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Abstract

This work is a significant extension of earlier research that was conducted in
fulfilment of the requirements of an MSc degree in Computer Science at the
University of Pretoria. The MSc research verified the hypothesis:

Finite automata can detect microsatellites effectively in deoxyribonu-
cleic acid (DNA).

The purpose of this thesis is to extend the above hypothesis to minisatellites and
satellites in particular with regards to accuracy. Microsatellites, minisatellites
and satellites are subsets of tandem repeats (TRs). A TR refers to two or more
consecutive “motifs” contained in a genomic sequence. A perfect TR is defined
as a string of nucleotides in which the motif is consecutively repeated at least
twice. An approximate TR is a string of nucleotides where the motif is repeated
consecutively at least twice, allowing for some differences between the instances.

Recent articles dealing with TR detection report that currently available TR
detector algorithms do not exhaustively identify all possible TRs. Consequently
some authors advocate that TRs from several TR detectors should be combined
to ensure reliable TR detection.

In order to verify the hypothesis Counting Finite Automata can detect minisatel-
lites and satellites accurately in DNA four related algorithms, collectively referred
to as FireSat, are proposed. Of these FireSat1, FireSat2 and FireSat3 have
been implemented. The thesis compares the performance of these algorithms
against the most relevant rival TR detecting software packages. It is found that
FireSat3 compares very well with the best of the available packages and fre-
quently outperforms it. The conditions under which this occurs are highlighted.

The underlying principles of the fourth algorithm, FireSat2′ , have been imple-
mented (although not the full algorithm), illustrating that FireSat2′ would detect
the exact same TRs as FireSat3.
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Although FireSat has default values, the user has several parameters that can
be used to fine-tune her search. The objective is to allow the user to do an
exhaustive search within the statistical constraints of her problem domain.

During the endeavour to develop algorithms that use finite automata for min-
isatellite and satellite detection in DNA, new types of automata were discovered
(coined counting automata) that have the following properties:

� They can be used for tandem repeat detection to the same degree of accu-
racy as conventional finite automata.

� The languages they define can be classified in the Chomsky hierarchy.

� They can be implemented more efficiently than other finite automata, in
terms of space.

Counting Finite Automata of Type 3 (CAT3s) are defined as well as so-called
Prototype CAT3s (pCAT3s). It is shown how these pCAT3s can be cascaded
to determine a Levenshtein based distance between two genetic substrings. A
composition of CAT3s, referred to as the Levenshtein Correspondence Automaton
(LCA), is also proposed. The LCA is suitable for implementation on an FPGA
or a GPU.



I am the wisest man alive for I know one thing, and that is that I know nothing.

— Socrates
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1
Introduction

1
Introduction

1.1
Research context

1.2
Biological

context

1.3
Thesis layout

Without education, we are in a horrible and deadly danger of taking educated people
seriously. ... G.K. Chesterton

Chapter 1 starts in Section 1.1 with a discussion of the research approach followed
in conducting the research that was undertaken for this thesis. In Section 1.2,
background to the biological issues that gave rise to the research is presented.
The chapter ends with Section 1.3, which motivates the remainder of the thesis
layout.

1.1 Research context

Glas et al. [2004] have analysed research undertaken in computing. They distin-
guish between three disciplines: Computer Science (CS), Software Engineering
(SE) and Information Systems (IS). They mention that CS examines topics re-
lated to computer concepts at technical levels of analysis. This entails the for-
mulation of processes or methods or algorithms. It also entails making use of
mathematically-based conceptual analysis. CS does usually not rely on reference

2
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disciplines.1

Their analysis shows that the research approach adopted by about 80% of com-
puter scientists is formulative; and about 90% of their research is self-referenced
and self-reflective. With the exception of the research problem, whose origins is
in the Bioinformatics discipline, and the statistical analysis of Chapter 9, the re-
search described in this thesis relies on theorems and definitions that are mostly
from the discipline of Computer Science. To this extent, it can be described
as self-reflective. In addition, the research is formulative, contributing to the
Computer Science knowledge framework in the following ways:

� New theoretical computer science machines called counting automata (CAs)
are introduced. CAs of type 1 (CAT1), type 2 (CAT2) and type 3 (CAT3)
are distinguished.

� Prototype finite automata (PFAs) are introduced. Deterministic PFAs (pDFAs),
deterministic prototype CAT3s (pCAT3s) and non-deterministic CAT3s (nPCAT3s)
are distinguished.

� The cascade operation on PFAs is defined.

� PFAs are cascaded to construct deterministic finite automata that detect
tandem repeats in a brute force manner (FireSat1).

� PCAT3s are cascaded to construct non-deterministic automata that detect
tandem repeats by computing Levenshtein-based distances (FireSat2).

� pNCAT3s are cascaded to construct non-deterministic counting automata
that compute Levenshtein distances. In principle these can be used to detect
TRs (FireSat2′).

� A Levenshtein Correspondence Automaton (LCA) is defined for the first
time and used for detecting tandem repeats (FireSat3). It is built from a
particular arrangement of CAT3s.

� The normalised Levenshtein Correspondence measure, LCn, is defined for
the first time and used as a so-called match score.

� A Recall-Precision (RP) analysis is performed on output generated by
FireSat3. The results obtained from the analysis were used to derive a
so-called match score function—a function of the LCn. The match score
threshold function, multiplied by a threshold factor, is used to establish

1By “reference disciplines” Glas et al. [2004] mean other disciplines whose theories formed
a basis for the research. Self-reference indicates reference to theories or papers in the discipline
under examination. Economics is given as an example of a reference discipline for IS.



CHAPTER 1. INTRODUCTION 4

suitable nucleotide positions for the start and end of tandem repeat ele-
ments (TREs). To the best of my knowledge, this is the first time that such
an RP analysis has been done on output generated by a tandem repeat
detector for the purpose of optimising a fit.

� Utilizing some of the newly introduced theoretical concepts, four algorithms
are introduced: FireSat1; FireSat2; FireSat2′ and FireSat3. Collectively
they are referred to as FireSat. FireSat was implemented.

In Chapter 9 it is demonstrated that in most circumstances, FireSat3 and
FireSat2′ are somewhat more accurate minisatellite and satellite detectors
than other existing TR detectors. From the detection results presented
in Chapter 9 it is clear that FireSat2 appears to be a highly accurate
TR detector alternative, although practical challenges are presented by its
implementation. FireSat1 was not as effective at TR detection. However,
FireSat1 still compared favourably against other existing TR detectors
whenever TRs with longer motif lengths should be detected.

The research approach followed in this thesis is therefore self-reflective and for-
mative in much the same way as many other research undertakings within the
Computer Science domain.

In addition, the research may be characterised as quantitative. Quantitative re-
search can be either experimental or quasi-experimental (Goubil-Gambrell [1991]).
The research conducted here is experimental in the sense that it includes the ma-
nipulation of variables that gives rise to various items of empirical2 data. This
data is then compared to data generated by functionally similar algorithms.

Since the proposed algorithms were implemented, it was possible to measure their
effectiveness in a quantitative manner.3 Using synthesised input data, the result-
ing output generated by various FireSat implementations was compared against
the output generated by carefully selected contender algorithms. As described
in Chapter 9, the comparison relies on statistical measures that are explained in
detail.

Before undertaking the research for this thesis, I had previously investigated a
selection of prominent software packages which are functionally similar to the
algorithm developed here. Chapter 3 refers to these investigations and cites the
associated publications which I either authored or co-authored. The chapter also

2 Empiricism advocates the idea that observation and measurement is the core of the scien-
tific endeavour (Trochim [2006]).

3FireSat2′ was not fully implemented. Only the underlying theoretical principles of
FireSat2′ were implemented, illustrating that the FireSat2′ NCAT3 can calculate both the
LC and the LD.
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summarises relevant algorithms whose implementations were not available on the
web during those earlier investigations.

Put more generally, this study adopts a positivistic stance. Positivists prefer re-
search methods that start with precise theories from which verifiable hypotheses
can be extracted and tested in isolation (Easterbrook et al. [2007]). This research
can also be characterised as having been conducted in a deductive manner. De-
ductive reasoning proceeds from the more general to the more specific—thus from
theory to hypothesis to observation and (hopefully) to confirmation (Trochim
[2006]). In the present case, these deductive phases have been realised as follows:

� Theory:
Algorithms to detect tandem repeats have been proposed. They rely on new
theoretical concepts such as the cascading operation that is applied to the
prototype automata mentioned above. These newly introduced concepts,
introduced in Chapter 2, are located within the context of pre-existing
theoretical theorems and definitions from the field of Computer Theory4. In
addition, the algorithms that offer solutions to the tandem repeat detection
problem are assessed on the basis of theoretical principles from Detection
Theory and entail an RP analysis, also mentioned above.

� Hypothesis:

Finite Automata5 can be used to accurately detect minisatellite
and satellite tandem repeats6 in DNA.

In order to investigate this research hypothesis, four different FireSat al-
gorithms were developed that rely on four respective tailored automata.
As mentioned above, FireSat1 relies on PFAs, FireSat2 relies on pCAT3s,
FireSat′2 relies on pNCAT3s and FireSat3 makes use of CAT3s. The extent
to which each of these algorithms can accurately detect minisatellites and
satellites is empirically explored.

� Observation: As previously mentioned, the suggested algorithms have been
implemented and their output subsequently compared against the output
of rival algorithms.

� Confirmation: By observing and comparing algorithm detection perfor-
mance, an assessment was made of the extent to which the original hypoth-
esis has been attained and of the shortcomings that exist.

4 Computer Theory constitutes mathematical models that describe, with various degrees of
accuracy, parts of computers, types of computers and similar machines (Cohen [1997]).

5See Chapter 2, Definition 2.3.1.
6Tandem repeats are defined in Chapter 2, Section 2.1 where there is also distinguished

between minisatellites (see Definition 2.1.26) and satellites (see Definition 2.1.27).
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1.2 Biological context

There were two sources of inspiration for this research. On the one hand, it
was found that molecular biologists were visually scanning genetic sequences in
order to detect specific patterns such as tandem repeats. On the other hand,
in trial runs of various implemented algorithms that purport to detect repeats,
output reported often differed significantly from one algorithm to the next. The
differences were often traceable to differing interpretations of features that the
sought-after repeats should possess.

This corresponds to the findings of Schaper et al. [2015], who motivate the devel-
opment of TRAL (Tandem Repeat Annotation Library) by stating that tandem
repeat detector algorithms generate heterogeneous, partially complementary as
well as conflicting results. In addition, they maintain that currently available tan-
dem repeat detection algorithms do not search exhaustively. One of the objectives
of FireSat was to search as exhaustively as possible by providing parameter set-
tings that enable the user to specify the precise features of repeats for which to
search.

As in my earlier research, this current research endeavour contributes to Bioin-
formatics, a subset of Computational Biology. While the main focus of this thesis
is the development of algorithms that contribute to the analysis of DNA, an un-
derstanding of the biological context of tandem repeats and of other competitive
software packages is also required. Consequently, reflective research7 has been
conducted in order to enhance this understanding.

To provide readers who are computer scientists with some biological context, I
repeat an earlier discussion to be found in De Ridder [2010].

Computational Biology is defined by BISTIC8 as

“. . . the development and application of data-analytical and theoret-
ical methods, mathematical modeling and computational simulation
techniques to the study of biological, social and behavioural systems.”

Bioinformatics is defined by Luscombe et al. [2001] as

“. . . the application of computational techniques to understand and
organize the information associated with biological macromolecules.”

7Reflective research includes the systematic and persistent inquiry into already existing
knowledge (Kressel [1997]).

8The Biomedical Information Science and Technology Initiative Consortium of the National
Institution of Health of the United States Of America (National Institute of Health of the
United States of America. BISTIC Definition Committee [2000]).
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Bergeron [2003] mentions that Bioinformatics distinguishes itself from other sci-
entific endeavours in the sense that it focuses on the information encoded in the
genes and how this information affects the universe of biological processes.

DNA is the polymer molecule9 that stores genetic information of organisms (Paces
[2001]). An organism’s genetic information is encoded in DNA as a sequence of
four different nitrogenous bases on a sugar-phosphate backbone. DNA can adopt
various conformations, including the double helix structure. The four nitrogenous
bases (nucleotides) are Adenine (A), Cytosine (C), Guanine (G) and Thymine
(T). The sequence of the four nitrogenous bases mirror each other in a predefined
manner in each strand of the double helix mirror: Adenine on the one strand
always binds with Thymine on the other, and Cytosine always binds with Guanine
(Bergeron [2003]). Therefore, the sequence ATTGCA will occur as TAACGT on
the complementary strand of the helix (Paces [2001]).

Examples of genetic databases that store nucleotide sequences include GenBank10,
DDBJ11, EMBL12, MGDB13, GSX14, NDB15 (Bergeron [2003]) and GeneCards
(Safran et al. [2002]).

DNA molecules are subject to numerous mutational events. One of the conse-
quences of these events that can be detected by computationally analysing genome
sequences, is tandem duplication. In tandem duplication a stretch of DNA, which
we call a motif, is converted to one or more “copies”, each following the preceding
one in a contiguous fashion. These copies may or may not be exact.

A perfect tandem repeat is a string of nucleotides in a genomic sequence whose
initial substring (of some arbitrary length), is followed by one or more adjacent
exact copies of that substring.

In contrast, an approximate tandem repeat is a genomic sequence whose intro-
ductory substring (or motif) is followed by one or more substrings, of which at
least one need not necessarily be an exact copy of the motif. The extent to which
these non-exact copies may vary from the motif is limited, as will be discussed
later in this thesis. A tandem repeat refers generically to either a perfect tandem
repeat or an approximate tandem repeat.

Consecutive repetitive DNA sub-sequences are of relevance in biology for various
reasons. In this regard Lim et al. [2012] mention that tandem repeats are essential
in both biological and medical research. The identification of tandem repeats

9Polymer molecules are large molecules consisting of repeated chemical units joined together.
10One of the largest public sequence databases.
11DNA Data Bank of Japan.
12European Molecular Biology Laboratory.
13Mouse Genome Database.
14Mouse Gene Expression Database.
15Nucleic Acid Database.
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in DNA has a particular significance in genetic research. Tandem repeats are
important as genetic markers.

There are more than 30 inherited human diseases that can currently also be
identified by detecting tandem repeats in DNA. The expansion of simple DNA
repeats has been linked to heredity disorders in human beings, including Fragile X
Syndrome, Mytonic Dystrophy, Huntington’s disease, spinal and bulbar muscular
atrophy, various Spinocerebellar Ataxias and Friedreich’s Ataxia. These diseases
are often referred to as repeat expansion diseases. The reason for this is that they
are caused by long and highly polymorphic tandem repeats.16

Tetra- or penta-nucleotide tandem repeats in the human genome are the genetic
markers used in DNA forensics. Since the number of adjacent repeat units varies
from individual to individual, the number of copies of motifs can be used to
identify an individual as well as relationships such as parent or grandparent re-
lationships.

Tandem repeats are also used in population studies, in conservation biology as
well as in multiple sequence alignments (Lim et al. [2012]). Kolpakov et al (2003)
mention that the presence of repeats can be seen as a fundamental feature of
genomes — a repeat is the simplest form of regularity in sequences. By analysing
repeats first, clues are gained which may lead to the discovering of new biological
phenomena (Kolpakov et al. [2003]). Note, that this is similar to how repeated
words give a starting point to deciphering a script when written in an unknown
language.

In the literature, a distinction is made between interspersed repeats and tandem
repeats. Interspersed repeats refer to repeated DNA sequences located at dis-
persed regions in a genome. These repeats are also known as mobile elements
or transposable elements. An interspersed repeat occurs if a stretch of DNA
(sequence of nucleotides) is copied to a different location through DNA recombi-
nation (Lee [1996], Pestronk [2005]).

Tandem repeats in eukaryotic genomes are involved in various gene regulatory
functions including participation in protein binding, affection of the chromatin
structure17 and in heat-shock inducible expression mechanisms (Kolpakov et al.
[2003]). In higher organisms, tandem repeats are associated with recombination
hot-spots18. A relationship has been established between the recombination in-

16Polymorphisms refer to variations in DNA sequences of individuals. Polymorphisms related
to trinucleotide diseases occur if the number of tandem repeat elements expand far beyond their
normal ranges (Fan and Chu [2007]).

17 Chromatin designates the structure in which DNA exists within cells. Chromatin structure
is determined and stabilized through the interaction of the DNA with the DNA-binding proteins
(King [2012]).

18 Recombination hotspots are short regions of around 2Kb in length that have significantly
higher recombination rates than their neighbouring regions (Fearnhead [2006]).
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tensity and the density of GT -repeats in human chromosomes. An increase of the
male recombination level in regions rich in tandem repeats with a motif length
between 10 and 100 base pairs (bps) has been observed (Kolpakov et al. [2003]).

Tandem repeats are also conserved in prokaryotes and in plasmids19 as well as
in genomic DNA. Furthermore a correlation has been observed between certain
repeats and virulence factors of bacteria.

Given the importance of known and potential biological roles for repeats as briefly
outlined above, it seems essential to develop an efficient and sensitive algorithm
to detect these repeats, so that they may receive further study.

FireSat relies on the implementation of finite automata to search for repeats.
In De Ridder [2010] three algorithms, referred to as FireµSat1, FireµSat2 and
FireµSat3 were proposed to search for microsatellites20. FireSat utilizes some
of the principles of FireµSat2 and FireµSat3. In principle, FireSat can search
for a repeating motif of any length, i.e. for tandem repeats in general.

One should note that there are numerous algorithms that search for microsatel-
lites.21 However, it is a computationally harder problem to find minisatellites22

or satellites23 in DNA. Clearly, the longer the motif length, the more charac-
ters need to be compared. Consequently, there are fewer algorithms that detect
minisatellites and satellites in DNA.

1.3 Thesis layout

This thesis is organised as follows.

� In Chapter 2 definitions and background definitions from two subject disci-
plines, molecular biology and automata theory, relevant to the remainder of
this thesis are provided. Definitions for PFAs, nPFAs as well as the cascade
operation are included in this chapter.

19 Prokaryotes are single cell organisms including bacteria (Bailey [2012]).
A plasmid is a small, circular unit of DNA that replicates within a cell independently of the
chromosomal DNA. Plasmids are often found in bacteria. Certain plasmids can insert them-
selves into chromosomes at spots where there is a common sequence of nucleotides. Plasmids
contain a small number of genes that code for proteins, and in particular for enzymes, some of
which confer resistance to antibiotics. Plasmids are used in recombination DNA research, to
transform bacterial cells (American Heritage Dictionary [2010]).

20Microsatellites are defined in detail in Chapter 2, Definition 2.1.20.
21A number of these implemented algorithms can be accessed at http://en.wikipedia.org/

wiki/Microsatellite_genetics.
22Minisatellites are defined in detail in Chapter 2, Definition 2.1.26.
23Satellites are defined in detail in Chapter 2, Definition 2.1.27.

http://en.wikipedia.org/wiki/Microsatellite_genetics
http://en.wikipedia.org/wiki/Microsatellite_genetics
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� Chapter 3 entails a literature overview. Reference is made to publications
authored or co-authored by me where algorithms aiming to detect tandem
repeats are discussed. Furthermore in Chapter 3 concept lattices are used
to classify TR detecting algorithms.

� Chapter 4 introduces the concept of a counting automaton. It proposes def-
initions for three types of counting automata, CAT1, CAT2 and CAT3, and
positions of the languages that they generate within the Chomsky hierarchy.
These formalisms evolved by reflecting on prior experience in developing
microsatellite detection algorithms described in De Ridder [2010]. Coun-
ters assigned to finite automata states in those algorithms were compared
against pre-assigned integer values. It was realised that by generalising such
counter comparisons in various ways, sublanguages within the Chomsky hi-
erarchy could be defined.

The automata previously used for microsatellite detection in FireµSat1 and
FireµSat3 were in fact CAT3s. At the time of publishing FireµSat, CAT3s
have not been formally defined.

� Chapter 5 provides a number of underlying principles relevant to the FireSat
variants.

� Chapter 6 presents FireSat1: utilising PFAs together with the cascade
operation.

� In Chapter 7, FireSat2 and FireSat2′ are introduced as alternative ap-
proaches to tandem repeat detection. FireSat2 relies on the cascading of
pCAT3s, whereas FireSat2′ cascades pNCAT3s.

� FireSat3, discussed in Chapter 8, describes how to compose CAT3s to con-
struct an LCA. This specialised automaton delivers the Levenshtein corre-
spondence between two strings and is used for estimating tandem repeat
elements.

� Chapter 9 applies detection theory and statistics to carry out an RP-
analysis, resulting in a match score threshold function. Implementations
of FireSat can use this function, modified by a user-selected match score
factor, to estimate where tandem repeats occur in data. This chapter also
reports on the accuracy of rival TR detectors in comparison to FireSat.

� Chapter 10 concludes this thesis and points to future research possibilities.

For the convenience of the reader after each chapter a bibliography of the chapter’s
references is provided.
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“A good notation has a subtlety and suggestiveness which at times make it almost
seem like a live teacher.” ... Bertrand Russell

This chapter presents definitions originating from both molecular biology and
from computer theory. The definitions are of relevance throughout the remainder
of this thesis, contributing to an understanding of the context and of the proposed
algorithms. In the context of this thesis a string (or word1) w is a sequence of
characters drawn from some set of characters, say Σ, called an alphabet. In this
text, Σ = {a, c, g, t} unless otherwise stated. The length of a string w is denoted
by |w|. Λ will be used to denote a special string, the so-called empty string. Note
that |Λ| = 0. Also note that characters in a string will sometimes be placed in
parenthesis to indicate relevant substrings2, as for example in (acg)act(acg)acg.

The remainder of this chapter is laid out as follows.

� In Section 2.1 definitions and restrictions related to tandem repeats are pro-
vided. These definitions contribute towards the clarification of the nature
of the tandem repeats to be detected. Within our context nature refers to

1The words word and string are used interchangeably throughout this text.
2A substring is a contiguous sequence of characters within a string.

13
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the type of tandem repeats to be detected — implemented algorithms can
detect either perfect tandem repeats (see Definition 2.1.1) or approximate
tandem repeats (see Definition 2.1.4).

From Masombuka et al. [2010] and Schaper et al. [2015] it is clear that
repeat detection algorithms that have the same objective, namely to detect
tandem repeats, do not necessarily detect and/or report exactly the same
tandem repeats. Thus, the nature of tandem repeats detected by various
algorithms differ. One of the objectives of this research is to determine the
extent to which FireSat is capable of detecting tandem repeats reported
by other algorithms.

� The next two sections are devoted to classical concepts in theoretical com-
puter science that are relevant to this work, namely grammars (Section 2.2)
and automata (Section 2.3). Readers who have the necessary background
may skip these sections.

� Section 2.4 proposes and defines so-called prototype finite automata. They
are classical finite automata, limited in certain ways so as to be useful in
the context of genetic string processing.

� In approximate string matching the so-called distance between a source and
a destination string is calculated. Section 2.5 provides background to the
calculation of distances. The same section also introduces the so called
Levenshtein Correspondence (LC) as well as the normalised LC (LCn).

� The chapter is concluded in Section 2.6.

Note that this thesis also proposes several variants of a new type of automaton,
generically called a counting automaton. Since the present chapter is focussed on
classical automata, material relating to these new types of automata is deferred
until Chapter 4. It will be seen there that, though based on finite automata,
definitions of counting automata allow for certain operations and conditions to
be associated with the transitions. Chapter 4 will also relate the various result-
ing types of counting automata to the well-known Chomsky hierarchy. Though
the Chomsky hierarchy is foundational to computer science language theory and
should therefore be discussed in the current chapter that focusses on classical
background material, it was decided to defer such a discussion to Chapter 4 as
well.
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2.1 Definitions and restrictions related to tan-

dem repeats

In this section definitions and restrictions related to tandem repeats (TRs) are
provided. The terminology introduced in this section is specifically used in Chap-
ters 3, 5, 6, 7 and 8. In Section 2.1.1 definitions related to TRs are defined. Section
2.1.2 deals with motif error definitions. Definitions dependent on the repetitive
motif length of a TR are presented in Section 2.1.3.

The origin of definitions given in this section varies — they can be divided roughly
into four groups as follows:

� Definitions that were present in the literature at the time that I commenced
with my TR (microsatellite) detection studies. These definitions are indi-
cated with a ⊕ next to their headers.

� Definitions that I proposed in De Ridder [2010] are indicated as such using
a �.

� Some of the definitions are introduced in this thesis for the first time. Those
are indicated with �.

� Definitions that were originally presented in De Ridder [2010] but that have
been modified according to new insight. These definitions are presented here
accompanied by more than one of the applicable characters.

2.1.1 Pattern matching: tandem repeats

Terminology related to TRs is introduced in this section.

Definition 2.1.1. Perfect tandem repeat (PTR) ⊕

A PTR is a string of nucleotides characterised by a certain introductory string
followed by one or more exact copies of that introductory string. The introductory
string is called the motif.3 �

Example 2.1.2. For the motif acg, acgacgacgacgacgacg is a PTR. �
3Note that there is no biological explanation as to “why” the introductory string is called the

motif. This thesis follows the convention of Rivals et al. [1995] that designates the introductory
string as the motif. TR-detection is in a sense “fuzzy” — there may be more than one correct
answer to TR detection. It is illustrated in the literature that there does not exist two TR
detectors that detect exactly the same minisatellites and satellites (Masombuka et al. [2010],
Schaper et al. [2015]).
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Definition 2.1.3. Perfect tandem repeat element (PTRE) �

A PTRE is an exact copy of the introductory motif within a TR. �

Definition 2.1.4. Approximate tandem repeat (ATR) ⊕

An ATR is a string of nucleotides characterized by a certain motif that introduces
the string followed by one or more adjacent “copies” of the motif. In the case of
ATRs, at least one motif copy will not be exact. �

Example 2.1.5. (acg)act(acg)acg(acg).
Here, acg is the motif. It is repeated “approximately” five times. The second
“copy”, act, is not exact since the g in the motif has been replaced by t. �

Definition 2.1.6. Approximate tandem repeat element (ATRE) �

An ATRE in an ATR is a non-exact copy of the introductory motif. �

Note that whether or not a nucleotide string may be deemed to be an ATR
is context-dependant or user-dependent—i.e. different contexts or users may
have different tolerances for the number of inexact motif copies in an ATR and
for the extent to which a given motif “copy” may differ from the motif itself.
There are various so-called mutational events which cause the differences to arise.
Furthermore, the extent of inexactness within an ATR clearly has to be within
certain bounds. These themes will be addressed in Section 2.1.2.

Definition 2.1.7. Tandem repeat (TR) ⊕

A TR is a string of nucleotides consisting of perfect tandem repeat elements
(see Definition 2.1.3) and/or approximate tandem repeat elements (see Defini-
tion 2.1.6). �

Definition 2.1.8. Tandem repeat element (TRE) �

A TRE is either a PTRE or an ATRE within a TR. �

A TRE is thus any motif copy, exact or approximate, in a TR.

Example 2.1.9. In the case of acg(acg)act(acg)acg, acg is a TRE that occurs4

four times, and act is a TRE that occurs once. �

2.1.2 Motif error

Motif errors occur in ATREs.

4In this thesis the words occurrence (noun) and occur(s) (verb), are interchangeably used
to refer to presence, typically of a character or substring within a string or substring. The
meaning should be clear from the context.
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Definition 2.1.10. Motif error (ε) ⊕

A motif error is an irregularity within an ATRE that may be attributed to a
mutational event. The total number of motif errors in a given string is generally
denoted by ε and is called the motif error of the string. Where clear from the
context, the term motif error should be assumed to refer to the total number of
motif errors in the string under consideration. �

The mutational events that give rise to motif errors are classified as mismatches,
deletions or insertions.

In the examples below, a string ρ will represent a motif. ρp represents the string
ρ repeated p times. ρp is thus a PTR.

A string u is considered similar to the string ρp if it can be written as u =
u1u2 · · ·up where each word uk (k = 1 · · · p) is obtained by at most εmax mutations
on ρ.

In the examples to follow, assume that ρ = acgtac and thus that |ρ| = 6. It is
assumed that u = u1u2 · · ·up is an ATR based on ρp. The examples show the set
of mismatch strings, the set of deletion strings and the set of insertion strings,
respectively, when ε = 1, in each string.

To enable accurate communication, within the context of TR detection in this
thesis, it is meaningful to distinguish between:

� Motif error (ε): the number of motif errors occurring in ρ.

� Motif error percentage (ε%):

ε% =
ε

|ρ|
× 100

� Maximum number of motif errors (εmax): an integer value representing the
maximum number of motif errors to be tolerated in ρ.

� Maximum motif error percentage (εmax%): a percentage value indicating
the maximum percentage of nucleotides that an ATRE, deduced from a
certain ρ, may have. Clearly the calculation of this value is equivalent to a
maximum that is specified for ε% and calculated in the same manner.

Definition 2.1.11. Mismatches ⊕

A mismatch(es) occurs in the word uk if |uk| = |ρ| and one or more bases, mis-
match the bases, in the same respective positions of ρ. Thus the word “mismatch”
is used to define the term mismatch. �
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Example 2.1.12. Assuming εmax = 1, then uk derived from ρ = acgtac, with a
mismatch are as follows:

uk ∈ {xcgtac | x : {c, g, t}}
∪ {axgtac | x : {a, g, t}}
∪ {acxtac | x : {a, c, t}}
∪ {acgxac | x : {a, c, g}}
∪ {acgtxc | x : {c, g, t}}
∪ {acgtax | x : {a, g, t}}.

In all these cases |uk| = 6. �

Definition 2.1.13. Deletions ⊕

The word uk derived from ρ where a deletion occurs, is the string ρ from which at
least one nucleotide has been deleted. Thus the word “deletion” is used to define
the term deletion.

�

Example 2.1.14. The deletions of ρ when εmax = 1 are given by:

uk ∈ {cgtac}
∪ {agtac}
∪ {actac}
∪ {acgac}
∪ {acgtc}
∪ {acgta}.

Thus, in all these cases |uk| = 5. �

Definition 2.1.15. Insertions ⊕

A word uk contains an insertion if at least one nucleotide is inserted in front of
any position of ρ. Thus the word “insertion” is used to define the term insertion.

�

Example 2.1.16. If |ρ| = 6 and εmax = 1 then uk can have insertions as follows:
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uk ∈ {xacgtac | x : {a, c, g, t}}
∪ {axcgtac | x : {a, c, g, t}}
∪ {acxgtac | x : {a, c, g, t}}
∪ {acgxtac | x : {a, c, g, t}}
∪ {acgtxac | x : {a, c, g, t}}
∪ {acgtaxc | x : {a, c, g, t}}.

In all these cases |uk| = 7.

�

In the current context the destination string is taken to be a PTRE and the
source string an ATRE.

Definition 2.1.17. Consecutive motif errors allowed (κmax%) �

κmax% is a user-determined percentage value specifying the maximum allowable
percentage of motif errors adjacent to one another within an ATRE. FireSat will
only consider a substring to be a TR if the consecutive motif error, κ%, on all
its ATREs is ≤ κmax%. The counter κ keeps track of the number of motif errors

occurring consecutively within an ATRE. Clearly κ% =
κ

|ρ|
× 100. �

Example 2.1.18. Suppose ρ = acgtcaaaaa; εmax% = 40% and κmax% = 40%.
Then acgtctttta may be considered a “copy” of ρ. However, if κmax% = 30%
then acgtctttta may not be considered a “copy” of ρ since κmax% < κ% where
κ% is the percentage of consecutive motif errors, namely 40%. On the other
hand, aggtcttaag is a valid “copy” of ρ—even though it contains 40% mis-
matches (which does not exceed the percentage of permitted motif errors indicated
by εmax% = 40%), it also does not violate the requirement that κmax% ≤ 30%
because the errors are not adjacent. �

The same distinctions, made for ε, presented in the itemized list after Definition
2.1.10, can be made for the metrics defined above.

Definition 2.1.19. The substring error (σ%) � �

The substring error σ% of a string is a percentage value, measuring the number
of errors, weighted according to error type. If pm, pd and pi are all equal to 1,
σ% = ε%.

For a given motif, ρ, and a given substring that has been partitioned into the form
u = ρu2 · · ·up, σ% on ui is computed as:
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σ% =
(nd × pd) + (ni × pi) + (nm × pm)

|ρ|
× 100 (2.1)

(2.2)

where:

� nd is the number of deletions in u;

� ni is the number of insertions in u;

� nm is the number of mismatches in u;

� pm is the penalty value on mismatches;

� pd is the penalty value on deletions and;

� pi is the penalty value on insertions.

�

The maximum substring error allowed, σmax% is user determined σ%. It serves
as a threshold against which the substring error σ% is compared when FireSat

detects TRs. FireSat will only consider a substring to be a TR if its substring
error σ% ≤ σmax%.

Note that σ% and κ% can be computed for any two genetic strings, one designated
as the source and the other as the destination — the definitions need not be
limited to the TR context.

