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Abstract

The main aim of this project is to develop a simple, yet mathematically

rigorous, version of Tomita-Takesaki theory for the von Neumann algebra

B(H ) with a faithful normal state.

In Chapter 2 we formulate the theory in terms of tensor products. Even

in this fairly general setup we can already attach physical interpretation

to the modular objects ∆ and J . Namely that, the former, the modular

operator induces a unique modular automorphism group σt which in turn

gives the time-evolution (dynamics) of some physical system. Whereas the

modular conjugation implements a time-reversal.

Chapter 3 presents an alternative formulation of Tomita-Takesaki the-

ory, unitarily equivalent to the first, but with the space of Hilbert-Schmidt

operators as our preferred choice of Hilbert space.

To gain further insight into the theory, in Chapter 4, a certain simple

physical system is explored. In particular, we look at how the system of an

electron in a constant orthogonal magnetic field, together with the associated

phenomenon of Landau levels, displays a modular structure in the sense of

Tomita-Takesaki theory. In such a case, the algebra of observables and its

commutant correspond to the two directions of the magnetic field.



Acknowledgments

I would like to extend my gratitude firstly to Prof. R. Duvenhage for his

supervision, time and unwavering patience in illuminating many topics in

this dissertation. Also for the invaluable and insightful discussions that

sparked interest like a fire whose flames once begun to catch, unlike a candle,

cannot easily be blown out. My thanks also goes to M. Snyman for his help

with the proof of the commutation theorem.

Many thanks and much love to my family for their support, patience and

understanding over the years. Especially to my boss Lady for her eternal

life-lessons of “not to look for a source of inspiration without, but to seek

and search even with science and research, to find and locate it within”.

Lastly I give thanks and praise to my Lamp for shining brighter than

the morning sun, which like the Messier 42 has never yet run out of oil. For

being the horrified witness and my personal source of unflickering light and

for the companionship through the night.



Contents

1 Background 11
1.1 Operators on Hilbert spaces . . . . . . . . . . . . . . . . . . . 11
1.2 Infinite matrix representation of operators . . . . . . . . . . . 15
1.3 Hilbert-Schmidt operators . . . . . . . . . . . . . . . . . . . . 20
1.4 C*-algebras and von Neumann algebras . . . . . . . . . . . . 25
1.5 States on B(H ) and density matrices . . . . . . . . . . . . . 29
1.6 The tensor product of Hilbert spaces . . . . . . . . . . . . . . 32
1.7 Hilbert-Schmidt operators and tensor products . . . . . . . . 34
1.8 The GNS construction in terms of tensor products . . . . . . 39

2 Tomita-Takesaki Theory 46
2.1 Summary of the Tomita-Takesaki theory and the modular

objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.2 The pre-Tomita operator . . . . . . . . . . . . . . . . . . . . . 48
2.3 The modular operator and modular group . . . . . . . . . . . 51
2.4 The modular conjugation . . . . . . . . . . . . . . . . . . . . 58
2.5 The modular groups on an algebra and its commutant . . . . 63
2.6 Physical time . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.7 General remarks . . . . . . . . . . . . . . . . . . . . . . . . . 67

3 Second approach: Hilbert-Schmidt operators 69
3.1 Left and right algebras . . . . . . . . . . . . . . . . . . . . . . 69
3.2 Modular conjugation and modular group . . . . . . . . . . . . 72
3.3 The cyclic and separating vector . . . . . . . . . . . . . . . . 75

4 Tomita-Takesaki theory and Landau levels 76
4.1 Review of classical motion in a magnetic field . . . . . . . . . 76
4.2 The quantum theory . . . . . . . . . . . . . . . . . . . . . . . 78
4.3 Two opposite field directions . . . . . . . . . . . . . . . . . . 81
4.4 The two algebras and J . . . . . . . . . . . . . . . . . . . . . 83
4.5 The Wigner transformation . . . . . . . . . . . . . . . . . . . 84

A Landau quantization 93

4



Index of Symbols and Conventions

General symbols

∅ : The empty set

N : Natural numbers {1, 2, 3, ...}.

R : Field of real numbers.

C : Field of complex numbers.

δjk : The Kronecker delta

Symbols defined in the text

A,B : Typical (C*-) algebras.

A′ : The commutant of the algebra A.

A ⊂ B : Means x ∈ A =⇒ x ∈ B.

A ∼= B : The algebras A,B are isomorphic.

A� B,A⊗ B : The algebraic (respectively, completion) tensor product of A and B.

B(H ,K ) : The space of bounded linear operators H → K .

B1(H ,K ) : The space of trace-class operators H → K .

B2(H ,K ) : The space of Hilbert-Schmidt operators H → K .

D(a) : The domain of the operator a.

G : The tensor product Hilbert space H ⊗H .

H ,K : Typical (complex) Hilbert spaces.

H : The conjugate Hilbert space of H .

H0 : The linear span of finitely many linear combitinations of the basis
elements {ej : j ∈ N}.

H : The Hamiltonian operator.

H⊥, H‖ : The perpendicular and parallel components of the Hamiltonian H re-
spectively.

I : An ideal in an algebra.

J0, J : The pre- and modular conjugation defined on H0⊗H0 and G, respec-
tively.
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L2(R, dx) : The function space over R with measure dx.

Pi : The projection |ei〉 〈ei|, where the ej are basis elements.

P : The momentum operator.

Q : The position operator.

S0, S : The pre- and Tomita operators respectively.

T : Temperature.

Tr : The trace functional on an algebra A, i.e. Tr : A → C.

U : The unitary operator defined in Sec.4.5.

A : Typical von Neumann algebra.

Al,Ar : The von Neumann algebras defined in Chap. 3.

W : The unitary transformation defined in Sec. 1.7.

X,Y : Typical vector (or normed) spaces.

a, b, c : Typical (bounded) linear operators

‖a‖ : The operator norm of a.

ã : The bounded linear extension of a.

a |M : The restriction of operator a onto the set M .

aT : The transpose of matrix a.

a∗ : The Hilbert-adjoint operator of a.

a, a† : The creation and annihilation operators.

a� b, a⊗ b : The algebraic (respectively, completion) tensor product of a and b.

a ∨ b : The bounded linear operator on B2(H ) defined in Chap. 3.

[·, ·] : The commutator on an algebra A. That is, [a, b] = ab − ba for all
a, b ∈ A.

〈·, ·〉 : An inner product on a Hilbert space.

idA : The identity operator on the algebra A.

1, 1A : The unit element of the algebra A.

j : The *-anti-isomorphic map defined in Sec.2.4.
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ker(a) : The kernel of operator a.

l2, l2(N), l2(N2) : The Hilbert sequence spaces.

lB : The magnetic length.

|n〉 , |n〉 ⊗ |m〉 : The quantum harmonic oscillator states on H and H ⊗H , respec-
tively.

x, y, z : Typical elements of a Hilbert space.

x∗ : The conjugate of the representation of x, i.e. x∗ :=
∑

j∈N ej x̄j where
x =

∑
j∈N ejxj .

x̄ : The element x ∈H view as an element of the conjugate Hilbert space
H .

x⊗ y : The elementary tensor of x and y.

∆0,∆ : The pre- and modular operators defined on H0 ⊗H0 and G, respec-
tively.

∆it : The unitary operator defined in Sec.2.3.

∆′ : The modular operator defined on the commutant.

Ω,Φ : The cyclic and separating vectors.

α, λ : Typical complex numbers.

ᾱ : The conjugate of a complex number α.

β := 1/T : The inverse temperature.

ι : The unitary map defined in Sec. 3.2.

µ : A faithful normal state on A given by µ(a) = Tr(ρa).

ω, ψ, ϕ : Typical states on an algebra.

ωB : The cyclotron frequency.

π : The (faithful) representation of B(H ) onto B(G).

Π, Π̃ : The gauge-invariant momentum, and pseudo-momentum.

ρ : A density operator.

σt, σ
Ω
t , σ

µ
t : The modular group on A.

σ′t : The modular group on the commutant of A.
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Conventions

(i) Unless explicitly stated otherwise, any vector space or algebra will be
over the field of complex numbers.

(ii) An inner product of an inner product space will always be taken to
be linear in the second argument and conjugate linear in the first
argument, as is conventional in physics.
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Prologue

The Tomita-Takesaki theory (or modular theory) has been one of the most
exciting subjects for operator algebras and for its many applications to math-
ematical physics [20]. The origins of the theory lie in two unpublished papers
of M. Tomita whose manuscripts were distributed to the participants of the
Baton Rouge conference in 1967.

At the same time Haag, Hugenholtz, and Winnink published their paper
[15] on the description of thermodynamic equilibrium states using the Kubo-
Martin-Schwinger (KMS) boundary condition. Probably Hugenholtz and
Winnink were the first to realize the similarity between certain aspects of
their approach and Tomita’s theory and hence the importance of this then
new mathematical theory for theoretical physics [6].

But general awareness of Tomita’s theory only came subsequently through
a slim volume published by M. Takesaki [31] in the Lecture Notes in Math-
ematics. In which Takesaki gave a careful and complete exposé of Tomita’s
work with many refinements and clarifications as well as several applications.
Since then this theory came to be known as the Tomita-Takesaki theory.

The Tomita-Takesaki theory is one of the most important and useful
developments in the history of operator algebras, giving a very precise and
intimate connection between an algebra and its commutant, along with a
one-parameter group of automorphisms [7]. This theory made possible the
great advances in the 1970s by A. Connes et al. on the classification of
factors.

Later on Connes remarked, concerning the relation between the KMS
condition and the modular operator of Tomita-Takesaki theory discovered
by Takesaki and Winnink, that it “remains one of the deepest points of
contact between physics and pure mathematics” [10]. Whereas R. Haag
described this connection as “a beautiful example of ‘prestabilized harmony’
between physics and mathematics” [14].

In this dissertation we will present a simple version of the Tomita-
Takesaki modular theory for a von Neumann algebra B(H ) with a faithful
normal state. This is a special case of the more general situation of the
theory (for example, see [8],[30]). This approach is close enough to the stan-
dard approach that it can also serve as an introduction to the more general
theory.

The broad structure of this dissertation consists of three parts with
clearly defined chapters, and is organized as follows:

• First, we give in Chapter 1 the basic mathematical background re-
quired to develop a simple version of the Tomita-Takesaki theory.

• The second part contains the main body of our project which is to
formulate the Tomita-Takesaki theory. In Chapter 2 we give the for-
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mulation of the theory in terms of tensor products, the advantage of
this approach lies in that we gain intuitive insight into the relation of
algebra and its commutant as “mirror images” of each other.

An alternative approach to the theory that has appeared in the physics
literature, centered around the Hilbert space of Hilbert-Schmidt oper-
ators, is presented in Chapter 3.

Even in this general framework we can already see how the modular
automorphism group gives the dynamics. This also allows us to attach
physical interpretation to the modular conjugation J as time reversal.
This approach gives additional insight into Tomita-Takesaki theory,
but the tensor product approach is the main focus of this dissertation.

• Finally to gain further insight into the theory, in Chapter 4 we look at
the Landau problem- related to the motion of a charged particle on the
flat xy-plane in the presence of a constant magnetic field along the z-
axis, along with the related phenomenon of Landau quantization. We
show how the algebra of observables associated with this physical sys-
tem displays a modular structure in the sense of the Tomita-Takesaki
theory, with the algebra and its commutant corresponding to the two
orientations of the magnetic field.

Our tensor product approach differs from the standard textbook treat-
ment of general Tomita-Takesaki theory, and gives a much more concrete
representation of the theory than one can obtain in general. The tensor
product approach also gives a clear indication that Tomita-Takesaki theory
is closely related to entanglement, in particular in our case via the (entan-
gled) cyclic vector Ω (for example, see [12]).

Furthermore, we use novel arguments to handle the unbounded operators
in the theory, which allows us to avoid most of the subtleties and technical
difficulties usually associated to unbounded operators.

The dissertation is mostly devoted to a mathematically rigorous devel-
opment of Tomita-Takesaki theory. However, when treating some of the
physics (in particular in Chapter 4 and the Appendix), we do not work
completely rigorous.
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Chapter 1

Background

Here we treat material needed in the rest of the dissertation. While much of
it is standard, we also develop some tools and techniques specific to our goals,
and which can not be found in standard texts, in particular Sections 1.5 and
1.8. Only separable Hilbert spaces over the complex field are considered in
this dissertation.

1.1 Operators on Hilbert spaces

In this section we review the basic properties of linear and conjugate-linear
operators on Hilbert spaces. We state results without proofs as they are
readily available (see, for example [18], [22]).

Definition 1.1.1 (Notation for operators). Let X and Y be complex vector
spaces, and a : D(a) → Y an operator, where D(a) ⊂ X is the domain of
a. We write either a(x) or ax to denote the image under a of an element
x ∈ D(a).

1. a is linear if a(αx+ y) = αax+ ay for all x, y ∈ D(a), α ∈ C.

2. a is conjugate linear if a(αx+y) = ᾱax+ay for all x, y ∈ D(a), α ∈ C.

3. a is injective if a(x) = a(y) implies x = y.

4. The kernel of a is ker(a) = {x ∈ D(a) : ax = 0}.

5. The range of a is R(a) = {ax : x ∈ D(a)}.

6. a is surjective if R(a) = Y .

7. a is a bijection if it is both injective and surjective.

We use either id or idX to denote the identity operator of a space X onto
itself.
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Definition 1.1.2 (Bounded operator). Let X and Y be complex normed
spaces. An operator a : D(a)→ Y , where D(a) ⊂ X, is said to be bounded
if there is a real number γ such that for all x ∈ D(a),

‖a(x)‖ ≤ γ‖x‖. (1.1.1)

An unbounded operator is an operator that is not bounded.

Remarks 1.1.3. The notions of boundedness and continuity are equivalent
for operators. Typically it is easier to check boundedness. An immediate
consequence of the definition is that (1.1.1) with γ = ‖a‖ gives

‖ax‖ ≤ ‖a‖‖x‖ (1.1.2)

which is used extensively.

Definition 1.1.4 (Isometries and isomorphisms). LetX,Y be normed spaces,
and let a : D(a) ⊂ X → Y be linear.

1. If a preserves the norm, i.e.

∀x ∈ D(a), ‖ax‖ = ‖x‖,

then a is called an isometry (hence bounded).

2. A bijective isometry a is called an isomorphism.

3. If there exists an isomorphism a from X into Y , then X is isomorphic
with Y , and X and Y are called isomorphic normed spaces.

On occasion, we will deal with conjugate-linear isometries and isomorphisms,
which are entirely analogous except that the operator a is conjugate-linear
instead of linear.

Denote by B(X,Y ) the collection of all bounded operators from X to Y ,
and write B(X) in place of B(X,X).

Example 1.1.5. If X,Y are normed spaces, then B(X,Y ) is itself a normed
space with the point-wise defined operations for addition and scalar multi-
plication, and norm the operator norm:

‖a‖ = sup
x 6=0

‖ax‖
‖x‖

= sup
‖x‖=1

‖ax‖. (1.1.3)

Moreover, if Y is a Banach space, then B(X,Y ) is a Banach space.

In particular, B(H ) is complete, where H is a Hilbert space.

Definition 1.1.6. Let {ej : j ∈ N} be an orthonormal basis for a separable
Hilbert space H .
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1. An operator a ∈ B(H ) is positive, and written a ≥ 0, if

〈x, ax〉 ≥ 0 ∀x ∈H .

2. For any positive operator a ∈ B(H ) we define

Tr(a) :=
∞∑
j=1

〈ej , aej〉 .

The number Tr(a) is called the trace of a and is independent of the
choice of orthonormal basis.

Definition 1.1.7 (Symmetric operator). Let a : D(a) → H be a linear
operator, which is densely defined on a Hilbert space H , i.e. D(a) is dense
in H . Then a is called a symmetric linear operator if for all x, y ∈ D(a),

〈ax, y〉 = 〈x, ay〉 . (1.1.4)

It can be shown that a densely defined operator on a Hilbert space H
is symmetric if and only if 〈ax, x〉 is real for all x ∈ D(a).

An unbounded operator a satisfying (1.1.4) cannot be defined on all of
H (cf. [22, Thm. 10.1-1]):

Theorem 1.1.8 (Hellinger-Toeplitz). If a linear operator a is defined on all
of a complex Hilbert space H and satisfies (1.1.4) for all x, y ∈H , then a
is bounded.

As a consequence of the above theorem, D(a) = H is impossible for
unbounded operators. This makes the problems of determining suitable
domains and extensions become of prime importance.

Definition 1.1.9. An extension of a : D(a)→H to a set M ⊃ D(a) is an
operator

ã : M →H such that ã |D(a)= a,

i.e. ãx = ax for all x ∈ D(a). Call a an operator on H if D(a) = H , and
an operator in H if D(a) lies in H but may not be all of H .

Extensions that are usually of practical importance are those which pre-
serve some basic property of the operator a : D(a) → H , for instance
linearity (if a is linear) or boundedness (if D(a) lies in H and a is bounded).

Theorem 1.1.10 (Bounded linear extension). Let H and K be Hilbert
spaces, and a : D(a) → K a bounded linear operator, where D(a) lies in
H . Then a has a unique extension

ã : D(a)→ K
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where D(a) is the closure of the domain of a. Moreover, ã is a bounded
linear operator of norm

‖ã‖ = ‖a‖.

If, in addition, a is isometric then ã is also isometric.

Remarks 1.1.11 (Conjugate linear operators). Completely analogous to
bounded linear operators, a bounded conjugate-linear operator has a unique
bounded conjugate-linear extension. In particular, the bounded extension
of an isometric conjugate-linear operator is itself isometric.

The Hilbert-adjoint of a densely-defined linear operator is given by:

Definition 1.1.12 (Hilbert-adjoint operator). Let a : D(a) → H be a
(possibly unbounded) densely-defined linear operator in a complex Hilbert
space H . Then the Hilbert-adjoint operator a∗ : D(a∗)→H of a is defined
as follows. The domain D(a∗) of a∗ consists of all y ∈H such that there is
a y ∈H satisfying

〈ax, y〉 = 〈x, y∗〉 (1.1.5)

for all x ∈ D(a). For each such y ∈ D(a∗) the Hilbert-adjoint operator a∗ is
then defined in terms of that y∗ by

y∗ = a∗y. (1.1.6)

Remarks 1.1.13. Note that by definition of a∗, it follows that

〈ax, y〉 = 〈x, a∗y〉 (1.1.7)

for all x ∈ D(a), y ∈ D(a∗), and R(a) = D(a∗).
The Hilbert-adjoint of a conjugate-linear operator a is also conjugate-

linear and satisfies
〈x, a∗y〉 = 〈y, ax〉 = 〈ax, y〉 (1.1.8)

for all x ∈ D(a) and y ∈ D(a∗).

Definition 1.1.14 (Self-adjoint linear operator). Let a : D(a) → H be a
linear operator, which is densely defined on a Hilbert space H . Then a is
called a self-adjoint linear operator if

a = a∗. (1.1.9)

We have the following special terminology for isomorphisms on Hilbert
spaces:

Definition 1.1.15 (Unitary operator). Let H and K be Hilbert spaces,
and u : D(u) ⊂ H → K be a linear isometric isomorphism. Then u is
called a unitary operator if

u∗u |D(u)= 1H and uu∗ |D(u∗)= 1K . (1.1.10)
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If such a u exists, H and K are said to be unitarily equivalent (or isomor-
phic).

A conjugate-linear isometric isomorphism for which (1.1.10) holds is
called an anti-unitary, and in this case H and K are said to be anti-
unitarily equivalent (or anti-isomorphic).

An isometry on an inner product space must preserve the inner product
as well as the norm.

Proposition 1.1.16. Let H be a Hilbert space. Then the following condi-
tions are equivalent:

1. u is a unitary operator on H .

2. u is surjective and preserves the inner product.

3. The range of u is dense in H and preserves the inner product.

1.2 Infinite matrix representation of operators

Here we represent operators on a separable Hilbert space as infinite matrices
with respect to a given orthonormal basis. This allows us to introduce the
notion of transposition of an operator with respect to the basis for use in
Tomita-Takesaki theory later on.

What we develop in this Section can be thought of as a simple gen-
eralization of the familiar case of linear operators and matrices on finite
dimensional spaces of [18, Sec.2.9 ].

If H is a separable Hilbert space, then (by [18, Thm.3.6-4]) H has a
countable orthonormal basis.

Definition 1.2.1. Let {ej : j ∈ N} be a countable orthonormal basis for
the Hilbert space H . The matrix representation of a ∈ B(H ) with respect
to {ej : j ∈ N} is the matrix [ajk]j,k∈N whose entries are given by

ajk := 〈ej , aek〉 (1.2.1)

for all j, k ∈ N.

Remarks 1.2.2 (Connection between operators and their matrix represen-
tations). Linear operators are matrix transformations and vice versa, this
holds in the finite dimensional case as well as in infinite dimension. Since
linear operators on finite dimensional normed spaces are trivially bounded,
it follows that every finite matrix is a representation of some bounded linear
operator. However, in the infinite dimensional case not every infinite matrix
represents a bounded operator.

We state the following result from elementary functional analysis without
proof.
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Theorem 1.2.3 (Riesz-Fischer). Let {ej : j ∈ N} be a countable orthonor-
mal basis for the Hilbert space H . The following statements are equivalent:

1. {ej : j ∈ N} is total, i.e. if 〈ek, x〉 = 0 ∀k ∈ N then x = 0.

2. {ej : j ∈ N} is closed, i.e.

∀x ∈H , x =
∞∑
k=1

ek 〈ek, x〉 . (1.2.2)

3. The linear span of the set {ej : j ∈ N} is dense in H , i.e. span{ej : j ∈ N} =
H .

4. Parseval relation holds, i.e. ∀x, y ∈H , 〈x, y〉 =
∑∞

k=1 〈x, ek〉 〈ek, y〉.

Proposition 1.2.4. Let [ajk]j,k∈N be the matrix representation of a ∈ B(H )
with respect to the orthonormal basis {ej : j ∈ N} for H . Then the action
of [ajk]j,k∈N on an infinite column [xk]k∈N representing x =

∑∞
k=1 xkek is

given by

ax =
∞∑
k=1

∞∑
j=1

ejajkxk,

and the sums can be interchanged.

