco-Hernández [52], Zhonghua and Yaohong

[88] and Cui et al. [25].
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The second approach is due to Castillo-Chavez and Song [16]. It is based on a simple

structure of the Centre Manifold that makes it possible to reduce the original system to a

scalar equation. It is therefore not surprising that this approach is extensively used in epi-

demiology (see Garba et al. [37], Buonomo and Vargas-De-León [14] and Feng et al. [35]).

For a better understanding of the main theorem in Castillo-Chavez and Song [16], we have

re-centred its context and provided more details. This enabled us to state and prove a new

result on the discrete analogue of the theorem for discrete dynamical systems. Our effort to

better understand the above-outlined approaches is taken one step further by considering a

malaria model due to Chitnis et al. [23] and SIS model by Villavicencio-Pulido et al. [79].

Despite the complex nature of the models under consideration, we managed to analytically

construct the centre manifold, instead of resorting to computer software codes which are

abundantly used in the literature. We theoretically proved and demonstrated by means of

numerical simulations the conjecture in Chitnis et al. [23] which reads as follows: if the

disease-induced death rate is large enough, the malaria model undergoes a backward bifurca-

tion at R0 = 1.

Whether the considered continuous models are complex or simple, in general, they can-

not be completely solved by analytic techniques. Consequently, numerical methods are of

fundamental importance in gaining more useful insights from the solution of the differential

equation.

In this thesis, we use the nonstandard finite difference (NSFD) method. This method

was founded almost three decades ago by Mickens and has shown great potential in repli-

cating the dynamics of the solution of a wide range of continuous models, ranging from

differential equations (Anguelov and Lubuma [3], Anguelov and Lubuma [4], Anguelov et al.

[5], Anguelov et al. [8], Anguelov et al. [7], Dimitrov and Kojouharov [27], Dimitrov and

Kojouharov [26], Wood et al. [87], Alexander et al. [1]); integral equations (Roeger [72],

Lubuma and Terefe [57], [70]); delay differential equations (Ding et al. [28], Garba et al.
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[36]); (advection) reaction diffusion equations (Kama [50], Anguelov et al. [6]); cross-diffusion

equations (Chapwanya et al. [20], Chapwanya et al. [21]); models satisfying conservation

laws (Mickens and Washington [65]) and pharmacokinetics models (Egbelowo [32], Egbelowo

et al. [33]).

NSFD schemes have not been sufficiently developed for epidemiological models with a

backward bifurcation. In fact, in the few available works, the focus is on illustrations using

numerical simulations (see for instance Anguelov et al. [7] and Garba et al. [37]). In this

thesis, we construct NSFD schemes for the two epidemiological models. We perform their

full analyses, including computational aspects and numerical simulations, which confirm that

they preserve the backward bifurcation property.

1.4 Outline of the thesis

In Chapter 2, we give preliminaries on continuous and discrete dynamical systems. Em-

phasis is placed on elementary bifurcation theory in the setting where the involved Jacobian

matrix of the dynamical system has a simple zero eigenvalue.

Chapter 3 deals with the Centre Manifold Theory (CMT). The focus is on three aspects,

namely the existence, the approximation, and the computation of the Centre Manifold. Re-

garding the latter aspect, two approaches are discussed. The first approach involves the use

of power series expansions in the reduction process. The second approach, due to Castillo-

Chavez and Song [16], is more practical and is presented in the form of the necessary and

sufficient conditions for the existence of a backward bifurcation. An analogue of this result

for discrete dynamical systems is stated and proved in this Chapter.

The applications of the theorems discussed in Chapter 3, to continuous epidemiological

models, are given in Chapter 4. More precisely, for a complex malaria model and SIS model

with vaccination, we establish results which show that at the value 1 of the basic reproduc-
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tion number R0, a backward bifurcation occurs.

Chapter 5 is devoted to the construction and analysis of NSFD schemes which replicate

the dynamics, including the backward bifurcation property, of the two epidemic models.

In Chapter 6, we conclude our work by giving a summary of our results, discuss how they

fit into the literature, make some remarks, and give suggestions for future research.
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CHAPTER 2. PRELIMINARIES ON DYNAMICAL SYSTEMS

In this Chapter, we recall a number of concepts and results on dynamical systems, which

will be useful in this thesis. Section 2.1 deals with continuous dynamical systems, while

Section 2.2 is devoted to discrete dynamical systems. Elementary bifurcation theory is

presented in Section 2.3. Our preferred standard reference is Stuart and Humphries [77].

Other references will be cited when necessary.

2.1 Continuous dynamical systems

Consider the autonomous system of ordinary differential equations (ODEs)

dx

dt
:= .

x = f (x) (2.1.1)

with initial condition

x(0) = x0 ∈ Rn, (2.1.2)

where f : U ⊆ Rn → Rn is sufficiently smooth on an open set U .

By the Fundamental Theorem of Calculus, the initial value problem (2.1.1)-(2.1.2) is equiv-

alent to the integral equation

x(t) = x(0) +
∫ t

0
f(x(r))dr. (2.1.3)

Definition 2.1.1. Eq. (2.1.1) defines a dynamical system on a set U ⊆ Rn if, for every

x0 ∈ U , there exists a unique solution of Eq. (2.1.1) which is defined for all t ∈ [0,∞) and

satisfies x(t) ∈ U .
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Definition 2.1.2. The evolution semigroup operator for a dynamical system on a set U is

the map

ϕ(t) : U → U, t ≥ 0, (2.1.4)

defined by

ϕ(t)x0 = x(t), (2.1.5)

where x(t) is the unique global solution of the initial value problem (2.1.1)-(2.1.2).

Remark 2.1.3. The operator ϕ satisfies the following semigroup properties:

(i) ϕ(0)x0 = x0, x0 ∈ U .

(ii) ϕ(t+ s)x0 = ϕ(t)ϕ(s)x0 = ϕ(s)ϕ(t)x0.

Item (i) is obvious from the definition in Eq. (2.1.5). Item (ii) follows from (2.1.3).

Indeed,

ϕ(t+ s)x0 = x0 +
∫ t+s

0
f(x(r))dr

= x0 +
∫ s

0
f(x(r))dr +

∫ t+s

s
f(x(r))dr

= ϕ(s)x0 +
∫ t

0
f(x(u+ s))du

= ϕ(t)ϕ(s)x0.

The map ϕ(t)x0 represents the state of the system, after some time t, which started at a

state x0 = ϕ(0)x0 when t = 0.

Definition 2.1.4. A point x∗ ∈ Rn such that f(x∗) = 0 is called an equilibrium point of

Eq. (2.1.1).

Definition 2.1.5. Let x∗ be an equilibrium point of a dynamical system on U defined by

Eq. (2.1.1). Then x∗ is called:
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(i) stable if for any ε > 0, there exists a δ > 0 such that |x0−x∗| < δ implies |x(t)−x∗| < ε

for t ≥ 0.

(ii) asymptotically stable if it is stable and there exists η > 0 such that

lim
t→∞

x(t) = x∗ ∀ x0 ∈ Bη(x∗)

where Bη(x∗) ≡ {x0 ∈ Rn : |x0 − x∗| < η}.

(iii) globally asymptotically stable (GAS), if it is stable and

lim
t→∞

x(t) = x∗ ∀ x0 ∈ U.

(iv) unstable whenever it is not stable.

In order to determine the stability of an equilibrium point x∗, we consider a solution x(t)

of Eq. (2.1.1) and make the change of dependent variable x(t) = x∗ + y(t). Differentiating

with respect to time, then substituting into Eq. (2.1.1) and performing Taylor’s expansion

of the right hand side about x∗, we obtain

.
x = .

y(t) = Dxf(x∗)y(t) +O(|y|2)

where Dxf(x∗) = J is the Jacobian matrix of f at x∗. By retaining the linear part, we thus

obtain
.
y = Jy. (2.1.6)

Eq. (2.1.6) is known as the linearised system of Eq. (2.1.1) about the equilibrium point x∗.

The initial value problem associated with Eq. (2.1.6) has a unique solution

y(t) = eJty0, y0 = x0 − x∗, (2.1.7)

where t eJt is the evolution semigroup operator of system (2.1.6). The following definition

can be found in Wiggins [85].
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Definition 2.1.6. The equilibrium point x∗ of Eq. (2.1.1) is said to be hyperbolic if none of

the eigenvalues of J have zero real parts, and nonhyperbolic if at least one of the eigenvalues

has a zero real part.

We now have the necessary background to address the following question: can the quali-

tative behaviour of solutions of Eq. (2.1.1) near x∗ be obtained from the qualitative behaviour

of the solution near the origin of Eq. (2.1.6) as given in Eq. (2.1.7)?

The answer to this question is addressed via the Hartman-Grobman Theorem which requires

that the diagram in Fig. 2.1 commutes, where h is a homeomorphism.

U U

V V

ϕ(t)

h h

eJt

Figure 2.1: Hartman-Grobman Theorem for flows.

The Hartman-Grobman Theorem can be found in most standard textbooks on dynamical

systems, (see for instance Chicone [22], Robinson [69], Hale and Koçak [42], and Simon [75]).

Theorem 2.1.7 below can be found in Crawford [24].

Theorem 2.1.7. Assume that Eq. (2.1.1) defines a dynamical system on Rn and x∗ is a

hyperbolic equilibrium point. There exists a homeomorphism h : U → V between a neighbour-

hood U ⊂ Rn of x∗ and a neighbourhood V ⊂ Rn of the origin, such that h(ϕ(t)x0) = e∧th(x0),

where ∧ is a matrix similar to the matrix J .

Remark 2.1.8. Theorem 2.1.7 implies that the evolution semigroup operators t  eJt and

t  ϕ(t) are topologically equivalent (see Crawford [24]). Consequently, any topological
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property of the linearised Eq. (2.1.7) is transferred to System (2.1.1). In particular the local

stability property of the equilibrium point x∗ is similar to that of the origin for System (2.1.7).

In view of Eq. (2.1.7), this in turn is characterised by the sign of the real parts of the

eigenvalues λ of J i.e. the origin is locally asymptotically stable if and only if Re(λ) < 0 for

all λ.

2.2 Discrete dynamical systems

Discrete dynamical systems refer to processes which evolve with time in discrete time

steps. Such systems are modelled using difference equations or sequences. Instead of using

the term flow which is used in continuous models, we will use the term maps to refer to

solutions of difference equations. Consider

xk+1 = g(xk), k = 0, 1, 2, · · · , (2.2.1)

with initial condition

x0 ∈ Rn (2.2.2)

where g : U ⊆ Rn → Rn is sufficiently smooth on an open set U .

Definition 2.2.1. Eq. (2.2.1) defines a discrete dynamical system on a set U ⊆ Rn if, for

every x0 ∈ U , the sequence generated by Eq. (2.2.1) is well defined and remains in U for all

integers k ≥ 0.

Definition 2.2.2. The evolution semigroup operator for Eq. (2.2.1) on the set U is defined

by the map

ϕk : U → U (2.2.3)

with

ϕk+1(x0) = xk+1 = g(xk) = gk(x0). (2.2.4)
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Remark 2.2.3. The sequence ϕk satisfies the following properties for all x0 ∈ U

(i) ϕ0x0 = x0.

(ii) ϕk+sx0 = ϕkϕsx0.

Definition 2.2.4. A point x∗ ∈ U such that x∗ = g(x∗) is called a fixed-point of Eq. (2.2.1).

Definition 2.2.5. Let x∗ be a fixed-point of a dynamical system on U defined by Eq. (2.2.1).

The fixed-point x∗ is called:

(i) stable if for any ε > 0,there exists a δ > 0 such that |x0− x∗| < δ implies |xk − x∗| < ε

for all k ∈ N.

(ii) asymptotically stable if it is stable and there exists η > 0 such that

lim
k→∞

xk = x∗ ∀ x0 ∈ Bη(x∗)

(iii) globally asymptotically stable if it is stable and

lim
k→∞

xk = x∗ ∀ x0 ∈ U.

(iv) unstable if it is not stable.

If we expand the right hand side of Eq. (2.2.1) in a Taylor series about the fixed-point

x∗, and drop higher order terms we obtain

xk+1 = g(x∗) + A(xk − x∗) (2.2.5)

where Dxg(x∗) = A is the Jacobian matrix of g evaluated at x∗. By letting xk−x∗ = yk and

using g(x∗) = x∗, we obtain the linearised equation

yk+1 = Ayk. (2.2.6)

where k  Ak is the evolution semigroup operator.
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Definition 2.2.6. The fixed-point x∗ is said to be hyperbolic if none of the eigenvalues of

the matrix A lie on the unit circle, and nonhyperbolic if at least one of the eigenvalues lies

on the unit circle.

The discrete analogue of the Hartman-Grobman theorem and the associated commutative

diagram read as follows (Fig. 2.2):

U U

V V

ϕk

h h

Ak

Figure 2.2: Hartman-Grobman Theorem for maps.

Theorem 2.2.7. Let x∗ ∈ Rn be a hyperbolic fixed-point of the dynamical system (2.2.1).

There exists a homeomorphism h : U → V between a neighbourhood U ⊂ Rn of x∗ and a

neighbourhood V ⊂ Rn of the origin such that

h
(
ϕkx0

)
= Akh(x0). (2.2.7)

2.3 Elementary bifurcation

Consider a dynamical system

.
z = H (z, φ) , z ∈ Rn, φ ∈ R, (2.3.1)

depending on a parameter φ, where H is sufficiently smooth.

Definition 2.3.1. A point (z∗, φ∗) such that

H(z∗, φ∗) = 0 (2.3.2)
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is called an equilibrium point of system (2.3.1).

In many applications of dynamical systems it happens that the asymptotic stability of

an equilibrium point changes due to bifurcation, but the equilibrium solution remains (see

for instance Crawford [24]). To refer to this situation, we give the following definition.

Definition 2.3.2. A point z∗ ∈ Rn is called a permanent equilibrium point if (z∗, φ) is an

equilibrium point for all φ.

Remark 2.3.3. Typically in epidemiology, the permanent equilibrium point is the disease-

free equilibrium.

The local bifurcation theory seeks to address the following question: What is most likely

to happen in the phase space φ−z near an equilibrium point (z∗, φ∗) after a small perturbation

of φ?

In this thesis, we are interested in a specific value φc of the φ coordinate of the equilibrium

instead of a general φ∗. Let the eigenvalues λ of the Jacobian matrix DzH(z∗, φ) of H

evaluated at (z∗, φ) depend on the parameter φ: λ = λ(φ). As φ is varies, it may happen

that the eigenvalue crosses the imaginary axis. The point φ = φc at which the real part of the

eigenvalue is equal to zero (i.e. Re(λ(φc)) = 0) is called the critical value of the parameter.

