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Abstract

In high dimensional problem spaces, particle swarm optimization (PSO) is prone 

to unwanted roaming behaviour due to initial velocity explosion. A particle swarm’s 

movement patterns are strongly influenced by the inertia weight and acceleration 

coefficients. This paper investigates whether the initial velocity explosion can be 

curbed by appropriate choice of the inertia weight and the acceleration coefficients, 

which restrict the standard deviation of particle positions. It is shown that roaming 

behaviour cannot be solved by reducing swarm variance directly, but that the 

relationship between the parameters must also be considered. Furthermore, the paper 

investigates different movement patterns that may be exhibited by the swarm. It is 

shown that optimal parameter configurations differ between low and high 

dimensional problems. Specifically, parameter configurations which produce very 

smooth particle trajectories and restrict the swarm’s movement range are 

advantageous in high dimensional spaces. These movement patterns correspond to 

high inertia weight and low acceleration coefficients (eg. w = 0.9694, c1 = c2 = 

0.099381). Swarms with smooth particle trajectories exhibited significantly less 

unwanted roaming behaviour than swarms with chaotic or oscillating particle 

trajectories. 
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1. Introduction

Particle swarm optimization (PSO) has been shown to suffer from the “curse

of dimensionality” [9]. The “curse of dimensionality”, a term coined by Bellman

in his book on dynamic programming in 1957 [1], generally refers to the unin-

tuitive phenomena that arise in high dimensional spaces, but are typically not5

observed in low dimensional spaces. One example is that the notion of proximity

may become ill-defined as dimensionality increases. As shown by Beyer et al.,

for certain sampling distributions and distance metrics, all points in a sample

approach the same distance apart as the problem dimensionality goes to infinity

[2].10

High dimensional phenomena generally arise from the exponential increase

in hyper-volume of the corresponding problem space. The exponential increase

in the search space’s hyper-volume causes data points to be sparse, making it

difficult to perform accurate analysis of the space. Due to the sheer size of the

search space, algorithms and techniques that require systematic sampling or15

exploration of the search space often become infeasible.

Literature has shown that PSO parameter configurations which are success-

ful in low dimensional problem spaces often perform poorly when the prob-

lem dimensionality increases [18, 40, 41]. Thus, in addition to the problem

becoming intrinsically harder due to the exponential increase in search space20

hyper-volume, the algorithm parameters must be tuned especially for high di-

mensional problems. Tuning for high dimensional problems typically requires a

great deal of computation, since the objective function evaluations become more

computationally expensive with increasing dimensionality. Guidance regarding

parameter selection thus becomes invaluable for high dimensional problems.25

Unwanted particle roaming forms a substantial part of the problematic be-

haviour exhibited by PSO in high dimensional search spaces [18, 21, 40, 41].

Particle roaming refers to a phenomenon that usually occurs in the first few it-
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erations of the search where particles are likely to leave the search space due to

velocity explosion. In low dimensional search spaces, the particles usually return30

to the search space if no better solution is found outside the search space. In

fact, early roaming behaviour may even be beneficial to the search if the attrac-

tors are constrained inside the search space [17]. However, in high dimensional

spaces, the particles fail to return to the search space [40, 41].

The relationship between particle roaming and problem dimensionality has35

been considered theoretically in literature. Helwig and Wanka related problem

dimensionality to the probability of particles leaving the search space [21]. It

was proven that the probability of a particle leaving the search space rapidly

approaches 1 as the dimensionality, n, is increased. The result was proven for

any neighbourhood topology and for a number of velocity initialization strategies40

(including uniform random initialization, initialization to zero, and initialization

to half the difference between the upper and lower search space bounds).

Several methods of reducing particle roaming behaviour have been examined

in literature, the principal method being boundary handling methods. However,

most boundary handling methods have been shown to bias the search behaviour45

of the particles [19, 20, 23, 29]. The optimal boundary handling method is thus

heavily problem-dependent. Other ways of addressing particle roaming include

different initialization strategies [40] and introducing coupling between problem

variables [41]. This paper investigates whether the swarm’s roaming can be

prevented by appropriate parameter selection. Such an approach does not bias50

the swarm’s search behaviour directly since it does not modify the position and

velocity update equations.

Two sets of experiments are performed: the first examined the variance

of particle positions and attempted to prevent the initial velocity explosion

by selecting algorithm parameters that bring about small variance in particle55

positions. The second experiment selected algorithm parameters based on ex-

isting literature, that are known to bring about certain movement patterns.

These swarm configurations were then tested on high dimensional problems to

determine whether particular types of movement are more successful in high
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dimensional spaces.60

Key contributions of this paper include:

• showing that reducing the variance of particle positions is, by itself, not

sufficient to prevent particle roaming.

• showing that the optimal movement strategies for PSO differ significantly

between high and low dimensional problems. Specifically, movement pat-65

terns that produce very smooth particle trajectories and restrict the swarm’s

range of movement perform well on high dimensional problems. In low di-

mensions, movement strategies that are less restrictive and produce more

chaotic particle trajectories perform best.

• showing that particle roaming in high dimensions can be prevented by70

appropriate choice of acceleration coefficients and inertia weight, such as

w = 0.9694 and c1 = c2 = 0.099381.

The remainder of the paper proceeds as follows: section 2 provides a brief

overview of PSO, introduces the necessary notation, and discusses existing lit-

erature regarding the variance of particle positions. Section 3 discusses the first75

experiment, in which particle roaming is addressed by reducing particle variance

through the choice of parameters. Section 4 discusses the second experiment,

which identifies movement patterns that are advantageous in high dimensional

search spaces. Section 5 considers whether velocity clamping can be applied

to further improve the performance of configurations that perform well in high80

dimensional spaces. Finally, section 6 concludes the paper and describes possi-

ble directions of future work. B provides additional results for the experiments

described in sections 3 and 4.

2. Background

This section provides a brief overview of the particle swarm optimization85

algorithm and introduces the notation used throughout the rest of the paper.
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This section also discusses existing literature regarding to the variance of particle

movement.

2.1. Particle Swarm Optimization

Particle swarm optimization (PSO) is a population-based, stochastic opti-90

mization algorithm, first proposed by Eberhart and Kennedy [13]. A swarm

of particles, each representing a solution to the optimization problem are ini-

tialized in the search space. The particles move through the search space in

search of an optimal solution for a number of iterations. A particle’s movement

is guided by95

• the particle’s momentum.

• knowledge of the best position that the particle has encountered thus far,

called the personal best position.

• knowledge of the best position encountered by other particles in the swarm,

called the neighbourhood best position or the global best position (depend-100

ing on whether the set of other particles is a strict subset of the swarm).

A particle’s movement can be described exactly by the position and velocity

update equations. At iteration t, particle i’s position is updated according to

xt+1
i = xti + vt+1

i (1)

where xti and vt+1
i respectively denote the position and velocity of particle i at

iteration t. This paper considers PSO with inertia weight as introduced by [35].

The velocity update equation for the j-th dimension is given by

vt+1
i,j = wvti,j + c1r1,j(y

t
i,j − xti,j) + c2r2,j(ŷ

t
i,j − xti,j) (2)

The three terms in the velocity update equation correspond to the three com-

ponents of particle movement listed previously: the first term is the momentum

component. The second term is called the cognitive component and causes the

particle to move towards its personal best position, yti . The final term is called105
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the social component and causes the particle to move towards the best position

in its neighbourhood, denoted by ŷti . If the swarm uses a ring topology, then

a particle’s neighbourhood consists of the particle itself and its immediate two

neighbours. This paper makes use of the star neighbourhood topology, which

defines a particle’s neighbourhood to be the entire swarm. All particles are110

thus guided by the global best position, ŷt so that ŷti = ŷt for every particle

i. According to literature [16], neither the ring nor the star topology is always

optimal for a given class of optimization problems. The star topology is used in

this paper because the swarm’s movement dynamics are more readily apparent

using a global best position.115

Every dimension of the cognitive and social components are also weighted

by uniform random variables, r1,j and r2,j , resampled at every iteration in the

range [0, 1]. This introduces stochasticity to the search, thereby allowing the

swarm to explore the search space in the areas between and slightly behind its

current position and its attractors (the personal and global best positions).120

The inertia weight, w ∈ (0, 1), provides control over the balance of ex-

ploration to exploitation. There must be a balance between exploration and

exploitation: a swarm that only explores and never refines good solutions will

waste resources exploring fruitless areas of the search space. A swarm that only

exploits is likely to converge prematurely to a sub-optimal solution. The optimal125

balance between exploration and exploitation is problem dependent [6] [8]. The

momentum component causes each particle to maintain its current trajectory.

This forces the particle to move through areas of the search space that may

not be directly on course to previously observed successes [35]. The momentum

component also prevents the particle from oscillating rapidly if its personal and130

global best positions update frequently and are far from their previous locations.

The cognitive and social acceleration coefficients, c1 and c2, govern the influ-

ence of the personal best and global best positions respectively. The values of w,

c1 and c2 play a large role in determining the swarm’s search behaviour and can

be used to achieve a balance between exploration and exploitation. As will be135

discussed in section 2.2, these parameters influence important characteristics of
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swarm movement such as the variance of particle positions. The parameters also

determine whether the swarm diverges to infinity, exhibits oscillatory behaviour

or converges [38, 39]. The relationship between these parameters and swarm

behaviour is the main focus of the paper. Particularly, this paper determines140

what movement patterns are more successful in high dimensional search spaces.

2.2. A Brief History of Variance

This section provides a brief overview of existing literature regarding the

variance of particle positions and its relationship to the inertia weight and ac-

celeration coefficients.145

Theoretical analysis of particle behaviour usually requires some form of the

stagnation assumption which assumes that the personal best positions and the

global best position have stopped improving. Under stagnation, each particle

behaves independently of the other particles since no new information is in-

troduced by a global or personal best position update. Thus, each particle’s150

behaviour can be studied separately when stagnation is assumed. Furthermore,

each particle’s dimensions are independent, so the particle need only be ana-

lyzed in one dimension without loss of generality. This significantly reduces the

complexity of theoretical analysis. Due to the independence of particles and

problem dimensions, the subscript i and j for particle positions and velocities155

may be dropped for the purposes of the discussion that follows.

The convergence of particle positions in terms of both expectation and vari-

ance has been studied extensively throughout literature [22, 30, 26]. These

studies yielded convergence regions for the choice of w, c1 and c2 parameter

values, within which all the particles’ positions are guaranteed to converge in160

expectation.

A detailed overview of the older literature is provided by [5] and [11]. In

recent literature, [3] derived convergence boundaries that are necessary and suf-

ficient for convergence of position variance when assuming that y and ŷ are ran-

dom variables (as opposed to constant values, as in earlier literature). Cleghorn165

and Engelbrecht made a further generalization under the non-stagnant distri-
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bution assumption (i.e. without assuming stagnation) where the personal and

global best positions were considered as convergent sequences of random vari-

ables [10, 11]. The analysis presented by Cleghorn and Engelbrecht can be

applied to obtain the convergence boundaries for general classes of PSOs. Fur-170

thermore, the assumption that the expected value and variance of personal and

global best positions are convergent sequences was shown to be a necessary con-

dition for convergence (i.e. is the weakest possible assumption under which the

expected value and variance of particle positions converge).