Within the context of TR detection, an alternative metric, indicating the dif-
ferences between a PTRE (destination) and a TRE (source), is the Levenshtein
Distance (LD). The definition of the LD is deferred until Section 2.5 where the
Levenshtein Correspondence (LC) is also introduced.

2.1.3 TR classification

TRs are typically divided into microsatellites, minisatellites and satellites. The
length of the repeating motif determines whether the TR is a microsatellite,
minisatellite or satellite. The literature is not consistent in the classification of
TRs according to repeating motif length (De Ridder [2010]).

The definitions adopted for the purposes of this thesis are as follows:
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2.1.3.1 Microsatellites

Definition 2.1.20. Microsatellite ⊕

A microsatellite is a TR whose motif length is restricted to the range 1 ≤ |motif | ≤
6. �

Microsatellites can be classified as follows:

Definition 2.1.21. Mononucleotide repeats ⊕

A mononucleotide is a microsatellite consisting of a single nucleotide that is con-
secutively repeated. �

Example 2.1.22. TRa = {aa, aaa, aaaa, · · · } is the set of mononucleotide repeats
with respect to a. �

Definition 2.1.23. Dinucleotide repeat ⊕

A dinucleotide is a microsatellite where the repeated motif length is 2. �

Example 2.1.24. TRac = {acac, acacac, acacacac · · · } is the set of dinucleotide
repeats with respect to ac. �

Definition 2.1.25. Trinucleotide, tetranucleotide, pentanucleotide and
hexanucleotide repeats ⊕

Trinucleotides, tetranucleotides, pentanucleotides and hexanucleotides are microsatel-
lites whose repeated motif lengths are 3, 4, 5 and 6 respectively. �

2.1.3.2 Minisatellites and satellites

Definition 2.1.26. Minisatellite ⊕

A minisatellite is a TR whose motif length is restricted to the range 7 ≤ |motif | ≤
100. �

Definition 2.1.27. Satellite ⊕

A satellite is a TR whose motif length is restricted to the range
|motif | > 100. �

2.1.4 TR-filters

TR-filters are concerned with the nature of the TRs to be output. In other words
one can use these filters to specify how many of which type of TREs are required
and/or allowed within a sequence of nucleotides for that sequence to be validly
reported as a TR. Two TR-filters are defined below, namely the maximum number
of consecutive ATREs and the minimum number of tandem repeat elements to be
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output. TR-filters differ from motif errors in the sense that guidelines pertaining
to motif errors consider the nature of a single TRE whereas TR-filters consider
the nature of a potentially detected TR that consists of several TREs.

In contrast to motif errors, TR-filters are not applicable when comparing two
arbitrary genetic strings.

Definition 2.1.28. The Maximum consecutive ATRE filter (αmax)
�

The consecutive ATRE-filter, αmax, indicates the maximum number of ATREs
that are allowed to occur next to each other. �

Thus, a string will only be classified as a TR if there are no more than αmax ATREs
separating occurrences of PTREs. α keeps track of the number of consecutive
ATREs. For a TR to be reported α ≤ αmax.

Definition 2.1.29. The Minimum TR-length filter (βmin)
⊕

The TR-length filter indicates the minimum number of TREs that a TR should
have if it is to be reported. Suppose β is the number of TREs in a TR. Then a
TR will only be reported if β ≥ βmin. �

In this section, definitions related to repeats were provided. Several of these
definitions were proposed by De Ridder [2010]. The objective of introducing new
definitions to the literature is to enable and extend precision when communicating
about TRs in a way that was not previously possible.

2.2 Classical grammars

This section deals with classical grammars and the next with classical automata.
The main sources used in these two sections are Cohen [1997], Sipser [2006]
and Hopcroft and Ullman [1979]. Informal definitions are generally similar to
definitions provided in Cohen [1997], whereas formal definitions are usually guided
by Sipser [2006] or Hopcroft and Ullman [1979].

Readers who have a thorough background in mathematics and/or in theoretical
computer science may skip both sections. They are given for completion to ensure
that theoretical proposals given later fit in with classical theory.

Grammars generating languages belonging to different types of the Chomsky
hierarchy are presented next to illustrate how the restrictions on productions
influence languages and words generated. Although this thesis focusses more
on machines (automata) than on grammars, Chapter 4 references the grammars
defined here and illustrates how a counting regular attribute grammar (as defined
by Sperberg-McQueen [2004]) can be converted into an automaton of a specific
type, denoted by CAT3.
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Definition 2.2.1. Language
A language is a set of words (or strings). Note that ∅ represents the empty
language. �

Definition 2.2.2. Kleene closure (Σ∗)
The Kleene closure defines the language over an alphabet Σ such that any string
of characters of Σ is a word in Σ∗. Note that the so-called empty string Λ is also
considered to be in Σ∗. �

Definition 2.2.3. Kleene plus closure (Σ+)
The Kleene plus closure is defined as Σ∗ \ {Λ}. �

Example 2.2.4.
If Σ = {a, c, g, t} then
Σ∗ = {Λ, a, c, g, t, aa, ac, ag, at · · · } and Σ+ = {a, c, g, t, aa, ac, ag, at · · · }.
If Σ = ∅ then
Σ∗ = {Λ} and Σ+ = ∅. �

Definition 2.2.5. Concatenation of languages
If L1 and L2 are languages, then their concatenation, L1L2, is the language
{w1w2 | w1 ∈ L1 and w2 ∈ L2}. �

Example 2.2.6. If L1 = {aa, ac} and L2 = {gc} then L3 = L1L2 = {aagc, acgc}.
�

Definition 2.2.7. Production
A production has the form α → β for strings α and β from (V ∪ Σ)∗ where V
and Σ are disjoint sets of so-called non-terminal and terminal characters
respectively. �

A production is also referred to as a rewrite rule. Thus a character substitution
can recursively be performed to generate new character sequences. Production
restrictions are determined by the type of grammar to be generated. This is
illustrated in Sections 2.2.1, 2.2.2, 2.2.3 and Section 2.2.4. Note that → will ex-
clusively be used in the statement of productions, whereas ⇒ will exclusively be
used to indicate stage changes in so-called derivations (see Example 2.2.20). The
character “|” is used as follows to compact notation when two or more produc-
tions have the same right hand side:
S → ASC and S → Λ can be written as S → ASC|Λ

Definition 2.2.8. Grammar
A grammar is defined as a four tuple (V,Σ, R, S) where R is a set of production
rules over the set of terminal characters Σ∗ and the set of non-terminal characters,
V (also referred to as variables). The special character S ∈ V is designated as
the start character of the grammar. �
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This text follows the convention of representing non-terminals as upper case char-
acters.

Suppose w1, α and w2 are arbitrary strings in (V ∪ Σ)∗. The operational mean-
ing of a production rule α → β in a grammar is that the substring α can be
substituted by β in the string w1αw2 to produce the derived string w1βw2.

Definition 2.2.9. Sentential form of a grammar G = (V,Σ, R, S)
A sentential form of the grammar G = (V,Σ, R, S) is its start character, S, as
well as any other string in (V ∪ Σ)∗ that is derivable from S. �

Example 2.2.10. Consider the grammar with productions:
S → ASC | Λ
A→ a

C → c

Then the following is one possible sequence of derivations:
S ⇒ ASC ⇒ AASCC ⇒ aASCC ⇒ aaSCC ⇒ aaΛCC ⇒ aaΛcC ⇒ aaΛcc
⇒ aacc.
Thus, each of the following is a sentential form:
ASC, AASCC, aASCC, aaSCC, aaΛCC, aaΛcC, aaΛcc, aacc �

Definition 2.2.11. Language of the grammar G = (V,Σ, R, S)
The string w ∈ Σ∗ is said to be in the language defined by G if and only if it
can be derived by a sequence of substitutions that begins with S and ends with w
(Kent et al. [1992]). �

Definition 2.2.12. L′

If L ⊂ Σ∗ then L′ denotes all the words in Σ∗ that do not belong to L. �

Definition 2.2.8 defines a grammar as a four tuple. Each grammar belongs to a
specific level of the Chomsky hierarchy (discussed in Section 4.3). The level is
determined by the kind of restrictions that apply to the grammar’s productions.
Each of the definitions below (2.2.13, 2.2.17, 2.2.18, 2.2.21 and 2.2.22) are in
reference to a grammar (V,Σ, R, S). In each case, the production restrictions will
be given, thereby highlighting the differences between the respective grammar
types.

2.2.1 Regular grammars

Regular grammars (Definition 2.2.13) define regular languages. However, finite
automata (Definition 2.3.1) and regular expressions (Definition 2.2.14) are alter-
native ways of defining regular languages.
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Definition 2.2.13. Regular grammar
A regular grammar has a finite set of rules, R, of the form α → β where the
productions are constrained in four ways:

1. α ∈ V

2. |α| ≤ |β|

3. β ∈ Σ∗ or β = xiX or β = Xxi where X ∈ V and xi ∈ Σ∗

4. The single non-terminal on the right-hand side must appear either as the
rightmost character in every production or as the leftmost character in every
production rule.

�

A regular grammar is called a right regular grammar (left regular grammar) if the
single non-terminal on the right-hand side of productions is always the rightmost
character (leftmost character, respectively) in every production5.

Another way of defining a regular language is by using a regular expression
(regex).

Definition 2.2.14. Regular expressions

1. Λ is a regex that defines the regular language {Λ}.

2. Suppose a ∈ Σ. Then a is a regex that defines the regular language {a}.

3. Let r1 be a regex defining the regular language L1 and let r2 be a regex
defining the regular language L2. Then:

(a) r∗1 is a regex defining L∗1.

(b) r1r2 is a regex defining L1L2.

(c) r1 + r2 is a regex defining L1 ∪ L2.

�

Example 2.2.15. If r1 and r2 are regexes representing the regular languages
L1 = {ac, gt} and L2 = {aa, gt}, then
r1 + r2 represents the language {aa, ac, gt}.
r1r2 represents the language {acaa, acgt, gtaa, gtgt}. �

Definition 2.2.16. Regular language
The language generated by a regular grammar or represented by a regular expres-
sion is a regular language. �

5A regular grammar is thus a specialised form of a linear grammar (Definition 2.2.18), which
is, in turn, a specialised form of a context free grammar (Definition 2.2.17).



CHAPTER 2. THEORETICAL BACKGROUND 26

2.2.2 Context free grammars

Definition 2.2.17. Context free grammar (CFG)
A CFG has a finite set of rules, R, of the form α→ β, where
α ∈ V ; and
β ∈ (V ∪ Σ)∗. �

A linear grammar is a context free grammar with an additional limitation on the
right hand side of productions.

Definition 2.2.18. Linear grammar
A linear grammar has a finite set of rules, R, of the form α→ β where:
α ∈ V ; and
either β ∈ Σ∗ or β = xiXyi where xi, yi ∈ Σ∗ and X ∈ V . �

Definition 2.2.19. Context free language
A language generated by a CFG is referred to as a context free language (CFL).

�

Example 2.2.20. The CFL L = {ancn|n ≥ 1} can be generated by the following
CFG productions.

S → ASC|Λ
A→ a

C → c

The derivation of the word aacc, using these productions, is as follows:
⇒ ASC (using the production S → ASC )
⇒ AASCC (using the production S → ASC )
⇒ aASCC (using the production A→ a )
⇒ aaSCC (using the production A→ a )
⇒ aaΛCC (using the production S → Λ )
⇒ aaΛcC (using the production C → c )
⇒ aaΛcc (using the production C → c )
= aacc �

2.2.3 Context sensitive grammars

Definition 2.2.21. Context sensitive grammar
A CSG has a finite set of rules, R, of the form αAβ → αγβ, where
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A ∈ V,
α, β ∈ (V ∪ Σ)∗, and

γ ∈ (V ∪ Σ)+.

�

Thus γ consists of concatenated terminals and non-terminals in any order but γ
cannot be the empty word, Λ.

The name context-sensitive references the fact that α and β form the context of
the non-terminal A and determine whether or not A can be replaced by γ. In the
case of CFGs (Definition 2.2.17), the left hand side of productions consist only
of one non-terminal without a context, which has to be taken into account.

2.2.4 Unrestricted grammars

Definition 2.2.22. Unrestricted grammar
An unrestricted grammar has a finite set of rules, R, of the form α→ β where:
α and β are in (V ∪ Σ)∗;
α 6= Λ; and
α contains at least one element of V .
There are no other restrictions on productions. �

Unrestricted grammars characterise the so-called recursive enumerable languages.

2.3 Classical automata

The automata discussed in this section are well known in the literature. They
are also referred to as theoretical machines or simply as machines. The simplest
of these machines, deterministic finite automata (DFAs), are discussed in Section
2.3.1. Operations on deterministic DFAs relevant to Chapter 5 are given in Sec-
tion 2.3.2. Section 2.3.3 covers definitions of other regular language acceptors.
In Section 2.3.4, push down automata (PDAs) are defined and Turing machines
are defined in Section 2.3.6. Note that definitions of these classical automata
are taken from Cohen [1997]; Sipser [2006]; Hopcroft and Ullman [1979]; Sutner
[2011b] and Sutner [2011a]. It is assumed that the reader is familiar with classical
concepts from graph theory such as node, edge, path, cycle, tree, etc.

The concepts defined below will be referenced in Chapter 4 where CAT1, CAT2

and CAT3 are defined and compared to the machines defined in this section.
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2.3.1 Deterministic finite automata

Formally a DFA can be defined as follows:

Definition 2.3.1. Deterministic finite automata (DFA)

A DFA is a 5-tuple (Q,Σ, δ, q0,z) where:

� Q is a non-empty finite set of states Q = {q0, q1, q2...qn}.

� q0 ∈ Q is designated to be the start state.

� z, a subset of Q, is the set of final states.

� Σ = {x1, x2, x3...xs} is a finite alphabet.

� δ : Q× Σ→ Q is a possibly partial transition function.

�

Note that in the current context Σ = {a, c, g, t}.
Total and partial DFAs can be distinguished as follows:

Definition 2.3.2. Total Deterministic Finite Automata
A total DFA is a DFA such that the transition function, δ, is a total function.
Thus, for every state in Q and character in Σ there is a transition to a state in
Q.

�

Definition 2.3.3. Partial deterministic finite automata
A partial DFA is a DFA such that the transition function, δ, is a partial function.
Thus, for a given state in Q there is not necessarily a transition on every character
in Σ. �

Definition 2.3.4. DFA string acceptance
Consider a DFA (Q,Σ, δ, q0,z) and a word w ∈ Σ∗ where w = a0a1 . . . an.

If there is a sequence of states, qw0, qw1, qw2, . . . qwn such that qw0 = q0, qwn ∈ z
and δ(qwi, ai) = qw(i+1) for i = 0 . . . n then, and only then, the DFA is said to
accept w. Otherwise the DFA is said to reject w. �

Definition 2.3.5. Language of a DFA
The language of a DFA is the set of words that the DFA accepts. �
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Thus, if a DFA, either total or partial, is being used to test whether a string is
in the DFA’s language and it is found that qwn /∈ z then the string is rejected as
being in the DFA’s language. If a partial DFA is being used and it is found that
a transition cannot be made because δ(qwi, ai) is not defined, then the machine
is said to crash. In this case, the string is also rejected as being in the DFA’s
language.

When important to distinguish between partial or total DFAs in this thesis, it
will be done so explicitly.

It can be shown that the language of any DFA is a regular language. Conversely,
as Kleene proved in 1956, any regular language (that is, a language defined by a
regular expression) is also the language of some DFA (Cohen [1997]).

Definition 2.3.6. Transition graph of a DFA
Automata are represented as directed graphs. The graph’s nodes are DFA states,
depicted as circles. The graph has labelled directed edges between states to repre-
sent the DFA transition function. The DFA start state is indicated by an in-edge
that has no originating state. DFA final states are drawn as two concentric circles.
The resulting graph is called a transition graph of the DFA. �

A word may be tested for membership of a DFA’s language by checking whether
there is a path in its transition graph from the start state to a final state. If there
is, the word is said to be accepted by the DFA. Otherwise, it is rejected.

Example 2.3.7. Figure 2.1 shows the transition graph of a total DFA. The DFA’s
alphabet is Σ = {a, c, g, t}. It accepts only one word, namely acg. Therefore,
the language of the DFA is {acg}. Note that the word Λ is not in the language,
because q0 /∈ z. Also note that all words in Σ+ other than acg end up in state
q4 /∈ z, which is an example of a so-called sink state. Any partial DFA can be
converted into a total DFA defining the same language by introducing a sink state
as the destination state for all undefined transitions. �

Definition 2.3.8. Cyclic DFA
A cyclic DFA is a DFA whose transition graph has at least one cycle—i.e. there
is at least one state p from which a sequence of edges loops back to state p. This
includes the case where a single edge from p loops directly back into p [Watson
[2010]]. �

Note that the transition graphs of all total DFAs are cyclic. (If this were not the
case, then the DFA would have to have an infinite number of states, but that is
counter to the definition of a DFA.) Typically, there will be at least one single-
edged cycle at a sink state whenever no other cycles are present in a particular
DFA.



CHAPTER 2. THEORETICAL BACKGROUND 30

q0 q1 q2

a c g
q3

q4

a,c,g,t

c,g,t a,g,t a,c,t

a,c,g,t

Figure 2.1: A total DFA whose language is {acg}.

Definition 2.3.9. Acyclic DFA (ADFA)
An ADFA is a DFA without cycles. �

All ADFAs are therefore partial DFAs. An ADFA is thus made up of a collection
of states and directed edges, each edge connecting one state to another in such a
way that there is no path from some state, p, back to itself.

2.3.2 Operations on DFAs

Algorithms to determine the sum of DFAs and to convert a DFA into a right linear
grammar and vice-versa are outlined below. These algorithms are of relevance in
the remainder of this thesis—especially in Chapters 4, 5 and 7.

2.3.2.1 The sum operation on DFAs

The Proof of Rule 2 of part 3 of Kleene’s theorem states that if there is a DFA
called FA1 that accepts the language defined by the regular expression r1 and
there is a DFA called FA2 that accepts the language defined by the regular ex-
pression r2, then there is a DFA that shall be called FA3 that accepts the lan-
guage defined by the regular expression r1 + r2. This statement can be proved
by a constructive algorithm. While proving this statement a definition of how to
determine the sum of two DFAs is given.

Definition 2.3.10. Sum(FA1, FA2)
Starting with two machines, FA1 consisting of states q0, q1, q2, · · · and FA2 con-
sisting of states x0, x1, x2, · · · , a new machine FA3 with states z0, z1, z2, · · · is
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built. Each state zi in FA3 can be seen as combining two states: one from FA1,
say qj, and another from FA2, say xk. This will be expressed by saying that zi is
“qj or xk”.

The start state of FA3 is “qstart or xstart”. If either the x part or the q part of the
z state is a final state in one of the the original DFAs (FA1 or FA2), then the z
state is a final state of FA3.

When moving from one z state to another while reading a character from the
input string, we investigate what happens to the q and x parts of z, and go to the
corresponding new z part. If δ1, δ2 and δ3 denote the transition functions of FA1,
FA2 and FA3, then it is possible to express the relationship as follows:

Suppose zi = qj or xk. Suppose too that δ1(qj, c) = qnew, δ2(xk, c) = xnew and
δ3(zi, c) = znew. Then znew = qnew or xnew. �

As there are only finitely many q’s and finitely many x’s, there can only be finitely
many z’s. Note that not every combination of state q and state x necessarily
produces a reachable z state in FA3 — some of the state combinations may thus
be useless states.

To illustrate briefly the construction of FA3 = FA1 + FA2 consider the following
example:

Example 2.3.11. Let FA1 be the DFA whose language L1 consists of a single
word, i.e. L1 = {acg}. FA1 is given in Figure 2.2(a). Let FA2 be the DFA
whose language L2 also consists of a single word, i.e. L2 = {ac}. FA2 is pre-
sented in Figure 2.2(b). Note that in terms of the definition of regular expressions
(Definition 2.2.14), acg is a regex representing L1 and ac is a regex representing
L2.

FA1 and FA2 can be used to construct the transition table of FA3 that accepts
L3 = L1 ∪ L2, i.e. the regex acg + ac.

Thus, FA3 = (Q,Σ, δ, z0,z), where:
Q = {z0, z1, z2, z3, z4}
Σ = {a, c, g, t}
F = {z3, z4} and
δ is provided by the transition table of FA3.6

The sum machine, FA3, is graphically depicted in Figure 2.2(c). �

Suppose that ac is input to FA3. Then, from Table 2.1 it follows that δ(z0, a) = z 1

and δ(z1, c) = z +
3 . As a consequence, the conclusion is drawn that ac is in the

language defined by FA1 + FA2.

6The “+” character is used to indicate final states (qi ∈ z) in transition tables representing
δ.
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States \ Σ a c g t

z0 = q0 or x0 q1 or x1 = z1 q4 or x2 = z2 q4 or x2 = z2 q4 or x2 = z2

z1 = q1 or x1 q4 or x2 = z2 q2 or x+
3 = z+

3 q4 or x2 = z2 q4 or x2 = z2

z2 = q4 or x2 q4 or x2 = z2 q4 or x2 = z2 q4 or x2 = z2 q4 or x2 = z2

z+
3 = q2 or x+

3 q4 or x2 = z2 q+
3 or x2 = z+

4 q4 or y+
4 = z+

4 q4 or x2 = z2

z+
4 = q+

3 or x2 q4 or x2 = z2 q4 or x2 = z2 q4 or x2 = z2 q4 or x2 = z2

Table 2.1: Transition table for FA3

q0 q1 q2

a c g
q3

q4

a,c,g,t

c,g,t a,g,t a,c,t

a,c,g,t

(a) FA1 — A DFA accepting acg.

x0 x1

a c x3x3

c,g,t

a,c,g,t

x2

a,c,t

a,g,c,t

(b) FA2 — A DFA accepting ac.

z0

z1

z2

a

c,g,t

c

a,c,t

g

a,g,t

a,c,g,t

a,c,g,t

z3 z4

(c) FA3 = FA1 + FA2.

Figure 2.2: An illustration of DFA addition — FA3 = FA1 + FA2
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Using functional notation somewhat more loosely, the foregoing is expressed by
the following sequence of equalities: δ(z 0, ac) = δ(δ(z 0, a), c) = δ(z 1, c) = z +

3 .
Similarly δ(z 0, acg) = δ(δ(δ(z 0, a), c), g) = δ(δ(z 1, c), g) = δ(z +

3 , g) = z +
4 . Thus

ac and acg are accepted by the DFA presented in Figure 2.2(c).

Recall that a state of FA3 is designated as final if it includes a final state of FA1,
or if it includes a final state of FA2, or if it includes final states of both FA1 and
FA2.

This rule is followed in Table 2.1. Thus, z3 is a final state of FA3, because it
includes x+

3 which is a final state of FA2. On the other hand z+
4 is a final state

of FA3, because it includes q+
3 which is a final state of FA1.

In general, a final state of FA3 could include final states of both FA1 and FA2.
However, there is no such final FA3 state in the current example. Note that state
z2 is a sink state. For all the input characters of the alphabet Σ = {a, c, g, t}
FA3 will remain in state z2.

In general, it is always apparent which “old” final states are included in a “newly”
constructed finite state — i.e. which “old” final state(s) cause the “new” final
state to be final. In principle it is possible to make a partition between the
respective final states of FA3 based on the origin of the component final states
of the original DFAs — FA1 and FA2 in this case. A set of final states derived
from final states of both FA1 and FA2, if present, can be a third class of such a
partition.

Exactly the same principle would hold, pari passu, if more than two DFAs were
added together.

This observation was important for the development of FireµSat in De Ridder
[2010], and is important for the development of FireSat2 and FireSat2′ presented
in Chapter 7.

2.3.2.2 The product operation on DFAs

Definition 2.3.12. Product (FAp, FAq)

To construct FAr which accepts FAp·FAq where FAp consists of states x0, x1, x2, · · ·
and FAq consists of states y0, y1, y2, · · · , a new machine FAr with states z0, z1, z2, · · ·
is built.

FAr is constructed by creating a z-state for every non-final state of FAp. For
every final state in FAp a z-state should be established that expresses the option
that processing is continuing on FAp or that processing is beginning on FAq.
This implies more briefly that if a final state of FAp is reached then processing
is in xsomething, which is a final state of FAp or the processing on FAp of the
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input string is finished and processing has jumped to y0 the start state of FAq to
commence processing on FAq. Thus for every final state of FAp there should be
states xsomething or y0 — the start state of FAq. To proceed we should trace both
machines for each character of Σ. Assume zj = xi or y0 where xi ∈ z of FAp and
y0 is the start state of FAq. Assume furthermore a ∈ Σ. If δ(xi(a)) → xj and
δ(y0(a))→ yp then z2 = xj or yp. The components of the z-states of the product
machines should all be traced for each character of Σ until no new z-states are
generated. A state of the newly constructed FAr (consisting of z-states) is a final
state if and only if it consists of one or more final states of FAq. There exist
clearly only finitely many possibilities for the z-states of FAr. Therefore FAr is a
finite machine. �

Cohen [1997] provides examples illustrating how to apply the product rule.

2.3.2.3 Right linear grammars derived from DFAs and vice-versa

Chapter 4 will illustrate how a counting regular attribute grammar (introduced
by Sperberg-McQueen [2004]) can be derived from a CAT3 (a type of automaton
proposed in this thesis) and vice versa. In Definition 2.3.14 the algorithm defining
how to derive a DFA from a Right Linear Grammar is given. Definition 2.3.13
describes an algorithm that does the reverse: given a right linear grammar, it
derives a language-equivalent DFA.

Definition 2.3.13. Derive a language-equivalent DFA from a right lin-
ear grammar
Given a right linear grammar then a DFA can be derived as follows:
Step 1
Consider any right linear grammar of the form:

S → x0Z0

Y1 → x1Z1

Y2 → x2Z2

Y3 → x3Z3

· · · where S, Yj, Zi ∈ V and xi ∈ Σ.

Step 2
For each Yj, for each Zi and for the start state, S, create a state with the corre-
sponding name in q-format for the purposes of conformity see Figure 2.3.
Step 3
For every production Yj → xiZi draw a directed edge from qY j to qZi and label it
with xi. (If Yj = Zi, clearly the edge labelled xj is a loop.)
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qS
qZ0 qZ1

qZ2

qZ3 qY1 qY2
qY3

Figure 2.3: Step 2: Derivation of a DFA from a right regular grammar.

qYj
qZi

xi

Figure 2.4: Step 3: Derivation of a DFA from a right regular grammar for any
production Yj → xiZi.

Step 4
For every production Y → xj create a state qR ∈ z and draw an edge accordingly
— see Figure 2.5.

qY

xj
qR

Figure 2.5: Step 4: Derivation of a DFA from a right regular grammar.

�

Definition 2.3.14. Derive a language-equivalent right linear grammar
from a DFA
The DFA (Q,Σ, δ, q0,z) can be used to derive a language-equivalent right linear
grammar (V,Σ, R, S) as follows:

Step 1
Associate a non-terminal character with every state of the DFA.
Step 2
Let the grammar’s start character (S) correspond with the DFA’s start state.
Step 3
Let the grammar’s set of terminal characters be the DFA’s alphabet.
Step 4
For every transition δ(q, x) = p, associate non-terminals, Y and Z, with states q
and p respectively. Add the production Y → xZ to the grammar.
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Step 5
For every state r ∈ z, where R is the non-terminal associated with state r of the
DFA, add the production R→ Λ.

�

2.3.3 Other regular language acceptors

As discussed above, regular grammars as well as DFAs are associated with regular
languages in an exclusive fashion—i.e. the language of a regular grammar or DFA
cannot be anything other than a regular language.

This subsection refers to various other machines that are also exclusively associ-
ated with regular languages. These are non-deterministic finite automata (NFAs),
transition graphs for NFAs, Moore machines and Mealy machines. Definitions of
these machines are provided next.

Note that both Moore and Mealy machines generate output and are referred to in
the literature as transducers. As explained in Chapter 4, some of the formalisms
proposed later in this thesis (specifically CAT3s) have both Moore and Mealy
machine characteristics.

Below, P(Q) denotes the power set of set Q—i.e. the collection of all subsets of
Q. In addition, ΣΛ denotes the set Σ ∪ {Λ}.

Definition 2.3.15. (NFA) Non-deterministic finite automata
An NFA is a 5-tuple (Q,Σ, δ, q0,z) where:

� Q is a non-empty finite set of states.

� q0 ∈ Q is designated to be the start state.

� A subset of Q represents the final states (z).

� Σ is a finite alphabet.

� δ : Q× ΣΛ → P(Q) is a partial transition function.

�

In the present context Σ = {a, c, g, t}.
Thus, an NFA is like a DFA except that it allows for a transition from a state
to a set of states (i.e. more than 1 state) either on a given character or on the
empty string. In the remainder of this thesis, reference to a finite automaton
(FA) should be assumed to be to either a DFA or an NFA.
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q0 q1 q2

a c g

q4

a
c

a,c,g,t

a,c,g,t

q3

Figure 2.6: An NFA presenting three different ways to accept acg. Note that all
words starting in a with a length of 2 or more are accepted by this NFA.

Figure 2.6 shows an NFA that accepts the word acg via three different paths.
Note that there is no transition out of state q3, the NFA’s only final state. This
means that for this NFA, δ is a partial function. In general, the transition function
of an NFA may be either partial or total. Furthermore, it can be shown that a
language-equivalent DFA can be derived from any NFA.

Definition 2.3.16. Moore machine
A Moore machine is denoted by Mo = {Q,Σ,∆, δ, λ, q0} where: Q,Σ, δ, and q0

have the same meaning as in the above definition of a DFA. ∆ is the output
alphabet. λ : Q → ∆ is a mapping from each state in Q to ∆. It represents the
output associated with each state. �

The output of Mo in response to input a1, a2, · · · , an, n ≥ 0, is given by
λ(q0), λ(q1) · · ·λ(qn), where q0, q1, · · · , qn is the sequence of states such that
δ(qi−1, ai) = qi for 1 ≤ i ≤ n.

Notice that the Moore machine will give output of length n+ 1 if n is the length
of the input sequence. The input alphabet Σ need not be the same as the output
alphabet ∆.

Definition 2.3.17. Mealy machine
A Mealy machine is a six tuple Me = (Q,Σ,∆, δ, λ, q0) where Q,Σ, δ and q0 are
defined similarly to the formal definition of a DFA. ∆ is the output alphabet and
λ : Q× Σ→ ∆ is a mapping that gives the output associated with the transition
from state q on input ai. �

The output of Me in response to input a1, a2, · · · , an is
λ(q0, a1), λ(q1, a2), · · · , λ(qn−1, an), where q0, q1, · · · , qn are states such that
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δ(qi−1, ai) = qi for 1 ≤ i ≤ n. If the input sequence is of length n, then the output
sequence is also of length n. The input alphabet Σ need not be the same as the
output alphabet ∆.

Note that most sources do not explicitly state whether or not the transition
function in Mealy and Moore machines, δ, should be regarded as total. Generally
it appears to be that it is regarded as a total function. Note further that Moore
and Mealy machines do not define a language of accepted words as a DFA does,
since the notion of a final state is not defined. Instead, they map input strings
to output strings.

2.3.4 Context free language acceptors

DFAs and NFAs were defined as acceptors of regular languages only. Context
free languages (CFLs) cannot be accepted by DFAs. Non-deterministic Push
Down Automata usually referred to simply as Push Down Automata7 are classi-
cal machines accepting all CFLs. Deterministic Push Down Automata (DPDAs)
accept a subset of the CFLs namely the Deterministic Context Free Languages
(DCFLs). A formal definition of a DPDA is provided after the PDA definition.
PDAs and conventions indicating how they are graphically displayed are infor-
mally described below.

� A finite alphabet Σ of possible input characters is assumed.

� An input tape is read. The tape is infinite in one direction. The string of
input characters are initially on the tape. The first input character is in
cell 1. The input is followed by blank cells on the tape. The character used
to indicate a blank cell is ∆.

� An alphabet Γ of stack characters is assumed. Apart from ∆ the characters
of Γ do not have to correspond to those of Σ. The popping of ∆ indicates
an empty stack.

� A pushdown stack (infinite in one direction) is used. The stack is initially
empty, containing ∆s8.

� There is exactly one start state that has only out-edges and no in-edges.
(See Figure 2.7.)

7Throughout this thesis Push Down Automata (PDAs) refer to non-deterministic PDAs.
The term Deterministic Push Down Automaton (DPDA) is used to distinguish a deterministic
PDA.

8Instead of a pushdown stack some authors (including Salomaa [1985]) refer to pushdown
tape. However, Cohen [1997]’s convention of referring to stack will be followed here, since stack
is more descriptive and emphasizes the last in-first out functioning of the stack.
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START

Figure 2.7: PDA start state.

ACCEPT REJECT

Figure 2.8: PDA halt states.

� There are two types of halt states, namely accept and reject. Halt states
have in-edges and no out-edges (Figure 2.8).

� There are finitely many non-branching push states. Push states introduce
characters onto the top of the stack. (See Figure 2.9.) Here x is any
character in Γ, the stack alphabet.
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PUSHX

Figure 2.9: PDA push state.