Note that the equilibrium point (z∗, φc) is nonhyperbolic, z∗ being a permanent equilibrium

point.

In order to address the question stated above about the local bifurcation theory, we

consider the following two restrictions of the system (2.3.1):

.
z = H (z, φc) on Bδ(z∗) (2.3.3)

and
.
z = H (z, φ) on Bδ(z∗)× (φc − ε, φc + ε) =: Uδ,ε(z∗, φc). (2.3.4)
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Definition 2.3.4 (Wiggins [85]). An equilibrium point (z∗, φ) is said to undergo a bifurcation

at φ = φc if there exist δ > 0 and ε > 0 such that the qualitative features of the equilibrium

point (z∗, φ) of system (2.3.4) are not the same as those of the equilibrium point (z∗, φc)

of system (2.3.3). Alternatively, the number φ = φc is said to be a bifurcation value for

the system (2.3.1) provided that there exists an equilibrium point (z∗, φc) of the system that

satisfies the properties in the previous statement.

The general class of bifurcation points of interest in this thesis is described in the following

definition:

Definition 2.3.5. A bifurcation occurring at the equilibrium point (z∗, φc) is said to be a

transcritical bifurcation if the following conditions hold:

(i) at least two curves z = z(φ) of equilibrium points exist in the φ − z phase space for

both φ < φc and φc < φ.

(ii) the curves of the equilibrium point branch at (φ = φc) or intersect at the point (z∗, φc).

(iii) the stability of an equilibrium point along a given curve changes on passing through

(z∗, φc).

φ

z

φc0

z2

z1

Figure 2.3: Transcritical bifurcation at φ =
φc.
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Remark 2.3.6. Fig. 2.3 illustrates Definition 2.3.5. It gives the bifurcation diagram for

the scalar equation .
z = z(−z − φc + φ) that has permanent equilibrium point z∗ = 0. Here

and after, the dotted lines represent unstable equilibrium points, whereas solid lines represent

locally asymptotically stable equilibria.

In the context of epidemiology, which is the main setting of this thesis, Definition 2.3.5

is made more specific by considering a permanent equilibrium point z∗ and nonnegative

solutions of the underlying system as follows:

Definition 2.3.7. Let z∗ ≥ 0 be a permanent equilibrium point of the system (2.3.1).

(i) The system (2.3.1) is said to undergo a forward bifurcation at φ = φc (or φ = φc is a

forward bifurcation point) provided that the permanent equilibrium point z∗:

(a) is locally asymptotically stable for φ < φc and unstable for φ > φc.

(b) for φ > φc, there exists a curve z = z(φ) > 0 of locally asymptotically stable

equilibrium points.

(ii) The system (2.3.1) is said to undergo a backward bifurcation provided that condition

i(a) above holds true while for φ < φc, there exists a curve z = z(φ) > 0 of unstable

equilibrium points.

Remark 2.3.8. Regarding part (ii) of Definition 2.3.7, we will shortly show that both small

unstable equilibrium z = z(φ) > 0 and a large LAS equilibrium point z = z(φ) > 0 can exist.

This explains why the definition of backward bifurcation phenomenon in epidemiology makes

explicit mention of two positive endemic equilibria (see Castillo-Chavez and Song [16] for

instance).

There are some similarities between the bifurcation theory of continuous and discrete

dynamical systems. In what follows we briefly point out some important aspects of the



20

discrete case. Consider a discrete dynamical system

zn+1 = F (zn, φ) , zn ∈ Rn, φ ∈ R, (2.3.5)

depending on a parameter φ, and F is sufficiently smooth.

Definition 2.3.9. A point (z∗, φ∗) such that

F (z∗, φ∗)− z∗ = 0 (2.3.6)

is called a fixed-point of system (2.3.5).

Remark 2.3.10. According to Guckenheimer and Holmes [38], page 157, “The bifurcation

theory for fixed-points of the system (2.3.5) with eigenvalue 1 is completely analogous to the

bifurcation theory for equilibria of the system (2.3.1) with eigenvalue 0”. Indeed if we let

H(zn, φ) = F (zn, φ)− zn, (2.3.7)

then

H(z∗, φ) = 0 and DzH(z∗, φ) = DzF (z∗, φ)− In. (2.3.8)

It is clear from Eq. (2.3.8) that DzH(z∗, φ) will have a zero eigenvalue if DzF (z∗, φ) has

eigenvalue equal to one.

2.4 Simple zero eigenvalue and normal forms

Because of Remark 2.3.10, we shall deal with a case of a simple zero eigenvalue only.

Assume that z∗ = 0 is a permanent equilibrium point of the system (2.3.1) and φ = 0 is

a bifurcation point. It can happen that the study of the local behaviour of System (2.3.1)

about (0, 0) is reduced to the study of the following one dimensional system

.
ξ = H̃ (ξ, φ) , φ ∈ R, ξ ∈ R. (2.4.1)
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This is the case when λ = 0 is a simple eigenvalue of DzH(0, 0) and all the other eigen-

values have real parts that are less than zero; as we will see in the next Chapter on the

Centre Manifold Theory. Without loss of generality, we assume that Eq. (2.4.1) exists for

System (2.3.1) and (0, 0) is an equilibrium point of Eq. (2.4.1). We expand the right hand

side of Eq. (2.4.1) in Taylor series about the point (ξ, φ) = (0, 0) to obtain

H̃(ξ, φ) =
∞∑

i,j=0
di,jξ

iφj where di,j = 1
i!j!

∂i+jH̃

∂ξi∂φj

∣∣∣∣
(ξ,φ)=(0,0)

. (2.4.2)

Several normal forms may be obtained from Eq. (2.4.1-2.4.2) but we restrict ourselves to

what is relevant to our work. If

H̃ξ(0, 0) = 0, H̃φ(0, 0) = 0, H̃φφ(0, 0) = 0, H̃ξξ(0, 0)H̃ξφ(0, 0) 6= 0 (2.4.3)

and we drop terms of order higher than two, Eq. (2.4.1) becomes

.
ξ = H̃φξ(0, 0)ξφ+ 1

2H̃ξξ(0, 0)ξ2 = bξφ+ aξ2. (2.4.4)

Eq. (2.4.4) is known as the normal form of a transcritical bifurcation.

Remark 2.4.1. It will becaome clear from the Centre Manifold Theory in the next Chapter

why the full Eq. (2.4.1) and the truncated Eq. (2.4.4) have the same bifurcation property at

the equilibrium point (0, 0).

We will give specific examples which lead to forward and backward bifurcations. In

Fig. 2.4 we illustrate a backward bifurcation by using the following equation.

.
ξ = (R0 − 1)ξ + 2.09ξ2 where φ = R0 − 1. (2.4.5)

Remark 2.4.2. The choice of φ = R0−1 is motivated by the nature of bifurcation parameters

found in dynamical systems arising in epidemiology. The equivalence of the bifurcation at

φ = 0 is the bifurcation value R0 = 1 in this case.
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Figure 2.4: Eq. (2.4.5) undergoes a backward bifurcation at R0 = 1.

By changing the sign of the coefficient of ξ2 in Eq. (2.4.5), which is equivalent to changing

the sign of a in Eq. (2.4.4), we obtain Eq. (2.4.6). This is a forward bifurcation as illustrated

in Fig. 2.5.
.
ξ = (R0 − 1)ξ − 2.09ξ2 where φ = R0 − 1. (2.4.6)

Remark 2.4.3. If we drop terms of order higher than five in Eq. (2.4.2), we may obtain

.
ξ = bξφ+ aξ2 + a1ξ

3 + a2ξ
4 + a3ξ

5. (2.4.7)
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Figure 2.5: Eq. (2.4.6) undergoes a forward bifurcation at R0 = 1.

From Eq. (2.4.7), some kind of a complicated bifurcation called hysteresis (Kuznetsov [53])

bifurcation may arise depending on the sign of the coefficients. Take for instance the equation

.
ξ = (R0 − 1)ξ + 2.09ξ2 − ξ3 − 0.001ξ4 − ξ5 (2.4.8)

which is a special case of Eq. (2.4.7) and a direct extension of Eq. (2.4.5). The associated

bifurcation diagram is given in Fig. 2.6. It displays the backward bifurcation phenomenon at

R0 = 1 in the more precise form, that for R0 < 1 but close to one (i.e. for φ ∈ (φc − ε, φc)),

there exist both a small unstable positive equilibrium point and a large LAS positive equilib-

rium which coexists with the LAS permanent equilibrium zero.

Similarly, if we extend Eq. (2.4.6) we may obtain

.
ξ = (R0 − 1)ξ − 2.09ξ2 − ξ3 − 0.001ξ4 − ξ5 (2.4.9)
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Figure 2.6: Eq. (2.4.8) undergoes a backward bifurcation at R0 = 1.

which is a special case of Eq. (2.4.7). A forward bifurcation occurs at R0 = 1 as illustrated

in Fig. 2.7. The dynamics of Eq. (2.4.9) and Eq. (2.4.6) around the bifurcation point R0 =

1 do not differ much, which is consistent with Remark 2.4.1. Their phase portraits are

topologically the same to be precise. We further explore a scenario where R0 becomes much

larger than 1. The local dynamics in the neighbourhood of R0 = 1 do not change as we can

see in Figs 2.8 and 2.9. However, if we consider Eq. 2.4.10 below

.
ξ = (R0 − 1)ξ − 2.09ξ2 − ξ3 − 0.001ξ4 + ξ5, (2.4.10)
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Figure 2.7: Eq. (2.4.9) undergoes a forward bifurcation at R0 = 1.

it becomes clear that the dynamics in the neighbourhood of R0 = 1 should not be used in

global asymptotic stability analysis as it is shown in Fig. 2.10.
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Figure 2.8: Eq. (2.4.8) undergoes a backward bifurcation at R0 = 1.
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Figure 2.9: Eq. (2.4.9) undergoes a forward bifurcation at R0 = 1.



28

Figure 2.10: Eq. (2.4.10) undergoes a forward bifurcation at R0 = 1. However, the
branch of the positive equilibrium when R0 > 1 is not unique. Moreover, there exists
a positive branch of an unstable equilibrium when R0 < 1.
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CHAPTER 3. THE CENTRE MANIFOLD THEORY

3.1 Introduction

Linearisation about equilibrium points is a powerful approach, which is widely used for

the stability analysis of nonlinear dynamical systems. Whenever it works, this approach is

relatively simple to implement because the conclusion is based on the sign of the real parts

(for continuous systems) and the moduli (for discrete systems) of the eigenvalues of the

associated Jacobian matrices. This technique works only when the system on the targeted

equilibrium point is hyperbolic as captured in Hartman-Grobman Theorems 2.1.7 and 2.2.7.

The centre manifold theory is applied to nonlinear systems which are nonhyperbolic. This

is precisely the setting of this Chapter in which various reductions of the systems are inves-

tigated. Most of the theory in this Chapter is taken from Wiggins [85] and Castillo-Chavez

and Song [16].

3.2 The Setting

The dynamical system (2.3.1) is now considered with φ ∈ Rp, p ≥ 1, and is for convenience

reproduced here:
.
z = H (z, φ) , z ∈ Rn, φ ∈ Rp. (3.2.1)

We assume that z∗ = 0 is a permanent equilibrium point and (0, 0) is a bifurcation point

such that the Jacobian matrix DzH(0, 0) has c eigenvalues with zero real parts, and all the

other eigenvalues have negative real parts; thus c + s = n. There exists then an invertible
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n× n matrix such that

Q−1 (DzH(0, 0))Q =

 A 0

0 B

 =: C, (3.2.2)

where all the eigenvalues of the c× c matrix A have zero real parts, and the s× s matrix B

has eigenvalues with negative real parts. If we use the change of dependent variables

z = Q

 x

y

 , where x ∈ Rc and y ∈ Rs, (3.2.3)

then Eq. (3.2.1) is transformed into

.
x = Ax+ f(x, y, φ),
.
y = By + g(x, y, φ),
.
φ = 0,

(3.2.4)

where
f(0, 0, 0) = 0, Df(0, 0, 0) = 0,

g(0, 0, 0) = 0, Dg(0, 0, 0) = 0,
(3.2.5)

and f and g are sufficiently smooth.

To conclude this section let

zn+1 = H (zn, φ) , z ∈ Rn, φ ∈ Rp (3.2.6)

be a discrete dynamical system where z∗ = 0 is a permanent fixed-point, φ is a parameter,

and (0, 0) is a bifurcation point such that the Jacobian matrix DzH(0, 0) has c eigenvalues

with modulus equal to one, and all the other eigenvalues have modulus less than one; thus

n = c+ s. Similar to the continuous case, Eq. (3.2.6) can be transformed into
xn+1 = Axn + f(xn, yn, φ),

yn+1 = Byn + g(xn, yn, φ),

φn+1 = φn,

(3.2.7)
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where the conditions in (3.2.5) are satisfied. All the theorems which will be discussed for

the continuous case (3.2.1) also apply to the discrete case (3.2.6), with the necessary ad-

justment regarding the location of the eigenvalues of the involved Jacobian matrices (see

Remark 2.3.10).

In what follows, our aim is to determine the direction of the bifurcation at the point (0, 0).

3.3 Reduction based on a power series approximation

This section is taken from Wiggins [85], without providing any proofs which however can

be found in Carr [15].

Definition 3.3.1 (Wiggins [85]). An invariant manifold for system (3.2.4)-(3.2.5) denoted

by W c(0) is said be a (local) centre manifold for the equilibrium at the origin if it can locally

be represented by

W c(0) = {(x, y, φ) ∈ Rc × Rs × Rp|y = h(x, φ), |x| < δ, |φ| < δ,

h(0, 0) = 0, Dh(0, 0) = 0},

for δ and δ sufficiently small.

The existence of a centre manifold is stated in the next result.

Theorem 3.3.2. There exists a smooth centre manifold for Eq. (3.2.4). The dynamics of

Eq. (3.2.4) restricted to the centre manifold is, for u sufficiently small, given by the following

c-dimensional system of ODEs


.
u = Au+ f(u, h(u, φ), φ), (u, h(u, φ), φ) ∈ Rc × Rs × Rp,
.
φ = 0.

(3.3.1)
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The dynamics of the system (3.2.4) near the origin is determined by the dynamics of

(3.3.1) near u = 0 as a consequence of the following theorem.