Proof. Since aek ∈ H for all k ∈ N, then aek =
∑∞

j=1 ej 〈ej , aek〉. By
continuity and linearity of a, we get

ax = lim
n→∞

n∑
k=1

xkaek

=
∞∑
k=1

xkaek

=

∞∑
k=1

xk

 ∞∑
j=1

ej 〈ej , aek〉


=

∞∑
k=1

∞∑
j=1

ejajkxk.
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Furthermore, the continuity of the inner product gives

ax =
∞∑
j=1

ej 〈ej , ax〉

=

∞∑
j=1

ej

〈
ej , a

(
lim
n→∞

n∑
k=1

ekxk

)〉

=

∞∑
j=1

ej

〈
ej , lim

n→∞

n∑
k=1

xkaek

〉

=

∞∑
j=1

lim
n→∞

n∑
k=1

ej 〈ej , aek〉xk

=
∞∑
j=1

∞∑
k=1

ejajkxk.

Proposition 1.2.5. Let [ajk]j,k∈N and [bjk]j,k∈N be matrix representations of
a, b ∈ B(H ), respectively, with respect to the orthonormal basis {ej : j ∈ N}
for H . Then the matrix entries of the adjoint and product operations are
given by (a∗)jk = ākj and (ab)jk =

∑∞
l=1 ajlblk.

Proof. Let {ej : j ∈ N} be an orthonormal basis for H , then

(a∗)jk = 〈ej , a∗ek〉 = 〈ek, aej〉 = ākj ,

and

(ab)jk = 〈ej , abek〉 = 〈a∗ej , bek〉 =

∞∑
l=1

〈a∗ej , el〉 〈el, bek〉 =

∞∑
l=1

ajlblk.

The following gives a sufficient condition for an infinite matrix to deter-
mine a bounded linear operator.

Theorem 1.2.6 (Schur test). Suppose that [ajk]j,k∈N is an infinite matrix
satisfying the relations

∞∑
j=1

|ajk| ≤ α

and
∞∑
k=1

|ajk| ≤ β,
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where α, β ∈ R. Then an operator u defined on the Hilbert sequence space
l2, for all x ∈ l2, by u(x) = ((ux)j)j∈N with

(ux)j :=
∞∑
k=1

ajkxk (∀j ∈ N),

is bounded with ‖u‖ ≤
√
αβ.

Using the matrix representation of an operator we can define the trans-
position with respect to an orthonormal basis.

Definition 1.2.7 (Transpose). Let {ej : j ∈ N} be an orthonormal basis
for H . The transpose of a ∈ B(H ) is the operator aT such that

aTjk = (aT )jk :=
〈
ej , a

T ek
〉

= 〈ek, aej〉 = akj .

In terms of matrices, this means

aT ek :=
∞∑
j=1

ej(a
T )jk =

∞∑
j=1

ej 〈ek, aej〉 =
∞∑
j=1

ejakj (1.2.3)

for all k ∈ N.

Proposition 1.2.8. Let {ej : j ∈ N} be an orthonormal basis for H , and
a ∈ B(H ). Then:

1. The series in (1.2.3) converges, so that aT is well-defined.

2. For all a ∈ B(H ), aT ∈ B(H ) with ‖aT ‖ = ‖a‖.

3. For all a, b ∈ B(H ), (ab)T = bTaT .

Proof. Consider an orthonormal basis {ej : j ∈ N} for H , and let a, b ∈
B(H ).

1. By the Parseval relation, for all k ∈ N, we have

∞∑
j=1

| 〈ek, aej〉 |2 = ‖aej‖2 ≤ ‖a‖2,

and the partial sums are non-negative terms forming a monotone in-
creasing sequence which is bounded above by ‖a‖2. It follows that the
partial sums in (1.2.3) form a Cauchy sequence, since:∥∥∥∥∥∥

n∑
j=m

ej 〈ek, aej〉

∥∥∥∥∥∥
2

=

n∑
j=m

|〈ek, aej〉|2

so the partial sums
(∑n

j=1 |〈ek, aej〉|
2
)∞
n=1

is a Cauchy sequence. Thus

aT is well-defined.
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2. For x =
∑n

k=1 ekxk, we have

‖aTx‖2 =

∥∥∥∥∥∥
n∑
k=1

∞∑
j=1

ej(a
T )jkxk

∥∥∥∥∥∥
2

=
∞∑
j=1

∣∣∣∣∣
n∑
k=1

(aT )jkxk

∣∣∣∣∣
2

=

∞∑
j=1

∣∣∣∣∣
n∑
k=1

(aT )jkxk

∣∣∣∣∣
2

=

∥∥∥∥∥∥
n∑
k=1

∞∑
j=1

ej(a
∗)jkx̄k

∥∥∥∥∥∥
2

= ‖a∗x̄‖2

≤ ‖a∗‖2‖x̄‖2

= ‖a∗‖2‖x‖2

where x̄ =
∑n

k=1 ekx̄k, so

‖x̄‖2 =

n∑
k=1

|x̄k| =
n∑
k=1

|xk| = ‖x‖2.

Thus ‖aT ‖ ≤ ‖a∗‖ = ‖a‖, in particular aT ∈ B(H ). Furthermore,
‖a‖ = ‖(aT )T ‖ ≤ ‖aT ‖ , so ‖aT ‖ = ‖a‖ for all a ∈ B(H ).

3. For all a, b ∈ B(H ) and j, k ∈ N,(
(ab)T

)
jk

=
〈
ej , (ab)

T ek
〉

= 〈ek, (ab)ej〉

=

〈
ek, a

( ∞∑
l=1

el 〈el, bej〉

)〉

=

∞∑
l=1

〈ek, ael〉 〈el, bej〉

=

∞∑
l=1

aklblj .

On the other hand,

(bTaT )jk =
∞∑
l=1

bTjla
T
lk =

∞∑
l=1

aklblj .

19



Thus, 〈
ej , (ab)

T ek
〉

=
〈
ej , (b

TaT )ek
〉

for all j, k ∈ N, so (ab)T = bTaT .

Note that the transposition is given by the map

B(H )→ B(H ) : a 7→ aT

where (aT )jk = akj for all j, k ∈ N, and it is not independent of the choice
of basis.

1.3 Hilbert-Schmidt operators

Here we give a brief review of a special subclass of bounded operators which
plays an important and fundamental role in operator theory. These opera-
tors behave much like operators on finite-dimensional vector spaces, and for
this reason they are relatively easy to analyze.

For more details and proofs, the reader is referred to [7, I.8.5], [22, §2.4]
and [17, §2.6].

Definition 1.3.1. Let a be a linear operator on a separable Hilbert space
H . If there is an orthonormal basis {ej}j∈N such that

∞∑
j=1

‖a(ej)‖2 <∞, (1.3.1)

we say that a is Hilbert-Schmidt. Denote by B2(H ,H ) the space of all
Hilbert-Schmidt operators on H .

We will sometimes simply refer to the space of Hilbert-Schmidt operators
as B2(H ). It is easily verified that B2(H ) forms a complex vector space.

We now show that Def.1.3.1 is independent of the choice of orthonormal
basis used (i.e. if Eq.(1.3.1) is satisfied in one such basis, then it is satisfied
in all of them).

Proposition 1.3.2. If a is a Hilbert-Schmidt operator on H (with the cor-
responding orthonormal basis {ej}j∈N), then the value of the sum in (1.3.1)
is independent of the choice of basis. Furthermore,

∞∑
j=1

‖a(ej)‖2 =

∞∑
j=1

‖a∗(ej)‖2 . (1.3.2)
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Proof. Let {fk}k∈N be another basis for H , then by the Parseval relation

n∑
j=1

‖a(ej)‖2 =

n∑
j=1

∞∑
k=1

| 〈a(ej), fk〉 |2

=
∞∑
k=1

n∑
j=1

| 〈ej , a∗(fk)〉 |2

≤
∞∑
k=1

‖a∗(fk)‖2,

so
∑∞

j=1 ‖a(ej)‖2 ≤
∑∞

k=1 ‖a∗(fk)‖2. Swapping the roles,

∞∑
j=1

‖a∗(fj)‖2 ≤
∞∑
k=1

‖a(ek)‖2

(since a∗∗ = a). Therefore

∞∑
j=1

‖a(ej)‖2 =

∞∑
j=1

‖a∗(fj)‖2 =

∞∑
j=1

‖a(fj)‖2

(applying the previous line to the case where ej = fj).

Definition 1.3.3. Let a be a Hilbert-Schmidt operator on the separable
Hilbert space H . Define

‖a‖2 :=

 ∞∑
j=1

‖a(ej)‖2
1/2

, (1.3.3)

‖a‖2 is called the Hilbert-Schmidt norm of a.

Corollary 1.3.4. If a ∈ B2(H ), then a∗ ∈ B2(H ) and ‖a‖2 = ‖a∗‖2.

Theorem 1.3.5. [22, Theorem 2.4.10] If a, b ∈ B2(H ) and α ∈ C, then:

1. ‖a+ b‖2 ≤ ‖a‖2 + ‖b‖2 and ‖αa‖2 = |α|‖a‖2.

2. ‖a‖ ≤ ‖a‖2.

3. ‖ab‖2 ≤ ‖a‖‖b‖2 and ‖ab‖2 ≤ ‖a‖2‖b‖.

Corollary 1.3.6. [22, Corollary 2.4.11] The space of all Hilbert-Schmidt
operators B2(H ) forms a non-trivial ideal for B(H ), that is, B2(H ) ⊂
B(H ) such that for all b, c ∈ B(H ) and a ∈ B2(H )

bac ∈ B2(H ),

and
‖bac‖2 ≤ ‖b‖‖a‖2‖c‖.
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We quote the following basic functional analysis results without proof
(see [18, Ex. 3.1-6]):

Proposition 1.3.7 (The Hilbert space of sequences). 1. The space of absolute-
square summable sequences

l2(N) =

{
f : N→ C |

∑
n∈N
|f(n)|2 <∞

}

=

x = (xj)j∈N |
∞∑
j=1

|xj |2 <∞


with the inner product

〈x, y〉l2(N) =
∞∑
j=1

x̄jyj

is a (separable) Hilbert space.

2. Similarly, the space of absolute-square double-summable sequences,

l2(N× N) = l2(N2) =

f : N× N→ C |
∑
m,n∈N

|f(m,n)|2 <∞


=

a = (aj,k)j,k∈N |
∞∑

j,k=1

|aj,k|2 <∞

 ,

with the inner product given by

〈a, b〉l2(N2) =
∞∑

j,k=1

āj,kbj,k

is a (separable) Hilbert space.

We now make the following observation (cf. [22, Example 2.4.1])- for
any a ∈ B(H ) with matrix representation [aj,k]j,k∈N with respect to the
orthonormal basis {ej}j∈N, where aj,k = 〈ej , a(ek)〉, we have that

‖a‖22 =
∞∑
j=1

‖a(ej)‖2 =
∞∑

j,k=1

| 〈ej , a(ek)〉 |2 =
∞∑

j,k=1

|aj,k|2

by the Parseval relation. Hence

a ∈ B2(H ) ⇐⇒ (aj,k)j.k∈N ∈ l2(N2).
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We introduce the following notation, called Dirac notation, which is often
useful when dealing with operators in B(H ); the operator |y〉 〈z| ∈ B(H )
is defined as

|y〉 〈z|x := y 〈z, x〉 (1.3.4)

for all x, y, z ∈H .

Theorem 1.3.8. Let {ej}j∈N be an orthonormal basis for the Hilbert space
H . Then:

1. The space of all Hilbert-Schmidt operators B2(H ) form a Hilbert space
with the inner product given by

〈a, b〉2 = Tr(a∗b). (1.3.5)

2. The set of vectors

{Xij := |ei〉 〈ej | | i, j ∈ N} (1.3.6)

form an orthonormal basis for B2(H ), i.e. 〈Xij , Xkl〉 = δi,kδj,l. In
particular, the vectors

Pi = Xii = |ei〉 〈ei| (1.3.7)

are one-dimensional projection operators on H .

Proof. Let {ej}j∈N be an orthonormal basis for the Hilbert space H .

1. That ‖ · ‖2 is a norm on B2(H ) follows from Thm.1.3.5, thus we only
show that B2(H ) is complete with respect to the Hilbert-Schmidt
norm ‖ · ‖2. To this end consider the following map

Ψ : (B2(H ), ‖ · ‖2)→
(
l2(N2), ‖ · ‖l2(N2)

)
: a 7→ (aj,k)j,k∈N.

For a, b ∈ B2(H ) and α ∈ C, we have

Ψ(αa+ b) = ((αa+ b)j,k)j,k∈N

= α(aj,k)j,k∈N + (bj,k)j,k∈N

= αΨ(a) + Ψ(b),

thus Ψ is linear. Suppose Ψ(a) = Ψ(b), then (aj,k)j,k∈N = (bj,k)j,k∈N
which implies that aj,k = bj,k ∀j, k ∈ N; so that a = b.

Let (aj,k)j,k∈N ∈ l2
(
N2
)
, and define an operator θ on H by

(θx)j =

∞∑
k=1

aj,kxk, ∀j ∈ N.
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Then

∞∑
j=1

∣∣∣(θx)j

∣∣∣2 =
∞∑
j=1

∣∣∣∣∣
∞∑
k=1

aj,kxk

∣∣∣∣∣
2

≤
∞∑
j=1

( ∞∑
k=1

|aj,k|2
)( ∞∑

l=1

|xl|2
)

= ‖(aj,k)j,k∈N‖2l2(N2) ‖x‖
2
l2(N),

and consequently θ ∈ B2(H ). Moreover,

‖Ψ(a)‖l2(N2) = ‖(aj,k)j,k∈N‖l2(N2)

=

 ∞∑
j,k=1

|aj,k|2
1/2

= ‖a‖2.

Hence Ψ is an isometric isomorphism; and since
(
l2(N2), ‖ · ‖l2(N2)

)
is

complete, it follows that (B2(H ), ‖ · ‖2) is a Banach space.

The norm ‖ · ‖2 satisfies the parallelogram identity, since

‖a+ b‖22 + ‖a− b‖22 =
∞∑
j=1

‖(a+ b)ej‖2 +
∞∑
j=1

‖(a− b)ej‖2

=

∞∑
j=1

(
‖aej + bej‖2 + ‖aej − bej‖2

)
= 2

∞∑
j=1

(
‖aej‖2 + ‖bej‖2

)
= 2

(
‖a‖22 + ‖b‖22

)
.

Thus, ‖ · ‖2 can be obtained from an inner product. Denote this inner
product by 〈·, ·〉2. Then, for a ∈ B2(H ) we have

〈a, a〉2 = ‖a‖22

=
∞∑
j=1

‖aej‖2

=
∞∑
j=1

〈ej , a∗aej〉

= Tr(a∗a).

But for all a, b ∈ B2(H ) we have that a∗ ∈ B2(H ) and a∗b ∈ B2(H ),
by Corollaries 1.3.4 and 1.3.6. It the follows that 〈·, ·〉2 is well defined,
since Hilbert-Schmidt operators are positive.
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2. Orthogonality of the vectors in (1.3.6) follows from

〈Xij , Xkl〉 = Tr(X∗ijXkl)

= Tr(XjiXkl)

= Tr (|ej〉 〈ei| |ek〉 〈el|)
= δi,k Tr(|ej〉 〈el|)

= δi,k

∞∑
m=1

〈em, |ej〉 〈ei| em〉

= δi,k

∞∑
m=1

δl,m 〈em, ej〉

= δi,k δl,j .

Moreover, for Pi in (1.3.7) we have

P2
i = XiiXii = δi,i |ei〉 〈ei| = Xii,

and P∗i = X∗ii = Xii. Thus, P2
i = P∗i = Pi.

1.4 C*-algebras and von Neumann algebras

In this section, we review the basic definitions of C*-algebras and von Neu-
mann algebras and some of the related terminology. We really only need von
Neumann algebras in this dissertation, but our treatment here gives some
context in a broader operator algebraic framework.

Standard references for C*-algebras and von Neumann algebras are [7],
[8], [17], and [22].

Definition 1.4.1. Let A be a complex vector space. An algebra is A to-
gether with an associative bilinear map · : A×A → A : (a, b) 7→ ab, called
multiplication (or product); that is, we have:

1. a(bc) = (ab)c

2. (αa)b = a(αb) = α(ab)

3. a(b+ c) = ab+ ac

∀a, b, c ∈ A, α ∈ C. If ab = ba,∀a, b ∈ A, then A is called a commutative
algebra. If A has a unit, that is an element 1 ∈ A such that 1a = a1 =
a,∀a ∈ A, we say A is unital. A subalgebra of A is a vector subspace B such
that

b, b′ ∈ B =⇒ bb′ ∈ B.
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A vector subspace I of an algebra A is called a left (respectively, right)
ideal in A if

a ∈ A and b ∈ I =⇒ ab ∈ I (respectively, ba ∈ I).

We call I an ideal in A if it is simultaneously a left and right ideal. For any
algebra A, it is easily verified that 0 and A are both ideals in A, they are
called trivial ideals for A.

Definition 1.4.2. Let A be a unital algebra. We say a ∈ A is invertible if
there is an element b ∈ A such that

ab = ba = 1.

In this case b is unique and written a−1. Denote the set of all invertible
elements in A by

Inv(A) = {a ∈ A : a is invertible}.

We define the spectrum of an element a to be the set

σ(a) = {λ ∈ C : λ1− a /∈ Inv(A)}.

Definition 1.4.3. An involution on an algebra A is a conjugate linear anti-
automorphism of order two, i.e. a map ∗ : A → A : a 7→ a∗ satisfying the
properties:

1. (αa+ βb)∗ = ᾱa∗ + β̄b∗

2. (ab)∗ = b∗a∗

3. (a∗)∗ = a

∀a, b, c ∈ A and α, β ∈ C. a∗ is called the adjoint of the algebra element a
in A. A *-algebra is an algebra A together with an involution.

If A is a *-algebra such that 1∗ = 1, we call A a unital *-algebra.

Definition 1.4.4. Let A be a *-algebra. Then a ∈ A is said to be

self-adjoint if a∗ = a.

normal if a∗a = aa∗.

a projection if a = a∗ = a2.

If A is unital, then u is called

an isometry if u∗u = 1.

a co-isometry if uu∗ = 1.
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unitary if u∗u = 1 = uu∗.

A norm ‖ · ‖ on A is said to be sub-multiplicative if

‖ab‖ ≤ ‖a‖‖b‖ ∀a, b ∈ A.

A normed algebra is the algebra A with a submultiplive norm ‖ · ‖.

Definition 1.4.5. Let A be a *-algebra.

1. A Banach *-algebra is the *-algebra A together with a complete sub-
multiplicative norm ‖ · ‖ such that

‖a∗‖ = ‖a‖ ∀a ∈ A.

If, in addition, A has a unit such that ‖1‖ = 1, we call A a unital
Banach *-algebra.

2. An (abstract) C*-algebra is a Banach *-algebra A which satisfy the
C*-property :

‖a∗a‖ = ‖a‖2 ∀a ∈ A.

A norm on a Banach *-algebra satisfying this property is referred to
as a C*-norm.

Definition 1.4.6. An element a of a C*-algebra A is positive, and written
a ≥ 0, if it is self-adjoint and σ(a) ⊂ R+. Denote by A+ the set of all positive
elements in A.

Definition 1.4.7. A *-homomorphism between two C*-algebras A and B
is a map ϕ : A → B such that

1. ϕ(αa+ βb) = αϕ(a) + βϕ(b)

2. ϕ(ab) = ϕ(a)ϕ(b)

3. ϕ(a∗) = ϕ(a)∗

∀a, b ∈ A, α, β ∈ C. If, in addition, ϕ is bijective, it is called a *-isomorphism.
A *-automorphism of A is an isometric *-isomorphism ϕ : A → A. The
set {ϕt : t ∈ R} is said to be a one-parameter *-automorphism group if
ϕt is a *-automorphism for every t ∈ R and has the group property that
ϕt+s = ϕt ◦ ϕs ∀t, s ∈ R.

Theorem 1.4.8 (Properties of *-homomorphism). Let A and B be C*-
algebras, and ϕ : A → B be a *-homomorphism. Then:

1. The set ker(ϕ) = {a ∈ A|ϕ(a) = 0} is a closed two-sided ideal in A.
The set ϕ(A) = {ϕ(a)|a ∈ A} is a C*-subalgebra of B.
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2. ϕ is positive; i.e. if a ∈ A+ then ϕ(a) ∈ B+.

3. ϕ is contractive, i.e. ‖ϕ(a)‖ ≤ ‖a‖ (a ∈ A); hence continuous.

4. If ϕ is injective, then it is isometric; ‖ϕ(a)‖ = ‖a‖.

5. If A is unital, then ϕ is unital, i.e. ϕ(1A) = 1B.

If F is a family of bounded linear operators on the Hilbert space H , we
define its commutant F ′ to be the set of all elements of B(H ) that commute
with all elements of F .

Definition 1.4.9. A von Neumann algebra is a (necessarily unital) *-subalgebra
A of B(H ) such that

A = A′′.

A von Neumann algebra is called a factor if

A ∩ A′ = C1.

In general, a (concrete) operator algebra (C*-algebra and von Neumann)
can be viewed as a *-subalgebra of B(H ), for some choice of Hilbert space
H , which is topologically closed in a suitable sense. A C*-algebra is a *-
subalgebra of B(H ) which is closed in the norm topology, whereas a von
Neumann algebra is strongly closed. Since the strong topology is weaker
than norm topology, a strongly closed set is also norm-closed. Thus, a von
Neumann algebra is a C*-algebra.

Lemma 1.4.10. For separable H , the commutant of B(H ) is C1, i.e.
B(H )′ = C1. Equivalently, ∀a ∈ B(H ), [a, b] = 0 if and only if b ∈ B(H )
such that b = α1 for some α ∈ C.

Proof. Suppose b = α1, α ∈ C and let a ∈ B(H ) be arbitrary. Then

[a, b] = [a, α1] = a(α1)− (α1)a = 0,

by the bilinearity of the multiplication operation on B(H ). Conversely,
suppose that b ∈ B(H ) commutes with every element in B(H ). We show
that b is a multiple of the identity operator in B(H ).