Read 

Figure 2.10: PDA read state.

� There are finitely many branching states of two types:

1. Read states
Read states read the next unused character from the tape. Read states
may have out-edges labelled with characters from Σ∆

9. There is no
restrictions on duplication of labels. A label for each character of Σ or
∆ is not required. See Figure 2.10.

2. Pop states
Pop states may have out-edges labelled with characters from Γ as well
as ∆ with no restrictions. Pop states remove characters from the top
of stacks — Figure 2.11.

In the formal definition of a PDA, as before, Σ∆ = Σ ∪ {∆} and P(Q) refers to
the power set of Q. Additionally, Γ∆ = Γ ∪ {∆}. ∆ is popped from the stack
whenever the stack is empty.

Definition 2.3.18. Push down automata (PDAs)
A pushdown automata is a 6-tuple (Q,Σ,Γ, δ, q0,z) where Q,Σ,Γ and z are all
finite sets, and

� A non-empty finite set of states Q = {q0, q1, q2 · · · qn}.
9Σ ∪ {∆}. Within this context ∆ is the character indicating an empty tape or an empty

stack.
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Pop

Figure 2.11: PDA pop state.

� Σ = {x1, x2 · · · xs}. Is a finite set referred to as the input alphabet.

� A stack alphabet Γ = {y1, y2, y3...ys}. Note that Σ and Γ need not be disjoint.

� q0 ∈ Q is designated to be the start state. q0 will be labelled START and
represented as described above.

� z ⊆ Q called the final states. The final accepting states will be labelled
ACCEPT.

� A transition function δ : Q × Σ∆ × Γ∆ −→ P(Q × Γ∆). The transition
function is partial (Sipser [2006] and Cohen [1997]).

�

The transition function δ can alternatively be presented as a tuple (qi, xi, yi, qj, yj).
Where:

� qi ∈ Q is the current state.

� xi ∈ Σ∆ is the input triggering a transition.

� yi ∈ Γ∆ is currently at the top of the stack. yi can be popped from the
stack triggering the next transition.

� qj ∈ Q is the next state reached after branching has been triggered by either
xi ∈ Σ∆ or yi ∈ Γ∆.

� yj ∈ Γ is pushed onto the stack if such an action is triggered by either
δ(qi, xi) or δ(qi, yi).
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Whereas a non-deterministic PDA allows different path options from which to
choose, a DPDA is a PDA for which every input string has an unique path
through the machine.

Definition 2.3.19. Deterministic push down automata (DPDA)

A DPDA is defined as a PDA that also satisfies the following conditions:

� For any q ∈ Q, ui ∈ Σ∆, ri ∈ Γ∆ the set δ(q, ui, ri) has at most one element.

� For any q ∈ Q, ri ∈ Γ if δ(q,∆, ri) 6= ∅ then δ(q, ui, ri) = ∅ ∀ui ∈ Σ.

�

Notation 2.3.20. Drawing PDAs
PDAs are drawn by following the conventions described in the informal definition
of a PDA. Read and pop states are labelled as such and depicted as diamond
shapes. Start states and accept states are depicted as ellipses and labelled START
and ACCEPT respectively. Push-states are rectangular, labelled with the word PUSH
together with the character being pushed on the stack. Transitions from both read
and pop states are depicted as labelled directed edges. A string or word from the
alphabet that matches a path from the start state to a final state is said to be
accepted by the PDA. �

If Σ = {a, c, g, t} and Γ = {x} then it is possible to draw a deterministic PDA
that accepts the language L = {ancn|n ≥ 0} as illustrated in Figure 2.12.
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START

Read1 Pop1

Read2

Pop2

ACCEPT

Pushx
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a x
c

 Δ

Δ

Figure 2.12: A DPDA accepting L = {ancn | n ≥ 1}.
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...

cell i cell ii cell iii cell iv

Tape head

Figure 2.13: A TM tape and tape head.

2.3.5 Context sensitive language acceptors

Not being too formal, Cohen [1997] describes a Linear Bounded Automata (LBA)
as a collection of six entities:

1. An alphabet Σ of input characters. The blank character ∆ is not included
in Σ.

2. A so-called tape that is divided into a sequence of numbered cells. Each of
these cells contains one character or a blank. The input word is presented
to the machine, one character per cell. The input begins at the leftmost
cell, called cell i. The maximum number of cells on the input tape, if n
is the length of the input string, is kn where k is a constant associated
with the particular linear-bounded automaton. Cells that do not contain
input, contain ∆s (the character used to denote blanks). Note that LBAs
are sometimes defined to use only cells with input. This implies k = 1.
Equivalence classes of machines are implied — it is namely possible to
compensate for the shorter tape by having a larger tape alphabet (Matuszek
[1996]).

3. A tape head that can, in one step: read the content of a cell on the tape;
replace that content with another character; and position the tape head to
the next cell, either to the right or to the left of the cell it has just read. At
the start of processing, the tape head begins by reading the input in cell i.
The tape head cannot move left from cell i. If a LBA is given orders to move
the tape head to the left of cell i, the machine will crash. A representation
of the tape together with the tape head can be found in Figure 2.13.

4. An alphabet Γ is assumed that consists of characters that can be printed
on the tape by the tape head. This can include characters from Σ. ∆ ∈ Γ.
Note that ∆ is referred to as the blank character — the only character that
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is allowed to appear infinitely on the tape. There is referred to the printing
of ∆ as erasing.

5. Also assumed, is a final set of states and exactly one start state from which
execution is begun. The start state may be re-entered during execution.
One or more halt states may be included. The halt state causes execution
to terminate upon entrance. The remainder of states do not have any
specific function, only names such as q1, q2, q3... or simply 123....

6. A program, is a set of rules that indicate how to change states, what to
print on the tape, and where to move the tape head, depending on the cur-
rent state and character just read. The program is depicted as a sequence
of directed edges connecting states. Each edge is labelled with a triplet of
information:

(character, character, direction)

The first character (either ∆ or from Γ or Σ) is the character the tape head
reads from the cell to which it is currently pointing. The second character is
what the tape head prints in the cell before it is leaving. The third character
represents the direction which the tape head should move — either to the
left (L) or to the right (R).

It is possible to introduce a reject state. The reject state will be employed in a
similar manner to a sink state of a DFA. However, instead of iterating until all
the input on the tape has been read, if the reject state is entered then processing
will stop and the string will be rejected. The formal definition, hereafter, makes
provision for reject states. To terminate execution successfully the halt state
should be entered. The word on the input tape is then said to be accepted by
the LBA. A crash is said to occur if we are in the first cell and we try to move
the tape head to the left. In the case of deterministic LBAs there does not exist
a state that has two or more edges leaving it, which are labelled with the same
first character.

Definition 2.3.21. Linear bounded automata

A LBA is a 7-tuple, (Q,Σ,Γ, δ,∆, q0,z where Q,Σ and Γ are finite sets and:

1. Q is the finite, non-empty set of states.

2. Σ is the input alphabet which does not contain the blank character ∆.

3. Γ is the tape alphabet where ∆ ∈ Γ and Σ ⊂ Γ.
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(c,y,R)

START

(a,x,R)

(g,z,L)

(z,z,L)
(c,c,L)

(x,x,R)
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(y,y,R)

(Δ,Δ,R)

q3

(a,a,R)

q2

(a,x,R)

(c,c,R)

(a,a,L)
(y,y,L)

(y,y,R)
(z,z,R)

q5

(y,y,R)

(z,z,R)

q4

q6

Figure 2.14: A TM accepting L = {ancngn | n ≥ 1}.

4. δ : (Q\F ) × Γ −→ Q × Γ × {L,R} is a partial transition function. L and
R indicates the direction in which the tape head should move. L indicates
move to the left and R move to the right. An undefined δ on the current
state and character causes the machine to halt and reject, in other words,
to crash.

5. q0 ∈ Q is the start state.

6. z ⊆ Q is the set of accepting states or final states.

�

A graphical representation of an LBA that accepts the context sensitive language
L = {ancngn|n > 1} is given in Figure 2.14.

2.3.6 Recursively enumerable language acceptors

Recall that languages generated by unrestricted grammars are called recursively
enumerable languages. Turing machines (TMs) are acceptors of recursively enu-
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merable languages. They can be either deterministic or non-deterministic. The
TMs considered in this thesis are single taped and deterministic10.

Definition 2.3.22. Turing machine (TM)
A TM is an LBA with an unbounded tape. �

nPDAs (n ≥ 2) are equivalent in computing power to TMs. Consequently nPDAs
(n ≥ 2) are acceptors of recursive enumerable languages too.

Definition 2.3.23. Two-stack PDA (2PDA)
A 2PDA is a 6-tuple (Q,Σ,Γ, δ, q0,z) where Q,Σ,Γ, q0 and z are the same as
for an ordinary PDA. However, δ is defined as follows:
δ : Q× Σ∆ × (Γ∆)× (Γ∆) −→ P(Q)× Γ∆ × Γ∆

�

It is not the intent to discuss all the theoretical machines and the types of lan-
guages they accept exhaustively. Recursive enumerable languages are accepted
by other theoretical machines including Post machines11 The objective of this
chapter is to supply sufficient definitions to support the remainder of this thesis,
specifically in Chapters 4, 6 and 7.

2.4 Automata for genetic string processing

In this section, background material is presented that is based on the classical
material of the previous section, but has been adapted, defined and/or developed
as part of this thesis. The concern is to define machines that will be used specif-
ically in the context of genetic string recognition, together with the associated
notation and operations. Prototype Finite Automata (pDFAs) and Counting
Automata Type 3 (CAT3) are new concepts introduced for the first time in this
thesis. pDFAs are defined in this section. CAT3s are defined in Chapter 4 where
their functionality is illustrated as well. pDFAs, combined with the cascade oper-
ation (defined in this section) will be further explored in Chapter 6. In Chapter
7 pCAT3s are cascaded to detect TRs.

In addition to distinguishing between an FA’s start state (q0) and final states z, it
is helpful to distinguish other state types in FAs that are used for TR recognition.
The alphabet for such FAs should, of course, assumed to be {a, c, g, t}.
The definitions and notation below characterise to states that are reached when
a motif error occurs.

10It can be shown that any non-deterministic TM can be simulated by a deterministic TM
(Savitch [1970]).

11Emil Leon Post created the Post machine in 1936. The interested reader may consult Cohen
[1997] for a definition and examples of Post machines.
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Definition 2.4.1. State-types
Suppose FAL is defined over the alphabet Σ to accept L. FAL is being used to check
whether u.α.v ∈ L where u, v ∈ Σ∗ and α ∈ Σ. Suppose further that the string u
has been matched along a path so that state p has now been reached and suppose
that δ(p, α) = q. Then the following terminology will be used to characterise state
q with respect to string u.α.v:

� q is a mismatch state (denoted qm) iff α is regarded as a mismatch in string
u.α.v.

� q is a deletion state (denoted qd) iff string u.α.v is regarded as having had
a character deleted between u and v.

� q is an insertion state (denoted qi) iff α is regarded as an insertion in string
u.α.v.

� q is a neutral state (denoted qn) iff it is neither a deletion, insertion nor
mismatch state in respect of string u.α.v.

�

Notice that an ADFA has a finite set of paths from its start state to final states
and each such path is associated with a string in the ADFA’s language. Since
there are no cycles in an ADFA, the length of each of these paths is finite. Thus,
the language of an ADFA will always be a finite set of strings of finite length and
conversely, given such a set of strings, an ADFA can be constructed to represent
the set.

Because there are no cycles in an ADFA, the transition function, δ is necessarily a
partial function. There will always be one or more states, q in an ADFA that may
be regarded as terminal in the sense that the state has no outgoing transitions i.e.
for all ai ∈ Σ, δ(q, ai) is not defined. ⊥ is used to indicate δ(q, ai) is undefined. ⊥
is consequently used interchangeably — to indicate a sink state in total DFAs and
an undefined δ in ADFAs. The meaning of ⊥ will be clear from the context. In
most practical situations, such terminal states are also final states of the ADFA.
It is possible that an ADFA also has additional final states (Watson [2010]).

A prototype DFA is defined below in terms of an ADFA. For reasons that will
become clear below, its terminating states as described above will be called cas-
cading states.

The term prototype was chosen to suggest a first or originating DFA from which
other DFAs are constructed. Thus prototype is used to emphasise that, in this
thesis, these pDFAs often form only part of the full DFAs needed for TR recog-
nition. pDFAs will be combined together (via the sum and cascade operations)
to form TRE acceptors.
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q1 q2
a c

q4
tg

q0 q3

Figure 2.15: pDFAP (υ, 0) where υ = acgt.

Summing two pDFAs involves the straightforward application of the sum opera-
tion as defined above in Definition 2.3.10. However, finding the product of two
pDFAs is much simpler than the general case of finding the product of two ar-
bitrary DFAs. The product of two languages generated by regexes r1 and r2 is
defined by using DFAs as presented in Definition 2.3.12. In the pDFA context
the product operation is simpler and referred to as cascading. The cascading
operation will be defined in Definition 2.4.4.

Let υ ⊆ Σ∗; |υ| ≤ 4. Let the language of υ, L(υ) = {υ} ∪ {υD} ∪ {υM} ∪ {υI}.
Thus L(υ) is the set of strings resulting from one or more deletions, mismatches
or insertions (but maximally |υ| insertions).

Definition 2.4.2. Prototype deterministic finite automata (pDFA)
A pDFA is an ADFA (Q,Σ, δ,z, q0) accepting L ⊆ L(υ). The final states of
pDFAs are called cascading states and are indicated with dotted lines in transition
graphs. �

It will be convenient to use the notation below to refer to certain specific pDFAs.

� pDFAP (υ, 0) is a pDFA that reaches a cascading state after scanning υ in
its input string. Thus, pDFAP (υ, 0) “accepts” exactly one PTRE of length
|υ|.

� pDFAD(υ, e) is a pDFA that reaches one or more cascading states if and
only if a substring has been read that is υ less e deletions.

� pDFAM(υ, e) reaches one or more cascading states if a substring has been
read that is υ, but with e mismatches.

� pDFAI(υ, e) reaches one or more cascading states if a substring υ, has been
read, but with e insertions.

These definitions are illustrated by referring to their corresponding transition
graphs. Assume that ρ = acgt and e = 1.

Figure 2.15 represents pDFAP (υ, 0).



CHAPTER 2. THEORETICAL BACKGROUND 50

q1 q2
c,g,t c

q4
tg

q0 q3

Figure 2.16: A pDFA allowing words where 1 mismatch occurs in the first position
of υ = acgt. Note that words accepted are defined by the regex (c + g + t)cgt.

q1 q2
a a,g,t

q4
tg

q0 q3

Figure 2.17: A pDFA allowing words where 1 mismatch occurs in the second
position of υ = acgt. Note that words accepted are defined by the regex
a(a + g + t)gt.

q1 q2
a c

q4
ta,c,t

q0 q3

Figure 2.18: A pDFA allowing words where 1 mismatch occurs in the third
position of υ = acgt. Note that words accepted are defined by the regex
ac(a + c + t)t.

q1 q2
a c

q4
a,c,gg

q0 q3

Figure 2.19: A pDFA allowing words where 1 mismatch occurs in the fourth
position of υ = acgt. Note that words accepted are defined by the regex
acg(a + c + g).
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The next four pDFAs (in Figures 2.16, 2.17, 2.18 and 2.19) recognise υ with a
single mismatch, each in a different position. In principle, they could be added
together to obtain pDFAM(υ, e) where e = 1.

By adding the pDFA in Figure 2.15 to pDFAM(υ, e) (presented in Figures 2.16,
2.17, 2.18 and 2.19), a pDFA is obtained that accepts υ as well as all variants of
υ with e = 1 mismatch.12 Such a pDFA is shown in Figure 2.20. Note that it
has the characteristic that if the cascading state q4 has been reached then e = 0;
whereas if the cascading state q11 has been reached then e = 1 since 1 mismatch
error has occurred within υ.

q
0 q

1a c q
4

q
2

q
3

g t

q
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q
7   a, g, t g
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P = Perfect match

M1 = 1 mismatch

   a, c, t q
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t

q
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   c, g, t

q
8

q
10

q
11

c
g

t

M1

   a, c, g

Figure 2.20: A pDFA accepting words where 1 mismatch occurs in any position
of υ = acgt as well as υ = acgt itself.

For the purposes of detecting TRs in a memory- and runtime-effective way,
the cascade operation is introduced below. The cascade operation is used in
FireSat1, FireSat2 and FireSat2′ , discussed in Chapters 6 and 7 respectively.

A pDFA can be seen as a degenerate form of a special NFA that will be called
a cascaded NFA. A cascaded NFA results from applying the so-called cascading
operation on a cascaded NFA and a pDFA.

Definition 2.4.3. Cascaded NFA, N

N is a five tuple (QN ,Σ, δN , CN , SN) where

� QN is a non-empty finite set of states QN = {q0, q1, q2...qn}.

� SN ∈ QN is designated to be the start state.

12Note that the four different mismatch cascading states (Figure 2.20) were merged into one.
The machine resultant from applying the algorithm inside Kleene’s theory (Definition 2.3.10)
strictly spoken, has four different mismatch cascading states.
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� CN , a subset of QN , is the set of cascading states.

� Σ = {a1, a2, a3...as} is a finite alphabet.

� δN : QN × ΣΛ → P(QN) is a possibly partial transition function.

�

Assume we have N and P where N is the cascaded NFA and P is the pDFA:

N(QN ,Σ, δN , CN , SN)
P (QP ,Σ, δP , CP , SP )

Definition 2.4.4. Cascade (C(N,P ))
Let N be a cascaded NFA with CN its cascading states. Let P be a pDFA with SP
its start state and CP its cascading states.

Then C(N,P ) is the cascaded NFA (QC,Σ, δC, CC, SC) where:

� QC = (QN − CN) ∪ (CN × QP ) (the states of the newly cascaded machine,
C);

� CC = CN × CP (the new cascading states of C are the cascading states of
P) and;

� SC = SN

� With δC(q, a) defined for the different possibilities as follows:
δN(q, a) if q ∈ (QN − CN) ∧ (δN(q, a) /∈ CN)

〈cn, Sp〉 if (q ∈ (QN − CN)) ∧ (δN(q, a) = cn) ∧ (cn ∈ CN)

〈cn, rp〉 if (q = 〈cn, qP 〉) ∧ (q ∈ (CN ×QP ) ∧ (δp(qp, a) = rp)

�

The operation cascade as defined here should be distinguished from a cascade of
finite state transducers often implemented within the context of natural language
processing. Moore and Mealy machines are examples of finite state transducers
(FSTs). In brief FSTs, refer to finite automata with output. When a pair of
FSTs operate in a cascade it implies that:

� the first FST maps an input string to a number of intermediate strings and;
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(c) FA3 = pDFA1.pDFA2.

Figure 2.21: An illustration of two pDFAs, pDFA1 and pDFA2, cascaded —
FA3 = cascade(pDFA1, pDFA2)

� the second FST maps the intermediate strings to a number of output strings
(Kempe [2000]).

A detailed, formal discussion of a cascade of FSTs is beyond the scope of this
thesis.

The cascade operation is defined for PFAs only. It is illustrated in Figure 2.21
where pDFA1 (accepting acg ) is cascaded to pDFA2 (accepting ac) to construct
FA3 accepting acgac only.

The notations in 2.4.5, 2.4.6, 2.4.7 and 2.4.8 below are based on the assump-
tion that the machine in question is to investigate whether u having the form
[ρ, u2, u3 . . . un] is a substring of a genetic input string (gSeq). The notation was
proposed in De Ridder [2010]. In that context, three algorithms to detect mi-
crosatellites were proposed. They are collectively known as FireµSat. Here the
same notation will be relevant in Chapters 6 and 7. The differences between
FireµSat and FireSat will be briefly outlined in that chapter.

Notation 2.4.5. FAP (ρ, 0) is a DFA that reaches a final state after scanning a
genetic input string (gSeq) and reaches an occurrence of ρ in gSeq. It reaches
the final state again if u2 = ρ is in u a substring of gSeq, and again if u3 = ρ
is encountered in u, etc. However, FAP (ρ, 0) goes to a sink state as soon as a
character in u is encountered that indicates that u is not a PTR. Thus, FAP (ρ, 0)
accepts a PTR with motif ρ of arbitrary length, entering the final states as many
times as there are PTREs in the PTR. �
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Notation 2.4.6. FAD(ρ, εmax) is a DFA that, upon scanning u, a substring of
gSeq, reaches its first final state once the substring ρ has been read. FAD(ρ, εmax)
continues to reach final states after scanning each word, ui (where i = 2 · · · p)
provided that one of the following conditions hold: a) either ui = ρ or b) ui is a
word deduced from ρ that contains a maximum of εmax deletions. �

Notation 2.4.7. FAM(ρ, εmax) is a DFA that functions analogously to
FAD(ρ, εmax), except that it functions in terms of mismatches rather than dele-
tions. �

An example of FAM(acg, 1) is depicted in Figure 2.22. Initially, FAM(acg, 1)
loops in states q0, q1 and q2. Until acg is read. Thereafter, it contains cycles
which will be completed as long as the PTRE acg or an ATRE that has been
derived from acg as a mismatch in one nucleotide position, is being read. Any
other input will cause FAM(acg, 1) to proceed to its sink state, namely q7.
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Figure 2.22: FAM(acg, 1).

Notation 2.4.8. FAI(ρ, εmax) is a DFA that functions analogously to FAD(ρ, εmax)
and FAM(ρ, εmax), except that it functions in terms of insertions rather than dele-
tions or mismatches.Thus FAI(ρ, εmax) is a DFA that, upon scanning u, reaches
its first final state once the substring ρ has been read. FAI(ρ, εmax) continues to
reach final states after scanning each word, ui (where i = 2 · · · p) provided that
one of the following conditions hold: a) either ui = ρ or b) ui is a word deduced
from ρ that contains a maximum of εmax insertions. �
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2.5 Distances

To detect TRs, a Levenshtein Distance (LD) is calculated between a PTRE and
a potential TRE in Chapter 7. For the same reason, in Chapter 8, the so called
Levenshtein Correspondence (LC), is calculated. This section introduces the LC
and the LCn. Theoretical background, for calculating both the LD and the LC,
is provided here.

In 1966, Levenshtein defined the Levenshtein Distance (LD) as provided in Defi-
nition 2.5.1. The LD is also commonly referred to as the edit distance. The LD is
often calculated during approximate string matching. In such approximate string
matching scenarios, some pre-assigned number, k, is used as an upper bound on
the LD between the source and destination string. If the LD between these two
strings is found to be less or equal to k then an approximate match is said to
have occurred (Landau and Vishkin [1988]).

Automata in the literature are discussed in Section 2.5.1 that relate to LD compu-
tations. These automata characterise a given source string and have as language
the set of destination strings that approximately match the source string because
the associated LD is no more than a predetermined value, k. The final accepting
state of automata can be used to determine the exact LD value for the source
and destination strings.

Another approach that is used to calculate the LD is dynamic programming. In
Section 2.5.2 this approach is explained. It will be seen that FireSat2 calculates
a Levenshtein Based Distance. This implies that FireSat2 makes provision to
calculate the distance between two strings allowing for mismatches, insertions and
deletions. Mismatches and deletions are, however, not allowed after an insertion
has occurred. Only a perfect match is allowed after an insertion. Consequently
FireSat2 cannot calculate an exact LD between two strings. The LD between
two strings can be determined by FireSat2′ .

Definition 2.5.1. Levenshtein Distance
The Levenshtein distance (LD) between two strings (called source and destination
strings) is the minimum number of insertion, deletion and mismatch operations
required to transform the source into the destination (Levenshtein [1966]). �

The Levenshtein Correspondence (LC) is introduced in Section 2.5.3 and it is
shown how this LC can also be determined using dynamic programming. The
LC provides the theoretical underpinning of FireSat3.
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2.5.1 Automata for calculating the LD

Assume that k (the number of motif errors allowed) is given, as well as destination
string d. All strings that differ from destination string d by an LD of at most k
are considered to match d approximately.

A corresponding approximate string matching NFA for destination string d can
be constructed using k + 1 DFAs (M0,M1, · · ·Mk), for k + 1 different deviations
from destination string d: one for no error (level 0), one for one error (level 1),
· · · one for k-errors (level k). These k+ 1 automata are connected by transitions
that represent the different edit operations (Holub [2010]). In Figure 2.23 a
Levenshtein based NFA accepting the word acgt is illustrated. In this case k = 2.
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Figure 2.23: A Levenshtein automaton (NFA) for the word ρ = acgt with a
maximum edit distance of 2, allowing insertions before ρ, in between characters
of ρ, and after ρ.

The start state of the Levenshtein automata presented in Figure 2.23 is in the
lower left of the NFA. In Figure 2.23 ε indicates the number of errors that occurred
en route to the state under consideration. Horizontal transitions represent perfect
matches. Vertical transitions represent insertions. Diagonal transitions labelled
with characters from Σ are mismatches whereas diagonal transitions labelled with
Λ represent deletions. Given a Levenshtein automaton designed for a maximum
edit distance of k and a specified source string, ρ, input over the alphabet Σ =
{a, c, g, t} will be accepted if and only if that input has an LD of at most k with
respect to ρ. In the case of the automata presented in Figure 2.23, k = 2 and ρ
is acgt. The input d = attt will be accepted, and execution will end at state 42

indicating an LD of 2 between ρ and d. (Hjelmqvist [2012]).

In Figure 2.23, the string cgt can reach the final state 42 via the path 0011223242.
This affirms that maximal LD between destination string acgt and source string



CHAPTER 2. THEORETICAL BACKGROUND 57

cgt is 2. It does not indicate the actual LD. However, because Levenshtein
automata are nondeterministic, there may be multiple paths mapping a given
source string from an automaton’s source state to a final state. In the present
example, cgt can also be mapped onto the path 0011213141 to reach the final
state 41, suggesting that the LD may be 1 or even less. However, since there is
no path mapping cgt to final state 40, we can conclude that the actual LD is 1
and not 0.

For a given source string, there can even be more than one path to the same
final state. This reflects the fact that the LD specifies the minimum edit distance
between source and destination string only—not the actual errors that give rise
to this minimum. Subsection 2.5.4 will briefly illustrate that there could be
ambiguity with respect to the specific errors that give rise to a given LD.

Weights or penalties can be associated with the different edit operations and
assigned to the corresponding transitions. In such a case, a path weight is asso-
ciated with each accepted string. Should there be more than one path from the
start to a final state for a given input string, then the corresponding path weights
can be used to decide which sequence of edit operations to assume that resulted
in the LD. Kurtz [1996] mentions that the weight function plays an important
role within a biological context—by allocating appropriate weights to functions,
matches that are biologically relevant can be made. Clearly, if no weights are
allocated then all operations are assumed to be equally weighted.

Holub [2010] presents an alternative Levenshtein based automata, shown in Figure
2.24, that has fewer states than the previous one and that does not provide for
insertions at the beginning and/or the end of ρ. Insertions are only allowed in
between characters of ρ.
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Figure 2.24: A Levenshtein automaton (NFA) for the word ρ = acgt with a
maximum edit distance of 2, not allowing insertions before and/or after ρ.
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Numerous algorithms have been developed to calculate the LD. In the foregoing,
it has been illustrated how an NFA can be used to determine whether the LD is
less than some maximal value characterising the associated NFA. Melichar [1996]
showed that the number of states required by an equivalent DFA is at most
(k + 1)!(k + 2)m−2, where k is the upper bound on the edit distance allowed and
m is the length of the source string.

2.5.2 Dynamic programming for calculating the LD

In addition to using automata, there are various other ways of calculating the LD.
These include the recursive approach provided in Wagner and Fischer [1974] and
Wagner and Lowrance [1975]. In this section, a dynamic programming algorithm
(based on the algorithmic principles published by Navarro [2001]) is used to show
how the LD can be calculated.

Let LD(s, d) refer to the LD to be computed between a source string s and a
destination string d. A matrix, M , such as the one in Figure 2.25 has to be
populated, where an entry in row i and column j, say Mi,j, represents the min-
imum number of operations required to match s1···i to d1···j—i.e. Mi,j represents
LD(s1···i, d1···j), and consequently M|s||d| represents LD(s, d).

Elements of the matrix can be recursively computed using the following formulae:

M0,0 = 0 (2.3)

Mi,0 = i for i = 1 . . . |s| (2.4)

M0,j = j for j = 1 . . . |d| (2.5)

Mi,j =

{
Mi−1,j−1 for (i > 0), (j > 0) and (si = dj)
1 + min(Mi−1,j−1,Mi,j−1,Mi−1,j) for (i > 0), (j > 0) and (si 6= dj)

(2.6)

These formulae can be explained as follows.

� M0,0 is the LD between the empty string and itself, taken to be 0 as indicated
in Equation (2.3).

� Mi,0 is the LD between the string s1...i (a prefix of s of length i) and the
empty string. Its value is i as indicated in Equation (2.4). Similarly, M0,j

is the LD between the empty string and d1...j (a prefix of d of length j). Its
value is j as indicated in Equation (2.5).

� Given two non-empty strings s1···i and d1···j, assume inductively that the LD
between each pair of their respective prefixes has already been computed.
If si = dj then clearly Mi,j = Mi−1,j−1 as indicated in the first case of
Equation (2.6).
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� To determine the LD between s1···i and d1···j when si 6= dj, distinguish
between the following possibilities:

– If si 6= dj is attributed to a mismatch between si and dj, then Mi,j =
1 +Mi−1,j−1, since Mi−1,j−1 is the LD between s1..(i−1) and d1..(j−1).

– If si 6= dj is attributed to a deletion just after si, then Mi,j = 1+Mi,j−1

since Mi,j−1 is the LD between s1..i and d1..(j−1).

– If si 6= dj is attributed to si being an insertion just after si−1, then
Mi,j = 1 +Mi−1,j since Mi−1,j is the LD between s1..(i−1) and d1..j.

The actual value of Mi,j is now the minimum value of the three above
possibilities. This is shown in the second case of Equation 2.6.

To illustrate these computations, consider the matrix, M , in Figure 2.25 in which
s = acctg and d = acttag respectively. Note that the top left-most element, 0,
corresponds with Equation (2.3); the rest of that first column corresponds with
Equation (2.4) and the rest of the first row corresponds with Equation (2.5).

Since the first characters of s and d match (both being a) we allocate the value
of M1,1 = M0,0 as indicated by the first case of Equation (2.6). Thus M1,1 = 0.

In order to find M1,2 the first character of the source string (s1) is compared with
the second character of the destination string (d2). Since s1 6= d2 (i.e. a 6= c),
the three possibilities implied in Equation (2.6) have to be considered:

1. If s1 6= d2 is to be interpreted as a mismatch, this would mean that in a
previous step d1 was compared against the empty string at a cost given
by M1−1,2−1 = M0,1. The total cost of the mismatch that now occurs is
therefore M0,1 + 1 = 1 + 1 = 2.

2. If s1 6= d2 is to be interpreted as due to a deletion of something after
s1, this would mean that in evaluating d1 against s1 in a previous step,
a minimum number of M1,1 errors was found to have occurred, and now
an additional error has been found when comparing d2 against the empty
string representing the deleted element after s1. The total cost due to such
a deletion would therefore be M1,1 + 1 = 0 + 1 = 1.

3. If s1 6= d2 is to be interpreted as the insertion of s1 after some prior source
string prefix (in this case, the empty string), then the total cost due to such
an insertion would be the cost of matching d1d2 against the empty string
(namely M0,2) plus the cost of the insertion, s1—i.e. the total cost is given
by M0,2 + 1 = 2 + 1 = 3.
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Figure 2.25: Calculating the LD between the words acttag and acctg.

Of the three possibilities the cheapest option is number 2—the deletion option.
Thus the value of entry M1,2 becomes 1.

Within the context of TR-detection it is meaningful to normalise the LD. The
normalised LD is referred to as the LDn here. The LDn is meaningful because it
is difficult to determine if an LD, by itself, represents a high or a low degree of
similarity when various lengths of ρ are considered.

Definition 2.5.2. The Normalised Levenshtein Distance ⊕
LDn(s, d), where s and d denote the relevant source and destination strings is
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calculated as follows:

LDn(s, d) =
LD(s, d)

max(|s||d|)
(2.7)

�

Note that this definition corresponds to that of Doran and Van Wamelen [2010].

Dynamic programming entails recursive computation where the current value to
be computed relies on the values already computed and recorded in a previous
recursion. In the present case, the matrix has to be filled in, in such a way
that, when the value in cell (i, j) is to be computed, then values for cells (i −
1, j), (i, j− 1) and (i− 1, j− i) have to be available. This can clearly be achieved
by a row-wise left to right traversal of columns. It can also be achieved by a
column-wise top-to-bottom traversal of rows. However, this can also be achieved
by a so called mirrored diagonally based traversal. This is briefly explained in
Chapter 8, Section 8.2.4.

2.5.3 Dynamic programming to calculate the LC

The LC between two strings is calculated in a similar manner to the LD calcu-
lation, again using dynamic programming principles. Again, there is more than
one way of calculating the LC.