Theorem 3.3.3. (Wiggins [85]) i) If the equilibrium point zero in Theorem 3.3.2 is stable,

asymptotically stable or unstable, then the equilibrium point zero of Eq. (3.2.4) is also stable,

asymptotically stable or unstable, respectively.

ii) Suppose that the equilibrium point zero in Theorem 3.3.2 for System 3.3.1 is stable. Then

if (x(t), y(t), φ) is a solution of Eq. (3.2.4) with initial conditions (x(0), y(0), φ(0)) suffi-

ciently small, there is a solution u(t) of Eq. (3.3.1) such that as t→∞

x(t) = u(t) +O(e−γt), (3.3.2)

y(t) = h(u(t), φ) +O(e−γt), γ > 0. (3.3.3)

The computation of the centre manifold in Definition 3.3.1 is as difficult as solving the

original equation (3.2.4) because by the chain rule the defining function y = h(x, φ) must be

a solution of the following quasi linear partial differential equation:

N (h(x, φ)) := Dxh(x, φ)[Ax+ f(x, h(x, φ), φ)]−Bh(x, φ)− g(x, h(x, φ), φ) = 0. (3.3.4)

Fortunately, we have the following result that provides an approximation of h to any degree

of accuracy, specifically in terms of a power series expansion.

Theorem 3.3.4. (Wiggins [85]) Let ψ : Rc × Rp → Rs be a C1 mapping with ψ(0, 0) =

Dψ(0, 0) = 0 such that N (ψ(x, φ)) = O(|x|q + |φ|q) as x, φ→ 0 for some q > 1. Then

|h(x, φ)− ψ(x, φ)| = O(|x|q + |φ|q), as x, φ→ 0. (3.3.5)

Consequently, h can be computed in the form of a power series

h(x, φ) =
∑

(α,β)∈Nc×Np

aα,βx
αφβ, (3.3.6)
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in which the coefficients aα,β ′s are determined by matching powers of dependent variables

in Eq. (3.3.4).

Remark 3.3.5. The representation in Theorem 3.3.4 of the centre manifold by power series

speaks for itself regarding the difficulty of this approach, particularly when the system (3.2.4)

is large. We will illustrate this in the next Chapter. In the meantime, we consider an

alternative approach which is relatively user friendly.

3.4 Reduction to a scalar ODE

In this section we deal with the general dynamical system (3.2.1) in the particular case

where p = 1 but without making use of the decomposition (3.2.4). The strategy to deter-

mine the direction of the bifurcation at the equilibrium point (0, 0) consists of reducing the

system (3.2.1) to the scalar equation

.
c = φbc+ ac2, (3.4.1)

where a and b are defined in Eq. (3.4.2) below. The main result due to Castillo-Chavez and

Song [16] reads as follows:

Theorem 3.4.1 (Castillo-Chavez and Song [16]). Assume the following:

(i) Zero is a simple eigenvalue of DzH(0, 0) and all other eigenvalues have negative real

parts.

(ii) The matrix DzH(0, 0) has a nonnegative right eigenvector w and a left eigenvector v

corresponding to the zero eigenvalue.

Let Hk be the kth component of H and

a =
n∑

k,i,j=1
vkwiwj

∂2Hk

∂zi∂zj
(0, 0) = v

[
In ⊗wT

]
D2
zzH(0, 0)w

b =
n∑

k,i=1
vkwi

∂2Hk

∂zi∂φ
(0, 0) = vDzφH(0, 0)w

(3.4.2)
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where In is the identity matrix of order n; ⊗ is the Kronecker product and

D2
zzH =



∂2H1

∂z1∂z1

∂2H1

∂z1∂z2
· · · ∂2H1

∂z1∂zn
... ... . . . ...

∂2H1

∂zn∂z1

∂2H1

∂zn∂z2
· · · ∂2H1

∂zn∂zn
... ... . . . ...

∂2Hn

∂z1∂z1

∂2Hn

∂z1∂z2
· · · ∂2Hn

∂z1∂zn
... ... . . . ...

∂2Hn

∂zn∂z1

∂2Hn

∂zn∂z2
· · · ∂2Hn

∂zn∂zn



is the Hessian matrix.

If we assume that b > 0, then the local dynamics of system (3.2.1) around z = 0 are

determined by the sign of the number a as follows:

(i) If a > 0, then φ = 0 is a backward bifurcation in the sense of Definition 2.3.7.

(ii) If a < 0, then φ = 0 is a forward bifurcation in the sense of Definition 2.3.7.

Remark 3.4.2. Eq. (3.4.1) is actually a truncated Taylor series in which terms of order

higher than two have been dropped. This equation takes the form

.
c = φbc+ ac2 +

m∑
i+j≥3
i,j=0

di,jφ
jci, (3.4.3)

if we include higher order terms. This could be essential in epidemiology to highlight the ”full”

meaning of the backward bifurcation phenomenon, namely the existence of a small unstable

equilibrium cu > 0 and a large locally asymptotically stable equilibrium cs > 0 branching at

(c, φ) ≡ (0, 0) for φ less than the critical value φc of the parameter (see Definition 2.3.7 and
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Remark 2.3.8). For instance a fifth order expansion together with an appropriate choice of

coefficients di,j ′s could lead to a hysteresis as shown in Fig. 2.6.

3.5 Reduction to a scalar difference equation

We are interested in determining the direction of a bifurcation for the general discrete

dynamical system (2.3.5) with z∗ = 0 which is a permanent fixed-point. We obtain the

following new result:

Theorem 3.5.1. Assume that

(i) The matrix D = DzF (0, 0), has 1 as a simple eigenvalue of D, and all the other

eigenvalues of D have modulus less than 1.

(ii) The matrix D has a nonnegative right eigenvector w and a left eigenvector v corre-

sponding to the eigenvalue 1.

Then the local dynamics of system (2.3.5) around the fixed-point z∗ = 0 are determined

by the signs of the numbers a and b given in Eq. (3.4.2), as in Theorem 3.4.1 but with H

replaced by F .

Proof. For convenience we write explicitly the analogue of formula (3.4.2)

a =
n∑

k,i,j=1
vkwiwj

∂2Fk
∂zi∂zj

(0, 0) = v
[
In ⊗wT

]
D2
zzF (0, 0)w

b =
n∑

k,i=1
vkwi

∂2Fk
∂zi∂φ

(0, 0) = vDzφF (0, 0)w
(3.5.1)

The proof is similar to that of Theorem 3.4.1 in Castillo-Chavez and Song [16] for the

continuous model. The space Rn can be expressed as the direct sum

Rn = Ec ⊕ Es , (3.5.2)
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where Ec is the one-dimensional centre subspace and Es is the (n − 1)-dimensional stable

subspace corresponding to the eigenvalue 1 and to all the eigenvalues that lie inside a unit

circle, respectively. Note that from the decomposition (3.5.2), we have (see for instance

Kuznetsov [53]) 〈v, h〉 = 0 ∀ h ∈ Es. Since one is a simple eigenvalue of DzF (0, 0), the

system (3.2.6) can be written in the form (3.2.7) where c = 1. It follows from Theorem 3.3.2

and Definition 3.3.1 that there exists a smooth centre manifold W c(0) consisting of points

(z, φ) ≡
(
c, h̃(c, φ), φ

)
∈ R×Rn−1×R such that |c| < δ, |φ| < δ, h̃(0, 0) = 0, and Dzh̃(0, 0) =

0. In view of the decomposition (3.5.2), we have

zn = cnw + h(cn, φ). (3.5.3)

Therefore the centre manifold is represented by

W c(0) = {(z, φ)|z(c, φ) = cw + h(c, φ) : v · h(c, φ) = 0, |c| ≤ c, c(0) = 0} , (3.5.4)

where h(c, φ) ∈ Es and is of at least order 2 with respect to both c and φ. Using Eq. (2.3.5)

together with Eq. (3.5.3) we have

F (cnw + h(cn, φ), φ) = zn+1

= cn+1w + h(cn+1, φ).
(3.5.5)

Multiplying by the left eigenvector v on both sides of Eq. (3.5.5), we obtain

cn+1 = vF (cnw + h(cn, φ), φ). (3.5.6)

From Theorem 3.3.3 it follows that 0 is asymptotically stable for Eq. (2.3.5) if and only if 0

is an asymptotically stable fixed-point of Eq. (3.5.6). Hence, we investigate Eq. (3.5.6). By

using Taylor’s expansion of F about the point (z∗, φ) = (0, 0), Eq. (3.5.6) becomes

cn+1 = vF (0, 0) + vDφF (0, 0)φ

+ vDzF (0, 0)(cnw + h) + 1
2vDφφF (0, 0)φ2

+ vDzφF (0, 0)φ(cnw + h) + 1
2vDzzF (0, 0)(cnw + h)2 + · · · .

(3.5.7)
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In view of fact that z∗ = 0 is a permanent equilibrium, we have F (0, φ) ≡ 0, and DφF (0, 0) =

0, DφφF (0, 0) = 0. On the other hand

1
2DzzF (0, 0)(cnw + h)2 = 1

2
[
In ⊗ (cnw + h)T

]
D2
zzF (0, 0)(cnw + h)

= c2
n

2
[
In ⊗wT

]
D2
zzF (0, 0)w + · · · .

(3.5.8)

This simplifies Eq. (3.5.7) into

cn+1 = vcnw + vDzφF (0, 0)φcnw + v
c2
n

2
[
In ⊗wT

]
D2
zzF (0, 0)w +O(3)

= cn + vDzφF (0, 0)φcnw + c2
n

2 v
[
In ⊗wT

]
D2
zzF (0, 0)w +O(3)

= (1 + φb)cn + ac2
n +O(3).

Using Theorem 3.3.3, in the neighbourhood of the equilibrium point (z∗, φ) = (0, 0), Sys-

tem (2.3.5) has dynamics that are the same as those of the simpler map

cn+1 = (1 + φb)cn + ac2
n. (3.5.9)

This is precisely the manner in which it is stated in the theorem.

Remark 3.5.2. In line with the normal form in Eq. (2.4.4) for a transcritical bifurcation

for a continuous dynamical system, Eq. (3.5.9) is the normal form of a transcritical bifurca-

tion for a discrete dynamical system. The bifurcation diagrams of the discrete analogues of

Eqs (2.4.5), (2.4.6), (2.4.8), and (2.4.9) are given in the following figures which are similar

to the continuous cases for a = ±2.09 and b = 1:

cn+1 = R0cn + 2.09c2
n where φ = R0 − 1. (3.5.10)

cn+1 = R0cn − 2.09c2
n. (3.5.11)

cn+1 = R0cn + 2.09c2
n − c3

n − 0.001c4
n − c5

n (3.5.12)

cn+1 = R0cn − 2.09c2
n − c3

n − 0.001c4
n − c5

n (3.5.13)
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Figure 3.1: Eq. (3.5.10) undergoes a backward bifurcation at R0 = 1.
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Figure 3.2: Eq. (3.5.11) undergoes a forward bifurcation at R0 = 1.



40

Figure 3.3: Eq. (3.5.12) undergoes a backward bifurcation at R0 = 1.
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Figure 3.4: Eq. (3.5.13) undergoes a forward bifurcation at R0 = 1.
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CHAPTER 4. APPLICATIONS TO EPIDEMIOLOGICAL

MODELS

4.1 Introduction

Vaccination is effective at preventing diseases from spreading throughout the entire pop-

ulation. However, there are challenges associated with vaccine administration. Many math-

ematical models are designed to give insight into what could possibly go wrong when rolling

out a vaccination strategy if critical factors are ignored (see for instance Dushoff et al. [31]).

The SIS model (Villavicencio-Pulido et al. [79]) considered in this Chapter is relatively sim-

ple. This choice is made deliberately in order to illustrate in a simple manner, by using the

centre manifold theory, the challenge of the existence of backward bifurcation in terms of

vaccine coverage and efficacy. The simple structure of the SIS model enables us to implement

the two reduction methods that are presented in Chapter 3 to demonstrate the existence of

the backward bifurcation. As a second step, a malaria model proposed by Chitnis et al.

[23] is considered in this Chapter. Apart from the high number of equations involved, the

complexity of this system is apparent from the strong nonlinearity. As a result of this, re-

duction via power series approximations is not a viable option. We establish the existence

of backward bifurcation by the approach proposed in Castillo-Chavez and Song [16]. The

results of this Chapter as well as their nonstandard discretisations presented in Chapter 5

are published in Anguelov et al. [9].
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4.2 SIS model with vaccination

4.2.1 The model

In this subsection, we consider the SIS model proposed in Villavicencio-Pulido et al. [79].

The system corresponding to the flow diagram in Fig. 4.1 as well as to the variables and

parameters in Table 4.1 reads as follows:

S The number of susceptible humans at time t
I The number of infectious humans at time t
V Total number of vaccinated humans at time t
N Total human population at time t
c Recovery rate
σ Transmission rate inhibitor
β Transmission rate
φv Vaccination rate of the susceptible

Table 4.1: Model variables and parameters for the SIS model

.
S = − βS I

N
− φvS + cI,

.
I = βS

I

N
+ σβV

I

N
− cI,

.
V = − σβV I

N
+ φvS.

(4.2.1)

It is clear that the total population N = S+ I+V is constant . The disease-free equilibrium

(DFE) of System (4.2.1) is found by setting the right side of the system and I equal zero

and solving for S and V . Consequently, we obtain

DFE = (S∗, I∗, V ∗) = (0, 0, N). (4.2.2)

The basic reproduction number denoted by R0 is given by

R0 = σβ

c
. (4.2.3)

Indeed, we use the next generation matrix method and let

.
I = F(S, I, V )− V(S, I, V ), (4.2.4)
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where F is the rate of appearance of new infections in the Infectious class and V is the

transfer rate of individuals out of the Infectious class (see Van den Driessche and Watmough

[78]). Then

R0 =
∂F
∂I
∂V
∂I

∣∣∣∣∣∣∣∣
DFE

= σβ

c
.

Since N is constant, the system can be reduced to a two-dimensional system. We consider

two lower dimensional systems that we will use in this Chapter. The first system is obtained

by eliminating V = N − I − S. It reads as follows:

.
S = − βS I

N
− φvS + cI,

.
I = β, S

I

N
+ σβ(N − S − I) I

N
− cI.

(4.2.5)

Similarly, we eliminate S = N − I − V from System (4.2.1) so that

.
I = β(N − I − V ) I

N
+ σβV

I

N
− cI,

.
V = − σβV I

N
+ φv(N − I − V ).

