
Pricing of options with Lévy processes associated with
orthogonal polynomials

by

Tarutira Chikukwa

(Student no 11327465)

submitted in partial fulfillment of the requirements for the degree

Magister Scientiae

in Financial Engineering

in the Department of Mathematics and Applied Mathematics

in the Faculty of Natural and Agricultural Sciences

University of Pretoria

Pretoria

December 2018



Abstract

A Lévy process is a stochastic process that has stationary and independent increments. Log
returns of financial assets tend to portray stochastic behaviours possessing distributions with
heavy tails, high peaks and negative skewness which justifies the adoption of Lévy processes
on modeling these phenomena. In this dissertation we consider two Lévy processes linked to
orthogonal polynomials which are the Meixner process and Brownian motion. We build two
option pricing models based on these Lévy processes. Both models make use of the Fourier
transform methods and their efficiency is judged by the size of the error measures that
calculate the distance between the market and model prices. The two models are compared
to each other in terms of efficiency, simplicity in application and completeness. We use data
from S&P500 index and JSE indices to determine the performances of the models in both
liquid (US) and illiquid (SA) markets.
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Chapter 1

Introduction

1.1 Overview
Prices of derivatives are not easily determined with certainty, due to their stochastic nature.
The main aim of this research is to introduce the models which are based on Lévy processes
related to orthogonal polynomials, in order to find a way to price options efficiently. The
prices of derivatives depend on the underlying assets which may be shares, indexes or any
other asset.

The main objectives of this research are as follows:

• To price options using Lévy processes linked to orthogonal polynomials.

• To classify the processes as Lévy processes by showing that they are infinitely divisible.

• To determine the effects of parameter changes on a distribution modeling the behaviour
of the selected Lévy processes.

• To clearly justify why a selected Lévy process is suited for modeling the behaviour of
log returns of the underlying assets by establishing its properties.

• To check the goodness of fit of the processes to the log returns of the underlying asset.

• To ensure that there is no-arbitrage and to determine if the pricing model is complete.

• To apply the Fourier Transform or the Fast Fourier Transform (FFT) method together
with the mean-correcting of martingale measures on pricing options.

• To use error measures to determine the pricing model that is close enough to the market
prices.

• To apply an optimization procedure to reduce the size of error measures through cali-
bration of the pricing models to the market prices.

• To determine the sensitivity of the pricing models to the changes in the price of an
underlying asset.

1



CHAPTER 1. INTRODUCTION 2

The inspiration of the research is from the increase in financial crises for example the 2007-
2008 global crisis and the European crisis which heavily affected Greece, Spain, Portugal
and Ireland from 2009. Many investment banks in the USA were forced into bankruptcy
like Lehman brothers and the near fall of the Bear Stearns. The case of the losses for the
JP Morgan’s Synthetic portfolio (nicknamed “London Whale”) in 2012, also adds to the
disasters that keep on increasing in the derivative market. A model’s efficiency only depends
on the underlying assumptions used to create the model. Although the blame cannot entirely
be shifted to the models that are being used in finance, model risks can play a big role in
causing losses. One of the logical ways to improve the efficiency of the model used, is to find
a way in which the real world scenarios are being incorporated in the model. Most financial
crises partially emanate from using inefficient models as pointed out by many analysts [29,
pp. xv-xvii].

The assumption commonly used in finance is that the distributions of asset returns are
modeled by a normal distribution. Many models are established on the foundation of the
normality of the returns which may fail to apply in real life situations. The Black-Scholes
model is one of the most commonly applied models in the financial industry for option pricing,
because of its simplicity and its basis on normality of log returns. The problem with this
notion is that log returns of financial asset do not seem to agree on this assumption and this
contributes to a lot of challenges. A distribution that governs the log returns of the financial
assets is expected to have the following:

• a location parameter which explains how the distribution is centered;

• a kurtosis parameter which measures the thickness of the tails and the peakedness of
the distribution;

• a shape parameter which determines if the distribution is symmetric or not;

• a scale parameter that measures how spread the graph of a distribution is.

The Black-Scholes model assumes normality of log returns of underlying assets, hence the
shape parameter is zero, which indicates that the distribution of log returns is symmetric and
there is no possibility of heavy tails being considered, due to the absence of excess kurtosis.
Many scholars argued against this by pointing out that financial assets usually have a positive
excess kurtosis, contrary to the normal distribution with an excess kurtosis of zero [32]. The
issue of no heavy tails depicted by the normal distribution is less appealing, considering that
it is possible to experience many large negative or positive returns which lead to heavy tails
of the returns distribution. Some scholars pointed out that the Black-Scholes model fails to
detect volatility smile (high volatility in out-of-the-money and in-the-money but low volatility
at-the-money) exhibited by derivative prices (see [7, pp. 8-11]). It was also argued that the
stock data contains jumps that are not incorporated by the Black-Scholes model [25]. All
these justified arguments suggest the need for adoption of other models that are more closely
related to the stochastic nature of the derivatives prices which incorporates jumps (see [45]).

In this research the focus is on pricing options under the Brownian motion and the Meixner
process and they all belong to a family of Lévy processes. We will show that the two processes
are linked to orthogonal polynomials.



CHAPTER 1. INTRODUCTION 3

1.2 Behaviours of financial assets and models in the
market

The most popular debate in finance is whether the assumption of normality should continue
to be used in building models. Rachev et al [29, pp. xv-xvii] indicated that the assumption of
normality is not accurate by doing an analysis on the trends determined from financial time
series of returns of financial assets. The first trend they discovered is that of heavy tails.
This means there are time periods which are showing many extreme positive or negative
returns. This may be caused by other factors that are not predicted at the outset like the
company crisis or in general, the economic crisis. By default, the assumption of normality
does not incorporate heavy tails because the tails of a normal distribution approaches zero at
an exponential rate. Secondly, financial returns tend to indicate skewness which cannot be
represented by a normal distribution since negative returns are mirror images of the positive
returns in the normal case. Thirdly, under normal distribution, volatility is constant but
Rachev et al [29, p. xvii] have discovered that the returns tend to show signs of volatility
clustering. Volatility clustering is when the large changes of financial asset prices are suc-
ceeded by large changes while small changes are also succeeded by small asset price changes
[24].

Under the pricing of options it has been proved by some scholars (see [7, p. 9]) that volatility
is affected by the strike price. There are two scenarios which have been discovered to happen
on the volatility of the asset prices, which are volatility skew and volatility smile. Volatility
skew is a scenario where the prices of options are decreasing in relation to an increase in
strike price of an option. Volatility smile is the trend that shows a “U” shaped relationship
with the strike price of an option, the lowest volatility is thus observed when the option is
at-the-money, but increases as the option becomes deeply in-the-money or out-of-the-money,
hence the shape “U”.

However, Cont and Tankov [7, p. ix] pointed out that the models that rely on Brownian
motion are more frequently preferred, since the Mathematics behind them are less technical
as compared to the modeling techniques of the other classes of Lévy processes. The major
source of complexity of the latter processes is due to the fact that they incorporate jumps
(for example the Meixner process). Although this is an advantage, this is not always user
friendly as some users have limited knowledge of the literature of stochastic processes. When
a model is chosen, the parameters of the model are estimated in relation to the data for the
underlying asset returns, which will give a room for the model to be compared to the actual
data trends. It is argued by Cont and Tankov [7, p. 103] that the process of estimation may
be a very challenging task if the model has many parameters, which is mostly the case with
most Lévy processes, since it is a major challenge to estimate their parameters, because the
maximum likelihood estimation (MLE) is not always applicable. This difficulty in getting the
estimators may render the model less useful. The other method of estimation of parameters
is the method of moments, but it remains a challenge to estimate parameters from a model
with many parameters. In this case the models which are based on the normality assumption
are preferred.

One of the most meaningful arguments raised by other scholars [7, p. 3] is that the time
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scale of returns calculations influence the distribution of the asset returns. This has an effect
of yielding different distributions by considering different time scales. As the time scale
becomes large, the shape of the asset returns distribution tends to a normal distribution.
This was another justification for the assumption of normality by many pricing models like
the Black-Scholes model. Moreover, the issue of volatility clustering which is not addressed
under normal distribution, is also left unsolved by other models that belong to the Lévy
family, because they have independent increments, as pointed out by Cont and Tankov [7,
p. 227, Table 7.2]. To summarise the arguments made by several contributors on the pricing
of the derivatives, it can be noticed that no model can be perfect and each model has some
advantages attached to it. In this research we do an analysis of the models to reveal the
merits and demerits of orthogonal polynomial related models of pricing options. We either
justify the claims stipulated by several scholars on this issue, or we give a contradiction to
some suggested theories.

1.3 Outline of the research
In Chapter 2 we introduce orthogonal polynomials. We focus on Hermite and Meixner-
Pollaczek polynomials because of their relationship with Brownian motion and the Meixner
process, respectively. In Chapter 3 we introduce Lévy processes and in Chapter 4 these
processes are fit to the data from the S&P500 share index and South African data, by making
use of histograms, chi-squared test and quantile-quantile (q-q) plots. Parameter estimation
is done by the methods of moments. The pricing of European vanilla options is done in
Chapter 5. The Fourier methods are explained in detail in this chapter. In Chapter 6 we
focus on the calibration of the pricing models, designed in Chapter 5, to the market prices
of options. This calibration allows us to compare the normal and Meixner models on option
pricing. In Chapter 7 we discuss our observations.



Chapter 2

Overview of orthogonal polynomials

A set of polynomials {Pn}Nn=0, where N can be finite or infinite and degree[Pn] = n, is
orthogonal with respect to a positive and continuous weight function w(x) on an interval
[a, b] (finite or infinite) if [20, p. 2, Equation 1.1.9]

ˆ b

a

Pm(x)Pn(x)w(x)dx = d2nδmn, (2.0.1)

where:

• d2n =
´ b
a
P 2
n(x)w(x)dx,

• δmn =

{
0 for m ̸= n

1 for m = n
m, nϵ{0, 1, 2, 3, . . .}.

If a positive weight function w(x) is constant at a countable number of jump points in the
interval [a, b], then the set of polynomials {Pn}Nn=0 is discrete orthogonal if [20, p. 2, Equation
1.1.10]

N∑
i=1

Pm(xi)Pn(xi)w(xi) = d2nδmn, (2.0.2)

where d2n =
∑N

i=1 P
2
n(x)w(xi).

2.1 Classical orthogonal polynomials

2.1.1 Continuous classical orthogonal polynomials

Continuous classical orthogonal polynomials are solutions of second order differential equa-
tions (hypergeometric differential equations) [31, Equation 1.6]

g(x)y′′ + h(x)y′ + λy = 0, (2.1.1)

where:

5
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• g(x) is a polynomial of degree at most 2,

• h(x) denotes a polynomial of degree at most 1,

• λ is a non-zero constant.

There are three types of continuous classical orthogonal polynomials namely the Hermite,
Laguerre and Jacobi polynomials [11, p. 26].

Using the Pearson differential equation [20, p. 82, Equation 4.2.2]

(w(x)g(x))′ = w(x)h(x), (2.1.2)

we can write (2.1.1) in the self-adjoint form [20, p. 82, Equation 4.2.1]

(g(x)w(x)y′)′ + λw(x)y = 0. (2.1.3)

We prove this by multiplying (2.1.1) by w(x) to obtain

g(x)w(x)y′′ + w(x)h(x)y′ + λw(x)y = 0,

and by using the Pearson differential equation, we have

g(x)w(x)y′′ + (w(x)g(x))′y′ + λw(x)y = 0,

which leads to (2.1.3).

We can use the self-adjoint form to prove the orthogonality relation of classical orthogonal
polynomials. Suppose polynomials yn(x) and ym(x) are solutions of (2.1.1) for any two non-
zero constants λn and λm respectively, we assume λn − λm ̸= 0 for m ̸= n [20, p. 82]. By
making use of (2.1.3), we obtain the following equations:

(g(x)w(x)y′n(x))
′ + λnw(x)yn(x) = 0, (2.1.4)

(g(x)w(x)y′m(x))
′ + λmw(x)ym(x) = 0. (2.1.5)

Multiplying equations (2.1.4) and (2.1.5) by ym(x) and yn(x), respectively, and subtracting
the resulting equations, we get

(g(x)w(x)y′n(x))
′ym(x)− (g(x)w(x)y′m(x))

′yn(x) + (λn − λm)w(x)yn(x)ym(x) = 0. (2.1.6)

If we integrate equation (2.1.6) over the interval (a, b) we see that

(λn−λm)

ˆ b

a

w(x)yn(x)ym(x)dx =

ˆ b

a

(g(x)w(x)y′m(x))
′yn(x)dx−

ˆ b

a

(g(x)w(x)y′n(x))
′ym(x)dx,

(2.1.7)
and using integration by parts, we obtain
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(λn − λm)

ˆ b

a

w(x)yn(x)ym(x)dx = [g(x)w(x)(y′m(x)yn(x)− y′n(x)ym(x))] |ba

= 0,

if we assume that g(a)w(a) = 0 and g(b)w(b) = 0. Since λn ̸= λm for m ̸= n thenˆ b

a

w(x)yn(x)ym(x)dx = 0.

This shows that two different solutions of (2.1.1) are orthogonal to each other.

Using (2.1.2) we obtain an expression for the weight function w(x) that will be referred to
later in this dissertation as follows:

w′(x)g(x) + g′(x)w(x) = w(x)h(x)

w′(x)

w(x)
=

h(x)− g′(x)

g(x)ˆ
w′(x)

w(x)
dw(x) =

ˆ
h(x)− g′(x)

g(x)
dx

ln |w(x)| =
ˆ

h(x)

g(x)
dx− ln |g(x)|+ c

w(x) =
A

g(x)
exp

(ˆ
h(x)

g(x)
dx

)
, A, c ∈ R. (2.1.8)

Our preference for the form (2.1.3) is motivated by the fact that the self-adjoint form incor-
porates the weight function (2.1.8) which plays the role of an integrating factor when solving
differential equations.

In Table 2.1 we provide the weight functions and the intervals of orthogonality of the con-
tinuous classical orthogonal polynomials.

Table 2.1: Weight functions and support intervals of Hermite, Laguerre and Jacobi polyno-
mials [11, p. 29]

Polynomial Weight (w(x)) Support interval
Hermite exp(−x2) (−∞,∞)
Laguerre xα exp(−x) for α > −1 [0,∞)
Jacobi (1− x)α(1 + x)β for α, β > −1 [−1, 1]

2.1.2 Discrete classical orthogonal polynomials
The discrete classical orthogonal polynomials are solutions of second-order hypergeometric
type difference equations [31, Equation 1.9]

g(x)△∇y(x) + h(x)△y(x) + λy(x) = 0, (2.1.9)

where:
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• △y(x) = y(x+ 1)− y(x),

• ∇y(x) = y(x)− y(x− 1),

• g(x) is a polynomial with degree of at most 2,

• h(x) is a polynomial with degree of at most 1,

• and λ is a non-zero constant.

The discrete weight function w(x) satisfies the difference equation of Pearson type [31, Equa-
tion 1.11]

△(g(x)w(x)) = h(x)w(x),

which can be simplified to

g(x+ 1)w(x+ 1)− g(x)w(x) = h(x)w(x)

g(x+ 1)w(x+ 1) = h(x)w(x) + g(x)w(x)

w(x+ 1)

w(x)
=

h(x) + g(x)

g(x+ 1)
.

Some of the orthogonal polynomials that belong to the discrete classical orthogonal polyno-
mials, that satisfy (2.1.9), are Charlier, Meixner, Krawtchouk and Hahn polynomials.

2.2 Hermite polynomials
The Hermite polynomials, Hn, are solutions of the hypergeometric differential equation
(2.1.1), with g(x) = 1, h(x) = −2x and λ = 2n [20, p. 250, Equation 9.15.5]

H ′′
n(x)− 2xH ′

n(x) + 2nHn(x) = 0.

Hermite polynomials are orthogonal on (−∞,∞) with respect to the weight function

w(x) =
1√
π
exp(−x2), (2.2.1)

hence satisfying the orthogonality relation [20, p. 250, Equation 9.15.2]

1√
π

ˆ ∞

−∞
exp(−x2)Hm(x)Hn(x)dx = 2nn!δmn,

and the following recurrence relation [20, p. 250, Equation 9.15.3]

Hn+1(x)− 2xHn(x) + 2nHn−1(x) = 0.
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2.3 Meixner-Pollaczek polynomials
The Meixner-Pollaczek polynomials P λ

n , λ > 0, are solutions of a complex hypergeometric
difference equation [20, p. 214, Equation 9.7.5]

eiθ(λ− ix)y(x+ i) + 2i[x cos(θ)− (λ+ n) sin(θ)]y(x)− e−iθ(λ+ ix)y(x− i) = 0,

where y(x) = P λ
n (x, θ), i =

√
−1 and 0 < θ < π.

These polynomials are orthogonal on (−∞,∞) with respect to the weight function

w(x) = 1
2π

e(2θ−π)x|Γ (λ+ ix)|2, (2.3.1)

and satisfy the orthogonality relation [20, p. 213, Equation 9.7.2]
ˆ ∞

−∞
w(x)P λ

m(x; θ)P
λ
n (x; θ)dx =

Γ (n+ 2λ)

(2 sin(θ))2λn!
δmn,

and the three-term recurrence equation [20, p. 213, Equation 9.7.3]

(n+ 1)P λ
n+1(x; θ)− 2[x sin(θ) + (λ+ n) cos(θ)]P λ

n (x; θ) + (n+ 2λ− 1)P λ
n−1(x; θ) = 0.



Chapter 3

Stochastic processes of the Lévy
family

In the previous chapter we introduced the theory of orthogonal polynomials and in this
chapter we will explain the processes that belong to the Lévy family and are linked to
orthogonal polynomials. Stochastic processes are used in this dissertation because their
random nature allows us to model randomness of financial asset prices. As a background to
this chapter, we have explained the theory of a probability space and random variables in
appendix A.

A probability density function (p.d.f.) of a random variable X defined on a probability
space(Ω,F , P ) denoted by f(x) is a function that satisfies [9, pp. 160-161]:

•
´ b
a
f(x)dx = P (a ≤ X ≤ b),

•
´∞
−∞ f(x)dx = 1,

• f(x) ≥ 0,

for any a, b ∈ R and a ≤ b.

We define a distribution function of a random variable X defined on a probability space(Ω,F , P )
as [1, p. 56]

F (x) = P (X ≤ x) =

ˆ x

−∞
f(t)dt,

for any x ∈ R.

The characteristic function of a random variable X with probability density function f(x) is
defined as follows [33, p. 15]:

ΦX(u) = E[eiuX ] =

ˆ ∞

−∞
eiuXf(x)dx. (3.0.1)

Suppose ΨX(u) = lnΦX(u), then the cumulants of X are defined as [7, p. 31]

10
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Cn(X) =
1

in

(
∂nΨ(0)

∂un

)
. (3.0.2)

3.0.1 Heaviness of the tails of a distribution

We define the distribution function of the tails of distribution F (x) by

F (x) = 1− F (x),

where F (x) is a distribution function such that (see appendix)

F (x) = P (X ≤ x)

=

ˆ x

−∞
f(x)dx,

then a distribution has a heavy right tail if the following holds (see [30, p. 49]):

lim
x→∞

eµxF (x) = ∞, (3.0.3)

and a heavy left tail if

lim
x→−∞

e−µxF (x) = ∞, (3.0.4)

where µ > 0.

The explanation is that if tails of a distribution approach zero slower than the exponential
distribution tails, then the distribution has heavy tails. From (3.0.3), as x → ∞, eµx ap-
proaches ∞ quicker than F turns to 0, which forces the whole expression to turn to infinity.
The same holds for the left tail. From (3.0.4), as x → −∞, F (x) → 0 slower than e−µx → ∞,
which forces the whole expression to turn to infinity. If the distribution has such behaviour,
then it has heavy tails.

3.0.2 Moments of a distribution

The first four moments of a distribution are derived from the characteristic function in (3.0.1)
by using a cumulant function in (3.0.2) [7, p. 32].

The mean of a distribution is given as

E(X) = C1(X)

= i−1Ψ′(0), (3.0.5)
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and the variance of distribution is

V ar(X) = C2(X)

= i−2Ψ′′(0). (3.0.6)

The third (skewness) and fouth (kurtosis) moments are given respectively as follows:

Skew(X) =
C3(X)

(C2(X))
3
2

=
i−3Ψ′′′(0)

[V ar(X)]
3
2

, (3.0.7)

Kurtosis(X) =
C4(X)

(C2(X))2
+ 3

=
i−4Ψ(4)(0)

[V ar(X)]2
+ 3. (3.0.8)

3.1 Normal distribution
The probability density function of the normal distribution denoted by Normal(µ, σ2) is
given by

f(x) =
1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
, (3.1.1)

for µ ∈ R and σ2 > 0.