2.3. Particle Movement Patterns175

The values for the coefficients w, c1 and c2 play a large role in determining

a swarm’s behaviour. Existing literature has studied the relationship between

swarm parameters and the corresponding movement patterns of the swarm parti-

cles [4, 12, 37]. A detailed overview of the existing research regarding movement

patterns is provided by [5]. [37] categorized the movement patterns into four180

groups:

1. non-oscillatory - the particle’s position does not oscillate throughout the

search,

2. harmonic - the particle’s position oscillates smoothly in a wave-like motion,

3. zigzagging - the particle’s position oscillates significantly from one itera-185

tion to the next, and

4. harmonic-zigzagging - the particle’s position displays a combination of

harmonic and zigzagging motion.

Bonyadi and Michalewicz provided a generalization of these categories by per-

forming frequency analysis [4], which is discussed throughout the remainder of190

this section.

A particle’s trajectory may be characterized in terms of the particle’s range

of movement and its base frequency. The base frequency of a particle, denoted

by F , is defined to be the largest amplitude among the Fourier series coefficients

of the particle’s positions throughout the search [4]. Particles with small values195
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for F typically exhibit smooth trajectories, while large F -values are prone to

more oscillations with large steps between positions.

Range of movement refers to the size of the hyper-volume bounded by all

the particles’ positions from the start to the end of the search. The range of

movement is characterized by the variance of a particle’s position, denoted by

σ2 where σ is as defined by [30]:

σ =
1

2

√
c(w + 1)

c(5w − 7)− 12w2 + 12
|ŷ − y|

= Vc|ŷ − y| (3)

where c1 = c2 = c and Vc is given by

Vc =
1

2

√
c(w + 1)

c(5w − 7)− 12w2 + 12
(4)

The coefficient Vc is independent of the global and local best positions, and

characterizes the swarm’s ability to explore.

For a given F and Vc, corresponding velocity update coefficients, w, c1 and200

c2 can be calculated as described by [4]. If the velocity update coefficients are

assumed to be constant, and c1 = c2 = c and w > 0, then the simultane-

ous equations (5) and (6) are sufficient to calculate the corresponding velocity

update coefficients:

c = 1 + w − 2cos(2πF )
√
w (5)

c =
−48Vcw

2 + 48Vc
28Vc + w − 20Vcw + 1

(6)

Equations (5) and (6) allow the practitioner to choose a pattern of movement205

for particle trajectories that is most suited to the problem and to calculate values

for w, c1 and c2 that bring about the desired behaviour.

The base frequency, F should be in the range [0, 0.5] where F = 0 implies

that the particle’s position does not oscillate at all. On the other hand, F = 0.5

means that the particle’s position will oscillate with every iteration. Figure210
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1 from [4] shows the correlation measure as a function of the base frequency.

Each point is the correlation between corresponding particle positions for a given

base frequency, averaged across different variance values (with bars indicating

the standard deviation of the correlation measure). Bonyadi and Michalewicz

observed that positions are positively correlated when F < 0.25, so the particle215

moves smoothly, with high dependence between subsequent positions. When

F > 0.25, particle positions are negatively correlated implying no dependence

between subsequent positions. When F is near 0.25, the correlation between

particle positions is close to zero, so particle movement may be chaotic.

Figure 1: Relationship between base frequency and correlation of particle positions [4]

The value for the variance of movement, Vc, can be any number larger than220

zero. However, if the value of Vc is very small, then the particle is not guaranteed

to sample positions outside the boundaries [min{y, ŷ},max{y, ŷ}], because the

expected value of the particle’s position is between its personal and global best

positions [38]. Thus, the particle’s exploration ability will be limited.

The following theorem from [4] (simplified for constant w, c1 and c2) provides225

a minimum bound for Vc to ensure that at least one of the particle’s positions

is not on the line between y and ŷ.
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Theorem 1. Assume that y 6= ŷ. If

Vc >

(
max{c1, c2}
c1 + c2

)2

(7)

then for any distribution of xti generated by the velocity update equation (2), the

number of points generated by xti outside the interval

(E(xti)−min{y, ŷ},E(xti) + max{y, ŷ}) (8)

is non-zero.

Bonyadi and Michalewicz suggested that large Vc-values are generally the

better choice, observing that small values of Vc prevent the particles from ex-230

ploring the search space sufficiently [4]. The experiments performed by [4] were

only performed for low dimensional problems, with n = 10 and n = 30. In high

dimensional spaces, literature suggests that search strategies which focus on lo-

cal exploitation may be more effective than searches that attempt exploration,

due to the exponential growth of the search space with dimensionality [40, 41].235

Thus, smaller values for Vc may prove better than large values, by curbing the

particles’ exploration.

3. Restricting Variance

This section uses existing theory regarding the variance of particle positions

to restrict particle movement. Section 3.1 explains that the variance of particle240

positions can be reduced to a chosen fraction of its original value by calculating

corresponding values for the inertia weight and acceleration coefficients. Swarms

with variance restricted to different values were then tested on the benchmark

suite from the CEC’2010 special session and competition on large-scale opti-

mization [36]. Section 3.2 describes the experimental method and section 3.3245

analyses the results of the experiments. The effects of restricting the variance

are discussed and the best performing swarm configurations are identified. Sec-

tion 3.4 summarizes this section and provides motivation for the section that

follows.
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3.1. Restricting the Variance of Particle Positions250

It has been shown that particles exhibit an initial velocity explosion which

leads to particle roaming behaviour [18, 21, 40, 41]. In low dimensional search

spaces, the particles usually return to the search space and the search continues

to progress [17]. However, it has been shown that in high dimensional search

spaces, the particles leave the search space immediately and fail to return [40, 41,255

18]. Continued roaming behaviour occurs even when using convergent parameter

values, which guarantee that the expected value and variance of the particle

positions will converge to a constant.

Due to the initial velocity explosion, the particles leave the search space

immediately. As proposed by [15] as well as [7], the personal and global best260

positions are not updated unless they are within the search space. Thus, the

personal best and global best positions of the swarm are not updated while the

swarm is roaming because all the particles are out of bounds. In fact, since the

particles fail to return to the search space, the personal and global best positions

are never updated. The swarm thus converges within the first iteration and the265

variance of the particle positions immediately becomes a large constant. Even

if the attractors are confined to the search space, the resulting variance is large

enough for all the particles to stay outside the search space. After the velocity

explosion, the remainder of the search thus takes place under stagnation.

According to [30], the standard deviation of a particle’s position under stag-

nation is given by

σ =
1

2

√
c(w + 1)

c(5w − 7)− 12w2 + 12
|ŷ − y|

= Vc|ŷ − y| (9)

where c1 = c2 = c and Vc is given by equation (4). If the conditions for270

convergence in expectation and variance as given by [30] hold, then the standard

deviation will only be zero if y = ŷ.

For the usual “good parameters” for the inertia weight and acceleration

coefficients (w = 0.7298 and c1 = c2 = 1.49618 ) [12], the coefficient in equation
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(9) evaluates to 1.0432, which is larger than one. If the upper boundary of the275

search space is denoted by U and the lower boundary is denoted by L, then

the maximum possible value for |y − ŷ| is given by U − L, i.e. the range of

the search space. Thus, for the given c and w values, the maximum possible

standard deviation is larger than the size of the search space. It has been shown

that under stagnation, when the personal and global best are approximately280

equidistant from the center of the search space, and initial particle positions are

set to zero, then particle positions appear to be distributed normally around the

center of the search space [24]. For the argument that follows, it is thus assumed

that the particles are distributed normally around the center of the search space.

If |y − ŷ| = U − L for each of the particles in the swarm, then approximately285

38% of the particles will be located within the search space (i.e. within half a

standard deviation of the center). The probability of a particle’s next position

being outside the search space is thus much higher than the probability of being

inside the search space, therefore most of the swarm will be located outside of

the search space (see figure 2).290

Figure 2: Probability distribution of swarm for worst case scenario in 1-D

Of course, this is a worst case scenario. Consider a better scenario, in which
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the distance between the personal best position and the global best position is

approximately half of the search space, i.e. |y − ŷ| = 1
2 (U − L). On average,

approximately 68% of the particles will be found within the search space (i.e.

within one standard deviation of the center), which leaves a third of the particles295

outside the search space.

If the value of |y − ŷ| is known or can be estimated, then equation (9) can

be solved for values of c and w that ensure that a particle is likely to stay

within the search space. If y and ŷ are both independent, uniformly distributed

variables between L and U , then the expected value of |y− ŷ| is zero. However,300

y and ŷ are not independent, since both variables depend on the location of the

benchmark function’s optimum.

Thus, calculating the coefficient Vc to obtain an exact standard deviation is

a difficult, problem-dependent exercise. Instead, the value of the coefficient Vc

can be used to restrict the standard deviation fractionally, i.e. to some fraction

of what it would be otherwise. For example, suppose that the aim is to restrict

the standard deviation to some fraction, γ, of what it would be otherwise. Then

setting the value of Vc to γ and solving for c yields:

γ = Vc =
1

2

√
c(w + 1)

c(5w − 7)− 12w2 + 12
(10)

∴ c =
12(1− w2)

7− 5w + w+1
4γ2

(11)

By allowing w to range between 0 and 1 and solving for the corresponding

c-value, it is possible to produce a set of (c, w) pairs for which the standard

deviation will be the desired fraction of what it would have been otherwise.305

Two questions arise in the context of large scale optimization:

• To what fraction should the standard deviation be restricted?

• How are the optimal w and c chosen from the resulting sets?

Both of these questions will be considered in the empirical study presented in

section 3.3. The second question, regarding the optimal relationship between c310
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and w, is investigated further in section 4. The remainder of this section is de-

voted to motivating the method of restricting the standard deviation fractionally

and the applicability to high dimensional spaces in particular.

The discussion regarding the standard deviation of a particle’s position has

thus far considered only a single dimension. An n-dimensional particle’s stan-

dard deviation, σ, will be a vector with each component j given by

σj = Vc|ŷj − yj | (12)

A particle is considered out of bounds if the boundary constraints are violated

in even one dimension. If the variance of a component is large, then the particle

is more likely to leave the search space in that dimension. As the problem

dimensionality grows, the probability of |ŷj − yj | being large enough to cause

roaming in at least one dimension increases. This information is captured well

by the infinity norm:

‖σ‖∞ = max
j=1..n

{|σj |} (13)

= Vc max
j=1..n

{|ŷj − yj |} (14)

It may thus be possible to obtain coefficients that will negate the effect

of dimensionality on the standard deviation’s norm and restrict the particles’315

movement, hopefully preventing roaming.