(4.2.6)

The second reduction comes from Kribs-Zaleta and Velasco-Hernández [52]. We introduce a

new state variable V and parameter ρ defined as follows:

V = V −N and ρ = R0 − 1. (4.2.7)

Upon substitution of the transformations (4.2.7) into (4.2.6), we obtain

.
I = β(N − I − V ) I

N
− βI + σβV

I

N
+ σβI − cI,

.
V = − σβV I

N
+ φv(N − I − V ).

(4.2.8)

As a consequence of equations (4.2.3) and (4.2.7), our second system is given by

.
I = − β I

2

N
+ (σ − 1)βV I

N
+ ρcI,

.
V = − σβV I

N
− σβI − φvI − φvV .

(4.2.9)



45

S I

V

βS I
N

cI

φS σβV I
N

1

Figure 4.1: Flow diagram of the SIS model

4.2.2 Application of a power series approximation

In this Subsection, we apply Theorem 3.3.4 to the system (4.2.9). To this end, we need

to modify it into an equivalent system that has the required form as per (3.2.4). We linearise

System (4.2.9) at the DFE (I∗, V ∗) = (0, 0) to obtain

.
X = JX + F (X) (4.2.10)

where

.
X =


.
I
.
V

 , J =

 0 0

−(σβ + φv) −φv

 , F =

 −β
I2

N
+ (σ − 1)βV I

N
+ ρcI

−σβV I

N

 .
(4.2.11)
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The eigenvalues of the matrix J are λ1 = 0 and λ2 = −φv with eigenvectors

 −
φv

(σβ + φv)
1

 ,
 0

1

 , respectively. (4.2.12)

The transition matrix T and its inverse are given by

T =

 −
φv

(σβ + φv)
0

1 1

 , and T−1 =


−(σβ + φv)

φv
0

(σβ + φv)
φv

1

 . (4.2.13)

By using the transformation matrix we obtain I

V

 = T

 x

y

 =

 −
φv

(σβ + φv)
x

x+ y

 . (4.2.14)

Consequently,

F (x, y) =

 F1

F2

 , (4.2.15)

where
F1 = −

((
φv

σβ + φv

)
+ (σ − 1)

)
β

N

(
φv

σβ + φv

)
x2

− (σ − 1) β
N

(
φv

σβ + φv

)
xy −

(
φv

σβ + φv

)
ρcx,

F2 = σβ

N

(
φv

σβ + φv

)
x2 + σβ

N

(
φv

σβ + φv

)
xy.

(4.2.16)

The transformed system reads as follows:
.
x

.
y

 = T−1JT

 x

y

+ T−1F (x, y). (4.2.17)

Upon simplification we express the transformed system in the desired form of Eq. (3.2.4) as

.
x = ρcx+ β

N

(
φv

σβ + φv
+ (σ − 1)

)
x2 + (σ − 1) β

N
xy,

.
y = − φvy − ρcx− (σ − 1) β

N
x2 +

(
σφv

σβ + φv
− (σ − 1)

)
β

N
xy,

.
ρ = 0,

(4.2.18)
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where 
A = 0, f = ρcx+ β

N

(
φv

σβ + φv
+ (σ − 1)

)
x2 + (σ − 1) β

N
xy,

B = −φv, g = −ρcx− (σ − 1) β
N
x2 +

(
σφv

σβ + φv
− (σ − 1)

)
β

N
xy.

(4.2.19)

In view of Theorem 3.3.4, the centre manifold as per Definition 3.3.1 is computed through a

power series of the form

y = h(x, ρ) = a1x
2 + a2xρ+ a3ρ

2 + · · · (4.2.20)

such that

N (h(x, ρ)) = ∂h

∂x
(Ax+ f(x, h(x, ρ), ρ)−Bh(x, ρ)− g(x, h(x, ρ), ρ)

= (2a1x+ a2ρ+ · · · )
[
ρcx+ β

N

(
φv

σβ + φv
+ (σ − 1)

)
x2

+ (σ − 1) β
N
x(a1x

2 + a2xρ+ a3ρ
2 + · · · )

]
+ φv(a1x

2 + a2xρ+ a3ρ
2 + · · · ) + cρx+ (σ − 1) β

N
x2

+
(

σφv
σβ + φv

− (σ − 1)
)
β

N
x(a1x

2 + a2xρ+ a3ρ
2 + · · · ) = 0.

(4.2.21)

Upon substitution of equations (4.2.19) into Eq. (4.2.21) and matching of powers as suggested

in Theorem 3.3.4 we obtain the following:
For x2, φva1 + (σ − 1) β

N
= 0 so that a1 = (1− σ)β

φvN
,

For xρ, φva2 + c = 0 so that a2 = − c

φv
.

(4.2.22)

Therefore, Eq. (4.2.20) is precisely

y = h(x, ρ) = (1− σ)β
φvN

x2 − c

φv
xρ+O(3), (4.2.23)

from which, in view of Eq. (4.2.18), we obtain

.
x = cρx− σβ[(1− σ)β − φv]

N(σβ + φv)
x2 +O(3). (4.2.24)
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Using Eq. (4.2.14 ) in Eq. (4.2.24), we obtain

.
I = cρI + σβ[(1− σ)β − φv]

Nφv
I2 +O(3). (4.2.25)

The structure of Eq. (4.2.25 ) is that of the normal form of a transcritical bifurcation as

in Eq. (2.4.4). The stability of equilibrium solution of System (4.2.1) is determined by the

stability of Eq. (4.2.25) by Theorem 3.3.2 in the more specific manner stated in the next

result.

Theorem 4.2.1. Model (4.2.1) undergoes a backward bifurcation at R0 = 1 if

A(φv) = (1− σ)β − φv > 0. (4.2.26)

Remark 4.2.2. There can be no backward bifurcation if the vaccine is absolutely ineffective

(σ = 1). If the vaccine is totally effective (σ = 0), i.e. R0 = 0 and ρ = −1), there is no

bifurcation and the DFE is always asymptotically stable.

4.2.3 Application of Theorem 3.4.1

In this subsection, we perform bifurcation analysis of Model (4.2.1) by applying Theo-

rem 3.4.1 to the system (4.2.5). Let (z1, z2) = (S, I) and ρ = R0 − 1. The Jacobian matrix

of equation (4.2.5) evaluated at the DFE (S∗, I∗) = (0, 0) is

J =


−φv c

0 ρc

 , (4.2.27)

with eigenvalues λ1 = −φv and λ2 = ρc.

Note that λ1 is always less than zero, but the sign of λ2 depends on the parameter ρ. If

ρ 6= 0, then we may apply the Hartman-Grobman theorem (i.e. Theorem 2.1.7) to determine

the local stability of the DFE because the matrix J is hyperbolic.
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Our interest is in the local stability of the DFE at ρ = 0 (i.e. R0 = 1) which makes λ2 = 0.

In this case J is nonhyperbolic and the Hartman-Grobman Theorem does not apply. Hence

we apply Theorem 3.4.1 . For ρ = 0, the simple eigenvalue λ2 = 0 has the following associated

right and left eigenvectors

w =


c

φv

1

 and vT =


0

1

 , (4.2.28)

respectively. We are therefore in the setting of Theorem 3.4.1. Since v1 = 0 there is no need

to evaluate the partial derivatives of H1. On the contrary partial derivatives of H2 evaluated

at (z1, z2, ρ) = (0, 0, 0) are needed and they are equal to

∂2H2

∂x2
1

= 0, ∂2H2

∂x1∂x2
= (1− σ) β

N
,
∂2H2

∂x2
2

= −2βσ
N

,
∂2H2

∂x1∂ρ
= 0, ∂2H2

∂x2∂ρ
= c. (4.2.29)

Upon substitution into Eq. (3.4.2) we obtain

a = 2σβ
φvN

((1− σ)β − φv) = 2σβ
φvN
A(φv) (4.2.30)

and

b = c > 0. (4.2.31)

The conclusion of Theorem 3.4.1 is stated in the following result, which is a rephrasing of

Theorem 4.2.1.

Theorem 4.2.3. The value of R0 = 1 is a backward or forward bifurcation depending on

whether a > 0 or a < 0.

Remark 4.2.4. If a > 0 then the disease-free equilibrium is globally asymptotically stable if

0 < β − φv < c and R0 < Rc
0 := 4βφv

[β − φv − c]2 + 4βφv
. (4.2.32)
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Indeed, to prove this, we consider Eq. (4.2.6) at the endemic equilibrium. We set the right

hand-side of this equation to zero to obtain

β(N − I − V ) I
N

+ σβV
I

N
− cI = 0,

−σβV I

N
+ φv(N − I − V ) = 0.

(4.2.33)

Solving for V in the second equation we obtain

V = φv(N − I)

σβ
I

N
+ φv

= Nφv(N − I)
cR0I + φvN

.

(4.2.34)

Simplification of the first equation in (4.2.33) and the expression of R0 in (4.2.3) leads to

0 = [βN − βI − β(1− σ)V ] I
N
− cI

= βI − β

N
I2 − β

N
V I + σβ

N
V I − cI

= βI − β

N
I2 − β

N
V I + cR0

N
V I − cI.

(4.2.35)

Substitution of Eq. (4.2.34) into Eq. (4.2.35) leads to

− βcR0

N
I3 + [β − φv − c] cR0I

2 + (R0 − 1)cφvNI = 0. (4.2.36)

We are not interested in the trivial root I = 0 of Eq. (4.2.36). Its nonzero roots are obtained

from the quadratic equation

AI2 +BI + C = 0 (4.2.37)

where
A = − βcR0

N
,

B = [β − φv − c] cR0,

C = N(R0 − 1)cφv.

(4.2.38)

Global asymptotic stability of the DFE will be achieved if there is no positive real root of

Eq. (4.2.36). To investigate the values of R0 for which the DFE is globally asymptotically
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stable we set B2 − 4AC < 0. After some algebraic manipulation we obtain

R0 <
4βφv

[β − φv − c]2 + 4βφv
=: Rc

0 (4.2.39)

where Rc
0 is the value of R0 for which B2 − 4AC = 0. The proof is complete.

4.3 A malaria model

Malaria is defined as a specific protozoal infection transmitted by certain mosquitoes. In

humans the causal parasite passes through separate phases of development in the liver and

red blood cells (see Richardson and Woodruff [68] for instance). This disease can be fatal in

some cases as reported in WHO [83]. In the East and Southern Africa region alone, a total

of 13.5 million (2010), 34.0 million (2015), 45.6 million (2017) malaria cases were confirmed.

This shows an increase of 238% for the period 2010-2017. A total of 70, 700 (2010), 38,

300 (2015), 20, 100 (2017) malaria related deaths were reported. Even more concerning is

that children under 5 years of age constitute a huge portion of the totals reported by these

statistics. Indeed, this shows that malaria still poses a challenge. From the pioneering work

of Ross [74], improved by McDonald [59] in yet another seminal work, there has been a

great deal of progress in the mathematical modeling of malaria (see Smith et al. [76] for

the timeline). In this section, we focus on one of the relatively recent models proposed by

Chitnis et al. [23] as described in Subsection 4.3.1. We sharpen the conjecture made in

Chitnis et al. [23], namely that a backward bifurcation occurs for sufficiently large values

of the disease-induced death rate. This is done by the centre manifold theory through a

theorem due to Castillo-Chavez and Song [16].

4.3.1 The model and basic results

The malaria model in Chitnis et al. [23] is a SEIRS model for the human population

and a SEI model for the vector population.
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• Human and vector population sizes are assumed not to be constant.

• The recovered humans develop temporary immunity and become susceptible again.

• Model parameters are non-negative.

• All newborns are susceptible to malaria infection.

• Not all mosquito bites result in infection.

• Mosquitoes do not die from the infection.

Nh (t) denotes the total human population at time t. Sh(t) is the number of susceptible

humans at time t. Eh(t) represents the number of exposed humans at time t. The number of

infectious humans at time t is denoted by Ih(t), and Rh(t) is the number of recovered humans

at time t. The female mosquito population at time t is denoted by Nv(t), Sv(t) is the number

of susceptible mosquitoes at time t, Ev(t) is the number of exposed mosquitoes at time t, and

finally we denote the number of infectious mosquitoes at time t by Iv(t). Model parameters

are explained in Table 4.1, and the flow diagram is in Fig. 4.1. The corresponding model is

The corresponding model is

.
Sh(t) = Λh + ψhNh(t) + ρhRh(t)− c (Nh(t), Nv(t)) βhvIv(t)Sh(t)− fh (Nh(t))Sh(t),
.
Eh(t) = c (Nh(t), Nv(t)) βhvIv(t)Sh(t)−M1Eh(t),
.
Ih(t) = νhEh(t)−M2Ih(t),
.
Rh(t) = γhIh(t)−M3Rh(t),
.
Sv(t) = ψvNv(t)− c (Nh(t), Nv(t)) (βvhIh(t) + β̃vhRh(t))Sv(t)− fv (Nv(t))Sv(t),
.
Ev(t) = c(Nh(t), Nv(t))

(
βvhIh(t) + β̃vhRh(t)

)
Sv(t)−M4Ev(t),

.
Iv(t) = νvEv(t)− fv (Nv(t)) Iv(t),

(4.3.1)
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Λh Immigration rate of humans. Humans×Days−1

ψh Per capita birth rate of humans. Days−1

ψv Per capita birth rate of mosquitoes. Days−1

σv Number of times one mosquito would want to bite humans per
unit time, if humans were freely available. Days−1

σh The maximum number of mosquito bites a human can have per
unit time. Days−1

βhv Probability of transmission of infection from an infectious mosquito to
a susceptible human, given that a contact between the two occurs. Dimensionless

βvh Probability of transmission of infection from an infectious human to
a susceptible mosquito, given that a contact between the two occurs. Dimensionless

β̃vh Probability of transmission of infection from a recovered human to
a susceptible mosquito, given that a contact between the two occurs. Dimensionless

νh Per capita rate of progression of humans from the exposed state to
the infectious state. Days−1

νv Per capita rate of progression of mosquitoes from the exposed
state to the infectious state. Days−1

γh Per capita recovery rate for humans from the infectious state to
the recovered state. Days−1

δh Per capita disease-induced death rate. Days−1

ρh Per capita rate of loss of immunity for humans. Days−1

µ1h Density-independent part of the death rate for humans. Days−1

µ2h Density-dependent part of the death rate for humans. Humans−1×Days−1

µ1v Density-independent part of the death rate for mosquitoes. Days−1

µ2v Density-dependent part of the death rate for mosquitoes.
Mosquitoes−1×Days−1

Table 4.2: Parameters for the malaria model

where:
Nh(t):=Sh(t) + Eh(t) + Ih(t) +Rh(t)

and

Nv(t):=Sv(t) + Ev(t) + Iv(t)

(4.3.2)
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Sh Eh Ih Rh

ρh

µ1h

Sv Ev Iv

βvh β̃vh

βhv

Λh + ψhNh

νv

µ1h

µ1h

ψvNv

µ1h

δh

µ1v µ1v µ1v

1

Figure 4.2: Flow diagram for host-vector dynamics of the
malaria model

are total populations of humans and mosquitoes, respectively;

c(Nh(t), Nv(t)) = σvσh
σhNh(t) + σvNv(t)

,

fh(Nh(t)) = µ1h + µ2hNh(t),

fv(Nv(t)) = µ1v + µ2vNv(t),

M1 = νh + fh, M2 = γh + δh + fh, M3 = ρh + fh, M4 = νv + fv.