The two parameters under the normal distribution are defined as follows:

• µ is the location parameter and

• σ is the scale parameter.

In Figures 3.1 and 3.2 we show the effects of changing the two parameters of a normal
distribution. In Figure 3.1 we see that increasing the location parameter µ results in a shift
in the graph of the probability density function of the normal distribution to the right. In
Figure 3.2 we show that increasing the scale parameter σ causes the graph of the probability
density function of a normal distribution to flatten.
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Figure 3.1: Normal(µ, 1) for µ = −0.5 (solid), µ = 0 (dashed) and µ = 0.5 (dotdashed)

Figure 3.2: Normal(0, σ2) for σ2 = 1 (solid), σ2 = 2 (dashed) and σ2 = 3 (dotdashed)

3.1.1 Characteristic function of a normal distribution
Using (3.1.1) and (3.0.1), the characteristic function of the normal distribution is given by

E[exp(itX)] =

ˆ ∞

−∞
exp(itx)

(
1√
2πσ2

exp

(
−(x− µ)2

2σ2

))
dx

=

ˆ ∞

−∞

1√
2πσ2

exp

(
itx− (x− µ)2

2σ2

)
dx,

and we make a substitution y = x− µ to get

E[exp(itX)] =

ˆ ∞

−∞

1√
2πσ2

exp

(
it(y + µ)− y2

2σ2

)
dy

= eitµ
ˆ ∞

−∞

1√
2πσ2

exp

(
−y(y − 2itσ2)

2σ2

)
dy,
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this is simplified by making another substitution z = y − itσ2, to get

E[exp(itX)] = eitµ
ˆ ∞

−∞

1√
2πσ2

exp

(
−(z + itσ2)(z − itσ2)

2σ2

)
dz

= eitµ
ˆ ∞

−∞

1√
2πσ2

exp

(
−(z2 + t2σ4)

2σ2

)
dz

= eitµe−
1
2
t2σ2

ˆ ∞

−∞

1√
2πσ2

exp

(
−z2

2σ2

)
dz (3.1.2)

= eitµ−
1
2
t2σ2

, (3.1.3)

since the expression inside the integration in (3.1.2) is the probability density function of a
normal distribution with parameters µ = 0 and σ2, the value of the integral in (3.1.2) is one.

3.1.2 Moments of a normal distribution

We can find the moments of the normal distribution by using (3.1.3) as follows:

Ψ(t) = ln(eitµ−
1
2
t2σ2

)

= itµ− 1

2
σ2t2. (3.1.4)

By differentiating (3.1.4) we have

Ψ′(t) = iµ− σ2t

Ψ′′(t) = −σ2

Ψ′′′(t) = 0

Ψ(4)(t) = 0

Hence, from (3.0.5), the mean is given by

E(X) = i−1(iµ)

= µ (3.1.5)

and from (3.0.6), the variance is

V ar(X) = i−2(−σ2)

= σ2,

from (3.0.7), the skewness is

Skew(X) = 0

and finally from (3.0.8), the fourth moment is

Kurtosis(X) = 3.
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3.2 Meixner distribution
The probability density function of a Meixner distribution, denoted by Meixner(a, b, d,m),
is as follows [32]:

f(x; a, b, d,m) =

(
2 cos b

2

)2d
2aπΓ(2d)

exp

(
b(x−m)

a

) ∣∣∣∣∣Γ
(
d+

i(x−m)

a

) ∣∣∣∣∣
2

(3.2.1)

with i =
√
−1 and Γ is the gamma function.

The four parameters of the Meixner distribution are as follows [14]:

• a is the scale parameter,

• b is the skewness parameter,

• d is the kurtosis parameter and

• m is the location parameter.

The effects of changing the four parameters of the Meixner distribution are shown in Figures
3.3, 3.4, 3.5 and 3.6. In Figure 3.3 we show that changing the parameter a results in changing
the spread of the Meixner curve. High values of a result in wider and lower peaked curves as
compared to lower values of a. Changing the values of b, as in Figure 3.4, affects the measure
of asymmetry and when b = 0, the distribution is symmetric around the location parameter m
while negative and positive values correspond to negative and positive skewness, respectively.
Parameters b and d determine the general shape of the distribution with parameter d having
a larger say on the sharpness of the peaks. The lower the values of d, the higher the peaks
as shown in Figure 3.5. Figure 3.6 shows that if we increase the values of m, the curves
will be shifted to the right, since m is a location parameter. In the later sections of this
dissertation we will discuss why these skewness and kurtosis parameters are important in
modeling financial data.

Figure 3.3: Meixner(a, 0.3, 2, 0) for a = 0.5 (solid), a = 1 (dashed) and a = 2 (dotdashed)
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Figure 3.4: Meixner(1, b, 2, 0) for b = 0.5 (solid), b = 0 (dashed), b = −0.5 (dotdashed)

Figure 3.5: Meixner(1, 0, d, 0) for d = 0.5 (solid), d = 1 (dashed), d = 2 (dotdashed)

Figure 3.6: Meixner(1, 0, 1,m) for m = −0.5 (solid), m = 0 (dashed), m = 0.5 (dotdashed)
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3.2.1 Characteristic function of a Meixner distribution
Using (3.1) and (3.0.1), the Meixner distribution can be expressed in terms of the character-
istic function as follows [25]:

E[exp(iuX)]

=

ˆ ∞

−∞
exp(iux)f(x; a, b, d,m)dx

=

ˆ ∞

−∞
exp(iux)

(
2 cos b

2

)2d
2aπΓ(2d)

exp

(
b(x−m)

a

) ∣∣∣∣∣Γ
(
d+

i(x−m)

a

) ∣∣∣∣∣
2

dx

=

ˆ ∞

−∞
exp

(
iuxa+ b(x−m)

a

)
22d
(
cos b

2

)2d
2aπΓ(2d)

∣∣∣∣∣Γ
(
d+

i(x−m)

a

) ∣∣∣∣∣
2

dx

=exp(imu)

(
cos

b

2

)2d ˆ ∞

−∞
exp

(
aiu(x−m) + b(x−m)

a

)
22d

2aπΓ(2d)

∣∣∣∣∣Γ
(
d+

i(x−m)

a

) ∣∣∣∣∣
2

dx

=exp(imu)

(
cos

b

2

)2d ˆ ∞

−∞
exp

(
(aiu+ b)(x−m)

a

)
22d

2aπΓ(2d)

∣∣∣∣∣Γ
(
d+

i(x−m)

a

) ∣∣∣∣∣
2

dx

=
exp(imu)

(
cos b

2

)2d
(cos(aiu+b

2
))2d

ˆ ∞

−∞
exp

(
(aiu+ b)(x−m)

a

) (
2 cos

(
aiu+b

2

))2d
2aπΓ(2d)

∣∣∣∣∣Γ
(
d+

i(x−m)

a

) ∣∣∣∣∣
2

dx

(3.2.2)

=

(
cos b

2

cos(aiu+b
2

)

)2d

exp(imu), (3.2.3)

since the expression inside the integral in (3.2.2) is a probability density function of a Meixner
distribution, denoted by Meixner(a, b∗, d,m) (where b∗ = aiu+b), we deduce that the integral
in (3.2.2) is equal to 1.

3.2.2 The moments of the Meixner distribution
By using the characteristic function in (3.2.3), the moments of the Meixner distribution can
be derived. Under the Meixner distribution we have

Ψ(u) = ln

( cos b
2

cos(aiu+b
2

)

)2d

exp(imu)


= 2d ln cos

(
b

2

)
− 2d ln cos

(
aui+ b

2

)
+ imu (3.2.4)

3.2.2.1 Mean of the Meixner distribution

From (3.2.4) we have

Ψ′(u) = (adi) tan

(
aui+ b

2

)
+ im
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and from (3.0.5), the mean is as follows:

E(X) = (ad) tan

(
b

2

)
+m. (3.2.5)

3.2.2.2 Variance of the Meixner distribution

Differentiating (3.2.4) twice we get

Ψ′′(u) =
−a2d

2
sec2

(
aui+ b

2

)
,

and from (3.0.6) it follows that

V ar(X) = a2d
2
sec2

(
b
2

)
=

a2d

1 + cos(b)
. (3.2.6)

3.2.2.3 Skewness of the Meixner distribution

We differentiate (3.2.4) three times to get

Ψ′′′(u) =
−ia3d

2
sec2

(
aui+ b

2

)
tan

(
aui+ b

2

)
,

and from (3.0.7) and (3.2.6) it follows that (see also [14]):

Skew(X) =
a3d
2
sec2

(
b
2

)
tan
(
b
2

)
[
a2d
2
sec2

(
b
2

)] 3
2

=
sin b

1 + cos b

 1√
d
(

1
1+cos b

)


=
sin b√

d(1 + cos b)
(3.2.7)

=
2 sin

(
b
2

)
cos
(
b
2

)√
d
(
2 cos2

(
b
2

))
=

√
2

d
sin

(
b

2

)
.

3.2.2.4 Kurtosis of the Meixner distribution

Kurtosis is the fourth moment of the distribution. The fourth derivative of (3.2.4) yields

Ψ(4)(u) =
a4d

4
sec2

(
aui+ b

2

)[
sec2

(
aui+ b

2

)
+ 2 tan2

(
aui+ b

2

)]
,

and from (3.0.8) and (3.2.6) it follows that
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Kurtosis(X) =
a4d
4
sec2

(
b
2

) [
sec2

(
b
2

)
+ 2 tan2

(
b
2

)](
a2d
2
sec2

(
b
2

))2 + 3

=
sec2

(
b
2

)
+ 2 tan2

(
b
2

)
d sec2

(
b
2

) + 3

=
2− cos b

d
+ 3. (3.2.8)

3.3 Stochastic process
We define a stochastic process as a collection of random variables X = {Xt : t ≥ 0} on a
probability space (Ω,F , P ) [4, p. 62]. A stochastic process can be explained as a random
process due to the fact that the process models how the random events occur. The behaviour
of a stochastic process is defined by a probability distribution. We will show that there is a
distribution associated with every stochastic process in the later sections of this chapter.

3.3.1 Independent increments

Suppose we have a stochastic process X = {Xt : t ≥ 0} and for all tk where k = 0, 1, 2, . . . , n
and n ∈ N, such that 0 < t1 < t2 < · · · < tn, we say the stochastic process has independent
increments if the random variables Xt1 − X0, Xt2 − Xt1 , Xt3 − Xt2 , . . . , Xtn − Xtn−1 are
independent [29, p. 88].

3.3.2 Stationary increments

A stochastic process is said to have stationary increments if the distribution of Xt − Xt−h

does not depend on t for t, h ≥ 0 [29, p. 88].

3.3.3 Infinitely divisible distribution

According to Cont et al [7, p. 69, Definition 3.2], a distribution F is infinitely divisible
on R if, for any integer n > 1, there are n identical and independent random variables
X1, X2, X3, . . . , Xn such that X1+X2+ · · ·+Xn has the distribution F . From this definition
we determine whether a distribution F is infinitely divisible by considering its characteristic
function. If we define the characteristic function of an infinitely divisible distribution F to be
Φ(u) and the characteristic function of each independent and identically distributed random
variables X1, X2, X3, . . . , Xn to be Φn(u) then we have (see [33, p. 44])

Φ(u) = [Φn(u)]
n.
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3.4 Lévy process
A stochastic process X = {Xt : t ≥ 0} is said to be a Lévy process if [29, p. 104]:

• the initial point of the process is X0 = 0 almost surely,

• the increments are independent and stationary,

• it is stochastic continuous that is, lim
s→t

P (|Xt −Xs| > ε) = 0 for all ε > 0,

• it has paths that are right continuous with left limits (this is referred to as a càdlàg
stochastic process).

A Lévy process has a property that its paths have left limits and are right continuous. This
is a very important property that allows the process to have countable number of jumps. We
consider the paths of a stochastic process X = {Xt : t ≥ 0} to explain that a Lévy process
is a càdlàg stochastic process [32, p. 14]. The left limit of the stochastic path for any t > s
(that is the limit of Xs as s approaches t from the left [38, p. 93]) is denoted by

Xt− = lim
s→t−

Xs,

and the path is said to have a left limit if Xt−exists. The path is right continuous for any
s > t (that is the limit of Xs as s approaches t from the right) if there exists a right limit
denoted by

Xt+ = lim
s→t+

Xs,

such that [38, 121]

Xt+ = Xt

For the paths of the stochastic process to be continuous at any point t, the following holds:

Xt+ = Xt− = Xt.

Since the paths are right continuous with left limits, this allows the existence of jumps at
any point t given by Xt −Xt− [33, p. 14].

If a process is a Lévy process then it has a distribution that is infinitely divisible and the
converse is also true [7, p. 68, Proposition 3.1]. We will use this to determine whether a
process is a Lévy process, and we will show that both the Brownian motion and the Meixner
process are particular cases of Lévy processes.
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We can find the distribution of a Lévy process by using its characteristic function represented
by a Lévy-Khintchine formula. For a Lévy process X = {Xt : t ≥ 0} with a characteristic
function given by ΦX(u) and ΨX(u) = lnΦX(u) then the Lévy-Khintchine formula is as
follows[33, p. 44, Definition 5.1.1]:

ΨX(u) = iαu− 1

2
σ2u2 +

∞̂

−∞

(exp(iux)− 1− iux1{|x|<1})ν(dx), (3.4.1)

where α ∈ R, σ2 ≥ 0 and ν is a Lévy measure that determines the occurrence of the jumps
and it satisfies ν({0}) = 0 and

∞̂

−∞

(1 ∧ x2)v(dx) < ∞.

This results in a Lévy triplet given by [α, σ2, ν]. From the Lévy-Khintchine formula in (3.4.1),
we deduce that, a Lévy process consists of three parts that are independent of each other as
follows [33, p.45]:

• a drift part (α),

• a Brownian part (σ2) and

• a pure jump part (ν) .

3.5 Brownian motion
Brownian motion is associated with Hermite polynomials. This process is most applied in
finance, since the most commonly used Black-Scholes model is derived from this process. We
discuss the definition, the properties and the moments of the Brownian motion, as well as its
connection with orthogonal polynomials.

A stochastic process X = {Xt : t ≥ 0} is a Brownian motion if [33, p. 25, Definition 3.2.1]

• X0 = 0,

• The increments Xt+s −Xt are independent and stationary for s > 0,

• Xt+s −Xt ∼ Normal(0, s),

• The paths of the process are continuous [29, p. 96].
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3.5.1 Properties of the Brownian motion

The behaviour of Brownian motion is determined by the normal distribution which is in-
finitely divisible. We show this by proving that for all n ∈ Z+, there are independent and
identically distributed random variables X1, X2, . . . , Xn such that the distribution of X is
identical to the distribution of

∑n
k=1 Xk [29, p. 76]. To prove that the distributions between

two variables are identical, we show that the characteristic functions of the two random
variables are identical. Suppose that X ∼ Normal(µ, σ2) and Xk ∼ Normal(µ

n
, σ

2

n
) then

E

[
it

(
n∑

k=1

Xk

)]
= E[exp(it(X1 +X2 + · · ·+Xn))]

= E[exp(itX1) exp(itX2) · · · exp(itXn)]

and since the random variables X1, X2, . . . , Xn are independent, we have

E

[
it

(
n∑

k=1

Xk

)]
=

n∏
k=1

E[exp(itXk)]

and since the random variables are identically distributed, we use (3.1.3) to find

E

[
it

(
n∑

k=1

Xk

)]
=

n∏
k=1

exp

(
it
µ

n
− σ2

2n
t2
)

= exp

(
n∑

k=1

(
it
µ

n
− σ2

2n
t2
))

= exp

(
itµ− 1

2
t2σ2

)
= E [itX] .

We thus proved that a normal distribution is infinitely divisible. As a result, Brownian
motion is a Lévy process [7, p. 69, Proposition 3.1].

3.6 The Meixner process
A stochastic process X = {Xt : t ≥ 0} on a probability space (Ω,F , P ) is said to be a
Meixner process of parameters a, b, d,m (with a > 0, −π < b < π, d > 0 and m ∈ R) if [32]:

• X0 = 0,

• X has stationary and independent increments,

• and for each t > 0, the random variable Xt has the Meixner distribution Meixner(a, b, dt,mt).

• it has paths that are right continuous with left limits allows the presence of jumps [15].
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3.6.1 Lévy triplet of a Meixner process

A Meixner process with a distribution Meixner(a, b, d,m) satisfies a Lévy triplet (α, 0, v)
[13, Theorem 1], with

α = ad tan

(
b

2

)
− 2d

ˆ ∞

1

cosh
(
bx
a

)
sinh

(
πx
a

)dx+m (3.6.1)

and

v(dx) =
d exp

(
bx
a

)
x sinh

(
πx
a

)dx. (3.6.2)

It can thus be concluded that the Meixner process possesses a drift part indicated by α in
(3.6.1) and zero Brownian part, but it has a pure jump part that is driven by the Lévy
measure given above as v(dx). The Lévy measure (3.6.2) determines how the jumps happen
and on a finite interval we can observe finitely many jumps. For a given interval A, the
frequencies of the jumps can be monitored by a Poisson process with a parameter given by´
A
v(dx) [32, p. 7].

3.6.2 The properties of the Meixner process

The behaviour of the Meixner process is determined by the Meixner distribution, hence we
derive the properties of the process from its distribution.

3.6.2.1 Semi-heavy tails

The tails of the distribution determine the occurrence of extreme events. If a distribution
has semi-heavy tails, its tails turn to zero slowly as compared to the tails of the exponential
distribution, that is their tails are heavier than normal distribution tails, but lighter than
other non-Gaussian distributions. The positive excess kurtosis of the distribution shows that
the distribution has heavy tails.

A Meixner distribution, Meixner(a, b, d,m), has semi-heavy tails [33, p. 63] and the be-
haviour of the tails is modeled by the probability density function f(x) such that [32]:

f(x) = K− |x|ρ exp(−σ− |x|) as x → −∞, (3.6.3)

f(x) = K+ |x|ρ exp(−σ+ |x|) as x → +∞, (3.6.4)

for ρ = 2d− 1, σ+ = π−b
a

, σ− = π+b
a

and K± > 0.

This is one of the most important properties of the Meixner distribution which is needed
in finance applications because most financial asset returns tend to have heavy tails. The
Meixner distribution is therefore one of the best candidates to model returns of such assets.
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3.6.2.2 Infinitely divisible distribution

If Xi ∼ Meixner(a, b, di,mi) for i = 1, . . . , n, with the process being mutually independent,
X1+X2+· · ·+Xn follows a Meixner(a, b,

∑n
i=1 di,

∑n
i=1mi) (for the proof, see [13, Corrolary

1]). This shows that the distribution of a Meixner process is infinitely divisible and it is
therefore a Lévy process [7, p. 69, Proposition 3.1].

3.6.2.3 Self-decomposable

A random variable X is self-decomposable if, for all c ∈ (0, 1), there exists an independent
random variable Zc which satisfies X = cX + Zc [39, 37].

By using the Lévy measure of the Meixner process (3.6.2) and [13, Corollary 3], we observe
that the Meixner process is self-decomposable, since

− v(x)− xv′(x)

=
d

2a

(
sinh−2

(πx
a

))[
(π − b) exp

((
b+ π

a

)
x

)
+ (b+ π) exp

((
b− π

a

)
x

)]
≥0

for a, d > 0, x,m ∈ R and −π < b < π.

Barndorff-Nielsen [2] pointed out that if a process is self-decomposable, then its distribution
is infinitely divisible confirming the fact that a Meixner process is a Lévy process.

3.7 The link between Lévy processes and orthogonal
polynomials

A σ-field sequence given by {Ft : t ≥ 0} is called a filtration if, for all 0 ≤ s ≤ t, Fs ⊆ Ft [29,
p. 108]. A filtration can be interpreted as the information that is available for the process
at time t.

A stochastic process defined by X = {Xt : t ≥ 0} is called a {Ft : t ≥ 0}-adapted process
if, for all t ≥ 0, Xt is Ft-measurable [29, p. 108].

If a process X = {Xt : t ≥ 0} is a {Ft : t ≥ 0}-adapted process that satisfies E[|Xt|] < ∞
and Xs = E[Xt|Fs] for all 0 ≤ s ≤ t, then it is a martingale [3, p.504, definition C.1].