Note that even if the swarm was not normally distributed (eg. the personal

and global best positions are not maximally far apart), then restricting the

variance may reduce particle roaming by the same argument as above.

Restricting the variance of particle positions will weaken the swarm’s ability320

to explore, especially in dimensions where a particle’s variance is small. How-

ever, literature shows that, in practice, a local optimum found by a swarm

with weakened exploration ability is often better than the optimum found by a

swarm which attempts to explore the entire search space [18, 40, 41]. When the

problem dimensionality is sufficiently high, it becomes infeasible to explore the325

search space thoroughly. Instead, the swarm should focus on local searching.
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3.2. Experimental Method

An experiment was performed to test whether restricting swarm variance can

mitigate particle roaming and achieve good performance in high dimensional

search spaces. This section describes the experimental methodology that was330

followed.

Empirical work has shown that swarms in high dimensions roam regardless

of swarm size [27]. Specifically, on 1000-dimensional problems, swarms as small

as 5 particles or as large as 250 exhibit continual roaming behaviour. The

paper thus considers a fixed swarm size for the experiments regarding the effect335

of restricting swarm variance. The experiment was performed using a swarm

size of 50. Larger swarm sizes required more objective function evaluations

and led to long execution times and smaller swarms exhibited large variance in

performance, so more runs would have been required.

No velocity clamping was applied so that the effect of the different parameter340

values are not obscured by applying clamping. Swarm updates were performed

synchronously. The swarm was allowed to run for 5000 iterations, which provides

a total of 50× 5000 function evaluations for each simulation.

Initial particle velocities were set to zero [14]. Particle positions were ini-

tialized by sampling from a uniform random distribution in every dimension, so345

that x0i,j ∼ U(L,U). Particles’ personal best positions were initialized in the

same manner, then both the current position and personal best position were

evaluated. If the current position had a better score than the personal best

position, the two were swapped, so that the semantic meaning of the personal

best position is preserved.350

To ensure that the solution found by the swarm is within the search space,

the global best and personal best positions were only updated if they were within

the search space. Thus, both particle attractors were always within the search

space, as suggested by [7, 15].

Three different γ values were tested, specifically γ ∈ {1.0, 0.75, 0.5}. Under355

the assumptions in section 3.1, when γ = 0.5, approximately 95% of the swarm

should be within the search space even when the personal best and global best
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are maximally far apart. The swarms with γ = 0.5 are thus expected to ex-

hibit less roaming. Section 3.1 assumes swarm stagnation and the strategy of

restricting variance intends to prevent premature stagnation due to roaming.360

Thus, the assumptions in section 3.1 will likely not hold throughout the search

and very restrictive values for γ may not be the best, so γ = 0.75 is also tested;

γ = 1.0 is used as a baseline.

For each γ, a range of w-values from 0.1 to 1.0 were tested, so that all the

configurations would guarantee swarm convergence according to [30] (except

w = 1.0, which was included as a baseline). The tested inertia weight values

are given in the expression below:

w ∈ {0.1 + 0.05k
∣∣ 0 ≤ k ≤ 18} (15)

For the chosen (γ,w) pair, the corresponding value for the acceleration coeffi-

cient was calculated according to equation (11), except for w = 1, where the365

corresponding c values were not unique (i.e. regardless of γ, if w = 1 then

c = 0). Table 1 summarizes all the c-w combinations that were tested and the

corresponding γ values.

The benchmark functions from the CEC’2010 special session and compe-

tition on large-scale optimization were used [36] with n = 1000 (which is a370

sufficiently high dimensionality for PSO to exhibit dimensionality-related roam-

ing, but low enough for simulations to complete within reasonable time scales).

The benchmark suite allows the degree of separability within certain functions

to be specified using the parameter m. In order to scale the problems down to 10

dimensions for later experiments in section 4.2.1, the experiment used a value of375

m = 10. The benchmark suite includes separable functions, partially separable

functions, and non-separable functions. The search spaces for all the benchmark

problems had the same upper and lower bounds in every dimension, denoted

by U and L respectively. These values correspond to the specifications by [36].

Additional details regarding the benchmark suite are provided in appendix A.380

Each swarm configuration was tested on each of the benchmark functions

by running 30 independent simulations to achieve statistical significance. The
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Table 1: Parameter configurations for swarms with fractionally restricted standard

deviations

γ = 1.0 γ = 0.75 γ = 0.5

w c w c w c

0.1 1.7535 0.1 1.6998 0.1 1.5632

0.15 1.7943 0.15 1.7349 0.15 1.5851

0.2 1.8286 0.2 1.7633 0.2 1.6

0.25 1.8557 0.25 1.7841 0.25 1.6071

0.3 1.8747 0.35 1.7967 0.3 1.6059

0.35 1.8846 0.35 1.800 0.35 1.5955

0.4 1.8841 0.4 1.7929 0.4 1.575

0.45 1.8719 0.45 1.774 0.45 1.5435

0.5 1.8462 0.5 1.7419 0.5 1.5

0.55 1.8049 0.55 1.6947 0.55 1.4431

0.6 1.7455 0.6 1.6302 0.6 1.3714

0.65 1.6649 0.65 1.5457 0.65 1.2833

0.7 1.5592 0.7 1.4381 0.7 1.1769

0.75 1.4237 0.75 1.3034 0.75 1.05

0.8 1.2522 0.8 1.1368 0.8 0.9

0.85 1.0366 0.85 0.9322 0.85 0.7239

0.9 0.7664 0.9 0.6817 0.9 0.5182

0.95 0.4274 0.95 0.3754 0.95 0.2786

1.0 0.0 1.0 0.0 1.0 0.0
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performance of an algorithm on a given benchmark function was characterized

in terms of the best objective function value attained in a given simulation. For

all of the benchmark functions, the best possible objective function value is 0.385

In addition to the best possible objective function value, other metrics such

as the swarm diversity and average velocity magnitude were also measured.

Swarm diversity characterizes the spread of the swarm and may be used to

illustrate exploration and exploitation behaviour. Different measures for swarm

diversity have been suggested such as the swarm diameter and radius [31], the

average distance around the swarm centre [25], and the normalized average

distance around the swarm centre [31]. Olorunda and Engelbrecht found that

the average distance from the swarm centre provides a good compromise between

accuracy, robustness and computational efficiency [28], so the average distance

from the swarm centre was used to measure diversity. The swarm diversity is

given by

D =
1

ns

ns∑
i=1

√√√√ n∑
j=1

(xi,j − x̂j)2 (16)

where x̂ denotes the swarm centre, given as

x̂ =
1

ns

ns∑
i=1

xi (17)

The average particle velocity magnitude is given by

V =
1

ns

ns∑
i=1

√√√√ n∑
j=1

v2i,j (18)

The performance of different swarm configurations were compared by as-

signing each configuration a score relative to all the other configurations, as

described by [4]. Generally, a configuration’s score is calculated in terms the

number of “wins” achieved over all the other configurations, across all of the

benchmark functions. A configuration’s “win” over another on a particular390

function is determined by comparing the median best objective function value

of the two configurations using a Mann-Whitney U test with p = 0.05.
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Let the problem dimension n be fixed. Let two different algorithm configu-

rations (i.e. with different values for γ and w) be denoted by g and h. For every

(g, h) pair and function f , define sg,h,f as follows

sg,h,f =


1 if Rg,f < Rh,f with p ≤ 0.05

0 if p ≥ 0.05

−1 if Rh,f < Rg,f with p ≤ 0.05

(19)

where Rg,f denotes the median of the best score attained by configuration g

when optimizing function f and p denotes the confidence bound of the Mann-

Whitney U test. For every configuration pair (g, h), the “wins” of g over h is

measured in terms of a point system. This measure is denoted by zg,h and is

calculated by

zg,h =


3 if

∑F
f=1 sg,h,f > 0

1 if |
∑F
f=1 sg,h,f | = 0

0 if
∑F
f=1 sg,h,f < 0

(20)

where F denotes the number of functions in the benchmark suite. For the

benchmark suite in appendix A, F = 20.

The total “score” of a configuration g is the sum of its wins over all the other

configurations. The total score, Mg, of configuration g is denoted by

Mg =

J∑
h=1;h6=g

zg,h (21)

where J denotes the number of configurations. For these experiments, J =395

3 × 18 + 1 = 55 (three different γ-values, each with 18 different w-values, plus

the configuration where w = 1). If Mg > Mh, then configuration g performed

better on the benchmark suite than configuration h.

3.3. Variance and Dimensionality

Restricting the standard deviation influenced the swarm’s average velocity400

magnitude, as expected. It may have been that the swarm was not roaming due
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to the distance between the particles’ personal and global best positions, but

rather because the swarm was attracted to a position near the boundary of the

search space. Then the particles exploring the region near the global best may

have been likely to be out of bounds in at least a few dimensions, due to the405

positioning of the attractor, even though the particles’ velocities were not very

high. If this was the case, then restricting the variance would not reduce the

swarm’s average velocity.

Figures 3 to 7 illustrate the typical profile of the swarms’ average velocity

magnitude. Each figure is for a fixed inertia weight and shows the effect of410

varying γ. In all cases, the smaller standard deviation resulted in lower average

velocity, as expected. Unless otherwise stated, all figures illustrate typical swarm

behaviour that was observed across all benchmark functions. The benchmark

functions chosen for illustration purposes were not selected preferentially.

Figures 8 to 10 show the average velocity magnitude for a fixed γ as w415

varies. For each γ, lower inertia weights result in higher average velocities

and vice versa. As γ becomes larger, the diversity increases asymptotically

as w decreases. Thus, the movement of swarms with higher inertia weights is

generally more restrained than swarms with lower inertia weights.

Restrictions to the standard deviation combined with high w-values cause420

the corresponding acceleration coefficients to have relatively low values. Such

swarms will rely more heavily on momentum than on new information received

from its neighbours, or learned throughout its own search. These particles will

exhibit smooth trajectories due to the regularizing influence of the large mo-

mentum component and because any direction alterations introduced by their425

personal and global best positions will be small, since the acceleration coeffi-

cients are small.

If the inertia weight is low and the acceleration coefficients are high, then

the particle is more likely to divert its course if its attractors are updated. If

the location of the particle’s attractors changes drastically, from one side of430

the search space to the other, this may lead to the particle taking huge steps,

causing velocity explosion. Though this is true for low dimensional problems,
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Figure 3: Average velocity magnitude for

w = 0.95 on F7 with n = 1000

Figure 4: Average velocity magnitude for w =

0.75 on F7 with n = 1000

Figure 5: Average velocity magnitude for

w = 0.55 on F7 with n = 1000

Figure 6: Average velocity magnitude for w =

0.35 on F7 with n = 1000

Figure 7: Average velocity magnitude for w =

0.15 on F7 with n = 1000
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the effects are exacerbated in high dimensions.