If b is not diagonal, then it has at least one non-zero off-diagonal entry,
i.e. there is a bij 6= 0 with i 6= j. Now, consider a ∈ B(H ) with the matrix
entries aji = 1 and zeros elsewhere. Then

(ab)ii =
∞∑
k=1

aikbki = aijbji = 0,

and

(ba)ii =
∞∑
k=1

bikaki = bijaji = bij 6= 0.
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Thus [a, b] 6= 0, contradicting the hypothesis. Hence b must be diagonal.
Now, suppose that b is diagonal with bii 6= bjj for some i 6= j. Let

c ∈ B(H ) with only one non-zero column, say, it has ones along the j-th
column. That is, ckj = 1 (k = 1, 2, 3, ...) and zeros elsewhere. Then

(bc)ij =
∞∑
k=1

bikckj = biicij = bii,

and

(cb)ij =
∞∑
k=1

cikbkj = cijbjj = bjj .

Since bii 6= bjj for i 6= j, then [b, c] 6= 0. This contradicts the hypothesis.
Thus we must have that bii = bjj for all i, j = 1, 2, 3, .... It then follows that
b = bii1 for some bii ∈ C. Hence b is a multiple of the identity operator in
B(H ).

Example 1.4.11. The space of bounded linear operators B(H ) on a sep-
arable Hilbert space H is a von Neumann algebra, since

B(H )′′ = (C1)′ = B(H ).

1.5 States on B(H ) and density matrices

Here we setup a special case of the more general situation of a faithful normal
state on a von Neumann algebra.

Definition 1.5.1. A density matrix (or density operator) is a ρ ∈ B(H )+

such that
Tr(ρ) = 1.

Definition 1.5.2. Let ω : A→ C be a bounded linear functional on a von
Neumann algebra A.

1. ω is called a state if it is normalized and positive, i.e. satisfies ω(a∗a) ≥
0, ∀a ∈ A, and ω(1A) = 1.

2. A state ω is said to be:

faithful if ω(a∗a) > 0, ∀a 6= 0.

normal if and only if there is a density operator ρ such that
ω(a) = Tr(ρa), ∀a ∈ A.

a vector state if there is a vector x ∈ H such that ω(a) =
〈x, ax〉 , ∀a ∈ A.

Clearly, vector states are normal.
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Definition 1.5.3. Let A be a von Neumann algebra on a Hilbert space H ,
then a vector x ∈H is said to be:

1. cyclic for A if the set {ax : a ∈ A} is dense in A.

2. separating of A if ax = bx, a, b ∈ A if and only if a = b.

Consider the following functional

µ : B(H )→ C : a 7→ Tr(ρa) (1.5.1)

where ρ is some specified density operator.

Proposition 1.5.4. The functional µ in (1.5.1) defines a state on B(H ).

Proof. By definition of a density operator ρ ∈ B1(H ), then

ρa ∈ B2(H )

for all a ∈ B(H ), since B2(H ) is an ideal in B(H ). So the functional µ is
well-defined. Next we show that µ does indeed give a state on B(H ). Since
ρ is a density operator, µ(1) = Tr(ρ) = 1. Let a, b ∈ B(H ) and α ∈ C.
Using the linearity of the trace functional, we have

µ(αa+ b) = Tr(ρ(αa+ b))

= αTr(ρa) + Tr(ρb)

= αµ(a) + µ(b).

By the cyclic property and positivity of the trace,

µ(a∗a) = Tr(ρa∗a)

= Tr(ρ1/2ρ1/2a∗a)

= Tr(ρ1/2a∗aρ1/2)

= Tr
(

(aρ1/2)∗(aρ1/2)
)

≥ 0,

since (aρ1/2)∗(aρ1/2) ∈ B(H )+.

For simplicity we henceforth assume that there is a countable orthonor-
mal basis B = {ej : j ∈ N} such that

ρej = ρjej (1.5.2)

for all j ∈ N, for some strictly positive real numbers ρ1, ρ2, ρ3, ... > 0 and ρ
a density operator.
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Remarks 1.5.5. The above assumption is a bit restrictive as it does not
mathematically cover the most general situation, but for quantum systems
in finite volume a discrete energy spectrum is generally the case. However,
in reality we know that systems are finite, so this should not be a major
drawback.

Note that ρj = ρk is possible for j 6= k, that is we do not assume that
the (eigenvalues) ρ1, ρ2, ρ3, ... are distinct. In general it is possible to have
ρj = 0 for some j ∈ N, but in statistical mechanics ρj > 0 is typical.

In the case where ρj = 0 for some j ∈ N, we may be able to handle even
this case in much of what we do below by just considering the subspace of
H spanned by the basis elements ej for which ρj > 0, and handling the
orthogonal complement of this subspace separately.

Proposition 1.5.6. The density operator ρ given by (1.5.2) can be viewed
as a diagonal matrix with entries ρ1, ρ2, ρ3, ... > 0. Furthermore, such a ρ is
bounded and satisfies

∞∑
j=1

ρj = 1.

Proof. Let {ej : j ∈ N} be an orthonormal basis for H . Then for all j, k ∈ N

ρjk = 〈ej , ρek〉 = 〈ej , ρkek〉 = ρkδjk.

For the matrix representation [ρjk]j,k∈N we have

∞∑
j=1

|ρjk| = 1 (∀k ∈ N)

and
∞∑
k=1

|ρjk| = 1 (∀j ∈ N).

So by Schur test, ρ is a bounded operator on H . Now, evaluating the trace
of ρ yields

1 = Tr(ρ) =
∞∑
j=1

〈ej , ρjej〉 =
∞∑
j=1

ρj 〈ej , ej〉 =
∞∑
j=1

ρj .

With the afore going assumption we define the inverse of the density
operator ρ:

Definition 1.5.7. Denote by ρ−1 the inverse of ρ on the subspace

H0 := span{ej : j ∈ N} =


n∑
j=1

λjej : ej ∈ B


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of H ; i.e.
ρ−1 : H0 →H (1.5.3)

such that ρ−1ρ |H0= ρ−1ρ is the identity operator on H0.

Remarks 1.5.8. In the case where ρ is given by (1.5.2), by Prop.1.5.6, we
have that its action on the basis element ej is

ρ−1ej = ρ−1
j ej . (1.5.4)

Similarly, we define ρ−1/2 : H0 →H to be such that ρ−1/2ej = ρ
−1/2
j ej .

Proposition 1.5.9. The state µ with the density operator ρ given by (1.5.2)
is faithful.

Proof. If µ(a∗a) = 0 for a ∈ B(H ), then

0 = Tr(ρa∗a)

= Tr
(

(aρ1/2)∗aρ1/2
)

=
∞∑
j=1

〈
ej , (aρ

1/2)∗aρ1/2ej

〉
=

∞∑
j=1

〈
aρ1/2ej , aρ

1/2ej

〉
=

∞∑
j=1

‖aρ1/2ej‖2

= ‖aρ1/2‖22.

So aρ1/2 = 0, by the definition of the Hilbert-Schmidt norm. It then follows
that a |H0= aρ1/2ρ−1/2 = 0, so a = 0 since a is bounded.

1.6 The tensor product of Hilbert spaces

In this section we give a brief treatment of the mathematical theory of
tensor products for Hilbert spaces. For discussions on how tensor products
are constructed, the reader is referred to [22, Section 6.3] (see, [33, Appendix
T] for an even more detailed exposition). An alternative approach to the
construction of tensor products can be found in [17].

Let X and Y be (complex) vector spaces, denote by X�Y their algebraic
tensor product, this is the space linearly spanned by finitely many linear
combinations of elementary tensors x⊗ y (x ∈ X, y ∈ Y ).

Proposition 1.6.1. Let X and Y be vector spaces.
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1. Suppose that
∑n

j=1 xj ⊗ yj = 0, where xj ∈ X, yj ∈ Y .

(ii) If x1, ..., xn are linearly independent, then y1, ..., yn = 0.

(ii) If y1, ..., yn are linearly independent, then x1, ..., xn = 0.

2. If a : X → X ′, b : Y → Y ′ are linear operators (where X ′ and Y ′ are
vector spaces), then there exists a unique linear map a� b : X � Y →
X ′ � Y ′ such that

(a� b)(x⊗ y) = a(x)⊗ b(y)

where x ∈ X, y ∈ Y .

For x, x1, x2 ∈ X and y, y1, y2 ∈ Y , the tensor calculus is given by

(x1 + x2)⊗ y = x1 ⊗ y + x2 ⊗ y
x⊗ (y1 + y2) = x⊗ y1 + x⊗ y2

α(x⊗ y) = (αx)⊗ y = x⊗ (αy),

that is, X � Y is a vector space.
Note that the map ϕ : X × Y → X � Y : (x, y) 7→ x⊗ y is bilinear. The

pair (X � Y, ϕ) is characterized up to isomorphism by a universal property
regarding bilinear maps. In some sense, ϕ can be thought of as the most
general bilinear map out of X × Y .

The following result gives conditions under which bilinear maps defined
on a Cartesian product can be extended to linear ones on the tensor product
(cf. [33, Prop. T.2.4], or [17, Thm. 2.6.4]).

Proposition 1.6.2 (Universal property). Let X, Y and Z be vector spaces.
The pair (X � Y, ϕ) has the property that any bilinear map ψ : X × Y → Z
factors through ϕ uniquely, i.e. there is a unique linear map ψ′ : X�Y → Z
such that

ψ = ψ′ ◦ ϕ.

In general, if X and Y are normed spaces, there are many possible norms
that can be introduced on X�Y which are related to those on X and Y . To
avoid the difficulties related to this non-uniqueness, we shall only consider
Hilbert spaces.

Theorem 1.6.3. (cf. [22, Thm. 6.3.1]) If H and K are Hilbert spaces,
then there is a unique inner product 〈·, ·〉 on H �K such that〈

x⊗ y, x′ ⊗ y′
〉

=
〈
x, x′

〉 〈
y, y′

〉
where x, x′ ∈H , and y, y′ ∈ K .
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We regard H �H as a pre-Hilbert space with the inner product given
above. The Hilbert space completion of H �K is denoted by H ⊗K , and
called the Hilbert tensor product of H and K .

Proposition 1.6.4. Let H and K be separable Hilbert spaces, then:

1. For all x ∈H , y ∈ K

‖x⊗ y‖ = ‖x‖‖y‖.

2. If {ej : j ∈ N} and {fk : k ∈ N} are orthonormal bases for H and K ,
respectively, then

{ej ⊗ fk : j, k ∈ N}

is an orthonormal basis for H ⊗K .

Theorem 1.6.5. Let H and K be Hilbert spaces.

1. If a ∈ B(H ) and b ∈ B(K ), then there is a unique operator a ⊗ b ∈
B (H ⊗K ) such that

(a⊗ b)(x⊗ y) = a(x)⊗ b(y)

where x ∈H and y ∈ K . Moreover,

‖a⊗ b‖ = ‖a‖‖b‖.

2. For all a, a′ ∈ B(H ) and b, b′ ∈ B(K ),

(a⊗ b)(a′ ⊗ b′) = aa′ ⊗ bb′,

and
(a⊗ b)∗ = a∗ ⊗ b∗.

1.7 Hilbert-Schmidt operators and tensor prod-
ucts

In this section we show that the tensor product H ⊗H (i.e. G of Sec.
1.8) can be identified, via unitary equivalence, as the Hilbert space of all
Hilbert-Schmidt operators from H into H .

In order to simplify the treatment of conjugate-linear mappings, we in-
troduce the notion of “conjugate” of a Hilbert space H . Recall that in the
case of a Hilbert space, we have a set H together with the maps

H ×H →H : (x, y) 7→ x+ y,

C×H →H : (α, x) 7→ αx,

H ×H → C : (x, y) 7→ 〈x, y〉 .
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Definition 1.7.1 (Conjugate Hilbert space). Let H be a Hilbert space.
The conjugate Hilbert space H is the same set H , but with the algebraic
structure and inner product given by

H ×H →H : (x, y) 7→ x+ y,

C×H →H : (α, x) 7→ ᾱ·x,
H ×H → C : (x, y) 7→ 〈x, y〉

where α ·̄ x = ᾱx and 〈x, y〉 = 〈y, x〉. We write elements of H as x̄. So for
x ∈H we set x̄ := x, but we view x̄ as an element of H .

Remarks 1.7.2. It is easily verified that the linear operator given by
B(H ) → B(H ) : a 7→ a is a *-isomorphism. In fact, we can identify
B(H ) with B(H ); they are exactly the same von Neumann algebra.

For a ∈ B(H ), note that with x ∈H and α ∈ C, we have

a(ᾱ·x) = a(ᾱx) = ᾱax = ᾱ·(ax),

so a ∈ B(H ).

The tensor product H ⊗H can be identified with the Hilbert space
B2(H ×H ,C) of all the Hilbert-Schmidt functionals on H ×H , i.e. H ⊗
H ∼= B2(H ×H ,C), as the following proposition establishes:

Proposition 1.7.3. Let H be a separable Hilbert space. Then:

1. If x, y ∈H , the equation

ϕx,y(ū, v̄) := 〈ū, x〉 〈v̄, y〉 (u, v ∈H )

defines a bilinear Hilbert-Schmidt functional ϕx,y on H ×H .

2. There is an isometric isomorphism

H ⊗H → B2(H ×H ,C) : x⊗ y 7→ ϕx,y.

Proof. Let {ej}j∈N be an orthonormal basis of H .
(1) Let x, y ∈H be arbitrary vectors. Then, for α, β ∈ C and ū, ū1, ū2, v̄, v̄1, v̄2 ∈

H , we have

ϕx,y(α · ū1 + ū2, v̄) = 〈ᾱū1 + ū2, x〉 〈v̄, y〉
= α 〈ū1, x〉 〈v̄, y〉+ 〈ū2, x〉 〈v̄, y〉
= αϕx,y(ū1, v̄) + ϕx,y(ū2, v̄).

Similarly, we have ϕx,y(ū, β · v̄1 + v̄2) = βϕx,y(ū, v̄1) + ϕx,y(ū, v̄2), thus ϕx,y
is a bilinear functional on H ×H . From the Parseval relation we get

‖ϕx,y‖22 =

∞∑
i,j=1

|ϕx,y(ei, ej)|2 =

∞∑
i,j=1

| 〈ei, x〉 |2| 〈ej , y〉 |2 = ‖x‖2‖y‖2,
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so that ‖ϕx,y‖2 = ‖x‖‖y‖ ≤ ∞, and hence ϕx,y ∈ B2(H ×H ,C) for all
x, y ∈H .

(2) Consider the following map

Ψ : H ×H → B2(H ×H ,C) : (x, y) 7→ ϕx,y.

Then Ψ is a bilinear map, since for all ū, v̄ ∈H

[Ψ(αx1 + x2, y)] (ū, v̄) = ϕαx1+x2,y(ū, v̄)

= 〈ū, αx1 + x2〉 〈v̄, y〉
= α 〈ū, x1〉 〈v̄, y〉+ 〈ū, x2〉 〈v̄, y〉
= αϕx1,y(ū, v̄) + ϕx2,y(ū, v̄)

= [αΨ(x1, y) + Ψ(x2, y)] (ū, v̄)

so that Ψ(αx1 +x2, y) = αΨ(x1, y)+Ψ(x2, y). Similarly, we have Ψ(x, βy1 +
y2) = βΨ(x, y1)+Ψ(x, y2). By the universal property of tensor products (i.e.
Prop.1.6.2), there is a unique linear operator

Φ : H ⊗H → B2(H ×H ,C)

such that Ψ = Φ ◦ p, where p : H ×H →H ⊗H is the canonical bilinear
map.

Finally, we show that Φ is an isometric isomorphism.
Isometric property of Φ:

‖Φ(x⊗ y)‖2 = ‖ϕx,y‖2 = ‖x‖‖y‖ = ‖x⊗ y‖.

Injectivity of Φ: Suppose that Φ(x1 ⊗ y1) = Φ(x2 ⊗ y2), then for all
ū, v̄ ∈H , we have

0 = ϕx1,y1(ū, v̄)− ϕx2,y2(ū, v̄)

= 〈ū, x1〉 〈v̄, y1〉 − 〈ū, x2〉 〈v̄, y2〉
= 〈ū⊗ v̄, x1 ⊗ y1〉 − 〈ū⊗ v̄, x2 ⊗ y2〉
= 〈ū⊗ v̄, x1 ⊗ y1 − x2 ⊗ y2〉 ,

so that x1 ⊗ y1 = x2 ⊗ y2.
Denseness of the range of Φ: Since the sets {ei⊗ej}i,j∈N and {ϕei,ej}i,j∈N

form orthonormal bases for H ⊗H and B2(H ×H ,C), respectively. It
then follows from

Φ(ei ⊗ ej) = ϕei,ej

that the range of Φ is dense in B2(H ×H ,C).

The following proposition states that there is a one-to-one correspon-
dence between bounded linear operators and bounded bilinear functionals:
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Proposition 1.7.4. Let H be a separable Hilbert space, then:

1. If a ∈ B(H ), the equation

ϕa(x, y) := 〈x, ay〉 (x, y ∈H )

defines a bounded bilinear functional ϕa on H ×H .

2. There is an isometric isomorphism

B(H )→ B(H ×H ,C) : a 7→ ϕa.

Proof. Let {ej}j∈N be an orthonormal basis of H .
(1) Consider any a ∈ B(H ), and let x, x1, x2, y, y1, y2 ∈ H , and α, β ∈

C. The bilinearity of ϕa on H ×H is easily verified, since

ϕa(αx1 + x2, y) = ᾱ 〈x1, ay〉+ 〈x2, ay〉
= α ·̄ ϕa(x1, y) + ϕa(x2, y)

and

ϕa(x, βy1 + y2) = β 〈x, ay1〉+ 〈x, ay2〉
= βϕa(x, y1) + ϕa(x, y2).

By the Schwarz inequality, we have

|ϕa(x, y)| = | 〈x, ay〉 |
≤ ‖x‖‖ay‖
≤ ‖a‖‖x‖‖y‖.

So, ϕa is a bounded bilinear functional on H ×H . Then for all a ∈ B(H ),
we have that ϕa ∈ B(H ×H ,C) , since a was arbitrarily chosen.

(2) Let a, b ∈ B(H ,H ) and α ∈ C. Denote the map by Φ.
Linearity of Φ:

[Φ(αa+ b)] (x, y) = ϕαa+b(x, y)

= 〈x, (αa+ b)y〉
= α 〈x, ay〉+ 〈x, by〉
= αϕa(x, y) + ϕb(x, y)

= [αΦ(a) + Φ(b)] (x, y).

Injectivity of Φ: Suppose Φ(a) = Φ(b), then ∀x, y ∈H ,

0 = [Φ(a)− Φ(b)] (x, y)

= ϕa(x, y)− ϕb(x, y)

= 〈x, ay〉 − 〈x, by〉
= 〈x, (a− b)y〉 .

37



Consequently, 0 = (a− b)y,∀y ∈H , so that a = b.
Surjectivity of Φ: If ϕ ∈ B(H ×H ,C), then by the Riesz representation

theorem there exists aϕ ∈ B(H ) such that ϕ(x, y) = 〈x, aϕy〉.
Isometric property:

‖Φ(a)‖22 = ‖ϕa‖22 =
∞∑

i,j=1

|ϕa(ei, ej)|2 =
∞∑

i,j=1

| 〈ei, aej〉 |2 = ‖a‖22.

Corollary 1.7.5. For any linear operator a : H → H , we have that
a ∈ B(H ) if and only if ϕa ∈ B2(H ×H ,C). Moreover,

B2(H ) = {a ∈ B(H ) : ϕa ∈ B2(H ×H ,C)}.

Remarks 1.7.6. The above two results (i.e. Prop.1.7.4 and Cor.1.7.5) also
give a way, through the map a 7→ ϕa, of transferring the Hilbert space struc-
ture between the spaces of Hilbert-Schmidt operators and Hilbert-Schmidt
functionals.

The identification of the tensor product H ⊗H with the Hilbert space of
all Hilbert-Schmidt operators from H into H is described in the following
(cf. [17, Prop. 2.6.9]):

Theorem 1.7.7. Let H be a separable Hilbert space, then:

1. For all x, y ∈H , the equation

|x〉 〈y| (u) := 〈y, u〉x (u ∈H )

defines a Hilbert-Schmidt operator |x〉 〈y| from H into H .

2. There is a unitary transformation W : H ⊗H → B2(H ) such that

W (x⊗ ȳ) := |x〉 〈y| . (1.7.1)

Proof. Let {ej}j∈N be an orthonormal basis of H .
(1) Let x, y ∈H be arbitrary. For u1, u2 ∈H and α ∈ C, we have

|x〉 〈y| (αu1 + u2) = 〈y, αu1 + u2〉x
= α 〈y, u1〉x+ 〈y, u2〉x
= α |x〉 〈y| (u1) + |x〉 〈y| (u2),

thus |x〉 〈y| defines a linear operator from H into H . Since

‖ |x〉 〈y| ‖22 =
∞∑
j=1

‖ |x〉 〈y| (ej)‖2 =
∞∑
j=1

‖ 〈y, ej〉x‖2

=

 ∞∑
j=1

| 〈y, ej〉 |2
 ‖x‖2

= ‖x‖2‖y‖2,
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it follows that ‖ |x〉 〈y| ‖2 = ‖x‖‖y‖ <∞, so that |x〉 〈y| is a Hilbert-Schmidt
operator. Since x, y ∈ H were arbitrarily chosen, then |x〉 〈y| defines a
Hilbert-Schmidt operator for all x, y ∈H .

(2) Consider the tensor product H ⊗H . Then, by Prop. 1.7.3, there
is a unitary operator Φ : H ⊗H → B2(H ×H ,C) such that

Φ(x⊗ y) = ϕx,y.

Analogously, from Prop.1.7.4 and Cor.1.7.5, we have that there is a uni-
tary operator Ψ : B2(H ×H ,C)→ B2(H ) such that

Ψ(ϕx,y) = |x〉 〈y| .

Let W := Ψ ◦ Φ, then W is a unitary operator such that

W (x⊗ y) = Ψ(Φ(x⊗ y)) = Ψ(ϕx,y) = |x〉 〈y| .

1.8 The GNS construction in terms of tensor prod-
ucts

The Gelfand-Naimark-Segal (GNS) construction is a fundamental correspon-
dence between cyclic *-representations of an algebra and linear functionals
on the algebra.