(4.3.3)

By adding from Eq. (4.3.1) human-related equations alone and mosquito-related equations

separately, we obtain the conservation laws in the form:

.
Nh = Λh + ψhNh − fhNh − δhIh and

.
Nv = ψvNv − fvNv. (4.3.4)

It is shown in Chitnis et al. [23] that model (4.3.1) is epidemiologically and mathematically

well-posed in the domain:

D = {z = (Sh, Eh, Ih, Rh, Sv, Ev, Iv)|(Sh, Eh, Ih, Rh, Sv, Ev, Iv) ≥ 0} . (4.3.5)
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That is for any initial conditions in D, the system (4.3.1) has a unique solution which remains

in D for all t ≥ 0. Further, the malaria model (4.3.1) has exactly one disease-free equilibrium

(DFE) point, z∗ = (N∗h , 0, 0, 0, N∗v , 0, 0) ∈ D, where

N∗h =
ψh − µ1h +

√
(ψh − µ1h)2 + 4µ2hΛh

2µ2h
and N∗v = ψv − µ1v

µ2v
. (4.3.6)

The basic reproduction number derived in Chitnis et al. [23] may be rewritten as

R0 = c∗


βhvνhνvN

∗
hN
∗
v

(
βvh + β̃vhγh

M∗
3

)
f ∗vM

∗
1M

∗
2M

∗
4


1/2

(4.3.7)

where the symbol (∗) represents the variables in Eq. (4.3.3) evaluated at the DFE z∗.

Indeed, we use the next generation method to derive Eq. (4.3.7) by considering the diseased

compartments z̃ = {Eh, Ih, Rh, Ev, Iv}. Let

F =



cβhvIvSh

0

0

c
(
βvhIh + β̃vhRh

)
Sv

0


and V =



M1Eh

−νhEh +M2Ih

−γhIh +M3Rh

M4Ev

−νvEv + fvIv


, (4.3.8)

Eq. (4.3.8) leads to

∂F
∂z̃

∣∣∣∣∣
DFE

= F =



0 0 0 0 c∗βhvN
∗
h

0 0 0 0 0

0 0 0 0 0

0 c∗βvhN
∗
v c∗β̃vhN

∗
v 0 0

0 0 0 0 0


,
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∂V
∂z̃

∣∣∣∣∣
DFE

= V =



M∗
1 0 0 0 0

−νh M∗
2 0 0 0

0 −γh M∗
3 0 0

0 0 0 M∗
4 0

0 0 0 −νv f ∗v


.

By using the elementary row operations for augmented matrices and the equivalence relation

[V |I] ∼ [I|V −1] we obtain the following inverse of the matrix V

V −1 =



1
M∗

1
0 0 0 0

νh
M∗

1M
∗
2

1
M∗

2
0 0 0

γhνh
M∗

1M
∗
2M

∗
3

γh
M∗

2M
∗
3

1
M∗

3
0 0

0 0 0 1
M∗

4
0

0 0 0 νv
M∗

4 f
∗
v

1
f ∗v



.

After performing standard matrix multiplication we obtain

FV −1 =



0 0 0 F14 F15

0 0 0 0 0

0 0 0 0 0

F41 F42 F43 0 0

0 0 0 0 0


(4.3.9)
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where
F14 = c∗βhvN

∗
hνv

f ∗vM
∗
4

,

F15 = c∗βhvN
∗
h

f ∗v
,

F41 = c∗βvhN
∗
v νh

M∗
1M

∗
2

+ c∗γhνhβ̃vhN
∗
v

M∗
1M

∗
2M

∗
3
,

F42 = c∗βvhN
∗
v

M∗
2

+ c∗γhβ̃vhN
∗
v

M∗
2M

∗
3

,

F43 = c∗β̃vhN
∗
v

M∗
3

.

(4.3.10)

The dominant eigenvalue of the matrix in Eq. (4.3.9) is

ρ
(
FV −1

)
= c∗


βhvνhνvN

∗
hN
∗
v

(
βvh + β̃vhγh

M∗
3

)
f ∗vM

∗
1M

∗
2M

∗
4


1/2

= R0. (4.3.11)

The following result regarding the bifurcation at R0 = 1 is proven in Chitnis et al. [23].

Theorem 4.3.1. If there is no disease-induced death rate (δh = 0), then DFE is globally

asymptotically stable for R0 < 1. Moreover, the bifurcation at R0 = 1 is a forward bifurca-

tion.

Furthermore, Chitnis et al. [23] stated the following conjecture, which is the motivation

for our research.

Conjecture 4.3.2. If the disease-induced death rate δh is large enough, the model (4.3.1)

undergoes a backward bifurcation at R0 = 1.

4.3.2 Towards the existence of a backward bifurcation

Inspired by the Conjecture 4.3.2, here we investigate the properties of the bifurcation

at R0 = 1 when the disease-induced death rate is positive and thus extend Theorem 4.3.1.

This is done in two scenarios. The first scenario is intuitive. It is considered because the
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proof is more direct and not based on the centre manifold theory. By definition, any endemic

equilibrium point z∗∗ = (S∗∗h , E∗∗h , I∗h, R∗∗h , S∗∗v , E∗∗v , I∗∗v ) is obtained by setting the right-hand

side of Eq. (4.3.1) equal to zero. Algebraic manipulations show that

S∗∗h = Λh + ψhN
∗∗
h + ρhR

∗∗
h

c∗∗βhvI∗∗v + f ∗∗h
,

E∗∗h = c∗∗βhvI
∗∗
v S

∗∗
h

M∗∗
1

,

R∗∗h = γhI
∗
h

M∗∗
3
,

S∗∗v = ψvN
∗
v

c∗∗(βvhI∗h + β̃vhR∗∗h ) + f ∗v
,

E∗∗v = c∗∗(βvhI∗h + β̃vhR
∗∗
h )S∗∗v

M∗
4

,

I∗∗v = νvE
∗∗
v

f ∗v
.

(4.3.12)

Moreover, from the human component of the conservation law Eq. (4.3.4) we have

Λh + ψnN
∗∗
h − f ∗∗h (N∗∗h )− δhI∗h = 0. (4.3.13)

Since

f ∗∗h = µ1h + µ2hN
∗∗
h , (4.3.14)

Eq. (4.3.13) becomes the following quadratic equation in N∗∗h

− µ2h (N∗∗h )2 + (ψh − µ1h)N∗∗h + Λh − δhI∗h = 0. (4.3.15)

Therefore,

N∗∗h ≡ N∗∗h (I∗h) =
ψh − µ1h ±

√
(ψh − µ1h)2 + 4µ2h(Λh − δhI∗h)

2µ2h
. (4.3.16)

A Taylor’s expansion of Eq. (4.3.16) about I∗h = 0 leads to

N∗∗h (I∗h) = N∗∗h (0)− δh
B
I∗h +O

(
I∗

2

h

)
where B =

√
(ψh − µ1h)2 + 4µ2hΛh. (4.3.17)

We observe that the total population N∗∗h ≡ N∗∗h (I∗h) of humans at an endemic equilibrium

I∗h > 0 is less than or equal to N∗h ≡ N∗∗h (0), which is the total population of humans
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corresponding to the disease-free equilibrium I∗h = 0. For the purpose of investigating directly

the existence of backward bifurcation, it is sensible to assume that N∗∗h is a linear function

in I∗h such that

N∗∗h = N∗h − FI∗h where F = δh
B
. (4.3.18)

Theorem 4.3.3. Suppose that condition (4.3.18) holds and the disease-induced death rate

δh is large enough in the sense that the rate at which people die due to the disease satisfies

the inequality

δh > δcrit.h = σvβvhB

f ∗v
, (4.3.19)

then system (4.3.1) has at least one endemic equilibrium when R0 < 1.

Proof. At the endemic equilibrium we have

c∗∗ = c∗

1−DI∗h
,

f ∗∗h = f ∗h − AI∗h,

M∗∗
1 = M∗

1 − AI∗h,

M∗∗
2 = M∗

2 − AI∗h,

M∗∗
3 = M∗

3 − AI∗h,

M∗∗
4 = M∗

4 ,

(4.3.20)

where

A = µ2hδh
B

, D = σhδh
B(σvN∗v + σhN∗h) , E =

(
βvh + γhβ̃vh

M∗
3

)
. (4.3.21)

Using

νhE
∗∗
h −M∗∗

2 I∗h = 0 (4.3.22)

we obtain I∗h as a root of the algebraic equation of the form

A7I
∗7
h +A6I

∗6
h +A5I

∗5
h +A4I

∗4
h +A3I

∗3
h +A2I

∗2
h +A1I

∗
h +A0 = 0. (4.3.23)
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Explicit expressions of the coefficients, A0, · · · ,A7 can be derived in terms of the parameters

of the model. Specifically for A0 and A7, we have
A0 = M∗

1M
∗
2M

∗2
3 M∗

4 f
∗
hf
∗
v (R2

0 − 1)

A7 = A5f ∗vM
∗
4D

2 − c∗M∗
4A

5Dβvh = A5M∗
4D(Df ∗v − c∗βvh)

(4.3.24)

Using Eq. (4.3.19) and Eq. (4.3.21) it is easy to see that A7 > 0. Let R0 < 1. Then clearly

A0 < 0. Hence by Descartes’ rule of signs Eq. (4.3.23) has at least one positive root (see

Murray [67], Wang [80]). That is, for R0 < 1 the stable DFE co-exists with an endemic

equilibrium which approaches DFE as R0 → 1.

Remark 4.3.4. The biological meaning of the inequality (4.3.19) can be obtained by address-

ing the research question no.(i) in the concluding Chapter. That is to find a critical value

Rc
0 of the basic reproduction number R0 such that the disease-free equilibrium coexists with

an endemic equilibrium whenever R0 ∈ (Rc
0, 1) for δh > 0.

4.3.3 Application of Theorem 3.4.1

We investigate the nature of the bifurcation by using Theorem 3.4.1. We consider

c(Nh, Nv) in Eq. (4.3.3) and evaluate its equation at the disease-free equilibrium to obtain

c∗ = c(N∗h , N∗v ) = σvσh
σhN∗h + σvN∗v

(4.3.25)

as defined in Eq. (4.3.7). Let

ζ1 =

 M∗
1M

∗
2M

∗
4 f
∗
v

βhvνhνvN∗hN
∗
v

(
βvh + β̃vhγh

M∗
3

)


1/2

. (4.3.26)

If c∗ < ζ1 the DFE is locally asymptotically stable and unstable when c∗ > ζ1. Thus, c∗ is a

bifurcation parameter. The parameter c∗ is introduced in the system (4.3.1) as follows:

c(Nh, Nv) = σvσh
σhNh + σvNv

× σhN
∗
h + σvN

∗
v

σhN∗h + σvN∗v
= c∗

σhN
∗
h + σvN

∗
v

σhNh + σvNv

. (4.3.27)
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Remark 4.3.5. In the sequel, the constant ratio of σh
σv

= 30 in Chitnis et al. [23] will be

used.

In order to illustrate the role of the disease-induced death rate δh we consider Eq. (4.3.1)

in its equivalent form where the equations of the populations of susceptible individuals

Sh and Sv are replaced by the equations in (4.3.4) of the total populations Nh and Nv

respectively. Henceforth, our calculations will involve a lot of second-order partial derivatives.

For convenience we introduce the following notation
z = (z1, z2, z3, z4, z5, z6, z7)T = (Nh, Eh, Ih, Rh, Nv, Ev, Iv)T

.z = (H1, H2, H3, H4, H5, H6, H7)T = H(z, c∗)
(4.3.28)

The Jacobian matrix of system (4.3.28) evaluated at DFE is given by

J =



−B 0 −δh 0 0 0 0

0 −M∗
1 0 0 0 0 c∗βhvN

∗
h

0 νh −M∗
2 0 0 0 0

0 0 γh −M∗
3 0 0 0

0 0 0 0 −(f ∗v − µ1v) 0 0

0 0 c∗βvhN
∗
v c∗β̃vhN

∗
v 0 −M∗

4 0

0 0 0 0 0 νv −f ∗v



(4.3.29)

The characteristic polynomial of the matrix J is given by

|J − λI| = (λ+B)(λ+ (f ∗v − µ1v))
{
λ5 + λ4(f ∗v +B0) + λ3(f ∗vB0 +B1) + λ2(f ∗vB1 +B2)

+ λ1(f ∗vB2 +M∗
1M

∗
2M

∗
3M

∗
4 )− λ1c∗2βhvβvhN

∗
hN
∗
v νvνh +M∗

1M
∗
2M

∗
3M

∗
4 f
∗
v (1−R2

0)
}

= 0,
(4.3.30)
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where


B0 = (M∗

3 +M∗
4 ) + (M∗

2 +M∗
1 ), B1 = M∗

1M
∗
2 + (M∗

1 +M∗
2 )(M∗

3 +M∗
4 ) +M∗

4M
∗
3 ,

B2 = M∗
4M

∗
3 (M∗

1 +M∗
2 ) +M∗

1M
∗
2 (M∗

3 +M∗
4 ).

(4.3.31)

We write λ1 with a superscript to distinguish it in Eq. (4.3.30) for referencing purposes. In

what follows we show that the coefficient of λ1 is positive when R0 ≤ 1. Let R0 ≤ 1, then

c∗2βhvνhνvN
∗
hN
∗
v

(
βvh + β̃vhγh

M∗
3

)
≤M∗

1M
∗
2M

∗
4 f
∗
v ⇒ c∗2νhνvN

∗
hN
∗
vβhvβvh < M∗

1M
∗
2M

∗
4 f
∗
v < f ∗vB2.