Figure 11 shows the score of a swarm with a given γ and w on the 1000

dimensional problem suites. The color of a block shows its score, with lighter435

indicating a better score. Comparisons were done across all combinations of

γ and w, so that the overall best combinations can be determined. Figure 12

visualizes the performance of all the c-w combinations. For every parameter

configuration, the corresponding score of the configuration is reflected in the

color of the data point, where pink is the best possible score and blue is the440

worst score.

Table 2: Coefficient values for best-

performing combinations

γ w c Score

0.5 0.95 0.2786 162

0.5 0.9 0.5182 159

1.0 0.95 0.4274 156

0.75 0.95 0.3754 153

0.75 0.9 0.6817 150

Table 3: Coefficient values for worst-

performing combinations

γ w c Score

1.0 1.0 0.00 23

0.5 0.4 1.575 25

1.0 0.5 1.8462 25

0.5 0.65 1.2833 26

1.0 0.7 1.5592 28

For completeness, the mean and standard deviation of the best fitness for

the three best and worst configurations are provided in tables 14 and 15 in the

appendix. The w, c and score of the five best combinations are given in table

2. All five of the best combinations had high inertia weights and relatively low445

acceleration coefficients. In general, configurations with high inertia weights

performed the best and values for w below 0.75 generally did not perform well

in comparison to the others. Configurations with severe restrictions to the stan-

dard deviation (i.e. lower γ) performed well, but the best performing swarms

varied across all three chosen γ.450

High inertia weights reduce the danger of a particle taking huge steps from

one end of the search space (due to the particle’s attractors being updated)

because the influence of the social and cognitive components is small. Instead,
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Figure 8: Average velocity magnitude for γ = 0.5 on F2 with n = 1000

Figure 9: Average velocity magnitude for γ = 0.75 on F2 with n = 1000

Figure 10: Average velocity magnitude for γ = 1.0 on F2 with n = 1000
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the particle’s trajectory may be pulled towards the updated attractors gradually,

without fear of velocity explosion (as discussed previously, based on figures 8 to455

10).

The w, c and score of the five worst combinations are given in table 3. The

worst performing swarms were either γ = 1 or γ = 0.5. The worst configuration

used only inertia and had no social or cognitive component whatsoever. It is not

surprising that the swarm did not perform well, since the particles could not in-460

corporate any additional information into their search direction. The search will

devolve into sampling a number of points along a line, where the line’s direction

was determined by the randomly initialized personal and global best positions.

The other configurations that scored in the bottom five all had large acceler-

ation coefficients and medium-range inertia weights. Disconcertingly, some of465

these values were not far away from the rule of thumb “good” parameters.

Simply restricting the standard deviation is thus not enough to ensure good

performance: some of the worst-performers had severely restricted standard

deviations. The swarm’s performance is heavily dependent on the chosen values

for w and c. This is not unexpected: just because a swarm’s movement is470

restricted to be within the search space does not guarantee that the swarm will

find a good solution within the search space.

Figure 13 shows the typical diversity profiles of the five best-performing

configurations. In general, the configurations with better scores exhibited lower

diversities. It is interesting to note that, although the chosen value for w and475

c plays a larger role in determining the swarm’s behaviour, the role of γ is still

visible here, even when comparing across different inertia weights: the swarms

for which γ = 1 showed increasing diversity, in comparison to the configurations

for which γ < 1, where the swarm diversity decreased or, at least, did not

increase after the initial spike.480

In general, larger γ values exhibited higher diversities and more dimensions

out of bounds (see figures 13 and 14), although large values for c also played

a role. For example, when γ = 1 and c = 0.4274, the diversity was lower than

for γ = 0.75 and c = 0.6817. When c is larger, the local and global attrac-
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Figure 11: Performance of swarm configuration produced by restricting standard deviation of

positions

Figure 12: Score of acceleration coefficients and inertia weights produced by restricting stan-

dard deviation of positions
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tors exert more influence over the particle trajectories, allowing the particles485

to be diverted towards updated attractors and increasing the swarm’s diversity.

Usually, none of the configurations’ diversities went to zero, indicating that the

particles did not converge to a single point, even for the configurations with

very low acceleration coefficients.

Although restricting the variance reduced the average velocity magnitude490

and the average number of dimensions out of bounds, the average number of

particles that were outside the search space was still very high, even for the five

configurations with the best performance, as shown in figure 15. The configu-

rations where γ = 0.5 exhibited less roaming than the other configurations, but

there is no discernible difference in roaming behaviour between the configura-495

tions with γ = 0.75 and γ = 1.0. Future experiments may consider variance

restrictions that are even more stringent, but in general, restriction of variance

alone does not appear to mitigate particle roaming completely. Instead, investi-

gating relationships between w and c may prove more fruitful, as will be shown

in the remainder of the paper.500

Figure 13: Swarm diversity on F18 with n = 1000 (5 best configurations)

From figures 11 and 12, there appear to be three points with low inertia
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Figure 14: Average number of dimensions out of bounds on F18 with n = 1000 (5 best

configurations)

Figure 15: Fraction of swarm out of bounds on F18 with n = 1000 (5 best configurations)
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weights and high acceleration coefficients that also perform well (circled in red

on figure 12). However, further investigation of these configurations yielded

nothing interesting about these configurations. In general, the swarms were out

of bounds for almost the entire search and their personal best positions were505

almost never updated. The behaviour of these three points did not seem very

different from their surrounding neighbours, as can be seen in figures 16 and 17.

Figure 16 plots the diversities of the three outlier points and figure 17 includes

the diversities of the outlier’s surrounding neighbours for comparison. Since the

calculated scores are relative, it may simply be that these points scored slightly510

higher than the other parameter configurations in the same vicinity, though

their performance was poor.

Figure 16: Swarm diversity of outlier configurations on F9 with n=1000

3.4. Summary

Particle movement can be restricted by choosing an inertia weight and ac-

celeration coefficients to reduce the variance of particle positions. For a given515

inertia weight, decreasing γ caused the swarm to exhibit lower velocity magni-

tudes, thereby reducing the step sizes of the particles and encouraging a more
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Figure 17: Swarm diversity of outlier configurations and surrounding configurations on F9

with n=1000

granular search. For a fixed γ, increasing the inertia weight caused the swarm’s

average velocity magnitude to decrease and vice versa. High inertia weights

regularize the particle’s movement because the particle is less likely to divert its520

course rapidly if the positions of its attractors changes.

Thus, if the particle’s attractors change drastically from one iteration to the

next, a momentum-focused particle will be less prone to oscillation and velocity

explosion than a particle that has high acceleration components. However,

restricting the variance is not sufficient to mitigate particle roaming. High525

inertia weights and low acceleration coefficients also play an important role.

The analysis performed in this section was based on empirical observations

regarding the reasons for particle roaming. The section that follows makes use of

literature introduced in section 2.3, regarding the swarm’s movement patterns,

to provide additional insight into the behaviour of PSO in high dimensional530

spaces.
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4. Frequency and Variance of Particle Positions

This section is intended to provide further insight into the results of the pre-

vious section. The inertia weights and acceleration coefficients that performed

well previously may correspond to certain classes of movement patterns, making535

it easier to interpret the swarm’s behaviour. Section 4.1 describes the settings of

the experiment, which examines the influence of the base frequency and range

of movement on the swarm’s behaviour in high dimensional spaces. Section 4.2

examines the results of the empirical experiment and determines what swarm

configurations and corresponding movement patterns are optimal in high di-540

mensional spaces in terms of performance. Section 4.3 summarizes the findings

of this section.

4.1. Experimental Method

The relationship between movement patterns and problem dimensionality

was investigated empirically. This section describes the experimental method-545

ology that was followed.

The experiment was performed as in section 3.2, but the values for w, c1 and

c2 were calculated for a given base frequency and variance of movement. The

experiment tested different values for the frequency and variance of movement

with

F ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.25, 0.4, 0.45} (22)

Vc ∈ {0.1, 0.4, 1.6, 6.4, 25.6} (23)

which are the same as the values tested by [4] to allow for comparison. For

each (F, Vc) pair, the corresponding values for the acceleration coefficients and

inertia weight were calculated using equations (5) and (6). Setting (5) = (6) and

solving for w yields a polynomial of order 4, which was solved using Matlab’s550

roots function. The root with the smallest absolute value and no imaginary

component was chosen as the w value. The w-value was then substituted into

both equations (5) and (6) to calculate c. Due to the intrinsic error in calculating
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w, equations (5) and (6) yield slightly different values for c. The average of the

two values was used as c to compensate for any error in w.555

To ensure that the results remain interpretable and are not skewed by the

errors introduced when solving for w, the resulting w and c values were substi-

tuted back into equations (5) and (6) to solve for the frequency and variance.

The recalculated frequency and variance, denoted by F ′ and V ′c , capture the er-

ror on w and c. The resulting error between the desired frequency and variance

(F , Vc), and the actual frequency and variance (F ′,V ′c ) can then be calculated.

The error on the frequency, EF , was calculated as

EF = |F − F ′| (24)

The frequency error was never larger than 0.005, i.e. the error on the frequency

was never larger than 10% of the frequency increment of 0.05. The error in

frequency was thus deemed sufficiently negligible.

The relative error on the variance, EVc
, was calculated using

EVc
=
|Vc − V ′c |

Vc
(25)

so that the error is normalized according to the size of the variance, since the

tested variances had quite a large range. Figure 18 shows EVc
for each F .

Generally, the relative error increased as the frequency increased gradually until

F = 0.3, then decreased again. For Vc = 0.1, the relative error became as high as

62%. The relative error of the other variances were lower and never went higher

than 16%. The results for the following (Vc, F ) pairs were deemed unacceptable

due to high relative errors:

{(0.1, 0.25), (0.1, 0.3), (0.1, 0.35)} (26)

The performance of swarms using the (Vc, F ) pairs listed above were not con-

sidered in the analysis that follows. The calculation error of the remaining pairs560

was deemed sufficiently small to use for analysis. Future work may include find-

ing a different formulation for these calculations that can be solved analytically

or more readily by numerical methods.
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Figure 18: Relative error on variance across frequencies

4.2. Movement Patterns in High Dimensions

This section presents the results of the experiments described in the previous565

section. Section 4.2.1 examines all the tested swarm configurations and deter-

mines which configuration performed the best in high dimensional spaces. The

behaviour of the best swarm configurations are examined in detail and possible

reasons for their success are presented. Section 4.2.2 reconciles the results of the

experiments in variance restriction (from section 3) with the empirical results570

regarding movement patterns in this section.