Now we can link orthogonal polynomials and Lévy processes by considering the following
martingale equality [34]:

E(Pn(Xt, t)|Xs) = Pn(Xs, s), (3.7.1)

where 0 ≤ s ≤ t and {Xt : t ≥ 0} is a Lévy process.
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3.7.1 Link between Brownian motion and Hermite polynomials

Comparing the weight function of Hermite polynomials in (2.2.1) and the probability density
function of a normal distribution in (3.1.1), we conclude that the weight function of Hermite
polynomials is equivalent to a normal distribution denoted by Normal(0, 1

2
).

The monic Hermite polynomials {Hn : n = 0, 1, 2, . . .} are martingales for a Brownian motion
{Xt : t ≥ 0} [32]:

E[Hn(Xt; t)|Xs] = Hn(Xs; s), (3.7.2)

where 0 ≤ s ≤ t.

3.7.2 Link between the Meixner process and Meixner-Pollaczek
polynomials

The probability density function of a Meixner distribution in (3.2.1) is equivalent to the
weight function of the Meixner-Pollaczek polynomials in (2.3.1). This shows that the weight
function of the Meixner-Pollaczek polynomials is a probability density function of the Meixner
distribution Meixner(1, 2θ − π, λ, 0).

Monic Meixner-Pollaczek polynomials {P λ
n : λ > 0, n = 0, 1, 2...}

are martingales for the Meixner process {Xt : t ≥ t} for 0 ≤ s ≤ t [32]: :

P λ
n (Xs, s) = E[P λ

n (Xt, t)|Xs]. (3.7.3)



Chapter 4

Fitting the processes to the log
returns

Derivatives derive their prices from the price of the underlying asset which may be anything
tradable or non-tradable, but in this dissertation we choose the underlying asset to be share
indices or shares with no dividend payments. In this chapter we focus on fitting the distribu-
tions to the log returns data. We fit the Meixner and normal distribution to the log returns
of stock indices (see [32] and [14]). The results in this chapter makes reference to appendix
B.

4.1 Fitting the distributions to the returns of the shares
Since both the Meixner process and Brownian motion belong to the family of Lévy processes,
the returns can be calculated using exponential Lévy processes as follows [32]:

St = S0 exp(Xt), t > 0 (4.1.1)

where Xt is a Lévy process and therefore

Xt = ln

(
St

S0

)
. (4.1.2)

For time 0 < t < t+ h, where h > 0 is a time change, we have

Xt+h −Xt = ln

(
St+h

S0

)
− ln

(
St

S0

)
= ln

(
St+h

St

)
.

By using the expression in (4.1.2), we find the log returns of investing in shares by using a
Lévy process. This will be illustrated in the following sections of this chapter.

26
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4.1.1 General features of share prices and log returns data
We need to analyse the features of the data in order to determine the distribution that gives
a good fit. The key areas are the measurements of the central tendency (the average), the
skewness (whether the data is symmetric or not), the kurtosis (whether there are heavy tails
in the data or not) and the spread of the data (variance). We will consider the graphs for
the share index and the log returns and further check the goodness of fit of the Meixner and
normal distributions. This will assist in defining the process that governs the prices of the
options further on in the dissertation.

By using the S&P 500 share index data from 29 April 2013 to 27 April 2018, we determine
the fit of the distributions [42]. The data consists of 1259 daily returns obtained by using
the log of the daily share prices. We will use the terminology “log returns” and “returns”
interchangeably to represent the returns from investing in the shares, calculated using (4.1.2).

Figure 4.1: S&P500 share index determined by closing prices

Figure 4.2: Log returns of the S&P500 share index
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In Figure 4.1 we show the closing prices of the S&P500 share index and in Figure 4.2 we
show the log returns of the S&P500 share index. From Figure 4.1 we deduce that the returns
are fluctuating continuously with 2015 and 2018 experiencing significant fluctuations (high
volatility). Evidently there is a positive drift in the growth of the share index prices. By
considering the log of the daily share index prices we can fit a distribution that models the
behaviour of the process driving the returns.

In Table 4.1 we give the values of the sample moments and we observe that the data has
an excess kurtosis higher than that of a normal distribution (which is zero) and this shows
the presence of outliers in the log returns data. Contrary to the expectation that the data is
symmetric around the mean, the table shows that returns are negatively skewed and this is
also justified by a sample mean (0.0004099) which is less than the median (0.0004925), which
makes normal distribution more unlikely to fit the data.

Table 4.1: Moments of the returns data

Sample moments Values
Sample mean 0.0004099

Sample variance 0.00006232
Simple skewness -0.5726
Sample kurtosis 6.269

In Figure 4.3 we illustrate the distribution of the log returns by using a box plot and we
observe that there are many outliers on the negative side of the tail as compared to the
positive side. Checking the box itself, it does not justify a large skewness. A distribution
that may be a best fit for this data is thus slightly negatively skewed and must portray
tendencies of heavy tails as depicted by the large number of outliers indicated in the box
plot.

Figure 4.3: Box plot for the log returns
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4.1.2 Estimation of parameters

We use the moments from Table 4.1 to fit data using the normal and Meixner distributions.
We apply the method of moments method which equates the sample moments to the theoret-
ical formula of the moments for the distribution [9, p. 350]. Fitting the normal distribution
is the easiest since it has only two parameters (mean and variance). We will use the following
notation:

• x̄ - sample mean

• s2- sample variance

• b1- sample skewness

• b2- sample kurtosis.

By using this notation we update Table 4.1 to get Table 4.2 and these values are used for
parameter estimation. To estimate the parameters of the normal distribution by method of
moments, we equate µ̂ = x̄ and σ̂2 = s2.

Table 4.2: Sample estimates of moments

Sample moments Values
x̄ 0.0004099
s2 0.00006232
b1 -0.5726
b2 6.269

We also apply method of moments to the Meixner distribution to obtain [14]

x̄ = âd̂ tan

(
b̂

2

)
+ m̂, that is, m̂ = x̄− âd̂ tan

(
b̂

2

)

s2 =
â2d̂

1 + cos b̂
, that is, â =

√√√√s2

(
cos b̂+ 1

d̂

)

b1 =
sin b̂√

d̂(1 + cos b̂)

b2 = 3 +
2− cos b̂

d̂

Solving the last two equations requires some algebra, but they can be simplified to obtain
the following [14]:

d̂ =
1

b2 − b21 − 3
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b̂ = sign(b1) arccos(2− d̂(b2 − 3))

Using the above equations and the values of the sample moments in Table 4.2, the parameters
of the Meixner distribution are estimated as shown in Table 4.3. The value of the estimate
of b is negative which shows that the distribution is negatively skewed and the estimate of
d is also small, which shows a higher kurtosis. This indicates that the Meixner distribution
may give a better fit to the log returns data than the normal distribution.

Table 4.3: Estimated parameters of the Meixner distribution

Estimated parameters Values
â 0.01860
b̂ -0.4767
d̂ 0.3400
m̂ 0.001947

Since we succeeded in estimating the parameters of both the Meixner and the normal distri-
bution, we now compare the curves of the two distributions using the estimated parameters.
This will illustrate the concepts stated before about kurtosis and heavy tails. Figure 4.4
compares the Meixner and normal distribution of log returns while Figure 4.5 compares the
tails of the two distributions.

Figure 4.4: Meixner (bold) and normal (dashed) probability density functions

According to Figure 4.4, more returns are expected to be around the central point under the
Meixner distribution and this is more than depicted by the normal distribution. This shows
that there is a higher peak (a higher kurtosis) under the Meixner distribution than under the
normal distribution. From Table 4.1 there is an excess kurtosis which justifies preferring the
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Meixner distribution to the normal distribution. In Figure 4.5a as we move from log returns
values of -0.01 to -0.05, the dashed line which represents the normal distribution, is initially
above the solid line for the Meixner distribution, but it falls quicker than the solid line. This
slow movement of the Meixner distribution towards zero is indicating the presence of a heavy
left tail. In Figure 4.5b we observe that the normal distribution is initially higher than the
Meixner distribution, but decreases to zero faster than the Meixner distribution and this is
an indication that the right tail of the Meixner distribution is heavier than that of the normal
distribution. This supports the property of semi-heavy tails for a Meixner distribution.

Figure 4.5: Tails for normal (dashed) and Meixner (bold) probability density functions

(a) Left tails

(b) Right tails
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4.2 Measurement of goodness of fit
Generally several methods can be used to investigate if the chosen distributions are showing
goodness of fit. In this section we restrict our focus to few basic methods:

• plotting histograms and distribution curves,

• quantile-quantile (q-q) plots and

• chi-squared test.

4.2.1 Goodness of fit by histograms

In Figure 4.6 we show the curves for the normal and Meixner distribution together with the
histogram for the log returns of the S&P500 share index data. We observe that there is an
improvement when fitting a Meixner distribution curve over the normal distribution curve.
It is clear that there is more data around the center which exceeds the normal distribution
curve. Furthermore, the tails of the data are thicker than in the normal distribution curve,
which indicates leptokurtosis of the data (higher peak and heavy tails). Between log returns
intervals (−0.02,−0.01) and (0.01, 0.02), many bars in the histogram are lower than the curve
of the normal distribution and this shows a poor fit to the data. We observe that most of
the log returns data can be fit by a Meixner curve. It is worth noting that even though the
Meixner curve is showing an improved fit, there are still some returns data that are lying
outside the curve.

Figure 4.6: Histogram overlayed with Meixner (solid) and normal (dashed) probability den-
sity functions

4.2.2 Quantile-Quantile plots

A quantile-quantile plot (q-q plot) is a graphical presentation that shows the plots of the
empirical quantiles (also known as percentiles) against the theoretical quantiles of the distri-
bution. We will show the q-q plots under the normal and Meixner distribution. If the data
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represents a good fit, the theoretical and the empirical quantiles will lie along the straight
line and deviations from the line imply that the distribution is not a proper fit [26].

In Figure 4.7a we plot the q-q plots for the normal distribution using the log returns data
for the S&P500 share index. From the graph it is evident that both tails of the distribution
are deviating from the straight line showing the presence of heavy tails on the data which
can not be detected by the normal distribution. The plot also shows that the other points
are close to the line, even though they still deviates from the line and this makes it difficult
to conclude any associations of the normal distribution with the data. Taking a closer look
at the left tail (the negative tail), the points are heavily pulled away from the straight line
as compared to the right tail and it is clear that the data from the log returns is negatively
skewed. Under a normal distribution, the data is supposed to be symmetric, which is far
from being the case here, therefore it can be concluded that the normal distribution gives a
poor fit to the data.

In Figure 4.7b we plot the q-q plots for the Meixner distribution for the log returns of S&P500
share index. We observe that most empirical quantiles are very close the theoretical quantiles
(most points are lying along the straight line), which shows a better fit under the Meixner
distribution as compared to the normal distribution. It is crucial to note that it is highly
unlikely to find a distribution that fits the data completely but we can choose a distribution
that gives a better fit.
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Figure 4.7: Q-Q plots for the S&P500 log returns

(a) normal distribution

(b) Meixner distribution

4.2.3 Chi-squared test

A chi-squared test differs from the two previous tests as it uses a hypothesis test to determine
the goodness of fit. We classify the log returns data into categories and we calculate the
measure of the differences between the observed frequencies of falling in a category and
expected frequencies from a specified distribution under a given null hypothesis. A chi-
squared test is a very important goodness of fit test but it has several limitations as compared
to other goodness of fit tests like q-q plots. A chi-squared test on continuous data depends
on the intervals chosen which compromises the results of the test. The test will not work
properly if the expected frequency of observations is less than 5 [9, p. 729].

We divide the log returns data for the S&P500 share index into 50 intervals and we define
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the following:

• Oi denotes the observed frequencies of being in interval i.

• Ei denotes the expected frequencies of being in interval i.

The null and alternative hypothesis are defined as follows:

H0 : The log returns data follows a given distribution (normal or Meixner distribution)
Ha : The log returns data does not follow a given distribution (normal or Meixner distribution).

We define the test statistic as follows [9, p. 726]:

χ2 =
50∑
i=1

(Oi − Ei)
2

Ei

.

We reject the null hypothesis if [9, p. 726]

χ2 ≥ χ2
0.05;50−k−1,

where χ2
0.05;50−k−1 is a critical value at a 5% significance level with degrees of freedom (d.f.)

being given by 50−k−1 (k denotes the number of estimated parameters). Under the normal
distribution case we estimate two parameters hence we have 47 degrees of freedom, while
under the Meixner distribution case we estimate four parameters hence we have 45 degrees
of freedom. The null hypothesis is also rejected when the probability value under a null
hypothesis (p-value) is less than the 5% significance level.

Table 4.4 shows the chi-squared test using data from S&P500 share index. We observe that
under a 5% level of significance there is no sufficient evidence to reject the null hypothesis
which says the log returns data of the S&P500 share index follows a Meixner distribution
but we reject the null hypothesis that says log returns data is normally distributed.

Table 4.4: Chi-squared test for the S&P500 log returns

Fitted distribution Test static (χ2) d.f. Critical value p-value Decision
Normal 276.4790 47 64.0011 <0.0001 Reject
Meixner 61.4800 45 61.6562 0.0516 Do not reject

4.2.4 Hypothesis testing for normality

Through the use of histograms and quantile-quantile plots we have observed that a Meixner
distribution gives a better fit to the data for the log returns than a normal distribution. In
this section we do a hypothesis testing to find out if we have sufficient evidence to reject the
null hypothesis that the data for the log returns is normally distributed (see the appendix A
for the Shapiro-Wilk test for normality).
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H0 : The log returns data for the S&P500 share index is normally distributed.
Ha : The log returns data for the S&P500 share index is not normally distributed.

Table 4.5 shows the Shapiro-Wilk test for normality. Under a 5% significant level we only
fail to reject the null hypothesis provided that the probability value (p-value) is sufficiently
greater than 5%. The Shapiro-Wilk test in Table 4.5 shows that the p-value (< 0.0001) is
significantly lower than 0.05, indicating that there is sufficient evidence to reject the null
hypothesis of saying the S&P500 log returns are normally distributed. The hypothesis test
gives us the same conclusion as the histogram and q-q plot.

Table 4.5: Hypothesis test for normality of S&P500 log returns data

Test Statistic P-value
Shapiro-Wilk W 0.952984 Pr < W < 0.0001

4.3 Fitting the models to the South African market
In this section we apply Brownian motion and the Meixner process to the emerging markets
of South Africa. The main aim is to observe the differences that may exist in comparison
to the United States market. We will use the data extracted from two Johannesburg stock
exchange (JSE) indices, which are FTSE/JSE All Share and FTSE/JSE Top 40 [18]. We use
1 year worth of daily share index data from 09 October 2017 to 08 October 2018. Table 4.6
shows the sample moments for the two indices. The two processes mentioned above are fit
to the log returns of the two indices.

Table 4.6: Moments for the South African JSE indices

Sample moments FTSE/JSE All Share FTSE/JSE Top 40
Sample mean -0.0002371 -0.0002643

Sample standard deviation 0.009190 0.0099
Sample skewness -0.01792 -0.06617

Sample excess kurtosis 1.846 1.833

Table 4.7: Normality test for the JSE indices

Index Test Statistics P-value
FTSE/JSE All Share Shapiro-Wilk W 0.9776 Pr < W 0.0006
FTSE/JSE Top 40 Shapiro-Wilk W 0.9765 Pr < W 0.0004

From Table 4.6 we observe that the log returns data from both indices are showing negative
skewness and a positive excess kurtosis (which indicates heavy tails and higher peaks for the
log returns data). A test for normality, under the hypothesis that the log returns data follows
a normal distribution, is shown in Table 4.7. Under 5% confidence level we reject the null
hypothesis for both indices since the p-values are all less than 0.05. This shows that the log
returns for both indices do not follow a normal distribution.
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4.3.1 Goodness of fit
In Table 4.8 we show the values of the estimated parameters of the normal and Meixner
distribution by making use of the one year historical data of the South African indices,
FTSE/JSE All Share and FTSE/JSE Top 40 [18]. As before, we apply the method of
moments by matching sample moments to the population moments.

Table 4.8: Estimated parameters for the normal and Meixner distribution for log returns on
JSE indices

Model Estimated parameters FTSE/JSE All Share FTSE/JSE Top 40
Normal µ̂ -0.0002371 -0.002643

σ̂ 0.009190 0.009946
Meixner â 0.01765 0.01901

b̂ -0.01865 -0.06921
d̂ 0.5419 0.5468
m̂ -0.0001479 0.00009560

In Figures 4.8 and 4.9 we fit the two distributions to the log returns of JSE indices and we
observe that a Meixner distribution is a better fit to the log returns, but both distributions
are not able to capture few large log returns on the tails of the distributions indicating
that the log returns tails are heavier than the tails of the distributions we are fitting. The
negative skewness is mostly visible on the log returns of FTSE/JSE Top 40 log returns and
the Meixner distribution manages to capture this as shown in Figure 4.9. The histograms
are showing that the Meixner distribution is a better alternative of the normal distribution
on fitting log returns for both indices.

Figure 4.8: Histogram of FTSE/JSE All Share log returns overlayed by the normal (dashed)
and Meixner (bold) probability density functions
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Figure 4.9: Histogram of FTSE/JSE Top 40 log returns overlayed by the normal and Meixner
probability density functions

In Figure 4.10 and 4.11 we plot the q-q plots for both distributions to the JSE indices. In
Figure 4.10 we see that none of the distributions fits the data well, although the Meixner
distribution gives a better fit than normal distribution since many circles are diverting from
the line under the normal distribution while under Meixner distribution most circles are close
to the line. In Figure 4.11 we observe that the Meixner distribution is a good fit even though
its tails are not as heavy as the log returns data, while the normal distribution is not a
good fit because its empirical quantiles are different from the theoretical quantiles. It can be
argued that another distribution with heavier tails may give a better fit than the Meixner
distribution.
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Figure 4.10: FTSE/JSE All Shares q-q plots

(a) Normal q-q plots

(b) Meixner q-q plots
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Figure 4.11: FTSE/JSE Top 40 q-q plots

(a) Normal q-q plots

(b) Meixner q-q plots

In Tables 4.9 and 4.10 we show the goodness of fit using chi-squared test for JSE indices. We
observe that the chi-squared test for the JSE All Share index gives results that contradicts
the goodness of fit tests above. In this case we adopt the results from the q-q plots because
both the histogram and chi-squared test have a weakness of depending heavily on the choice
of the intervals of the data being considered. The chi-squared test for the JSE Top 40 index
results are consistent with the histogram and q-q plots that is, we reject the null hypothesis
of normality of log returns but we do not reject the null hypothesis that log returns data
follows a Meixner distribution.
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Table 4.9: Chi-square test for JSE All Share index

Fitted distribution Test statistic (χ2) Critical value d.f. p-value Decision
Normal 16.3150 21.0261 12 0.17723 Do not reject
Meixner 9.2946 18.3070 10 0.50439 Do not reject

Table 4.10: Chi-square test for JSE Top 40 index

Fitted distribution Test Statistic (χ2) d.f. Critical value p-value Decision
Normal 36.3363 12 21.0261 0.0003 Reject
Meixner 13.0614 10 18.3070 0.2203 Do not reject



Chapter 5

Pricing of options

5.1 Option contract
An option contract is an agreement that involves a seller (sometimes called the writer) and
a buyer (option holder). Under a call option contract the seller grants the buyer the right,
without any obligation, to buy the underlying asset at a specified price (the strike price),
within a given time duration (time to maturity) in return for a premium (sometimes referred
to as the option price), while under a put option contract the writer gives the holder the
right (with no obligation) to sell an underlying asset at an agreed price and duration [16, p.
6]. Underlying assets may be in the form of shares or a share index. Some options are only
exercised at maturity of the contract (European options), while others are exercised at any
time (American options). When an option contract is exercised, the option holder receives a
payoff, which is the cash flow that the holder gains from exercising the right granted by the
seller. Vanilla options are those with payoffs given by either max{ST −K, 0} (for vanilla call
options) or max{K − ST , 0} (for vanilla put options) [29, p. 142]. K represents the strike
price and ST is the value of the underlying asset at time T .

Under a call option, a rational option holder will only exercise it if its payoff is positive, that
is if the price of the underlying asset is greater than the strike price. For the put option it is
rational to exercise the option if the strike price is greater than the price of the underlying
asset. Table 5.1 illustrates this.