Abstract elements of a C*-algebra A can be realized as operators on
some Hilbert space by a choice of representation:

Definition 1.8.1. Let A be a C*-algebra.

1. A representation of A is a pair (H , ϕ) where H is a complex Hilbert
space, and ϕ : A → B(H ) is a *-homomorphism. We say (H , ϕ) is a
faithful representation, if in addition, ϕ is injective.

2. A cyclic representation of A is defined to be the triple (H , ϕ, x), where
(H , ϕ) is a representation of A, and x is a vector in H which is cyclic
for ϕ in H , i.e.

ϕ(A)x = {ϕ(a)x | a ∈ A}

is dense in H .

Remarks 1.8.2. Terminology related to the above definition. The space
H is called the representation space, the operators ϕ(a) are called represen-
tatives of A, and by implicit identification ϕ and the set of representatives,
we also say that ϕ is a representation of A on H .

The existence of a cyclic representation for (A, ϕ) is given by the GNS-
construction.
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Let G := H ⊗H and A ≡ B(H ). Set

Ω :=

∞∑
j=1

ρ
1/2
j ej ⊗ ej ,

where ρj ∈ R+ are the eigenvalues of ρ as given by (1.5.2). Since the
partial sums of the series are non-negative, they form a monotone increasing
sequence, and these partial sums are bounded above by ‖ρ‖ = 1; because

N∑
j=1

|ρ1/2
j |

2 =

N∑
j=1

ρj ≤ Tr(ρ) = 1.

It then follows that the series is convergent, thus Ω ∈ G.

Proposition 1.8.3. The maps π, π′ : B(H )→ B(G) given by

π(a) := a⊗ 1 (1.8.1)

and

π′(a) := 1⊗ a (1.8.2)

are *-homomorphisms.

Proof. Let a, b ∈ B(H ) and α ∈ C,

π (αa+ b) = (αa+ b)⊗ 1

= α (a⊗ 1) + (b⊗ 1)

= απ(a) + π(b),

then π is linear. Suppose that π(a) = π(b), then a ⊗ 1 = b ⊗ 1 so that
(a− b)⊗ 1 = 0. Hence a = b.

Homomorphism property:

π(ab) = (ab)⊗ 1 = (a⊗ 1)(b⊗ 1) = π(a)π(b).

*-Property: π(a∗) = a∗ ⊗ 1 = (a⊗ 1)∗ = π(a)∗. Hence π is a *-
homomorphism. Similarly, π′ is a *-homomorphism.

Proposition 1.8.4. Let µ(a) = Tr(ρa) be the state on A with the density
operator ρ given by (1.5.2). Then:

1. The triple (G, π,Ω) is a cyclic representation of (A, µ).

2. Given (G, π,Ω), the corresponding state µ can always be retrieved by
setting

µ(a) = 〈Ω, π(a)Ω〉 a ∈ B(H ).
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3. The vector Ω ∈ G is separating for π(A), i.e. if π(a)Ω = 0, then
a = 0. Moreover, π is injective, i.e. the representation (G, π,Ω) of
(A, µ) is faithful.

Proof. Let {ej : j ∈ N} be an orthonormal basis for H .

1. Since Prop.1.8.3 has established that π is a *-homomorphism, it suf-
fices to show only that Ω ∈ G is a cyclic vector for the representation
(G, π). Set a = |ei〉 〈ej | ∈ A, then

π(a)Ω = (a⊗ 1)

( ∞∑
k=1

ρ
1/2
k ek ⊗ ek

)

=

∞∑
k=1

δkjρ
1/2
k ei ⊗ ek

= ρ
1/2
j ei ⊗ ej .

Since ρj 6= 0 for all j ∈ N, it follows that the orthonormal basis
{ei⊗ej : i, j ∈ N} for G, is contained in π(A)Ω. Hence π(A)Ω is dense
in G.

2. For all a ∈ A, we have

〈Ω, π(a)Ω〉 =

〈 ∞∑
i=1

ρ
1/2
i ei ⊗ ei, π(a)

 ∞∑
j=1

ρ
1/2
j ej ⊗ ej

〉

=
∞∑

i,j=1

ρ
1/2
i ρ

1/2
j 〈ei ⊗ ei, (a⊗ 1)(ej ⊗ ej)〉

=

∞∑
i,j=1

ρ
1/2
i ρ

1/2
j 〈ei ⊗ ei, aej ⊗ ej〉

=

∞∑
i,j=1

ρ
1/2
i ρ

1/2
j 〈ei, aej〉 〈ei, ej〉

=
∞∑
j=1

〈ej , aρjej〉

=
∞∑
j=1

〈ej , aρej〉

= Tr(aρ)

= Tr(ρa)

= µ(a).
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3. If π(a)Ω = 0, then

0 = 〈π(a)Ω, π(a)Ω〉
= 〈Ω, π(a)∗π(a)Ω〉
= 〈Ω, π(a∗a)Ω〉
= µ(a∗a).

So a = 0, since µ is faithful by Prop. 1.5.9. In fact, this also shows
that π is injective, since π(a) = 0 =⇒ π(a)Ω = 0 =⇒ a = 0.

Recall that if {ej : j ∈ N} is an orthonormal basis for the separable
Hilbert space H , then using the Dirac notation, an alternative expression
of Eq.(1.2.2) is

x =
∞∑
k=1

|ek〉 〈ek|x

for all x ∈ H . Similarly, for all a ∈ B(H ) we can write the matrix repre-
sentation of a as

a =
∞∑

j,k=1

ajk |ej〉 〈ek| (1.8.3)

where ajk = 〈ej , aek〉 (see Prop.1.2.4), where we do not think of this as a
convergent series, but just as a notation for the matrix representation.

Since {ej ⊗ ek : j, k ∈ N} is a countable orthonormal basis for G ≡
H ⊗H , we can consider an infinite matrix representation of any a ∈ B(G)
given by matrix entries {αj,k,l,m : j, k, l,m ∈ N}, with respect to the basis
{ei ⊗ ej : i, j ∈ N}. That is, analogous to (1.8.3),

a =
∑

j,k,l,m∈N
αj,k,l,m |ej ⊗ el〉 〈ek ⊗ em| . (1.8.4)

Again, note that this is only a way to express the matrix representation of
a in the above basis. That is, Eq. (1.8.4) does not imply the convergence
of an infinite series. In fact the series in Eq. (1.8.4) will not converge in
general. Instead the interpretation of Eq. (1.8.4) is that a is the operator
in B(G) uniquely determined by:

a(ek ⊗ em) =
∑
j,l∈N

αj,k,l,m ej ⊗ el (1.8.5)

for all ek⊗em ∈H ⊗H . We will not directly utilize this matrix representa-
tion, but we include it as it is occasionally useful to “visualize” an operator
a ∈ B(G) as an infinite matrix.
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Theorem 1.8.5. The algebras A⊗ 1 and 1⊗A are mutual commutants in
B(G), i.e.

(A⊗ 1)′ = 1⊗A, and (1⊗A)′ = A⊗ 1

where A := B(H ), G := H ⊗ H and H is a separable Hilbert space.
Moreover, A⊗ 1 and 1⊗A are von Neumann algebras.

Proof. Clearly 1⊗A ⊂ (A⊗ 1)′, so we only have to show the other inclusion.
Consider any a ∈ B(G) defined by

a(es ⊗ et) =
∑
j,l∈N

αj,s,l,t ej ⊗ el (1.8.6)

for all s, t ∈ N as explained above. For any p, q ∈ N, let us denote the
operator |ep〉 〈eq| ∈ A simply by epq.

Assume that a ∈ (A ⊗ 1)′ with the commutant taken in B(G). Then a
commutes in particular with epq ⊗ 1 for all p, q ∈ N, i.e.

a(epq ⊗ 1) = (epq ⊗ 1)a (p, q ∈ N). (1.8.7)

Now consider any es ⊗ et ∈ G. It follows that

(epq ⊗ 1)a(es ⊗ et) = (epq ⊗ 1)

∑
j,l∈N

αj,s,l,t ej ⊗ el


=

∑
j,l∈N

αj,s,l,t(epqej)⊗ el

=
∑
j,l∈N

δq,j αj,s,l,t ep ⊗ el

=

∞∑
l=1

αq,s,l,t ep ⊗ el

where we used the boundedness of (epq ⊗ 1) ∈ A⊗A.
On the other hand, we also have that

a(epq ⊗ 1)(es ⊗ et) = a ((epqes)⊗ et)
= a ((δq,s ep)⊗ et)
= δq,s a (ep ⊗ et)
= δq,s

∑
j,l∈N

αj,p,l,t ej ⊗ el.

Since a commutes with epq ⊗ 1, for all p, q ∈ N

0 = [epq ⊗ 1, a] (es ⊗ et)
= (epq ⊗ 1)a(es ⊗ et)− a(epq ⊗ 1)(es ⊗ et)

=

∞∑
l=1

αq,s,l,t ep ⊗ el − δq,s
∑
j,l∈N

αj,p,l,t ej ⊗ el
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so that
∞∑
l=1

αq,s,l,t ep ⊗ el = δq,s
∑
j,l∈N

αj,p,l,t ej ⊗ el (1.8.8)

for all p, q, s, t ∈ N. It is clear that we must have αj,k,l,t = 0 if j 6= k, so
Eq.(1.8.8) simplifies to

∞∑
l=1

αq,q,l,m ep ⊗ el =
∞∑
l=1

αp,p,l,t ep ⊗ el

for all p, q, t ∈ N, so it also follows that, for any l, t ∈ N, αq,q,l,t = αp,p,l,t for
all p, q ∈ N. We can thus set ϕl,t := αp,p,l,t for any p, l, t ∈ N.

Applying this to Eq.(1.8.6) it follows for any es ⊗ et ∈ G that

a(es ⊗ et) =
∑
j,l∈N

αj,s,l,t ej ⊗ el

=
∞∑
l=1

αs,s,l,t es ⊗ el

= es ⊗

( ∞∑
l=1

ϕl,t el

)
= (1⊗ c)es ⊗ et

where c is the bounded operator uniquely determined by

c(et) =
∞∑
l=1

ϕl,t el (∀t ∈ N).

That the operator c is well-defined, specifically that it is bounded linear,
follows from the fact that a is bounded linear; since for any x ∈ H0 :=
span{ej : j ∈ N}, we have that

‖a(es ⊗ x)‖ = ‖es ⊗ c(x)‖ = ‖c(x)‖

and since a is bounded linear,

‖a(es ⊗ x)‖ ≤ ‖a‖‖es ⊗ x‖ = ‖a‖‖x‖.

Thus c ∈ A. It then follows that a = 1 ⊗ c, since {ej ⊗ ek : j, k ∈ N} is an
orthonormal basis for G. Hence (A⊗1)′ = 1⊗A, similarly (1⊗A)′ = A⊗1.
Furthermore, (A⊗ 1)′′ = (1⊗A)′ = A⊗ 1 so that A⊗ 1 is a von Neumann
algebra; similarly for 1⊗A.

Remarks 1.8.6. The previous Theorem is a special case of a more gen-
eral theorem, the so-called commutation theorem for tensor products of von
Neumann algebras, and in such a generality the statement of the theorem
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remained open for a long time [20, Example 2.10, Theorem 5.1]. The first
proof, which used modular theory, was obtained by Tomita in 1967 (see
[31]). Later a number of simpler versions have been obtained (see for exam-
ple [26]).
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Chapter 2

Tomita-Takesaki Theory

In this chapter we set up a simple version of the Tomita-Takesaki modular
theory for the von Neumann algebra B(H ) with a faithful normal state,
using a tensor product approach. This is a special case of the more general
situation of the theory (for example, see [8],[30]).

In Section 2.1 we give a heuristic overview of the theory as well as intro-
duce some related terminology, and state the main result of the theory. Our
goal is to present a version of Tomita-Takesaki theory for the pair (A, µ),
where A = B(H ) and µ is the faithful normal state given by µ(a) = Tr(ρa)
for ρ as described by Eq.(1.5.2).

In Chapter 3 we give an alternative approach to the version of Tomita-
Takesaki theory which we shall now develop, that is formulated in terms of
the Hilbert space of Hilbert-Schmidt operators.

2.1 Summary of the Tomita-Takesaki theory and
the modular objects

In this section we give a general overview of the Tomita-Takesaki modular
theory, and state some of its main results. Details and proofs of statements
may be found, for example, in [8, Section 2.5], [17, Section 9.2], or [30,
Chapter VIII].

Let A be a C*-algebra on a Hilbert space H which contains a cyclic and
separating vector Ω. The theory starts off by defining a seemingly innocuous
conjugate linear operator S0 on H as follows:

S0aΩ = a∗Ω, ∀a ∈ A. (2.1.1)

It can be shown that this operator extends to a closed conjugate linear
operator S, called the Tomita operator for the pair (A,Ω), defined on a
dense subset of H .
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Let ∆ be the unique positive, self-adjoint operator and J the unique
anti-unitary operator occurring in the polar decomposition of S, i.e.

S = J∆1/2. (2.1.2)

We call ∆ the modular operator and J the modular conjugation (or modular
involution) associated with the pair (A,Ω). It is straightforward to see that
J2 is the identity operator and J∗ = J . Moreover, we have that JΩ = Ω =
∆Ω.

From the functional calculus of ∆ we construct an operator

∆it = exp (it(ln ∆)) , t ∈ R,

such that ∆it is unitary for all t ∈ R and
{

∆it : t ∈ R
}

forms a strongly
continuous unitary group, called the modular group.

The unitaries
{

∆it : t ∈ R
}

induce a one-parameter automorphism group
{σt : t ∈ R} of A by

σt(a) = ∆ita∆−it, a ∈ A, t ∈ R.

This group is the so-called modular automorphism group of A (relative to Ω).
The automorphisms are sometimes denoted by σΩ

t to stress their dependence
on the choice of the cyclic and separating vector Ω.

Theorem 2.1.1 (Tomita-Takesaki). Let A be a von Neumann algebra with
a cyclic and separating vector Ω. Then the following statements hold:

1. σt(A) = A, t ∈ R,

2. JAJ = A′.

Remarks 2.1.2. We collect some elementary consequences of the Tomita-
Takesaki theorem.

1. The second part of the preceding theorem gives a relationship between
the algebraic and analytic structures. It states that the commutant
of a von Neumann algebra is obtained by conjugation with analytic
object like J , which is obtained from the polar decomposition of a
conjugate linear closed operator (see [20]).

2. The modular conjugation J : H → H gives a *-anti-isomorphism
between A and its commutant A′ defined by

j(a) := JaJ. (2.1.3)

3. The cyclic and separating vector Ω induces a faithful normal state ω
on A given by

ω(a) :=
1

‖Ω‖2
〈Ω, aΩ〉 , a ∈ A.
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Conversely, given any faithful normal state on A there is, by the GNS-
construction, a corresponding cyclic and separating vector in the GNS
Hilbert space. Therefore, instead of taking the pair (A,Ω) as our
initial mathematical inputs in setting up the Tomita-Takesaki theory,
we could have equivalently started with the pair (A, ω) (This latter
approach shall be explored further in the next section).

Moreover, the state ω (corresponding to Ω) is invariant under the
automorphism group {σt : t ∈ R}, i.e.

ω(σt(a)) = ω(a), ∀a ∈ A, t ∈ R.

In the remainder of this chapter, the outline above will be made very
explicit and concrete for B(H ).

2.2 The pre-Tomita operator

In this section we introduce the Tomita operator, as well as the conventions
and some notation, that form the foundation of the rest of the chapter.
We develop a simple version of Tomita-Takesaki theory for the pair (A, µ),
where A = B(H ) and µ is the faithful normal state given by Eq.(1.5.1), i.e.
µ(a) = Tr(ρa) but with ρ given by Eq.(1.5.2).

The approach we give in this section mimics the one given in [8, Section
2.5.2], but with less advanced tools. Our development here will not be
complete even for this special case. There are some further points that one
could explore, but more advanced tools from unbounded operators would
be necessary (see [4], for a general framework which accommodates possible
appearance of unbounded observables). However, we do give complete proofs
for the results treated here.

We follow a somewhat unconventional approach to the technical details
of the Tomita-Takesaki theory for (A, µ) by using tensor products, which
allows us to avoid much of the difficulties associated to unbounded operators
and their domains.

Consider the faithful, cyclic representation (G, π,Ω) of (A, µ) (see Sec.
1.8).

Proposition 2.2.1 (Pre-Tomita operator). Define an operator S0 in G as
follows:

S0 : G0 → G0 : π(a)Ω 7→ π(a∗)Ω (2.2.1)

where G0 := π(A)Ω is a dense subspace of G. Then S0 is conjugate linear.

Proof. Let π(a)Ω, π(b)Ω ∈ G0 and α ∈ C. Suppose that π(a)Ω = π(b)Ω,
then

0 = [π(a)− π(b)] Ω = π(a− b)Ω,
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so that a = b, since Ω is a separating vector. Hence S0 assigns every input
element in its domain a unique output, i.e. S0 is well-defined. Also,

S0 (απ(a) + π(b)) Ω = S0π(αa+ b)Ω

= π (ᾱa∗ + b∗) Ω

= ᾱπ(a∗)Ω + π(b∗)Ω

= ᾱS0π(a)Ω + S0π(b)Ω.

Hence, S0 is conjugate linear.

Unbounded operators can be tricky to work with, in particular with re-
gards to their domains. For this reason we introduce the following subspaces
of A.

Proposition 2.2.2. Consider the following subspace of A:

E := {a ∈ A : ρa∗ρ−1is bounded} (2.2.2)

where ρ−1 : H0 →H is as in Eq.(1.5.4), and H0 := span{e1, e2, e3...} with
the e1, e2, e3... being the orthonormal basis elements of H . Let E∗ := {a∗ :
a ∈ E}. Then:

1. H0 �H0 ⊂ π(E)Ω and H0 �H0 ⊂ π(E∗)Ω.

2. π(E)Ω and π(E∗)Ω are dense subspaces of G.

Proof. Clearly 0, 1A ∈ E, and thus E 6= ∅. Consider the orthonormal basis
e1, e2, e3... for H . For all j, k ∈ N we have that[

ρ (|ej〉 〈ek|)∗ ρ−1
]
el = ρ |ek〉 〈ej | ρ−1el

= ρ−1
l δj,lρek

= ρ−1
j ρkek

= ρ−1
j ρkδj,lek

=
(
ρ−1
j ρk |ek〉 〈ej |

)
el,

so that ρ (|ej〉 〈ek|)∗ ρ−1 = ρ−1
j ρk |ek〉 〈ej | which implies |ej〉 〈ek| ∈ E. Then

|ej〉 〈ek| = (|ek〉 〈ej |)∗ ∈ E∗. Let a, b ∈ E and α ∈ C. Then

ρ(αa+ b)∗ρ−1 = ρ(ᾱa∗ + b∗)ρ−1 = ᾱρa∗ρ−1 + ρb∗ρ−1,

so that αa + b ∈ E, since the sum of bounded operators is itself bounded.
Thus E is a vector subspace of A. Moreover,

ρ(ab)∗ρ−1 = ρb∗a∗ρ−1 = (ρb∗ρ−1)(ρa∗ρ−1),

and since the composition of bounded operators is also bounded, it follows
that ab ∈ E; thus E is a subalgebra of A. Similarly, E∗ is also a subalgebra
of A.

49



1. The set {ej ⊗ ek : j, k ∈ N} is an orthonormal basis for H0 �H0. We
first observe that for any j, k ∈ N

π (|ej〉 〈ek〉) Ω = (|ej〉 〈ek| ⊗ 1)

( ∞∑
l=1

ρ
1/2
l el ⊗ el

)

=
∞∑
l=1

δkl ρ
1/2
l ej ⊗ el

= ρ
1/2
k ej ⊗ ek.

So,

ej ⊗ ek = π
(
ρ
−1/2
k |ej〉 〈ek|

)
Ω ∈ π(E)Ω, (2.2.3)

hence H0 �H0 ⊂ π(E)Ω. Similarly, H0 �H0 ⊂ π(E∗)Ω.

2. Let a, b ∈ E and α ∈ C. Then απ(a)Ω + π(b)Ω = π(αa+ b)Ω, since π
is a *-homomorphism. It then follows that

απ(a)Ω + π(b)Ω ∈ π(E)Ω,

since αa+ b ∈ E. Hence π(E)Ω is a vector subspace of G.

Since H0 � H0 is a dense subset of G, and H0 � H0 ⊂ π(E)Ω, it
follows that π(E)Ω is dense in G. Analogously, π(E∗)Ω is dense in G.

We determine the adjoint S∗0 of the (pre-Tomita) operator S0, although
we will not fully determine it on its entire domain, but on a smaller set
H0 �H0. This will be sufficient for our purpose.

Since S0 is a densely defined conjugate linear operator, its adjoint S∗0 is
also conjugate linear and has to satisfy the relation

〈x, S∗0y〉 = 〈y, S0x〉 = 〈S0x, y〉 (2.2.4)

∀x ∈ D(S0), y ∈ D(S∗0).

Proposition 2.2.3. We have π(E)Ω ⊂ D(S∗0), and for all a ∈ E, we have
that

S∗0π(a)Ω = π(ρa∗ρ−1)Ω.
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Proof. Let a ∈ E and b ∈ A, then

〈π(b)Ω, S∗0π(a)Ω〉 = 〈π(a)Ω, S0π(b)Ω〉
= 〈π(a)Ω, π(b∗)Ω〉

=
∞∑

j,k=1

ρ
1/2
j ρ

1/2
k 〈aej ⊗ ej , b

∗ek ⊗ ek〉

=

∞∑
j,k=1

ρ
1/2
j ρ

1/2
k 〈aej , b

∗ek〉 δj,k

=
∞∑
j=1

ρj 〈aej , b∗ej〉

=
∞∑
j=1

〈ej , a∗b∗ρej〉

= Tr (a∗b∗ρ)

= Tr
(
b∗(ρa∗ρ−1)ρ

)
=

∞∑
j=1

ρj
〈
bej , (ρa

∗ρ−1)ej
〉

=

∞∑
j,k=1

δj,kρ
1/2
j ρ

1/2
k

〈
bej , ρa

∗ρ−1ek
〉

=
∞∑

j,k=1

ρ
1/2
j ρ

1/2
k

〈
bej ⊗ ej , (ρa∗ρ−1ek)⊗ ek

〉
=

〈
(b⊗ 1)Ω, (ρa∗ρ−1 ⊗ 1)Ω

〉
=

〈
π(b)Ω, π(ρa∗ρ−1)Ω

〉
.