Instead of computing the minimum distance between two strings s and d like the
LD does, the LC computes the maximum number of perfect matches between the
two strings. Clearly the LD and the LC are related. Here is its formal definition:

Definition 2.5.3. Levenshtein correspondence
LC(s, d) denotes the Levenshtein correspondence (LC) between a source string,
s, and a destination string, d, and is defined as:

max(|s|, |d|)− LD(s, d)

�

Thus LC(s, d) refers to the maximum number of matches between s and d. To
compute LC(s, d), matrix M such as the one displayed in Figure 2.26, can be
compiled.
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Figure 2.26: Calculating the LC between the words acttag and acctg.

The contents of M is determined by an algorithm similar to that of Smith and
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Waterman [1981]13. The formula below is used to complete matrix M .

M0,0 = 0 (2.8)

Mi,0 = 0 for i = 1 . . . |s| (2.9)

M0,j = 0 for j = 1 . . . |d| (2.10)

Mi,j =

{
1 +Mi−1,j−1 for (i > 0), (j > 0) and (si = dj)
max(Mi−1,j−1,Mi,j−1,Mi−1,j) for (i > 0), (j > 0) and (si 6= dj)

(2.11)

Thus, as seen in Equations (2.8), (2.9) and (2.10), row 0 and column 0 are ini-
tialised with zeroes. This is because the LC between the empty string and each
prefix of d is clearly zero, and likewise for each prefix of s.

Equation (2.11), needed to produce the remaining contents of M , has a dual
relationship to its counterpart Equation (2.6) for computing the LD. When de-
termining Mi,j, the maximum number of matches between s1···i and d1···j, simply
add 1 to Mi−1,j−1 if si = dj. Otherwise determine the maximum of Mi−1,j,Mi,j−1

and Mi−1,j−1.

As an illustration, consider how to determine the maximum number of matches
between s1···i and d1···j. Proceed in a row-wise manner—consider first each column
(from left to right) of row 1, then each column of row 2, etc.

In considering the first characters of s and d, i.e. s1 = d1, a match occurs, and
thus M1,1 = M0,0 +1 = 0+1 = 1, as indicated by the first case of Equation (2.11).
Next, since s1 6= d2, the second case of Equation (2.11) applies. The following
three possibilities, therefore, have to be considered and the best outcome should
be chosen:

1. As before, if s1 6= d2 is to be interpreted as a mismatch, this would mean
that in a previous step d1 was compared against the empty string and the
match count at that stage was therefore M1−1,2−1 = M0,1. The total number
of matches now would therefore be 0.

2. Similarly, if s1 6= d2 is to be interpreted as due to a deletion of something
after s1, this would mean that in evaluating d1 against s1 in a previous step,
a maximum number of M1,1 matches had occurred, and now an error has
been found when comparing d2 against the empty string representing the
deleted element after s1. The total matches due to such a deletion would
therefore be M1,1 = 1.

13 This algorithm performs a local sequence alignment (entails the matching of a string s with
substrings of d) and is guaranteed to find the optimal local alignment in correspondence with
the scoring system (weight assignment) being used. It is a variation of an algorithm originally
proposed by Needleman and Wunsch [1970]. A detailed discussion of the Smith-Waterman and
the Needleman-Wunsh algorithms is beyond the scope of this thesis.
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3. Finally, if s1 6= d2 is to be interpreted as the insertion of s1 after some prior
source string prefix (in this case, the empty string), then the total number
of matches due to such an insertion would be the number of matches of
d1d2 against the empty string (namely M0,2)—i.e. the total matches would
be M0,2 = 0.

Thus M1,2 is 1, i.e. the maximum value of the three above scenarios, and that
occurs when the source string is viewed as having something deleted after s1.

As before, the entire matrix may be computed in this row-wise fashion, or in a
column-wise fashion.

In this study, the LC will be computed in a context where a given motif ρ serves
as the destination string and nucleotide sequences being read from the input are
considered source strings. The source strings are thus evaluated as being TREs
in relation to ρ. In such a context, it is reasonable to limit the length of the

source string to |S| = d(1 +
εmax%

100
)× |ρ|e.

It is hard to interpret the LC without referencing the length of the strings. For
instance, an LC value of 10 might mean exact correspondence between two strings
of length 10; it might mean that there are only 10 matches between two strings,
each of length 100; it might mean there are 10 matches between a destination
string of length 10 and a source string of length 15; etc. For that reason, it
is desirable to normalise the value of an LC in relation to the length of the
destination string. For example, in the first case cited above, the match rate is
reflected by the computation 10

10
= 1; and in the second case it is 10

100
= 0.1. In the

third case one might say that the beneficial effect of the 10 matches is negated
by 5 insertions that have occurred, and compute the value of 10−5

10
= 0.5 to reflect

the extent of matching between source and destination.

Clearly the LC and LD are closely related. This is illustrated in Definition 2.5.4.

Definition 2.5.4. The normalised Levenshtein correspondence defined
i.t.o. the LD �

LCn(s, d), where s and d denote the relevant source and destination strings is
calculated as follows:

LCn(s, d) = 1− LD(s, d)

max(|s|, |d|)
(2.12)

�

Trial runs showed however, that an adapted version of the LCn is more suitable
within the present context. Therefore the adapted LCn, Definition 2.5.5, will be
used in subsequent work.
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Definition 2.5.5. The normalised Levenshtein correspondence �

LCn(s, d), where s and d denote the relevant source and destination strings is
calculated as follows:

LCn(s, d) =
LC(s, d)− |ins|

|d|
and if LCn(s, d) < 0 then LC(s, d) = 0 (2.13)

�

Definition 2.5.6. The match score �

LCn(s, d), where s and d denote the relevant source and destination strings, is
calculated as follows:

match score = LCn(s, d) (2.14)

�

The match score is equal to the LCn. In Chapter 9, after a recall precision
(RP) analysis a match score threshold function and match score threshold factor
are deduced. The match score, match score threshold function and match score
threshold factor determine the best fit within the context of FireSat TR detec-
tion. Details of these concepts, including the RP-analysis, are postponed until
Chapter 9.

2.5.4 Ambiguity

As indicated in Section 2.5.1, there may be more than one way of assigning
mutation-types when aligning two strings to determine an LD or LC value. Con-
sider, for example, the source string cgtacac and destination string ccctagac.
The matrix for computing the LD is shown in Figure 2.27. The LD is 3, as
displayed in the bottom right corner.

However, there are three different ways of assigning mutations to the source string
to arrive at this LD value of 3. These are shown in Table 2.2. In the table, D
indicates a deletion in the source string, P a destination string match with the
source string and M a mismatch between the destination and source string.

In the first match pattern, a deletion is deemed to have occurred, followed by
two mismatches. In the second match pattern, a deletion again occurs before two
mismatches, but now in the second position of the source string. In the third
match pattern, a mismatch is identified before the first deletion. Thereafter,
another mismatch is reported.
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So
ur

ce
 (

s)

Destination (d)

c c c t a g a c

0 1 2 3 4 5 6 7 8

c 0 1 2 3 4 51 6 7

g 1 1 2 3 42 4 5 6

t 2 2 2 23 3 4 5 6

3a 3 34 3 2 3 4 5

c 4 35 3 4 3 3 4 4

5a 4 46 4 4 4 3 4

c 6 57 4 5 5 5 4 3

Figure 2.27: Calculating the LD between cgtacac and ccctagac.

2.6 Conclusion

In this chapter terminology, definitions and notations have been presented that
are used throughout the remainder of this thesis. In the rare cases where ad-
ditional terminology is required, it will be introduced at that stage. Note that
algorithms are presented in Dijkstra’s guarded command language (GCL) (Kourie
and Watson [2012]; Vide et al. [2003] and Dahl et al. [1972]).

In Chapter 3 a literature overview of implemented algorithms searching TRs is
presented.
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Destination string c c c t a g a c

Source string c g t a c a c

Match pattern 1 D P M P P M P P
Source string c g t a c a c

Match pattern 2 P D M P P M P P
Source string c g t a c a c

Match pattern 3 P M D P P M P P

Table 2.2: Alternative match patterns giving the same LD value.
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“With everything that has happened to you, you can either feel sorry for yourself or
treat what has happened as a gift. Everything is either an opportunity to grow or an
obstacle to keep you from growing. You get to choose.” ... Wayne W. Dyer

This work significantly extends De Ridder [2010] research1 verifying that FAs can
be used to effectively detect microsatellites in DNA. As mentioned in Chapter 1,
the purpose of this thesis is to extend the above for all repeats—microsatellites,
minisatellites and satellites. It will be seen—especially in Chapter 5—that the
approach of FireSat differs significantly from that of FireµSat, the algorithm
developed as part of the MSc.

This chapter discusses the principal literature sources relevant to this thesis. It
is laid out as follows:

� Section 3.1 provides references to repeat detection research literature. The
first part focusses on research that has been either authored or co-authored

1http://upetd.up.ac.za/thesis/available/etd-08172010-202532/unrestricted/

dissertation.pdf
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by me. These sources may be consulted for back-references prior to 2014.
The second part references material that summarises research subsequent
to 2014.

� Detailed descriptions of TR detecting algorithms, referred to as TR-detectors
(TRDs), will not be included here. (De Ridder [2010] describes the most
prominent TRDs at the time of that study.) Instead, Section 3.2 gives a
high-level overview of TRDs. It uses so-called formal concept lattices to
reflect the interrelationship between various TRDs and their respective at-
tributes. Therefore Section 3.2 also includes a brief introduction to formal
concept lattices.

� FORRepeats [Lefebvre et al., 2003] is discussed in Section 3.3. The reason
for focusing on this TRD is because, apart from FireµSat and FireSat, it
is the only one that employs finite automata to detect minisatellites.

� Thereafter, in Section 3.4, results that were obtained with FireµSat are
briefly reviewed. This provides some context for appreciating FireSat pro-
posed in this thesis.

� The most important literature-based criteria to which repeat detection
should yield are reviewed in Section 3.5.

� Section 3.6 concludes this chapter.

3.1 References to the literature

This section provides in Subsection 3.1.1 references to personal work related to TR
detection. In Subsection 3.1.2 references to TR detection algorithms developed
by other researchers are provided.

3.1.1 References to personal work

The objective of the first part of Chapter 2 of De Ridder [2010] was threefold:

1. to provide the reader with biological background required to understand
the context of the research;

2. to introduce relevant biological terminology; and

3. to provide a literature overview that explained existing implemented algo-
rithms for detecting repeats.
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Neither the biological background nor the literature overview will be repeated
here. Terminology essential to the comprehension of this thesis has been given in
the previous chapter.

Although the focus of De Ridder [2010] was microsatellites, several packages de-
tecting minisatellites and satellites (including TRF) were included as part of the
literature review. In Chapter 3 of De Ridder [2010], a detailed discussion of two
algorithms—Tandem Repeats Finder (TRF) and Search for Tandem Approximate
Repeats (STAR)—is to be found. TRF detects microsatellites, minisatellites as well
as satellites, whereas STAR only detects microsatellites. The literature usually re-
lies on TRF for benchmarking purposes [Lim et al., 2012, Rivals, 2004, Schaper
et al., 2015].

Masombuka (2008) completed his honours project under my supervision and dis-
cussed three algorithms for repeat detection. Phobos, mreps and REPuter are
discussed in his mini-dissertation. Together with Masombuka and Kourie, I co-
authored a paper entitled An investigation of software for minisatellite detection.
The paper was presented at the Pattern Recognition Association of South-Africa,
2010 (PRASA2010). We investigated four algorithms: TRF, ATR-Hunter, Phobos
and mreps and compared their runtime as well as their output.

References to work related to repeat detection that I have either authored or co-
authored are provided below. Note that these publications include, to a larger or
a lesser extent, literature overviews of existing algorithms. Extensive literature
overviews are to be found in De Ridder [2010], De Ridder et al. [2006b] and
Masombuka et al. [2010].

� De Ridder et al. [2006a];

� De Ridder et al. [2006b];

� De Ridder [2010];

� Masombuka et al. [2010];

� De Ridder et al. [2011] and;

� De Ridder et al. [2013].

3.1.2 References to other research

Anisimova et al. [2015] and Schaper et al. [2015] maintain that an exhaustive
search to detect all TRs is not possible. This is because TRs are context depen-
dant — i.e. researchers have different opinions about whether a given string con-
stitutes a TR, based on how many errors they are prepared to tolerate, whether
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they prioritise long motifs over shorter ones, whether they prioritise mismatches
over indels etc. Thus, practically any string can be regarded as a TR if we allow
a high enough tolerance. In the case of FireSat2 and FireSat3 it is possible
(not necessarily meaningful) to allow the LD such that |PTRE| = |εmax|. Con-
sequently if a researcher knows exactly how many of which type of errors he/she
wants to be accommodated, the penalties, threshold values and other parame-
ters can be set accordingly and an exhaustive search becomes a possibility at the
expense of space and runtime.

TRs are based on different algorithmic paradigms, as discussed in this chapter.
Consequently there is a significant discrepancy between TR annotations adopted
by different TRD-algorithms [Anisimova et al., 2015].

Indels introduce length variability between individual TREs. According to Anisi-
mova et al. [2015], this increases the TR search space to O(2NN3). Thus, it would
seem that there has been some research conducted with a focus on investigating
existing TRDs. It appears to focus in part on the validation of tandem repeats,
statistically or otherwise. Examples include the following studies:

� Schaper et al. [2012] suggest the reconciliation of diverse predictions of cur-
rent algorithms. They propose statistical criteria for measuring the quality
of predicted TRs and for determining a maximum-likelihood estimation of
TR divergence.

� Schaper et al. [2015] believe that it is essential to detect TRs by using a
variety of TRDs. These TRs should then be combined for reliable TR an-
notation. They developed TRA, a tandem repeat annotation library2. Note
that although Schaper et al. [2015] mention that six TRDs are integrated
in TRA, they actually list the following TRDs:

– HHrepID [Biegert and Schoöding, 2008];

– Phobos [Mayer, Phobos 3.3.11, 2006-2010];

– TRED [Sokol et al., 2007]3;

– T-REKS [Jorda and Kajava, 2009];

– TRF [Benson, 1999];

– TRUST [Szklarczyk and Heringa, 2004]; and

– XSTREAM [Newman and Cooper, 2007].

Of these TRDs, TRUST, HHrepID and XSTREAM focus on TR-detection in
protein sequences. T-REKS focuses on microsatellite detection.

2Available at http://www.vital-it.ch/software/tral.
3At the time of writing the TRED software was not accessible at the web page referenced in

Sokol et al. [2007].

http://www.vital-it.ch/software/tral
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� In De Ridder et al. [2013] T-REKS is investigated as one of the rival TRDs to
FireµSat. TRF as well as Phobos are considered as rival TRDs to FireSat

and will be reported on in this thesis4.

There are a variety of algorithms that detect TRs. Four concept lattices provide
an overview of such algorithms in the next section.

3.2 Overview of TRDs

Archambault [2012] compiled a table5 focussing on software that detects mi-
crosatellites. Note that several packages that do not aim to detect microsatellites
per se are also included in her report. This table served as the primary data
source for the lattice-based study described in this subsection.

Twenty nine TRDs are listed below, twenty six of which are reported by Archam-
bault [2012].

Note that packages relating to repeat detection, but not to tandem repeat de-
tection per se are not included in Table 3.1 and the subsequent classification.
IRF (Inverted Repeats Finder) [Warburton et al., 2004], REPuter [Kurtz et al.,
2001] and SRF (Spectral Repeat Finder) [Sharma et al., 2004] are examples of
such excluded packages. Note further that FireSat is included in the lattices but
not in the subsequent discussions.

3.2.1 Brief Introduction to FCA

Four so-called concept lattices have been constructed to give an overview of the
repeat detection field. Concept lattices have been chosen as a concise and de-
scriptive way of giving an overview of repeat-detecting software. The following
information, drawn from Kourie and Watson [2012], is provided to introduce
concept lattices briefly.

Concept lattices are defined in a computer science / mathematics subfield of
study referred to as formal concept analysis (FCA). FCA considers sets of objects
in relation to the attributes that the objects hold in common. A rich source
of information about the inter-relationship between a set of objects that share
certain attributes can be obtained by creating and studying a concept lattice
representing these objects and their related attributes.

Concept lattices are rooted in set theory. A concept lattice is derived from a
set of attributes, M , that characterise objects in a set, G. The starting point for

4Note that De Ridder [2010] extensively reports on TRF.
5The table is available at: http://qcbs.ca/toolbox/qcbs-wiki/

 http://qcbs.ca/toolbox/qcbs-wiki/
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Name Reference
ATRHunter Wexler et al. [2004]
BWTrs Pokrzywa and Polanski [2010]
ComplexTR Hauth and Joseph [2002]
ExTRs Krishan and Tang [2004]
FireµSat De Ridder et al. [2006a]
FireSat De Ridder et al. [2011]
FORRepeats Lefebvre et al. [2003]
IMeX Mudunuri and Nagarajaram [2007]
INVERTRER Lim et al. [2012]
Landau-algorithm* Landau et al. [2001]
Microsatellite Identification Tool (MISA) Thiel et al. [2003]
mreps Kolpakov et al. [2003]
Msatcommander Faircloth [2008]
MsatFinder Thurston and Field [2005]
OMWSA Du et al. [2007]
Phobos Mayer [Phobos 3.3.11, 2006-2010]
QDD1 and QDD2 Meglécz et al. [2010] Ref incompl
SciRoKo Kofler and Sclötterer [2007]
Simple Sequence repeat Identification Tool (SSRIT) Temnykh et al. [2001]
Sputnik Abajian [1994]
SSRscanner Anwar and Khan [2006]
STAR Rivals [2004]
STRING Parisi et al. [2003]
Tandem Repeats Finder (TRF) Benson [1999]
Tandem Repeat Occurrence Locator (TROLL) Castelo et al. [2002]
TandemSWAN Boeva et al. [2006]
T-REKS Jorda and Kajava [2009]
TRStalker Pellegrini et al. [2010]
W-SSRF Sreenu et al. [2003]

Table 3.1: Representative list of TRDs. (Note: The algorithm marked by * was
not named explicitly by Landau, its author. It will be referred to here as the
Landau-algorithm.)
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deriving concepts is to represent the objects and their associated attributes in a
cross-table, called the context. Each row of the context represents an object in
G, each column represents an attribute in M , and binary entries (true/false, or
cross/blank, or 0/1) in the cells indicate whether a given attribute characterises
the associated object. Figure 3.1 is an example of a context and will be discussed
later.

A concept is defined by a pair of sets (A,B) such that A ⊆ G and B ⊆ M .
However, these sets are constrained in a specific way. The pair (A,B) may only
be reckoned as a concept if A consists of all objects that possess all the attributes
in B. Additionally B must be maximal, implying that there are no additional
attributes shared by A that are not included in B.

Concept (A,B) therefore have maximal sets from the given context in the fol-
lowing sense: Suppose one picks a set of objects, say A, and discovers that all
objects in A have attributes B in common. That does not guarantee that (A,B)
is a concept. In order for (A,B) to be a concept, the following two conditions
have to be met:

� No object, say d, that is not in A also possesses all the attributes in B
(though d may posses some of the attributes in B).

� The objects in A do not all possess common additional attributes that are
not in B.

Only if the above holds can one conclude that (A,B) is a concept. The concept
(A,B) is said to have an extent of A and an intent of B.

Thus, each context is associated with a set of concepts. Moreover, FCA defines
a partial ordering on concepts, namely concept (A1, B1) ≤ (A2, B2) if and only
if (A1 ⊆ A2). (It can be shown that, dually, (A1, B1) ≤ (A2, B2) if and only if
(B2 ⊆ B1).)

As a result of this ordering relationship on concepts, it can be shown that the
set of concepts in a given context constitute a lattice6. Software packages are
available to derive all concepts from a given context and to display the concepts
in terms of their ordering in a so-called line diagram visually. Nodes in such a
diagram represent concepts, and arcs connect direct successors with respect to
the partial ordering defined on concepts.

The concept lattice line diagrams presented below were set up using the open
source tool known as Concept Explorer. Concept Explorer was developed by
Yevtushenko [2000]. Figure 3.2 is an example of the line diagram derived from

6Technically, this means that each set of concepts has a unique supremum and a unique
infimum.
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the context in Figure 3.1 and will be further discussed below. For the present,
however, notice that labels are attached to nodes (concepts) in the line diagrams.
These labels can be used to infer the intent and extent of each concept (node).

A shaded label at a concept refers to an attribute in the context and is called
an own attribute of the concept. The intent of a given concept can be found by
collecting together all the own attributes at or above that concept.

Similarly, each clear label at a concept refers to an object in the context and is
called an own object of the concept. The extent of a concept can be found by
tracing all the own objects at or below a given concept.

It is not the intention to contribute to the field of FCA in this thesis. The
terminology and definitions provided above will be used where applicable. For a
more extensive discussion of concept lattices the interested reader is referred to
Kourie and Watson [2012].

In this text, line diagrams of several concept lattices will be presented and dis-
cussed. In each case, the set of objects will be a set of TRDs and the set of
attributes will be a set of attributes that are associated with these TRDs.

3.2.2 The full TRD lattice

The TRDs discussed in this section were published during the period of 1994
until 2013. These algorithms and their various attributes considered below are
shown in the cross-table of Figure 3.1 which serves as base context for the concept
lattices to be constructed. The table’s column headings are briefly described as
follows.

A The first column lists the 27 TRDs considered in the remainder of this section.

B Microsatellites
A Microsatellite is a TR whose repeated motif is restricted to 1 ≤ |motif | ≤ 6.

C Minisatellites
A Minisatellite is a TR whose repeated motif is restricted to 7 ≤ |motif | ≤
100.

D Satellites
A Satellite is a TR whose repeated motif is |motif | > 100.

E PTRs (Perfect Tandem Repeats)
A PTR is a string of nucleotides characterized by a certain motif that intro-
duces the string followed by one or more exact copies of the motif.
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F ATRs (Approximate Tandem Repeats)
An ATR is a string of nucleotides characterized by a certain motif that intro-
duces the string followed by one or more adjacent “copies” of the motif. In the
case of ATRs, at least one motif copy will not be exact. Copies may include
mismatches and/or indels — defined hereafter.

G Mismatches
A Mismatch is the replacement of a nucleotide in a PTRE with another nu-
cleotide. The result is an ATRE that can be considered an approximate “copy”
of the original PTRE.

H Indels
When two sequences are compared then an insertion in one sequence implies a
deletion in the other. Therefore in Benson [1999], insertions and deletions are
together referred to as Indels. An insertion in a PTRE results in an ATRE
whose length is longer than that of the original PTRE. A deletion from a
PTRE results in an ATRE that is shorter than the original PTRE. When
using the word indel, reference is made to algorithms that have the capability
to detect TRs containing both insertions and deletions.

I Threshold/Confidence
A Threshold or a Confidence is a value (usually an integer value) in a relational
Boolean expression. Such expressions evaluate to either true or false and are
used in algorithms to change the manner in which the algorithm executes,
depending on whether or not the expression evaluates to true [McGraw-Hill
and Parker, 2003]. In the context of TR-detection, a threshold is typically
used to control the extent of the search. Thus, whenever too many indels or
mismatches are identified in a substring that is potentially a TR, then the
algorithm will no longer regard the substring as a potential TR and will aim
to detect another TR.

J Heuristics
Generally speaking, a Heuristic is a “rule of thumb,” or a good guide to follow
when making decisions. Pearl [1984] defines heuristics in more precise terms,
as strategies using readily accessible, though loosely applicable, information to
control problem solving within either human beings or machines. In the con-
text of computer science, heuristics (often statistics-dependent) aim to solve a
problem more quickly than a classical algorithmic method might have. Heuris-
tics are usually used if the search space is large and/or complicated. Thus by
using heuristics, speed is often gained at the cost of precision. Heuristics can
also find a non-exact solution when classical methods do not find any solution
at all.
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K Not Micro
The attribute Not Micro implies that although an algorithm has the ability to
search for microsatellites the focus of the algorithm developers was specifically
to search for TR minisatellites and/or satellites.

L The remaining columns in the table give the year of publication of the various
algorithms. Note, however, that these attributes were not used to construct
the formal concept lattices that are discussed below.

The line diagram of the concept lattice derived from this data is shown in Fig-
ure 3.2. The diagram gives an alternative view of how attributes and TRDs in
Figure 3.1 map to one another.

Some of the information is quite easy to infer intuitively. For example, the top
concept has an intent of {TR- detectors} and an extent consisting of all the
objects listed in the rows of Figure 3.1 – i.e. all TRDs have the attribute TR
Detector.

As another example, consider the concept with own object ComplexTR. This con-
cept has an extent consisting of several other TRDs listed as own objects in
concepts below it, and an intent of

{Satellites, Minisatellites, TR-detectors}

Further inspection shows that the own object at this concept, ComplexTR, is the
only TRD in the data that does not have Microsatellites in its intent — i.e. it
is the only TRD in the data that cannot detect microsatellites. Further such
inferences could be made from this line diagram

However, because the diagram is rather cluttered, several alternative diagrams are
given below that rely on smaller subsets of the attributes in Figure 3.1. Further
discussion is with respect to these resulting less cluttered diagrams. In each case,
however, the TRD ComplexTR will be excluded from the data.

3.2.3 A lattice based on motif-length classification

In this subsection Figure 3.3 is considered. This line diagram depicts all the
considered TRDs in the dataset in relation to attributes that focus on motif
length, namely: {Microsatellites, Minisatellites, Satellites, PTRs, ATRs, Not
Micro}. Because fewer attributes are used than for Figure 3.2, it is simpler to
cluster algorithms in terms of their capability to detect Microsatellites and/or
Minisatellites and/or Satellites. It also displays whether the user has an option
to select PTRs only.
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Figure 3.2: A line diagram built with attributes B to L listed in Figure 3.1.
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Figure 3.3: A line diagram of data in Figure 3.1 with attributes focussing on
motif length, namely: {TR-detectors, Microsatellites, Minisatellites, Satellites,
PTRs, ATRs, Not Micro}.
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Just below the top concept (with own attribute Microsatellite) are two concepts
whose own attributes are Minisatellite and PTRs respectively. The latter con-
cept’s intent is therefore:

{Microsatellite, PTRs, TR-detectors}

(i.e. the set consisting of its own attribute as well as attribute labels above it).
This concept has six own objects, namely

{QDD, MsatCommander, SSRscanner, TROLL, SSRIT, MsatFinder}.

The extent of the same concept is the set consisting of its own objects as well as
object labels below it, i.e.:

{QDD, MsatCommander, SSRscanner, TROLL, SSRIT, MsatFinder,

T-REKS, SciRoko, IMex, FireµSat, Misa, W-SSRF, Inverter, Sputnik,

Sputnik II, BwTRS, Landau-algorithm, TRStalker in TReads, Phobos,

ExTRS, TRStalker, STRING}.

The extent is thus the set of all the objects that have exactly and only the intent
attributes in common, namely, they all detect Microsatellites and PTRs. Note
that TRDs in the extent may have additional attributes not in the concept’s
intent. For example, the Phobos algorithm also has the attributes Minisatellites,
Satellites and ATRs in its intent. This can be seen by collecting together all
attributes encountered by following all paths upwards from the concept with
Phobos as an own object.

As another example, consider the concept with own attribute Not Micro and own
objects TRF, mreps and ATRHunter. Its intent is

{Not Micro, Satellites,Minisatellites,Microsatellites,ATRs, TR-detectors}

and its extent is
{TRF, mreps, ATRHunter, STRING}

The detection of Microsatellites is simpler than that of Minisatellites and Satel-
lites as the length of the repetitive motif is smaller. Furthermore, when searching
for Minisatellites or Satellites in a given DNA string, in practice the number of
motif errors allowed in ATREs detected is often significantly larger than when
searching for Microsatellites. This is because, for a given error tolerance based
on some percentage of an ATRE’s length, the number of actual errors allowed
will be higher in the case of Minisatellites and Satellites compared to those re-
sulting from Microsatellites with their shorter length motifs. Because of these
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factors, fewer algorithms cater for detecting Minisatellites and Satellites than for
detecting Microsatellites. This can be seen in Figure 3.3.

There are three concepts in Figure 3.3 that do not have Minisatellite or Satellite
in their intents, namely:

1. the concept whose intent is {Microsatellite, PTRs, TR-detectors} — i.e.
the concept that has PTRs as an own attribute;

2. the concept whose intent is {Microsatellite, ATRs, TR-detectors} — i.e.
the concept that has ATRs as an own attribute and STAR as own object

3. the concept below these two with the intent {PTRs, ATRs, Microsatellites,
TR-detectors} but no own attribute.

Note that the attributes Minisatellites and Satellites are not in the intent of
any of these three concepts. Thus, the algorithms that are own objects of these
three concepts can be said to search for Microsatellites only — i.e. they are
not capable of searching for Minisatellites or Satellites. There are a total of 13
such algorithms: 6 that search for Microsatellites that are PTRs only; 1 that
searches for Microsatellites that are ATRs only (namely STAR); and 6 that search
for Microsatellites that are either PTRs or ATRs.

The concept in Figure 3.3 with own object W-SSRF has an intent {Minisatellites,
Microsatellites, PTRs}. It is the only concept whose intent has Minisatellites
but excludes Satellites — i.e. it is the only concept representing algorithms that
search for Minisatellites or Microsatellites, but not for Satellites. These algo-
rithms constitute the concept’s extent, namely {Inverter, TRStalker, Phobos,

ExTRs STRING, BwTRS, Landau-algorithm, W-SSRF}.
The concept with own attribute Satellites has an extent with nine objects7,
namely
{TandemSWAN, TRF, mreps, ATRHunter, TRStalker, STRING, Phobos, ExTRS, Inverter}.
These are the only algorithms that detect Satellites.

Although it is not always an objective of algorithms searching for Satellites or
Minisatellites to search for Microsatellites too, most of the minisatellite and satel-
lite detecting algorithms are capable of detecting some Microsatellites as well.
Often, however, they do not do so as accurately as algorithms that focus on the
detection of Microsatellites only.

Though algorithms in Figure 3.2 or 3.3 have been characterised as detecting Mi-
crosatellites (Minisatellites or Satellites, respectively) this should not be taken to
mean that the algorithms necessarily detect the complete set of Microsatellites

7Recall that FireSat is not part of the discussion.
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(Minisatellites or Satellites, respectively). For example, W-SSRF detects Minisatel-
lites whose motif lengths are less than 10; Inverter detects Satellites whose motif
lengths are limited to a range of less than 200.

It is clear from Figure 3.3 that STAR, the own object of the concept with the own
attribute ATRs, is the only microsatellite detection algorithm that does not detect
PTRs per se. Note, however, that STAR does detect Indels. The other algorithms
that detect Indels and not PTRs per se are mreps, ATRHunter and TRF. These
three algorithms have also been designed with the objective of detecting repeats
with a repetitive motif (PTRE) length longer than 6.

3.2.4 A lattice based on error types and tolerances

The line diagram in Figure 3.4 relies on a different subset of attributes to the line
diagram in Figure 3.3, namely:

{TR-detectors,PTRs,ATRs, not Micro,Mismatches, Indels,Heuristics,Threshold/Confidence}

Thus, the diagram distinguishes algorithms that identify PTRs only from those
that identify both PTRs and ATRs. It also distinguishes between algorithms
whose ATREs contain only Mismatches from those that tolerate both Mismatches
and Indels. Finally, it indicates whether Heuristics and/or Threshold/Confidence
values are used to determine ATRs.

By exploring the line diagram, one is easily able to answer questions such as the
following in regard to the attributes of the algorithms under consideration:

� Does an algorithm only detect PTRs?

� Does an algorithm allow the user to detect ATRs?

� Does an algorithm allow the user to detect Mismatches?

� Does an algorithm allow the user to detect Insertions and Deletions?

� Does an algorithm rely on Heuristics?

� Does an algorithm rely on Threshold / Confidence values?

Of course, many more complex questions can also be answered by analysing
such line diagrams. For example, one can infer information about relationships
between the attributes of algorithms. Consider, for example, the concept in
Figure 3.4 that has both ATRs and Mismatches as own attributes. This indicates
that, for all the TRDs investigated here, it holds that whenever an algorithm
detects ATRs it also has the ability to detect Mismatches too.
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Figure 3.4: A line diagram of data in Figure 3.1 with attributes focussing on
error types and tolerances, namely: {TR-detectors, PTRs, ATRs, not Micro,
Mismatches, Indels, Heuristics, Threshold/Confidence}.

A number of algorithms search for repeats with Mismatches only. Figure 3.4
shows that ExTRS, Misa, the Landau-algorithm, BwTRS, TandemSwan and mreps

allow for Mismatches only. This is the list of all algorithm labels below the
Mismatches label in the figure, but that are not also below the Indels label.

To allow for Mismatches as well as Indels is a harder computational problem
than simply allowing for Mismatches only. STAR, Phobos, Sputnik, FireµSat,
IMex, SciRoko, T-Reks, TRStalker, ATRHunter, STRING and TRF allow for both
Mismatches and Indels in TREs of TRs. These algorithms fall below the Indels
label in the figure.