Table 5.1: The payoffs for vanilla call and vanilla put options at maturity

Vanilla option ST < K ST > K
Call 0 ST −K
Put K − ST 0

5.2 Pricing of European vanilla call options
As mentioned before, to acquire the right under the option contract, the buyer will have to
pay a premium. This premium is always non-negative to compensate for the non-binding
nature (no obligation to exercise) of the option contract [3, p. 3]. We need to determine

42
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the price of the option that will ensure that there is no arbitrage opportunity available. An
arbitrage opportunity arises if one can start at time t = 0 with no capital, but there is a
zero probability of losing more and there is a positive probability of making some positive
returns. In this section we consider the pricing of European vanilla options. We will use
the distributions fitted to the log returns in the previous chapter. As we have noticed in
previous chapters, the two processes governing the log returns discussed above belong to the
family of Lévy processes, hence we are going to price European vanilla options by using Lévy
processes.

We are considering a market that has a riskless asset (for example a bond), with a price
given by the process Bt = ert and a risky asset (for example a stock or a stock index), with
a price defined by a process St as in (4.1.1) [32]. Here r is the risk-free interest rate and t is
the time.

The log returns given by ln(St+s

St
) of the price model above follows a distribution of stationary

increments of time length s (that is (t+s)− t) of a Lévy process. Pricing models for financial
assets that adopt Lévy processes like the Meixner process are able to capture large price
changes that usually happen since they incorporate jumps. Geman et al [12] put forward a
suggestion that pricing models should have a jump component but the diffusion component
is not a necessary condition. A diffusion component is responsible for capturing very small
movements in prices of financial assets that tend to happen more frequently [33, p. 76]. A
Meixner process is an infinite activity Lévy process (that is for a Lévy measure ν(dx), we
have

´
R ν(dx) = ∞ (see [33, p. 76])), hence it can capture the jumps in prices and small price

movements that are frequent. Schoutens [33, p. 76] pointed out that adding the diffusion
component for returns does not improve the performance of the model.

By ensuring that a no-arbitrage assumption holds, we model the prices of options. We build
the pricing models under the risk-neutral framework (for more explanations see [5] and [8]).
We consider a risk-neutral probability measure referred to as a martingale measure Q, that is
equivalent to the historical (original) probability measure P, such that the discounted price
of the underlying asset is a martingale, that is S0 = EQ (e−rtSt) [32]. A σ-field sequence
given by {Ft : t ≥ 0} is called a filtration if, for all 0 ≤ s ≤ t, Fs ⊆ Ft [29, p. 108]. A
stochastic process X = {Xt : 0 ≤ t ≤ T} is a martingale if X is adapted to the filtration
Ft at time t with E[|Xt|] < ∞ for all t ∈ [0, T ] and for all s > t such that E[Xs|Ft] = Xt

[7, p. 41]. We see a martingale as a process that is constant under the conditional expected
value [3, p. 32]. It is very important to note that a no-arbitrage assumption will only hold
if and only if a martingale measure Q exists [3, p. 141, Theorem 10.5, First Fundamental
Theorem]. For in-depth explanations of the equivalence of Q and P as well as martingales,
we refer the reader to Björk [3, pp. 32 and 504-512].

The call option price Ct, under the no-arbitrage assumption, is given by the martingale
pricing formula [32]

Ct = EQ[exp(−r(T − t))max(ST −K, 0)|Ft], for 0 ≤ t ≤ T. (5.2.1)
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5.2.1 Pricing models

On this dissertation we are focusing on two option pricing models which are the Meixner
model and the normal (Black-Scholes) model. The Meixner model is the pricing model that
assumes that log returns of the underlying asset are modeled by a Meixner distribution while
the Black-Scholes model assumes that the log returns of the underlying asset are modeled by
a normal distribution. The Meixner model allows jumps (since a Meixner process’ paths have
left limits and they are right continuous) which allows it to capture large price changes. This
differs from the Black-Scholes model that is modelled by Brownian motion with continuous
paths.

The following are some of the assumptions we have adopted for both models [32, p. 8]:

• market option prices are determined by demand and supply of options hence one finan-
cial agent cannot influence the price. This eliminates the possibility of one or a group
of financial agents monopolising the option trading;

• there is no-arbitrage;

• there are no dividends payable on the underlying assets;

• volatility of log returns of the underlying asset is constant throughout the duration of
the option contract;

• the market is frictionless, which implies that we ignore all trading costs like taxes and
margin payments;

• the market is liquid, which makes the options highly tradable and we eliminate the
possibility of delays on transactions;

• short selling is allowed;

• both parties involved in the option agreement are looking for profitable gains, hence
more is better;

• trading parties do not default;

• information is available for all traders, which eliminates the possibility of inside trading
being of any advantage.

5.2.2 Deriving the price of the put option from a call option

It is possible to find the price of European put options Pt from the price of European call
options Ct in (5.2.1) by using the put-call parity [16, p. 174]

Pt = Ct +Ke−r(T−t) − St, for 0 ≤ t ≤ T. (5.2.2)

We show that (5.2.2) holds by constructing two portfolios. The first portfolio will have a
long position on a European put option, while the second portfolio will have long position on
a European call option, short position on a stock and a bank investment that pays amount
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K at time T . Under the assumption that both the call option and the put option have
the same maturity and strike price, the two portfolios will yield the same value at maturity
regardless of the movement of the stock prices, as shown in Table 5.2. Therefore, under the
no-arbitrage assumption the prices of the two portfolios are supposed to be the same which
gives us (5.2.2). If this fails to hold, we will have an arbitrage opportunity.

Table 5.2: Pay-off table showing put-call parity

Portfolio ST > K ST < K
Pt 0 K − ST

Ct +Ke−r(T−t) − St (ST −K) +K − ST = 0 0 +K − ST = K − ST

5.2.3 Self-financing strategy

For a given stock price process {S(t) : t ≥ 0}, if we ignore consumption, a portfolio value
V m(t) =

∑N
k=1mk(t)Sk(t) at time t, is said to be self-financing if [3, p. 87, Definition 6.2 ]

dV m(t) =
N∑
k=1

mk(t)dSk(t),

where:

• N denotes different types of stocks,

• mk(t) denotes number of stocks of type k held at time t,

• m is the portfolio [m1(t),m2(t), ...,mN(t)],

• Sk(t) denotes the price of stock of type k at time t.

5.2.4 Completeness, no-arbitrage and hedging

We will show why an option pricing model based on the Meixner process (Meixner model) is
incomplete while the model based on the Brownian motion (Black-Scholes or normal model)
is both complete and arbitrage free. It is worth noting that completeness and no-arbitrage
behave in an opposite manner (see [3, p. 122]).

Suppose N represents the number of tradable underlying assets (excluding the risk-free asset)
and R denotes the sources of the randomness of the pricing model then by the Meta-theorem
[3, p. 122, Theorem 8.3.1 ]:

• there is no-arbitrage if and only if R ≥ N ,

• there is completeness if and only if R ≤ N,

• both completeness and no-arbitrage exists when R = N .
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We now check our models for both completeness and no-arbitrage. Under the normal or
Black-Scholes model we have one underlying asset (stock or stock index) and we have one
random source which is a Brownian motion that drives the price of options. This shows that
R = N = 1 which implies that the model is complete and there is no-arbitrage. The Meixner
model has only one underlying asset (stock or stock index) but it has two processes that bring
in the randomness of the model which are the Poisson process, that governs the frequencies of
the jumps, and the Meixner process, that governs the price of the underlying assets. In this
case R = 2 > N = 1. This shows that the model has no-arbitrage but it is not complete. The
number of random sources under the Meixner model can be more than two if we relax some of
the assumptions on the model. Suppose we allow friction to be available in the market, then
there is another random source that models the sources of friction. Several models modeled
by Lévy processes are incomplete and the Black-Scholes model is an exception.

The knowledge of completeness of a model will help us to check if it is possible to use the
model to hedge a portfolio. A portfolio can be hedged if it can be replicated by another
self-financing portfolio and also, if a portfolio can be hedged, then the market is said to
be complete [3, p. 115, Definition 8.1]. Now the contrapositive implies that, if the market
is not complete, then a portfolio cannot be perfectly hedged. This means that under the
Black-Scholes world a portfolio can be hedged, whilst if we adopt the Meixner model pricing
which is incomplete, then we cannot achieve a perfect hedge of a portfolio. Since the Meixner
model pricing is incomplete, there are multiple martingale measures that give prices that are
arbitrage free (see [3, p. 36, Proposition 3.14, Second Fundamental Theorem]), hence we
have to adopt only one martingale measure and ensure that the prices from the model are
always corresponding to the market prices through a calibration process.

5.2.5 Equivalent martingale measures by mean-correcting of the
exponential of a Lévy process

As pointed out already, we need to use the martingale measure Q instead of the original
probability measures P to arrive at risk-neutral probabilities. There are several ways to find
the martingale measure, but we have selected the method which involves the mean-correcting
of the exponential of a Lévy process. The underlying idea that governs the mean-correcting
martingale measure is the adjustment of the location parameter of a specified probability
distribution that governs the underlying asset price process so as to satisfy a required drift
condition [44]. The risk-neutral process using this method is given as [32]

Srisk-neutral
t = S0 exp(Xt)

[
exp(rt)

E(exp(Xt))

]
, (5.2.3)

where X = {Xt : t ≥ 0} denotes a Lévy process that models log returns of an underlying
asset (either Meixner process or Brownian motion) and St is the price of an underlying asset
(stock or index) at time t.

At time t, Xt denotes a random variable which is a path of a Lévy process X that mod-
els log returns. Under the assumption that log returns are modeled by a Brownian mo-
tion, Xt follows a normal distribution Normal(µt, σ2t) and we have the mean of the log
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returns given by E(Xt) = µt while for the Meixner case, Xt follows a Meixner distri-
bution Meixner(a, b, dt,mt) and we have the mean of the log returns given by E(Xt) =
[(ad) tan

(
b
2

)
+ m]t. If we define the mean at t = 0 by mold then mold = E(X0) = 0. The

mean under the risk-neutral probability measure is given by the sum of the original mean
(mold) and the drift from the mean denoted by ω, (see [33, p. 79]), that is

mrisk-neutral = mold + ω. (5.2.4)

The drift term is defined such that S0 = EQ (e−rtSt). Yao [44] showed that the drift from
the mean is given by the following formula:

ω = r −Ψ(−i), (5.2.5)

where r denotes the risk-free rate and Ψ(u) = ln(Φ(u)) (which is the log of the characteristic
function in (3.0.1)). By considering this, we derive the martingale measures for the two
processes under consideration.

5.2.5.1 Under normal distribution

By using (3.1.4) we have

Ψ(−i) = µ+
1

2
σ2,

and by using (5.2.4) and (5.2.5) the mean under the risk-neutral probability for the normal
distribution is given by

µrisk-neutral = µ+ r −
(
µ+

1

2
σ2

)
= r − 1

2
σ2. (5.2.6)

5.2.5.2 Under the Meixner distribution

By using (3.2.4) we have

Ψ(−i) = 2d ln

(
cos b

2

cos
(
a+b
2

))+m,

and by using (5.2.4) and (5.2.5), for the Meixner distribution we have

mrisk-neutral = m+ r −

(
2d ln

(
cos b

2

cos
(
a+b
2

))+m

)

= r − 2d ln

(
cos b

2

cos
(
a+b
2

)) . (5.2.7)

Therefore for the Brownian motion, the martingale measure Q now follows a Normal(µrisk-neutral, σ
2)

and for the Meixner process, Q now follows a Meixner(a, b, d,mrisk-neutral) by making use of
the mean-correcting martingale measure. The results in (5.2.6) and (5.2.7) are crucial in
option pricing.



CHAPTER 5. PRICING OF OPTIONS 48

5.2.6 Fourier transform and option pricing

As a next step, the Fourier transform method is used to find the formulae for option prices
since we know the characteristic functions of both the Meixner and normal distributions
analytically. The main advantage of using Fourier methods is that if the characteristic
function of a distribution is known then the option prices are easily calculated. The European
vanilla options are calculated based on the price of underlying asset denoted by St with strike
price K and time of expiry T . We define the following notation [6]:

• k = ln(K),

• sT = ln(ST ),

• fT (s) denotes the risk neutral probability density function of ln(ST ) and

• ϕT (u) denotes the characteristic function of ln(ST ) such that [6, Equation 2]

ϕT (u) =

∞̂

−∞

eiusfT (s)ds. (5.2.8)

If we work with a European vanilla call option then the option will have a non-zero value if
ST > K and 0 otherwise. Using the notation above, the call option has an intrinsic value if
esT > ek, which gives a payoff of esT − ek. Now we establish the formula for the price of the
call option as follows [6]:

CT (k) =

ˆ ∞

k

e−rT (es − ek)fT (s)ds. (5.2.9)

When k → −∞, CT (k) → S0 (this implies that as the strike price K of a call option
approaches 0, the value of a call option will move towards the initial value of the underlying
asset S0), therefore the expression in (5.2.9) is not square-integrable [6]. We say that a
function g(x) is square-integrable on (−∞,∞), provided that

ˆ ∞

−∞
|g(x)|2dx < ∞. (5.2.10)

As k approaches −∞, CT (k) approaches S0 and (5.2.10) cannot hold for CT (k) = S0. But if
we force CT (k) → 0 as k → −∞ then (5.2.10) will hold.
Therefore to make (5.2.9) square-integrable, we define a modified call option price formula
[6, Equation 3]

cT (k) = eαkCT (k), (5.2.11)

where α > 0 is a dumping factor which allows the expression in (5.2.11) to be square-
integrable in k for all R. We now find the Fourier transform of cT (k) as follows [6]:

c∗T (v) =

ˆ ∞

−∞
eivkcT (k)dk, (5.2.12)
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cT (k) =
1

2π

ˆ ∞

−∞
c∗T (v)e

−ivkdv. (5.2.13)

Now we combine expression (5.2.11) and (5.2.13) to get the following [6, Equation 5]:

CT (k) = e−αkcT (k)

=
e−αk

2π

ˆ ∞

−∞
c∗T (v)e

−ivkdv. (5.2.14)

Expression (5.2.14) is further simplified by noting that call prices fall on the real space,
therefore by using c∗T (v) defined in (5.2.12), the following conditions will hold [27]:

• if CT (k) is real and even then c∗T (v) is real and even;

• if CT (k) is real and odd then c∗T (v) is imaginary and odd;

• if CT (k) is real then c∗T (−v) is the conjugate of c∗T (v).

Therefore expression (5.2.14) can be simplified by using the above conditions to be [6, Equa-
tion 5]

CT (k) =
e−αk

π

ˆ ∞

0

c∗T (v)e
−ivkdv. (5.2.15)

We simplify further the expression for c∗T (v) by simplifying the expression in (5.2.12) as
follows:

c∗T (v) =

ˆ ∞

−∞
eivkcT (k)dk

=

ˆ ∞

−∞
eivkeαkCT (k)dk (from (5.2.11))

=

ˆ ∞

−∞
eivkeαk

ˆ ∞

k

e−rT (es − ek)fT (s)dsdk (from (5.2.9))

=

ˆ ∞

−∞
e−rTfT (s)

ˆ s

−∞
eivk(es+αk − ek+αk)dkds (by interchanging integrals)

=

ˆ ∞

−∞
e−rTfT (s)

[
eivs+αs+s

iv + α
− eivs+αs+s

iv + α + 1

]
ds

=

ˆ ∞

−∞
e−rTfT (s)

[
eivs+αs+s

(iv + α)(iv + α + 1)

]
ds

=
e−rT

(iv + α)(iv + α + 1)

ˆ ∞

−∞
fT (s)e

ivs+αs+sds

=
e−rT

(iv + α)(iv + α + 1)

ˆ ∞

−∞
fT (s)e

−i(iv+α+1)isds

=
e−rT

(iv + α)(iv + α + 1)

ˆ ∞

−∞
fT (s)e

(v−i(α+1))isds

=
e−rT

(iv + α)(iv + α + 1)
ϕT (v − i(α + 1)) (from (5.2.8)). (5.2.16)
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Combining expressions (5.2.15) and (5.2.16) we get the following expression that is used to
price an option:

CT (k) =
e−αk

π

ˆ ∞

0

[
e−rT

(iv + α)(iv + α + 1)
ϕT (v − i(α + 1))

]
e−ivkdv. (5.2.17)

By replacing ϕT (v − (α + 1)) with the characteristic functions of risk-neutral probabilities
for normal distribution and Meixner distribution, we find analytical expressions for the call
options using expression (5.2.17).

5.2.7 Characteristic functions of the log returns of the underlying
assets

By considering that a Meixner process and Brownian motion are Lévy processes and by
making use of the mean-correcting of the martingale measure method, we model the risk-
neutral underlying asset price under the two processes by (5.2.3) which can be simplified to
be [10]

St = S0e
Xt+(mrisk-neutral)t, (5.2.18)

where where X = {Xt : t ≥ 0} denotes a Lévy process (either Meixner process or Brownian
motion ).

We use the risk-neutral stock price given above and (5.2.8) to find an expression for the
characteristic of ln(St) as follows [10]:

ϕT (u) = ϕlnST
(u) = E[eiu lnST ]

= E[eiu(lnS0+XT+(mrisk-neutral)T ]

= E[eiu(lnS0+(mrisk-neutral)T )+iuXT ]

= eiu(lnS0+(mrisk-neutral)T )E(eiuXT )

= eiu(lnS0+(mrisk-neutral)T )ΦXT
(u). (5.2.19)

We use the expression in (5.2.19) and substitute in (5.2.16) by replacing a u in (5.2.19) with
(v − i(α + 1)) to get an expression for c∗T (v). It is worth pointing out that under the risk-
neutral set-up, we are considering a martingale measure Q, hence the characteristic function
ΦXT

(u) will ignore the drift (restricting the drift parameter to be zero) because under a
martingale measure, there is no systematic drift term [3, p. 47]. This is clearly illustrated in
the following two subsections.

5.2.7.1 Characteristic function under the normal model

From (3.1.3) we can find the characteristic function under the normal distribution for a time
to maturity T of an option as follows:

ΦXT
(u) = e(iuµ−

1
2
u2σ2)T . (5.2.20)
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We use (5.2.20) and ensure that the risk-neutral condition holds by eliminating the drift term
(µ = 0) to get

ΦXT
(u) = e−

1
2
u2σ2T . (5.2.21)

Under the normal model, we use (5.2.19) and we substitute (5.2.6) and (5.2.21) to get the
following:

ϕT (u) = eiu(lnS0+(r− 1
2
σ2)T e−

1
2
u2σ2T

= eiu(lnS0+rT )− 1
2
σ2T(iu+u2). (5.2.22)

5.2.7.2 Characteristic function under the Meixner model

Under the Meixner process we use (3.1.3) and incorporate the time to maturity T of an
option, where XT is a Meixner process such that:

ΦXT
(u) =

(
cos b

2

cosh
(
au−ib

2

))2dT

exp(imuT )

=

(
cos b

2

cos
(
aiu+b

2

))2dT

exp(imuT ). (5.2.23)

We use (5.2.23) and ensure the risk-neutral condition is satisfied by eliminating the drift term
(m = 0) to get

ΦXT
(u) =

(
cos b

2

cos
(
aiu+b

2

))2dT

(5.2.24)

By using (5.2.19), (5.2.7) and (5.2.24) we get the characteristic function for the Meixner
distribution as

ϕT (u) = exp

{
iu

[
lnS0 +

(
r − 2d ln

(
cos b

2

cos
(
a+b
2

)))T

]}(
cos b

2

cos
(
aiu+b

2

))2dT

(5.2.25)

5.2.8 Choosing the value of α

There is a need to determine the value of α to be used. Carr and Madan [6] pointed out that
c∗T (0) must be finite to ensure that the modified call value is both square-integrable and also
integrable for a positive log strike direction. From expression (5.2.16) it can be noted that
c∗T (0) is finite if ϕT (−i(α + 1)) is finite. From (5.2.8) we deduce that

ϕT (−i(α + 1)) = E[ei(−i(α+1))sT ]

= E[e(α+1) ln(ST )]

= E[S
(α+1)
T ]. (5.2.26)
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We are going to illustrate these bounds for only Meixner process since for a Brownian motion
there are no constraints for the α value [41].