Thus S0π(a)Ω = π(ρa∗ρ−1)Ω, since D(S0) = π(A)Ω is dense in G.

The operator S∗0 has been determined on the dense subspace π(E)Ω of
G, and this explains the introduction of the subalgebra E of A in Prop.2.2.2.

2.3 The modular operator and modular group

The first of the two operators that are determined from S0 is:

Definition 2.3.1 (Pre-modular operator). Define an operator ∆0 on π(E∗)Ω
as follows:

∆0 := S∗0S0 |π(E∗)Ω . (2.3.1)

That is, ∆0 : π(E∗)Ω→ π(A)Ω : π(a)Ω 7→ π(ρaρ−1)Ω.
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Since the composition of two conjugate linear maps is linear, ∆0 is linear.
Although the operator ∆0 is densely-defined on the subspace π(E∗)Ω of G,
but for simplicity since H0 �H0 ⊂ π(E∗)Ω, we restrict the domain of the
definition of ∆0 to H0 �H0, i.e. we set

D(∆0) := H0 �H0. (2.3.2)

This is sufficient for our goals. In a similar way we restrict S∗0 to H0 �H0

(although in general the domain of S∗0 is larger), since H0�H0 ⊂ π(E)Ω is
dense in G.

The main result regarding ∆0 is as follows:

Theorem 2.3.2. The operator ∆0 satisfies the relation:

∆0 |H0�H0= ρ� ρ−1 |H0�H0 .

Here we write ρ � ρ−1 instead of ρ ⊗ ρ−1, since it is only defined on
H0 � H0, and reserve the symbol ⊗ for the extension of an elementary
tensor product to the completed space H ⊗H .

Proof. Let a ∈ E∗, then

∆0π(a)Ω = S∗0S0π(a)Ω

= S∗0π(a∗)Ω

= π(ρaρ−1)Ω

=
[
ρaρ−1 ⊗ 1

]∑
j

ρ
1/2
j ej ⊗ ej


=

∞∑
j=1

ρ
1/2
j (ρaρ−1ej)⊗ ej

=
∞∑
j=1

ρ
1/2
j ρ−1

j (ρaej)⊗ ej

=
∞∑
j=1

ρ
1/2
j (ρaej)⊗ (ρ−1ej)

=

∞∑
j=1

ρ
1/2
j (ρa⊗ ρ−1)(ej ⊗ ej)

= (ρ� ρ−1)(a⊗ 1)

∑
j

ρ
1/2
j ej ⊗ ej


= (ρ� ρ−1)π(a)Ω.

Thus ∆0 |H0�H0= ρ� ρ−1 |H0�H0 , since H0 �H0 ⊂ π(E∗)Ω.
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Proposition 2.3.3. The densely defined linear operator ∆0 is symmetric,
i.e.

〈∆0x, y〉 = 〈x,∆0y〉

∀x, y ∈ D(∆0).

Proof. For a basis element ej ⊗ ek of G, we have

〈∆0(ej ⊗ ek), ej ⊗ ek〉 =
〈
ρjρ
−1
k ej ⊗ ek, ej ⊗ ek

〉
= ρjρ

−1
k 〈ej ⊗ ek, ej ⊗ ek〉

= ρjρ
−1
k 〈ej , ej〉 〈ek, ek〉

= ρjρ
−1
k

which is real. In particular, 〈∆0x, x〉 ∈ R for all x ∈ G. By the remark
following Def. 1.1.7, ∆0 is symmetric.

Remarks 2.3.4 (The functional calculus of ∆0). Note that ∆0 defined
above satisfies

∆0(ej ⊗ ek) =
(
ρ� ρ−1

)
(ej ⊗ ek) = ρjρ

−1
k ej ⊗ ek

∀j, k ∈ N. Since the set {ej ⊗ ek}j,k∈N is an orthonormal basis for G,
∆0(ej ⊗ ek) = ρjρ

−1
k ej ⊗ ek can be extended in the sense that we can define

f(∆0)(ej ⊗ ek) := f(ρjρ
−1
k )ej ⊗ ek

for any function f : R→ C. In particular, we define

∆iz
0 (ej ⊗ ek) := ρizj ρ

−iz
k ej ⊗ ek (2.3.3)

∀j, k ∈ N, z ∈ C. This is the so-called functional calculus for ∆0 (but
simplified to avoid the closure of the unbounded operator ∆0).

In general one would take the closure of an operator and show that it is
self-adjoint to be able to have a functional calculus, but here the situation
is simple enough to define the functional calculus more directly.

Proposition 2.3.5 (One-parameter unitary group). The following state-
ments hold:

1. Equation (2.3.3) extends uniquely to a unitary operator

∆it ∈ B(G)

∀t ∈ R.

2. The family {∆it : t ∈ R} forms a one-parameter unitary group, i.e.

∆it1∆it2 = ∆i(t1+t2)

∀t1, t2 ∈ R, with ∆i0 = 1B(G) (the identity operator on G).
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3. For all t ∈ R, ∆itΩ = Ω.

We write ∆it instead of ∆it
0 , since it is defined on the whole of G. In the

more complete theory this is the notation used, however there an operator
∆ is defined as the closure of ∆0, although that ∆ is still not defined on the
whole of G.

Proof of Prop.2.3.5. Let {ej : j ∈ N} be an orthonormal basis for H .

1. Let t ∈ R. Then〈
∆it

0 (ej ⊗ ek),∆it
0 (el ⊗ em)

〉
=

〈(
ρit � ρ−it

)
ej ⊗ ek,

(
ρit � ρ−it

)
el ⊗ em

〉
=

〈(
ρ−it � ρit

) (
ρit � ρ−it

)
ej ⊗ ek, el ⊗ em

〉
= 〈ej ⊗ ek, el ⊗ em〉 ,

so, by linearity,
〈
∆it

0 x,∆
it
0 y
〉

= 〈x, y〉 for all x, y ∈ H0 �H0. In par-
ticular, ‖∆it

0 x‖ = ‖x‖ for all x ∈ H0 �H0. Thus ‖∆it
0 ‖ = 1, so ∆it

0

extends uniquely to G, since H0�H0 is dense in G. Call this extension
∆it.

We also have that
(
∆it
)∗

= ∆−it, since〈
ej ⊗ ek,

(
∆it
)∗

(ej ⊗ ek)
〉

=
〈
∆it(ej ⊗ ek), ej ⊗ ek

〉
=

〈
ρitj ρ

−it
k ej ⊗ ek, ej ⊗ ek

〉
=

〈
ej ⊗ ek, ρ−itj ρitk ej ⊗ ek

〉
=

〈
ej ⊗ ek,∆−it(ej ⊗ ek)

〉
.

It follows that
(
∆it
)∗

= ∆−it. Then

∆it
(
∆it
)∗

(ej ⊗ ek) = ∆it∆−it (ej ⊗ ek)

= ∆it
(
ρ−itj ρitk ej ⊗ ek

)
= ρitj ρ

−it
k

(
ρ−itj ρitk ej ⊗ ek

)
= ej ⊗ ek,

thus ∆it
(
∆it
)∗

= 1B(G), and similarly
(
∆it
)∗

∆it = 1B(G). Hence ∆it

is unitary for each t ∈ R; hence bounded.

2. Suppose t = 0 then ∆0 = 1B(G) since

∆0(ej ⊗ ek) = ρ0
jρ

0
kej ⊗ ek = ej ⊗ ek.
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Let t1, t2 ∈ R, then

∆it1∆it2(ej ⊗ ek) = ∆it1
(
ρit2j ρ−it2k ej ⊗ ek

)
= ρit2j ρ−it2k

(
ρit1j ρ−it1k ej ⊗ ek

)
= ρ

i(t1+t2)
j ρ

−i(t1+t2)
k ej ⊗ ek

= ∆i(t1+t2)(ej ⊗ ek).

Hence ∆it1∆it2 = ∆i(t1+t2).

3. For all t ∈ R, we have

∆itΩ =
∞∑
j=1

ρ
1/2
j ∆it(ej ⊗ ej)

=
∞∑
j=1

ρ
1/2
j ρitj ρ

−it
j ej ⊗ ej

= Ω.

The unitaries {∆it : t ∈ R} induce a one-parameter automorphism group:

Proposition 2.3.6 (Modular automorphism group). The following state-
ments hold:

1. For each t ∈ R, the equation

σt(π(a)) = σΩ
t (π(a)) = ∆itπ(a)∆−it (2.3.4)

defines a *-automorphism σt on π(A).

2. The family {σΩ
t : t ∈ R} forms a one-parameter automorphism group

called the modular automorphism group associated with (π(A),Ω).

3. For all t ∈ R,

〈Ω, σt(π(a))Ω〉 = 〈Ω, π(a)Ω〉 = µ(a).

Proof. Let a, b ∈ A and α ∈ R.

1. For all t ∈ R, we have

σt (απ(a) + π(b)) = σt (π(αa+ b))

= ∆itπ(αa+ b)∆−it

= α∆itπ(a)∆−it + ∆itπ(b)∆−it

= ασt(π(a)) + σt(π(b)),
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so that σt linear. Now, if σt(π(a)) = σt(π(b)) then

∆itπ(a)∆−it = ∆itπ(b)∆−it

which implies π(a) = π(b), so that a = b; and π(a) = σt (σ−t(π(a))) .
Thus for all t ∈ R, σt is bijective.

Homomorphism property:

σt (π(a)π(b)) = σt(π(ab))

=
(
∆itπ(a)∆−it

) (
∆itπ(b)∆−it

)
= σt(π(a))σt(π(b)).

Also, since
(
∆it
)∗

= ∆−it,

σt (π(a)∗) = ∆itπ(a)∗∆−it

=
(
∆itπ(a)∆−it

)∗
= σt(π(a))∗.

Hence σt is a *-automorphism for all t ∈ R.

2. Suppose t = 0 then σ0 = idB(G) (where idB(G) is the identity map on
B(G)), since

σ0(π(a)) = ∆0π(a)∆0 = π(a).

Let t1, t2 ∈ R, then

σt1 (σt2(π(a))) = ∆it1σt2(π(a))∆−it1

= ∆it1
(
∆it2π(a)∆−it2

)
∆−it1

= ∆i(t1+t2)π(a)∆−i(t1+t2)

= σt1+t2(π(a)),

and hence σt1σt2 = σt1+t2 . Then {σt : t ∈ R} forms a one-parameter
automorphism group.

3. From Prop.2.3.5(3) and Prop.1.8.4(2), we have that

〈Ω, σt (π(a)) Ω〉 =
〈
∆−itΩ, π(a)∆−itΩ

〉
= 〈Ω, π(a)Ω〉
= µ(a),

for all t ∈ R.
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In Prop.2.3.6, the modular automorphism group {σΩ
t : t ∈ R} was given

in the cyclic representation (π(A),Ω) of (A, µ). However, it is possible to
define the modular automorphism group directly on A as well (cf. [8, p.96]).
In the latter case, the *-automorphisms σµt : A → A for t ∈ R, are defined
by

σµt (a) = π−1
(
∆itπ(a)∆−it

)
,

i.e.
σµt = π−1 ◦ σt ◦ π,

and the resulting one-parameter automorphism group {σµt : t ∈ R} is ac-
cordingly called the modular automorphism group associated with (A, µ).

Theorem 2.3.7. The following statements hold:

1. For each t ∈ R, the equation

σµt (a) = π−1 ◦ σt ◦ π

defines a *-automorphism of A.

2. The family {σµt } forms a one-parameter automorphism group.

3. For each t ∈ R, µ ◦ σµt = µ.

Proof. Let a ∈ A.

1. From Prop.s 1.8.3 and 1.8.4(3), the maps

π : A → A⊗ 1 and π−1 : A⊗ 1→ A

are *-isomorphisms; and from Prop.2.3.6 we have that for all t ∈ R

σt : A⊗ 1→ A⊗ 1

is a *-isomorphism. Since the composition of two (or countably finite)
*-isomorphisms is itself a *-isomorphism, it follows that π−1 ◦ σt ◦ π is
a *-isomorphism. Hence σµt is a *-automorphism for each t ∈ R.

2. Group properties: Suppose t = 0, then σµ0 = idA since

σµ0 (a) = π−1
(
∆0π(a)∆0

)
= π−1 (π(a)) = a.

Let t1, t2 ∈ R, then[
σµt1 ◦ σ

µ
t2

]
(a) = σt1 (σt2(a))

= σt1
(
π−1

(
∆it2π(a)∆−it2

))
= π−1

(
∆it1

(
∆it2π(a)∆−it2

)
∆−it1

)
= π−1

(
∆i(t1+t2)π(a)∆−i(t1+t2)

)
= σµt1+t2

(a),

thus σµt1+t2
= σµt1◦σ

µ
t2

. Hence the family of automorphisms {σµt : t ∈ R}
forms a one-parameter automorphism group.
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3. By Prop.2.3.6(3) it follows that for all t ∈ R,

[µ ◦ σµt ](a) = 〈Ω, π(σµt (a))Ω〉
=

〈
Ω, π

(
π−1(∆itπ(a)∆−it)

)
Ω
〉

=
〈
Ω,
(
∆itπ(a)∆−it

)
Ω
〉

= 〈Ω, σt(π(a))Ω〉
= 〈Ω, π(a)Ω〉
= µ(a).

Thus the state µ is invariant under the modular automorphism group
{σµt : t ∈ R}.

Thus we have obtained the first part of Tomita-Takesaki theorem (see,
Theorem 2.1.1(1)). The modular automorphism group is probably the single
most important object appearing in Tomita-Takesaki theory [28, p.2].

2.4 The modular conjugation

The second of the two operators we determined from S0 is:

Definition 2.4.1 (Pre-modular conjugation). Define an operator J0 as fol-
lows:

J0 := ∆
1/2
0 S0 (2.4.1)

where
∆

1/2
0 : π(F ∗)Ω→ π(A)Ω : π(a)Ω 7→ π(ρ1/2aρ−1/2)Ω

with
F := {a ∈ A : ρ1/2a∗ρ−1/2 is bounded},

and ρ−1/2 is given as in Rem.1.5.8.

Proposition 2.4.2. The domain of J0 as given in Eq.(2.4.1) is π(F )Ω, i.e.

D(J0) = π(F )Ω,

and D(J0) is a dense subspace of G containing H0 �H0.

Proof. We are required to find all the elements x of the domain of S0 such

that S0x is in the domain π(F ∗)Ω of ∆
1/2
0 .

Suppose S0π(a)Ω = 0. Then by definition π(a∗)Ω = 0, so that a = 0
(by Prop.1.8.4) and ker(S0) = {0}. Thus S0 is injective, and its inverse S−1

0

exists. Furthermore, since

S−1
0 S0π(a)Ω = S−1

0 π(a∗)Ω = π(a)Ω,
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we have that S−1
0 = S0. Then

D(J0) = S−1
0

(
R(S0) ∩D

(
∆

1/2
0

))
= S−1

0 (π(A)Ω ∩ π(F ∗)Ω)

= S−1
0 (π(F ∗)Ω)

= π(F )Ω.

The denseness of D(J0) follows from an argument similar to the proof of
Prop.2.2.2, but with ρ1/2 and ρ−1/2 in place of ρ and ρ−1.

Proposition 2.4.3 (Properties of J0). The following statements hold:

1. The densely defined operator J0 satisfies

J0π(a)Ω = π
(
ρ1/2a∗ρ−1/2

)
Ω (2.4.2)

for all a ∈ F .

2. J0 is conjugate linear.

3. The action of J0 on a basis element ej ⊗ ek of G is given by

J0(ej ⊗ ek) = ek ⊗ ej

for all j, k ∈ N; hence J0 is isometric.

4. J0 extends to an isometric conjugate linear map defined on the entire
G.

Proof. Let {ej ⊗ ek : j, k ∈ N} be an orthonormal basis for G.

1. Let a ∈ F , then

J0π(a)Ω =
[
∆

1/2
0 S0

]
π(a)Ω

= ∆
1/2
0 π(a∗)Ω

= π
(
ρ1/2a∗ρ−1/2

)
Ω.

2. Since S0 is conjugate linear and ∆
1/2
0 is linear (because ∆0 is linear),

and the composition of a linear map with a conjugate linear map is
conjugate linear; it then follows that J0 is conjugate linear.

3. From Eq.(2.2.3) we have that

ej ⊗ ek = π
(
ρ
−1/2
k |ej〉 〈ek|

)
Ω, ∀j, k ∈ N,

59



so that

J0(ej ⊗ ek) = J0π
(
ρ
−1/2
k |ej〉 〈ek|

)
Ω

= π
(
ρ1/2

(
ρ
−1/2
k |ej〉 〈ek|

)∗
ρ−1/2

)
Ω

= ρ
−1/2
k

[(
ρ1/2 |ek〉 〈ej | ρ−1/2

)
⊗ 1
]( ∞∑

l=1

ρ
1/2
l el ⊗ el

)

=
∞∑
l=1

ρ
−1/2
k ρ

1/2
l

(
ρ1/2 |ek〉 〈ej | ρ

−1/2
l el

)
⊗ el

=
∞∑
l=1

δj,l ρ
−1/2
k

(
ρ

1/2
k ek

)
⊗ el

= ek ⊗ ej .

Thus J0(ej ⊗ ek) = ek ⊗ ej . Consider any x =
∑

j,k αj,kej ⊗ ek in
H0 ⊗H0 (so only finitely many αj,k ∈ C\{0}), then

‖J0x‖2 =

∥∥∥∥∥∥
∑
j,k

ᾱj,kJ0(ej ⊗ ek)

∥∥∥∥∥∥
2

=
∑
j,k

|αj,k|2‖ek ⊗ ej‖2

=
∑
j,k

|αj,k|2

= ‖x‖2.

Thus J0 is isometric and bounded on H0.

4. Since the densely defined isometric conjugate linear operator J0 is
bounded on H0, it can be extended to a uniquely determined conjugate
linear operator defined on the entire G which is itself an isometry.

Definition 2.4.4. We denote the conjugate linear extension of J0 by

J ≡ JΩ : G→ G,

and it is referred to as the modular conjugation associated with (π(A),Ω).

Theorem 2.4.5. The following statements hold:

1. The modular conjugation J satisfies:

Jπ(a)∗J(ej ⊗ ek) =
(
1⊗ aT

)
(ej ⊗ ek)

where aT is the transpose of a ∈ A with respect to the basis {ej : j ∈
N}.
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2. For all x, y ∈H ,
J(x⊗ y) = y∗ ⊗ x∗,

where z∗ :=
∑

j∈N z̄jej for all z =
∑

j∈N zjej.

3. For all a ∈ A,
Jπ(a∗)J = π′(aT ),

where π′ is the injective *-homomorphism given in Eq.(1.8.2), namely
π′ : A → B(G) : a 7→ 1⊗ a.

4. For all a ∈ A, Jπ(A)J = π′(A), i.e.

J(A⊗ 1)J = 1⊗A

where A⊗ 1 := {a⊗ 1 : a ∈ A} and 1⊗A is similarly defined.

Proof. Let {ej ⊗ ek : j, k ∈ N} be an orthonormal basis for G.

1. For all j, k ∈ N,

[Jπ(a)∗J ] (ej ⊗ ek) = [Jπ(a∗)] (ek ⊗ ej)
= J (a∗ek ⊗ ej)

= J

( ∞∑
l=1

(a∗)l,k el ⊗ ej

)

= J

( ∞∑
l=1

(aT )l,kel ⊗ ej

)

=

∞∑
l=1

(
aT
)
l,k
ej ⊗ el

= ej ⊗

( ∞∑
l=1

(
aT
)
l,k
el

)
= ej ⊗

(
aT ek

)
=

(
1⊗ aT

)
(ej ⊗ ek).

2. For x, y ∈ H , say x =
∑∞

j=1 xjej and y =
∑∞

k=1 ykek, it follows by
Prop.2.4.3 that

J(x⊗ y) = J

 ∞∑
j=1

∞∑
k=1

xjykej ⊗ ek


=

∞∑
j=1

∞∑
k=1

x̄j ȳkek ⊗ ej

= y∗ ⊗ x∗.
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So that

‖J(x⊗ y)‖ = ‖y∗ ⊗ x∗‖ = ‖y∗‖‖x∗‖ = ‖x‖‖y‖.

It then follows that J is jointly continuous with respect to x and y.
Thus J(x⊗ y) = y∗ ⊗ x∗ ∀x, y ∈H .

3. Together, Eq.(1.8.2) and part (1) of this theorem, give

Jπ(a)∗J(ej ⊗ ek) = π′
(
aT
)

(ej ⊗ ek)

for all j, k ∈ N, and a ∈ A. From this the required result then follows.

4. By part (3) of this theorem, we have

Jπ(a)J = Jπ(a∗)∗J = π′
(
(a∗)T

)
,

for all a ∈ A, it then follows that Jπ(A)J = π′(A). Consequently
J(A⊗ 1)J = 1⊗A.

Note that Thm.2.4.5(4) gives the second part of the Tomita-Takesaki
theorem for B(H ) (see Thm.2.1.1(2)).

Remarks 2.4.6. The following notation is also used

j (π(a)) := Jπ(a)∗J, a ∈ A.

Then
j (π(a)) = π′

(
aT
)
, ∀a ∈ A.

Note that the above result implies that j(π(a)) commutes with π(a); since

j(π(a))π(a) = π′(aT )π(a)

=
(
1⊗ aT

)
(a⊗ 1)

= a⊗ aT

= (a⊗ 1)
(
1⊗ aT

)
= π(a)π′(aT )

= π(a)j(π(a)).

Moreover,
j(π(A)) = π′(A).

In a sense j(π(a)) is a mirror image of π(A), i.e. 1⊗A is a mirror image of
A⊗ 1, with the two copies commuting with each other.

62



Proposition 2.4.7. The modular conjugation J has the following proper-
ties:

J∗ = J and J2 = 1.

Hence J is an anti-unitary operator.