Whenever an algorithm allows for ATREs then, to ensure that only relevant
repeats are reported, either Heuristics or a Threshold/Confidence value should
be used. Figure 3.4 shows that certain algorithms use Heuristics, others use a
Threshold/Confidence value, and a number of algorithms allow for the use of
both Heuristics and a Threshold/Confidence values.

Krishan and Tang [2004] argue that Heuristics are incomplete in the sense that
researchers who use them or who use probabilistic definitions to give a more
abstract definition of TRs are thereby narrowing down the set of potential TRs
in order to enhance runtime performance at the cost of accuracy. It will be
seen that FireSat implements counting finite automata during the detection
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of repeats. FireSat provides the possibility for users to specify penalties and
threshold values. Thus the statistical significance of results should be tuned
using penalties and threshold values. The only heuristic that FireSat uses is
to give mismatches priority above deletions and deletions in turn priority above
insertions. Switches can however, be set to alter the mutation precedence order.

Here are further examples of inferences that can be made from the line diagram
in Figure 3.4, sometimes also needing to refer to the previous line diagrams:

� The figure highlights the fact that ATRs and Mismatches are equivalent
attributes in the sense that each algorithm that has one of these attributes
will also have the other.

� All the algorithms listed here are able to detect a subset of Microsatellites.
However mreps, the own object of the concept with the own attribute Not
Micro (see Figure 3.3), was not developed for Microsatellite detection. The
same holds for ATRHunter, TRF and STRING objects that form part of the
extent of the concept with the own attribute Not Micro.

� mreps does not rely on Threshold / Confidence testing for TR-detection,
but only on Heuristics.

� TRF, ATRHunter and STRING cater for Indels, but mreps does not.

� TandemSWAN, the own object of the concept with the own attribute Thresh-
old/Confidence, does not use Heuristics during TR-detection at all.

� Three of the TR-detection algorithms catering for Minisatellite and Satellite
detection implement both Heuristics and Threshold/Confidence values —
TRF, ATRHunter and STRING.

� INVERTER is the only algorithm that caters for Satellites and Minisatellites
that are only PTRs — In Figure 3.4, INVERTER is an own object of the
concept with the own attribute PTRs.

� W-SSRF detects minisatellites consisting of PTRs only and has been designed
to cater for microsatellite detection too.

� The concept in Figure 3.4 with PTRs as its own attribute has eight own
objects, namely, SSR-scanner, W-SSRF, TROLL, SSRIT, MsatFinder,
Msatcommander, QDD and Inverter. These algorithms search for PTRs
only.

� From Figure 3.4 it is clear that several algorithms do not have the ability
to detect PTRs. These are TRDs in the extents of concepts that do not
include the PTRs attribute in their intents. For example, it can easily be
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seen that mreps does not detect PTRs because the concept with own object
mreps does not have PTRs in its intent. Similar reasoning applies to STAR,
to ATRHunter, TRF, etc.

3.2.5 TRDs that search only for PTRs

The task of searching for PTRs only is relatively simple. It can be done in less
than 40 lines of Matlab/Octave code8.

Lim et al. [2012] assert that PTR detection provides a good basis for studying
the intrinsic performance of repeat detecting tools since, in their opinion, PTRs
are precise and thus not subject to varying interpretations. In De Ridder et al.
[2013] I took a different view from Lim et al. [2012] with respect to the relevance
of PTR detection for software comparison. Nevertheless, I thought it would be
of interest to compare a number of software implementations in terms of PTR
detection only. I report briefly below on running FireµSat2 (a predecessor of
FireSat), Inverter, T-reks, in all cases searching only for microsatellite PTRs.
The results were compared against PTR detection code implemented in Matlab

mentioned above.

In Table 3.2, the findings of the trial runs are reproduced. The table gives the
number of detected non-overlapping PTRs consisting of 20 or more base pairs,
where 1 ≤ |motif | ≤ 6 is the length of the motif9. The data used was precisely
that which was originally used and reported on by Lim et al. [2012]10. Table 3.2
reports on the number of PTRs detected as well as the runtime of the algorithms.
From Table 3.2 and verification via data inspection it is clear that ptrfind.m (the
Matlab script) and FireµSat2 are currently the most accurate and consistent
approaches for PTR detection. FireµSat2 performs considerably faster than
Inverter. T-reks turns out to be the fastest, but only detects about 66% of the
PTRs found by FireµSat2 and the Matlab script.

Note that results generated by FireµSat2 as well as those generated by T-reks

were post-processed to achieve only the non-overlapping PTR detections. The

8Matlab (Octave is Matlab’s freeware counterpart.) is a well-known interpreter. Download-
able Matlab/Octave code to find non-overlapping PTRs may be found at www.dna-algo.co.za.
Scripts in these environments usually run more slowly than compiled executables. One could
therefore expect a considerable speed-up if the code were to be rewritten as optimised C++
code (Andrews [2012]).

9The molecular biologist community expressed a need to analyse non-overlapping microsatel-
lites as defined by Zhou et al. [2009] with motif-lengths in the range of 1 ≤ |motif | ≤ 6.
FireµSat2 has been extended to detect such microsatellites. Note that if |motif | = 6 then a
maximum motif error of 2 (εmax = 2) is allowed.

10The Saccharomyces cerevisiae S288c chromosome.fasta data is available as one con-
tiguous file from http://www.dna-algo.co.za.

www.dna-algo.co.za
http://www.dna-algo.co.za
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Table 3.2: Non-overlapping PTRs detected of length ≥ 20 for 1 ≤ |motif | ≤ 6 on
the data originally used by Lim et al. [2012].

ptrfind.m FireµSat2 T-REKS Inverter

PTRs detected 596 596 393 125

Time >20min 05min20s 03min19 >20min

results generated by Inverter needed post-processing to extract only PTR de-
tections for motif-lengths in the range 1 ≤ |motif | ≤ 6.

As an aside, note that algorithms that can only detect perfect microsatellites
often provide the additional functionality to facilitate the design of primers11.
For example, QDD2 and Msatcommander provide such a user option.

3.2.6 Selecting TRDs to benchmark FireSat

The lattices presented in Figures 3.3 and 3.4 facilitated the selection of rival
algorithms to be used during trial runs of FireSat. The outcome of these trial
runs will be reported in Chapter 6.

In considering length of the motif characteristics in respect of rival algorithms to
be tested during trial runs, it was decided that these algorithms should be able to
detect Satellites, Minisatellites as well as Microsatellites. Figure 3.3 showed that
there are nine algorithms that can search for Satellites. These are now briefly
considered.

1. TRF and ATRHunter: It was decided that ATRs must be tolerated by the
algorithms selected for trial runs. In both Figure 3.3 and Figure 3.4, TRF
and ATRHunter share the same intent, which includes the attribute ATRs.
Since they are therefore similar algorithms, in the interests of economy
it was decided to include only one of them for benchmarking purposes.
Because TRF is commonly included for benchmarking purposes [Lim et al.,
2012, Rivals, 2004, Schaper et al., 2015], it was decided to use TRF in the
benchmarking to be done in this present study.

2. mreps: Although mreps does not allow for insertion and/or deletions (see
Figure 3.4), it detects Satellites. (See Figure 3.3.) Previous trial runs
[Masombuka et al., 2010] indicated that mreps is fast and relatively accurate
during searches for ATRs. Therefore mreps was also included as a rival
algorithm to be used here for benchmarking purposes.

11A primer is a strand of DNA that serves as a starting point for DNA synthesis — a new
deoxyribonucleotide can only be added by DNA polymerases to a preformed primer strand that
is hydrogen-bonded to the template [Cooper, 2000].
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3. Inverter: This algorithm seemed to be of interest because it was published
relatively recently (in 2012). Inverter searches for PTRs only. Note that
only Phobos has a switch to search for PTRs only—mreps and TRF do not
have that functionality. Inverter is, however, unavailable from the web
and for that reason it was not included in trial runs.

4. TRStalker: This is a TRD embedded within TReaDS (Tandem repeats dis-
covery service). TreaDS is a TR meta search engine that forwards user
requests to selected TRDs that include ATRHunter, mreps, TandemSWAM,
TRF or TRStalker. The detected TRs can be combined/merged to provide
a so called TR global view [Pellegrini et al., 2012]. TRStalker is not a stand
alone package and, for this reason, it will not be further considered for the
purposes of selecting rival software.

5. The TandemSWAN web page was updated in January 2006. It offers a facility
to process both TRF and mreps results in terms of statistical significance.
Similarly to mreps, TandemSWAM only makes provision for detecting Mis-
matches. Like Phobos TandemSWAM uses a confidence measure during TR
detection. (In Figure 3.4 TandemSWAM is the own object of the concept with
the own attribute Threshold/Confidence.)

6. Note that Phobos caters for Mismatches and Indels. Phobos was updated
in 2010. In Figure 3.4, the intent of the concept with Phobos as own object
include Threshold/Confidence. In the interest of economy TandemSWAM will
be omitted for benchmarking purposes in Chapter 9 while Phobos will be
included.

7. The ExTRS software is not available from the web. Consequently it was
decided to exclude ExTRS from trial runs. Like TandemSWAN, ExTRS was
published more than 10 years ago and may be considered relatively old in
the current context.

8. Similarly STRING is also relatively old (published in 2003) and is not avail-
able from the URL indicated in Parisi et al. [2003]12.

3.2.7 TRD computational techniques

The type of computational techniques that are used in the respective software
packages differ. They include alignment (TRF, ATRHunter), periodicity (mreps),
clustering (T-Reks) and compression algorithms (STAR). Details about these tech-
niques may be found in relevant publications about the respective packages.

12www.caspur.it/STRING/

www.caspur.it/STRING/
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To the best of my knowledge, FORRepeats is the only algorithm, other than
FireSat, that relies on finite automata to detect tandem repeats (focussing on
minisatellite detection). For this reason, FORRepeats is discussed in the next
section, Section 3.3. Note that FORRepeats is not available from the web.

3.3 FORRepeats

FORRepeats implements FAs to detect TRs. However, other than relying on
finite automata to detect TRs, FORRepeats and FireSat do not have much else
in common. In its first step, FORRepeats detects PTREs in large sequences. In
its second step, TREs (allowing errors of the detected PTREs) are computed
during a pairwise comparison between two extended PTRs. The details of the
extension of exact repeats and the comparison thereof can be found in Lefebvre
et al. [2003].

FORRepeats uses a heuristic method that is based on an FA called a factor oracle.
The factor oracle data structure was introduced by Allauzen et al. [1999]. A factor
oracle automaton is acyclic. It recognizes the so-called factors of a word p.

x is defined as a factor of a word p if and only if p can be written as uxv with
u, v ∈ Σ∗. A factor x is a prefix of p if p = xu; x is a suffix of p if p = ux where
u ∈ Σ∗. x is a proper factor of p if x is a factor of p and is distinct both from p
and from the empty word Λ.

The factor oracle automaton of a word p of length m, denoted by Oracle(p), is
a deterministic acyclic finite automaton (Q, q0,Σ,z, δ) where Q = 0, 1, ...,m is
the set of states; q0 = 0 is the starting state; z ⊆ Q is the set of final states and
δ is the transition function. The factor oracle of a word p of length m has the
following properties:

� it has exactly m+ 1 states,

� its number of transitions is in the range [m, 2m− 1] and,

� it recognizes at least all the factors of p and possibly more words13.

There is a bijection between the states of the oracle and the m + 1 prefixes of p
(including the empty one). Each transition leading to a state i is labelled by p[i],
the ith character of string p. Two kinds of transitions are distinguished, namely:

� Internal transitions: transitions from state i to state i+ 1 and,

13Characterising the set of words recognized by the factor oracle is a research matter for
researchers in the FA community.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13
a c t g c a c g t t g a c

0 0 0 0 1 1 2 1 1 1 2 1 2

Figure 3.5: The oracle for the word ACTGCACGTTGAC.

� External transitions: transitions from state j to state i where (j − i) > 1.

For the above, the following must hold: 0 ≤ i < j ≤ m. There are exactly m
internal transitions. To store the oracle one needs to store only the word p and
at most m − 1 external transitions without their labels. The factor oracle is a
structure that is economical in terms of memory and runtime. The memory used
is approximately 10.5 times the length of the sequence — the structure is linear
in terms of memory. The construction of the structure is also linear in terms of
runtime [Lefebvre et al., 2003]. Figure 3.5 gives an example of a factor oracle for
the word actgcacgttgac.

Lefebvre et al. [2003] conducted experiments to determine the accuracy of
FORRepeats. These experiments indicated that FORRepeats performs better at
detecting TRs with a PTRE-length longer than 20 base pairs. When the repetitive
motif is very short a large number of exact repeats can be found that will be time
consuming to extend and may result in overlapping.

This finding about the performance of FORRepeats (namely that it is more ac-
curate in detecting TRs with a longer PTRE-length than TRs with a shorter
PTRE-length) is comprehensible when one considers its calculation technique.
Firstly, PTREs are found. The search is extended to the left and right of these
PTRs. However, the search is now for ATRs that comply with certain threshold
values.

The proposers of FORRepeats present it as well-suited for the detection both of
Minisatellites and of duplicated genes.

In contrast to FORRepeats, it will be seen that the algorithm proposed here,
FireSat, constructs FAs and decorates the already constructed machines while
iterating through the genetic input sequence. If allowable final states are reached
during runtime and all threshold values (see Sections 2.1.2 and 2.1.4) are ad-
hered to, then a TR is reported by FireSat. Thus, apart from also employing
FAs to detect repeats, the approach of FireSat differs significantly from that of
FORRepeats.
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To provide some context of the algorithm proposed in this thesis, a brief discussion
of the three predecessor algorithms proposed in De Ridder [2010] will follow in
the next section.

3.4 FireµSat — the precursor to FireSat

In De Ridder [2010] three slightly different algorithms to detect Microsatellites
in DNA were proposed — FireµSat1, FireµSat2 and FireµSat3. Results were
reported of tests run on the three respective algorithms. The algorithms were
implemented in C++.

In terms of output, FireµSat1 and FireµSat2 reported exactly the same Mi-
crosatellites. Furthermore, they both report overlapping TRs. This feature could
be regarded as over-reporting, for the following reason:

FireµSat1 and FireµSat2 will regard the string acg acg acg acg acg as a PTR
with the introductory motif acg that is repeated 5 times. However, the string
will also be regarded as containing a TR that has the introductory motif cga

that is repeated 4 times (possibly treating cg as an ATRE deletion, depending
on the tolerance settings being used). Finally, the same string may be regarded
as a TR with an introductory motif of gac that is repeated 4 times. In addition,
acgacgacgacgacg will be reported by FireµSat1 and FireµSat2 as a TR with a
|PTRE| = 6 consisting of 3 TREs of which the last TRE is an ATRE containing
3 deletions.

The output of FireµSat3 differs from that of FireµSat1 and FireµSat2 in that
it does not detect overlapping TRs of the same motif length. FireµSat3 does,
however, detect all the TR regions detected by the other two algorithms.

The FireµSat packages beat other competitive packages reported on in the liter-
ature in terms of runtime. De Ridder et al. [2013] report on details of this state-
ment. These packages included mreps [Kolpakov et al., 2003], IMEX [Mudunuri
and Nagarajaram, 2007], STAR [Rivals, 2004] and TRF [Benson, 1999].

In order for FireµSat1 and FireµSat2 to detect overlapping TRs as explained
above, they traverse the genetic input string for each motif length n, n times. As a
consequence, they also detect the longest possible TR, whereas other approaches
might regard that particular region of the input string as embedding more than
one TR, none of which are as long as the single TR identified by FireµSat1 and
FireµSat2 . FireµSat3 traverses the input string only once, but as a conse-
quence, it does not always report the longest possible repeat to be detected. Also
as a consequence, FireµSat3 is faster than both FireµSat1 and FireµSat2.

Whether the traversal approach of FireµSat1 and FireµSat2 should be followed
in preference to the traversal approach of FireµSat3 depends therefore on what-
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ever is valued most in the application context: execution time or the detection of
the longest possible repeat within a certain region of the input string.

FireSat will employ both traversal approaches. It will be seen in Chapter 5 that
FireSat relies on some of the principles introduced by FireµSat1, FireµSat2

and FireµSat3. In the case of FireSat, a quicker runtime will always be at the
cost of accuracy.

From the literature as well as from discussions with molecular biologists, a list
of criteria was compiled to which algorithms should yield in order to search ef-
fectively for repeats. The compiled list has been presented in De Ridder et al.
[2006b] and in De Ridder [2010]. Here, the original list of criteria is extended by
three new criteria. The proposed criteria should be kept in mind during algorithm
developments for TR detection.

3.5 Criteria for TRDs

The list of compiled criteria that will contribute to the successful development of
software tools for the detection of repeats is presented below. The list constitutes
criteria proposed by Benson [1999], a criterium suggested by Delgrange and Ri-
vals [2004] and two of our own criteria. This list has already been published in
De Ridder et al. [2006b] and De Ridder [2010]. Although these publications deal
with Microsatellites, the same criteria hold for TRs in general. Benson [1999] sug-
gests the following criteria that should be pursued during the development of an
effective (in terms of runtime and memory complexity) TR detection algorithm:

1. The avoidance of full scale alignment matrix computations in the case of
alignment algorithms.

2. No a priori knowledge should be required pertaining to the pattern, pattern
size or number of copies of the TR.

3. No restrictions should exist regarding the size of the repeats that can be
detected.

4. Percentage differences between adjacent copies should be used and Mis-
matches and Indels should be treated separately.

5. A consensus pattern for the smallest repetitive unit in the TR should be
determined.

Note that in addition to Benson’s criteria, the criterium suggested by Delgrange
and Rivals [2004] is also endorsed, namely:
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6. An exact algorithm should systematically detect significant TRs in a way
that is independent of the motif.

De Ridder et al. [2006b] and De Ridder [2010] suggested two further criteria:

7. An algorithm that detects Microsatellites should be flexible in terms of
penalties awarded to Indels and Mismatches. This criterium clearly holds
for TR detection in general.

8. Software to detect Microsatellites should be useable, specifically in terms
of output. By this we mean that analytically, biologically and statistically
relevant output should be provided to the user. Furthermore, we suggest
a hierarchical output that will enable the user to obtain the most relevant
data easily. As in the case of [7.] this criterium holds for TR detection in
general.

From studying the literature subsequent to 2010 it is clear that the originally
presented criteria should be extended:

9. Software should provide an option to either report compound repeats, thus
overlapping repeats, or to filter overlapping repeats. Schaper et al. [2015]
point out that not all overlapping detections are redundant. Furthermore
Schaper et al. [2015] define overlaps in two ways: Firstly, overlaps are two
or more TR sequences from the same genetic input string that have in
common some characters in the same genetic input string positions. The
second definition refers to an overlapping pair of TRs that have a common
ancestry of at least one pair of characters in alignments of multiple TR
units for both TRs. The package Tandem repeat annotation library (TRAL)
was proposed by Schaper et al. [2015] to filter identified clusters14 in such
a manner that the best TR representative from a cluster is output in line
with user specifications.

10. Software should provide an option to detect PTRs only, or should indicate
that it is not possible to detect PTRs with a certain package.

11. A length filter should be provided to avoid the output of redundant data15.
This implies that users should have the option of indicating the minimum
number of TREs that must occur in a reported TR.

14Within the genetic sequence context a cluster is a potential significant stretch of DNA.
15Redundant data within this context refers to TRs that users consider to be insignificant in

their context. From Kolpakov et al. [2003] it is clear that longer TRs are generally considered
to be of more significance than shorter ones.
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The focus of FireSat is at present merely on detecting TRs accurately. To adapt
FireSat in such a way that it complies to the above proposed criteria is left as a
future research initiative.

3.6 Conclusion

This chapter provided references to existing literature, some of which I have
authored or co-authored. References were also given to relevant software. An
overview of algorithms detecting repeats was provided in terms of line diagrams
for concept lattices. Rival algorithms against which FireSat (proposed in Chap-
ters 6, 7 and 8 of this thesis) will be evaluated in Chapter 9 of this thesis were
identified. Finally, a list of criteria was provided that will serve as a guideline for
future development of FireSat.

In the next chapter, Chapter 4, definitions and theoretical concepts relevant to
the algorithmic development of FireSat are considered.
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A. Biegert and J. Schoöding. De novo identification of highly diverged protein repeats by probabilistic consistency.

Bioinformatics, 24(6), 2008.

V. Boeva, M. Regnier, D. Papatsenko, and V. Makeev. Short fuzzy tandem repeats in genomic sequences, identification,

and possible role in regulation of gene expression. Bioinformatics, 22(6):676–684, 2006.

A. T. Castelo, W. Martins, and G. R. Gao. TROLL: Tandem Repeat Occurrence Locator. Bioinformatics Applications

Note, 18(4):634–636, 2002.

G. M. Cooper. The Cell: A Molecular Approach. Sinauer Associates, Inc., 2nd ed. edition, 2000.

C. De Ridder. Flexible Finite automata-based algorithms for detecting microsatellites in DNA. Master’s thesis,

Department of Computer Science, University of Pretoria, July 2010.

C. De Ridder, D. G. Kourie, and B. W. Watson. FireµSat: an algorithm to detect microsatellites in DNA. In Proceedings

of the Prague Stringology Conference, pages 137–150, August 2006a. ISBN 80-01-03533-6.

C. De Ridder, D. G. Kourie, and B. W. Watson. FireµSat: meeting the challenge of detecting microsatellites in DNA.

In Proceedings of the 2006 annual research conference of SAICSIT, pages 247–256, 2006b. ISBN 1-59593-567-3.

C. De Ridder, P. V. Reyneke, B. W. Watson, O. Reva, and D. G. Kourie. Cascading Finite Automata for minisatellite

detection. In The 22nd Annual Symposium of the Pattern Recognition Association of South Africa, pages 31–36,

November 2011.

97

http://doi.org/10.3389/fbioe.2015.00031
http://doi.org/10.3389/fbioe.2015.00031


CHAPTER REFERENCES 98

C. De Ridder, D.G. Kourie, B.W. Watson, T.R. Fourie, and P.V. Reyneke. Fine-tuning the search for microsatellites.

Journal of Discrete algorithms, 20:21–37, 2013.

O. Delgrange and E. Rivals. STAR: an algorithm to search for tandem approximate repeats. Bioinformatics, 20(16):

2812–2820, June 2004.

L. Du, H. Zhou, and H. Yan. OMWSA:detection of DNA repeats using moving window spectral analysis. Bioinformatics

Applications Note, 23(5):631 – 633, 2007.

B.C. Faircloth. msatcommander: detection of microsatellite repeat arrays and automated, locus-specific primer design.

Molecular Ecology Resources, 8(1):92–94, 2008.

A.M. Hauth and D.A. Joseph. Beyond tandem repeats: Complex pattern structures and distant regions of similarity.

Bioinformatics, 18(1):S31 – S37, July 2002.

J. Jorda and A.V. Kajava. T-REKS: identification of Tandem Repeats in sequences with a K-means based algorithm.

Bioinformatics, 25:2632–2638, 2009.

R. Kofler and C. Sclötterer. Sciroko applications note. Bioinformatics, 23(13):1683–1685, 2007.

R. Kolpakov, G. Bana, and G. Kucherov. mreps: efficient and flexible detection of tandem repeats in DNA. PubMed

Central Nucleic Acid Research , 31(13):3672–3678, 2003.

D.G. Kourie and B.W. Watson. The Correctness-by-Construction Approach to Programming. Springer, Berlin Hei-

delberg, first edition, 2012.

A. Krishan and F. Tang. Exhaustive whole-genome tandem repeats search. Bioinformatics, 20(16):2702–2710, 2004.

S. Kurtz, J. Choudhuri, E. Ohlebush, C. Schleiermacher, J. Stoye, and R. Giegerich. REPuter: the manifold applications

of repeat analysis on a genomic scale. Nucleic Acid Research, 29:4633–4642, 2001.

G. M. Landau, J. P. Schmidt, and D. Sokol. An algorithm for approximate tandem repeats. Journal of Computational

Biology, 8(1):1–18, 2001.

A. Lefebvre, T. Lecroq, H. Dauchel, and J. Alexandre. FORRepeats: detects repeats on entire chromosomes and

between genomes. Bioinformatics, 19(3):319–326, 2003.

K. G. Lim, C. K. Kwoh, L. Y. Hsu, and A. Wirawan. Review of tandem repeat search tools: a systematic approach to

evaluating algorithmic performance. Briefings in Bioinformatics, May 2012.

K. T. Masombuka, C. de Ridder, and D. G. Kourie. An investigation of software for minisatellite detection. In

Fred Nicolls, editor, Proceedings on the twenty-first PRASA symposium, pages 171–176, November 2010. ISBN

978-0-7992-2470-2.

C. Mayer. Phobos: a tandem repeat search tool 2012, Phobos 3.3.11, 2006-2010. URL http://www.rub.de/ecoevo/cm/

cm_phobos.htm.

McGraw-Hill and S.P. Parker. McGraw-Hill Dictionary of Scientific and Technical Terms. McGraw-Hill Companies,

Inc, 6 edition, 2003.
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“The world is full of magic things, patiently waiting for our senses to grow sharper.”
... William Butler Yeats

This chapter is concerned with a class of automata that extends on the class
of DFAs by having counters associated with transitions. I call these Counting
Automata (CAs) and define several variants, each being positioned at a specified
level of the Chomsky hierarchy of languages. The idea of adding counters to finite
automata originated while I was developing algorithms for microsatellite detec-
tion. FireµSat1 and FireµSat3 implement cyclic FAs that associated counters
with states in a very informal manner. FireµSat counted for any microsatellite
u = u1, u2 · · ·ui where ρ (u1 in the current example) is the introductory motif,
the number of perfect matches and different mutations occurring in uj. At the
time of proposing FireµSat, a formal definition for CAs had not been proposed.

I have subsequently played with formalising the idea of CAs. I have noted the
relationship between monotonic counters as operands in simple relational expres-
sions governing the edges of CAs and the Chomsky hierarchy. I report on my
findings in this chapter.
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The first section of the chapter is an overview of alternative DFA extensions,
found in the literature, that rely on counters.

Then Section 4.2 briefly gives the historical background that led to the notion of
computability, the Turing Machine and, ultimately, to the Chomsky hierarchy.
The Chomsky hierarchy is then discussed in Section 4.3. Even though these latter
two sections cover classical topics, the material is provided here for completion.

In Section 4.4 a number of CAs are introduced and some of the languages accepted
by these CAs are positioned within the Chomsky hierarchy. Section 4.5 concludes
this chapter.

To keep things simple, preference is given to graphical illustrations of abstract
machines instead of defining them formally in terms of mathematical expressions
and/or transition tables. In the case of already established machines, these are
drawn according to the conventions provided in Chapter 2, unless otherwise spec-
ified.

Note positioning in the Chomsky hierarchy of the automata presented in Section
4.1.1 is not discussed in this chapter. The reason is that the authors clarify that
these automata are only regular language acceptors. For this reason they are
called counter extended finite automata — thus occupying the same position
in the Chomsky hierarchy as regular languages. Furthermore it will be seen that
the automata presented in Section 4.1.2 are not intended to accept any language
but rather to count occurrences of events. Classification of these automata within
the Chomsky hierarchy is thus not plausible. In contrast to the above mentioned,
different types of CAs, catering for 3 respective Chomsky hierarchy language-
types, are introduced in this thesis. Section 4.4 provides details. For this reason
it has been decided to postpone the background discussions of both Computability
(Section 4.2) as well as the The Chomsky Hierarchy (Section 4.3) to just before
the CA introduction and CA Chomsky classification.

4.1 Prior work on automata with counters

The works of previous authors that might be seen as relating to CAT3s are briefly
considered below.

4.1.1 Counter extended finite automata

Sperberg-McQueen defined counter extended finite automata (CEFAs) to accept
languages defined by what he calls “regular expressions with integer-range expo-
nents” (REIREs).
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As an informal example of Sperberg-McQueen’s syntax for a REIRE, consider
the following:

(a{3, 4}c{0, 1}){1, 2}
This regex defines all words where 3 or 4 as are concatenated (the a{3, 4} part
of the regex) followed by 0 or 1 cs (the c{0, 1} part of the regex). This pattern
should be repeated at least once, but at most twice, this being indicated by the
{1,2} part of the regex. The set of words defined by this regex is therefore given
by:
{aaa, aaaa, aaac, aaaac, aaaaaa, aaaaaaa, aaaaaac, aaacaaa, aaaaaaaa,
aaaaaaac, aaaacaaa, aaacaaaa, aaacaaac, aaaaaaaac, aaaacaaaa,
aaaacaaac, aaacaaaac, aaaacaaaac}
He also proposes counting regular attribute grammars (CRAGs).

Example 4.1.1. As a small example of a CRAG, the following shows the gram-
mar for the language of the REIRE (a{2, 4}):

S → a A(1) (4.1)

A(n) → {n < 4} a A(n+ 1) (4.2)

A(n) → {n ≥ 2} Λ (4.3)

�

S is the start character and also the head of the production used to generate the
first a of the word that is to be generated; the counter, n for the nonterminal A is
set equal to 1 whenever production 4.1 is executed. When executing production
4.2, the value of n is checked against the condition {n < 4} before another a is
added to the word to be generated and the counter n is incremented. Whenever
n ≥ 4, production 4.2 will not be executed. The CRAG will proceed to the
next production - production 4.3. The words generated by these productions are
{aa, aaa, aaaa}. Words are generated by production 4.3 when it is executed and
the condition n ≥ 2 is met: i.e. when the number of as is greater or equal to 2
and less or equal to 4 in the current working-string.

Example 4.1.2. The CRAG of the language expressed by the REIRE

(a{2, 3}c{1, 4}){3, 4}
is as follows:

S → a A(1, 1) (4.4)

A(n,m) → {n < 3} a A(n+ 1,m) (4.5)

A(n,m) → {n ≥ 2} c C(1,m) (4.6)

C(n,m) → {n < 4} c C(n+ 1,m) (4.7)

C(n,m) → {(m < 4) ∧ (n ≥ 1)} a A(1,m+ 1) (4.8)

C(n,m) → {(m ≥ 3) ∧ (n ≥ 1)} Λ (4.9)
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�

The CRAG starts off with production 4.4 where both counters n and m are
initialised to 1. In productions 4.4 and 4.5, n counts the number of as. In
production 4.6 it is again initialised to 1 and it then counts the number of cs.

On the other hand, m keeps track of the number of repeated generations of
(a{2, 3}c{1, 4}) and is incremented at production 4.8 where n is also reset to 1.
Productions 4.8 and 4.9 ensure that a string from (a{2, 3}c{1, 4}) is repeated at
least 3 and at most 4 times.

It will be seen below that I have adopted aspects of the CRAG notation in dis-
cussing the CAs. Conversely, since Sperberger-McQueen does not use a graphical
representation to explain CEFAs, I will now present brief examples of CEFAs,
borrowing from the graphical conventions that I introduced to illustrate CAs.
However, CAs bear little resemblance to CEFAs and were conceived without ref-
erence to them. Initially the values of the respective counters (dXi) are equal
to 0. The convention is adopted that whenever a state is entered its counter
is incremented with 1. Figure 4.1 graphically represents the CEFA whose lan-

S AN CN
a c & dAn ≥ 2

AM

a

a & dAn < 3 c & dCn < 4

a & dCn ≥ 1dAm < 4

F
Λ & dAm ≥ 3

reset (dAn)

reset (dCn)

set (dAm)

Figure 4.1: A CEFA representing (a{2, 3}c{1, 4}){3, 4}.

guage corresponds to the REIRE (a{2, 3}c{1, 4}){3, 4} and to the language of the
CRAG in Example 4.1.2. The relationship between the figure and the CRAG is
as follows:

� dAn represents the n counter initialised by production 4.4 and incremented
by production 4.5.

� The set function assigns a value of 1 to its parameter dAm. set(dAm) rep-
resents the initialisation of the m counter of production 4.4.
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� dAm represents the counter that keeps track of the number of iterations
through production 4.8.

� dCn holds count of the number of times production 4.7 is executed.

� The reset function returns the value of its parameter, d to 0. For exam-
ple reset(dCn) assigns the value 0 to dCn. The reset operation is always
executed after the simple relational expression, appearing above the reset
operation, has been evaluated.

The figure should be interpreted as follows. The counters are assumed to be ini-
tialised to 0. From the start state, S, a transition to state A takes place upon
the occurrence of character a, and counter dAn is incremented. For as long as
dAn < 3 the occurrence of an a returns the machine to state A and increments
dAn. If, in state A, when c occurs instead of a, and if dAn ≥ 2, then a transition
to state C takes place, and the counter dCn is incremented.

Similarly, in state C, the occurrence of c returns to the state and the occur-
rence of a takes the machine to state AM . When the machine is in state AM , if
an a is occurring and dAm < 4, the machine proceeds to state An. If in state AM
and Λ occurs while dAm ≥ 3, the machine proceeds to the final state z.