From (5.2.23) we obtain

ΦXT
(−i(α + 1)) =

 cos b
2

cos
(

ai(−i)(α+1)+b
2

)
2dT

exp(imT (−i)(α + 1))

=

 cos b
2

cos
(

a(α+1)+b
2

)
2dT

exp(m(α + 1)T ). (5.2.27)

In order to find the bounds for α, we use (5.2.19) and (5.2.7) and we require ϕT (−i(α+1)) =

E[S
(α+1)
T ] < ∞. Using the fact that lim

x→∞
1
x
= 0, and since −π < b < π and a > 0 under a

Meixner process, we get the following:
 cos b

2

cos
(

a(α+1)+b
2

)
2dT

exp(m(α + 1)T )


−1

> 0

 cos b
2

cos
(

a(α+1)+b
2

)
−2dT

> 0

cos
(

a(α+1)+b
2

)
cos b

2

2dT

> 0

cos

(
a(α + 1) + b

2

)
> 0 (since − π < b < π, therefore cos b

2
> 0).

(5.2.28)

We solve (5.2.28) further as follows:

cos

(
a(α + 1) + b

2

)
= 0

a(α + 1) + b

2
= arccos(0). (5.2.29)

From (5.2.29) we have

a(α + 1) + b

2
=

π

2
.

This can be simplified to get α = π−a−b
a

for a > 0. Hence, from (5.2.28) we have

α <
π − a− b

a
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But since we restricted α to be positive earlier, the new bounds will be

0 < α <
π − a− b

a
. (5.2.30)

We can use any value of α that satisfy the interval in (5.2.30) without loss of generality.
On this dissertation we use α = 2 but it is worthy noting that any different value of α that
satisfies (5.2.30) will not contribute to significant differences in the prices of the options.

5.2.9 Fast Fourier Transform (FFT)

We apply the results of the above sections about Fourier transformation to the pricing of
options using the FFT algorithm for at-the-money and in-the-money European vanilla call
options. We start by defining the sum structure we can apply FFT to, which is as follows
[21]:

z(k) =
N∑
j=1

e−i 2π
N

(j−1)(k−1)x(j) for k = 1, 2, 3, . . . , N, (5.2.31)

where x(j) are complex numbers and N being a power of 2 and the FFT algorithm simplify
order N2 to order N log2N as pointed out by Ng [27]. We transform the integration given
in (5.2.15) to be similar to (5.2.31) so that we can apply the FFT method.

By applying the trapezium rule to the integral in (5.2.15) and by defining vj = △v(j − 1),
the discretised expression is as follows [6, Equation 17]:

CT (k) ≈ e−αk

π

N∑
j=1

c∗T (v)e
−ivjk△v. (5.2.32)

This discretization process introduces two errors as pointed out by Kwok et al [21], that is,
the truncation error which comes from changing the infinite upper limit of (5.2.15) to a finite
upper limit and the sampling error which emanates from changing the Fourier variable v,
which is continuous to be discrete.

As a next step, we establish a grid in the domain for k and we restrict the grid to be focused
around the strikes that are at-the-money which is mostly common in the market by using
the following [6, Equation 19]:

km = −1

2
N△k +△k(m− 1) for m = 1, 2, 3, . . . , N. (5.2.33)

With the expression (5.2.33) we can have log strike prices ranging from −1
2
N△k to 1

2
N△k.

Now we use expression (5.2.33) and substitute it in expression (5.2.32) to get the following:
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CT (k) ≈ e−αk

π

N∑
j=1

c∗T (v)e
−ivj [− 1

2
N△k+△k(m−1)]△v

CT (k) ≈ e−αk

π

N∑
j=1

c∗T (v)e
−i(△v(j−1))[− 1

2
N△k+△k(m−1)]△v

=
e−αk

π

N∑
j=1

c∗T (v)e
△v(j−1)( 1

2
N△k)i−△v△k(j−1)(m−1)i△v

=
e−αk

π

N∑
j=1

c∗T (v)e
△v(j−1)( 1

2
N△k)ie−△v△k(j−1)(m−1)i△v. (5.2.34)

By equating summation in (5.2.34) with the summation in (5.2.31), we notice the following:

c∗T (v)e
△v(j−1)( 1

2
N△k)i△v = x(j),

△v△k =
2π

N
. (5.2.35)

This implies that we can apply the FFT method. It can be noted on the expression (5.2.35)
that if the value of N can be fixed, choosing a small value of △v to improve the integration
accuracy, △k will be forced to be high which may not be in line with the desired grid for the
log strike prices. With that in mind there is a need to use a small value of △k with a big
value of △v without affecting the accuracy of the integration. This allows us to adopt the
Simpson rule as suggested by Carr and Madan [6] to obtain the following [6, Equation 24]:

CT (k) ≈
e−αk

π

N∑
j=1

(c∗T (v)e
△v(j−1)( 1

2
N△k)i)e−

2π
N

(j−1)(m−1)i∆v

3
[3 + (−1)j − ωj−1], (5.2.36)

where ωn =

{
1 for n = 0

0 otherwise.

To evaluate the expression (5.2.36) which is simply a direct application of FFT method, we
need values for both ∆v and α. In this dissertation, we calculate the option prices using
either the Fourier transform (5.2.17) or Fast Fourier transform (5.2.36) for both normal and
Meixner models whichever is the most applicable. One can simply replace the normal model
with the Black-Scholes model (see appendix A) and get the same results.

5.3 Greeks
We are going to explain the greeks that measure the sensitiveness of the option prices to
changes in the prices of the underlying assets. The greeks we define in this section are going
to be used for hedging in the next chapter. The general formulae of the option delta and
option gamma are given as follows [3, p. 127]:

∆C (call option delta) =
∂C

∂S
, (5.3.1)
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ΓC (call option gamma) =
∂2C

∂S2
. (5.3.2)

The delta of an option measures the sensitivity of an option price in relation to the changes
in the prices of the underlying asset while the gamma of an option measures the sensitivity
of the delta of an option to the changes in the prices of the underlying asset (see [16, pp. 310
and 332]). A higher option delta corresponds to a higher sensitivity and also a higher option
gamma denotes a higher sensitivity. By using a characteristic function in (5.2.19) and a call
pricing function in (5.2.17) we get the following expression:

CT (k) =
e−αk

π

ˆ ∞

0

e−rT e−ivk

(iv + α)(iv + α + 1)[
ei(v−i(α+1))(lnS0+(mrisk-neutral)TΦXT

(v − i(α + 1))
]
dv (5.3.3)

We use (5.3.3) to find the analytical general expressions for both option delta and option
gamma under the Fourier transform method by using (5.3.1) and (5.3.2), respectively, as
follows:

∆C =
e−αk

πS0

ˆ ∞

0

[
i(v − i(α + 1))e−rT

(iv + α)(iv + α + 1)
ϕT (v − i(α + 1))

]
e−ivkdv, (5.3.4)

where ϕT (v− i(α+1)) is from (5.2.19) and by differentiating (5.3.4) with respect to S0 using
product rule, we have

ΓC = −e−αk

πS2
0

ˆ ∞

0

[
i(v − i(α + 1))e−rT

(iv + α)(iv + α + 1)
ϕT (v − i(α + 1))

]
e−ivkdv +

e−αk

πS2
0

ˆ ∞

0

[
−(v − i(α + 1))2e−rT

(iv + α)(iv + α + 1)
ϕT (v − i(α + 1))

]
e−ivkdv

= −e−αk

πS2
0

ˆ ∞

0

[
(i(v − i(α + 1)) + (v − i(α + 1))2) e−rT

(iv + α)(iv + α + 1)
ϕT (v − i(α + 1))

]
e−ivkdv

(5.3.5)

To find the analytical expressions for both the normal model and the Meixner model greeks,
we substitute the characteristic functions of lnST in (5.2.22) and (5.2.25) respectively in both
(5.3.4) and (5.3.5).



Chapter 6

Hedging and calibration

In this chapter we are going to compare the models we have explained in the previous chapters
with the market prices of European options and later introduce hedging of a portfolio of
European options and stocks. The performance of the model is judged based on the size
of the distance between the price of the model and the market price. A smaller distance
is preferred. If we assume that the market prices are the true values then the distance can
be referred to as the measurement of the error size. In this chapter the term “options” is
referring to “European vanilla options”. The results from this chapter make reference to
appendix B. We are going to consider the following three error measures:

1. average percentage error (APE);

2. average relative percentage error (ARPE);

3. average absolute error (AAE).

6.1 Definition of error measures
We define the following:

• Pmodel denotes the model option price,

• Pmarket denotes the market option price,

• N denotes the number of option prices under quotation,

• x denotes the parameters of the model,

• P̄market denotes the average of the option prices.

6.1.1 Average percentage error

Under APE the distance of the model prices from the market prices is obtained as follows
[19, p. 435]:

56
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APE(x) =
N∑
i=1

|Pmarket
i − Pmodel

i (x)|
N
(
P̄market

) ,

with

P̄market =
N∑
i=1

Pmarket
i

N
.

6.1.2 Average relative percentage error

ARPE is closely related to APE, but instead of weighting by the mean of the market prices
as on APE, the ARPE is weighting the deviations from the market prices by the observed
option market prices. Hence, we have [19, p. 435]

ARPE(x) =
N∑
i=1

|Pmarket
i − Pmodel

i (x)|
N
(
Pmarket
i

) .

6.1.3 Average absolute error

AAE looks similar to the distance measures above, but under the AAE the absolute deviations
are not weighted with either the market prices or the mean market prices. That is [19, p.
435]

AAE(x) =
N∑
i=1

|Pmarket
i − Pmodel

i (x)|
N

.

6.2 Estimation of the model parameters
The most important aspect of option pricing is being able to identify the best parameters
that fit the data. Therefore we need to find the parameters that miminises the distance from
the true option prices. There are basically two methods we are going to consider.

The first method involves calibrating the market option prices with the model prices. We
estimate the model parameters by choosing parameters that gives us a better fit to the market
option prices. We treat this as an unconstrained optimization problem by minimising the
average absolute error (AAE) as follows:

min
x

f(x) =
∑N

k=1
|rk(x)|

N
,

where:

• x is a vector of model parameters,
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• N is the number of observations of the option prices,

• rk(x) = Pmodel
k (x)− Pmarket

k .

We invoked the Matlab function fminsearch( ) to find the local minimum of the uncon-
strained optimization problem. For the optimization problem to be solved, we ensure that
the number of parameters being estimated are less than or equal to the number of observa-
tions. There is also a need to carefully select the initial values for the optimization problem
in order to avoid settling for local minimum points that are not the best possible parameters.

The second method estimates the parameters of the models by using historical data for the
underlying asset prices. This was explained in depth when we fit the log returns in chapter
4. The only slight difference here is that we can either estimate parameters corresponding
to yearly data or we can estimate the parameters from the daily log returns. We prefer
estimating parameters with daily data, because there is sufficient data to get better estimates
of the parameters. The risk-free rate can be expressed as rate compounded daily

daily risk-free rate = (1 + r)
1

252 − 1,

where r denotes the risk-free rate compounded yearly. The daily estimates can be scaled up
to yearly estimates as follows [22]:

• yearly mean value = 252 ∗ daily mean,

• yearly standard deviation = daily standard deviation ∗
√
252,

• yearly excess kurtosis = daily excess kurtosis
252

,

• yearly skewness = daily skewness√
252

.

6.3 Properties of European call options
We expect the following conditions to hold for any European call option, otherwise there will
be an arbitrage opportunity:

1. the strike price and the price of a European call option are inversely related, that is
the European call price approaches zero as strike price turns to infinity [16, p. 168];

2. the price of the call option can not exceed the value of the underlying [16, p. 171];

3. Ct ≥ max
{
0, St −Ke−r(T−t)

}
= lower bound [16, p. 171] ;

4. if we have call options that only differ on their time to maturity, then we expect a call
option with a longer maturity to cost more than the one with shorter maturity.

We show that condition 4 holds. Suppose the lower bound above holds and we have two
maturities T1 and T2 such that T1 < T2. For the sake of clarity we use a slightly different
notation to define two European call options with the same strike price and underlying, but
different maturities, as C(K,T1, S0) and C(K,T2, S0), satisfying C(K,T1, S0) > C(K,T2, S0).



CHAPTER 6. HEDGING AND CALIBRATION 59

At time t = 0, we buy the cheaper call option C(K,T2, S0) and sell C(K,T1, S0). At time
t = T1, we have

C(K,T2, ST1)−max {0, ST1 −K}
≥max

{
0, ST1 −Ke−r(T2−T1)

}
−max {0, ST1 −K}

≥0.

This shows the presence of an arbitrage opportunity. Therefore the condition C(K,T1, S0) >
C(K,T2, S0) cannot hold.

Suppose we have option prices that are being traded below the lower bound in condition 3
above, and provided information is available among the traders, then we expect the demand of
the options to increase as the traders are willing to buy the cheaper options with an intention
of gaining risk-free profit. The increase in demand will force the price of the call options to
increase to meet the supply of the call options hence equilibrium is reached where there is
no-arbitrage. Similarly, if we have a scenario where the value of a call option exceeds the
value of its underlying asset for example, we have a call option on a stock exceeding the stock
price. It simply means it becomes cheaper to buy shares, than buying a call option on that
share. Considering that we assume all parties on an option agreement prefer more to less,
the traders will buy more shares and sell the call option on those shares hence flooding the
market with the call options hence pushing the price of the call option down until equilibrium
is reached where there is no arbitrage.

We use these preconceived conditions as a first test on our models to check whether they
are accurate and also to ensure that the market prices we use for calibrating are correctly
captured. Before the calibration process is started, we need to be confident that the market
prices we use do not show any arbitrage opportunities. As part of data cleaning, we have to
ensure that we eliminate prices that allow arbitrage and also prices that seem to be outliers.
To remove outliers we first group call options with the same maturity. We expect the options
to follow a downward trend with the strike price and the prices need to be close to each
other. If the call option prices are much larger or smaller than expected, we remove them as
they signify outliers.

6.4 Market data cleaning
As discussed in the above section, we need to ensure that the data for the market prices
of options does not show arbitrage opportunities. The data cleaning is done under the
assumption that the properties of call options stipulated above are satisfied. In this section
we go through the procedure of data cleaning using S&P500 call option prices data. We
extracted the data for the call options on 29 April 2018 [43] to be exercised on 18 May 2018
(which corresponds to 15 trading days). The value of the S&P500 stock index was 2669.1
on 29 April 2018 [42]. The risk-free rate used is quoted from the 3 months treasury bill rate
from the United States department of treasury [40] which was 1.81%.
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In Table 6.1 we show the data cleaning procedure for detecting the option prices that oppose
the fact that the call option prices fall as the strike price increases. We use the indicator
that returns 0 if the condition is violated. As part of the cleaning process, we eliminate all
those option prices with indicator 0. It is worth noting that those conditions may not create
arbitrage scenarios if some of the assumptions outlined in the above sections are relaxed.
This is because if we relax some of the assumptions, we increase the sources of randomness
on the option price modeling which removes arbitrage (see [3, p. 122, Theorem 8.3.1]). But
in order to take our assumptions into consideration, we work with the data that does not
violate our assumptions. The process is repeated until the indicator is returning only the
value 1.

Table 6.2 shows the data cleaning process that test the lower and upper bound conditions.
By applying these tests we transform the data in Table 6.2 by eliminating the call option
prices that are not satisfying both the lower and upper bound conditions.

Table 6.1: Data cleaning process for the market prices of options (indicator=1 if C falls as
K increases)

Strike price (K) Price (C) Indicator
1600 1074.40 1
1650 1067.20 1
1675 1105.53 0
1700 1012.60 1
1750 907.95 1
1800 998.00 0
1840 880.45 1
1850 794.19 1
1875 913.50 0

Table 6.2: Lower bound and upper bound condition

Strike price Price (C) Lower bound (LB) Indicator (LB < C) Indicator (UB > C)
1600 1074.40 1072.346 1 1
1650 1067.20 1022.422 1 1
1700 1012.60 972.499 1 1
1750 907.95 922.575 0 1
1840 880.45 832.712 1 1
1850 794.19 822.727 0 1

The other question that also arises is whether to use closing prices of market prices, ask or
bid prices. An ask price is the price the seller of an option is willing to sell an option, while a
bid price is the price the buyer of an option is willing to pay [17, p. 221]. Since both parties
are motivated in getting gains from the trade, we end up having a scenario of having a gap
between an ask price and a bid price. This gap is referred to as the bid-ask spread. For an
option to be traded, there is a need for both parties to agree on the price, hence there is
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normally another party involved called the market maker who buys an option from the seller
at a bid price and then sells the option to the buyer at an ask price. The market maker’s
profit will be the bid-ask spread [17, p. 221]. Highly liquid options have a very small bid-
ask spread. Under the assumption of a highly liquid market, we are trying to eliminate the
bid-ask spread, but this assumption tends to be unrealistic if we can consider those markets
where the option trading is illiquid. Therefore we are going to consider calibration of model
prices to the market prices by also considering the ask and bid prices.

6.5 Behaviour of the model prices
We also need to find out if the prices from the two models are consistent to the properties of
the options before we can use them. For the call options under the S&P500 stock index, we
consider strike prices from 2400 to 2700 with duration of 15, 58 and 164 trading days and the
initial price of the underlying S&P500 stock index is 2669.1. The call option prices are then
given as in Tables 6.3 and 6.4 and in Figures 6.1 and 6.2. Taking a closer look at this, we
discovered that properties stipulated above are being satisfied by both models, except for the
lower bound property. We found out that for small option maturities like T = 15 days and
for the strike prices that are further from the underlying prices, both our models are giving
us prices that are lower than the lower bound. As we increase the maturities or increase the
strike price towards the price of the underlying asset, both our models start to give prices
that are above the lower bounds. This phenomena emanate from the fact that as the call
option price moves towards its non-analytic intrinsic value, the integral in (5.2.17) will be
difficult to integrate numerically if maturities are very short [6, p. 7]. It is worth noting that
the parameters of the pricing models in this section are estimated using historical data for
log returns of S&P500 stock index.

Table 6.3: S&P500 Call option prices under the Meixner pricing model

T=15 days T=58 days T=164 days
Strike price Model price LB Model price LB Model price LB

2400 271.6843 272.4943 281.2587 279.8873 312.6075 298.0146
2450 221.8487 222.5482 234.1481 230.0952 270.8697 248.6001
2500 172.4220 172.6020 189.3098 180.3030 231.7132 199.1856
2550 124.4497 122.6558 147.8739 130.5109 195.5374 149.7712
2600 80.4530 72.7097 111.0200 80.7187 162.6676 100.3567
2650 44.4939 22.7635 79.7293 30.9266 133.3264 50.9422
2700 20.0976 0 54.5430 0 107.6166 1.5277
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Table 6.4: S&P500 Call option prices under the Normal model (BS model)

T=15 days T=58 days T=164 days
Strike price Model price LB Model price LB Model price LB

2400 271.6656 272.4943 280.9653 279.8873 312.2174 298.0146
2450 221.7673 222.5482 233.7581 230.0952 270.4952 248.6001
2500 172.1814 172.6020 188.8818 180.3030 231.3947 199.1856
2550 124.0128 122.6558 147.5083 130.5109 195.3137 149.7712
2600 80.0658 72.7097 110.8266 80.7187 162.5701 100.3567
2650 44.5582 22.7635 79.7805 30.9266 133.3742 50.9422
2700 20.6069 0 54.8414 0 107.8135 1.5277

Figure 6.1: S&P500 Call option prices under the normal model (Black Scholes model)

Figure 6.2: S&P500 Call option prices under the Meixner model
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6.6 Fitting the models to the market

6.6.1 Fitting using parameters estimated from historical prices

We compare how our two models are fitting to the market call option prices by using the
three error measures explained earlier in this chapter. The parameters of the models are
estimated from the historical prices of the log returns of the S&P500 share index.

In Table 6.5 we compare the error measure for the Meixner and normal models (the model
parameters are estimated from historical data of log returns of S&P500 share index). The
error measures quantifies how the call option prices from the models differs from the market
call option prices. We see that the Meixner model is having lower values on all the error
measures as compared to the normal model. This shows that the Meixner model is a better
pricing model as compared to the normal model (Black-Scholes model). Another discovery
is that error measures are smaller on smaller maturities than bigger maturities. This seem
to indicate that the volatility is not constant over time. Both models can be significantly
improved if we are to incorporate the stochastic nature of the volatility by relaxing the
assumption of constant volatility of the log returns of the underlying asset. Shanahan et al
[35] pointed out that there is a need to consider stochastic volatility for the underlying asset
for longer maturities. In Figures 6.3 and 6.4 we compare the model prices to the market
prices, and we observe that both models are giving call prices that are close enough to the
market call prices when the strike prices are close to the value of the underlying asset (spot
price) but the call prices are slightly deviating from the market call prices as the strike prices
move further from the spot prices. An explanation that can address this is that the models
are not able to address the issue of volatility smile.