4.2.1. Optimal Frequency and Variance of Movement

This section determines the optimal combinations for F and Vc for low and

high dimensional versions of the problem suite. From the frequency and variance

values, which determine corresponding c and w values according to equations (5)575

and (6), it is possible to determine what kind of movement patterns are exhibited

by the swarms that perform well. The section also shows that the optimal

movement pattern for the swarm is different for high and low dimensional spaces.
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For completeness, the mean and standard deviation of the best fitness for the

three best and worst configurations are provided in tables 16 and 17 in the580

appendix. Figures 19 and 20 show the score of all the (F, Vc) pairs on the 10

and 1000 dimensional problem suites. The color of a block shows its score, with

lighter indicating a better score. Comparisons were done across all combinations

of F and Vc, so that the overall best combinations could be determined for each

problem suite.585

Figure 19: Optimal frequency-variance com-

binations (n=10)

Figure 20: Optimal frequency-variance combi-

nations (n=1000)

Figure 21: Optimal frequency for given vari-

ance (n=10)

Figure 22: Optimal frequency for given vari-

ance (n=1000)
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The frequency-range combinations that perform well are different between

the low and high dimensional suites. In low dimensions, the frequency F =

0.05 never performed well and generally, values F ∈ [0.1, 0.2] provided good

performance. Thus, swarms exhibiting smooth trajectories with some positive

correlation between particle positions performed well. Parameters causing very590

strong correlation between particle positions did not perform well.Thus, some

chaotic behaviour is beneficial to the swarm’s ability to find good solutions.

For high dimensional problems, the swarms exhibiting oscillatory behaviour

performed much worse than swarms with smooth trajectories (F ≥ 0.25 per-

formed badly in comparison with F < 0.25). Swarms performance deteriorates595

as the variance increases. Of the five best configurations, four had the smallest

possible variance of 0.1 and one had a variance of 0.4. All five of the best per-

forming configurations had frequencies below 0.25. The frequency and variance

as well as the corresponding momentum and acceleration coefficients are given

in table 4.600

Thus particles with low range of movement and smooth trajectories showed

the best performance. For the lowest possible variance of 0.1, slightly higher

frequencies (where position correlation is lower) performed better whereas for

the other variances, the lowest possible frequency performed the best. This in-

dicates that, when the particles’ range of movement is sufficiently small, some605

chaos in movement may be beneficial; the small movement range is sufficient

to restrict particle movement and small chaotic steps do not cause a velocity

explosion. But as particle steps become larger, chaotic movement is detrimen-

tal to swarm performance and instead, highly correlated particle positions are

required to prevent particles from roaming.610

Observations regarding the good performance of small frequencies agree with

previous literature. The observed benefit of using small variance differs from

previous findings that were focused on low dimensional problems. However, this

is in line with the findings from the previous section and with the hypothesis

that fine-grained searching within small areas of the search space are the most615

effective in solving high dimensional problems.
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Four of the five top combinations had Vc = 0.1, which does not satisfy the

relation in equation (7):(
max{c1, c2}
c1 + c2

)2

=

(
c

2c

)2

=
1

4
> Vc = 0.1 (27)

Thus, there was no guarantee that the particles sampled any points outside the

region between their personal and global best positions. This does not imply

that no points outside this region were sampled, but it does point towards locally

exploitative behaviour by the particles that performed well.620

Figures 21 and 22 show the optimal F -value for a given Vc. Comparisons were

thus done within each column (as opposed to over all the possible pairs, as done

in figures 19 and 20). On the low dimensional suite, the optimal frequency was

usually around 0.15, which produced smooth particle trajectories, but particle

positions are not highly correlated.625

For the high dimensional case, the optimal frequency was almost always

0.05, the smallest possible value. Similar to the low dimensional case, Vc = 0.1

was the exception. For all values of Vc, the optimal frequency was smaller on

the high dimensional problems than it was on the low dimensional problems.

Thus, highly correlated particle positions and granular searching behaviour is630

a requirement for good performance in high dimensional spaces. Additionally,

observe that, unlike the low dimensional case, none of the F -values that induce

oscillatory behaviour performed well in high dimensions. This further supports

the hypothesis that fine-grained exploitation performs better than exploration-

focused behaviour in high dimensional spaces.635

Tables 4 and 5 show the acceleration coefficient and inertia weight corre-

sponding to the best and worst (F, Vc) combinations. In addition, figure 23

plots the c and w values that correspond to the (F, Vc) combinations tested in

the experiments. The colour of each data point corresponds to its score in com-

parison to all the other swarm configurations, where pink dots have the highest640

(best) score and light blue dots have the lowest (worst) score.

The best performing swarms generally had high momentum components and

relatively low acceleration coefficients. This corresponds to the findings in figure
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12, but the additional information provided by the corresponding base frequency

and variance of movement has aided the discussion regarding the reasons why645

these swarms performed well. Configuration A’s values were the most different,

with nearly equal values for the inertia weight and acceleration coefficient, so

that the acceleration coefficient’s value was still significantly lower than the rule

of thumb value. Figure 23 shows no configurations that perform well in the

region c ∈ (0.58, 1.88), w ∈ (0.15, 0.3), which supports the conclusion that the650

three outliers in figure 12 are not significantly better than their neighbours.

Table 4: Coefficient values for best-performing combinations

Vc F w c Score Reference

0.1 0.15 0.70521 0.74883 132 Config A

0.1 0.05 0.96941 0.099381 129 Config B

0.4 0.05 0.98631 0.097915 126 Config C

0.1 0.1 0.87483 0.37326 123 Config D

0.1 0.2 0.40746 1.0965 120 Config E

Table 5: Coefficient values for worst-performing combinations

Vc F w c Score

0.4 0.25 0.55579 1.5763 21

1.6 0.2 0.81365 1.2588 23

1.6 0.4 0.15443 1.8091 24

6.4 0.25 0.70415 1.7052 25

6.4 0.3 0.51717 1.9633 25

Figures 24 and 25 show typical diversity profiles of the five best performing

swarm configurations. The configuration with the largest variance consistently

exhibited higher diversity than the other configuration, which is expected given

that the swarm has larger range of movement. The configuration with Vc = 0.4655

never converged to a point, i.e. the swarm’s diversity never went to zero. In
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Figure 23: Score of acceleration coefficients and inertia weights produced by frequency and

variance

contrast, all four of the other top performing swarms (all with Vc = 0.1) con-

verged very close to a single point. The diversity of the best performing strategy,

Vc = 0.1 and F = 0.15 decreased more slowly than the other strategies with

Vc = 0.1, while the rest converged prematurely within the first 500 iterations.660

The c and w of the best configuration were nearly equal, indicating that the

particles struck a nearly equal balance between restricting movement to the

current trajectory and moving in the direction of good solutions.

Figures 26 and 27 both plot the average number of personal best updates per

iteration for configurations A to E. This measure indicates whether the swarm665

is actively searching and improving its solutions or the swarm has stagnated.

These figures varied greatly between benchmark functions, which is to be ex-

pected since the measure is highly problem dependent. Generally, configuration

A consistently showed improvements throughout the search, with the number of

personal best position updates decreasing towards the end of the search. Such670

behaviour adheres to the usual recipe of first exploring and then exploiting, and

fits well with the swarm’s diversity profiles.
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Figure 24: Swarm diversity on F7 with n =

1000 (best 5 configurations)

Figure 25: Swarm diversity on F11 with n =

1000 (best 5 configurations)

Figure 26: Average number of personal best

updates on F7 with n = 1000 (best 5 con-

figurations)

Figure 27: Average number of personal best

updates on F11 with n = 1000 (best 5 config-

urations)

Although configuration B seemed to have converged according to the di-

versity plot, the swarm was usually actively improving for most of the search,

often displaying higher update counts than configuration A, especially later in675

the search. The swarm’s personal best position update counts increased just be-

fore its diversity dropped, implying that the swarm was exhibiting exploitative

behaviour.

Configuration C usually exhibited improvement throughout the search, with

update counts increasing as the search progressed, showing that the swarm was680
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still exploring. Configuration C’s low acceleration coefficients may explain why

the swarm required so many iterations to begin exploiting: since the influence

of a particle’s attractors was so low, it may take many iterations for a particle’s

trajectory to move in the direction of its updated attractors.

Configuration D’s behaviour varied, sometimes peaking early in the search685

and then converging prematurely. Other times, configuration D continued to im-

prove throughout the search with update counts just below that of configuration

B. Lastly, configuration E’s update counts consistently peaked within the first

500 iterations and then went almost to zero, indicating premature convergence.

Of the five most successful strategies, most prevented particles from roaming690

outside the search space. Configuration C, with the largest variance, occasion-

ally failed to return more than 10% of the swarm’s particles to the search space

(see figure 28). But in general, almost all of the particles returned to the search

space throughout the search (see figures 29 and 30).

From table 4, it is apparent that particle movement can be restricted suc-695

cessfully by having high inertia weights and low acceleration coefficients. Con-

figuration E is the exception, with a low inertia weight and a relatively large

acceleration coefficient (though still smaller than the values that are generally

accepted as “rule of thumb”).

4.2.2. Movement Patterns with Restricted Variance700

The previous two sections discussed the experiments where the base fre-

quency and variance of particle positions were varied in order to find optimal

movement patterns for high dimensional problems. This section considers the

configurations tested in section 3 which were obtained by restricting the stan-

dard deviation of particle positions and then calculating the corresponding val-705

ues for c and w. This section calculates the corresponding base frequency and

variance for each of the configurations obtained in section 3. The purpose of

this is two-fold: first, the corresponding base frequency will reveal the nature of

particle trajectories, thereby explaining why configurations with the same stan-

dard deviation are able to perform differently. Secondly, in accordance with the710
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Figure 28: Fraction of swarm out of bounds

on F8 with n = 1000 (best 5 configurations)

Figure 29: Fraction of of swarm out of bounds

on F7 with n = 1000 (best 5 configurations)

Figure 30: Fraction of of swarm out of bounds on F11

with n = 1000 (best 5 configurations)

findings in this section, it is expected that the corresponding base frequency and

variance of the configurations that performed well should yield smooth particle

trajectories. If so, then the findings of this section have been confirmed via an

independent experiment.

Figure 31 is a scatter plot, showing the corresponding base frequency (F )715

and variance (Vc) for each of the configurations in table 1. The colour of a

data point indicates its score, where pink data points correspond to high (good)

scores and blue data points correspond to low (bad) scores.
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Figure 31: Performance and Movement Parameters of Configurations with Restricted Variance

The corresponding base frequencies of the configurations exhibiting good

performance were low, implying that their trajectories were smooth with strongly720

correlated positions. This confirms previous statements regarding the regular-

izing effect that high inertia weight has on a particle’s trajectory.

The configurations exhibiting poor performance had high base frequencies,

implying that their trajectories were erratic and their positions were weakly

correlated or independent. This confirms statements regarding the dangers of725

high acceleration components, which enable rapid oscillation across the search

space when the location of the attractors change.