Hovland [2009a] and Hovland [2009b] describe work that relates to Sperberg-
McQueen [2004]. The work includes regular expressions with numerical con-
straints and automata with counters. The membership problem is considered in
terms of language classes for regular expressions with unordered concatenation
and numerical constraints. Details may be found in the cited articles.

4.1.2 Event count automata

A further example of the use of counters in automata is seen in the notion of Event
count automata (ECA), proposed by Chakraborty et al. [2005]. These automata
capture arrival patterns by counting the number of data items that arrive in a
unit interval of time, in the case where a suitable granularity of time has been
fixed.

An ECA counter describes arrival patterns of the form n1, n2 · · ·nk where ni
denotes the number of items arriving before the automaton makes a move. A
number of different moves can be made. To discuss these fully however, is beyond
the scope of this thesis. The interested reader may consult Chakraborty et al.
[2005]. Instead, an intuitive idea of ECAs is provided in Figure 4.2.

In this figure each state has an item arrival mode pattern, specified as an integer
interval. For example, in state q0 the mode is specified as [1, 3], indicating that
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q1

x <= 5;

[1, 2]
q2

[2,4]

x > 5

q0

x < 10

[1,3]x = 10;

x:= 0
x > 10

q2

[2,4]

Figure 4.2: An Event Count Automata, from Chakraborty et al. [2005].

at least 1 and at most 3 items will arrive in each unit of time. If the total number
of items that have arrived at the end of an interval is exactly 10 when the system
is in state q0, then state q1 is entered and the counter x is set to 0. In the case
where x is more than 10, state q2 is entered from state q0. State q2 is never left.

Suppose that the following number of events arrive in each of 10 successive time
units: 3 2 2 3 2 2 2 3 2 4. Using the form (q, n) to indicate that the automaton
is in state n and the counter value is n, the automaton starts off as (q0, 0) and
then runs as follows:

1. 99K (q0, 3) (after the first time unit’s arrival of 3 events)

2. 99K (q0, 5) (after the second time unit’s arrival of 2 events)

3. 99K (q0, 7) (after the third time unit’s arrival of 2 events)

4. 99K (q0, 10) (after the fourth time unit’s arrival of 3 events)

5. → (q1, 0) (now move to state q1 and set x to 0 as indicated on the edge by
the characters x:=0)

6. 99K (q1, 2) (after the fifth time unit’s arrival of 2 events)
99K (q1, 4) (after the sixth time unit’s arrival of 2 events)
99K (q1, 6) (after the seventh time unit’s arrival of 2 events)

7. → (q0, 6) (now move to state q0 — the value of x remains as is)

8. 99K (q0, 9) (after the eighth time unit’s arrival of 3 events)
99K (q0, 11) (after the ninth time unit’s arrival of 2 events)
→ (q2, 11) (move to the final state, q2 — the value of x remains as is)
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9. 99K (q2, 15) (after the tenth time unit’s arrival of 4 events)

Other automata concerning arithmetic are discussed in the next section.

4.1.3 Other automata involving arithmetic

Besides the work of Sperberg-McQueen [2004] and Chakraborty et al. [2005], I
am aware of other work on automata that also involves the use of arithmetic and
that, in this sense, is related to CAs defined below.

For example, in 1962 Schutzenberger [1962] published an article entitled Finite
Counting Automata that he describes as “an attempt towards a classification
of the (infinite) monoids of finite dimensional rational matrices which are the
semidirect sum of finite monoids.” It will be seen that this formalism does not
relate to my investigation. Neither does the work of Klaedtke and Ruess that
introduces the Parikh automaton [Cadilhac et al., 2012]; nor that of Karianto
[2005] who extended Parikh automata. Detailed discussion of these formalisms is
beyond the scope of this thesis.

4.2 A brief background of computability

In 1900, David Hilbert addressed a conference predicting mathematical problems
that would be important in the forthcoming century. He predicted 23 areas that,
in fact, turned out to be the major thrust of mathematics for the twentieth
century. Although the computer itself was not one of his predictions, two areas
he had predicted (mathematically provable results and set theory) turned out to
be of seminal importance to computer science [Cohen, 1997]. He wanted the
confusion in set theory to be resolved and, secondly, he was not satisfied that all
the mathematically provable results were true.

Hilbert had in mind to formalise enough of classical arithmetic for doing analysis
and simultaneously avoid paradoxes. Basically the idea was to start off with
an axiomatizing of classical arithmetic and then to formalise it. During the
formalisation process the traditional content of mathematics is removed. The
remaining features are purely formal. The task of the formalist was to show that
the resultant formalism provides a consistent as well as complete formal theory
of classical arithmetic.

One of the central problems facing the formalist was that of finding a definite
finitary formal procedure (algorithm) that could be used to unequivocally decide
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the provability of any claim in formalised mathematics. Such a procedure or algo-
rithm should thus provide a yes or no answer on whether a statement complying
with all the conditions of the formalism (set of axioms) is universally true or not.
The described decision problem became known as Hilbert’s Entscheidungsproblem
[Cleland, 2004].

The paragraphs below offer a short discussion of the status quo of mathematical
provability at the turn of the 19th century. It points to the contribution of set
theory to prove one of the most philosophically important theorems in theoretical
computer science. Thereafter, a brief discussion follows of the development of
computability and computers as a partial consequence of work in these research
fields.

4.2.1 Mathematically provable results

What statements have proofs and how can we generate these proofs? 1. Church2,
Kleene3, Post4, Markov5, Von Neuman6 and Turing7 worked on these problems—
mostly independently. These mathematicians each provided different very simple
sets of building blocks that seemed to be the “atoms” from which mathematical
algorithms can be built, each constituting a similar (though slightly different) ver-
sion of a universal model for algorithms—what could be referred to as a universal
algorithm machine.

Gödel and Turing responded to the Entscheidungdproblem that Hilbert had posed
in 1928. In 1931 Kurt Gödel proved his famous Incompleteness Theorem, showing

1Note that mathematical theories regarding the nature of the proof itself became a new
branch of mathematics namely metamathematics [Minsky, 1967].

2Alonzo Church (1903 - 1995) is best known for the lambda calculus, the Church-Turing
thesis, Frege-Church ontology and the Church-Rosser theorem.

3A number of mathematical concepts are named after Stephen Kleene, a student of Church.
These concepts include Kleene hierarchy, Kleene algebra, the Kleene closure, Kleene’s recursion
theorem and the Kleene fixed point theorem. Kleene invented regular expressions too.

4Emil Post is known for developing Post-machines and truth tables independently of
Wittgenstein and Pierce.

5Andrei Andreevich Markov is known for his work on stochastic processes, Markov chains
and Markov processes.

6John von Neumann is best known for the Von Neumann computer architecture, self-
replicating machines and stochastic computing. Note that Von Neumann contributed in several
other fields too — foundations of mathematics, functional analysis, ergodic theory, geometry,
topology and numerical analysis.

7Alan Turing, a student of Church, is known as the father of Theoretical Computer Science
and Artificial Intelligence. Turing provided a formalisation of the concepts of algorithm and
computation in terms of the so-called Turing machine (TM). The TM is a theoretical model
of a general purpose computer. Besides being a mathematician and computer scientist, Turing
was also a mathematical biologist, cryptanalyst and ultra distance runner.
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that any mathematical system necessarily had statements that could neither be
proved nor disproved. Gödel’s incompleteness theorem illustrated that there is no
solution to Hilbert’s Entscheidungsproblem. Gödel showed that (in the formalism
of Principia Mathematica) there are propositions U such that neither U nor ¬U
is provable (Turing [1936]).

Turing’s invention of his universal computing machine, generally referred to as
a Turing Machine (TM), was a response to the Entscheidungsproblem challenge
too. Turing used the halting problem8 to show why the Entscheidungsproblem
could not be solved.

4.2.2 Set theory

Philosophically, the halting problem is one of the most important problems in
theoretical computer science, since it demonstrates that not all problems are
algorithmically solvable. The undecidability of the halting problem was proved,
using a technique referred to as diagonalisation, discovered by the mathematician
Georg Cantor in 1873 [Sipser, 2006]. Cantor was concerned with the measuring
of two infinite sets. He asked the question: “If we have two infinite sets, how
can it be determined if the one is greater than the other or if they are of the
same size?” He developed the diagonalisation technique to answer this question.
Results obtained by applying the diagonalisation technique are often counter-
intuitive. (Details of the diagonalisation technique and the role that it plays in
proving the halting problem can be found in Sipser [2006].) Note that there are
other ways to prove the halting problem undecidable too. For example, Cohen
[1997] and Harel and Feldman [2004] do so by mere logical (verbal) argument.
Davis et al. [1994] prove the undecidability of the halting problem by using an
algorithmic approach.

These findings destroyed all hope of achieving Hilbert’s program of “mechanis-
ing” mathematics and even of deciding whether an arbitrarily selected problem
can be solved mechanically (in other words, of determining which classes of prob-
lems are computable). Turing’s model, however, employed such a simple set of
mathematical instructions that a possibility existed of actually constructing a
physical model of Turing’s idea [Cohen, 1997]. Note that, although it is often
said that the 1936 paper of Turing did not really affect the practical development
of the computer, Minsky [1967] maintains that Turing’s paper should be viewed
against the intellectual background of a variety of ideas concerning descriptions
and processes. In his 1936 paper, Turing provided an answer to the fundamental

8The halting problem is an undecidable problem for TMs. It can be shown that it is impos-
sible to design a TM that takes an arbitrary TM, T , as input together with an arbitrary input
string u1 · · ·uz, and then decides whether or not T will halt on that input. See, for example,
Sipser [2006] or Mahesh [2013] for a proof of the undecidability of the halting problem.
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question —What processes can be described? Turing’s answer is related to al-
gorithms, computability and computers. The word description definitely entails
some language. Could a fixed language admit descriptions of all desirable pro-
cesses? Could there be processes which are well-defined but cannot be described
at all? These questions are associated with the idea of an algorithm—an effective
procedure—for calculating the value of some quantity or finding a solution of
some mathematical problem [Minsky, 1967].

Other fields of science were beginning to develop and propose mathematical prob-
lems of their own. One of these fields was linguistics. Chomsky [1956] proposed
the well-known classification scheme for grammars in 1956.

4.3 The Chomsky hierarchy

Before the Chomsky hierarchy for formal grammars is presented, a brief back-
ground of Chomsky himself is in order.

Noam Chomsky has been teaching at the Massachusetts Institute of Technology
(MIT) since 1955.

He published the Chomsky hierarchy9 in 1956 in an article Three models for
the description of language [Chomsky, 1956]. According to the 1992 edition of
Arts and Humanities Citation Index, between 1980 to 1992 he was cited more
often than any other living scholar. He was the eighth most cited source overall
[Hughes, 2001, Robinson, 1979]10. He is the author of over 100 books [Arnove,
2018].

Besides the Chomsky hierarchy, he is also credited as being the creator or co-
creator11 of the universal grammar (UG) theory. Chomsky published his original
ideas of the UG theory in 1965 and 1966 [Chomsky, 1965, 1966]. Details about
the UG theory are beyond the scope of this thesis. Furthermore Chomsky is the
co-author of the Chomsky-Schützenberger theorem. Taking all of the foregoing
into account, then, the following quote from Chomsky is noteworthy:

9The Chomsky hierarchy is occasionally also referred to as the Chomsky-Schützenberger
hierarchy acknowledging Marcel-Paul Schützenberger (a French medical doctor and mathe-
matician), who played a crucial role in the development of the theory of formal languages [Wilf
et al., 1996].

10According to Hughes [2001] only Marx, Lenin, Shakespeare, Aristotle, the Bible, Plato,
and Freud are cited more often in academic journals than Chomsky, who edges out Hegel and
Cicero.

11The term universal grammar (UG) was borrowed by Chomsky from an earlier grammatical
tradition that explicitly sought universal semantic roots of syntax (for example the 1660 Port-
Royal Grammaire génerale et raisonnée) [Pesetsky, 2009].
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Science talks about very simple things, and asks hard questions about
them. As soon as things become too complex, science can’t deal with
them . . . But it’s a complicated matter: Science studies what’s at the
edge of understanding, and what’s at the edge of understanding is
usually fairly simple. And it rarely reaches human affairs. Human
affairs are way too complicated [Krauss and Carroll, 2006].

In this chapter we define various theoretical machines and show where the lan-
guages accepted by these theoretical machines fit into the Chomsky hierarchy.
Minsky [1967] points out that theoretical machines imply that we have to ab-
stract away many realistic details and features of mechanical systems. CAs,
proposed here, are indeed abstract.

Section 4.2 explained briefly how theoretical machines, especially the TMs, con-
tributed towards the development of computers. Subsection 4.3.1 gives the Chom-
sky classification of formal grammars according to production rules. Each of the
different types of formal grammars define classes of languages that can also be
defined by appropriate types of theoretical machines.

4.3.1 Grammars in the Chomsky hierarchy

The Chomsky hierarchy distinguishes between four types of languages —Type 0,
Type 1, Type 2 and Type 3. The classification is in line with the restrictions on
the productions of the grammars generating these languages as defined in Section
2.2 of Chapter 2. Each of the language types has a corresponding theoretical
machine (automaton) class.

Information about the Chomsky hierarchy is widely available. The primary
sources used in this text are Cohen [1997], Hopcroft and Ullman [1979], Sipser
[2006] and Salomaa [1985]. The following gives a brief overview of the hierarchy.

� Type 0 grammars
Type 0 grammars are also referred to as unrestricted grammars, phrase-
structured grammars or recursive enumerable (r.e.) grammars12. Definition
2.2.22 defines unrestricted grammars.
Classical machines accepting Type 0 grammars

12The terms semi-Thue grammars, non-terminal-rewriting grammars and context-sensitive-
with-erasing grammars are also used to refer to type 0 grammars [Cohen, 1997]. Recursive
enumerable refers to enumerable sets. The elements of an enumerable set can be placed in a
one-to-one correspondence with the set of natural numbers. Thus it is possible to index each
element of a recursive enumerable set as the ith element — it can be listed by the natural
numbers. A set with the described properties is also referred to as countably infinite [Mahesh,
2013].
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Languages generated by phrase-structured grammars are recognised by TMs
(Definition 2.3.22) that read from and write on endless tapes. Other ma-
chines that accept Type 0 grammars include nPDAs with n > 1 (Definition
2.3.18) and Post Machines13. There can be distinguished between r.e. lan-
guages that are Turing decidable and those that are not Turing decidable.
Turing decidable languages forms a subclass, discussed below, of the Type
0 languages.

If any language L, is not Turing decidable it implies that even though a
TM can always be constructed to accept all words in L, none of these will
be able to reject all words in L′ — i.e. for a subset of words in L′ it will
loop forever. Thus not all r.e. languages are recursive.

Recursive grammars: a subset of Type 0 grammars.
Recursive languages are Turing decidable — a language, L, is said to be
Turing decidable if a TM, T , can be constructed such that all words in L
are accepted by T and all words in L′ (Definition 2.2.12) are rejected by
T . An example of a recursive language is the problem of determining if two
regular expressions with squaring describe the same set. If r is a regular
expression over Σ then r2 is a regular expression with squaring (Salomaa
[1985]).

� Type 1 grammars
Type 1 grammars or context sensitive grammars (CSGs, Definition 2.2.21)
generate context-sensitive languages.

Classical machines accepting Type 1 grammars
Languages generated by CSGs are recognised by linearly-bounded automata
(LBAs, Definition 2.3.21). LBAs constitute a subclass of TMs with a re-
striction on the length of the input tape. Clearly, acceptors of Type 0
languages can also accept Type 1 languages. Furthermore for every CSG
there exists a specific LBA that accepts all words generated by that CSG
and that crashes for all other words.

� Type 2 grammars
Type 2 grammars or context free grammars (CFGs, Definition 2.2.17) gen-
erate context free languages (CFLs).

Classical machines accepting Type 2 grammars
Type 2 languages (CFLs) are accepted by PDAs (Definition 2.3.18). The
complement of {ancn | n ≥ 1} is context free and can be accepted by a

13Post proposed the Post Machine in 1936, the same year in which Turing proposed the
Turing machine. Cohen [1997] provides a definition of a Post machine.
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PDA. Acceptors of Type 0 and Type 1 languages can also accept Type 2
languages.

Deterministic context free languages (DCFLs): a subset of lan-
guages generated by Type 2 grammars.
The DCFLs constitute the proper subset of the CFLs that can be accepted
by deterministic PDAs (DPDAs). The language {ancn | n ≥ 1} is determin-
istic context free and can be accepted by a DPDA. However the complement
of {ancn | n ≥ 1} is not deterministic context free and therefore cannot be
accepted by a DPDA. It is, however, context free and can thus be accepted
by a PDA (Definition 2.3.18). There are thus CFLs that can only be ac-
cepted by PDAs but not by DPDAs.

The fact that DPDAs accept the DCFLs is important from a practical point
of view. It is inefficient to implement non-determinism in a compiler. Con-
sequently programming languages are generally designed to be mostly de-
terministic context-free (although they may contain a few context-sensitive
features ([Mahesh, 2013])). It is interesting to note that linear grammars
(Definition 2.2.18) can generate some DCFLs (but not all) and they can
generate some CFLs that are not DCFLs (but not all).

� Type 3 grammars
Both right linear grammars and left linear grammars (see Definition 2.2.13)
generate regular languages. Furthermore regular expressions (Definition
2.2.14) define only Type 3 languages.

Classical machines accepting Type 3 grammars
The simplest deterministic machines that accept regular languages are DFAs
(Definition 2.3.1). Non-deterministic machines that accept regular lan-
guages are NFAs (Definition 2.3.15). In contrast to DPDAs and non-
deterministic PDAs, DFAs and NFAs accept exactly the same set of lan-
guages, namely, regular languages. Of course, acceptors of Type 0, 1 and
2 languages can also accept Type 3 languages. An example of a regular
language is a∗c∗ expressed as a regular expression.

Chapter 5 illustrates how to formulate regular expressions that define TRs. Note
that only the most general machines accepting a particular language have been
included in the foregoing discussion of Figure 4.3.
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Figure 4.3: A nested set formed by six classes of languages, adapted from Cohen
[1997].

4.4 Counting automata

The definitions, advantages and capabilities of different CAs are considered here.
The definition for CAT3 that is given in the first subsection serves as a basis for
defining CAT2 and CAT1 in the subsections to follow.

� The focus is on CAT3 as a regular language acceptor — i.e. an acceptor of
languages belonging to Type 3 of the Chomsky hierarchy. Because TRs are
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also regular languages, CAT3 is the acceptor used in subsequent chapters of
this thesis.

� CAT2 is presented as an acceptor of a subset of CFLs (a subset of Type 2
of the Chomsky hierarchy).

� CAT1 is explored as the acceptor of a subset of CSLs (Type 1 of the Chomsky
hierarchy).

In Subsections 4.4.1, 4.4.5 and 4.4.6 it is assumed that simple relational expres-
sions containing the operators <,>,≤,≥ and = can be evaluated.

4.4.1 Counting automata type 3: CAT3s

During the development of a TR-detection algorithm that implements DFAs, a
need became apparent to define (for the first time), in the interest of memory
management, something called a counting automaton of type 3, abbreviated to
CAT3.

CAT3s accept all the regular languages. Definition 4.4.1 given below formally de-
fines a CAT3. The T3 subscript refers to regular languages as Type 3 languages
of the Chomsky hierarchy. While an appropriate definition for a CAT3 was being
formulated, it was realised that by modifying the definition slightly (specifically
with respect to conditions of transition functions in terms of counter compar-
isons), languages belonging to various levels of the Chomsky hierarchy can be
accepted. Consequently CAT1 and CAT2 are defined too in this chapter.14

Formally a CAT3 can be defined as follows:

Definition 4.4.1. Counting automata type 3 (CAT3)
A CAT3 is a seven-tuple,

M = (Q, q0,z,Σ, ϕ,R, δ)

where the characters have the following meanings:

� Q = {q0, q1, q2, · · · qn} is a non-empty finite set of states. Every qi is a tuple
— 〈pi, di〉 where di is an integer counter and pi is a state identifier. The
initial value of di is zero. di is incremented every time state qi = 〈pi, di〉 is
entered.

� q0 = 〈p0, d0〉 ∈ Q is designated to be the start state.

� z ⊆ Q is the set of final states.

14Preliminary thoughts on CAT0s are presented in Appendix A.
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� Σ = {a1, a2, a3, · · · an} ∪ {∆} is a finite alphabet where ∆ is the null char-
acter.

� ϕ : Q × Σ → N is called the threshold function. It is a total function that
associates an integer constant, called a threshold value, with each character
and each state. The transition function’s behaviour (given below) is governed
by these threshold values. If no threshold value is explicitly indicated the
default value is taken as ∞.

� R : Q× Σ→ {<,>,=,≤,≥} is called the relational function. It is a total
function that associates a relational operator with each character at each
state.

� δ : Q× Σ→ Q is called the transition function.

δ(qi, ai) = δ(〈pi, di〉, ai) =

{
〈pk, dk + 1〉, if di R(qi, ai) ϕ(qi, ai).

⊥, otherwise.
(4.10)

� Where convenient, it will be assumed that the end of the input string is
indicated by an infinite number of ∆s.

�

In order to make the above definition clear, notice that di R(qi, s) ϕ(qi, s) in Equa-
tion (4.10) is an expression that evaluates to a Boolean value. Suppose, for exam-
ple, that di = 5, R(qi, s) evaluates to < and ϕ(qi, s) = 10. Then di R(qi, s) ϕ(qi, s)
is the expression 5 < 10 and this expression evaluates to true.

From the arbitrary state qi = 〈pi, di〉 the transition function allows for one
of two possible outcomes for a given character, ai: either state 〈pk, dk + 1〉 if
di R(qi, ai) ϕ(qi, ai) evaluates to true, or to ⊥ otherwise.15 Every transition in-
crements by one, upon entrance, the counter component of the state.

Thus, CAT3s may be thought of as DFAs that have counters in each state and
simple relational expressions on their edges. These simple relational expressions

15Some texts treat the transition function of an FA, denoted by δ : Q × Σ → Q, as a total
function and allow for the possibility that some transitions lead to a sink state, denoted by ⊥
where ⊥ /∈ z. The sink state is a dead end — i.e. for all ai ∈ Σ, δ(⊥, ai) = ⊥. Any DFA with
such a sink state will thus be cyclic. In other texts δ is regarded as a possibly partial function,
meaning that in some cases, δ(q, ai) may not be defined. An ADFA per definition cannot have
a sink state (because such a state always has a cycle back to itself), and consequently, the
transition functions of ADFAs are partial. In this thesis δ(q, ai) = ⊥ may be construed to mean
either that the transition from state q on character ai is not defined, or that the transition is
to the sink state. The meaning will be clear from the context and will not affect the arguments
made. The conventions regarding ⊥ holds for CAs too.
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rely on threshold values that are set according to functional requirements. Note
that in the limit, a CAT3 degenerates into a conventional DFA. This is the case
when R(qi, a) = “ < ” and ϕ(qi, a) ≡ ∞ for all qi ∈ Q and all a ∈ Σ. The
default relational expression (if nothing else is said) is that the state counter, d
is less than ∞.

The purpose of introducing CAT3s is to minimise memory requirements and at
the same time provide for the recognition of languages such as those of the DFA
depicted in Figure 4.6. This recognition comes at a slight runtime cost as seen
below. Furthermore CAT3s obtain statistical data during TR-detection.

Algorithm 4.4.2 indicates how to determine whether w ∈ L(M), where M is a
CAT3 whose language is L(M), and where w = a0a1 . . . aj is a word of whose
length is |w|. ⊥ is used to indicate either a sink state of M (if δ is a total
function) or the value of δ (if δ is a partial function). Equation 4.10 is actually

Algorithm 4.4.2 (Is w ∈ L(M)?).
q, i := q0, 0;
{ Invariant: (i ≤ |w|) ∧ ((a0 . . . aj−1) has been processed ) }
do ((i < |w|) ∧ (q 6= ⊥))→
⊕, t := R(q, ai), ϕ(q, ai);
if (d ⊕ t)→ 〈p, d〉 := δ(q, ai)
[] ¬(d ⊕ t)→ 〈p, d〉 := ⊥
f i;
i, q := i+ 1, 〈p, d〉

od;
accept := ((i = |w|) ∧ (q ∈ z))
{ post (accept⇔ w ∈ L(M)) }

�

applied when determining the value of δ(q, ai). In order to apply Equation 4.10,
R(q, w[i]) and ϕ(q, w[i]) have to be computed, yielding say relational operator ⊕
and threshold value t respectively. Then, assuming state q = 〈p, d〉, the new state
is computed by considering the Boolean expression (d⊕ t). Depending on whether
this expression evaluates to true or false, the variables p and d representing the
current state identifier and counter respectively have to be changed as prescribed
by Equation 4.10.

Notation 4.4.3. Drawing CAT3s
CAT3s can be drawn in a similar manner to DFAs. States are depicted as cir-
cles. The start state has an in-edge from no-where, whereas final states are two
concentric circles. Transitions are depicted as labelled directed edges. In contrast
to the edges of DFAs, which are labelled with characters from Σ only, the edges
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of CAT3s are labelled both with characters from Σ and with predicates (simple
relational expressions as explained in Definition 4.4.1). These predicates evalu-
ate either to true or false and determine, together with the input character, the
destination state. �

Let Σ = {a, c}. A CAT3 that accepts L = {a5c5} can be drawn in two different
ways as illustrated in Figures 4.4 and 4.5. In Figure 4.4 the transition on a

cycling back to state q0 has the expected condition d0 < 5 replaced by d0 < ∞.
At an implementation level using the default restraint d <∞ removes the need to
check against an upper bound. This might sometimes result in fewer comparison
operations and therefore in more efficient processing time. However, if an input
word contains a very large number of as in the prefix—for example a100c107 —
then the runtime can be improved by relying on the predicate d0 < 5 instead, as
in Figure 4.5. Note that similar trade-offs apply to using d1 < ∞ as in Figure
4.4 instead of d1 < 5 as in Figure 4.5.

q1

a & d0  < ∞ 

q0

c & d0 = 5

c & d1  < ∞ 

q2

Δ & d1 = 5

Figure 4.4: A CAT3 accepting, the motif a5c5 using∞ instead of an integer value.

q1

a & d0 < 5

q0

c & d0 = 5

c & d1 < 5

q2

Δ & d1 = 5

Figure 4.5: A CAT3, with all the possible simple relational expressions against
integer values included. Only the motif a5c5 is accepted.

The CAT3 depicted in Figure 4.5 relies on the information in Table 4.1 and Table
4.2.

Table 4.1 gives the relational expression associated with each transition out of a
state on each alphabet character. Thus, if di is the counter at state qi, then the
relational expression on a from state qi is given by (di R(qi, a) ϕ(qi, a)).
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a c ∆
q0 d0 < 5 d0 = 5 d0 <∞
q1 d1 <∞ d1 < 5 d1 = 5

Table 4.1: A table, expressing the predicates (di R(qi, a) ϕ(qi, a)) for the CAT3

depicted in Figure 4.5, accepting a5c5.

δ a c ∆
q0 q0 q1 ⊥
q1 ⊥ q1 q2

Table 4.2: A transition table, representing δ of the CAT3 presented in Figure 4.5
that accepts a5c5.

Table 4.2 is the conventional DFA transition table showing the transitions to be
taken from each alphabet character from each state. Of course, the transition to
the indicated state should only be made when the associated predicate in Table
4.1 evaluates to true. If it is false, then the transition is represented by ⊥. Table
4.2 also indicates a transition to ⊥ if ∆ (end of string) is encountered in state q0

or if a is encountered in state q1.

A conventional DFA accepting a5c5 is shown in Figure 4.6. It has 12 states, one
of which is a sink state. If δ may be a partial function, then the sink state may
be removed and the DFA becomes an ADFA.

q1

a,c,g,t

aa
q0

c,g,t

q2
q3

a
q4

a

a

c

c,g,t
c,g,t

a,g,t

q9q10 q8

ccc

a,g,t
a,g,ta,g,ta,g,t

a,c,g,t

q11 q5

q7
q6

c

Figure 4.6: A DFA with 12 states over the alphabet Σ = {a, c, g, t} accepting
a5c5 only.

In general the number of states required for a DFA to accept L = {ancn} where
n ≥ 1 and n is a fixed value, is 2n + 2. (If the sink state is omitted then 2n + 1
states are required.) In contrast, a CAT3 with two counters and two threshold
values to recognise L = {ancn} has only three states (or four, if one includes
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the sink state). This is illustrated by the CAT3 in Figure 4.7. The figure is a
skeleton CAT3 that accepts the language with one element, L = {ancn}, for any
pre specified n. In any specific context, only the threshold values of the predicates
have to change in line with the value assigned to n.

q1

a & d0< n

q0

c & d0 = n

c & d1 < n

q2

Δ & d1 = n

Figure 4.7: A CAT3 accepting L = {ancn} with the condition that n is a constant.
Thus the presented CAT3 can be seen as a skeleton CAT3 where n serves as a
place holder that should be a positive integer value.

A DFA is easily converted to a CAT3, since each DFA transition can be viewed as
a CAT3 transition with a predicate specifying that the counter is unbounded (less
than infinity). Thus, a CAT3 can be constructed to accept any regular language.
If the regular language contains substrings that are repeated a finite number of
times, a CAT3 to define it can usually be found with fewer states than a DFA.

Figure 4.8 depicts a CAT3 that recognises the language L = {g∗actactactg∗}.
The substring actactact is a typical example of a microsatellite (trinucleotide)
that might be discovered in a genetic string.

4.4.2 PFAs

Definition 4.4.4. Prototype Counting Automata Type 3 (pCAT3)
A pCAT3 is a pDFA that has been converted into a pCAT3. �

Figure 4.9(a) illustrates a PFA reaching cascading states if aaaa and {c} are
being read. The PFA displayed in Figure 4.9(a) is converted to an equivalent
pCAT3 depicted in Figure 4.9(b).

In Chapter 5 pCAT3s are cascaded to construct CAT3s. These CAT3s detect
TRs and gather statistical data about these detected TRs simultaneously. It will
be seen that global counters are introduced, to update the number of perfect
matches, mismatches, insertions and deletions. These global counters rely, for
updating, on the counters of pCAT3s constituting the CAT3 relevant for a current
detection.
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q1

g & d0 < ∞  

q0

a & d0 < ∞

q5

c & d1 ≤ 3

q2
q3

t & d2 ≤ 3 g & d3 = 3

g & d4 < ∞  

Δ & d3 = 3
Δ & d4 < ∞

q4

a & d3  < 3

Figure 4.8: A CAT3 accepting L = {g∗actactactg∗}.
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q4

q5
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a

(a) pDFA(aaaa, c)

q0 q1
a & d0 < ∞ 

c & d0 < ∞ 

q2

a & d1 ≤ 4

q3

 Δ & d1 < ∞ 

(b) pCAT3(aaaa, c)

Figure 4.9: A pDFA and a pCAT3 catering for L = {aaaa, c}
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4.4.3 CAT3s relating to Moore and Mealy machines

Note that CAT3s have both Moore machine (Definition 2.3.16) and Mealy machine
(Definition 2.3.17) characteristics.

CAT3s have Moore machine characteristics in the sense that an action is triggered
when certain states are reached. In that case, a value is incremented whereas in
the Moore machine case, some output is issued.

CAT3s have Mealy machine characteristics in that their edges activate an action.
In the CAT3 case, the action is the verification of simple relational expressions,
whereas in the Mealy machine case the action is the printing of certain output.

q0/1 q1/0
c

a c

a

Figure 4.10: A Moore machine.

The output of the Moore machine presented in Figure 4.10 for the input a5c5 is
11111100000. Thus six 1s are consecutively output (corresponding to the 5 as
plus an additional 1 that is printed initially, irrespective of the input) followed
by 5 consecutive 0s. The 0s are printed every time the character c is read. The
output of the Moore machine thus allows one to deduce that a5c5 was input.

q0 q1
c/0 

a/1 c/0

a/1

Figure 4.11: A Mealy machine.

The output of the Mealy machine, depicted in Figure 4.11, is similar to that of
the Moore machine in Figure 4.10 apart from the fact that the Moore machine
outputs an additional 1 in its first state. Instead of printing a 1 or 0 every time
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a state is entered, a Mealy machine prints the output on its edges. Note that,
from analysing the output of either a Moore machine or a Mealy machine and
being familiar with the respective machines one can, in some cases, deduce what
the input string was.

4.4.4 CAT3s and right linear grammars

Recall that Subsection 2.3.2.3 defined linear grammars (in Definition 2.2.18). It
then went on to show how to derive a DFA from a right linear grammar that
recognises the language generated by the grammar and vice-versa.

Recall also that Section 4.1 discussed CRAGs — attribute grammars proposed
by Sperberg-McQueen [2004] for representing attribute grammars that contain
counters and that generate regular languages. A CRAG can be used to define
a right linear grammar that defines the language L. Analogously to Subsec-
tion 2.3.2.3, such a CRAG-based right linear grammar can be used to derive a
language-equivalent CAT3. To illustrate this claim consider Example 4.4.5.