Table 6.5: Error measures (using closing price of call options as market prices) for S&P500
options

Error measure Model T= 15 days T=58 days T=164 days
AAE Normal 9.7007 11.1907 23.1998

Meixner 9.6954 11.1285 22.9892
ARPE Normal 0.0522 0.0448 0.0784

Meixner 0.0498 0.0443 0.0778
APE Normal 0.0418 0.0442 0.0757

Meixner 0.0418 0.0439 0.0750
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Table 6.6: S&P500: Error measures (using average of the bid and ask price of call options as
market prices)

Error measure Model T= 15 days T=58 days T=164 days
AAE Normal 2.0222 6.3568 17.9917

Meixner 1.8755 6.2045 17.7810
ARPE Normal 0.0277 0.0355 0.0653

Meixner 0.0244 0.0352 0.0647
APE Normal 0.0088 0.0251 0.0597

Meixner 0.0081 0.0245 0.0590

Figure 6.3: S&P500 call option prices under the normal (Black-Scholes) model

Figure 6.4: S&P500 call option prices under the Meixner model
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Table 6.6 shows the error measures for both models when model prices are compared to the
average of the bid and ask prices. The error measures from Table 6.6 are much smaller as
compared to error measures from Table 6.5. This shows that the last traded prices (closing
prices) may not be the best prices to use. This is justified by comparing Figures 6.3, 6.4 and
6.5. Therefore, we adopt the average of the ask and bid prices as the market prices when
checking how the models are performing in relation to the market.

Figure 6.5: Call option prices by using average of bid and ask prices of S&P500 options

(a) Normal model

(b) Meixner model
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6.6.2 Fitting using calibrated parameters

The parameters of the models are obtained from a calibration procedure explained earlier
in this chapter using S&P500 call option prices (the average of the bid and ask price). We
calculate the error measures as before and determine if the calibrated parameters are better
than the parameters obtained from historical prices of the log returns of the S&P500 share
index. Under the normal model we calibrated only one parameter and three parameters
under the Meixner model since the location parameter is adjusted by mean-correcting of the
exponential of a Lévy process.

By using the parameters that are in Table 6.7, the error measures in Table 6.8 are obtained.
We observe significant improvements in fitting both models to the market call options in
comparison with parameters obtained from historical log returns by comparing Table 6.6
and Table 6.8 especially on longer maturities. The Meixner model gives a very good fit as
compared to the normal model. Taking a closer look at the graphical representation of the
model call option prices and the market call option prices in Figure 6.6, we conclude that the
Meixner model gives a better fit than the normal distribution. Comparing Figures 6.5 and
6.6, we deduce that calibrated parameters are more accurate in modeling call option prices
as compared to the parameters estimated using the historical log returns.

Table 6.7: Calibrated parameters under the S&P500 index

Model Estimated parameters Values
Normal σ̂ 0.0094
Meixner â 0.0528

b̂ -2.2758
d̂ 0.0103

Table 6.8: The error measures using parameters calibrated to the average of bid and ask
prices of S&P500 call options

Error measure Model T=15 days T=58 days T=164 days
AAE Normal 2.3030 4.7089 10.3126

Meixner 1.6540 1.5290 6.098
ARPE Normal 0.0597 0.0391 0.0402

Meixner 0.0386 0.0055 0.0191
APE Normal 0.0100 0.0186 0.0342

Meixner 0.0072 0.0060 0.0202
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Figure 6.6: Fitting calibrated model call option prices to S&P500 option prices (average of
bid and ask price)

(a) Normal model

(b) Meixner model

6.7 Fitting the pricing models to South African market
In this section we apply the models to the South African market which is an emerging market
and the options market is not as liquid as the United States market. We use the data for
the warrants for the Sasol Ltd and BHP Billiton PLC companies. In South Africa warrants
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and options have no differences. We apply put-call parity to get the European call option
prices. We also use the data for log returns of the stock for both companies to estimate the
starting parameters of the model for calibration purposes. The initial and optimal parameters
are shown in Table 6.9. The error measures for the Black-Scholes (normal model) and the
Meixner model for both Sasol and Billiton are given in Table 6.10.

Table 6.9: Estimated parameters

Model Estimated parameter Sasol Billiton
Initial Optimal Initial Optimal

Normal σ̂ 0.01631 0.0285 0.01611 0.0303
Meixner â 0.02362 0.0250 0.005557 0.2089

b̂ 0.0003671 -3.012 -0.6399 -0.5434
d̂ 0.9532 0.0137 15.14 0.0407

From Table 6.10 it is evident that both models are inaccurate, even though the Meixner
model is slightly better than the Black-Scholes model. One of the reasons why the models
are not behaving well is that we are calibrating the model using only five European call
warrants for Billiton and six European call warrants for Sasol which is a smaller data set
than the one we used under the S&P500 call options. Small data sets are easy to approximate
the parameters from, but we lose accuracy. These limitations are also emanating from the
fact that the South African option market is illiquid.

Table 6.10: Error measures for Black-Scholes (normal) model and the Meixner model for
South African data

Error measure Sasol Billiton
Normal Meixner Normal Meixner

AAE 389.4540 271.6918 98.0997 80.5710
ARPE 0.0321 0.0206 0.0133 0.0109
APE 0.0332 0.0232 0.0146 0.0120

6.8 Greeks and hedging
In this section we analyse the sensitivity of the call option prices for both models in relation
to the changes in the prices of the S&P500 share index. We also show that the delta and
gamma of an option change as the underlying asset prices and strike prices change.

6.8.1 Call option delta

Tables 6.11 and 6.12 show the call option deltas for the normal and Meixner model respec-
tively for the S&P500 share index and we observe from both tables that if a call option is
deeply in-the-money, we have a higher delta and it reduces as the strike price moves towards
the at-the-money region. This phenomena is also detected in Figure 6.7 which shows that
short-dated call option prices are highly sensitive to changes in the prices of the underlying
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asset than the longer-dated call option prices when the call options are in-the-money and
the reverse is true when the options are out-of-the money. The question of whether there
are significant differences in delta values between the normal and Meixner models cannot be
answered, since there is no sufficient evidence from these results.

Figures 6.8 illustrates how the call option delta changes as the underlying price changes by
fixing the strike price at 2600. From Figure 6.8 we observe that shorter-dated call options
under the Meixner model gives delta values that are initially lower than the normal model
when the option is out-of-the-money but they rise sharply when the call option approaches
at-the-money point.

Table 6.11: Call option delta under the normal model for S&P500 share index using calibrated
parameters

Strike price T=15 days T=58 days T=164 days
2200 1 0.99739 0.96103
2300 0.9998 0.98509 0.91827
2400 0.99849 0.94271 0.85083
2500 0.96751 0.84321 0.75831
2600 0.77876 0.67719 0.64619
2700 0.39411 0.47316 0.52454

Table 6.12: Call option delta under the Meixner model for S&P500 share index using cali-
brated parameters

Strike price T=15 days T=58 days T=164 days
2200 0.99697 0.98513 0.95394
2300 0.99249 0.96872 0.92150
2400 0.98151 0.93658 0.87236
2500 0.95385 0.87596 0.80196
2600 0.87702 0.76606 0.70710
2700 0.50721 0.57637 0.58780
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Figure 6.7: Call option delta as a function of strike prices for S&P500 share index

(a) Normal model

(b) Meixner model
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Figure 6.8: Call option delta as a function of the prices of the S&P500 share index

(a) Normal model

(b) Meixner model

6.8.2 Call option gamma

Figure 6.9 illustrates the call option gamma as a function of the strike prices and we observe
that the Meixner model has gammas that are higher than the normal model for different
strike prices. Figure 6.10 illustrates the call option gamma as a function of the underlying
asset prices by fixing a strike price at 2600. From Figure 6.10 we see that for both models,
short-dated call options have higher gammas when the option is at-the-money, but a lower
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gamma when the option is out-of-the-money and in-the-money as compared to long-dated
call options. We also observe that a Meixner model has higher gammas as compared to
the normal model which signifies that the delta under Meixner model is more sensitive to
underlying price changes than the normal model. This is very important to consider under
delta hedging.

Figure 6.9: Call option gamma as a function of strike prices for S&P500 stock index

(a) Normal model

(b) Meixner model
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Figure 6.10: Call option gamma as a function of the S&P500 share index prices

(a) Normal model

(b) Meixner model

6.8.3 Delta hedging

As pointed out in the last chapter, we cannot have a perfect hedge on the Meixner model
because it is incomplete, but we can hedge the portfolio under the normal model. An option
trader can use delta hedging under the Meixner model by ensuring that the martingale
pricing used is consistent. Under the delta hedging, we want to find a way to protect an
option trader from small changes in the prices of the underlying asset. Under this criteria,
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we want to ensure that the delta of a portfolio is zero (delta neutral), so that whatever the
direction the underlying asset takes, no losses or gains will be realised by the trader. We
create a portfolio at time t that has a call option (Ct) and underlying asset (St). Under this
notion, the value of the portfolio Vt at time t is given by

Vt = Ct + xSt, (6.8.1)

where x denotes the number of units of the underlying assets to be added on a portfolio. We
choose the value of x such that the portfolio in (6.8.1) will be delta neutral [3, p. 130] as
follows:

∂

∂S
Vt =

∂

∂S
Ct + x

∂

∂S
St = 0. (6.8.2)

We solve for x in (6.8.2) and by using (5.3.1) we get

x = − ∆C .

Therefore, if we buy an option then we have to sell ∆C units of an underlying asset. From
the two subsections above we noticed that the call option gamma under the Meixner model
is higher than the normal model which shows that the delta is changing frequently under the
Meixner model, therefore the portfolio manager need to frequently ensure that delta-neutral
is achieved.
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Conclusion

This dissertation focused on option pricing models based on the Meixner process and Brown-
ian motion. These two processes were proved to be Lévy processes that are linked to orthog-
onal polynomials. The Meixner process and Brownian motion are modeled by the Meixner
and normal distribution, respectively. Log returns of stock indices used in the dissertation
had heavy tails and highly peaked distributions as well as negative skewness. This motivated
the fitting of the Meixner distribution to the log returns in order to capture these features
depicted by the log returns data. We also used the normal distribution to fit the log returns
data because of its association with the Black-Scholes model. Lévy processes are useful on
determining the price of financial assets because they incorporate jumps. Both the Meixner
and normal distribution have analytically tractable characteristic functions which made it
easier to apply the Fourier transform methods on option pricing. We compared the efficiency
of the normal (Black-Scholes) and Meixner model by calibrating the prices from the models
to the market prices of options. Efficiency was measured by determining the model with the
lowest error measures.

The goodness of fit procedure taken showed that a Meixner distribution gives a better fit to
the log returns of the stock indices than a normal distribution which is as a result of the fact
that the Meixner distribution adds two more parameters that caters for the skewness and
kurtosis. Black-Scholes model is shown to be complete while the Meixner model is incomplete.
The Black-Scholes model is superior to the Meixner model on this because under a complete
model there exist another self-financing portfolio that can replicate our portfolio of options.
Overally, the Meixner model had very small error measures as compared to the Black-Scholes
model and this convinced us to conclude that a Meixner model is more efficient on pricing
European call options than the Black-Scholes model. After applying the two models to both
the South African (SA) market and the United States (US) market, we discovered that the
models are more efficient on the US market than the SA market. This is because US markets
are more liquid than the SA markets.

The parameters of the two models are estimated from the historical data and calibration.
From this, we observed that a model with calibrated parameters was performing better than a
model with parameters estimated from historical data. This is because we assumed constant
volatility of log returns of the underlying asset when we estimated parameters using historical
data but the calibration procedure incorporated the volatility implied by the market prices
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of options. Both the Meixner and Black-Scholes models were more accurate for smaller
maturities than longer maturities and this is also partially because volatility tend to change
with time. The efficiencies of the two models reduced when the strike prices were moving away
from the spot prices (in-the-money and out-of-the-money) which suggests that both models
were ignoring the volatility smile. This suggests that we cannot rely on the assumption of
constant volatility of log returns of an underlying asset.

One major shortfall was on obtaining the options data for the illiquid South African market.
We used small data sets available for warrants which compromised the accuracy of the param-
eters estimated. From the observations we noticed that our models can be greatly improved
if we can incorporate stochastic volatility of the log returns of the underlying asset (see [32]).
This will improve the accuracy of our models for longer maturities. We also noticed that
if we relax some assumptions outlined on the model building, we are able to improve our
models. For example if we relax the assumption of frictionless market, we can incorporate
trading costs to our models which will improve how our models match the market prices.
Our research was focused on only pricing of European options but this can be further ex-
tended to exotic options (see [23]). The models developed on this research can be extended to
other fields like insurance where we can apply other Lévy processes like Poisson and Gamma
processes (see [35]) to calculate the premiums to be charged on insurance products.
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Additional information

A.1 Probability space and random variables

A.1.1 Probability space

Suppose we define Ω to be a set of possible outcomes of a phenomenon (that is a sample
space) and F to be a class of all the considered events (that is an event space), then F is a
σ-field if the following holds [4, p. 14]:

• Ω ∈ F ,

• for a set A ∈ F we have −A ∈ F ,

• for a sequence of events A1, A2, A3, ... ∈ F we have
∪∞

i=1Ai ∈ F .

If F is a σ-field, the function P : F → R is called a probability measure if the following
holds [4, p. 17]:

• 0 ≤ P (A) ≤ 1 for all A ∈ F ,

• P (Ω) = 1,

• for a sequence of mutually exclusive events (disjoint events) A1, A2, A3, ... ∈ F we have
P (
∪∞

i=1Ai) =
∑∞

i=1 P (Ai).

Since we have a sample space Ω, a σ-field F and a probability measure P , a probability space
is defined by (Ω,F , P ) [1, p. 9-13].

A.1.2 Random variable and probability functions

A random variable X is explicitly defined X : Ω → R, which is a mapping from a sample
space to the real space so that X is F -measurable on probability space (Ω,F , P ) [3, p. 484,
definition B.1].
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We say continuous random variables X1, X2, . . . , Xn with joint probability density function
f(x1, x2, ..., xn) are mutually independent if [9, p. 239]:

f(x1, x2, ..., xn) = f(x1)f(x2)...f(xn)

for any x1, x2, . . . , xn ∈ R.

A.2 Shapiro-Wilk test for normality
We are going to apply the Shapiro-Wilk test on the data for the log returns to determine
whether the data is normally distributed.

H0 : The log returns data is normally distributed.
Ha : The log returns data is not normally distributed.

The hypothesis is tested using the following test statistic [36]:

W =

(∑n
k=1 akx(k)

)2∑n
k=1(xk − x̄)2

,

where:

• {x1, x2, . . . , xn} is a sample of size n,

• x̄ = 1
n

∑n
k=1 xk,

• x(k) denotes the kth order statistic which means the kth smallest observation in the
sample,

• (a1, a2, . . . , an) is a 1 byn matrix, m is an n by 1 matrix of mean values of order statistics
and Σ is an n byn covariance matrix of order statistics such that

(a1, a2, . . . , an) =
mTΣ−1

√
mTΣ−1Σ−1m

.

The null hypothesis is rejected when very small values of W are obtained or alternatively
under a 5% confidence level, we reject the hypothesis of normality if the p-values from the
test are less than 0.05.

A.3 Black-Scholes model
Under the assumption of normality of the underlying asset, we can use the Black-Scholes
model developed by Fischer Black and Myron Scholes. This model is built under the following
assumptions [16, p. 245]:
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• transaction costs and tax are ignored;

• there are no dividends payable on the underlying asset;

• returns from an underlying asset are modeled by a normal distribution;

• short-selling of securities is allowed;

• there are no-arbitrage opportunities;

• the market has a risk-free asset (bank account) and a risky asset (stock).

The risk-free asset is given as [31]

Bt = exp(rt) for 0 ≤ t ≤ T.

The risky asset is given as follows [34]:

St = S0 exp{(µ− σ2

2
)t+ σWt},

where Wt denotes a Brownian motion. Under the risk-neutral setting we use the mean-correcting
martingale measure and get

µrisk-neutral = r − 1

2
σ2.

The risk-neutral stock is then given as follows:

St = S0 exp{(r −
σ2

2
)t+ σWt}.

Since under the pricing of the European vanilla options, the value of the stock depends on
the value of stock at maturity, the value of the options under the Black-Scholes model with
payoff H({Su, 0 ≤ u ≤ T}} is [31, p. 30]

Vt = EQ[exp(−r(T − t))H(ST )]

= exp(−r(T − t))EQ[exp(H(ST )]

= exp(−r(T − t))EQ[H(St exp{(r −
σ2

2
)(T − t) + σ(WT −Wt)})]

= exp(−r(T − t))

ˆ ∞

−∞
H(St exp{(r −

σ2

2
)(T − t) + σy})f(y)dy where y ∼ N(0, T − t).

(A.3.1)

The above expression can be further simplified by specifying the payoffs on a call or put
option to give the following expressions [31, p. 31]:

C = StN(d1)−Ke−r(T−t)N(d2) (A.3.2)
P = Ke−r(T−t)N(−d2)− StN(−d1), (A.3.3)

where d1 =
ln
(
St

K

)
+ (r + σ2

2
)(T − t)

σ
√

(T − t)

d2 = d1 − σ
√
(T − t).
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Given the stock price at time t of the option agreement, maturity time T and strike price K,
we calculate the price of options under the Black-Scholes model. We also take note of the
following from expressions (A.3.2) and (A.3.3) [28]:

• N(d2) denotes the probability of the option being exercised at time of maturity.

• StN(d1)e
r(T−t) denotes the expected value that if the option is in-the-money, a stock

(ST ) is received at maturity.

• If the stock price is very high at maturity, there is a higher chance that a rational
investor will exercise the call option. Both N(d1) and N(d2) will tend to 1 as stock
price turns to infinity and the call option value will be expected to be St −Ke−r(T−t).

• If the stock price is turning to infinity, the European vanilla put option will turn to
zero since both N(−d1) and N(−d2) will turn to zero.

• When the call option is in-the-money, as σ → 0, both d1, d2 → +∞ which forces
N(d1), N(d2) → 1 giving the European vanilla call price of St −Ke−r(T−t).

• When the call option is out-of-the-money, as σ → 0, both d1, d2 → −∞ which implies
that N(d1), N(d2) → 0 giving the European vanilla call price of 0.

• Summarising the above two observations, we note that the price of the European vanilla
call option is given as (St − Ke−r(T−t))+ as σ → 0 and the vice versa under the put
option to give a European vanilla put of (Ke−r(T−t) − St)

+as σ → 0. In other words
the risky asset is now the same as the risk-free asset.

• σ and the price of European vanilla call option are positively related.
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Codes

B.1 SAS codes
The SAS codes in this section are used for normality test and explanatory data analysis.
proc u n i v a r i a t e data=s a s u s e r . j s e _ a l l normal ;
var r e t u r n s ;
run ;
proc u n i v a r i a t e data=s a s u s e r . jse_top40 normal ;
var r e t u r n s ;
run ;
proc u n i v a r i a t e data=s a s u s e r . s a s o l ;
var Returns ;
run ;
proc u n i v a r i a t e data=s a s u s e r . b i l l i t o n ;
var Returns ;
run ;

B.2 R codes
The R codes in this section covers the goodness of fit and change of parameters for the normal
and Meixner distribution.