(4.3.32)

Thus,

(f ∗vB2 +M∗
1M

∗
2M

∗
3M

∗
4 )− c∗2νhνvN∗hN∗vβhvβvh > 0. (4.3.33)

Since it assumed in Chitnis et al. [23] that in the absence of the disease, the density indepen-

dent death rate of the mosquitoes µ1v is less than the per capita birth rate f ∗v , i.e. f ∗v > µ1v,

it is easy to see that λ = −B and λ = −(f ∗v − µ1v) are negative eigenvalues of J . We now

use matrix theory in Farina and Rinaldi [34], Mitkowski [66] to investigate the eigenvalues

of the following irreducible Metzler matrix

J∗ =



−M∗
1 0 0 0 c∗βhvN

∗
h

νh −M∗
2 0 0 0

0 γh −M∗
3 0 0

0 c∗βvhN
∗
v c∗β̃vhN

∗
v −M∗

4 0

0 0 0 νv −f ∗v


. (4.3.34)

When c∗ = ζ1 we have R0 = 1, which means that the disease progression makes a transition

or bifurcates, from a non-invasive state to an invasive one, in the sense that one infectious

individual can infect exactly one susceptible individual. At this point, the matrix J∗ admits
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a simple zero eigenvalue and all the other eigenvalues have negative real parts by Lemmas

4.3.6 and 4.3.7 below as stated in Mitkowski [66].

Lemma 4.3.6. For any Metzler matrix M ∈ Rn×n with spectrum σ(M), there exists a real

number λmax ∈ σ(M) such that λmax = maxRe(λi) ∀ i = 1, 2, · · · , n.

Lemma 4.3.7. Let A = [aij] be a Metzler matrix, i.e. aij ≥ 0, i 6= j. Let det(λI − A) =

λn + an−1λ
n−1 + · · · + a1λ + a0. Then α(A) < 0 or (Re(λi) < 0, i = 1, 2, · · · , n) iff ai > 0,

i = 0, 1, 2, · · · , n− 1.

The coefficients a and b of Eq. (3.4.2) in Theorem 3.4.1 are computed by letting

w = (w1, w2, w3, w4, w5, w6, w7)T and v = (v1, v2, v3, v4, v5, v6, v7) (4.3.35)

be the right and left eigenvectors associated with the zero eigenvalue, respectively. Upon

computation the following vector components were found
w1 = −δhνhc

∗βhvN
∗
h

BM∗
2M

∗
1

w7, w2 = c∗βhvN
∗
h

M∗
1

w7, w3 = νhc
∗βhvN

∗
h

M∗
2M

∗
1

w7, w4 = γhνhc
∗βhvN

∗
h

M∗
3M

∗
2M

∗
1
w7,

w5 = 0, w6 = f ∗v
νv
w7, w7 = w7 > 0.

(4.3.36)


v1 = 0, v2 = f ∗v

c∗βhvN∗h
v7, v3 = M∗

1 f
∗
v

νhc∗βhvN∗h
v7, v4 = c∗β̃vhN

∗
v νv

M∗
3M

∗
4

v7, v5 = 0,

v6 = νv
M∗

4
v7, v7 = v7 > 0.

(4.3.37)

Remark 4.3.8. In the literature (see for instance Castillo-Chavez and Song [16] and Hassan

et al. [44]), the eigenvectors w and v are normalised such that wT · v = 1. However, this

requirement has no impact on the calculations done above.



64

We ignore the partial derivatives of H1 and H5 because v1 = 0 = v5. The non-zero

second-order partial derivatives are the following:

∂2H2

∂z1∂z7
= − 30c∗βhvN∗h

30N∗h +N∗v
+ c∗βhv,

∂2H2

∂z2∂z7
= −c∗βhv,

∂2H2

∂z3∂z7
= −c∗βhv,

∂2H2

∂z4∂z7
= −c∗βhv,

∂2H2

∂z1∂z2
= −µ2h,

∂2H3

∂z1∂z3
= −µ2h,

∂2H4

∂z1∂z4
= −µ2h,

∂2H6

∂z4∂z7
= −c∗β̃vh,

∂2H6

∂z3∂z1
= − 30c∗βvhN∗v

30N∗h +Nv∗
,

∂2H6

∂z3∂z6
= −c∗βvh,

∂2H6

∂z4∂z1
= − 30c∗β̃vhN∗v

30N∗h +N∗v
,

∂2H6

∂z3∂z7
= −c∗βvh,

∂2H6

∂z4∂z6
= −c∗β̃vh,

∂2H2

∂c∗∂z7
= N∗hβhv,

∂2H6

∂z3∂c∗
= N∗vβvh,

∂2H6

∂z4∂c∗
= N∗v β̃vh.

(4.3.38)

From the expressions in (4.3.36)-(4.3.38) we obtain

a = 2v7w
2
7

 30c∗βhvN∗hf ∗v δhνh
(30N∗h +N∗v )BM∗

2M
∗
1

(R2
0 + 1) + µ2hf

∗
v δhνhc

∗βhvN
∗
h

BM∗2
2 M∗2

1
(M∗

1 +M∗
2 )

+ δhc
∗3β̃vhN

∗
v νvν

2
hβ

2
hvN

∗2
h γhµ2h

BM∗
4M

∗2
3 M∗2

2 M∗2
1

− f ∗v c
∗βhvδhνh

BM∗
2M

∗
1
− f ∗v c

∗βhv
M∗

1

(
1 + νh

M∗
2

+ γhνh
M∗

3M
∗
2

)

− νhc
∗2βhvN

∗
h

M∗
2M

∗
1

(
βvh + γhβ̃vh

M∗
3

)
= 2v7w

2
7Φ∗ (Π∗ − 1)

(4.3.39)

and

b = 2f ∗v
c∗
v7w7 > 0 (4.3.40)

where

Φ∗ = f ∗v c
∗βhvδhνh

BM∗
2M

∗
1

+ f ∗v c
∗βhv
M∗

1

(
1 + νh

M∗
2

+ γhνh
M∗

3M
∗
2

)
+ νhc

∗2βhvN
∗
h

M∗
2M

∗
1

(
βvh + γhβ̃vh

M∗
3

)
,

Π∗ =

30c∗βhvN∗hf ∗v δhνh
(30N∗h +N∗v )BM∗

2M
∗
1

(R2
0 + 1) + µ2hf

∗
v δhνhc

∗βhvN
∗
h

BM∗2
2 M∗2

1
(M∗

1 +M∗
2 ) + χ

Φ∗

(4.3.41)
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and

χ = δhc
∗3β̃vhN

∗
v νvν

2
hβ

2
hvN

∗2
h γhµ2h

BM∗
4M

∗2
3 M∗2

2 M∗2
1

.

Then using Theorem 3.4.1, we obtain the following characterisation of the bifurcation at

R0 = 1.

Theorem 4.3.9. The malaria model (4.3.1) exhibits a backward bifurcation at R0 = 1 if

Π∗ > 1 as per Eq. (4.3.39) and a forward bifurcation if Π∗ < 1.

Remark 4.3.10. It should be noted that when there is no one dying due to the disease, i.e.

δh = 0, we have Π∗ = 0 and hence, the bifurcation at R0 = 1 is supercritical. Further, it is

easy to see that Π∗ is an increasing function of δh at least in some neighbourhood of δh = 0.
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CHAPTER 5. NONSTANDARD FINITE DIFFERENCE

SCHEMES

5.1 Introduction

The literature on the relevance of the Nonstandard Finite Difference (NSFD) schemes

in gaining useful insights on the solutions of real world models of differential equations

was reviewed in Chapter 1. The NSFD schemes proposed in this Chapter are aimed at

preserving the backward bifurcation property of the previously discussed continuous models

of differential equations for the transmission of diseases. This is a challenge because the

disease-free equilibrium is nonhyperbolic and thus the widely used concept and technique of

elementary stable NSFD schemes does not apply. However, observing that epidemiological

models have a specific decomposition into productive and destructive terms, we use Mickens’s

rules in an innovative manner to construct reliable NSFD schemes in Section 5.3. This

approach is successfully applied to the SIS model in Section 5.4 and the malaria model in

Section 5.5 since the resulting NSFD schemes are dynamically consistent with respect to the

backward bifurcation property from both a theoretical and numerical perspective in Section

5.6. Of course, the Chapter starts with preliminaries on NSFD schemes in Section 5.2. As

mentioned earlier, the results on NSFD schemes for the SIS and malaria models presented

in this Chapter are published in Anguelov et al. [9].
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5.2 Preliminaries

In general, the continuous system

dz

dt
= H(z), z(0) ∈ Rn, (5.2.1)

where H : D ⊆ Rn → Rn is sufficiently smooth on a compact set D, cannot be completely

solved by analytic techniques. Consequently, numerical methods are of fundamental impor-

tance in gaining more useful insights into the solution of the differential equation.

We consider a difference equation

D∆tz
k = G∆t(H, zk), (5.2.2)

which gives rise to a sequence {zk}∞k=0 of approximations to the solution z(t) of (5.2.1) at

the discrete time steps {tk = k∆t}∞k=0, where ∆t ≡ h is the step size:

z(tk) ≈ zk. (5.2.3)

It is implicitly understood that D∆tz
k is an approximation of the derivatives dz

dt
, while

G∆t(H, zk) approximates the function H(z). It is also important to note that the algorithm

in (5.2.2) permits one to find the discrete solution zk+1 at the time tk+1 assuming that the

discrete solution zk is known at the time tk.

We start with some general concepts about the numerical method (5.2.2). We fix a time t∗

which can be represented in the form

t∗ = k∗∆t = tk∗ (5.2.4)

for different values of k∗ and ∆t.

Definition 5.2.1. (Lambert [54]) The difference scheme (5.2.2) of a well-posed initial value

problem (5.2.1) is said to be convergent if, we have that

lim
∆t→0
t∗=k∗∆t

zk = z(t∗) (5.2.5)
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holds for all t∗ ≥ 0 and for all solutions {zk} of the difference equation (5.2.2).

As mentioned earlier, the exact solution is not always known. It is therefore difficult to

check the convergence based on Definition 5.2.1. To overcome this difficulty, we consider

three additional concepts.

Definition 5.2.2. (Lambert [54]) The local truncation error, Rk+1, of the numerical method (5.2.2)

is the amount by which the exact solution z(t) fails to satisfy the relation (5.2.2). That is

Rk+1 := D∆tz(tk)−G∆t(H, z(tk)). (5.2.6)

Definition 5.2.3. (Lambert [54]) The method (5.2.2) is said to be consistent with the dif-

ferential equation if, for all initial value problems, the local truncation error Rk+1 satisfies

lim
∆t→0

Rk+1 = 0. (5.2.7)

Definition 5.2.4. (Lambert [54]) Let {δk}∞k=0 and {δ̃k}∞k=0 be any two perturbations of the

scheme (5.2.2), and let {Zk}∞k=0 and {Z̃k}∞k=0 be the resulting solutions. If there exist con-

stants S and ∆t0 such that for all ∆t ∈ (0,∆t0], we have

‖Zk − Z̃k‖ ≤ Sε whenever ‖δk − δ̃k‖ ≤ ε and k ≥ 0, (5.2.8)

then the scheme (5.2.2) is said to be zero-stable.

The challenge mentioned earlier about checking the convergence of the scheme is ad-

dressed by the following fundamental result.

Theorem 5.2.5. Assume that Eq. (5.2.1) is well-posed. Then the difference scheme (5.2.2)

is convergent if and only if it is both consistent with the differential equation and zero-stable.

Convergence of the scheme is important. A numerical method that is not convergent is

not useful. In addition to convergence, we want schemes which replicate the dynamics of the

continuous systems. A typical example is the so called exact scheme. For the exact scheme,

the local truncation error is zero.
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Definition 5.2.6. (Mickens [61]) A numerical method (5.2.2) that approximates (5.2.1) is

called an exact scheme whenever the difference equation (5.2.2) and the differential equa-

tion (5.2.1) have the same general solutions at the discrete time t = tk. In particular, with

z(t) being the solution of the initial value problem (5.2.1) we have zk = z(tk).

Definition 5.2.7. (Anguelov and Lubuma [3]) The difference equation (5.2.2) is called a

nonstandard finite difference (NSFD) scheme if at least one of the following conditions is

satisfied:

(i) In the first order discrete derivative D∆tz
k ≈ .

z(tk), the classical denominator h = ∆t

is replaced by a nonnegative function φ : (0,∞) → (0,∞) satisfying the asymptotic

relation (Rule 2)

φ(∆t) = ∆t+O
(
[∆t]2

)
. (5.2.9)

(ii) In the expression G∆t(H, zk), the nonlinear terms are approximated in a nonlocal man-

ner. For example a term like z2(tk) is approximated by zk+1zk instead of zk2 (Rule 3).

Remark 5.2.8. Note that Definition 5.2.7 retains only two rules out of the five rules by

Mickens [62] to construct NSFD schemes. For convenience, the other rules are stated below.

(i) The order of the discrete derivative should be equal to the order of the corresponding

derivative of the differential equation. (Rule 1)

(ii) The special condition that holds for the solution of differential equations should also

hold for the solutions of the finite difference scheme. (Rule 4)

(iii) The scheme should not introduce extraneous or spurious solutions. (Rule 5)

The power of the NSFD schemes over standard numerical schemes is their potential to be

dynamically consistent with respect to the continuous model and is clarified in the next defi-

nition.
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Definition 5.2.9. (Anguelov and Lubuma [3]) Assume that the solution of (5.2.1) satisfies

a property P . The difference equation (5.2.2) is said to be qualitatively stable or dynamically

consistent with respect to property P if for all step sizes ∆t > 0, the discrete solution for

(5.2.2) satisfies P .

Below, we describe the minimal desirable property P for any scheme.

Definition 5.2.10. (Anguelov and Lubuma [3]) A difference scheme (5.2.2) that approx-

imates the differential equation (5.2.1) is said to be elementary stable if, for any value of

the step size ∆t, its fixed-points are exactly the equilibrium points of the differential sys-

tem (5.2.1) and these fixed-points for the difference scheme have the same linear stability or

instability properties as the differential system.