As can be seen from table 6, the best performing configurations fall within

the regions predicted by figure 20 to perform well (i.e. where the base frequency

is near 0.15). Similarly, according to table 7, the configurations that exhibited730

the worst performance were within the regions predicted by figure 20 to perform

very poorly (i.e. where F ∈ [0.2, 0.25]). Thus, the results from section 3 align

with the observations in this section. Note that for all the configurations in

tables 6 and 7, the variance fell somewhere in the first three columns of figure

20. All three of these variance values were very low, which may explain why735
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the influence of γ on search behaviour was less pronounced than the influence

of the relationship between c and w. The relationship between the acceleration

coefficient and the inertia weight is captured to a large extent by the base

frequency.

Table 6: Movement parameters for

best-performing combinations

c w F Vc

0.2786 0.95 0.0860 0.25

0.5182 0.9 0.1202 0.25

0.4274 0.95 0.1073 1.0

0.3754 0.95 0.1003 0.5625

0.6817 0.9 0.1390 0.5625

Table 7: Movement parameters for

worst-performing combinations

c w F Vc

0.0 1.0 0.0 ∞

1.575 0.4 0.2721 0.25

1.8462 0.5 0.2894 1.0

1.2833 0.65 0.2135 0.25

1.5592 0.7 0.2366 1.0

4.3. Summary740

This section considered the influence of the base frequency and variance of

movement on swarm movement patterns. The base frequency and variance in-

fluence the swarm’s range of movement and other characteristics of the particles’

trajectories such as smoothness, oscillation, and degree of correlation between

consequent positions.745

It was shown that the optimal value for the base frequency and variance de-

pends on the dimensionality of the problem. On the high dimensional problems,

the optimal configurations had low base frequencies and low variance of move-

ment. For all except the smallest variance value, the optimal base frequency

was the smallest possible value (0.05) and configurations with base frequencies750

larger than 0.15 exhibited poor performance. In contrast, for low dimensional

problems, the optimal base frequency was usually larger, between 0.1 and 0.2.

The low dimensional problems also benefited from larger variances than the high

dimensional problems. In high dimensional spaces, particles should exhibit low

range of movement and smooth trajectories for optimal performance. Param-755
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eters which bring about strong correlation between particle positions and low

variance exhibited granular searching and reduced unwanted roaming behaviour.

The experiments presented in this section also confirmed that swarms with

high inertia weights and low acceleration coefficients generally perform better

than those with low inertia weights and high acceleration coefficients.760

5. Further Improvement by Velocity Clamping

The previous two sections examined whether specific values of the inertia

weight and acceleration coefficients are sufficient to reduce swarm variance and

prevent particle roaming. Ideally, with optimal values for these parameters the

swarm’s movement patterns would facilitate efficient search space exploration.765

Velocity clamping reduces the maximum particle step size, which influences

the search dynamics. Although velocity clamping by itself is not sufficient to pre-

vent particle roaming [18], it may be that swarms exhibiting movement patterns

that are favourable for high dimensional problems (such as the configurations

found in the previous section) may perform even better when velocity clamping770

is applied.

Section 5.1 discusses the clamping strategies under consideration. Both of

these strategies are compared to unconstrained versions of the five best configu-

rations from the previous section. Section 5.2 explains the experimental details,

section 5.3 discusses the results, and section 5.4 concludes with a summary.775

5.1. Velocity Clamping

Two methods of velocity clamping are considered: component-wise clamping

in section 5.1.1, and scalar clamping in section 5.1.2.

5.1.1. Component-Wise Clamping

Component-wise clamping, as proposed by Eberhart and Kennedy [13], clamps

the absolute value of the velocity in each dimension j to some maximum value,

vmax,j . The value for vmax,j is typically chosen as a fraction of the search space,
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as below:

vmax,j = δ(Uj − Lj) (28)

where δ ∈ [0, 1].780

Clamping the velocity in every component separately decreases the magni-

tude of the velocity vector but may also change its direction. Velocity clamping

per dimension may thus force particles into unfavourable regions of the search

space, by distorting information from the local and global bests and from the

particle’s previous trajectory [32, 34].785

5.1.2. Scalar Clamping

Velocity clamping may also be applied based on the magnitude of the entire

velocity vector, taking care not to influence its direction. The entire velocity

vector is scaled so that ‖v‖ does not exceed vmax. As before, vmax is chosen as

a function of the search space’s size:

vmax = δ

√√√√ n∑
j=1

(Uj − Lj)2 (29)

= δ‖U− L‖ (30)

where U = [U1, U2, ..., Un]T and L = [L1, L2, ..., Ln]T are n-dimensional vectors.

Although this method preserves search direction, clamping in this manner

may “unfairly” penalize the entire velocity vector due to a few large components.

This may cause particles to explore slowly in the majority of problem dimensions790

due to a few outlier dimensions with large absolute values.

5.2. Experimental Method

The experiment applied both component-wise and scalar clamping to the top

five configurations from table 4. A range of δ values were considered, specifically:

δ ∈ {0.001, 0.005, 0.01, 0.05, 0.1, 0.15} (31)
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A previous study of velocity clamping in high dimensional spaces found that

component-wise clamping with very small δ-values performed well [18]. How-

ever, that study only considered the rule-of-thumb parameters: w = 0.729844795

and c1 = c2 = 1.49618. Based on these previous findings, the δ-values under

consideration include very small values.

All other experimental settings were the same as in sections 3.2 and 4.1.

5.3. Results of Velocity Clamping

Figures 32 to 36 indicate the best clamping strategy for each of the tested800

configurations.

Clamping per component was the better strategy for all configurations except

configuration E. The optimal δ values were on the smaller end of the scale,

between 0.001 and 0.05. It is not clear that further trends regarding optimal

clamping strategies can be extrapolated from these five configurations.805

Figures 37 to 46 illustrate the result of pairwise Mann-Whitney U tests

(with p = 0.05) comparing each unconstrained configuration to its clamped

counterparts. The number of functions on which the the unconstrained swarm

performed statistically significantly better in terms of fitness than the clamped

swarm is illustrated in green; ties are shown in yellow and wins by the clamped810

swarms are shown in red.

For configuration A, figures 37 and 38 show that the unconstrained swarm

performed significantly better than all of the clamped swarms. It is thus possible

to choose values of the inertia weight and acceleration coefficients that do not

require the application of velocity clamping to perform well.815

However, the pairwise comparisons for the remaining configurations imply

a more complicated situation. In contrast to configuration A, component-wise

clamping performed significantly better than or outperformed the unconstrained

swarm on all but the most extreme δ-values. Scalar clamping generally per-

formed the same or worse than the unconstrained swarm. The question of820

whether velocity clamping is beneficial thus depends strongly on the values of

the inertia weight and acceleration coefficients.
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Figure 32: Relative performance of clamping

strategies for configuration A (n=1000)

Figure 33: Relative performance of clamping

strategies for configuration B (n=1000)

Figure 34: Relative performance of clamping

strategies for configuration C (n=1000)

Figure 35: Relative performance of clamping

strategies for configuration D (n=1000)

Figure 36: Relative performance of clamping strategies

for configuration E (n=1000)
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As with configuration B, component-wise clamping performed better than

or the same as the unconstrained swarm. However, scalar clamping performed

significantly better than the unconstrained swarm for δ-values smaller than or825

equal to 0.05.

For configuration D, both component-wise and scalar clamping performed

better than or the same as the unconstrained swarm for δ-values larger than

0.01 (unlike configuration B where smaller δ-values performed better).

As with configuration A, the unconstrained swarm performed significantly830

better than the clamped swarms on most of the benchmark functions for con-

figuration E.

It is thus not immediately apparent whether the application of velocity

clamping will improve a swarm’s performance. Configuration A and E had the

lowest inertia weights and thus may have benefited less from velocity clamping835

than the other configurations. However, it remains unclear what the relationship

between the velocity update parameters and the optimal δ-value may be.

Figure 47 compares the performance of all the optimally clamped swarms

(optimal according to the results in figures 32 to 36) and their unconstrained

counterparts. Although applying velocity clamping does not improve the per-840

formance of configuration A, an optimally clamped version of configuration C

performs significantly better than any version of configuration A. The first and

third best swarms utilized velocity clamping whereas the second and fourth best

swarms were unconstrained. There is thus no clear rule of thumb as to whether

clamping is generally beneficial: the optimal clamping strategy depends strongly845

on the values of the acceleration coefficients and the inertia weight.

5.4. Summary

Swarm configurations with high inertia weights may benefit from velocity

clamping. The best configuration from section 4.2.1 performed significantly

better than, or the same as all of the clamped swarms with the same velocity850

update coefficients. However, other configurations in the top five did benefit

from velocity clamping and, in fact, performed significantly better than the
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Figure 37: Unconstrained swarm compared to

component-wise clamped for configuration A

Figure 38: Unconstrained swarm compared to

scalar clamped for configuration A

Figure 39: Unconstrained swarm compared to

component-wise clamped for configuration B

Figure 40: Unconstrained swarm compared to

scalar clamped for configuration B

Figure 41: Unconstrained swarm compared to

component-wise clamped for configuration C

Figure 42: Unconstrained swarm compared to

scalar clamped for configuration C
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Figure 43: Unconstrained swarm compared to

component-wise clamped for configuration D

Figure 44: Unconstrained swarm compared to

scalar clamped for configuration D

Figure 45: Unconstrained swarm compared to

component-wise clamped for configuration E

Figure 46: Unconstrained swarm compared to

scalar clamped for configuration E
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Figure 47: Comparison among the top 5 swarm configurations, with unconstrained swarms in

the first column and their optimally clamped counterparts in the second column.

51



best, unconstrained configuration. It is thus not immediately clear whether a

swarm with given inertia weight and acceleration coefficients will benefit from

velocity clamping. The optimal clamping strategy and δ-values are also not855

easily inferred from the swarm’s inertia weight and acceleration coefficients.

6. Conclusion

This work used the inertia weight and acceleration coefficients to control the

variance of particle positions. Restricting the variance by a fraction successfully

reduced the swarm’s velocity. As the variance was restricted more severely,860

the average velocity magnitude of the swarm decreased, as desired. However,

decreasing the variance of positions is not sufficient to guarantee good perfor-

mance. Even swarms that were restricted to the same variance on position

movements exhibited very different behaviour. Thus, the chosen values for the

inertia weight and acceleration coefficients were shown to be important.865

Swarms with high inertia weights and low acceleration coefficients performed

the best in high dimensions. High inertia weights have a regularizing effect on a

particle’s trajectory, making it smooth and granular. The particle is less likely

to rapidly divert its direction when its attractors are updated, since the influ-

ence of its momentum is stronger than the influence of its attractors. Thus,870

if the particle’s attractors change drastically from one iteration to the next, a

momentum-focused particle will be less prone to oscillation and velocity explo-

sion than a particle that has high acceleration coefficients.