Example 4.4.5. Consider the CRAG generating L = {acgacgacg(acg)∗}, de-
fined below:

S → {Sd ≤ ∞} aA (Ad + 1) (4.11)

A→ {Ad ≤ ∞} cC (Cd + 1) (4.12)

C → {Cd ≤ ∞} gG (Gd + 1) (4.13)

G→ {Gd ≤ ∞} aA (Ad + 1) (4.14)

G→ {Gd ≥ 3} Λ (4.15)

Notice that, aside from the counting annotations, the CRAG conforms to the
definition of a (right) linear grammar. To convert this counting right linear
grammar to a CAT3 that accepts L, the following steps should be followed. Note
that the conversion steps are analogous to those specified in Definition 2.3.14 for
deriving a DFA from a right linear grammar.

� Create a state for each non-terminal and add an additional final state. The
state labelled S is the start state.

� For every production rule of the form

Non-terminal→ {relational expression} terminal Non-terminal

draw a directed edge from the non-terminal state on the left to the non-
terminal state on the right.
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� Label the drawn edge with the corresponding terminal and relational expres-
sion to be found on the left of the terminal, expressed in curly brackets.

� For a production with the form

Non-terminal→ {relational expression}terminal

draw a directed edge to the final state and label it with the terminal and
the corresponding relational expression (in curly brackets on the left of the
terminal).

� For a production

Non-terminal→ {relational expression}Λ

draw an edge from the non-terminal state to the final state and label the
edge with ∆16 as well as with the relational expression.

By applying this constructive algorithm to the given counting right linear gram-
mar, the CAT3 in Figure 4.12 is obtained. To accommodate the non-terminals of
the right linear grammar as state names, the convention of using qi = 〈pi, di〉 has
been replaced by using the non-terminal name itself.

�

The reverse of the described constructive algorithm can also be applied—i.e. a
CAT3 such as the one provided in Figure 4.13 can easily be converted into a
counting right-linear grammar by following the steps below:

� Step 1
Give all the states qi ∈ Q non-terminal subscript names from V .

� Step 2
The start state of the CAT3 should be named S in the grammar.

� Step 3
Note that all xi ∈ Σ of the CAT3 are terminals in Σ of the right linear
counting grammar.

� Step 4
For each edge δ(qY , xi) = qJ where xi ∈ Σ:

16In the case of CAs, ∆ is assumed to follow after the last character of the input string. Note
that Λ replaces ∆ when the algorithm to convert a CAT3 to a right linear counting grammar
is applied.
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S A

C

G

a & Sd < ∞

c & Ad < ∞

g & Cd < ∞

Δ & Gd ≥ 3

a & Gd < ∞

Figure 4.12: CAT3 accepting L = {acgacgacg(acg)∗}.

q0 q1

q2

q3

a & d0 < ∞

c & d1 < ∞

g & d2 < ∞

Δ & d3  ≥ 3

a & d3 < ∞

 

q4

Figure 4.13: CAT3 accepting L = {acgacgacg(acg)∗}.
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1. Write down the associated simple relational expression in curly brack-
ets.

2. Let every edge become a production: Y −→ xiJ .

3. Indicate counter incrementation with 1 on the right of the production.

� Step 5
For all qi ∈ z if qi ∈ z is renamed I in the grammar add the production:
I −→ Λ.

By applying the steps for converting a CAT3 to a right linear counting grammar
on the CAT3 in Figure 4.13 the grammar below is obtained:

S → {Sd <∞} aA (Ad + 1) (4.16)

A→ {Ad <∞} cC (Cd + 1) (4.17)

C → {Cd <∞} gG (Gd + 1) (4.18)

G→ {Gd <∞} aA (Ad + 1) (4.19)

G→ {Gd ≥ 3} ΛJ(Jd + 1) (4.20)

J → Λ (4.21)

From the preceding discussion it is clear that CAT3s have the ability to decrease
memory requirements if repetitions of characters or strings are part of the lan-
guage under consideration. Therefore CAT3s are suitable for tandem repeat de-
tection where repetitive motifs need to be detected.

However, before exploring the functionality of CAT3s for TR detection, modifica-
tions of CAT3s are considered, namely CAT2s and CAT1s. CAT2s have the ability
to accept a subset of Type 2 of the Chomsky hierarchy of languages — i.e. a
subset of the context free languages.

4.4.5 Counting automata type 2: CAT2s

Recall that the set of DCFLs is a proper subset of the CFLs; that CFLs are
classified as Type 2 in the Chomsky hierarchy classification; that DCFLs are
accepted by DPDAs; that DCFLs are generated by CFGs and that DCFLs are
of relevance during compiler design.

In this subsection, CAT2s will be defined and compared to DPDAs and PDAs.
This will highlight their abilities and limitations in recognising CFLs.

CAT2s are defined almost similar to CAT3s. Only the definition of the threshold
function ϕ is changed. Formally,
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Definition 4.4.6. A CAT2 is represented by the same 7-tuple as a CAT3, but the
threshold function, ϕ is defined as follows:
Let D = {dj1, dj2, . . . djk} be a set of counters of some set of states, {qj1, qj2, . . . qjk}.
Let {P1, P2} be a partition of Q×Σ (i.e. P1∪P2 = Q×Σ, P1∩P2 = ∅) such
that 0 ≤ |P2| ≤ 1. Then:

ϕ : Q× Σ → N ∪D

where ϕ(qi, a) =

{
n (qi, a) ∈ P1 and n ∈ N
dj (qi, a) ∈ P2 and dj ∈ D

�

Thus, the definition of a CAT2 allows for a limited one pair of counters to be
compared against each other. Specifically, the counter (di) of one state (qi) is
compared against the counter (dj) of some other state (qj) whenever a specific
character of the alphabet occurs in state qi. If the relevant relational expression
evaluates to true then a transition is made to some new state (not necessarily to
state qj), i.e. δ(qi, a) = qk; and if the relational expression evaluates to false then
δ(qi, a) = ⊥. In all other instances, CAT2s state-to-state transitions are made
on the basis of counter-against-threshold comparisons, as for CAT3s. Thus, the
same drawing conventions introduced for CAT3 are used, except that a CAT2 can
have at most one counter against counter comparison. Thus every CAT3 can be
seen as a degenerate CAT2 that has zero counter against counter comparisons.

The algorithm to determine if a word belongs to the language of a CAT2 is similar
to the algorithm for CAT3s — Algorithm 4.4.2.

Karianto [2005] mentions that the idea of counting devices in automata theory is
classic in nature. A DPDA “counts” on a stack in that information can be pushed
or popped and the stack can be tested for being empty. CAT2 counters can be
leveraged to store and retrieve information in a way that resembles the operation
of a stack. This is because CAT2s are defined to allow for the comparison of two
monotonic addition counters.

A CAT2 can be considered equivalent to a DPDA with one stack where only one
character can be pushed. Instead of pushing characters onto a stack, a CAT2

increments an appropriate counter when a state is entered. Subsequently the
values of two counters of a CAT2 are compared.

This correspondence between a CAT2 and a DPDA will now be illustrated by
considering two DCFLs. The first is L = {ancn | n ≥ 1} and the second is
a so-called oddpalindrome language. It will be seen that the first language can
be recognised by both a DPDA and a CAT2, whereas the second can only be
recognised by a DPDA.
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START

Read1 Pop1

Read2

Pop2

ACCEPT

Pushx

c

a x
c

 Δ

Δ

Figure 4.14: A DPDA accepting L = {ancn | n ≥ 1}.

4.4.5.1 A DPDA for L = {ancn | n ≥ 1}

L is accepted by the DPDA presented in Figure 4.14. (Note that there is no
consensus on how to present PDAs graphically. Alternative ways of presenting
DPDAs as well as PDAs can be found in Mahesh [2013] and in Sipser [2006].)

A word from L is accepted by pushing an x onto the stack for each a read from
the first group of as—the Read1-Pushx-loop. Once the first c is read by Read1,
the DPDA branches to Pop1. Another loop is required– -Read2-Pop1 where the
remaining sequence of cs is read. The DPDA pops an x for each c read. If the
number of as is not equal to the number of cs then the DPDA crashes. (If the
number of as is greater than the number of cs an x will be popped in state Pop2

causing the machine to crash. If the number of as is less than the number of cs
then a ∆ will be popped in state Pop1 causing the machine to crash.)



CHAPTER 4. COUNTING AUTOMATA — CHOMSKY HIERARCHY 128

q1

a & d0 < ∞   

q0

c & d0 > 0

c & d1 < ∞ 

q2

Δ & d1 = d0 

Figure 4.15: A CAT2 accepting L = {ancn | n ≥ 1}.

4.4.5.2 A CAT2 for L = {ancn | n ≥ 1}

Figure 4.15 depicts a CAT2 accepting L = {ancn | n ≥ 1}.
Note that the counters of states representing the occurrence of a and of c respec-
tively should be equal.

A CAT2 requires less memory than a DPDA — it does not need a stack.17

4.4.5.3 A DPDA for an oddpalindrome

As another example comparing DPDAs and CAT2s, consider the DPDA presented
in Figure 4.16. It accepts strings of the form wg(reverse(w)), where w ∈ {a, c}∗.
This is an example of an oddpalindrome language. The DPDA starts off by
reading as and cs interchangeably in the Read1 state. After an a has been read,
an x is pushed onto the stack. After reading a c, an y is pushed on the same
stack. After a push, the machine loops back to the Read1 state. Thus there are
two loops from the Read1 state: one to the Pushy state; and another to the Pushx
state. The machine runs by altering between the two loops processing the first
part of the input string until the separator g is encountered.

When g is read in state Read1, the DPDA branches to the only Pop state. When-
ever a y is popped the machine branches to Read2 where a c must be read to
continue processing. Similarly, whenever an x is popped, the machine branches
to Read3 where an a should be read to continue processing.

In each case, the machine loops back to the Pop state to continue the read-pop
cycle until the stack is empty. When the stack is empty a ∆ is popped and
the machine moves to Read4 where ∆ is read, thereby checking that the input is
empty. Thereafter the machine proceeds to the ACCEPT state.

The memory of CAT2s is not as specialised as that of DPDAs, since the latter
have the ability to store a variety of characters on the stack. Thus oddpalindrome
with a separator cannot be accepted by CAT2s.

17In Addendum A it is explored how to compare two counters against one another.
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START

Read1

Pop1

ACCEPT

Pushx

c

a

Pushy

g

Read2

Read4

Read3

 Δ

 Δa
x

y c

Figure 4.16: An example of a DPDA that accepts an oddpalindrome language
with a separator, L = {wg(reverse( w )) | w ∈ {a, c}∗}.

It is consequently clear that CAT2s can only accept a subset of the DCFLs.

A CAT2 accepting L′ where L = {ancn | n ≥ 0} is presented in Figure 4.17. L′

is not a DCFL but a CFL that can be accepted by a non-deterministic PDA
(Cohen [1997]). Although CAT2s do not accept all the DCFLs they do accept a
subset of CFLs that are not DCFLs too. Provision is made for ∆ to be read from
any state and all ∆ edges lead to the final state. However, state q5 can only be
reached if the condition that d0 6= d1 is met. Thus words belonging to L will not
be accepted but all other words will be — i.e. L′ will be accepted.

4.4.5.4 Regulating determinism in CAT2s by Boolean expressions

Definition 4.4.6 defines a CAT2 in a deterministic manner. The determinism is
regulated by alphabet characters in Σ in that there is at most one outgoing edge
for each character of the alphabet at each state. Another possibility that is not
extensively studied here is to extend the current definition so that determinism
is regulated by simple relational expressions. This will imply that there can be
more than one outgoing edge on ai ∈ Σ from the same state, each annotated by
its own relational expression. Consequently the same two counters (dj and dk)
may occur on transition edges, in relational expressions as operands, more than
once.

if (dj < dk) then δ(a, qj) = qr
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q1

a & d0 < ∞   

q0

q5

a & d0 < ∞ 

Δ & d3 < ∞  
Δ & d0 > 0   

Δ & d0 ≠ d1   

c & d2 < ∞   

c & d0 < ∞ 

a & d3 < ∞   

c & d5 < ∞   

q4

q2

Δ & d4 < ∞  

Figure 4.17: A CAT2 accepting L′ where L = {ancn | n ≥ 0}.

if (dj > dk + 5) then δ(a, qj) = qk
else δ(a, qj) = ⊥

Thus, the Boolean expressions should be mutually exclusive (to prevent non-
determinism). Such a machine will be referred to as a CA

′
T2.

Such a CA
′
T2 machine accepting L = {an−2ggcn+5 | n ≥ 2} is depicted in Figure

4.18(a). Note that state q2 has two transitions on character c but the non-
determinism is removed because of the associated relational expressions. This
machine has less states than the corresponding CAT2 that conforms to Defini-
tion 4.4.6. Such a CAT2 is depicted in Figure 4.18(b).

4.4.6 Counting automata type 1: CAT1s

CAT1s are defined almost as are CAT2s except for a change in the definition of
the threshold function ϕ. Formally,

Definition 4.4.7. A CAT1 is represented by the same 7-tuple as a CAT2, but the
threshold function, ϕ is defined as follows:
Let D = {dj1, dj2, . . . djk} be a set of counters of some set of states, {qj1, qj2, . . . qjk}.
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(a) L = {an−2ggcn+5 | n ≥ 2} being accepted by a CA
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(b) L = {an−2ggcn+5 | n ≥ 2} being accepted by a CAT2

Figure 4.18: A CA
′
T2 and a CAT2 catering for the same language
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Let P1, P2 be a partition of Q×Σ such that P1∪P2 = Q×Σ, P1∩P2 = ∅ and
|P2| > 0. Then

ϕ : Q× Σ → N ∪D

where ϕ(qi, a) =

{
n (qi, a) ∈ P1 and n ∈ N
dj (qi, a) ∈ P2 and dj ∈ D

�

Thus, CAT1, CAT2 and CAT3 differ only in respect of the number of counter-
to-counter comparisons allowed, i.e. the size of P2. Whereas the definition of a
CAT2 specifies at most one counter-to-counter comparison, the definition of CAT1

allows for more than one and the definition of CAT3 does not allow for any. Put
differently:

� |P2| = 0 for CAT3

� 0 ≤ |P2| ≤ 1 for CAT2

� 0 ≤ |P2| for CAT1

By a counter-to-counter comparison is meant precisely the same as before. To
determine the destination state when a specific character of the the alphabet
occurs in state qi, the counter (di) of qi may be compared against the counter,
dj, of some other state, qj. If the relevant relational expression evaluates to true
then a transition is made to that new state (not necessarily to state qj), i.e.
δ(qi, a) = qk; and if the relational expression evaluates to false then δ(qi, a) = ⊥.
The definition of CAT1 still only permits one comparison per state (either counter-
to-counter or counter-to-constant), but counter-to-counter comparisons may be
specified at multiple states.

The abstract algorithm for testing whether a word is a member of the language
defined by a CAT1, is the same as the algorithm for CAT3s — see Algorithm 4.4.2.
CAT1s can accept regular languages. They can also accept a subset of CFLs as
well as a subset of CSLs, as will be illustrated below.

As mentioned in Chapter 2, CSLs are accepted by both 2PDAs and LBAs. To
illustrate how 2PDAs, LBAs and CAT1s process strings from a CSL, the example
language L = {ancngn | n ≥ 1} will be investigated.

4.4.6.1 The 2PDA case

A 2PDA accepting L = {ancngn | n ≥ 1} is presented in Figure 4.19.
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 Δ
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Pop2

 Δ
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Figure 4.19: A 2PDA accepting L = {ancngn | n ≥ 1}.

The 2PDA reads the first group of as in state Read1. For each a read, an x is
pushed onto stack1. Thus a loop is introduced: Read1 − a− Push1x. Whenever
a c is read in Read1 we branch to Push2y where we push a y for the first c read
onto stack2. A new loop is formed Read2 - c - Push2y. Thus for each c read in
Read2 a y is pushed onto stack2. If we are in Read2 and we read a g we branch
to state Pop1 popping an x which leads us to state Pop2 where a y is popped.
From Pop2 we branch to state Read3 where the remainder of the group of gs is
read. A new loop is introduced: Read3 - g - Pop1x - Pop2y. The number of xs on
stack1 is compared to the number of ys on stack2 and all of these are compared
to the number of gs on the input tape. Thereby the number of as, cs and gs
are compared. Whenever ∆ is encountered on the tape the end of the tape is
reached, and both stacks should be empty too. Thus all words in L are accepted;
all words in L′ are rejected. In order to accept L = {ancngn | n ≥ 1} with a 2PDA
we need 2 stacks each of size n and we have to execute 7n actions. Thus we have
a run time complexity of O(n).

4.4.6.2 The LBA case

Figure 4.20 displays an LBA accepting L = {ancngn | n ≥ 1}.
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Figure 4.20: A TM accepting L = {ancngn | n ≥ 1}.

The processing of L by this LBA can be described as follows:

� An a is read in the START state in the first cell and an x is printed in
the cell being read replacing the a. In q2 the TM traverses through the
remainder of the as on the tape. Whenever the first c is encountered a y is
printed on the tape and we move to state q3.

� In q3 we traverse through the remainder of the cs until a g is encountered.
When, in state q3 and a g is encountered, a z is printed on the tape. We
then proceed to state q4.

� In state q4 we move to the left, iterating through all the zs, cs, as and ys
on the tape to date until the rightmost x is reached. We then move right
and proceed to state q5.

� If, in state q5 an a is encountered, the LBA prints an x, moves right and
proceeds to state q2 where it iterates through the remainder of the as as
well as the ys printed on the tape and repeats the described process. Thus,
states q5, q2, q3 and q4 are traversed until we encounter a y instead of an a

in q5.
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q1

a & d0 < ∞  

q0

c & d0 ≥ 1    

c & d1 < ∞

q3

g & d0 = d1

Δ & d1 = d2

q2

g & d2 < ∞ 

Figure 4.21: A CAT1 accepting L = {ancngn | n ≥ 1}.

� When this is the case, the number of as should be equal to the number of
cs which should in turn be equal to the number of gs on the original input
tape. The LBA traverses through the remainder of the tape reading only
ys and zs.

� When ∆ is encountered the end of the input string is reached and the LBA
moves to the HALT state. It can easily be verified that this can only happen
if the number of as, cs and gs match.

Note that the length of the input string is 3n. The length of the tape needed
to determine if a word belongs to L is 3n + 1 which is smaller than (2(3n) + 2).
Thus the length of the input tape needed for the machine depicted in Figure 4.20
is within the bounds of an LBA (Definition 2.3.21). Note also that the TM in
Figure 4.20 has to traverse the input string more than once. In fact, the LBA
traverses the input string 4n2 + 6n + 2 times. Thus the runtime complexity of
the TM is O(n2).

4.4.6.3 The CAT1 case

A CAT1 accepting L = {ancngn | n ≥ 1} is depicted in Figure 4.21.

The CAT1 has 4 states. In state q0 = 〈q0, d0〉 all the as of the input string are
read and the counter d0 is incremented for each a read until we read a c in state
q0. We then move to state q1 = 〈p1, d1〉 and counter d1 is incremented for each c

read until we read a g. At this stage, in the interest of minimising runtime, we
need to compare the content of d0 and d1, which should be equal. In this case the
presented CAT1 proceeds. In state q2 we read the remainder of the gs and the
counter, d2, is incremented each time that q2 is entered until ∆ is reached. The
contents of d1 and d2 should be equal to reach the final state q3. We traverse the
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Figure 4.22: An LBA accepting palindromes over Σ = {a, c, g} with word lengths
greater than 2. For an input string of length n a tape length of n + 1 is needed
during processing.

input string once, to reach our final state. No additional stacks are used — only
the respective counters.

4.4.6.4 CAT1s cannot recognise all CSLs

In Subsection 4.4.5, a PDA accepting the language palindrome with a separator
was presented. This example highlighted the fact that not all deterministic CFLs
can be represented by a CAT2.

The language consisting of all palindromes without a separator is a CSL. An LBA
accepting this palindrome language is presented in Figure 4.22. Note, however,
that a CAT1 cannot be constructed to recognise palindromes (including palin-
drome with a separator, a CFL). The underlying reason why this is not possible
is the same as the reason given in the previous section for CAT2: counters do not
store information about the alphabet but only about the number of occurrences.

4.4.6.5 Regulating determinism in CAT1s by Boolean expressions

Just as CAT2 machines can be extended to CA
′
T2 machines, so can CAT1s be

extended to CA
′
T1 machines. Again, this extension would allow for multiple tran-

sitions on a given character from a given state, the transitions being governed by



CHAPTER 4. COUNTING AUTOMATA — CHOMSKY HIERARCHY 137

q1

a & d0 < ∞ 

c & d0 < ∞ g & d1 = d0

q2

q3

a, c, g & d2 < ∞

Δ & d3 ≠ d0

c & d1 < ∞ g & d3 < ∞ 

Δ, a, g & d1 ≠ d0 

q0

q4

Δ & d0 < ∞

Δ & d2 < ∞

g & d0 < ∞ 

a, c  & d3 < ∞

Figure 4.23: A CA′T1 machine accepting L′ if L = {ancngn | n ≥ 1}.

simple mutually exclusive counter-to-counter based Boolean expressions. How-
ever, in this case, these expressions are allowed to involve comparisons between
the current state’s counter and the counters of any other states.

To briefly illustrate the idea, consider the complement, L′, of the above CSL
L = {ancngn | n ≥ 1}. Since it is known that the complement of a CSL is itself a
CSL, L′ is a CSL.

It is interesting to observe that a CA
′
T1 machine can be constructed to accept

the complement, L′. Figure 4.23 illustrates such a CA
′
T1 machine. Of course,

since L′ is a CSL, it is also possible to construct both an LBA as well as a 2PDA
to recognise L′. However, it is not possible to construct a CAT1 machine that
recognises L′. Thus, CA

′
T1s recognise a larger set of CSLs than CAT1s.

4.5 Conclusion

CAT3, CAT2 and CAT1 have been represented by the same 7-tuple. However,
the threshold functions of these CAs differ. The definition of a CAT2 allows
for at most one pair of counter-to-counter comparisons. The definition of CAT1

specifies any number of counter-to-counter comparisons. CAT3 does not allow for
counter-to-counter comparisons at all.

CA′T2 and CA′T3 were introduced. It has been illustrated that CA′T2s need, in
some cases, less states than CA′T2 to accept the same CFL. However, CA′T1 can
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accept CSLs that cannot be accepted by CAT1.

In Chapters 7 and 8 it is illustrated how CAT3s can be employed to gather valuable
statistical information within the context of TR detection.

Notions on introducing a CA (CAT0) that has the ability to carry out the evalua-
tion of some of the simple relational expressions have been explored. Clearly such
a CA should have the ability to decrement counters too. No attempt is made to
classify the languages defined by CAT0 in terms of the Chomsky hierarchy. Ideas
related to CAT0 are included in Appendix A.
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“When people see some things as beautiful, other things become ugly. When people
see some things as good, other things become bad.” ... Lao Tzu

This chapter introduces some of the theoretical underpinnings of FireSat. FireSat
algorithms are designed to detect tandem repeats on DNA, specifically minisatel-
lites and satellites. FireSat1, presented in Chapter 6, is a concatenated pDFA-
based1 algorithm.

FireSat2 and FireSat2′ will be introduced in Chapter 7. FireSat2 entails the
cascading of pCAT3s whereas FireSat2′ cascades pNCAT3s to detect TRs.2

A description of FireSat3 then follows in Chapter 8. It relies on the composition
of CAT3s.

These algorithms extend the flexibility and accuracy benefits that were previ-
ously experienced with FA-based microsatellite detection algorithms, into the

1 pDFAs refer to prototype DFAs, defined in Chapter 2, Definition 2.4.2.
2 pCAT3s refer to counting prototype DFAs, defined in Chapter 4, Definition 4.4.4. Prototype

non-deterministic counting automata type 3 (pNCAT3) are almost the same as pCAT3s, except
that they are non-deterministic.

141
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domains of minisatellite and satellite detection. To prevent a search space ex-
plosion implied by dealing with larger motifs, several techniques are employed
during pattern recognition.

The remainder of this chapter is laid out as follows: The TR detection problem
statement is given in Section 5.1. Motif error filters and TR filters are dealt with
in Sections 5.2 and 5.3 respectively. Key aspects of the theoretical underpinnings
for FireSat are discussed in Section 5.5. The evolution of FireSat is discussed
in Section 5.7. This chapter is concluded in Section 5.8.

5.1 TR-Detection: problem statement

ATRs in genetic sequences were informally described in Definition 2.1.4. They
are defined here in terms of the conventions that follow. Note that the definition
of a TR, as found below, is similar to that of De Ridder [2010]. Here examples
have been extended to illustrate mutations where |ρ| = 6 in Section 5.1.1.

A PTR with motif ρ that is repeated p times (where p > 1) is denoted by ρp.
An ATR u that is derived from ρp, must also have the motif (ρ) as its prefix.
Therefore it has the form ρu2 · · ·up where each ATRE, uk (k = 2 · · · p), is the
result of having at most εmax mutations on ρ. ε keeps track of the actual number
of motif errors in the TRE. In theory, εmax could be anywhere in the range
0 ≤ εmax ≤ |ρ|. The user is, however, given the option to limit the number of
motif errors by entering a value for εmax.

3

In principle, then, an algorithm seeking TRs could rely on εmax alone to determine
when the end of a candidate string has been found. However, in practice, it is
useful to rely on metrics that serve as additional filters. To improve the detection
of possible TRs, the FireSat algorithms implement additional filters. These are
discussed in Sections 5.2 and 5.3.

In FireSat, it is optional to use these filters. End-users may use them to enable
FireSat to determine whether a string that has been found to be a possible TR
at some point in the algorithm, should be output as such, or whether additional
processing should occur to see if the string can be extended further to report a
longer TR. Options for manipulating TR filters are discussed further in Section
5.3.

The next section, Section 5.1.1, discusses the types of mutations (motif errors)
that are tolerated.

3If TRs, stretching over a range of motif lengths, are to be detected, ε% is calculated and
compared against εmax%

.



CHAPTER 5. UNDERLYING PRINCIPLES IN THE FIRESAT VARIANTS143

5.1.1 Motif errors: types of mutations tolerated

εmax for an ATRE depends on |ρ|. Within the constraints specified by εmax,
FireSat tolerates the three conventional error-types in correspondence to the
LD: deletions, insertions and mismatches.

To briefly illustrate types of motif errors per ATRE, consider an example based
on the six character PTRE ρ = acgtac, where εmax = 2. The authorised forms
of each ATRE, uk, where mutations have occurred will then be as follows:

1. The word ρ itself: uk = acgtac and |uk| = 6.

2. The word ρ with the deletion of one nitrogenous base:
uk ∈ {cgtac, agtac, actac, acgac, acgtc, acgta}. Thus, in all these cases |uk| =
5.

3. The word ρ with the mismatch of one base: uk ∈ {xcgtac|x:{c,g,t}} ∪
{axgtac|x : {a,g,t}} ∪ {acxtac|x : {a,c,t}} ∪ {acgxac|x : {a,c,g} ∪ {acgtxc|x :

{c,g,t}} ∪ {acgtax|x : {a,g,t}}. In all these cases |uk| = 6.

4. The word ρ with the insertion of one base in front of any position: uk ∈
{xacgtac|x : {a,c,g,t}} ∪ {axcgtac|x : {a,c,g,t}} ∪ {acxgtac|x : {a,c,g,t}} ∪
{acgxtac|x : {a,c,g,t}} ∪ {acgtxac|x : {a,c,g,t}} ∪ {acgtaxc|x : {a,c,g,t}}. In
all these cases |uk| = 7.

5. The word ρ with the deletion of two nitrogenous bases:
uk ∈ {gtac, ctac, cgtc, cgta, atac, agtc, agta,
acac, actc, acta, cgac, agac, acgc, acga, acgt}. Thus, in all these cases |uk| = 4.

6. The word ρ containing two mismatches. uk ∈ {{xygtac|x : {c,g,t} ∧ y :

{a,g,t}} ∪ {xcytac|x : {c,g,t} ∧ y : {a,c,t}} ∪ {xcgyac|x : {c,g,t} ∧ y : {a,c,g}} ∪
{xcgtyc|x : {c,g,t} ∧ y : {c,g,t}} ∪ {xcgtay|x : {c,g,t} ∧ y : {a,g,t}} ∪ {axytac|x :

{a,g,t}∧y : {a,c,t}}∪{axgyac|x : {a,g,t}∧y : {a,c,g}}∪{axgtyc|x : {a,g,t}∧y :

{c,g,t}} ∪ {axgtay|x : {a,g,t} ∧ y : {a,g,t}} ∪ {acxyac|x : {a,g,t} ∧ y : {a,c,g}} ∪
{acxtyc|x : {a,g,t} ∧ y : {c,g,t}} ∪ {acxtay|x : {a,g,t} ∧ y : {a,g,t}} ∪ {acgxyc|x :

{a,g,t}∧y : {c,g,t}}∪{acgxay|x : {a,g,t}∧y : {a,g,t}}∪{acgtxy|x : {a,g,t}∧y :

{a,g,t}}. Whenever ATREs contain only mismatches it is clear that the
length of the derived word will not deviate from the length of the original
ρ. Clearly |uk| = 6.

7. The word ρ with the insertion of two bases in front of any position: uk ∈ {
{xyacgtac—x,y:{a,c,g,t} }∪{xaycgtac—x,y:{a,c,g,t} }∪{xacygtac—x,y:{a,c,g,t} }∪
{xacgytac—x,y:{a,c,g,t} }∪{xacgtyac—x,y:{a,c,g,t} }∪{xacgtayc—x,y:{a,c,g,t} }∪
{axycgtac—x,y:{a,c,g,t} }∪{axcygtac—x,y:{a,c,g,t} }∪{axcgytac—x,y:{a,c,g,t} }∪
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{axcgtyac—x,y:{a,c,g,t} }∪{axcgtayc—x,y:{a,c,g,t} }∪{acxygtac—x,y:{a,c,g,t} }∪
{acxgytac—x,y:{a,c,g,t} }∪{acxgtyac—x,y:{a,c,g,t} }∪{acxgtayc—x,y:{a,c,g,t} }∪
{acgxytac—x,y:{a,c,g,t} }∪{acgxtyac—x,y:{a,c,g,t} }∪{acgxtayc—x,y:{a,c,g,t} }∪
{acgtxyac—x,y:{a,c,g,t} }∪{acgtxayc—x,y:{a,c,g,t} }∪{acgtaxyc—x,y:{a,c,g,t} }}.
In all cases, the length of the resulting string, |uk| = 8.

It should be noted that all these words keep at least 4 bases from the original
word ρ. The aforementioned manner of defining authorised forms of mismatches
and deletions of uk is derived from experimental observations cited by Rivals et al.
[1995]4. It has been endorsed by Benson [1999] as providing statistically relevant
information. Clearly, a combination of mismatches, insertions and deletions may
occur within an ATRE.

5.1.2 Dealing with ambiguities

As explained in Chapter 2, Section 2.5.4, ambiguities may arise when specifying
the mutations that explain the difference between a potential TRE and a given
motif. Note that the respective chapters that present the different versions of
FireSat have sections explaining how the different FireSat versions deal with
such ambiguities.

5.2 Motif error filters

During its searches, FireSat uses as the motif, ρ, a substring of the input string.
It then checks progressively whether subsequent parts of the input string could
be seen as contiguous TREs relative to this ρ.

1. εmax%

FireSat allows the user to pre-specify εmax%, the maximum percentage of
motif errors to be tolerated in a TRE. A counter of motif errors, ε, is main-
tained. If ε

|ρ| × 100 > εmax% then the string currently under consideration,
say ui, will be rejected as a TRE.

2. κmax%

FireSat also allows the user to constrain the maximum percentage of mo-
tif errors that may occur adjacently within a TRE to be less than a pre-
specified percentage value, κmax%. It maintains a counter, κ, of such adja-

4However, Rival’s approach allows insertions behind ρ. This convention is not used here.
Note that FireSat1 and FireSat2 do not allow insertions behind ρ, whereas FireSat2′ and
FireSat3 do.
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cent motif errors. Again, if at any stage it is found that κ
|ρ| × 100 > κmax%

then the string currently under consideration, ui, will be rejected as a TRE.

3. σmax%

The substring error is a percentage value measuring the number of errors,
weighted according to error type. The measure is computed at appropriate
points by FireSat and then compared against a user-specified threshold
value σmax%. During processing σ% ≤ σmax% should always hold.

The value of σ% depends, inter alia, on penalties (or weights) allocated
by the user to mismatches (pm), deletions (pd) and insertions (pi). For a
given motif, ρ, and a given substring that has been partitioned into the
form u = ρu2 · · ·up, σ% on u is computed as:

σ% =
(nd × pd) + (ni × pi) + (nm × pm)

|ρ|
× 100

where nd is the total number of deletions in u; ni is the total number of
insertions in u; nm is the total number of mismatches in u.