Proof. Since J is an isometry (by Prop.2.4.3(4)) and the functional G×G→
C : (x, y) 7→ 〈Jx, Jy〉 is sesquilinear (linear in x and conjugate linear in y),
so by the Polarization identity we have

〈Jx, Jy〉 = 〈x, y〉 ∀x, y ∈ G.

So J∗J = 1. We also have

J2(ej ⊗ ek) = J(ek ⊗ ej) = ej ⊗ ek,

so that J2 = 1. Together, this gives

J∗ = (J∗J)J = J,

and so JJ∗ = JJ = 1; hence J is anti-unitary.

The operators ∆it and J on G form the core objects of the Tomita-
Takesaki modular theory. Equivalently, we can consider the operators σt
and j on A as the core elements of the theory. These modular objects are
found in the more general versions of the Tomita-Takesaki theory as well,
but it is much more difficult to obtain them and prove their properties.

2.5 The modular groups on an algebra and its
commutant

Among the motivations for the development of the Tomita-Takesaki theory
was to systematically study how the structure on a given algebra influence
that on its commutant in the case where both algebras have a common cyclic
vector ([20], [17, Section 9.2]). We illustrate this relationship by looking at a
particular instance, namely, by establishing a relation between the modular
automorphism group defined on an algebra and that on its commutant.

Consider the setup of the previous sections. We note that the require-
ment for a vector to be cyclic for an algebra is equivalent to the same vector
being separating for the algebra’s commutant (see [8, Proposition 2.5.3],
[20, Proposition 2.2]). Since Ω is cyclic and separating for π(A), it then
follows that Ω is also cyclic and separating for π′(A). One can also prove
this directly, as we did for π(A).

Analogous to the introduction of modular operator ∆ on G associated
with the algebra π(A), we can define a corresponding operator ∆′ associated
with the commutant π′ (A) as follows
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∆′ |H0�H0= ρ−1 � ρ |H0�H0 (2.5.1)

(cf. Thm.2.3.2). Note that ρ and ρ−1 have been swapped, since we are
working with π′(A) = 1⊗A instead of π(A) = A⊗ 1, so we have to switch
the tensor products throughout. Then ∆′ = ∆−1, since ρ−1ρ |H0= ρ−1ρ is
the identity operator on H0.

Through the functional calculus of ∆′, we can define a one-parameter uni-
tary group {(∆′)it : t ∈ R} (see Rem.2.3.4 and Prop.2.3.5). By Prop.2.3.6,
these unitaries induce a one-parameter automorphism group

σ′t(π
′(a)) =

(
∆′
)it
π′(a)

(
∆′
)−it

(2.5.2)

on π′(A).
Our goal here is to study the relationship between σt and σ′t.

Lemma 2.5.1. Let ∆ and J be the modular operator and modular conjuga-
tion associated with (π(A),Ω). Then for all z ∈ C,

J∆izJ = ∆iz̄.

Proof. Let z ∈ C. Then, for a basis element ej ⊗ ek of G, we have

J∆izJ(ej ⊗ ek) = J∆iz(ek ⊗ ej)

= J
(
ρizk ρ

−iz
j ek ⊗ ej

)
= ρ−iz̄k ρiz̄j ej ⊗ ek
= ∆iz̄(ej ⊗ ek).

This extends by linearity to the whole ofG, since ∆iz ∈ B(G) (by Prop.2.3.5(1))
and J ∈ B(G) (by Rem.2.4.4).

In the case where z is real, say z = t for some t ∈ R, we have that
J∆itJ = ∆it. So that the modular objects J and ∆it commute for all t ∈ R.

The map j introduced in Rem.2.4.6 gives a relation between the algebra
π(A) and its commutant π′(A):

Proposition 2.5.2. The map j : B(G) → B(G) : c 7→ Jc∗J is a linear *-
anti-isomorphism such that j◦j = 1, j(π(A)) = π′(A) and j(π′(A)) = π(A).

Proof. Let α ∈ C and a, b ∈ A. Then

j (απ(a) + π(b)) = j (π(αa+ b))

= Jπ (αa+ b)∗ J

= J (ᾱπ(a)∗ + π(b)∗) J

= αj(π(a)) + j(π(b)),
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and

(j(π(a)))∗ = (Jπ(a)∗J)∗

= (Jπ(a∗)J)∗

= Jπ(a∗)∗J

= j(π(a∗)).

We also have

j(π(a)π(b)) = j(π(ab))

= Jπ(ab)∗J

= Jπ(b∗a∗)J

= (Jπ(b)∗J) (Jπ(a)∗J)

= j(π(b))j(π(a)).

If j(π(a)) = j(π(b)) then Jπ(a)∗J = Jπ(b)∗J , so that 0 = π(a∗ − b∗) which
implies that a = b, since π is injective by Prop.1.8.4(3). Now suppose that
π′(b) = j(π(a)), then π′(b) = Jπ(a)∗J so that Jπ′(b)∗J = π(a). Thus, j is
a linear *-isomorphism. Furthermore,

(j ◦ j)π(a) = J (Jπ(a)∗J)∗ J

= π(a)

so that j ◦ j = 1. By Thm.2.4.5(2), we get

j(π(a))(ej ⊗ ek) = Jπ(a)∗J(ej ⊗ ek)
= J(a∗ ⊗ 1)(ek ⊗ ej)
= J ((a∗ek)⊗ ej)
= ej ⊗ (a∗ek)

∗

= ej ⊗ (aek)

= π′(a)(ej ⊗ ek),

and

j(π′(a))(ej ⊗ ek) = J(1⊗ a∗)J(ej ⊗ ek)
= J (ek ⊗ (a∗ej))

= (a∗ej)
∗ ⊗ ek

= π(a)(ej ⊗ ek),

so j(π(A)) = π′(A) and j(π′(A)) = π(A), as required.

Remarks 2.5.3. For all t ∈ R, the unitaries ∆it and (∆′)it satisfy the
relation:

j(∆it) = (∆′)it. (2.5.3)
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Indeed,

j
(
∆it
)

= J∆−itJ = ∆−it =
(
∆′
)it

since for all t ∈ R, ∆it ∈ B(G) and ∆′ = ∆−1.

The relation between the modular automorphism groups on an algebra
and its commutant is given by:

Theorem 2.5.4. Let σt and σ′t be the modular automorphism groups on
π(A) and π′(A) respectively, then

j ◦ σt ◦ j = σ′−t. (2.5.4)

Proof. From Prop.2.5.2 it follows that j ◦ σt ◦ j = σ′−t is a map from π′(A)
to π′(A). If a ∈ A, then by Rem.2.4.6 and Prop.2.5.2, j(π′(a)) = π(aT ), so

(j ◦ σt ◦ j)π′(a) = (j ◦ σt)π
(
aT
)

= j
(
∆itπ

(
aT
)

∆−it
)

= J
(
∆itπ

(
aT
)

∆−it
)∗
J

= J∆itπ
(
aT
)∗

∆−itJ

= ∆it
(
Jπ(aT )∗J

)
∆−it (since J and ∆it commute)

= ∆itπ′(a)∆−it

=
(
∆′
)−it

π′(a)
(
∆′
)it

= σ′−t(π
′(a)).

In effect going to the commutant leads to a time reversal of the modular
group. This will be discussed from a more physical point of view in Sec.2.6.

2.6 Physical time

In the operator algebraic approach to quantum mechanics (in particular,
to statistical mechanics [11], [15]), the dynamics are given by an automor-
phism group on the algebra of observables associated to some physical sys-
tem [6],[8], [25]. Thus we can already attach physical meaning to σt, directly
from the general theory, as time evolution.

In this section we show that the modular group can be interpreted as
physical time-evolution in equilibrium statistical mechanics.

In the canonical ensemble of equilibrium statistical mechanics, the state
ρ is given by

ρj =
e−βEj∑∞
j=1 e

−βEj
(2.6.1)

66



with β = 1/kT the inverse temperature, and Ej the energy of the state ej .
Defining the Hamiltonian of the system as the (typically unbounded)

operator H on H0 given by

Hej = Ejej (2.6.2)

we can write ρ = e−βH/Tr(e−βH). Therefore

∆it(ej ⊗ ek) = ρitj ρ
−it
k ej ⊗ ek

= e−iEjβteiEkβtej ⊗ ek
= e−iHβt ⊗ eiHβt(ej ⊗ ek),

i.e. ∆it = e−iHβt ⊗ eiHβt (using the same functional calculus as for ∆).
Thus, for a ∈ A,

σµt (a) = π−1
(
∆itπ(a)∆−it

)
= π−1

(
∆it(a⊗ 1)∆−it

)
= π−1

((
e−iHβtaeiHβt

)
⊗ 1
)

= e−iHβtaeiHβt,

so
σµ−t/β(a) = eiHtae−iHt (2.6.3)

which is exactly the physical time evolution of a. This gives us a physical
interpretation of the modular group as time-evolution, though reversed and
“stretched” due to the factor −1/β. Combining this with Thm.2.5.2 we see
that J , via j ◦ σt ◦ j, implements time-reversal, though on the commutant
π′(A) = 1⊗A, since j ◦ σt ◦ j gives σ′−t.

We therefore have reasonable physical meanings attached to the modular
group and modular conjugation. In Chapter 4 we are going to argue more
in physical terms for a specific physical system, to gain further insight into
the physical meaning of A⊗ 1 versus 1⊗A, and consequently J .

2.7 General remarks

There is a more ad hoc approach to the formulation of Tomita-Takesaki
theory in terms of tensor products based on the results obtained above, but
simpler from a technical point of view. The idea behind this alternative
approach is to simply take

∆it(ej ⊗ ek) := ρitj ρ
−it
k ek ⊗ ej , and J(ej ⊗ ek) := ek ⊗ ej ,

as the definitions of the linear operator ∆it and conjugate-linear operator J
on G from the outset. Then one verifies that these operators are well-defined
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on the whole of G, as their definitions only define them on H0�H0. Indeed,
since ∆it is unitary for each t ∈ R, it is a densely defined bounded operator;
thus can be extended to the whole of G. On the other hand, we have that J
is isometric, and thus bounded, hence J can also be extended to the whole
of G. From here onwards, one then builds the theory in exactly the same
way as before.

The disadvantage of this approach lies in that it does not give much
insight into how the theory can be generalized to algebras other than A =
B(H ), whereas the previous approach does.

The Tomita-Takesaki Theorem 2.1.1, in the formulation of the theory
given above, is easily proved. In this context, it states that

Jπ (A) J = π′(A), (2.7.1)

and
σt(π(A)) = π(A). (2.7.2)

Remarks 2.7.1 (Alternative approach to the functional calculus of ∆0).

The idea for the definition of ∆
1/2
0 in Def.2.4.1 is another way of approaching

the functional calculus of ∆0. In this approach, ∆
1/2
0 is defined on H0�H0

similar to Eq.(2.3.3), i.e.

∆
1/2
0 (ej ⊗ ek) := ρ

1/2
j ρ

−1/2
k ej ⊗ ek

=
(
ρ1/2 � ρ−1/2

)
(ej ⊗ ek),

for all j, k ∈ N. Then, in this case, J0 is also defined on H0 �H0.
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Chapter 3

Second approach to
Tomita-Takesaki theory:
Hilbert-Schmidt operators

The approach to Tomita-Takesaki theory we give in this chapter is centered
around the Hilbert space of Hilbert-Schmidt operators B2(H ) (see Sec.1.3).
There are two algebras of operators that can be introduced on this Hilbert
space which carry the modular structure. We will make use of the tensor
product approach (of Chap.2) to obtain the Hilbert-Schmidt approach. In
particular, we have that H ⊗H is unitarily isomorphic to B2(H ,H ) (see
Thm.1.7.7).

The development we make here is based on [1], but distilled as far as the
scope of our project requires.

3.1 Left and right algebras

We start by identifying a special class of operators on B2(H ). Given a, b ∈
A ≡ B(H ) denote by a ∨ b an operator defined as follows:

a ∨ b : B2(H )→ B2(H ) : x 7→ axb∗. (3.1.1)

This operator is well-defined. Note that axb∗ ∈ B2(H ) for all a, b ∈ A, x ∈
B2(H ), this follows from the fact that B2(H ) is an ideal in A (by Cor.1.3.6).
From the associative bilinearity of the product operation it follows that a∨b
is linear.

Denote by A the vector space of all linear combinations of operators of
the form a ∨ b on B2(H ).

Proposition 3.1.1. For any given pair a, b ∈ A, the operator a ∨ b is a
bounded linear operator on B2(H ). Moreover,

(a ∨ b)∗ = a∗ ∨ b∗ (3.1.2)
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and

(a1 ∨ b1)(a2 ∨ b2) = a1a2 ∨ b1b2, (3.1.3)

∀a1, a2, b1, b2 ∈ A.

Proof. Let a, a1, a2, b, b1, b2 ∈ A and α ∈ C. Then in view of the above
definitions and Cor.1.3.6,

‖(a ∨ b)x‖2 = ‖axb∗‖2
≤ ‖a‖‖xb∗‖2
≤ ‖a‖‖b∗‖‖x‖2,

so that a∨b is a bounded linear operator. Using the inner product on B2(H )
and Prop.1.3.8 we get

〈(a ∨ b)∗x, y〉2 = 〈x, (a ∨ b)y〉2
= 〈x, ayb∗〉2
= Tr[x∗(ayb∗)]

= Tr[(a∗xb)∗y]

= 〈a∗xb, y〉2
= 〈(a∗ ∨ b∗)x, y〉2 ,

thus (a ∨ b)∗ = a∗ ∨ b∗. By the associativity of the product operation, we
have that

[(a1 ∨ b1)(a2 ∨ b2)] (x) = a1 [(a2 ∨ b2)(x)] b∗1

= a1(a2xb
∗
2)b∗1

= (a1a2)x(b1b2)∗

= [(a1a2) ∨ (b1b2)] (x),

so that (a1 ∨ b1)(a2 ∨ b2) = a1a2 ∨ b1b2.

Corollary 3.1.2. The vector space A of all operators of the form a ∨ b
(a, b ∈ A) is a *-subalgebra of the C*-algebra of all bounded operators on
B2(H ).

Recall that the Hilbert spaces H ⊗H and B2(H ) are unitarily equiv-
alent (by Thm.1.7.7), i.e. there is a unitary transformation W such that

W : H ⊗H → B2(H ) : x⊗ ȳ 7→ |x〉 〈y| . (3.1.4)

Proposition 3.1.3. For all a, b ∈ A,

W (a⊗ b)W ∗ = a ∨ b,

i.e. W (A ⊗ A)W ∗ = A, where A is the *-algebra of all bounded operators
on B2(H ) of the form a ∨ b.
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Proof. Let a, b ∈ A, x ∈H and y ∈H . Then

W (a⊗ b)W ∗ (|x〉 〈y|) = W (a⊗ b)(x⊗ y)

= W ((ax)⊗ (by))

= |ax〉 〈by| .

But, for all u ∈H , we have

|ax〉 〈by|u = ax 〈by, u〉
= a (x 〈y, b∗u〉)
= a |x〉 〈y| b∗u

so that
|ax〉 〈by| = a |x〉 〈y| b∗ = (a ∨ b) |x〉 〈y| .

Thus W (a⊗b)W ∗ = a∨b, since
{
|x〉 〈y| : x ∈H , y ∈H

}
spans B2(H ).

There are two special von Neumann algebras that can be built out of
the algebraic operations given in Prop.3.1.1 (cf. Prop.2.4.5(4)):

Proposition 3.1.4. The sets

Al = {al := a ∨ 1 | a ∈ B(H )} (3.1.5)

and

Ar = {ar := 1 ∨ a | a ∈ B(H )} (3.1.6)

are mutual commutants:

(Al)
′ = Ar and (Ar)

′ = Al. (3.1.7)

Moreover, Al and Ar are von Neumann algebras.

Proof. Since (a∨ b) ∈ B (B2(H )) , ∀a, b ∈ A (by Prop.3.1.1), it follows that
Al, Ar ⊆ B (B2(H )) as subsets.

For any set Y ⊂ B (B2(H )). Let X := W ∗YW , where W is the unitary
transformation in (3.1.4). So Y = WXW ∗.

For a ∈ B (B2(H )), set b := W ∗aW . If a ∈ Y ′, then for all c ∈ X

cb = (W ∗WcW ∗W ) (W ∗aW )

= W ∗ [(WcW ∗) a]W

= W ∗ [a (WcW ∗)]W (since WcW ∗ ∈ Y )

= (W ∗aW ) c

= bc
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which implies that b ∈ X ′. On the other hand, if b ∈ X ′, then for all c ∈ Y

ca = (WW ∗cWW ∗) (WbW ∗)

= W [(W ∗cW ) b]W ∗

= W [b (W ∗cW )]W ∗ (since W ∗cW ∈ Y )

= (WbW ∗) c

= ac

which implies that a ∈ Y ′. So: a ∈ Y ′ if and only if b ∈ X ′, i.e. Y ′ =
WX ′W ∗. In particular, we have that

A′r = W (A⊗ 1)′W ∗ = W (1⊗A)W ∗ = Al,

by Prop.3.1.3. Similarly, A′l = Ar. Furthermore, A′′r = A′l = Ar so that Ar
is a von Neumann algebra; similarly for Al.

3.2 Modular conjugation and modular group

Here we show how the modular conjugation and modular group arise in the
Hilbert-Schmidt version of Tomita-Takesaki theory, using their counterparts
(and corresponding results) in the tensor product approach.

Proposition 3.2.1. Let {ej : j ∈ N} be an orthonormal basis for H , and

ι : H ⊗H →H ⊗H : ej ⊗ ek 7→ ej ⊗ ēk,

where ēk := ek (but viewed as an element of H ). Then:

1. The map ι has a unique unitary extension to the whole of H ⊗H ,
which we also denote by ι.

2. For all x, y ∈H ,
ι(x⊗ y) = x⊗ ȳ∗, (3.2.1)

where z∗ :=
∑

j∈N z̄jej for all z =
∑

j∈N zjej. Furthermore, ι(x⊗y∗) =
x⊗ ȳ and ι∗(x⊗ ȳ) = x⊗ y∗.

Proof. Let {ej : j ∈ N} be an orthonormal basis for H .

1. Since {ej⊗ek : j, k ∈ N} is an orthonormal basis for H ⊗H , it follows
that ι is well-defined. Clearly, ι is linear and invertible. From

‖ι(ej ⊗ ek)‖ = ‖ej ⊗ ēk‖ = ‖ej‖‖ēk‖ = 1,

it follows that ι is an isometry, and thus unitary. So ι has a unitary
extension to the entire H ⊗H . Call it ι.
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2. Note that

ι(ej ⊗ (αek)) = αι(ej ⊗ ek)
= α(ej ⊗ ēk)
= ej ⊗ (ᾱek)

= ej ⊗ (αek)∗

= ej ⊗ (α ·̄ ēk)

so ι “conjugates” the second factor with respect to the orthonormal
basis {ej : j ∈ N}. Then for all x, y ∈ H , say x =

∑
j∈N xjej and

y =
∑

k∈N ykek, we have

ι(x⊗ y) =
∑
j,k∈N

xjyk (ej ⊗ ēk)

=
∑
j,k∈N

(xjej)⊗ (ȳkek)

= x⊗

(∑
k∈N

ȳkek

)
= x⊗ (y∗)

= x⊗ ȳ∗

so x⊗ y∗ = ι∗(x⊗ ȳ) and ι(x⊗ y∗) = x⊗ ȳ.

We define the modular conjugation in the Hilbert-Schmidt setup from J
in Chapter 2 as follows:

Definition 3.2.2. Let JHS : B2(H )→ B2(H ) be such that

JHS := WιJι∗W ∗, (3.2.2)

where W is the unitary transformation in (3.1.4), and ι is given by (3.2.1).

The operator JHS has properties similar to the modular conjugation J
(cf. Prop.2.4.7):

Theorem 3.2.3. The operator JHS has the following properties:

1. The operator JHS is conjugate linear.

2. For all x, y ∈H ,
JHS(|x〉 〈y|) = |y〉 〈x| .

3. J2
HS = 1 and J∗HS = JHS.
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Hence JHS is anti-unitary. Moreover, we have

JHSAlJHS = Ar. (3.2.3)

Proof. 1. Since W, ι, ι∗ and W ∗ are linear maps, and on the other hand J
is conjugate linear; then JHS is conjugate linear, since the composition
of a linear map with a conjugate linear map is itself conjugate linear.

2. Let x, y ∈H , then in view of the above definitions and Thm.2.4.5(2)

JHS(|x〉 〈y|) = WιJι∗(x⊗ ȳ)

= WιJ(x⊗ y∗)
= Wι(y ⊗ x∗)
= W (y ⊗ x̄)

= |y〉 〈x| .

3. We also have that

J2
HS = WιJ2ι∗W ∗ = Wιι∗W ∗ = 1,

and
J∗HS = (WιJι∗W ∗)∗ = WιJι∗ = JHS .

Hence JHS (like J) is anti-unitary. Furthermore, for all a, b ∈ A and
x, y ∈H

JHS(a ∨ b)JHS(|x〉 〈y|) = JHS(a ∨ b)(|y〉 〈x|)
= JHS (a |y〉 〈x| b∗)
= JHS (|ay〉 〈bx|)
= |bx〉 〈ay|
= (b ∨ a) |x〉 〈y| ,

so JHS(a ∨ b)JHS = b ∨ a). In particular, JHSAlJHS = Ar.

For the unitary group in this Hilbert-Schmidt approach, we simply define

∆it
HS := Wι∆itι∗W ∗ (∀t ∈ R).

Then the modular group can be obtained as in Sec.2.3.
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3.3 The cyclic and separating vector

In this Hilbert-Schmidt approach to Tomita-Takesaki theory, we obtain the
cyclic and separating vector Φ as follows:

Φ := WιΩ

=
∞∑
j=1

ρ
1/2
j W (ej ⊗ ēj)

=

∞∑
j=1

ρ
1/2
j |ej〉 〈ej |

=

∞∑
j=1

ρ
1/2
j Pj ,

where Pj := |ej〉 〈ej | (i.e. Pj is a projection of H onto C1).
Then all the properties that Ω has in Chapter 2, can correspondingly be

obtained for Φ (with arguments similar to those in Sec.3.2). In particular,
we have that Φ is a cyclic and separating vector for Al. Since Wι is unitary
this is straightforward, so we omit the details.
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Chapter 4

Tomita-Takesaki theory and
Landau levels

In this chapter we look at the Landau levels of the dynamical model of a two-
dimensional electron placed in a uniform magnetic field, orthogonal to the
plane which contains the electron and demonstrate how these levels exhibit
a modular structure in the sense of Tomita-Takesaki theory. This allows
us to gain some understanding of the physical meaning of Tomita-Takesaki
theory and the modular objects in a simple setting.