The effect of different movement patterns was also studied. Different move-

ment patterns were brought about by changing the value of the base frequency875

and variance of movement which influence the swarm’s movement range and

other characteristics of the particles’ trajectories such as smoothness, oscilla-

tion, and degree of correlation between consequent positions. Different configu-

rations of the movement parameters were tested in high dimensions to determine

whether particular movement patterns are advantageous in high dimensional880

search spaces.
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It was found that small base frequencies and low variance were key factors in

the swarms that performed well and exhibited significantly less roaming. Small

base frequencies are associated with smooth, granular particle trajectories with

weak to strong correlation between particle positions. Low variance is associated885

with restricted range of movement. Smooth trajectories with low variance of

movement generally correspond to high inertia weights and low acceleration

coefficients (eg. w = 0.9694 and c1 = c2 = 0.099381).

Lastly, the paper investigated the effects of velocity clamping on swarms with

configurations that perform well in high dimensional spaces when unconstrained.890

It was found that applying velocity clamping does not necessarily improve

the performance of a swarm with a given inertia weight and acceleration coeffi-

cients. However, the configurations that perform well when unconstrained may

perform better when velocity clamping is applied and vice versa. Future work

may perform more extensive experimentation to investigate the relationship be-895

tween velocity update coefficients and clamping strategies further.

This paper considered the influence of the inertia weight and acceleration

coefficients on particle roaming in isolation from other swarm parameters such

as neighbourhood topology and swarm size. Further research may consider the

effect of these aspects on optimal movement patterns in high dimensional spaces.900

Future work may consider developig a self-adaptive PSO which calculates

the appropriate inertia weight and acceleration coefficients to bring about a

desired movement pattern. The inertia weight and acceleration coefficients can

be recalculated whenever the global and personal best positions are updated, to

maintain the desired variance in particle positions.905
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Appendices

A. Benchmarks

The benchmark suite used in the paper was specifically developed for testing

large-scale global optimisation algorithms by Tang et al. [36]. This appendix

provides a detailed explanation of the benchmark suite’s construction. The1080

first section explains how problems of varying separability may be constructed.

Section A.2 defines the benchmark suite and section A.3 concludes the appendix

with a brief summary of the benchmark functions’ properties such as modality,

domains and separability.

A.1. Separability and Basic Functions1085

The benchmark suite consists of minimization problems of varying degrees

of separability. Problem separability is often used as a measure of the prob-

lem’s difficulty. Separable problems are considered easy and fully-nonseparable

problems are considered difficult.

The partially separable problems contained in the benchmark suite fall into1090

one of three classes. The first class of functions contains a number of depen-

dent variables with all the remaining variables independent. The second class

consists of multiple independent sub-components, with each sub-component be-

ing m-nonseparable. The third class is a combination of these two and con-

sists of a number of independent sub-components, some separable and some1095

m-nonseparable. The benchmark suite comprises of separable problems, fully-

nonseparable problems and partially separable problems from all three classes.

Functions of varying degrees of separability are constructed by dividing the

input variables into several groups, each of which can be kept independent or

made dependent by means of coordinate rotation [33]. Each group of variables is1100

then evaluated by one of six basic functions and these values are added together

to produce the benchmark function’s value. The six basic functions are listed

below:
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1. Sphere Function (Fsphere)

2. Rotated Elliptic Function (Frot elliptic)1105

3. Schwefel’s Problem 1.2 (Fschwefel)

4. Rosenbrock’s Function (Frosenbrock)

5. Rotated Rastrigin’s Function (Frot rastrigin)

6. Rotated Ackley’s Function (Frot ackley)

Apart from the Sphere function, the basic functions are nonseparable. The1110

rotated functions listed above are calculated by multiplying the input vector

with an orthogonal matrix, then evaluating the rotated vector on the benchmark

function. The number of variable groups is determined by specifying m, the

number of variables in each group. The degree of problem separability is thus

determined by the m parameter. The paper uses m = 10 to accommodate1115

comparison of high dimensional functions with problems of dimensionality as

low as 10.

The random variable grouping may be achieved as follows: let P be a random

permutation of {1, 2, ..., n− 1, n} and let x be an n-dimensional variable. Then

x(P1 : Pm) = (xP1 , xP2 , ..., xPm−1 , xPm)T is a random group of size m chosen1120

from the components of x. The random permutation is used in this manner to

index the objective variables and produce random groups of the desired number

and size.

A.2. Benchmark Functions

The definitions of all the benchmark functions are provided in sub-sections1125

A.2.1 to A.2.5. The function definitions are grouped according to separability.

As before, n denotes the problem dimensionality, m denotes the group size and

x denotes an input variable or candidate solution. The global optimum of a

function is denoted by o and z denotes the shifted candidate solution z = x−o.

P denotes a random permutation of {1, 2, ..., n− 1, n} as described previously.1130
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A.2.1. Separable Functions

The benchmark suite contains three separable functions, which are defined

in table 8.

Table 8: Separable functions

Function Name Expression

F1 Shifted Elliptic Function Felliptic(z)

F2 Shifted Rastrigin’s Function Frastrigin(z)

F3 Shifted Ackley’s Function Fackley(z)

A.2.2. Single-Group m-Nonseparable Functions

A partially separable benchmark function is called single-groupm-nonseparable

if it contains a number of dependent variables with all the rest of the variables

independent. These functions fall into the first class of partially separable prob-

lems. The general form of these problems is given in Equation (32):

F (x) = Fγ
(
z(P1 : Pm)

)
× 106 + Fα

(
z(Pm+1 : Pn)

)
(32)

where Fγ is a nonseparable basic function, Fα is a separable basic function and z1135

is obtained from x and o as described previously. There are five single-group m-

nonseparable functions in the benchmark suite, provided in table 9 by specifying

Fγ and Fα.

Table 9: Single-Group m-nonseparable Functions

Function Fγ Fα

F4 Frot elliptic Felliptic

F5 Frot rastrigin Frastrigin

F6 Frot ackley Fackley

F7 Fschwefel Fsphere

F8 Frosenbrock Fsphere
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A.2.3. n
2m -Group and m-Nonseparable Functions

A partially separable benchmark function is called n
2m -group andm-nonseparable

if it consists of n
2m +1 independent components, where the first n

2m components

are m-nonseparable and the last component is separable. These functions fall

into the third class of partially separable problems. The general form of these

problems is given in Equation (33):

F (x) =

n
2m∑
k=1

Fγ
(
z(P(k−1)m : Pkm)

)
+ Fα

(
z(Pn

2 +1 : Pn)
)

(33)

where Fγ is a nonseparable basic function and Fα is a separable basic function.1140

There are five n
2m -group and m-nonseparable functions in the benchmark suite,

provided in table 10 below by specifying Fγ .

Table 10: n
2m

-Group and m-nonseparable functions

Function Fγ Fα

F9 Frot elliptic Felliptic

F10 Frot rastrigin Frastrigin

F11 Frot ackley Fackley

F12 Fschwefel Fsphere

F13 Frosenbrock Fsphere

A.2.4. n
m -Group and m-Nonseparable Functions

A partially separable benchmark function is called n
m -group andm-nonseparable

if it consists of n
m independent sub-components, all nonseparable. These func-1145

tions fall into the second class of partially separable problems. The general form

of these problems is given in Equation (34):

n
m∑
k=1

Fγ
(
z(P(k−1)m : Pkm)

)
(34)

where Fγ is a nonseparable basic function. There are five n
m -group and m-

nonseparable functions in the benchmark suite, provided in table 11 below by
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specifying Fγ .1150

Table 11: n
m

-Group and m-nonseparable functions

Function Fγ

F14 Frot elliptic

F15 Frot rastrigin

F16 Frot ackley

F17 Fschwefel

F18 Frosenbrock

A.2.5. Nonseparable Functions

The benchmark suite contains two nonseparable functions, which are defined

in table 12.

Table 12: Nonseparable functions

Function Name Expression

F19 Shifted Schwefel’s Problem 1.2 Fschwefel(z)

F20 Shifted Rosenbrock’s Function Frosenbrock(z)

A.3. Benchmark Function Summary

The benchmark suite consists of 20 minimization problems, of varying de-1155

grees of separability. The optimal objective function value is zero for all the

functions.

Table 13 summarizes each benchmark function’s degree of separability, modal-

ity and domain. The class of partially separable functions is specified. The

modality column denotes unimodal functions with “U” and multimodal func-1160

tions with “M”. The optimal objective function value for all of the benchmark

functions is 0.
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Table 13: Benchmark functions

Function Separability Modality Domain

F1 separable U [−100, 100]n

F2 separable M [−5, 5]n

F3 separable M [−32, 32]n

F4 partial class 1 U [−100, 100]n

F5 partial class 1 M [−5, 5]n

F6 partial class 1 M [−32, 32]n

F7 partial class 1 U [−100, 100]n

F8 partial class 1 M [−100, 100]n

F9 partial class 3 U [−100, 100]n

F10 partial class 3 M [−5, 5]n

F11 partial class 3 M [−32, 32]n

F12 partial class 3 U [−100, 100]n

F13 partial class 3 M [−100, 100]n

F14 partial class 2 U [−100, 100]n

F15 partial class 2 M [−5, 5]n

F16 partial class 2 M [−32, 32]n

F17 partial class 2 U [−100, 100]n

F18 partial class 2 M [−100, 100]n

F19 fully nonseparable U [−100, 100]n

F20 fully nonseparable M [−100, 100]n
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B. Additional Results

This appendix provides the empirical results for the three best and three

worst configurations from each experiment. The tables list the mean and stan-1165

dard deviation of the best fitness achieved by a swarm over all 30 simulations.