To illustrate the concept of an elementary stable NSFD scheme, we describe a general

result that is presented in Kama [50]. The dynamics of the system (5.2.1) will be captured

by a fixed nonzero number given by

Q ≥ max
{
|λ|2

2|Reλ| , λ ∈ Ω, Reλ 6= 0
}

where Ω =
⋃{

σ (J |z=z∗) , H(z∗) = 0
}
. (5.2.10)

Note that the set Ω of all eigenvalues of the Jacobian matrices J is supposed to be finite. We

define a nonnegative function φ(∆t) satisfying the asymptotic relation in Definition 5.2.7 as

φ(∆t) = ϕ(q∆t)
q

where 0 < ϕ < 1 and q ≥ Q. (5.2.11)

We then consider the nonstandard forward Euler scheme

zk+1 − zk

φ
= H(zk), (5.2.12)

as well as the nonstandard backward Euler scheme

zk+1 − zk

φ
= H(zk+1), (5.2.13)

as approximations. We are now in a position to state the following result.



71

Theorem 5.2.11. (Kama [50]) Assume that all equilibrium points of (5.2.1) are hyperbolic.

Then the NSFD schemes (5.2.12) - (5.2.13) with φ given in Eq. (5.2.11) are elementary

stable.

Remark 5.2.12. As pointed out earlier Theorem 5.2.11 is not valid when the equilibrium

points are not hyperbolic.

5.3 NSFD scheme for a class of epidemiological models

As reported by Wood et al. [86] most epidemiological models contain a productive and

a destructive component. In this thesis we consider the following class of such models:

dzi
dt

= Hi(z(t)) = gi(z(t))− zi(t)ri(η)− zi(t)pi(z(t)), i = 1, 2, · · · , n, (5.3.1)

where gi, pi : Rn → R+ are sufficiently smooth functions, gi ≥ 0, ri ≥ 0, and η is a set

of parameters. We assume that the system (5.3.1) has an equilibrium point z∗ such that

pi(z∗) = 0.

In the spirit of the elementary stable NSFD schemes (5.2.12) and (5.2.13), we introduce

for (5.3.1) a NSFD scheme of the form:

zk+1
i − zki
φ

= gi(zk)− zki ri(η)− zk+1
i pi(zk). (5.3.2)

In order to preserve positivity and elementary stability of the dynamical system (5.3.1), the

complex denominator function φ in (5.2.11) is chosen in a more explicit and specific manner

as follows:

(i) The number q captures the parameters of the model and the eigenvalues λ1, · · · , λn of

the Jacobian matrix of H at z = z∗:

q ≥ max
{
ri(η) : i = 1, · · · , n

}
∪
{ |λi|2

2|Reλi|
: i = 1, · · · , n and Reλi 6= 0

}
. (5.3.3)
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(ii) The function 0 < ϕ < 1 is taken such that

φ = φ(∆t) = 1− e−q∆t
q

. (5.3.4)

Then we have

φ(∆t) < 1
q
≤ 1
ri(η) : i = 1, · · · , n (5.3.5)

and

φ(∆t) < 1
q
≤ 2|Reλi|
|λi|2

: i = 1, · · · , n, Reλi 6= 0. (5.3.6)

Eq. (5.3.2) can be written explicitly as:

zk+1
i = (1− φri(η))zki + φgi(zk)

1 + φpi(zk)
. (5.3.7)

Using Eq. (5.3.5) we have the following result.

Theorem 5.3.1. The NSFD scheme (5.3.2), with φ given in (5.3.4), is dynamically consis-

tent with respect to the positivity property of the continuous model.

As observed in the proof of Theorem 5.2.11, we have the following result.

Proposition 5.3.2. (i) The point z∗ is an equilibrium point of the model (5.3.1) if and

only if z∗ is a fixed-point of the NSFD scheme (5.3.7).

(ii) The Jacobian matrix J for the model (5.3.1) evaluated at z∗ is linked to the Jacobian

matrix JNS for the NSFD scheme evaluated at z∗ through the formula

JNS = In + φJ. (5.3.8)

(iii) If z∗ is hyperbolic, then z∗ is asymptotically stable for (5.3.1) if and only if it is asymp-

totically stable for (5.3.7).
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Proof. (i) The statement follows from the equivalence, for every i = 1, · · · , n, of the

following equations

z∗i = (1− φri(η))z∗i + φgi(z∗)
1 + φpi(z∗)

,

z∗i + z∗i φpi(z∗) = z∗i − φri(η)z∗i + φgi(z∗),

φ(gi(z∗)− z∗i pi(z∗)− ri(η)z∗i ) = 0,

Hi(z∗) = 0.

(5.3.9)

(ii) Let J and JNS be the associated Jacobian matrices of the differential system (5.3.1)

and the NSFD scheme (5.3.7) respectively, evaluated at the equilibrium point z∗ with

λ and λNS as their respective eigenvalues.

Then,

J =
((

∂gi
∂zj

) ∣∣∣∣
z∗
− (Inri)

∣∣∣∣
z∗
−
(
zi
∂pi
∂zj

) ∣∣∣∣
z∗

)
1≤i,j≤n

=
((

∂gi
∂zj

) ∣∣∣∣
z∗
−
(
zi
∂pi
∂zj

) ∣∣∣∣
z∗

+ diag(−ri)
)

1≤i,j≤n
(5.3.10)

and

JNS =
((

φ
∂gi
∂zkj

) ∣∣∣∣
z∗
− (In − φri)

∣∣∣∣
z∗
−
(
φzki

∂pi
∂zkj

) ∣∣∣∣
z∗

)
1≤i,j≤n

= In + φ

((
∂gi
∂zkj

) ∣∣∣∣
z∗
−
(
zki
∂pi
∂zkj

) ∣∣∣∣
z∗

+ diag(−ri)
)

1≤i,j≤n

= In + φJ. (5.3.11)

Eq. (5.3.11) can be written as

J = JNS − In
φ

. (5.3.12)

Thus, the eigenvalues of the matrices J and JNS are related by the the following equa-

tion:
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det(J − λiIn) = det

(
JNS − In

φ
− λiIn

)

=
(

1
φ

)n
det (JNS − (1 + λiφ)In) . (5.3.13)

(iii) Let z∗ be an asymptotically stable equilibrium of (5.3.1). Then, considering that it is

hyperbolic, we have Reλi < 0, i = 1, · · · , n. It follows from (ii) that the eigenvalues of

JNS are λNS,i = 1 + φλi, i = 1, · · · , n. We have

|λNS,i|2 = (1 + φλi)(1 + φλi)

= φ2|λi|2 − 2φ|Reλi|+ 1.
(5.3.14)

It follows from (5.3.6) that |λNS,i| < 1. Let z∗ be an unstable fixed-point of (5.3.1).

Hence there exists an eigenvalue λj such that Reλj > 0. Then

|λNS,j|2 = (1 + φλj)(1 + φλj),

= [(1 + φReλj) + iφImλj ] [(1 + φReλj)− iφImλj ] ,

= (1 + φReλj)2 + φ2(Imλj)2,

= 1 + 2φReλj + φ2(Reλj)2 + φ2(Imλj)2,

= 1 + 2φReλj + φ2[(Reλj)2 + (Imλj)2],

= 1 + 2φ|Reλj|+ φ2|λj|2 > 1.

(5.3.15)

Therefore, z∗ is unstable for (5.3.7).

Remark 5.3.3. It cannot be claimed that the scheme (5.3.7) fully replicates the properties

of z∗ when it is not hyperbolic. However, we have the following property

λi = 0 ⇔ λNS,i = 1, (5.3.16)

that is if the system (5.3.1) is in the bifurcational state discussed in the theorem by Castillo-

Chavez and Song [16], so is the scheme (5.3.7). The dynamic consistency with respect to

backward bifurcation for specific models is discussed in the following Subsections.
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Corollary 5.3.4. Let the continuous dynamical system (5.3.1) have a nonhyperbolic equilibrium-

point z∗ such that λi = 0 for some i (i.e. a simple eigenvalue of the matrix J). If this

differential system undergoes a bifurcation at the point z∗, then the NSFD scheme (5.3.7)

will undergo a bifurcation at the fixed-point z∗.

Lemma 5.3.5. (Casulli and Greenspan [19]) If the sequence {ei}, i = 0, 1, 2, · · · , n satisfies

‖ei+1‖ ≤ β‖ei‖+ α, i = 0, 1, 2, · · · , n− 1,

where β and α are nonnegative constants and β 6= 1, then

‖ei‖ ≤ βi‖e0‖+ βi − 1
β − 1 α, i = 1, 2, · · · , n.

Theorem 5.3.6. The NSFD scheme (5.3.7) is convergent and of order one.

Proof. This theorem can be proved by showing that the local truncation error Rk+1 in

Definition 5.2.2 is such that Rk+1 = O(∆t), combined with Theorem 5.2.6. However, given

the specific structure of the model (5.3.1) and of the NSFD scheme (5.3.7), we provide below

a direct proof inspired by Lambert [54]. Let us write (5.3.7) in the form:

zk+1
i = Gi(φ, zk) (5.3.17)

where Gi(φ, zk) is given by the right hand side of (5.3.7). We fix t∗ which can be written as

t∗ = k∆t = tk (5.3.18)

for different values of k and different ∆t. Our task is to show that

‖zk − z(t∗)‖∞ := max
i
|zki − zi(t∗)| ≤M∆t, M > 0, (5.3.19)

where M represents various constants linked to the fact that the right-hand side of (5.3.1) is

Lipschitz on the compact set in which the model is considered. Expand zi(tk+1) = zi(tk+∆t)
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in a Taylor series at tk to obtain:

zi(tk + ∆t) = zi(tk) + ∆tdzi
dt

(tk) + 1
2(∆t)2d

2zi
dt2

(ξ) where ξ ∈ (tk, tk+1), (5.3.20)

which in view of (5.3.1) gives

zi(tk + ∆t) ≤ zi(tk) + ∆t(gi(z(tk))− zi(tk)ri(η)− zi(tk)pi(z(tk))) + (∆t)2

2 M. (5.3.21)

Likewise for the discrete solution, we have

zk+1
i = zki + φ

∂zk+1
i

∂φ

∣∣∣∣
φ=0

+ 1
2(φ)2∂

2zk+1
i

∂φ2

∣∣∣∣
φ=0

+O(φ)3. (5.3.22)

Evaluating the derivatives and using the asymptotic relation (5.2.9), we have

zk+1
i ≤ zki + ∆t

(
gi(zk)− rizki − zki pi(zk)

)
+ (∆t)2

2 M. (5.3.23)

From (5.3.21) and (5.3.23), we have

zk+1
i − zi(tk+1) ≤ (zki − zi(tk)) + ∆t

[
gi(zk)− rizki − zki pi(zk)− gi(z(tk)) + rizi(tk) + zi(tk)pi(zk)

]
+ (∆t)2

2 M.

(5.3.24)

Let eik = zki − zi(tk), then

‖eik+1‖ ≤ ‖zki − zi(tk)‖+ ∆t‖Hi(zk)−Hi(z(tk))‖+ (∆t)2

2 M

≤ ‖zki − zi(tk)‖+ ∆tLi‖zk − z(tk)‖+ (∆t)2

2 M

≤ ‖zk − z(tk)‖∞ + ∆tLi‖zk − z(tk)‖∞ + (∆t)2

2 M

≤ (1 + ∆tLi)‖zk − z(tk)‖∞ + (∆t)2

2 M. (5.3.25)

Consequently, the following relation holds

‖ek+1‖∞ ≤ (1 + ∆tL)‖ek‖∞ + (∆t)2

2 M where L = max{Li}. (5.3.26)
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By applying Lemma 5.3.5 we obtain

‖ek‖∞ ≤ (1 + ∆tL)k‖e0‖∞ + (1 + ∆tL)k − 1
1 + ∆tL− 1

(∆t)2

2 M. (5.3.27)

Since we have ‖e0‖∞ = 0, Eq. (5.3.27) becomes

‖ek‖∞ ≤

(
ek∆tL − 1

)
L

∆t
2 M. (5.3.28)

5.4 NSFD scheme for the SIS model

The SIS model (4.2.1), with vaccination, written in the equivalent form (4.2.5) has the

productive-destructive structure described in the model (5.3.1). In view of the analysis in

Section 5.3, we propose the following NSFD scheme
Sk+1 − Sk

ψ(∆t) = −βSk+1 I
k

N
− φvSk + cIk

Ik+1 − Ik

ψ(∆t) = βSk+1 I
k

N
+ σβ(N − Sk+1 − Ik+1)I

k

N
− cIk

(5.4.1)

where the number q is determined according to the eigenvalues of the matrix J in (4.2.27)

as follows:

ψ(∆t) = 1− e−q∆t
q

with q ≥ φv = |λ1|. (5.4.2)

Note that the eigenvalue λ2 = ρc is not considered in accordance with (5.2.10) because it

depends on a bifurcation parameter and could easily destroy hyperbolicity of the equilibrium

point.

Remark 5.4.1. There are many ways of constructing NSFD schemes for (4.2.5) (see Mick-

ens [61], Mickens [60], Mickens [62]). The one proposed here has the following advantages:

(i) By adding the two equations in (5.4.1), we obtain

Sk+1 + Ik+1 − (Sk + Ik)
ψ

= σβ(N − Sk+1 − Ik+1)I
k

N
− φvSk. (5.4.3)
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Thus, the following conservation law associated with the continuous system (4.2.5) is

preserved:
.
S +

.
I = σβ(N − S − I) I

N
− φvS. (5.4.4)

As shown in Mickens [63], conservation laws are important in the design of dynamically

consistent NSFD schemes.

(ii) Rule 3 on the nonlocal approximation of nonlinear terms is reinforced to guarantee

among other things the nonnegativity of discrete schemes.

(iii) The condition (5.4.2) defining q is in line with the general relation in (5.3.3).

(iv) Last but not least, the NSFD scheme (5.3.7) is in the spirit of Section 5.2. It thus

enables us to appply Corollary 5.3.4 directly without investigating the eigenvalues for

the discrete case.

We now want to apply Theorem 3.5.1 which pertains to the direction of the bifurcation

of the discrete model (5.4.1). Upon rearrangement, the NSFD scheme (5.4.1) takes the

following Gauss-Seidel cycle which is appropriate for computational purposes:

Sk+1 = (1− ψφv)Sk + ψcIk

1 + βψ
Ik

N

= F1(z1, z2)

Ik+1 =
ψβ(1− σ)Sk+1 I

k

N
+ (1 + cρψ)Ik

1 + ψσβ
Ik

N

= F2(z1, z2)


(5.4.5)

where

(z1, z2) = (Sk, Ik), ρ = R0 − 1 is the bifurcation parameter, (5.4.6)

and the corresponding Jacobian matrix is

JNS =


−ψφv + 1 ψc

0 1

 = I + ψJ, (5.4.7)
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as described in Eq. (5.3.11), where I is the identity matrix. The eigenvalues of JNS are

λ1 = 1− ψφv < 1 and λ2 = 1.