The developments we make in this chapter are based on [1], but we
use the tensor product approach to Tomita-Takesaki theory, instead of the
Hilbert-Schmidt approach as in the paper.

We do not attempt to be mathematically rigorous or complete in this
chapter. In particular, our treatment of unbounded operators that appear
here, are not fully rigorous.

4.1 Review of classical motion in a magnetic field

In this section we give a brief review of the classical motion of a charged
particle in a magnetic field background. Consider a particle of mass m and
charge q with position r that is subjected to a magnetic field B(r). The
force exerted on the particle is given by the Lorentz force

F = qv ×B(r)

where v = dr
dt is the velocity of the particle. Then, the equation of motion

for the particle in a magnetic field is

m
dv

dt
= qv ×B(r). (4.1.1)

The classical Hamiltonian for the charged particle is

H =
1

2m
[p− qA(r)]2 , (4.1.2)
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where A(r) is a vector potential related to the magnetic field B(r) by

B(r) = ∇×A(r).

The choice of gauge is not unique. However, since the dynamical system
which we model manifests a rotational symmetry along the axis through the
center of the trajectory parallel to the z-axis, we shall use symmetric gauge.

For convenience we set

H = H⊥ +H‖ (4.1.3)

with

H⊥ =
1

2m

[
(px − qAx)2 + (py − qAy)2

]
(4.1.4)

H‖ =
1

2m
(pz − qAz)2 (4.1.5)

When the magnetic field is uniform and its direction is chosen to be along
the z-axis, the equation of motion become the three coupled differential
equations

mẍ = qBẏ

mÿ = −qBẋ
mz̈ = 0.

The solutions to these equations of motion are given by

x(t) = x0 −R sin(ωBt− θ0) (4.1.6)

y(t) = y0 +R cos(ωBt− θ0) (4.1.7)

z(t) = z0 + v0,zt, (4.1.8)

where x0, y0, z0, R, θ0 and v0,z are the arbitrary constant parameters which
depend on the initial conditions of the system. The cyclotron frequency is
given by

ωB = −qB
m
. (4.1.9)

Remarks 4.1.1 (Trajectory of the particle). Equations (4.1.6) and (4.1.7)
show that the projection of position of the particle onto the xy-plane exe-
cutes a uniform circular motion, of angular frequency ωB and initial phase
θ0, on a circle of radius R whose center of orbit is the point C0 = (x0, y0, 0),
which we call the guiding center.

Whereas the projection of the motion onto the z-axis is uniform and
rectilinear. It then follows that the motion that the particle curves in space
is a circular helix whose axis is parallel to the z-axis and goes through the
point C0.
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4.2 The quantum theory

In this section we shall give a quick review of the (non-relativistic) quantum-
mechanical treatment of the motion of a charged particle in a magnetic field
background and the resulting phenomenon of Landau levels. This is a well-
known problem in physics.

The Hamiltonian of the system is described by

H =
1

2m
(p + qA)2, (4.2.1)

motivated by condensed matter physics, quantum optics, etc.
The energy eigenspectrum of the this Hamiltonian can be found explic-

itly, in fact it is exactly the same as that of the quantum harmonic oscillator.
However, unlike the harmonic oscillator, it turns out that each energy level
does not have a unique state associated to it. Instead there exists a (count-
ably) infinite degeneracy for each eigenvalue (the so-called Landau levels).
Physically, the degeneracy of the Landau levels is explained by the impossi-
bility of quantum-mechanically fixing the origin of the center of the circular
orbits of the charged particles [1].

See the Appendix and the references referred therein for more details
and proofs of the statements we shall make in this section.

The assumption we make is that the charged particle behaves like a
spinless fermion, i.e. we shall ignore the effects due to spin (this is more or
less appropriate for most physically realizable quantum Hall systems [32]),
and the treatment shall also be non-relativistic.

Consider an electron placed in an arbitrary magnetic field described by
the vector potential A(x, y, z). In quantum mechanics, the vector potential
becomes an operator, a function of three observables X,Y, and Z. The
non-relativistic quantum Hamiltonian of the electron can be obtained from
(4.1.2),

Helec =
1

2m
[P + eA(X,Y, Z)]2 =

m

2
V2, (4.2.2)

where V = 1
m [P + eA(X,Y, Z)] is the operator associated with the velocity

of the electron. The position and momentum observables R and P satisfy
the commutation relations

[X,Px] = [Y, Py] = [Z,Pz] = i~, (4.2.3)

and the other commutators between the components of R and P are zero.
In the special case of a uniform magnetic field, the commutation relations
between the components of the velocity operator are given by

[Vx, Vy] =
−i~ωB
m

(4.2.4)
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[Vy, Vz] = [Vz, Vx] = 0. (4.2.5)

The operator Helec, analogous to (4.1.3), can be written in the form

Helec = H⊥ +H‖ (4.2.6)

where

H⊥ =
m

2

(
V 2
x + V 2

y

)
(4.2.7)

H‖ =
m

2
V 2
z . (4.2.8)

From the relation (4.2.5), it follows that
[
H⊥, H‖

]
= 0, so that we can

apply spectral theory to H⊥ and H‖ separately. Then the spectrum of Helec

consists of the values

Eelec = E⊥ + E‖, (4.2.9)

where E⊥ and E‖ are the spectral values of H⊥ and H‖ respectively. The
spectral values of H‖ are of the form E‖ = m

2 v
2
z , where vz ∈ R is an arbitrary

constant. Thus, the spectrum of H‖ is continuous: the energy E‖ can take
any positive value or zero. The physical interpretation of this result is that
H‖ describes the kinetic energy of a free particle moving along the z-axis.

In order to determine the spectrum and eigenvectors of H⊥, we introduce
the gauge invariant momentum

Π = mV = P + eA, (4.2.10)

which satisfy the relation [Πx,Πy] = −ie~B = −i~2/l2B, where lB =
√

~/eB
is the magnetic length. Next we define the raising and lowering operators

a =
lB√
2~

(Πx − iΠy) , a
† =

lB√
2~

(Πx + iΠy) , (4.2.11)

with [a, a†] = 1. Then the Hamiltonian (4.2.7) can be re-written in terms of
(4.2.11) as

H⊥ = ~ωB
(
a†a+

1

2

)
, (4.2.12)

which has the form of the Hamiltonian of the one-dimensional harmonic
oscillator. As in the case of the harmonic oscillator, we can construct a
Hilbert space; by first introducing the ground state |0〉 such that a |0〉 = 0,
and then building the rest of the Hilbert space by acting with the raising
operator a†,

a† |n〉 =
√
n+ 1 |n〉 , a |n〉 =

√
n |n− 1〉 (4.2.13)

where the last equation holds only for n > 0. Analogous to the harmonic
oscillator, it is then deduced that the values of E⊥ are given by

E⊥(n) = ~ωB
(
n+

1

2

)
(4.2.14)
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where n is a non-negative integer. From the above results, the spectral
values of the total Hamiltonian Helec are of the form:

Eelec(n, vz) = ~ωB
(
n+

1

2

)
+

1

2
mv2

z , (4.2.15)

with the corresponding levels referred to as Landau levels. Therefore, in the
presence of a magnetic field, the kinetic energy of the motion along the z-axis
is not quantized, but that of the projection onto the xy-plane is quantized.

The states of higher levels n are constructed from the ground state as

|n〉 =
(a†)

n

√
n!
|0〉 (4.2.16)

with the corresponding energy spectral value given by (4.2.14).
We started with a problem of an electron moving in a plane, which has

two degrees of freedom and it is natural to expect that a state of a two-
dimensional system is described by two quantum numbers (one for each
spatial dimension). Instead we ended up writing the original Hamiltonian
(4.2.7) in the form of the harmonic oscillator Hamiltonian which has only
one degree of freedom. From this dimensional analysis it follows that the
quantum state of the system, as given by (4.2.16), is underdetermined. How-
ever the spectrum (4.2.14) is the correct spectrum of the theory but, unlike
the harmonic oscillator, to each energy level E⊥ there is no unique state
associated to it. Instead there is a countably infinite degeneracy of states.

For a complete description of the quantum state of our dynamical sys-
tem, in the manner similar to the gauge invariant momentum (4.2.10), we
introduce another variable called the pseudo-momentum

Π̃ = P− eA, (4.2.17)

which satisfy the relation [Π̃x, Π̃y] = i~2/l2B. We then can define a new pair
of ladder operators

b =
lB√
2~

(
Π̃x − iΠ̃y

)
, b† =

lB√
2~

(
Π̃x + iΠ̃y

)
. (4.2.18)

It is this second pair of ladder operators that give rise to the degeneracy of
the Landau levels.

In symmetric gauge, we have that [b, a†] = 0 and [b†, H⊥] = 0. Therefore
the Hamiltonian H⊥ and the raising operator b† are compatible variables,
so that they share a common eigenbasis. The second quantum number is
found by introducing a number operator b†b associated with (4.2.18) whose
eigenstates |m〉 satisfy

b†b |m〉 = m |m〉 (4.2.19)

with an integer m ≥ 0. The quantum number m, in addition of the Landau
level quantum number n , is necessary to describe the complete state of the
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system. Then the general state of the system is given by the tensor product
of the two Hilbert space vectors

|n,m〉 = |n〉 ⊗ |m〉 =
(a†)

n

√
n!

(b†)
m

√
m!
|0, 0〉 , (4.2.20)

which is a generalization of (4.2.16). The energy of this state is given by the
usual Landau expression (4.2.14), which depends on n but not on m.

4.3 Two opposite field directions

The so-called Landau problem is related to the motion of an electron on a
flat xy-plane in the presence on a uniform magnetic field along the z-axis. In
this context, we have two cases depending on the orientation of the magnetic
field.

When the magnetic field is along the positive z-axis, take the vector
potential to be given by

A↑ =
1

2
(−y, x, 0)

so that the magnetic field is

B(r) = ∇×A↑ = (0, 0,+1).

The classical Hamiltonian (4.1.2) then becomes

H⊥ =
1

2

(
px +

y

2

)2
+

1

2

(
py −

x

2

)2
,

where, to simplify computations and presentation, we have adopted an ap-
propriate convention of units in which all physical constants are taken to be
one.

On an appropriate dense subspace K of H̃ = L2
(
R2, dxdy

)
, where

dxdy indicates Lebesgue measure, we introduce the following quantized ob-
servables in place of px + y

2 and py − x
2 respectively:

Q+ = −i ∂
∂x

+
y

2
, (4.3.1)

P+ = −i ∂
∂y
− x

2
(4.3.2)

which satisfy the commutation relation [Q+, P+] = i1
H̃

. The corresponding
quantum Hamiltonian is then given by

H↑ =
1

2

(
P 2

+ +Q2
+

)
. (4.3.3)
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The Hamiltonian H↑ is the same as that of the one-dimensional quantum
oscillator Hamiltonian, and its eigenvalues are

En =

(
n+

1

2

)
, n = 0, 1, 2, .... (4.3.4)

However, each of these Landau levels is infinitely degenerate, and we denote
the corresponding normalized eigenvectors by

Ψnm, n = 0, 1, 2, ...,m = 0, 1, 2, ... (4.3.5)

where n indexes the energy level, and m indexes the degeneracy at each
energy level.

Now, if the uniform magnetic field is aligned along the negative z-axis,
with A↓ = 1

2(y,−x, 0) and

B = ∇×A↓ = (0, 0,−1),

the corresponding quantum Hamiltonian would then become

H↓ =
1

2

(
P 2
− +Q2

−
)
, (4.3.6)

where in place of py+x
2 and px− y

2 we have introduced the quantized variables

Q− = −i ∂
∂y

+
x

2
(4.3.7)

P− = −i ∂
∂x
− y

2
, (4.3.8)

respectively, on K , which satisfy [Q−, P−] = i1
H̃

.

To solve the eigenvalue problem for H↓, we make the following observa-
tion:

Proposition 4.3.1. The two sets of operators {P±, Q±} mutually commute,
i.e.

[Q+, Q−] = [P+, Q−] = [Q+, P−] = [P+, P−] = 0, (4.3.9)

consequently [H↑, H↓] = 0.

Proof. Let ψ ∈ K be arbitrary, then

[Q+, Q−]ψ(x, y) = [Q+Q− −Q−Q+]ψ(x, y)

=

[
−i ∂
∂x

+
y

2

](
−i∂ψ

∂y
+
x

2
ψ

)
−

[
−i ∂
∂y

+
x

2

](
−i∂ψ
∂x

+
y

2
ψ

)
=

[
− ∂2ψ

∂x∂y
− i

2

(
ψ + x

∂ψ

∂x
+ y

∂ψ

∂y

)
+
xy

4
ψ

]
−

[
− ∂2ψ

∂x∂y
− i

2

(
ψ + x

∂ψ

∂x
+ y

∂ψ

∂y

)
+
xy

4
ψ

]
= 0.
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Then [Q+, Q−] = 0. The other commutation relations in (4.3.9) are proved
in a similar way.

Since the Hamiltonians H↑ and H↓ are compatible observables, we can
choose the eigenvectors Ψnm of H↑ in such a way that they are also the
eigenvectors of H↓ satisfying

H↓Ψnm =

(
m+

1

2

)
Ψnm. (4.3.10)

So that H↑ lifts the degeneracy of H↓ and vice versa.

4.4 The two algebras and J

In Tomita-Takesaki theory we saw that a central role is played by the two
algebras A⊗ 1 and 1⊗A, which are connected via the modular conjugation
J (see Sec.2.4).

We want to give a physical interpretation of the two algebras A⊗ 1 and
1⊗A, and consequently add further insight to our discussion in Sections 2.5
and 2.6 to allow us to gain better understanding of the physical meaning of
J .

We argue heuristically as follows: Represent H̃ as

H̃ = L2(R, dx)⊗ L2(R, dy),

with elementary tensors of the form f ⊗ g given by

(f ⊗ g)(x, y) = f(x)g(y). (4.4.1)

Therefore Q+ and P+, as well as Q− and P−, are in effect defined on this

tensor product Hilbert space H̃ .
We note from (4.3.1) and (4.3.2), versus (4.3.7) and (4.3.8), that going

from the field in the positive z-direction (i.e. (4.3.1) and (4.3.2)) to the field
in the negative z-direction (i.e. (4.3.7) and (4.3.8)), amounts to swapping x
and y. But, as seen in (4.4.1) above, swapping x and y, in effect means the
factors in the Hilbert space tensor product are being swapped.

If we extend this idea to our two algebras A⊗1 and 1⊗A, we start to see
that these two algebras are associated to the two field directions respectively.

Since J(·)J takes us from A ⊗ 1 to 1 ⊗ A, we conclude that J can be
interpreted as reflecting the magnetic field in the xy-plane, i.e. from positive
to negative z-direction. This is consistent with our interpretation of J in
Sec.2.6 as time-reversal. A simple way to see this is to think of a magnetic
field generated by a current in a solenoid: reversing time, reverses the current
and consequently the magnetic field.
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In the next section we study the swapping of the tensor product some-
what more precisely, by also using ideas from our Hilbert-Schmidt approach
to Tomita-Takesaki theory in Chapter 3.

4.5 The Wigner transformation

Here we intend to make the swapping in the tensor product, in relation
to A ⊗ 1 versus 1 ⊗ A in the previous section, somewhat more precise.
The discussion is nevertheless still in some ways heuristic, as we work with
unbounded operators, rather than directly with A⊗ 1 and 1⊗A.

Consider the usual position and momentum operators Q and P on the
Hilbert space H = L2(R), in Schrödinger representation, which satisfy the
commutation relation [Q,P ] = i1H . Let {φn}∞n=0 be the orthonormal basis
of H consisting of the eigenvectors of the harmonic oscillator Hamiltonian,
Hosc = 1

2

(
P 2 +Q2

)
, i.e.

Hoscφn =

(
n+

1

2

)
φn, n = 0, 1, 2, ..., (4.5.1)

where the φn are the Hermite functions

φn(x) =
1

π1/4

1

2nn!
e−x

2/2hn(x), (4.5.2)

with the hn being the Hermite polynomials,

hn(x) = (−1)n
∂n

∂xn
e−x

2
. (4.5.3)

Then, by Thm.1.3.8, the following set of vectors

φnl := |φn〉 〈φl| , n, l = 0, 1, 2, ... (4.5.4)

forms an orthonormal basis for the Hilbert space B2(H ) of Hilbert-Schmidt
operators.

Definition 4.5.1. Consider the unitary operator U(x, y) on H = L2(R)
given by

[U(x, y)Φ] (ξ) = eix(ξ−y/2)Φ(ξ − y), (4.5.5)

where x, y, ξ ∈ R, Φ ∈ H , with U(x, y) = e−i(xQ+yP ). Using the operator
U(x, y) we define a map, known as the Wigner transformation, given by

W : B2(H )→ H̃ = L2(R2, dxdy);

(WX) (x, y) =
1√
2π
Tr (U(x, y)∗X) , (4.5.6)

where X ∈ B2(H ), and x, y ∈ R.
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Note that if X1, X2 ∈ B2(H ), then∫
R2

WX1(x, y)WX2(x, y)dxdy = 〈X1, X2〉2

= 〈X1, X2〉B2(H ) ,

so that the Wigner transformation W is unitary.
Now we get to the main goal of this section, namely to show that swap-

ping the factors in the tensor product corresponds to reversing the magnetic
field.

Proposition 4.5.2. Consider the unitary operator

U := Wι : H ⊗H → B2(H ).

Then the following relations hold:

U
(
Q⊗ 1
P ⊗ 1

)
U−1 =

(
Q+

P+

)
, (4.5.7)

U
(

1⊗Q
1⊗ P

)
U−1 =

(
P−
Q−

)
, (4.5.8)

U
(
Hosc ⊗ 1
1⊗Hosc

)
U−1 =

(
H↑

H↓

)
, (4.5.9)

and

U(φn ⊗ φm) = Ψnm. (4.5.10)

This means that the Ψnm form a basis for L2
(
R2, dxdy

)
.

Proof. (The proof we give here is based on the one outlined in [2].) We shall
only prove the first two relations in (4.5.7), since the other two in (4.5.8)
follow in an exactly similar manner. Whereas, the relations in (4.5.9) are a
direct consequence of (4.5.7) and (4.5.8). Let φ, ψ ∈ H be such that they
are both in the domains of the operators Q and P , and are differentiable
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and vanish at infinity. Then φ⊗ ψ ∈H ⊗H and

[U(φ⊗ ψ)](x, y) = [W |φ〉 〈ψ|](x, y)

=
1√
2π
Tr[U(x, y)∗ |φ〉 〈ψ|]

=
1√
2π

∞∑
n=0

〈φn, U(x, y)∗ |φ〉 〈ψ|φn〉H

=
1√
2π

∞∑
n=0

〈U(x, y)φn, 〈ψ, φn〉H φ〉H

=
1√
2π

∞∑
n=0

〈U(x, y) 〈φn, ψ〉H φn, φ〉H

=
1√
2π

〈
U(x, y)

( ∞∑
n=0

|φn〉 〈φn|

)
ψ, φ

〉
H

=
1√
2π
〈U(x, y)ψ, φ〉H

=
1√
2π

∫
R

[U(x, y)ψ](ξ)φ(ξ)dξ

=
1√
2π

∫
R

[e−ix(ξ−y/2ψ(ξ − y)]φ(ξ)dξ

=
1√
2π

∫
R
eix(ξ−y/2)ψ(ξ − y)φ(ξ)dξ.

Then, with the help of Qφ(ξ) = ξφ(ξ) and

∂

∂x
eix(ξ−y/2) = i(ξ − y/2)eix(ξ−y/2),
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we get

[U(Q⊗ 1H )(φ⊗ ψ)](x, y)

= [U(Qφ⊗ ψ)](x, y)

= [W(Q |φ〉 〈ψ|)](x, y)

=
1√
2π
Tr[U(x, y)∗Q |φ〉 〈ψ|]

=
1√
2π
〈U(x, y)ψ,Qφ〉H

=
1√
2π

∫
R

[U(x, y)ψ](ξ)Qφ(ξ)dξ

=
1√
2π

∫
R
eix(ξ−y/2)ψ(ξ − y)ξφ(ξ)dξ

=
1√
2π

∫
R

(
−i ∂
∂x

+
y

2

)
eix(ξ−y/2)ψ(ξ − y)φ(ξ)dξ

=

(
−i ∂
∂x

+
y

2

)[
1√
2π

∫
R
eix(ξ−y/2)ψ(ξ − y)φ(ξ)dξ

]
=

(
−i ∂
∂x

+
y

2

)
[U (φ⊗ ψ)](x, y),

and extending by linearity of appropriate domains, we get

U(Q⊗ 1H )U−1 = −i ∂
∂x

+
y

2
= Q+.

Next,

[U(P ⊗ 1H )(φ⊗ ψ)](x, y)

= [U(Pφ)⊗ ψ](x, y)

=
1√
2π
〈U(x, y)ψ, Pψ〉H

=
1√
2π

∫
R
eix(ξ−y/2)ψ(ξ − y)Pφ(ξ)dξ

=
1√
2π

∫
R
eix(ξ−y/2)ψ(ξ − y)

(
−i ∂
∂ξ

)
φ(ξ)dξ.

Now we observe that

i
∂

∂y

[
eix(ξ−y/2)φ(ξ − y)φ(ξ)

]
= eix(ξ−y/2)x

2
ψ(ξ − y)φ(ξ)

+ eix(ξ−y/2)

(
i
∂

∂y

)
ψ(ξ − y)φ(ξ)
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and

−i ∂
∂ξ

[
eix(ξ−y/2)φ(ξ − y)φ(ξ)

]
= xeix(ξ−y/2)ψ(ξ − y)φ(ξ)

+ eix(ξ−y/2)

(
−i ∂
∂ξ

)
ψ(ξ − y)φ(ξ)

+ eix(ξ−y/2)ψ(ξ − y)

(
−i ∂
∂ξ

)
φ(ξ).