Table 14: Best Fitness Achieved for Three Best Configurations (Section 3)

Func c=0.2786 w=0.95 c=0.5182 w=0.9 c=0.4274 w=0.9

F1 1.091e+ 11± 5.762e+ 09 2.756e+ 11± 4.894e+ 09 2.994e+ 11± 2.842e+ 09

F2 1.175e+ 12± 3.919e+ 10 4.051e+ 12± 1.444e+ 11 5.105e+ 12± 3.349e+ 10

F3 2.044e+ 01± 2.864e− 02 2.129e+ 01± 9.703e− 03 2.133e+ 01± 3.746e− 03

F4 6.336e+ 13± 2.401e+ 13 3.239e+ 14± 4.920e+ 13 3.820e+ 14± 5.644e+ 13

F5 6.736e+ 07± 5.114e+ 06 1.090e+ 08± 4.824e+ 06 1.225e+ 08± 3.479e+ 06

F6 1.838e+ 07± 2.753e+ 05 1.979e+ 07± 1.400e+ 05 1.990e+ 07± 1.116e+ 05

F7 1.758e+ 10± 9.611e+ 09 2.612e+ 11± 2.555e+ 10 3.179e+ 11± 2.500e+ 10

F8 3.374e+ 14± 1.319e+ 14 4.504e+ 15± 5.148e+ 14 7.137e+ 15± 6.462e+ 14

F9 1.589e+ 11± 7.063e+ 09 3.557e+ 11± 6.324e+ 09 3.920e+ 11± 2.849e+ 09

F10 1.382e+ 04± 1.567e+ 02 2.096e+ 04± 1.055e+ 02 2.168e+ 04± 4.785e+ 01

F11 1.019e+ 03± 1.630e+ 00 1.074e+ 03± 5.614e− 01 1.077e+ 03± 3.739e− 01

F12 2.434e+ 07± 8.031e+ 05 5.724e+ 07± 8.087e+ 05 6.072e+ 07± 4.287e+ 05

F13 4.546e+ 11± 2.120e+ 10 1.777e+ 12± 4.842e+ 10 2.112e+ 12± 1.397e+ 10

F14 2.114e+ 11± 8.269e+ 09 4.629e+ 11± 9.380e+ 09 5.027e+ 11± 5.006e+ 09

F15 1.382e+ 04± 1.661e+ 02 2.087e+ 04± 1.308e+ 02 2.161e+ 04± 4.556e+ 01

F16 2.022e+ 03± 3.090e+ 00 2.111e+ 03± 1.042e+ 00 2.113e+ 03± 6.447e− 01

F17 6.211e+ 07± 1.465e+ 06 1.185e+ 08± 1.444e+ 06 1.256e+ 08± 5.315e+ 05

F18 1.112e+ 12± 3.951e+ 10 3.668e+ 12± 1.559e+ 11 4.604e+ 12± 2.349e+ 10

F19 7.397e+ 11± 1.266e+ 10 1.426e+ 12± 1.697e+ 10 1.505e+ 12± 7.044e+ 09

F20 1.362e+ 04± 1.464e+ 02 2.034e+ 04± 1.670e+ 02 2.121e+ 04± 5.826e+ 01

66



Table 15: Best Fitness Achieved for Three Worst Configurations (Section 3)

Func c=0 w=1 c=1.575 w=0.4 c=1.8462 w=0.5

F1 4.496e+ 11± 2.675e+ 09 4.444e+ 11± 3.641e+ 09 4.427e+ 11± 2.597e+ 09

F2 1.018e+ 13± 3.378e+ 10 1.006e+ 13± 3.097e+ 10 1.010e+ 13± 3.363e+ 10

F3 2.154e+ 01± 1.479e− 03 2.154e+ 01± 1.857e− 03 2.154e+ 01± 2.090e− 03

F4 1.471e+ 15± 1.004e+ 14 1.371e+ 15± 1.405e+ 14 1.417e+ 15± 1.040e+ 14

F5 1.979e+ 08± 3.600e+ 06 1.935e+ 08± 3.912e+ 06 2.023e+ 08± 3.814e+ 06

F6 2.108e+ 07± 3.818e+ 04 2.109e+ 07± 4.500e+ 04 2.113e+ 07± 2.845e+ 04

F7 8.677e+ 11± 3.976e+ 10 8.929e+ 11± 3.190e+ 10 8.447e+ 11± 3.793e+ 10

F8 3.289e+ 16± 2.626e+ 15 3.506e+ 16± 2.100e+ 15 3.187e+ 16± 2.145e+ 15

F9 5.896e+ 11± 3.733e+ 09 5.934e+ 11± 3.240e+ 09 5.807e+ 11± 4.480e+ 09

F10 2.651e+ 04± 3.950e+ 01 2.650e+ 04± 3.370e+ 01 2.648e+ 04± 3.328e+ 01

F11 1.092e+ 03± 2.161e− 01 1.092e+ 03± 2.012e− 01 1.092e+ 03± 2.350e− 01

F12 8.920e+ 07± 4.882e+ 05 8.891e+ 07± 3.758e+ 05 8.907e+ 07± 4.550e+ 05

F13 4.343e+ 12± 2.818e+ 10 4.364e+ 12± 2.374e+ 10 4.325e+ 12± 3.294e+ 10

F14 7.392e+ 11± 4.580e+ 09 7.337e+ 11± 5.809e+ 09 7.485e+ 11± 4.630e+ 09

F15 2.648e+ 04± 3.287e+ 01 2.649e+ 04± 2.739e+ 01 2.636e+ 04± 4.622e+ 01

F16 2.141e+ 03± 2.518e− 01 2.141e+ 03± 2.234e− 01 2.141e+ 03± 2.810e− 01

F17 1.796e+ 08± 5.126e+ 05 1.797e+ 08± 6.163e+ 05 1.792e+ 08± 6.179e+ 05

F18 9.110e+ 12± 3.600e+ 10 9.126e+ 12± 3.815e+ 10 9.100e+ 12± 4.008e+ 10

F19 2.128e+ 12± 6.404e+ 09 2.130e+ 12± 6.821e+ 09 2.147e+ 12± 4.473e+ 09

F20 2.615e+ 04± 3.502e+ 01 2.615e+ 04± 3.573e+ 01 2.614e+ 04± 4.158e+ 01
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Table 16: Best Fitness Achieved for Three Best Configurations (Section 4)

Func V=0.1 F=0.15 V=0.1 F=0.05 V=0.4 F=0.05

F1 5.699e+ 10± 1.706e+ 09 9.199e+ 10± 1.659e+ 09 1.262e+ 11± 4.066e+ 09

F2 1.521e+ 04± 6.189e+ 01 1.512e+ 04± 4.890e+ 01 1.426e+ 04± 1.392e+ 02

F3 2.068e+ 01± 7.470e− 03 2.067e+ 01± 7.686e− 03 2.062e+ 01± 1.883e− 02

F4 8.754e+ 11± 7.537e+ 10 4.310e+ 11± 2.347e+ 10 6.006e+ 13± 2.569e+ 13

F5 5.322e+ 07± 2.772e+ 06 5.086e+ 07± 2.727e+ 06 6.121e+ 07± 3.996e+ 06

F6 1.587e+ 07± 7.499e+ 05 7.516e+ 06± 1.207e+ 06 1.695e+ 07± 3.806e+ 05

F7 4.554e+ 06± 3.218e+ 04 4.553e+ 06± 3.699e+ 04 6.032e+ 10± 1.628e+ 10

F8 3.234e+ 09± 5.904e+ 08 1.305e+ 07± 4.192e+ 06 3.246e+ 14± 1.405e+ 14

F9 7.957e+ 10± 2.002e+ 09 1.168e+ 11± 1.998e+ 09 1.680e+ 11± 4.895e+ 09

F10 1.545e+ 04± 7.619e+ 01 1.555e+ 04± 4.854e+ 01 1.425e+ 04± 1.132e+ 02

F11 1.029e+ 03± 7.894e− 01 1.019e+ 03± 1.003e+ 00 1.033e+ 03± 2.640e+ 00

F12 1.614e+ 07± 3.415e+ 05 2.361e+ 07± 3.211e+ 05 2.679e+ 07± 5.390e+ 05

F13 2.351e+ 11± 7.481e+ 09 3.680e+ 11± 8.716e+ 09 4.736e+ 11± 2.022e+ 10

F14 1.065e+ 11± 2.307e+ 09 1.525e+ 11± 3.666e+ 09 2.243e+ 11± 5.294e+ 09

F15 1.538e+ 04± 7.738e+ 01 1.533e+ 04± 4.065e+ 01 1.412e+ 04± 1.430e+ 02

F16 2.044e+ 03± 7.802e− 01 2.028e+ 03± 1.547e+ 00 2.046e+ 03± 2.148e+ 00

F17 4.815e+ 07± 6.165e+ 05 5.886e+ 07± 4.518e+ 05 6.416e+ 07± 1.048e+ 06

F18 9.573e+ 11± 2.453e+ 10 1.159e+ 12± 1.358e+ 10 1.264e+ 12± 3.460e+ 10

F19 5.808e+ 11± 7.488e+ 09 7.224e+ 11± 6.170e+ 09 7.869e+ 11± 1.580e+ 10

F20 1.145e+ 12± 2.180e+ 10 1.347e+ 12± 1.580e+ 10 1.412e+ 12± 3.761e+ 10
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Table 17: Best Fitness Achieved for Three Worst Configurations (Section 4)

Func V=0.4 F=0.25 V=1.6 F=0.2 V=1.6 F=0.4

F1 4.444e+ 11± 3.266e+ 09 4.512e+ 11± 2.239e+ 09 4.440e+ 11± 3.377e+ 09

F2 2.616e+ 04± 3.566e+ 01 2.610e+ 04± 4.071e+ 01 2.613e+ 04± 3.013e+ 01

F3 2.154e+ 01± 1.778e− 03 2.154e+ 01± 1.606e− 03 2.154e+ 01± 1.440e− 03

F4 1.370e+ 15± 8.519e+ 13 1.540e+ 15± 1.098e+ 14 1.539e+ 15± 9.432e+ 13

F5 2.033e+ 08± 2.468e+ 06 2.055e+ 08± 3.282e+ 06 2.023e+ 08± 3.002e+ 06

F6 2.108e+ 07± 2.989e+ 04 2.109e+ 07± 2.422e+ 04 2.107e+ 07± 4.509e+ 04

F7 7.596e+ 11± 3.905e+ 10 8.248e+ 11± 3.693e+ 10 8.865e+ 11± 3.916e+ 10

F8 3.207e+ 16± 1.982e+ 15 3.070e+ 16± 2.123e+ 15 2.944e+ 16± 1.997e+ 15

F9 5.802e+ 11± 3.708e+ 09 5.845e+ 11± 5.994e+ 09 5.853e+ 11± 4.314e+ 09

F10 2.658e+ 04± 3.897e+ 01 2.649e+ 04± 4.551e+ 01 2.648e+ 04± 3.892e+ 01

F11 1.092e+ 03± 1.477e− 01 1.091e+ 03± 2.137e− 01 1.092e+ 03± 2.142e− 01

F12 8.891e+ 07± 4.625e+ 05 8.878e+ 07± 3.704e+ 05 8.904e+ 07± 5.086e+ 05

F13 4.350e+ 12± 2.193e+ 10 4.330e+ 12± 2.457e+ 10 4.385e+ 12± 2.670e+ 10

F14 7.443e+ 11± 4.730e+ 09 7.407e+ 11± 5.505e+ 09 7.400e+ 11± 5.159e+ 09

F15 2.641e+ 04± 4.373e+ 01 2.627e+ 04± 8.580e+ 01 2.639e+ 04± 5.162e+ 01

F16 2.141e+ 03± 2.278e− 01 2.141e+ 03± 2.379e− 01 2.141e+ 03± 1.646e− 01

F17 1.799e+ 08± 5.865e+ 05 1.795e+ 08± 5.336e+ 05 1.796e+ 08± 5.445e+ 05

F18 9.123e+ 12± 3.425e+ 10 9.139e+ 12± 3.371e+ 10 9.097e+ 12± 4.112e+ 10

F19 2.120e+ 12± 6.628e+ 09 2.117e+ 12± 7.925e+ 09 2.128e+ 12± 6.349e+ 09

F20 1.010e+ 13± 2.730e+ 10 1.011e+ 13± 4.310e+ 10 1.008e+ 13± 3.336e+ 10
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