With ρ = 0, the respective right and left eigenvectors associated with λ2 = 1 are

w =


c

φv

1

 and v =


0

1

 . (5.4.8)

At (z1, z2, ρ) = (0, 0, 0), we obtain the following result

∂2F2

∂z2
1

= 0, ∂2F2

∂z1∂z2
= ψβ(1− σ)(1− ψφv)

N
,

∂2F2

∂z2
2

= 2ψ2cβ(1− σ)
N

− 2σβψ
N

. (5.4.9)

Consequently, the coefficients a and b in Eq. (3.5.1) are given by

ã = ψa (5.4.10)

and

b̃ = ψb > 0, (5.4.11)

where a and b are as defined in equations (4.2.30) and (4.2.31), respectively. We have

established the following result.

Theorem 5.4.2. The NSFD scheme (5.4.1) is dynamically consistent with respect to the

backward bifurcation property of the continuous SIS model with vaccination. That is, the

discrete SIS model (5.4.1) undergoes the backward bifurcation at R0 = 1 under the condi-

tion (4.2.26) in Theorem 4.2.1.
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5.5 NSFD scheme for the malaria model

In this section, the malaria model (4.3.1) is written in the equivalent form:

.
Nh = Λh + ψhNh − fhNh − δhIh,
.
Eh = cβhvIvSh −M1Eh,
.
Ih = νvEh −M2Ih,
.
Rh = γhIh −M3Rh,
.
Nv = ψvNv − fvNv,
.
Ev = c(βvhIh + β̃vhRh)Sv −M4Ev,
.
Iv = νvEv − fvIv.

(5.5.1)

The right hand side of Eq. (5.5.1) has a positive function of inflows and a component which

models outflows. Thus, it has the productive-destructive structure given in Eq. (5.3.1).

Therefore, we propose the following NSFD scheme:

Nk+1
h −Nk

h

φ
= Λh + ψhN

k
h − fhNk

h − δhIkh ,

Ek+1
h − Ek

h

φ
= cβhvI

k
vS

k+1
h −M1E

k
h,

Ik+1
h − Ikh

φ
= νvE

k
h −M2I

k
h ,

Rk+1
h −Rk

h

φ
= γhI

k
h −M3R

k
h,

Nk+1
v −Nk

v

φ
= ψvN

k
v − fvNk

v ,

Ek+1
v − Ek

v

φ
= c(βvhIkh + β̃vhR

k
h)Sk+1

v −M4E
k
v ,

Ik+1
v − Ikv

φ
= νvE

k
v − fvIkv .

(5.5.2)

Here the complex denominator function is given by

φ = φ(∆t) = 1− e−q∆t
q

where q ≥ max
{
fh, fv,M1,M2,M3,M4,

|λ|2

2|Reλ|

}
, (5.5.3)

and λ represents all the eigenvalues of the Jacobian matrix in Eq. (4.3.29) with negative real

parts. (For an alternative NSFD scheme for the model Eq. (4.3.1), we refer the reader to
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Anguelov et al. [7]). The analogue of the comments in Remark 5.4.1 can be made for the

NSFD scheme (5.5.2). The scheme (5.5.2) can be written in the following explicit form

Nk+1
h = φΛh + φψhN

k
h + (1− φfh)Nk

h − φδhIkh ,

Ek+1
h = φcβhvI

k
v (Nk+1

h − Ik+1
h −Rk+1

h ) + (1− φM1)Ek
h

1 + cφβhvIkv
,

Ik+1
h = φνhE

k
h + (1− φM2)Ikh ,

Rk+1
h = φγhI

k
h + (1− φM3)Rk

h,

Nk+1
v = φψvN

k
v + (1− φfv)Nk

v ,

Ek+1
v = φc(βvhIkh + β̃vhR

k
h)(Nk+1

v − Ik+1
v ) + (1− φM4)Ek

v

1 + φc(βvhIkh + β̃vhRk
h)

,

Ik+1
v = φνvE

k
v + (1− φfv)Ikv .

(5.5.4)

The Jacobian matrix of the map in Eq. (5.5.4) evaluated at the DFE=(N∗h , 0, 0, 0, N∗v , 0, 0)

is given by

JNS =



1− φB 0 −φδh 0 0 0 0

0 1− φM∗1 0 0 0 0 φc∗βhvN
∗
h

0 φνh 1− φM∗2 0 0 0 0

0 0 φγh 1− φM∗3 0 0 0

0 0 0 0 1− φ(f∗v − µ1v) 0 0

0 0 φc∗βvhN
∗
v φc∗β̃vhN

∗
v 0 1− φM∗4 0

0 0 0 0 0 φνv 1− φf∗v


= I + φJ,

(5.5.5)

as described in Eq. (5.3.11), where I is the identity matrix. As mentioned earlier the sim-

ilarity between the NSFD schemes (5.3.2) and (5.5.2) enables us to appply Corollary 5.3.4

directly instead of investigating the eigenvalues of JNS. The coefficients that determine the
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direction of the bifurcation at R0 = 1 as given in Eq. (3.5.1) of Theorem 3.5.1 are

ã = φa and b̃ = φb > 0 (5.5.6)

where a and b are defined in equations (4.3.39) and (4.3.40). Then using Theorem 3.5.1, we

obtain the following result which shows that the numerical scheme (5.5.2) correctly replicates

the properties of the bifurcation for model (4.3.1) as stated below.

Theorem 5.5.1. The NSFD scheme (5.5.2) is dynamically consistent with the bifurcation

property of the continuous malaria model in the sense that the discrete scheme (5.5.2) exhibits

a backward bifurcation at R0 = 1 if Π∗ > 1 (i.e. a > 0) and a forward bifurcation if Π∗ < 1

(i.e. a < 0).

5.6 Numerical simulations

In this section, we provide diagrams of the NSFD schemes (5.4.1) and (5.5.2). These

diagrams support the fact that the NSFD schemes preserve the backward/forward bifurcation

properties of the continuous SIS and malaria models.

For the NSFD scheme of the SIS with vaccination, the diagrams below are plotted using

data set in Table 5.1. When R0 = 0.04 < 1, Fig. 5.1 illustrates that the disease may die

out or persist depending on wider (φv = 0.02) or smaller (φv = 0.001) vaccine coverage.

This supports the results of Theorems 4.2.1 and 4.2.4. Backward bifurcation is shown in

Fig. 5.2(a) with σ = 0.0999; and the vaccine is very effective. In this scenario we observe the

existence of a positive endemic equilibrium even though R0 < 1. In Fig. 5.2(b), σ = 0.9001

which means that the vaccine is not very effective. The bifurcation in this case is forward.

For the NSFD scheme of the malaria model, diagrams are plotted using the data set in

Chitnis et al. [23]; for convenience we reproduce it in Table 5.2. The diagram in Fig. 5.3(a)

depicts a forward bifurcation when the disease-induced death rate δh = 0.3419× 10−4 which
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is much less than the threshold in Theorem 4.3.3 (i.e δcrith = 2.49× 10−4) and R0 = 1.0289.

This scenario is similar to the illustration in Fig. 2.5. As the bifurcation parameter c∗ is

varied, the value of the basic reproduction number R0 also varies. The value of ζ1 = 0.00072

coincides with R0 = 1 and thus, c∗ = ζ1 is a bifurcation point. In this case, there is a

unique small stable endemic equilibrium when R0 > 1. The epidemiological implication of

this phenomenon is that, the major requirement to prevent further spread of the disease is

to reduce the basic reproduction number below one. The coexistence of the asymptotically

stable disease-free equilibrium with a small unstable endemic equilibrium and a larger stable

endemic equilibrium is illustrated in Fig. 5.3(b) with δh = 2.7× 10−4 and R0 = 0.9988. This

situation is similar to the case illustrated in Fig. 2.6. The bifurcation point is ζ1 = 0.00074

and again it coincides with R0 = 1. The existence of a backward bifurcation makes disease

control much harder because reducing R0 below one is no longer sufficient. In order to

bring the disease under control, measures should be taken to reduce c∗ below 0.00072 which

coincides with a specific value of R0 < Rc
0 as discussed in Remark 4.2.4. In Fig. 5.4 we plot

the proportion of infectious individuals using two different initial populations to illustrate

the possibility of the disease persistence even though R0 < 1.

We illustrate the result of Theorem 4.3.3 by plotting the graph of the coefficient a given in

Eq. (4.3.39) against the disease-induced death rate δh in Fig. 5.5.

Parameters set1 set 2
N 500 500
I(0) 20 0
∆t 1
c 0.01 0.02
β 0.02 0.2
φv 0.02 & 0.001 0.02
σ 0.02 0.9001 &

0.0999

Table 5.1: Data set for the SIS model.
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Figure 5.1: Dynamics of the SIS model versus vaccination coverage: Data
set 1.
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Parameters set1
Λh 3.285× 10−2

ψh 7.666× 10−5

ψv 0.4
βvh 0.8333
β̃vh 8.333× 10−2

σv 0.6
σh 18
νh 8.333× 10−2

νv 0.1
γh 3.704× 10−3

ρh 1.460× 10−2

µ1h 4.212× 10−5

µ2h 10−7

µ1v 0.1429
µ2v 2.279× 10−4

βhv 2× 10−2

Table 5.2: Data set for the malaria model.
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(a)

(b)

Figure 5.2: Bifurcation direction versus vaccine efficacy (Data set 2):(a) Backward bi-
furcation (effective vaccine, σ = 0.0999). (b) Forward bifurcation (ineffective vaccine,
σ = 0.9001).
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(a)

(b)

Figure 5.3: Bifurcation direction versus disease-induced death rate (δh): (a) Forward
bifurcation (δh = 0.3419× 10−4). (b) Backward bifurcation (δh = 2.7× 10−4).
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on the initial population, even though the basic reproduction number is less than one.
This diagram illustrates that there is a possibility of the occurrence of a backward
bifurcation at R0 = 1.
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Figure 5.5: The graph of the bifurcation coefficient a as a function of the disease-
induced death rate δh.
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CHAPTER 6. CONCLUSION

This thesis is motivated by two works of great importance in the field, and a current

gap in our knowledge which requires investigation. The first element pertains to a theorem

stated and proved in Castillo-Chavez and Song [16] regarding sufficient conditions for a con-

tinuous dynamical system to undergo the backward bifurcation phenomenon. The theorem

is extensively used in epidemiology. This is mostly done through computer software codes

and numerical simulations (see Garba et al. [37], Gumel et al. [40], Hussaini et al. [49],

Hassan et al. [44]). In applying the theorem, it becomes impossible not to appreciate the

power of the involved Centre Manifold Theory.

The second motivation for this thesis is a conjecture stated in Chitnis et al. [23] for a

complex and strongly nonlinear malaria model. The conjecture reads as follows: The model

undergoes the backward bifurcation phenomenon whenever the disease-induced death rate is

large enough. This conjecture is illustrated by numerical simulations in Chitnis et al. [23]

and to some extent in Anguelov et al. [7].

The third motivation is that no rigorous analysis has been done for the few existing

NSFD schemes that approximate epidemiological models that undergo the backward bifur-

cation phenomenon. Thus far the preservation of this property by NSFD schemes was only

illustrated through numerical tests (as seen in Garba et al. [36]).

In this thesis, we have addressed the above concerns and carried out an in-depth study of

sufficient conditions that guarantee the occurrence of the backward bifurcation phenomenon

in two epidemiological models. Our findings can be summarised as follows:
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1. We re-centred the context of the theorem in Castillo-Chavez and Song [16] by high-

lighting its advantages over the laborious power series approximations method. We

further showed that, even if the higher order terms are not truncated in the theo-

rem, the signs of the coefficients a and b remain the main determining factors of the

bifurcation direction at R0 = 1.

2. We stated and proved a result, which is new, to the best of the author’s knowledge, on

the discrete analogue of the main theorem in Castillo-Chavez and Song [16]. Our result

is designed for bifurcation analysis of discrete dynamical systems. The importance and

relevance of this result is clear in the light of the fact that, transposing theorems on

continuous dynamical systems to discrete dynamical systems is often a challenge. A

typical example is the Poincaré-Bendixon theorem (Brauer and Castillo-Chavez [13]).

3. We constructed NSFD schemes for the SIS and malaria models by Villavicencio-Pulido

et al. [79] and Chitnis et al. [23], respectively.

4. We established theoretically and computationally that the NSFD schemes preserve

the backward bifurcation property of the two continuous models. To the best of the

author’s knowledge, this thesis is one of a few works which deal with NSFD schemes

for epidemiological models that undergo a backward bifurcation. The addition of an

in-depth analysis of the schemes made sure that we have contributed value to the few

existing works (see Garba et al. [37], Anguelov et al. [7]).

The results obtained in this thesis and challenges encountered during the process, have lead

to numerous research questions which require further investigation. Some of them are listed

below.

(i) To investigate the existence of a critical value Rc
0 < 1 of the basic reproduction num-

ber such that the disease-free equilibrium of the considered malaria model is glob-
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ally asymptotically stable (GAS) for R0 < Rc
0 as shown for the SIS model (see Re-

mark 4.2.4). From the public health perspective, this is one of the ways to control and

manage communicable diseases (Donaldson and Rutter [29]).

(ii) To show that the NSFD scheme preserves the GAS property as stated in item (i) above.

(iii) To extend the findings and ideas of this thesis to some malaria models developed after

the one by Chitnis et al. [23] and to epidemiological models in which the backward

bifurcation phenomenon is due to causes other than the disease-induced death rate

(see Hussaini et al. [49], Gumel et al. [40]).

(iv) To investigate an extension of the theorem by Castillo-Chavez and Song [16] to a

case when zero is a double eigenvalue. Although the Takens-Bogdanov normal form

is analysed in Kuznetsov [53], the challenging nature of the question envisaged here

cannot be under-estimated in applications, specifically in epidemiology.

(v) To investigate the design of dynamically consistent NSFD schemes for continuous

dynamical systems which undergo the backward bifurcation but do not have the

productive-destructive structure. This requires further understanding of the dynam-

ics of the system under consideration, which needs to be incorporated into the NSFD

scheme by using Mickens’ rules and other relevant strategies (see Mickens [61],[62],[64],

Roeger and Mickens [73], Roeger [71]).
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