So that together, with the help of ∂
∂ξψ(ξ − y) = − ∂

∂yψ(ξ − y), we have

eix(ξ−y/2)ψ(ξ − y)

(
−i ∂
∂ξ

)
φ(ξ) = −i ∂

∂ξ

[
eix(ξ−y/2)φ(ξ − y)φ(ξ)

]
− xeix(ξ−y/2)ψ(ξ − y)φ(ξ)

− eix(ξ−y/2)

(
i
∂

∂y

)
ψ(ξ − y)φ(ξ)

= −i ∂
∂ξ

[
eix(ξ−y/2)φ(ξ − y)φ(ξ)

]
− xeix(ξ−y/2)ψ(ξ − y)φ(ξ)

−
(
i
∂

∂y
− x

2

)
eix(ξ−y/2)ψ(ξ − y)φ(ξ)

= −i ∂
∂ξ

[
eix(ξ−y/2)φ(ξ − y)φ(ξ)

]
+

(
−i ∂
∂y
− x

2

)
eix(ξ−y/2)ψ(ξ − y)φ(ξ).

Therefore, noting that φ(ξ), ψ(ξ)→ 0 as ξ → ±∞, we get

[U(Pφ⊗ ψ)](x, y) =
1√
2π

∫
R

(
−i ∂
∂y
− x

2

)
eix(ξ−y/2)ψ(ξ − y)φ(ξ)dξ.

Thus,

[U(P ⊗ 1H )(φ⊗ ψ)](x, y) =

(
−i ∂
∂y
− x

2

)
[U(φ⊗ ψ)](x, y),

and again, extending by linearity on appropriate domains we get

U(P ⊗ 1H )U−1 = −i ∂
∂y
− x

2
= P+.
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Thus we have demonstrated the first two relations in (4.5.7). Moreover,

U(Hosc ⊗ 1H )U−1 = U
[

1

2
(P 2 +Q2)⊗ 1H

]
U−1

=
1

2
U(P 2 ⊗ 1H )U−1 +

1

2
U(Q2 ⊗ 1H )U−1

=
1

2
U [(P ⊗ 1H )(P ⊗ 1H )]U−1

+
1

2
U [(Q⊗ 1H )(Q⊗ 1H )]U−1

=
1

2

[
U(P ⊗ 1H )U−1

]2
+

1

2

[
U(Q⊗ 1H )U−1

]2
=

1

2

(
P 2

+ +Q2
+

)
= H↑,

and the other relation in (4.5.9) follows in a similar way. Finally, from (4.5.5)
and (4.5.6), it is established that

U(φn ⊗ φm) =W (|φn〉 〈φm|) = Ψnm.

We conclude this section by giving a heuristic analysis of the algebraic
structures related to the operators {Q±, P±}, as well as outline how the
modular structure of Tomita-Takesaki theory arise in the case of the electron
in a uniform magnetic field.

In the formulation of the Tomita-Takesaki theory in terms of tensor
products (Sec.2.2), the modular structure is carried by the algebras π(A) =
A ⊗ 1 and π′(A) = 1 ⊗ A, where the π, π′ are given in Prop.1.8.3 and
A = B(H ). Equivalently, the modular structure is carried by the algebras
Ar and Al in the Hilbert-Schmidt operator formulation of Tomita-Takesaki
theory of Chapter 3.

Even though, strictly mathematically speaking, Q⊗ 1 is not an element
of the algebra π(A), since it is not bounded, but because Q ⊗ 1 has the
general form of elements in π(A) we will associate it with π(A). In the
same manner we associate 1⊗Q with π′(A). Analogously, P ⊗ 1 and 1⊗P
are associated with π(A) and π′(A) respectively. For a more complete and
mathematically rigorous treatment, one would first have to show that the
operators Q and P are self-adjoint in order to be able to apply the spectral
theorem.

We note that the two set of operators, {Q+, P+} and {Q−, P−}, generate
(see [1], [2], [3]) two algebras A+ and A− respectively, with Uπ(A)U−1 = A+

and Uπ′(A)U−1 = A−. Since π(A) and π′(A) are mutual commutants, then
so are A+ and A−. Thus in physical terms, the two commuting algebras A+

and A− correspond to the two directions of the magnetic field.
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Epilogue

Generally, the theories that model physical systems, are made up of two
major elements [8, §3.1], [25, §2.1.2]:

1. a kinematical structure describing the instantaneous states and ob-
servables of the system, and

2. a dynamical rule describing the change of the states and observables
in time.

In the operator algebraic approach to quantum mechanics, the kinemati-
cal structure is given by a von Neumann algebra A associated to a collection
of physically measurable quantities (observables) of some physical system
at hand. In practice, each observable corresponds to some measurement
apparatus whose outputs are properties of the system. A ruler, a clock, or
a particle detector located in some region in space, are examples of such an
apparatus.

In this mathematical framework, the observables are self-adjoint ele-
ments of A with possible measurement results for an observable a being
characterized by its spectrum σ(a). A state ω associates to an observable a
a real number ω(a) obtained by averaging the results of measurements of a
for the system prepared to be in the state ω. The states are identified with
positive normalized linear functionals on A.

As in classical mechanics, the dynamical description of a quantum sys-
tem is given by a one-parameter group of automorphisms on the underlying
kinematical structure, representing the flow of the system in time.

In this dissertation we only considered the von Neumann algebra B(H )
with H separable, which is fine for many applications involving only finitely
many degrees of freedom. But for infinitely many degrees of freedom it turns
out that more general von Neumann algebras are required (see for example
[14]). In those cases one would correspondingly need a more general version
of Tomita-Takesaki theory than the one we have developed.

There is indeed an extended version of Tomita-Takesaki theory, which
includes the theory developed in Chapters 2 and 3 as a special case. One
considers the more general situation of a von Neumann algebra A (not nec-
essarily B(H )) with a faithful normal state ω. The development of Tomita-
Takesaki theory in this situation is completely analogous to that of Chapter
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2, except for the treatment of the technical details involved, which are much
more difficult (see, for example [17, p.625], [30, Chap. VI]).

The GNS construction applied to the pair (A, ω) yields (Hω, πω,Ωω),
where πω is a faithful representation of A, and Hω is the representation
Hilbert space. We then have that πω(A) is a von Neumann algebra with a
cyclic and separating vector Ωω, such that ω = ωΩω ◦ πω.

As before, the Tomita operator S is introduced via the *-operation, and
through whose polar decomposition one proves the existence of a conjugate-
linear isometry J : Hω → Hω, and a positive self-adjoint (in general un-
bounded, but densely-defined and invertible) operator ∆ on Hω, associated
to Ωω. Moreover, we have

J∆1/2π(a)Ωω = π(a)∗Ωω and J∆−1/2π(a)′Ωω = π(a)′∗Ωω

for a ∈ A, a′ ∈ A′, where A′ is the commutant of A.
The modular conjugation defines a *-anti-isomorphism j : A→ A′ : a 7→

Ja∗J . The functional calculus of the modular operator ∆ gives a unitary
group ∆it (t ∈ R), which in turn induces a one-parameter automorphism
group {σt : t ∈ R}, where

σt(a) = ∆itπω(a)∆−it

for all t ∈ R. The state ω is invariant under the modular group σt, i.e.

ω(σt(a)) = ω(a) ∀a ∈ A, t ∈ R.

Then, with considerable difficulties, one shows that the Tomita-Takesaki
theorem holds in this situation, i.e. Jπω(A)J = πω(A)′ and ∆itπω(A)∆−it =
πω(A) (t ∈ R).

The faithful normal states on von Neumann algebras play a central role in
the theory. However, not every von Neumann algebra has a faithful normal
state (see [6, I.3], or [17, p.639]) So, the theory described above is applicable
only in the case where a von Neumann algebra has a faithful normal state.

The Tomita-Takesaki theory can be extended even further by introducing
and using the concept of weights in place of states (see, for example [6, I.3]
or [17, §9.2]). When generalized in this way, Tomita-Takesaki theory applies
to all von Neumann algebras, and becomes a powerful tool.

Since the development of the theory, it has made appearances in many
and varied physical theories. In its inception it was tied to developments in
equilibrium statistical mechanics, in particular to the so-called KMS bound-
ary condition which is an important analytical relation between the state ω
and the automorphism group {σt : t ∈ R} [11], [15].

Some of the physical theories in which Tomita-Takesaki theory features
are:

1. Landau levels, and related construction of vector coherent states [1],
[2], and [3].
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2. Quantum field theory [6], [14], [25], [29], [34].

3. Quantum gravity and black holes [5], [23].

4. Quantum information and entanglement [35].
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Appendix A

Landau quantization

In this appendix we give a more complete review than Sec. 4.2 of the quan-
tum mechanical treatment of a free electron in a magnetic field background
and the resulting phenomenon of Landau levels, for more details the reader
may refer to [9, EV I ], [13, Chap. 2] [19, §110-111] and [32, 1.4].

The treatment here is however still not fully rigorous, in particular with
respect to unbounded operators and their domains. Most of the operators
discussed here are indeed unbounded. Our approach to spectral theory is
also heuristic, for example we refer to eigenvalues and eigenvectors even for
operators with continuous spectra. These “eigenvectors” are to be under-
stood as distributions like Dirac δ’s and are typically not in the Hilbert
space.

In non-relativistic theory, a magnetic field can be regarded only as an
external field. The magnetic interactions between moving charged particles
are a relativistic effect, and a consistently relativistic theory is needed if
they are to be taken into account [19].

Since electrons do not only possess a charge but also a spin, which is
a purely quantum mechanical effect, in the presence of a magnetic field B
there is a Zeeman splitting of each level into two spin branches separated
by the energy difference

∆ZE = 2µBB,

where µB = e~/2m is the Bohr magneton. However, in order to simplify the
following presentation of the quantum-mechanical treatment and the kinetic
energy quantization of an electron in a perpendicular magnetic field, we will
neglect this effect associated with the spin degree of freedom. Formally, this
amounts to modeling the electron as a spinless fermion (this is more or less
appropriate for most physically realizable quantum Hall systems [32]) [13].

Consider an electron placed in an arbitrary magnetic field described by
the vector potential A(x, y, z). In quantum mechanics, the vector potential
becomes an operator, a function of three observables X,Y, and Z.
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The non-relativistic quantum Hamiltonian of the electron can be ob-
tained from (4.1.2),

Helec =
1

2m
[P + eA(X,Y, Z)]2 . (A.0.1)

The operator V associated with the velocity of the electron is given by

V =
1

m
[P + eA(X,Y, Z)] , (A.0.2)

which enables Helec to be rewritten as

Helec =
m

2
V2. (A.0.3)

The position and momentum observables R and P satisfy the commu-
tation relations

[X,Px] = [Y, Py] = [Z,Pz] = i~, (A.0.4)

and the other commutators between the components of R and P are zero.
We also note that any two components of P commute. However, two distinct
components of V do not commute (see [9], or [19, §110-111]):

[Vx, Vy] =
ie~
m2

Bz (A.0.5)

[Vy, Vz] =
ie~
m2

Bx (A.0.6)

[Vz, Vx] =
ie~
m2

By. (A.0.7)

In the special case of a uniform magnetic field, the above commutation
relations become

[Vx, Vy] =
−i~ωB
m

(A.0.8)

[Vy, Vz] = [Vz, Vx] = 0. (A.0.9)

The operator Helec, analogous to (4.1.3), can be written in the form

Helec = H⊥ +H‖ (A.0.10)

where

H⊥ =
m

2

(
V 2
x + V 2

y

)
(A.0.11)

H‖ =
m

2
V 2
z . (A.0.12)
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From the relation (A.0.9), it follows that[
H⊥, H‖

]
= 0, (A.0.13)

so that we can look for a basis of eigenvectors common to both H⊥ (with
eigenvalues E⊥) and H‖ (eigenvalues E‖); these will be eigenvectors of the
total Hamiltonian Helec with the eigenvalues

Eelec = E⊥ + E‖. (A.0.14)

From (A.0.12), we observe that the eigenvectors of Vz are also eigen-
vectors of H‖. Since Z and Vz are two self-adjoint operators satisfying the
relation

[Z, Vz] =
i~
m
, (A.0.15)

the spectrum of Vz includes all real numbers. Therefore, the eigenvalues of
H‖ are of the form:

E‖ =
m

2
v2
z (A.0.16)

where vz ∈ R is an arbitrary constant. Thus, the spectrum of H‖ is con-
tinuous: the energy E‖ can take any positive value or zero. The physical
interpretation of this result is that H‖ describes the kinetic energy of a free
particle moving along the z-axis.

To determine the eigenvalues of H⊥, set

Q̂ =

√
m

~ωB
Vy, Ŝ =

√
m

~ωB
Vx, (A.0.17)

where ωB > 0 since the electron is negatively charged. Then, by (A.0.8),
their commutation relation is

[Q̂, Ŝ] =
m

~ωB
[Vx, Vy] = i. (A.0.18)

Inverting (A.0.17) and substituting into (A.0.11), the Hamiltonian H⊥ be-
comes

H⊥ =
~ωB

2
(Q̂2 + Ŝ2). (A.0.19)

Then H⊥ assumes the form of the one-dimensional harmonic oscillator, with
Q̂ and Ŝ playing the roles of the position and momentum operators respec-
tively. From this it can be deduced that the values of E⊥ are given by

E⊥ = ~ωB(n+
1

2
) (A.0.20)
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where n is a non-negative integer. From the above results, the eigenvalues
of the total Hamiltonian Helec are of the form:

E(n, vz) = ~ωB
(
n+

1

2

)
+

1

2
mv2

z , (A.0.21)

with the corresponding levels referred to as Landau levels. Therefore, in
the presence of a magnetic field, the kinetic energy of the motion along
the z-axis is not quantized, but that of the projection onto the xy-plane is
quantized. For the remainder of this chapter we shall only be concerned
with the projection motion of the electron onto the xy-plane.

From the above calculation, involving the passage of the Hamiltonian H⊥
from (A.0.11) into (A.0.19) there is something disconcerting. We started
with a problem of an electron moving in a plane, which has two degrees
of freedom. But we ended up writing the original Hamiltonian in terms
of the harmonic oscillator which has only one degree of freedom. It then
follows from the above dimensional analysis that quantum system is under-
determined. However the spectrum (A.0.20) is the correct spectrum of the
theory but, unlike the harmonic oscillator, to each energy level E⊥ there
is no unique state associated to it. Instead there is a countably infinite
degeneracy of states.

In order to further analyze the Hamiltonian H⊥ (A.0.19) we use the
standard quantum-mechanical method, the canonical quantization. The mo-
mentum gets replaced by its gauge invariant form

Π = mV = P + eA, (A.0.22)

and its components do not commute

[Πx,Πy] = [Px + eAx, Py + eAy]

= e ([Px, Ay]− [Py, Ax])

= e

(
∂Ay
∂x

[Px, x] +
∂Ay
∂y

[Px, y]− ∂Ax
∂x

[Py, x]− ∂Ax
∂y

[Py, y]

)
= −ie~

(
∂Ay
∂x
− ∂Ax

∂y

)
= −ie~ (∇×A)z
= −ie~B

= − i~
2

l2B

where in the last equality we used the expression for the magnetic length

lB =

√
~
eB

.
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We introduce new variables using the pair of conjugate operators Πx and
Πy. These are the ladder operators, analogous to those used in the quantum-
mechanical treatment of the harmonic oscillator,

a =
lB√
2~

(Πx − iΠy) , a
† =

lB√
2~

(Πx + iΠy) . (A.0.23)

From the commutation relation for Π, it then follows that the lowering
and raising operators satisfy [a, a†] = 1. Inverting the expressions (A.0.23)
yields

Πx =
~√
2lB

(a† + a), Πy =
~

i
√

2lB
(a† − a). (A.0.24)

Then the Hamiltonian becomes

H⊥ =
~ωB

2
(Q̂2 + Ŝ2) =

m

2
(V 2
x + V 2

y )

=
1

2m
(Π2

x + Π2
y)

=
~2

4ml2B

[
a†

2
+ a†a+ aa† + a2 − (a†

2 − a†a− aa† + a2)
]

=
~2

2ml2B
(a†a+ aa†)

=
~2

ml2B

(
a†a+

1

2

)
=

~ωB
2

(
a†a+

1

2

)
.

Then the eigenvalues and eigenvectors of H⊥, as in the case of the one-
dimensional harmonic oscillator, are those of the number operator a†a, with
a†a |n〉 = n |n〉. The ladder operators act on these states in the usual manner
[9]

a† |n〉 =
√
n+ 1 |n〉 , a |n〉 =

√
n |n− 1〉 (A.0.25)

where the last equation holds only for n > 0. The action of a on the ground
state |0〉 gives 0, i.e. a |0〉 = 0. The states of higher levels n are constructed
from the ground state as

|n〉 =
(a†)

n

√
n!
|0〉 (A.0.26)

with the corresponding energy eigenvalue given by (A.0.20). As a conse-
quence of the dimensional analysis argument given earlier, it is natural to
expect that a state of a two-dimensional system is described by two quantum
numbers (one for each spatial dimension). Then (A.0.26) is not sufficient
to uniquely specify any state of the system. For a complete description of
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the quantum state, in the similar manner as the gauge invariant momentum
(A.0.22), we introduce another variable called the pseudo-momentum

Π̃ = P− eA, (A.0.27)

which satisfy the relation [Π̃x, Π̃y] = i~2
l2B

. In symmetric gauge, all the mixed

commutators between the components of the gauge-invariant momentum
and pseudo-momentum are zero.

The momentum P and the vector potential A can be expressed in terms
of Π and Π̃ as

P =
1

2
(Π + Π̃), A =

1

2e
(Π− Π̃). (A.0.28)

Using the pseudo-momentum, similar to the gauge-invariant momentum,
we introduce a new pair of ladder operators

b =
lB√
2~

(
Π̃x − iΠ̃y

)
, b† =

lB√
2~

(
Π̃x + iΠ̃y

)
. (A.0.29)

It is this second pair of ladder operators that give rise to the degeneracy of
the Landau levels. In symmetric gauge, simple calculations show that

[b, a†] = 0 and [b†, H⊥] = 0. (A.0.30)

Thus the Hamiltonian H⊥ and the raising operator b† are compatible vari-
ables, so that they share a common eigenbasis. The second quantum num-
ber is found by introducing a number operator b†b associated with (A.0.29)
whose eigenstates satisfy

b†b |m〉 = m |m〉 (A.0.31)

with an integer m ≥ 0. The quantum number m, in addition of the Landau
level quantum number n , is necessary to describe the complete state of the
system. Then the general state of the system is given by the tensor product
of the two Hilbert space vectors

|n,m〉 = |n〉 ⊗ |m〉 =
(a†)

n

√
n!

(b†)
m

√
m!
|0, 0〉 , (A.0.32)

which is a generalization of (A.0.26). The energy of this state is given by
the usual Landau expression (A.0.20), which depends on n but not on m.

To conclude our discussion of the quantum state of the system of a free
electron in a magnetic field background we quantify the degeneracy of the
Landau levels.

From the general solution of the classical equations of motion (4.1.6) and
(4.1.7), with the help of (A.0.22), we get

X0 = X(t) +R cos(ωBt− θ0) = X − Ẏ

ωB
= X − Πy

mωB
, (A.0.33)

Y0 = Y (t)−R sin(ωBt− θ0) = Y +
Ẋ

ωB
= Y +

Πx

mωB
(A.0.34)
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where the coordinates labeling the guiding-center of the orbit C0 = (X0, Y0)
are thought of as quantum operators.

In symmetric gauge A = B
2 (−y, x, 0), we have

eA =
eB

2
(−y, x, 0) =

1

2
(Π̄− Π̃),

so that

X =
1

eB
(Πy − Π̃y), (A.0.35)

Y = − 1

eB
(Πx − Π̃x). (A.0.36)

A comparison of Eqns. (A.0.33, A.0.34) and Eqns. (A.0.35, A.0.36) allows
us to identify

X0 = − Π̃y

eB
, Y0 =

Π̃x

eB
. (A.0.37)

Thus in symmetric gauge the components of the pseudo-momentum are,
apart from a factor to a momentum into position, the components of the
guiding-center which are constants of motion. That is, under time evolution
we have

i~Ẋ0 = [X0, H⊥] = 0, i~Ẏ0 = [Y0, H⊥] = 0. (A.0.38)

Therefore, the operators X0, Y0 commute with the Hamiltonian H⊥. Fur-
thermore, the commutation relation between the components of the pseudo-
momentum induce the commutation

[X0, Y0] = il2B (A.0.39)

between the components of the guiding-center. The lack of commutativity
is the magnetic length l2B = ~/eB. The physical consequences of the Heisen-
berg uncertainty principle are not modified by the presence of a magnetic
field, and in this case it implies that we cannot localize states in both X0

and Y0 coordinates simultaneously. In general, the uncertainty is given by

∆X0∆Y0 = 2πl2B. (A.0.40)

Using Eqns. (A.0.29) and (A.0.37) we can express the components of
the guiding-center in terms of the ladder operators b, b†, yields

X0 =
lB

i
√

2
(b† − b), Y0 =

lB√
2

(b† + b). (A.0.41)

In the state |n,m〉, the average value of the guiding-center operator is

〈C0〉 = 〈n,m|C0|n,m〉 = 0. (A.0.42)
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On the other hand we have that

〈|C0|〉 = lB

〈√
2b†b+ 1

〉
= lB

√
2m+ 1, (A.0.43)

since

|C0| |n,m〉 =
√
X2

0 + Y 2
0 |n,m〉

=
lB√

2

[
−(b† − b)2 + (b† − b)2

]1/2
|n,m〉

= lB
√
b†b+ bb† |n,m〉

= lB
√

2b†b+ 1 |n,m〉
= lB

√
2m+ 1 |n,m〉 .

Thus, in the quantum state |n,m〉, the guiding-center is situated within a
circle of radius lB

√
2m+ 1.

To quantify the number of quantum states accommodated within a disk
of radius Rmax, let M denote the quantum state with maximal m-quantum
number. With the assumption that Rmax = lB

√
2M + 1, we have that

the number of states within the disk A = πl2B(2M + 1) is then (in the
thermodynamic limit M >> 1)

N =
A

∆X0∆Y0
=

A

2πl2B
=
eBA

2π~
. (A.0.44)
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