B.2.1 Effects of change of parameters

B.2.1.1 Change of Meixner distribution parameters

#changing parameters f o r a Meixner d i s t r i b u t i o n
l i b r a r y ( pracma )
Meixner1=f u n c t i o n ( x )
{

a=1
b=0
d=1
m=−0.5

A=(2∗ cos (b/2) ) ^(2∗d)
B=2∗a∗ pi ∗gamma(2∗d)
C=(b∗(x−m) ) /a
D=d+(complex ( 1 , 0 , 1 ) ∗(x−m) ) /a
E=abs (gammaz(D) ) ^2
f =(A/B) ∗exp (C) ∗E
}
Meixner2=f u n c t i o n ( x )
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{
a=1
b=0
d=1
m=0
A=(2∗ cos (b/2) ) ^(2∗d)
B=2∗a∗ pi ∗gamma(2∗d)
C=(b∗(x−m) ) /a
D=d+(complex ( 1 , 0 , 1 ) ∗(x−m) ) /a
E=abs (gammaz(D) ) ^2
f =(A/B) ∗exp (C) ∗E

}
Meixner3=f u n c t i o n ( x )
{

a=1
b=0
d=1
m=0.5
A=(2∗ cos (b/2) ) ^(2∗d)
B=2∗a∗ pi ∗gamma(2∗d)
C=(b∗(x−m) ) /a
D=d+(complex ( 1 , 0 , 1 ) ∗(x−m) ) /a
E=abs (gammaz(D) ) ^2
f =(A/B) ∗exp (C) ∗E

}
p l o t ( Meixner1 , −5 ,5 , type=" l " , c o l ="blue " , lwd=2,
main="Meixner ( 1 , 0 , 1 ,m) pdf ( s o l i d blue (m=−0.5) , dashed red (m=0) and dotdash black (d=0.5) " ,

x lab="x " , ylab=" f ( x ) " )
p l o t ( Meixner2 , −5 ,5 , add=TRUE, type=" l " , c o l ="red " , lwd=2, l t y =2)
p l o t ( Meixner3 , −5 ,5 , add=TRUE, type=" l " , c o l ="black " , lwd=2, l t y =4)

B.2.1.2 Change of normal distribution parameters

#changing parameters f o r a normal d i s t r i b u t i o n
l i b r a r y ( pracma )
Normal1=f u n c t i o n ( x )
{mu=0
sigma=s q r t (1 )
g=(1/( sigma ∗ s q r t (2∗ pi ) ) ) ∗exp ((−1/2) ∗ ( ( x−mu) / sigma ) ^2)
}
Normal2=f u n c t i o n ( x )
{mu=0
sigma=s q r t (2 )
g=(1/( sigma ∗ s q r t (2∗ pi ) ) ) ∗exp ((−1/2) ∗ ( ( x−mu) / sigma ) ^2)
}
Normal3=f u n c t i o n ( x )
{mu=0
sigma=s q r t (3 )
g=(1/( sigma ∗ s q r t (2∗ pi ) ) ) ∗exp ((−1/2) ∗ ( ( x−mu) / sigma ) ^2)
}

p l o t ( Normal1 , −5 ,5 , type=" l " , c o l ="blue " , lwd=2,
main="Normal (0 , s i g 2 ) ( s o l i d blue ( s i g 2 =1) ,
dashed red ( s i g 2 =2) and dotdashed black ( s i g 2 =3) ) " ,
x lab="x " , ylab=" f ( x ) " )

p l o t ( Normal2 , −5 ,5 , type=" l " , c o l ="red " , lwd=2, l t y =2, add=TRUE)
p l o t ( Normal3 , −5 ,5 , type=" l " , c o l ="black " , lwd=2, l t y =4,add=TRUE)

B.2.2 Goodness of fit

B.2.2.1 Histograms and other plots

l i b r a r y ( r eadx l )
SPdata <− read_excel ( "C: / Users / User /Desktop/ Masters / D i s s e r t a t i o n /SPdata . x l s x " )

#attach ing the data
attach ( SPdata )

#p l o t t i n g the data
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p l o t ( SPdata$Date , SPdata$Shares , xlab="Date " , y lab="Share p r i c e " ,
type=" l " , c o l ="blue " , lwd=2)

p l o t ( SPdata$Date , SPdata$Returns , xlab="Date " , y lab=" log r e t u r n s " ,
type=" l " , c o l ="blue " , lwd=2)

#Explanatory data a n a l y s i s

summary( SPdata$Returns )
q u a n t i l e ( Returns , na . rm=TRUE, probs=c ( 0 , 0 . 2 5 , 0 . 5 , 0 . 7 5 , 1 ) )

#p l o t t i n g a boxplot and a histogram

boxplot ( Returns , main="Boxplot f o r the Returns data " ,
ylab="Returns %")

h i s t ( Returns , prob=T, ylim=c (0 ,100) ,
breaks=seq ( from =−0.05 , to =0.05 , by =0.005) ,

main="Histogram f o r Returns data " , x lab=" log r e t u r n s " ,
y lab=" de ns i ty " , c o l =" l i g h t b l u e " , l a s =1)

#OVERLAYING A HISTOGRAM TO NORMAL AND MEIXNER CURVES

# Def in ing a Meixner f u n c t i o n

l i b r a r y ( pracma )
Meixner=f u n c t i o n ( x )
{a =0.01860433981
b=−0.4767049877
d=0.3400430035
m=0.001946986097
A=(2∗ cos (b/2) ) ^(2∗d)
B=2∗a∗ pi ∗gamma(2∗d)
C=(b∗(x−m) ) /a
D=d+(complex ( 1 , 0 , 1 ) ∗(x−m) ) /a
E=abs (gammaz(D) ) ^2
f =(A/B) ∗exp (C) ∗E
}

# Def in ing a normal f u n c t i o n

Normal=f u n c t i o n ( x )
{mu=0.0004098831
sigma=s q r t (0 .00006232218867)
g=(1/( sigma ∗ s q r t (2∗ pi ) ) ) ∗exp ((−1/2) ∗ ( ( x−mu) / sigma ) ^2)
}

#comparing normal vs meixner

p l o t ( Meixner , −0 .04 ,0 .04 , type=" l " , c o l ="blue " , lwd=2,
main="Meixner d i s t r i b u t i o n ( s o l i d ) and

normal d i s t r i b u t i o n ( dashed ) curves " ,
x lab=" log r e t u r n s " , y lab=" dens i t y " )

p l o t ( Normal , −0 .04 ,0 .04 , type=" l " , c o l ="black " , lwd=2, l t y =2,add=TRUE)
p l o t ( Meixner , 0 . 0 2 , 0 . 0 5 , type=" l " , c o l ="blue " , lwd=2,

main="Comparing curves o f Meixner d i s t r i b u t i o n ( s o l i d )
and normal d i s t r i b u t i o n ( dashed ) on the r i g h t t a i l " ,

x lab=" log r e t u r n s " , y lab=" dens i t y " )
p l o t ( Normal , 0 . 0 2 , 0 . 0 5 , type=" l " , c o l ="black " , l t y =2,add=TRUE)

# Overlaying both meixner and normal to the histogram

h i s t ( Returns , prob=TRUE, ylim=c (0 ,100) ,
breaks=seq ( from =−0.05 , to =0.05 , by =0.001) ,
main="Histogram over layed with Meixner d i s t r i b u t i o n ( blue s o l i d )

and normal d i s t r i b u t i o n ( red dashed ) curves " ,
x lab=" log r e t u r n s " , y lab=" de ns i t y " , c o l =" l i g h t b l u e " , l a s =1)

curve ( Normal , add=TRUE, c o l ="red " , type=" l " , l t y =2, lwd=2)
curve ( Meixner , add=TRUE, c o l ="blue " , type=" l " , lwd=2)

B.2.2.2 Quantile-quantile plots
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#Q−Q PLOTS

#f i n d the q−q p l o t s from a Meixner d i s t r i b u t i o n

MeixnerCDF=f u n c t i o n ( x ) {
a =0.01860433981
b=−0.4767049877
d=0.3400430035
m=0.001946986097
A=(2∗ cos (b/2) ) ^(2∗d)
B=2∗a∗ pi ∗gamma(2∗d)
C=(b∗(x−m) ) /a
D=d+(complex ( 1 , 0 , 1 ) ∗(x−m) ) /a
E=abs (gammaz(D) ) ^2
f =(A/B) ∗exp (C) ∗E
i n t e g r a t e ( f=d i s t , lower =−0.05 , upper=x )

}

n=1000
i =1:n
x=seq ( from =−0.05 , to =0.05 , by=(1/n) )
q=(i −0.5) /n
Mcdf=f u n c t i o n ( x ) {

i n t e g r a t e ( Meixner , −0.05 , x ) $value
}
INVcdf=f u n c t i o n ( q ) {

un i root ( f u n c t i o n ( x ) {Mcdf ( x )−q } , range ( x ) ) $root
}

#us ing a do loop

Theoret ica lQ=0
f o r ( i in 1 : n ) { Theoret ica lQ [ i ]=INVcdf ( q [ i ] ) }
ImpericalQ=q u a n t i l e ( SPdata$Returns , na . rm=TRUE,

seq (((1 −0 .5) /n) , ( ( n−0.5) /n) , (1/ n) ) )
p l o t ( Theoret icalQ , ImpericalQ ,
main="Q−Q p l o t s under Meixner d i s t r i b u t i o n " ,
xlab="Meixner q u a n t i l e s " ,
y lab=" Quant i l e s f o r r e t u r n s data " , c o l ="blue " , a b l i n e ( 0 , 1 ) )

#f i n d the q−q p l o t s from a Normal d i s t r i b u t i o n

NormalCDF=f u n c t i o n ( x )
{mu=0.0004098831
sigma=s q r t (0 .00006232218867)
g=(1/( sigma ∗ s q r t (2∗ pi ) ) ) ∗exp ((−1/2) ∗ ( ( x−mu) / sigma ) ^2)
i n t e g r a t e ( g=d i s t , lower =−0.05 , upper=x ) $value
}
n=1000
j =1:n
x=seq ( from =−0.05 , to =0.05 , by=(1/n) )
p=(j −0.5) /n
Ncdf=f u n c t i o n ( x ) { i n t e g r a t e ( Normal , −0.05 , x ) $value

}
N_INVcdf=f u n c t i o n (p) {

un i root ( f u n c t i o n ( x ) {Ncdf ( x )−p} , range ( x ) ) $root
}
NormalQ=0
f o r ( j in 1 : n ) {NormalQ [ j ]=N_INVcdf(p [ j ] ) }
ImpQ=q u a n t i l e ( SPdata$Returns , na . rm=TRUE,

seq (((1 −0 .5) /n) , ( ( n−0.5) /n) , (1/ n) ) )
p l o t (NormalQ , ImpQ, main="Q−Q p l o t s under normal d i s t r i b u t i o n " ,

xlab="normal q u a n t i l e s " ,
y lab=" Quant i l e s f o r r e t u r n s data " , c o l ="blue " , a b l i n e ( 0 , 1 ) )
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B.3 MATLAB codes
The Matlab codes in this section are for the pricing of European call options, calibration and
hedging.

B.3.1 Calibration codes

B.3.1.1 Normal model

%CALIBRATION

f u n c t i o n r e s i d u a l=Normalmodel1 ( x )
vo l=x (1) ;
% dumping f a c t o r
alpha = 2 ;
% value o f the under ly ing
S0 = 2 6 6 9 . 1 ;
%v o l a t i l i t y
%s i g=s q r t (0 .00006232) ;
%d a i l y r i s k f r e e r a t e
r =(1+0.0181) . ^ ( 1/2 52 ) −1;
% Time vec to r
T= [ 1 5 ; 5 8 ; 1 6 4 ] ;
%Market p r i c e s
%c l o s i n g p r i c e s
%PM=[494 505 .15 534 ; 450 .80 471 490 ; 368 .30 379 4 1 2 . 8 5 ; 335 .05 330 3 7 6 ; . . .

%265.15 287 .9 350 ; 220 .86 241 .38 2 9 8 . 8 3 ; 158 .35 171 .5 245 ;114 142 .03 2 2 7 ; . . .
%82.91 121 .2 1 7 7 . 2 5 ; 46 84 .31 145 ; 18 54 .2 1 1 5 . 5 5 ] ;

%average o f bid and ask p r i c e
PM=[472.05 480 .95 5 1 8 . 9 5 ; 422 .5 433 .35 474 .95 ; 372 379 4 1 2 . 0 2 5 ; 3 2 2 . 3 5 330 3 7 0 . 0 5 ; . . .

272 .75 289 .75 3 4 1 . 5 5 ; 2 2 3 . 7 5 244 .55 2 9 2 . 2 1 5 ; 175 .75 202 .5 247 ; 129 .15 160 .65 2 2 1 . 9 5 ; . . .
83 .8 120 .5 1 7 6 . 8 7 5 ; 4 5 . 7 5 85 .1 1 4 4 . 2 5 ; 1 7 . 8 5 55 .15 1 1 4 . 3 7 5 ] ;

PMvector=reshape (PM, [ ] , 1 ) ;
%s t r i k e p r i c e vec to r
K=2200 :50 :2700 ;
Kmat=repmat (K, 1 , 3 ) ;
K1=reshape (Kmat , [ ] , 1 ) ;
%
N = length (T) ;
M = length (K) ;
PMaverage=(1/M) ∗sum(PM) ;
%p r i c i n g f u n c t i o n
f o r j = 1 :N

f o r i = 1 :M
F=@( x ) CharNormal (x , alpha , S0 ,T( j ) ,K( i ) , vol , r ) ;
CV( i , j )=(exp(−alpha ∗ l og (K( i ) ) ) / p i ) ∗ i n t e g r a l (F, 0 , In f , ’ RelTol ’ , 1 e −8 , ’AbsTol ’ , 1 e−13) ;
R( i , j )=abs (PM( i , j )−CV( i , j ) ) ;

end
end
CV;
Rcomb=reshape (R, [ ] , 1 ) ;
r e s i d u a l =(1/M) ∗sum(Rcomb) ;
end

%c h a r a c t e r i s t i c f u n c t i o n o f the normal d i s t r i b u t i o n
f u n c t i o n c fn1=CharNormal (u , alpha , S0 ,T,K, s ig , r )
v=u−(alpha +1)∗1 i ;
phiT=exp (1 i ∗v∗ l og ( S0 )+1 i ∗v∗ r ∗T−0.5∗ s i g .^2∗T∗(1 i ∗v+v . ^ 2 ) ) ;
c fn= phiT∗exp(−r . ∗T) . / ( alpha^2+alpha−u.^2+1 i ∗(2∗ alpha +1)∗u) ;
c fn1=r e a l ( exp(−1 i ∗u∗ l og (K) ) . ∗ c fn ) ;
end

%%IN THE COMMAND WINDOW, PUT INITIAL VALUE AND INVOKE THE fminsearch ( ) FUNCTION
>x=0;
>f=fminsearch ( @Normalmodel1 , x )
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B.3.1.2 Meixner model

%CALIBRATION

f u n c t i o n r e s i d u a l=Meixnermodel1 ( x )
a=x (1) ;
b=x (2) ;
d=x (3) ;
% Dumping f a c t o r
alpha = 2 ;
% value o f the under ly ing
S0 = 2 6 6 9 . 1 ;
% Dai ly r i s k f r e e r a t e
r =((1+0.0181) .^ (1/ 25 2) ) −1;
% Meixner parameters f o r d a i l y l og r e t u r n s data
%param =[0 .01860433981 ; −0 .4767049877 ;0 .3400430035 ] ;
%Time vec to r
T= [ 1 5 ; 5 8 ; 1 6 4 ] ;
% Market data
% c l o s i n g p r i c e
%PM=[494 505 .15 534 ; 450 .80 471 490 ; 368 .30 379 4 1 2 . 8 5 ; 335 .05 330 3 7 6 ; . . .

% 265.15 287 .9 350 ; 220 .86 241 .38 2 9 8 . 8 3 ; 158 .35 171 .5 245 ;114 142 .03 2 2 7 ; . . .
%82.91 121 .2 1 7 7 . 2 5 ; 46 84 .31 145 ; 18 54 .2 1 1 5 . 5 5 ] ;

%average o f bid and ask
PM=[472.05 480 .95 5 1 8 . 9 5 ; 422 .5 433 .35 474 .95 ; 372 379 4 1 2 . 0 2 5 ; 3 2 2 . 3 5 330 3 7 0 . 0 5 ; . . .

272 .75 289 .75 3 4 1 . 5 5 ; 2 2 3 . 7 5 244 .55 2 9 2 . 2 1 5 ; 175 .75 202 .5 247 ; 129 .15 160 .65 2 2 1 . 9 5 ; . . .
83 .8 120 .5 1 7 6 . 8 7 5 ; 4 5 . 7 5 85 .1 1 4 4 . 2 5 ; 1 7 . 8 5 55 .15 1 1 4 . 3 7 5 ] ;

PMvector=reshape (PM, [ ] , 1 ) ;
%S t r i k e p r i c e vec to r
K=2200 :50 :2700 ;
Kmat=repmat (K, 1 , 3 ) ;
K1=reshape (Kmat , [ ] , 1 ) ;

N = length (T) ;
M = length (K) ;
PMaverage=(1/M) ∗sum(PM) ;

%f u n c t i o n f o r the c a l l opt ion p r i c i n g
f o r j = 1 :N

f o r i = 1 :M
F=@( x ) CharMeixner (x , alpha , S0 ,T( j ) ,K( i ) , a , b , d , r ) ;
CV( i , j )=(exp(−alpha ∗ l og (K( i ) ) ) / p i ) ∗ i n t e g r a l (F, 0 , In f , ’ RelTol ’ , 1 e −8 , ’AbsTol ’ , 1 e−13) ;
%R( i , j )=(PM( i , j )−CV( i , j ) ) . ^ 2 ;
R( i , j )=abs (PM( i , j )−CV( i , j ) ) ;

end
end
CV;
CV1=reshape (CV, [ ] , 1 ) ;
Rcomb=reshape (R, [ ] , 1 ) ;
r e s i d u a l =(1/M) ∗sum(Rcomb) ;
end
%f u n c t i o n f o r the c h a r a c t e r i s t i c f u n c t i o n o f a meixner d i s t r i b u t i o n
f u n c t i o n c f 1=CharMeixner (u , alpha , S0 ,T,K, a , b , d , r )
v=u−(alpha +1)∗1 i ;
m=r−2∗d . ∗ l og ( cos (b/2) / cos ( ( a+b) /2) ) ;
phiX=(( cos (b/2) . / cos ( ( a∗v∗1 i+b) /2) ) . ^ ( 2 ∗ d . ∗T) ) ;
phiT=phiX . ∗ exp (1 i ∗v ∗( l og ( S0 )+m. ∗T) ) ;
c f= phiT∗exp(−r . ∗T) . / ( alpha^2+alpha−u.^2+1 i ∗(2∗ alpha +1)∗u) ;
c f 1=r e a l ( exp(−1 i ∗u∗ l og (K) ) . ∗ c f ) ;
end
%% IN THE COMMAND WINDOW INITIALISE AND INVOKE THE FUNCTION fminsearch ( )
>x =[0 .0186 , −0 .4767 ,0 . 34 ] ;
>f=fminsearch ( @Meixnermodel1 , x )

B.3.2 Pricing using Fourier transform and distance measures

B.3.2.1 Normal model

% Four ie r Transform f o r the Normal model
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f u n c t i o n DirectFourierTransformNormal

% dumping f a c t o r
alpha = 2 ;

% value o f the under ly ing
S0 = 2 6 6 9 . 1 ;

%v o l a t i l i t y
s i g=s q r t (0 .00006232) ;

%d a i l y r i s k f r e e r a t e
r =(1+0.0181) . ^ ( 1/2 52 ) −1;

% Time vec to r
T= [ 1 5 ; 5 8 ; 1 6 4 ] ;

%Market p r i c e s

%c l o s i n g p r i c e s
%PM=[494 505 .15 534 ; 450 .80 471 490 ; 368 .30 379 4 1 2 . 8 5 ; 335 .05 330 3 7 6 ; . . .

%265.15 287 .9 350 ; 220 .86 241 .38 2 9 8 . 8 3 ; 158 .35 171 .5 245 ;114 142 .03 2 2 7 ; . . .
%82.91 121 .2 1 7 7 . 2 5 ; 46 84 .31 145 ; 18 54 .2 1 1 5 . 5 5 ] ;

%average o f bid and ask p r i c e
PM=[472.05 480 .95 5 1 8 . 9 5 ; 422 .5 433 .35 474 .95 ; 372 379 4 1 2 . 0 2 5 ; 3 2 2 . 3 5 330 3 7 0 . 0 5 ; . . .

272 .75 289 .75 3 4 1 . 5 5 ; 2 2 3 . 7 5 244 .55 2 9 2 . 2 1 5 ; 175 .75 202 .5 247 ; 129 .15 160 .65 2 2 1 . 9 5 ; . . .
83 .8 120 .5 1 7 6 . 8 7 5 ; 4 5 . 7 5 85 .1 1 4 4 . 2 5 ; 1 7 . 8 5 55 .15 1 1 4 . 3 7 5 ] ;

PMvector=reshape (PM, [ ] , 1 ) ;

%s t r i k e p r i c e vec to r
K=2200 :50 :2700 ;
Kmat=repmat (K, 1 , 3 ) ;
K1=reshape (Kmat , [ ] , 1 ) ;
%
N = length (T) ;
M = length (K) ;
PMaverage=(1/M) ∗sum(PM) ;

%p r i c i n g f u n c t i o n
f o r j = 1 :N

f o r i = 1 :M
F=@( x ) CharNormal (x , alpha , S0 ,T( j ) ,K( i ) , s i g , r ) ;
CV( i , j )=(exp(−alpha ∗ l og (K( i ) ) ) / p i ) ∗ i n t e g r a l (F, 0 , In f , ’ RelTol ’ , 1 e −8 , ’AbsTol ’ , 1 e−13) ;
R( i , j )=abs (PM( i , j )−CV( i , j ) ) ;
R2( i , j )=abs (PM( i , j )−CV( i , j ) ) /PM( i , j ) ;
R3( i , j )=abs (PM( i , j )−CV( i , j ) ) /PMaverage (1 , j ) ;

end
end
CV
CV1=reshape (CV, [ ] , 1 )
AAE=(1/M) ∗sum(R)
ARPE=(1/M) ∗sum(R2)
APE=(1/M) ∗sum(R3)
%p l o t (K,CV) , x l a b e l ( ’ S t r i k e pr i c e ’ ) , y l a b e l ( ’ Ca l l p r i c e ’ ) , . . .

%t i t l e ( ’ Normal opt ion p r i c i n g model ’ ) , . . .
%legend ( ’T=15 days ’ , ’T=58 days ’ , ’T=164 days ’ , ’ market p r i c e s ’ ) , g r i d on

s c a t t e r (K1,CV1, ’+ ’ ) ,
hold on
s c a t t e r (K1, PMvector ) , l egend ( ’ model p r i c e s ’ , ’ market p r i c e s ’ ) , x l a b e l ( ’ S t r i k e pr i ce ’ ) , . . .

y l a b e l ( ’ Ca l l p r i c e ’ ) , t i t l e ( ’ Normal ( Black−Scho l e s ) c a l l opt ion p r i c i n g model ’ )
hold o f f
end

%c h a r a c t e r i s t i c f u n c t i o n o f the normal d i s t r i b u t i o n
f u n c t i o n c fn1=CharNormal (u , alpha , S0 ,T,K, s ig , r )
v=u−(alpha +1)∗1 i ;
phiT=exp (1 i ∗v∗ l og ( S0 )+1 i ∗v∗ r ∗T−0.5∗ s i g .^2∗T∗(1 i ∗v+v . ^ 2 ) ) ;
c fn= phiT∗exp(−r . ∗T) . / ( alpha^2+alpha−u.^2+1 i ∗(2∗ alpha +1)∗u) ;
c fn1=r e a l ( exp(−1 i ∗u∗ l og (K) ) . ∗ c fn ) ;
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end

B.3.2.2 Meixner model

% Four ie r Tranform f o r the Meixner model

f u n c t i o n DirectFourierTransformMeixner

% Dumping f a c t o r
alpha = 2 ;

% value o f the under ly ing
S0 = 2 6 6 9 . 1 ;

% Dai ly r i s k f r e e r a t e
r =((1+0.0181) .^ (1/ 25 2) ) −1;

% Meixner parameters f o r d a i l y l og r e t u r n s data ( from the c a l i b r a t i o n )
param =[0 .01860433981 ; −0 .4767049877 ;0 .3400430035 ] ;

%Time vec to r
T= [ 1 5 ; 5 8 ; 1 6 4 ] ;

% Market data

% c l o s i n g p r i c e
%PM=[494 505 .15 534 ; 450 .80 471 490 ; 368 .30 379 4 1 2 . 8 5 ; 335 .05 330 3 7 6 ; . . .

% 265.15 287 .9 350 ; 220 .86 241 .38 2 9 8 . 8 3 ; 158 .35 171 .5 245 ;114 142 .03 2 2 7 ; . . .
%82.91 121 .2 1 7 7 . 2 5 ; 46 84 .31 145 ; 18 54 .2 1 1 5 . 5 5 ] ;

%average o f bid and ask
PM=[472.05 480 .95 5 1 8 . 9 5 ; 422 .5 433 .35 474 .95 ; 372 379 4 1 2 . 0 2 5 ; 3 2 2 . 3 5 330 3 7 0 . 0 5 ; . . .

272 .75 289 .75 3 4 1 . 5 5 ; 2 2 3 . 7 5 244 .55 2 9 2 . 2 1 5 ; 175 .75 202 .5 247 ; 129 .15 160 .65 2 2 1 . 9 5 ; . . .
83 .8 120 .5 1 7 6 . 8 7 5 ; 4 5 . 7 5 85 .1 1 4 4 . 2 5 ; 1 7 . 8 5 55 .15 1 1 4 . 3 7 5 ] ;

PMvector=reshape (PM, [ ] , 1 ) ;

%S t r i k e p r i c e vec to r
K=2200 :50 :2700 ;
Kmat=repmat (K, 1 , 3 ) ;
K1=reshape (Kmat , [ ] , 1 ) ;

N = length (T) ;
M = length (K) ;
PMaverage=(1/M) ∗sum(PM) ;

%f u n c t i o n f o r the c a l l opt ion p r i c i n g
f o r j = 1 :N

f o r i = 1 :M
F=@( x ) CharMeixner (x , alpha , S0 ,T( j ) ,K( i ) , param ( 1 , 1 ) , param ( 2 , 1 ) , param ( 3 , 1 ) , r ) ;
CV( i , j )=(exp(−alpha ∗ l og (K( i ) ) ) / p i ) ∗ i n t e g r a l (F, 0 , In f , ’ RelTol ’ , 1 e −8 , ’AbsTol ’ , 1 e−13) ;
R( i , j )=abs (PM( i , j )−CV( i , j ) ) ;
R2( i , j )=abs (PM( i , j )−CV( i , j ) ) /PM( i , j ) ;
R3( i , j )=abs (PM( i , j )−CV( i , j ) ) /PMaverage (1 , j ) ;

end
end
CV
CV1=reshape (CV, [ ] , 1 ) ;
AAE=(1/M) ∗sum(R)
ARPE=(1/M) ∗sum(R2)
APE=(1/M) ∗sum(R3)
%p l o t (K,CV) , x l a b e l ( ’ S t r i k e pr i c e ’ ) , y l a b e l ( ’ Ca l l p r i c e ’ ) , . . .

%t i t l e ( ’ Meixner opt ion p r i c i n g model ’ ) , . . .
%legend ( ’T=15 days ’ , ’T=58 days ’ , ’T=164 days ’ , ’ market p r i c e s ’ ) , g r i d on

s c a t t e r (K1,CV1, ’+ ’ ) ,
hold on
s c a t t e r (K1, PMvector ) , l egend ( ’ model p r i c e s ’ , ’ market p r i c e s ’ ) , x l a b e l ( ’ S t r i k e pr i ce ’ ) , . . .

y l a b e l ( ’ Ca l l p r i c e ’ ) , t i t l e ( ’ Meixner c a l l opt ion p r i c i n g model ’ )
hold o f f
end



APPENDIX B. CODES 89

%f u n c t i o n f o r the c h a r a c t e r i s t i c f u n c t i o n o f a meixner d i s t r i b u t i o n

f u n c t i o n c f 1=CharMeixner (u , alpha , S0 ,T,K, a , b , d , r )
v=u−(alpha +1)∗1 i ;
m=r−2∗d . ∗ l og ( cos (b/2) / cos ( ( a+b) /2) ) ;
phiX=(( cos (b/2) . / cos ( ( a∗v∗1 i+b) /2) ) . ^ ( 2 ∗ d . ∗T) ) ;
phiT=phiX . ∗ exp (1 i ∗v ∗( l og ( S0 )+m. ∗T) ) ;
c f= phiT∗exp(−r . ∗T) . / ( alpha^2+alpha−u.^2+1 i ∗(2∗ alpha +1)∗u) ;
c f 1=r e a l ( exp(−1 i ∗u∗ l og (K) ) . ∗ c f ) ;
end

B.3.3 Fast Fourier Transform

B.3.3.1 Normal model

f u n c t i o n CV=NormalPricing ( S0 ,T,K, s ig , r )
alpha =1;
N=4096;
c =600;
de l tav=c/N;
b_new=pi / de l tav ;
de l tak =(2∗b_new) /N;
u =[0 :N−1]∗ de l tav ;
p o s i t i o n =(( l og (K)+b_new) / de l tak ) +1;
v=u−(alpha +1)∗ i ;
m=r −0.5∗ s i g ^2 ;
phiT=exp ( i ∗v ∗( l og ( S0 )+m∗T) −0.5∗ s i g ^2∗T∗v . ^ 2 ) ;
Cstar= phiT∗exp(−r ∗T) . / ( alpha^2+alpha−u.^2+ i ∗(2∗ alpha +1)∗u) ;
Simp=(1/3) ∗(3+(−1) . ^ [ 1 :N] − [1 , z e r o s (1 ,N−1) ] ) ;
A=exp ( i ∗b_new∗u) . ∗ Cstar ∗ de l tav . ∗ Simp ;
payo f f=r e a l ( f f t (A) ) ;
CV_k=(exp(− l og (K) ∗ alpha ) ) ’∗ payo f f / p i ;
format shor t
CV=CV_k( round ( p o s i t i o n ) ) ;
end

B.3.3.2 Meixner model

f u n c t i o n CV=MeixnerPr ic ing ( S0 ,T,K, a , b , d , r )
alpha =5;
N=4096;
c =600;
de l tav=c/N;
b_new=pi / de l tav ;
de l tak =(2∗b_new) /N;
u =[0 :N−1]∗ de l tav ;
p o s i t i o n =(( l og (K)+b_new) / de l tak ) +1;
v=u−(alpha +1)∗ i ;
m=r−2∗d∗ l og ( cos (b/2) / cos ( ( a+b) /2) ) ;
phiX=(( cos (b/2) . / cos ( ( a∗v∗ i+b) /2) ) . ^ ( 2 ∗ d . ∗T) ) ;
phiT=phiX . ∗ exp ( i ∗v ∗( l og ( S0 )+m. ∗T) ) ;
Cstar= phiT∗exp(−r . ∗T) . / ( alpha^2+alpha−u.^2+ i ∗(2∗ alpha +1)∗u) ;
Simp=(1/3) ∗(3+(−1) . ^ [ 1 :N] − [1 , z e r o s (1 ,N−1) ] ) ;
A=exp ( i ∗b_new∗u) . ∗ Cstar ∗ de l tav . ∗ Simp ;
payo f f=r e a l ( f f t (A) ) ;
CV_k=(exp(− l og (K) ∗ alpha ) ) ’∗ payo f f / p i ;
format shor t
CV=CV_k( round ( p o s i t i o n ) ) ;
end

B.3.4 Greeks: Delta

B.3.4.1 Normal model

%Normal d e l t a as a f u n c t i o n o f S0
f u n c t i o n NormDeltaChangeS
% dumping f a c t o r
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alpha = 2 ;
% value o f the under ly ing
S0 = 2 0 0 0 : 1 0 0 : 3 0 0 0 ;
%v o l a t i l i t y
%s i g=s q r t (0 .00006232) ;
s i g =0.0094;

%d a i l y r i s k f r e e r a t e
r =(1+0.0181) . ^ ( 1/2 52 ) −1;
% Time vec to r
T= [ 1 5 ; 5 8 ; 1 6 4 ] ;
K=2600;
Kmat=repmat (K, 1 , 3 ) ;
K1=reshape (Kmat , [ ] , 1 ) ;
%
N = length (T) ;
M = length (K) ;
H=length ( S0 ) ;

%p r i c i n g f u n c t i o n
f o r j = 1 :N

f o r i = 1 :H
F=@( x ) CharNormalDel (x , alpha , S0 ( i ) ,T( j ) ,K, s ig , r ) ;
Delta ( i , j )=(exp(−alpha ∗ l og (K) ) . / ( p i . ∗ S0 ( i ) ) ) ∗ i n t e g r a l (F, 0 , In f , ’ RelTol ’ , 1 e −8 , ’AbsTol

’ , 1 e−13) ;

end
end
Delta
p l o t ( S0 , Delta ) , l egend ( ’T=15 days ’ , ’T=58 days ’ , ’T=164 days ’ ) , x l a b e l ( ’ S0 ’ ) , y l a b e l ( ’ Delta ’ )
end
%c h a r a c t e r i s t i c f u n c t i o n o f the normal d i s t r i b u t i o n
f u n c t i o n c fn1=CharNormalDel (u , alpha , S0 ,T,K, s ig , r )
v=u−(alpha +1)∗1 i ;
phiT=exp (1 i ∗v∗ l og ( S0 )+1 i ∗v∗ r ∗T−0.5∗ s i g .^2∗T∗(1 i ∗v+v . ^ 2 ) ) ;
c fn= phiT∗exp(−r . ∗T) . ∗ ( 1 i ∗v ) . / ( alpha^2+alpha−u.^2+1 i ∗(2∗ alpha +1)∗u) ;
c fn1=r e a l ( exp(−1 i ∗u∗ l og (K) ) . ∗ c fn ) ;
end

B.3.4.2 Meixner model

%Delta as a f u n c t i o n o f S0
f u n c t i o n MeixnerDeltaChangeS
% Dumping f a c t o r
alpha = 2 ;
% value o f the under ly ing
S0 =2000 :10 :3000 ;
% Dai ly r i s k f r e e r a t e
r =((1+0.0181) .^ (1/ 25 2) ) −1;
% Meixner parameters f o r d a i l y l og r e t u r n s data
param = [ 0 . 0 5 2 8 ; −2 . 2 7 5 8 ; 0 . 0 1 0 3 ] ;
%Time vec to r
T= [ 1 5 ; 5 8 ; 1 6 4 ] ;

%S t r i k e p r i c e vec to r
K=2600;
Kmat=repmat (K, 1 , 3 ) ;
K1=reshape (Kmat , [ ] , 1 ) ;

N = length (T) ;
M = length (K) ;
H=length ( S0 ) ;

%f u n c t i o n f o r the c a l l opt ion p r i c i n g
f o r j = 1 :N

f o r k=1:H
F=@( x ) CharMeixnerDel (x , alpha , S0 ( k ) ,T( j ) ,K, param ( 1 , 1 ) , param ( 2 , 1 ) , param ( 3 , 1 ) , r ) ;
Delta (k , j )=(exp(−alpha ∗ l og (K) ) /( p i ∗S0 ( k ) ) ) ∗ i n t e g r a l (F, 0 , In f , ’ RelTol ’ , 1 e −8 , ’AbsTol ’ , 1

e−13) ;
end

end
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Delta
p l o t ( S0 , Delta ) , l egend ( ’T=15 days ’ , ’T=58 days ’ , ’T=164 days ’ ) , x l a b e l ( ’ S0 ’ ) , y l a b e l ( ’ Delta ’ )
end
%f u n c t i o n f o r the c h a r a c t e r i s t i c f u n c t i o n o f a meixner d i s t r i b u t i o n
f u n c t i o n c f 1=CharMeixnerDel (u , alpha , S0 ,T,K, a , b , d , r )
v=u−(alpha +1)∗1 i ;
m=r−2∗d . ∗ l og ( cos (b/2) / cos ( ( a+b) /2) ) ;
phiX=(( cos (b/2) . / cos ( ( a∗v∗1 i+b) /2) ) . ^ ( 2 ∗ d . ∗T) ) ;
phiT=phiX . ∗ exp (1 i ∗v ∗( l og ( S0 )+m. ∗T) ) ;
c f= phiT∗exp(−r . ∗T) . ∗ ( 1 i ∗v ) . / ( alpha^2+alpha−u.^2+1 i ∗(2∗ alpha +1)∗u) ;
c f 1=r e a l ( exp(−1 i ∗u∗ l og (K) ) . ∗ c f ) ;
end

B.3.5 Greeks: Gamma

B.3.5.1 Normal model

%normal gamma as a f u n c t i o n o f S0
f u n c t i o n NormGammaChangeS
% dumping f a c t o r
alpha = 2 ;
% value o f the under ly ing
S0 = 2 0 0 0 : 1 0 : 3 0 0 0 ;
%v o l a t i l i t y
%s i g=s q r t (0 .00006232) ;
s i g =0.0094;

%d a i l y r i s k f r e e r a t e
r =(1+0.0181) . ^ ( 1/2 52 ) −1;
% Time vec to r
T= [ 1 5 ; 5 8 ; 1 6 4 ] ;
K=2600;
Kmat=repmat (K, 1 , 3 ) ;
K1=reshape (Kmat , [ ] , 1 ) ;
%
N = length (T) ;
M = length (K) ;
H=length ( S0 ) ;

%p r i c i n g f u n c t i o n
f o r j = 1 :N

f o r i = 1 :H
F=@( x )CharNormalGamma(x , alpha , S0 ( i ) ,T( j ) ,K, s ig , r ) ;
Gamma( i , j )=(−exp(−alpha ∗ l og (K) ) . / ( p i . ∗ S0 ( i ) . ^ 2 ) ) ∗ i n t e g r a l (F, 0 , In f , ’ RelTol ’ , 1 e −8 , ’

AbsTol ’ , 1 e−13) ;

end
end
Gamma;
p l o t ( S0 ,Gamma) , l egend ( ’T=15 days ’ , ’T=58 days ’ , ’T=164 days ’ ) , x l a b e l ( ’ S0 ’ ) , y l a b e l ( ’Gamma’ )
end
%c h a r a c t e r i s t i c f u n c t i o n o f the normal d i s t r i b u t i o n
f u n c t i o n c fn1=CharNormalGamma(u , alpha , S0 ,T,K, s ig , r )
v=u−(alpha +1)∗1 i ;
phiT=exp (1 i ∗v∗ l og ( S0 )+1 i ∗v∗ r ∗T−0.5∗ s i g .^2∗T∗(1 i ∗v+v . ^ 2 ) ) ;
c fn= phiT∗exp(−r . ∗T) . ∗ ( 1 i ∗v+v . ^ 2 ) . / ( alpha^2+alpha−u.^2+1 i ∗(2∗ alpha +1)∗u) ;
c fn1=r e a l ( exp(−1 i ∗u∗ l og (K) ) . ∗ c fn ) ;
end

B.3.5.2 Meixner model

%Meixner gamma as a f u n c t i o n o f S0
f u n c t i o n MeixnerGammaChangeS
% Dumping f a c t o r
alpha = 2 ;
% value o f the under ly ing
S0 = 2 0 0 0 : 1 0 : 3 0 0 0 ;
% Dai ly r i s k f r e e r a t e
r =((1+0.0181) .^ (1/ 25 2) ) −1;
% Meixner parameters f o r d a i l y l og r e t u r n s data
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param = [ 0 . 0 5 2 8 ; −2 . 2 7 5 8 ; 0 . 0 1 0 3 ] ;
%Time vec to r
T= [ 1 5 ; 5 8 ; 1 6 4 ] ;

%S t r i k e p r i c e vec to r
K=2600;
Kmat=repmat (K, 1 , 3 ) ;
K1=reshape (Kmat , [ ] , 1 ) ;

N = length (T) ;
M = length (K) ;
H=length ( S0 )

%f u n c t i o n f o r the c a l l opt ion p r i c i n g
f o r j = 1 :N

f o r i = 1 :H
F=@( x )CharMeixnerGamma(x , alpha , S0 ( i ) ,T( j ) ,K, param ( 1 , 1 ) , param ( 2 , 1 ) , param ( 3 , 1 ) , r ) ;
Gamma( i , j )=(−exp(−alpha ∗ l og (K) ) /( p i . ∗ S0 ( i ) . ^ 2 ) ) ∗ i n t e g r a l (F, 0 , In f , ’ RelTol ’ , 1 e −8 , ’

AbsTol ’ , 1 e−13) ;
end

end
Gamma;
p l o t ( S0 ,Gamma) , l egend ( ’T=15 days ’ , ’T=58 days ’ , ’T=164 days ’ ) , x l a b e l ( ’ S0 ’ ) , y l a b e l ( ’Gamma’ )
end
%f u n c t i o n f o r the c h a r a c t e r i s t i c f u n c t i o n o f a meixner d i s t r i b u t i o n
f u n c t i o n c f 1=CharMeixnerGamma(u , alpha , S0 ,T,K, a , b , d , r )
v=u−(alpha +1)∗1 i ;
m=r−2∗d . ∗ l og ( cos (b/2) / cos ( ( a+b) /2) ) ;
phiX=(( cos (b/2) . / cos ( ( a∗v∗1 i+b) /2) ) . ^ ( 2 ∗ d . ∗T) ) ;
phiT=phiX . ∗ exp (1 i ∗v ∗( l og ( S0 )+m. ∗T) ) ;
c f= phiT∗exp(−r . ∗T) . ∗ ( ( 1 i ∗v )+v . ^ 2 ) . / ( alpha^2+alpha−u.^2+1 i ∗(2∗ alpha +1)∗u) ;
c f 1=r e a l ( exp(−1 i ∗u∗ l og (K) ) . ∗ c f ) ;
end
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