The substring error filter provides the user with the opportunity to fine-
tune a search. For example, by allocating a high enough penalty value to
insertions and deletions, the user can manipulate the FireSat search to
report only PTRs and ATRs with mismatches.

4. Match score
The match score contributes to finding the best alignment position of TREs.
Details explaining how the match score (LCn) is used within the FireSat

context are postponed until Chapter 9.

5.3 TR-filters

FireSat computes two additional metrics: α, the number of ATREs that occur
consecutively; and β, the total number of TREs. For the metric α a maximum
value can be specified. For the metric β a minimum value can be indicated. These
user-specified values for the relevant metrics are used by FireSat as threshold
values in determining when a given substring can be regarded as a TR. Each of
these metrics will now be considered in turn.

1. Consecutive ATREs filter : αmax
The user has the option of entering a value denoted by αmax. This value
indicates the maximum number of ATREs that are allowed to occur next
to each other.
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The counter α is maintained to record the total number of consecutive
ATREs since the last PTRE. The counter is incremented whenever an
ATRE has been determined, irrespective of the type of errors (or single
error) that makes it an ATRE and not a PTRE. However, when a PTRE
is read, then the value of α is again set to zero. The processing of a string
will only proceed if α ≤ αmax.

2. The TR-length filter: βmin
To avoid the output of unwanted data, the user may indicate the minimum
number of TREs that has to occur before a TR is output, denoted by βmin.

5.4 Semi-formal problem statement

A general semi-formal problem statement for the FireSat algorithms describing
the detection of TRs introduced by a motif ρ of length |`| allowing for at most ε
motif errors, can be provided as follows:

Input: A genetic string, gSeq, a motif ρ of length `, the maximum number of
motif errors, ε, where |gSeq| ≥ 2× |`| − ε.
Output: All positions i : gSeq[i · · · i + m − 1] = ρ.u2.u3 . . . un where ui ≈ ρ, ≈
denotes approximate matching as governed by the user-specified parameters that
were discussed above and m = |ρ.u2.u3 · · ·un| .

5.5 Theoretical underpinnings of FireSat

Recall from Chapters 2 and 4 that all types of FAs, whether DFAs, NFAs, CAT3s
or NCAT3s, are regular language acceptors. Also recall that regular languages
can, in turn, be defined by regexs. It can easily be demonstrated that a set of
TRs is in fact a regular language. Consequently such a TR set can be described
by a regex. An FA can, in principle, be defined to recognise this TR set.

This section illustrates how minisatellites and satellites can be defined by regexs.

Bio-informatics relies on a four-character alphabet, Σ = {a,c,g,t}. From the
definition of a regex:

� a, c, g and t are regexs

� Any concatenation of one or more regex is a regex. Thus, any PTRE is a
regex.

� For the PTRE, ρ, the regex representing the corresponding set of possible
PTRs can be expressed as ρρ(ρ)∗.
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To illustrate how regexs can describe sets of ATRs consider, for example, the
ATR set that has ρ as a motif, where |ρ| = 50, and allow for at most one deletion
per ATRE as a motif error. Let ρi denote the string resulting from a deletion in
position i. A regex defining all the possible TREs is (ρ+ ρ1 + ρ2...+ ρ50) and the
set of resulting TRs can be described by the regex ρ(ρ+ ρ1 + ρ2...+ ρ50)(ρ+ ρ1 +
ρ2...+ ρ50)∗.

Although it would be tedious to do, this example can clearly be generalised to
cater for various combinations of mutation types as well as for an arbitrary num-
ber of motif errors. This would result in large, complex regexs and correspond-
ingly large and complex FAs. The problem of defining an FA that recognises a
specified set of TRs can therefore, in principle, always be solved.

However, to avoid the inevitable complexity and to keep the solution to such a
problem as simple as possible, pDFAs were relied upon by FireSat1; pCAT3s by
FireSat2; pNCAT3s by FireSat2′ and a composition of CAT3s by FireSat3.

5.5.1 Defining regex templates

FireSat1, FireSat2 and FireSat2′ divide ρ into contiguous substrings, denoted
by υi, where i = 1, . . . k. The way in which this subdivision occurs differs in each
of the respective cases. In the case of FireSat1 and FireSat2, 1 ≤ |υi| ≤ 4, for
i = 1, . . . k, whereas for FireSat2′ , |υi| is always exactly 1.

Before considering the algorithmic details of these FireSat variants, it will be
convenient to consider four types of repeats: mono-repeats, di-repeats, tri-repeats
and quad-repeats. A specific υi could serve as the motif for one of these types of
repeats. If υi is repeated two or more times, the result is a perfect mono-, di-,
tri- or quad-repeat, depending on |υi|. Alternatively, if we let emax refer to the
maximum allowable number of motif errors in υi, this could serve as the basis for
defining approximate mono-, di-, tri- or quad-repeats, again depending on |υi|.
Some examples follow:

� Mono-repeats : TRa = {aa, aaa, aaaa, ...} is an example of a per-
fect mono-repeat language consisting of repetitions of one single character.
A regex that generates this language is: aa(a)*. A regex template WW(W)∗

uses the variable W as a place holder5 for an arbitrary element of Σ. This
regex template may be said to induce a specific regex when W is replaced
with an element of Σ.

� Di-repeats: TRac = {acac, acacac, acacacac...}, is a perfect di-
repeat language generated by the regex acac(ac)*. The regex template,

5In the current context, capital W is used to conform with the convention used for non-
terminals in CFGs. These non-terminals may be considered to be variables.
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WXWX(WX)∗, induces any language of perfect di-repeats. The regex template
WX(WX + W + X + W′X + WX′ + ZWX + WZX)

(WX + W + X + W′X + WX′ + ZWX + WZX)∗,
where W,W′,X,X′,Z ∈ {a,c,g,t} and W′ 6= W, X′ 6= X, could be used to induce
any di-repeats where emax is 2 and emax% is 50.

� Tri-repeats: Figure 5.1 shows a DFA, DFAP (acg, 0), that accepts the
perfect tri-repeat acgacg(acg)∗. Figure 5.2 shows a DFA, DFAM(acg, 1),
that accepts all words defined by υi(υi + ui)

∗ where υi = acg and where
ui is a string derived from υi that contains at most 1 mismatch. Note that
sink states are introduced to cater for words not defined by the respective
FAs. (See x9 in Figure 5.1 and q7 in Figure 5.2.) Note further that the pre-
sented FAs are cyclic. FireµSat1 relies on such cyclic FAs for microsatellite
detection.

Perfect tri-repeats can be induced from the regex template WXYWXY(WXY)∗.
If a 33,3% motif error is allowed, then the associated tri-repeats are induced
by the regex template:

WXY(WXY + WX + XY + WY + W′XY + WX′Y + WXY′ +

ZWXY + WZXY + WXZY)

(WXY + WX + XY + WY + W′XY + WX′Y + WXY′ +

ZWXY + WZXY + WXZY)∗

where W,W′,X,X′,Y,Y′,Z ∈ {a,c,g,t} and W′ 6= W, X′ 6= X and Y′, 6= Y.
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Figure 5.1: A cyclic FA accepting the perfect tri-repeat nucleotide sequences
defined by acgacg(acg)∗.

� Quad-repeats: The regex template WXYZWXYZ(WXYZ)∗ where W,X,Y,Z ∈
{a,c,g,t} generates all perfect quad-repeats. The regex template generat-
ing general quad-repeats where εmax% is 25, is:

(WXYZ)(WXYZ + W′XYZ + WX′YZ + WXY′Z + WXYZ′ + XYZ + WYZ +
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Figure 5.2: A cyclic FA that accepts υ = acg and υ(υ+ ui)
∗, where ui is a string

derived from υ that contains at most 1 mismatch error.

WXZ + WXY +QWXYZ + WQXYZ + WXQYZ + WXYQZ )

(WXYZ + W′XYZ + WX′YZ + WXY′Z + WXYZ′ + XYZ + WYZ +

WXZ + WXY + QWXYZ + WQXYZ + WXQYZ + WXYQZ)∗

where W,W′,X,X′,Y,Y′,Z,Z′,Q ∈ {a,c,g,t} and W′ 6= W, X′ 6= X, Y′ 6= Y and
Z′ 6= Z.
In principle, other general expressions can be constructed reflecting error
rates such as 50%, 75%, etc.

Note that the respective languages of the above regexs define microsatellites. Also
note that, in each case, a family of these regexs can be represented by a regex
template.

By applying the rules and theory provided in the previous sections of this chapter
and by using the principles as described for defining mono-, di-, tri- and quad-
repeats, regexs (or, indeed, regex templates) generating TRs of any length can be
defined. Further discussion about how to do this will be given below. Once such
regexs are available, however, the corresponding FAs need to be constructed.

In principle, software tool-kits such as the Fire Engine (Watson [1994]) could be
used for this purpose. Such tool-kits typically take a regex based on an arbitrary
alphabet as input and construct an FA that accepts the corresponding regex
generated language.

However, since the alphabet size of regexs describing genomic strings is exactly
four, specially tailored techniques were explored that aim to construct language-
equivalent automata more effectively.
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Before indicating how the different versions of FireSat evolved, Section 5.5.2
presents the parts of Kleene’s theorem relevant to FireSat2. Kleene proved these
theorems in 1956 (Cohen [1997]).

5.5.2 Kleene’s Theorem underpins FireSat2

Kleene’s theorem (Cohen [1997]) provides the theoretical underpinning of FireSat2.
The theorem is stated in various parts. Only Part 3 itself and Rule 2 stated in
Part 3 are relevant to FireSat2. These are as follows:

Part 3:

Every language that can be defined by a regex can also be defined by
an FA.

Rule 2 of Part 3:

If there is an FA called FA1 that accepts the language defined by
the regex r1 and there is an FA called FA2 that accepts the language
defined by the regex r2, then there is an FA, say FA3, that accepts
the language defined by the regex r1 + r2.

The proof of Rule 2 was presented in Definition 2.3.10. In addition, Example
2.3.11 illustrated the application of this rule. The proof and example make it
clear that in general, the final states of FA1 and FA2 become final states of the
resulting FA, FA3.

In principle it is therefore possible to partition the final states of an FA into the
final states of the two summed FAs. This principle holds for any states (not only
final states), i.e. any state labelled in a specific way in an operand FA of the sum
operation will map to a state in the summed FA.

FireSat2 applies this principle to various pCAT3s where states in the operand
pCAT3s may be labelled as mismatch, insertion or deletion states, and will retain
those labels in the summed pCAT3.

Cascading FAs
The way in which the TR-detection problem is addressed in this thesis enabled
me to simplify the product rule inside Kleene’s theorem to a cascading operation
given in Definition 2.4.4. Note that FireSat1, FireSat2 as well as FireSat2′ rely
on the cascade operation. Recall that the cascade operation as given in Definition
2.4.4 relates only to ADFAs. Cascading say pDFAs and pDFAt representing string
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sets s and t respectively, results in the set of strings such that each element has
a prefix of a string in s and a suffix of a string in t. Using this insight, prototype
automata can be cascaded to construct ADFAs and non-deterministic counting
automata (NCAT3s) that accept TREs of any motif length.

5.6 Complexity considerations

Conventionally, algorithmic studies try to trace the time and space complexity
both theoretically and empirically. In this study such considerations were under-
emphasized. This is because the primary concern of the research presented in this
thesis was to determine whether automata can be employed to manifest a certain
accuracy against other existing algorithms. Thus time and space efficiency was
not of primary interest. Deeper investigations into time and space complexity is
left for future research. Chapter 9 takes up the theme of comparing accuracy.

5.7 The evolution of the FireSat versions

In the cause of this study various versions of FireSat were evolved and incremen-
tally tested for accuracy. The evolution of the four FireSat versions is outlined
below:

FireSat1

For FireSat1 it is shown how mono-, di-, tri- and quad-pDFAs can be concate-
nated in different ways to construct ADFAs defining various genomic strings.
In particular, this approach can be used to construct an ADFA that recognises
the language describing TREs associated with motifs whose lengths lie in a pre-
specified range. In this context, pDFAs are investigated as building blocks to
construct acyclic FAs detecting sets of minisatellite and satellite TREs. It will
be seen that FireSat1 is a relatively fast, brute force algorithm, detecting TRs
— but not very accurately. The idea of cascading mono-, di-, tri- and quad-
automata is refined for FireSat2.

FireSat2

In contrast with FireSat1, FireSat2 cascades mono-, di-, tri- and quad-pCAT3s
to construct a NCAT3. Although FireSat2 is very accurate, it will be seen that
in practice the implementation of FireSat2 may be impractical. The details
of why this is the case will become apparent in Chapter 7. When FireSat2

is seeking the next TRE during TR detection, and if it happens to deem the
next nucleotide in the source string to be an insertion, then it requires that all
subsequent nucleotides in the source string must also be construed as insertions
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until the next perfect match within the destination string is found. Subject to this
constraint, the selection of the next TRE is based on the LD between the source
(input) and destination (motif) string. Because of this constraint, FireSat2 is
said to rely on a Levenshtein-based distance (LBD) rather than on the LD as
such.

FireSat2′

In contrast to FireSat1 and FireSat2, FireSat2′ cascades mono-pNCAT3s only.
FireSat2′ calculates the LD between a source and a destination string and can
achieve a high degree of TR-detection accuracy. Note that FireSat2′ has not
been fully implemented.

FireSat3

FireSat3 utilizes a composition of CAT3s to investigate a TR-detection approach
that differs extensively from that of its predecessors. The detection results ob-
tained by FireSat3 corresponds to the detection results of FireSat2′ .

5.8 Conclusion

In De Ridder [2010], I reported on my research into three FA-based microsatellite
detection algorithms called FireµSat1, FireµSat2 and FireµSat3 respectively6.
These algorithms differ fundamentally from FireSat. FireµSat1 and FireµSat3

implement cyclic deterministic CAT3s. In contrast, FireSat1 relies on cascaded,
acyclic pDFAs. Even though FireµSat2 is more like FireSat in that it relies on
acyclic FAs, it also differs fundamentally from the FireSat algorithms.

To detect microsatellites FireµSat2 iterates, for a certain length, through differ-
ent independent ADFAs. FireSat1 utilises some of the principles introduced by
FireµSat2. Specifically, FireSat1 iterates for a certain substring of a potential
TRE, through different pDFAs when selecting the next pDFA to be cascaded.

Note that FireµSat2 does not utilise the cascade operation. Similar to FireµSat1

and FireµSat3, FireSat2 and FireSat2′ utilise CAT3s. However, deterministic
cyclic CAT3s were used for microsatellite detection in the case of the two previ-
ously mentioned FireµSat versions. It will be seen that FireSat2 and FireSat2′

construct acyclic, non-deterministic counting automata to detect TRs on DNA.
The approach of FireSat3, where a composition of CAT3s are used to detect
TRs, differs significantly from all its predecessors.

Next, Chapter 6 provides an in-depth discussion of FireSat1 that includes the
selection of pDFAs within the FireSat1 context.

6 An implementation of FireµSat2 is available at www.dna-algo.co.za.

www.dna-algo.co.za
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“Life will give you whatever experience is most helpful for the evolution of your
consciousness. How do you know this is the experience you need? Because this is the
experience you are having at this moment .”... Eckhart Tolle

This chapter explains various features of FireSat1. Firstly, Section 6.1 reviews
the constraints imposed on the kinds of motif errors tolerated by FireSat1.
Thereafter Section 6.2 illustrates how pDFAs can be associated with different
mutations. Finally, Section 6.3 outlines the overall algorithmic logic followed in
FireSat1, including the high-level pseudo-code. Empirical results with respect to
the detection ability of FireSat1 are deferred to Chapter 9. Section 6.4 indicates
how FireSat1 differs from previous work. Thereafter Section 6.5 explains how
FireSat1 deals with ambiguities. Section 6.6 concludes this chapter.

6.1 Motif errors tolerated in FireSat1

The FireSat1 user has to select several parameters. The first of these is the
maximum percentage of motif errors (εmax%) to be tolerated per TRE.

154
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j Description pDFA
1 perfect pDFAP (υ, 0)
2 1 mismatch pDFAM(υ, 1)
3 1 deletion pDFAD(υ, 1)
4 1 insertion pDFAI(υ, 1)
5 2 mismatches pDFAM(υ, 2)
6 3 mismatches pDFAM(υ, 3)
7 4 mismatches pDFAM(υ, 4)

Table 6.1: Quad-pDFAs permitted in FireSat1.

Recall from Chapter 5 that ρ, the motif being used to identify TREs, is partitioned
into the substrings υ1υ2 . . . υk, where |υi| is between 1 and 4. FireSat1 uses a
pDFA to represent each υi as well as several more pDFAs, one to represent each
allowable variant of υi.

Practical constraints limit the number of errors and type of errors that can be
allowed per pDFA. What these constraints are and how they are met depends on
whether the pDFA is a quad-, tri-, di- or mono-pDFA. The matter is summarised
in Tables 6.1, 6.2, 6.3 and 6.4. Each row of each table is associated with a pDFA.
The first column of a table (with heading j) gives an index into a row of the
table. Entries in the second column briefly describe the pDFA associated with
the respective row. The pDFA is named in the third column1.

The ordering of these pDFAs is important because it indicates the order in which
FireSat1 selects the different pDFAs indicated in each row when seeking TREs.

Consider Table 6.1. Suppose that FireSat1 needs to test whether some input
string, say u, can be regarded as a match or an approximate match of some
string υ, where |υ| = 4. Then FireSat1 first uses pDFAP (υ, 0) to check whether
a perfect match is found. If not, it checks pDFAM(υ, 1) to see if u differs from
υ by 1 mismatch; if not, it checks pDFAD(υ, 1) to see if u differs from υ by 1
deletion, then pDFAI(υ, 1) to see if u differs from υ by 1 insertion (but not at the
end of u), etc. Note that the order of checking is therefore firstly for 1 mismatch,
then for 1 deletion , then for 1 insertion, and thereafter for 2, 3 or 4 mismatches.

Tables 6.2, 6.3 and 6.4 are used in a similar fashion if |υ| = 3, |υ| = 2 or |υ| = 1.

1 Recall names assigned to pDFAs in the text just after Definition 2.4.2. In general, the
pDFA named as pDFAX(υ, e) accepts υ as well as exactly e mutations of type X in υ, where
X ∈ {P,M,D, I} represents the type of mutation (Perfect, Mismatch, Deletion or Insertion).
Also note that for FireSat1 for each pDFA e represents exactly the number of motif errors
catered for. This is in contrast with e of FireSat2 where pCAT3s are concatenated, each
catering for υ. Within the context of FireSat2, e represents the maximum number and not
the exact number of motif errors tolerated per υ.
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j Description pDFA
1 perfect pDFAP (υ, 0)
2 1 mismatch pDFAM(υ, 1)
3 1 deletion pDFAD(υ, 1)
4 1 insertion pDFAI(υ, 1)
5 2 mismatches pDFAM(υ, 2)
6 3 mismatches pDFAM(υ, 3)

Table 6.2: Tri-pDFAs permitted in FireSat1.

j Description pDFA
1 perfect pDFAP (υ, 0)
2 1 mismatch pDFAM(υ, 1)
3 1 deletion pDFAD(υ, 1)
4 1 insertion pDFAI(υ, 1)
5 2 mismatches pDFAM(υ, 2)

Table 6.3: Di-pDFAs permitted in FireSat1.

j Description pDFA
1 perfect pDFAP (υ, 0)
2 1 mismatch pDFAM(υ, 1)

Table 6.4: Mono-pDFAs permitted in FireSat1.
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The way in which the partitioning ρ = υ1, υ2 · · · υk+1 takes place in FireSat1 is
very specific: |υi| = 4, for i = 1, . . . k and |υk+1| may be 0, 1, 2 or 3.

The next section illustrates the quad-pDFAs in the last column of Table 6.1 when
υ = acgt.

6.2 Quad pDFA examples

To illustrate how pDFAs can recognise different mutation types, we consider now
the case of quad-pDFAs.

� Figure 6.1 shows four different quad pDFAs, each accepting υi = acgt, but
also catering for exactly 1, 2, 3 or 4 mismatches, respectively.

� Figure 6.2 shows two different quad pDFAs. Again, each accepts υi, but
also caters for exactly 1 or exactly 2 insertions, respectively.

� Finally, Figure 6.3 shows a quad pDFA accepting υi, but also catering for
exactly 1 deletion with respect to υi.

Each of the figures is now discussed in a little more detail. The pDFAs in the
figures can generally be thought of as pDFAX(acgt,e) for some mutation type X
and some number of errors e. However, in certain instances, the pDFA recognises
only a string with e mutations on acgt and not acgt itself.

6.2.1 Mismatches

Figure 6.1(a) is a pDFA accepting υ = acgt allowing for at most one mismatch—
i.e. e = 0 or e = 1. If e is anything else, the pDFA will clearly crash. Two types
of final states can be distinguished. State q4 (labelled with an additional P next
to the state) accepts exactly υ = acgt and q11 (labelled additionally with M1)
accepts all mismatches derived from υ = acgt where e = 1.

Figures 6.1(b), 6.1(c) and 6.1(d) cater for zero or two, zero or three and zero or
four mismatches, respectively, and similar final state labels are used.

6.2.2 Insertions

Table 6.1 indicates that FireSat1 allows one insertion error only for |υi| = 4.
Figure 6.2(a) illustrates that a pDFA accepting υi = acgt and ui deduced from
υi where e = 1, and the motif error (e) is an insertion, requires at least 15 states.
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Figure 6.1: Quad-pDFA mismatch acceptors, where υi = acgt and e =
0, 1, 2, 3 or 4.
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Whenever there is a perfect match, state q4 will be reached. All insertions, ui,
derivable from υi when e = 1 will reach state q11. Note that provision is made
for a single insertion in front of υi but not behind υi.

It is interesting to note that insertions derived from the same υi, but with e = 2
requires a pDFA with 29 states. Figure 6.2(b) depicts such a pDFA. Perfect
matching words (υi) will reach state q4 whereas words containing two insertion
errors end up at state q9.

6.2.3 Deletions

Again, referring to Table 6.1, recall that FireSat1 allows for a maximum of one
deletion when |υi| = 4. Figure 6.3 depicts a pDFA making provision for exactly
one deletion in υi = acgt. It is clear that the cascading state, q3, of Figure 6.3
is reached for an input string ui derived from υi = acgt where e = 1. Note that
this pDFA does not accept υi = acgt itself.

6.2.4 Concluding remarks

The quad-pDFAs, exemplified for a given string, serve to illustrate the following
points:

1. The shape of the various pDFAs remain exactly the same for any string of
length 4 that is drawn from a 4-character alphabet. Thus, a quad-pDFA
template for each row in Table 6.1 can be constructed as a once-off exercise
and then subsequently decorated as needed for each new string υ of length
4.

2. Clearly, given a string of length 1, 2 or 3 from a 4-character alphabet, it
would be relatively easy to devise mono-, di- and tri-pDFAs that conform
to the requirements of Tables 6.2, 6.3 and 6.4 respectively. Again, in these
cases templates can be constructed as a once-off exercise and then subse-
quently decorated as needed.

3. As previously indicated, a motif ρ of arbitrary length (in principle) can be
partitioned into contiguous substrings of length 4 followed by a suffix of
length 0, 1, 2 or 3. As will be explained in greater detail below, FireSat1

searches for TRs in an input string by matching suitable portions of the
input against quad-pDFAs, decorated according to the substring of ρ under
investigation at a given moment. If processing cannot proceed any further
along a given decorated quad-pDFA, FireSat1 may backup (four or less
places, as appropriate) in the input string and select the next pDFA lower
down in Table 6.1 for decorating and processing against the input.
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4. Note that in the worst case, backing up may result in the input being
checked against pDFAM(υ, 4) — the last pDFA in Table 6.1. Since any
string of length 4 will be accepted by this pDFA, it will always be possible
to move ahead in ρ to the next substring υi, of length 4. Of course, if
processing has reached the tail end of ρ it may be necessary to use a mono-,
di- or tri-pDFA; otherwise the quad-pDFAs of Table 6.1 are used again,
appropriately redecorated.

5. In the absence of additional filtering, once the tail end of ρ has been pro-
cessed, the corresponding matched substring of input could theoretically be
considered an ATRE. If it is indeed considered to be an ATRE, then the
next stretch of input is again examined against ρ for the next ATRE, etc.

As suggested above, without any further filtering, the foregoing process could
declare an arbitrary string of length |ρ| in the input to be an ATRE, even if every
nucleotide was considered to be a mismatch mutation. Clearly additional filters
are needed in FireSat1 to pose restrictions on deciding whether a potential TRE
should be classified as such or not. These filters were explained in Chapter 5.

6.3 The FireSat1 Algorithm

Algorithm 6.3.1 provides a high level specification of the FireSat1 algorithm.
The algorithm is invoked by calling:

FireSat(lmin, lmax, εmax%, κmax%, σmax%, αmax, βmin, pd, pi, pm, s)

where s represents the genetic sequence to be searched and where lmin and lmax
specify the minimum and maximum lengths of motifs for which searches should
be carried out. The remaining parameters are the filters and penalty weights
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already described in Chapter 5. It is assumed that all these parameters are
globally available. The algorithm returns a set of tuples, each tuple providing
information about a TR identified in s.

Algorithm 6.3.1.
func FireSat(lmin, lmax, εmax%, κmax%, σmax, αmax, βmin, pm, pd, pi, s) : tuples

tuples := ∅
; for l ∈ [lmin, lmax]→

pos := 0
; k,m := b l

4
c, mod (l, 4) { Number of quad-pDFAs & length of tail }

; do (pos ≤ |s| − l)→
ρ := s[pos, pos+ l − 1]
; 〈ρ, pos, len, ntre, nm, nd, ni〉 := computeTR(ρ, k,m)
; if (len > |ρ|)→

tuples := tuples ∪ {〈ρ, pos, len, nptre, nm, nd, ni〉}
; pos := pos+ len

[] (len ≤ |ρ|)→ pos := pos+ 1
f i

od
rof
; return tuples

cnuf

�

In overview, FireSat1 processing proceeds as follows.

An outer loop of the algorithm iterates over motif lengths in a given
range, i.e. over l ∈ [lmin, lmax]. It determines m and k where m is the
number of quad-pDFAs needed for a motif of this length and where
k indicates whether a tri-, di- or mono-pDFA is needed to represent
the motif’s suffix.

An inner loop then scans through the input string, s, for TRs whose
motif length is l. Suppose that, at a given point, processing is at a
position pos of s. FireSat1 takes the first l nucleotides starting at
pos as a motif.

The algorithm then scans further into the input string from pos + l,
seeking a TR. To do so, it uses the quad-pDFAs (and possibly a tri-,
di- or mono-pDFA) decorated as prescribed by the current motif.

If a TR is found, the TR is reported and further TR searching com-
mences from where the TR terminated. Should no TR be found at
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all (typically because one of the threshold values has been exceeded),
then the search is repeated from index position pos + 1 and a new
motif is established at that position.

The foregoing is repeated until the entire string s has been processed
for motif length l. Thereafter, the entire search is repeated until each
motif length in the range lmin to lmax has been examined.

computeTR is called by the algorithm. Its purpose will be explained below. The
function returns a tuple containing the following information about a possible
TR that might be located at pos:

1. ρ the PTRE of the detected TR;

2. pos the start position of the detected TR;

3. len the length of the detected TR;

4. ntre the number of TREs occurring in the detected TR; and

5. nm; nd; ni the number of mismatches, deletions and insertions that occurred
throughout the detected TR.

If len is greater than the motif length, then a TR is deemed to have been found
at position pos and the tuple of TR-related information is added to a tuple set.
The algorithm returns this tuple set. If pos is deemed not to be the starting
index of a TR, the next TR search starts from pos incremented by len (if a TR
was found) or by 1 (if a TR was not found).

As indicated above, using ρ = s[pos, pos + l − 1], FireSat1 determines k and m
such that

ρ = υ1υ2 . . . υkυk+1

where |υi| = 4 for i = 1, . . . k, and |υk+1| = m ∈ [0, 3]. Each υi is treated
separately by a suitable pDFA. The cascading states in the pDFA referencing
υk+1 (or υk if |υk+1| = 0) are regarded as final states.

For i = 1, . . . k + 1, computeTR relies on subfunction pDFASelector to find a
pDFA to represent υi and carry out the next matching stage. (For ease of refer-
ence, assume below that a quad-pDFA is used. The narrative is trivially similar
when a tri-, di- or mono-pDFA needs to be used to represent υk+1 .)

For each υi, pDFASelector selects a pDFA template from Table 6.1. For conve-
nience, call it pDFAj, where j indexes the row number in Table 6.1 to indicate the
type of the pDFA. Initially j = 1, but it is subsequently incremented as necessary,
under circumstances described below. pDFASelector then decorates pDFAj with
the characters in υi.
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Assuming next to be the index of the next element of s to be examined, a substring
in s starting at next (call it ui) is checked for membership of the language of
pDFAj. The following outcomes are possible:

1. A cascading state of pDFAj is reached. The index j is set to 1, the index
next is appropriately updated, and υi+1 is used to redecorate pDFA1.

2. A cascading state of pDFAj is not reached. In this case, pDFAj+1 is se-
lected as the next pDFA template to be decorated with the elements of υi.
Substring ui is now tested for membership of the language of pDFAj+1.

3. A final state of pDFAk+1 (or pDFAk) is reached. In this case, a possible
TRE has been identified (subject, of course, to compliance of all the other
filter values). One of two possibilities may occur: A search for the next pos-
sible TRE commences as described above. Alternatively there has not been
yielded to all the other threshold values and the current TRE is discarded.

For reasons already noted, in the absence of additional filtering, once the tail
end of ρ has been processed, the corresponding matched substring of input could
always be considered an ATRE. However, apart from carrying out the actions
just mentioned, pDFASelector also has to keep track continuously of the value
of the various metrics against which filtering occurs. Substrings of s are filtered
out as potential TRs when they exceed the filtering bounds. computeTR checks
whether the restrictions on αmax and βmax are being met or not before a TR is
being output as such.

The function pDFASelector thus keeps track of the number of mismatches, in-
sertions and deletions states that are encountered. It relates these values to the
input parameters, and reports back when a TRE has been found, or when one is
no longer available.

6.4 FireSat1: differing from previous work

It should be noted that the foregoing approach generalises the use of template
ADFAs as implemented for FireµSat2 and described in De Ridder [2010] and
De Ridder et al. [2013]. However, the template ADFAs of FireµSat2 differed
significantly from those used here. For FireµSat2 different ADFAs are used to
cater for |ρ| = 2 · · · 5. For each of these motif lengths, ADFAs were constructed
to cater for different motif error types (mismatch, insertion, deletion or a com-
bination of the pre-mentioned) and number of motif errors. A cascade operation
was therefore not needed for FireµSat.
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It should be noted that in theory, a simple cascading operation on two pDFAs
results in a slightly larger ADFA. However, FireSat1 does not simply cascade
one pDFA onto another. Rather, as described above, it sometimes backtracks
and replaces one attempted cascading operation with another using a different
pDFA as the second operand of the cascading operation. In effect this means
that FireSat1 seeks a path through an acyclic NFA (ANFA) in trying to find
TRs, rather than through an ADFA as was the case with FireµSat. However,
cascading only two pDFAs at a time means that FireSat1 does not have to store
the entire underlying ADFA in memory.

The function computeTR in FireSat1 is broadly similar to its counterpart used
in all the versions of FireµSat described in De Ridder [2010]. However, keeping
track of the number of mutations, and dealing with ambiguities in mutation types
was considerably simpler in the FireµSat algorithms.

Here, the resolution of ambiguities always takes place in the context of the υ
substrings of length 4 (or less). The way in which ambiguities are resolved is
reflected in the ordering of pDFAs in Tables 6.1 to 6.4. To keep tabs of the
number of errors encountered, global counters are used as part of the algorithm.
These will be more explicitly discussed in subsequent versions of FireSat.

On the one hand, then, the cascading-based generalisation of FireµSat that
resulted in FireSat1 means that it is now possible, at least in principle, to use
FAs to detect TRs whose motif is of arbitrary length. The price to be paid for
this generalisation is that the way in which mutation errors may be interpreted
has to be constrained significantly.

6.5 Ambiguities: FireSat1

Tables 6.1 to 6.4 indicate the order of preference in dealing with ambiguities.
They prioritise mismatches over deletions. Deletions are in turn prioritised over
insertions.

In this way, they avoid ambiguities with respect to mutations within υi, i =
1, . . . k + 1 that might otherwise have arisen.

This order of prioritisation is in line with the general approach followed by other
researchers, as can be inferred from Figure 3.4. The figure depicts a concept lattice
whose objects are TR-detection algorithms and whose attributes are properties
of these algorithms. The figure makes it clear that all TR-detection algorithms
that have the property of detecting ATRs, also have the property of detecting
mismatches. This is however not the case for insertions or deletions, i.e. some
algorithms that detect ATRs do not allow for interpreting mutations either as
insertions and/or as deletions.



CHAPTER 6. FIRESAT1 CASCADES PDFAS 166

FireSat1 partially overcomes this limitation in that it allows for mutations to be
interpreted sometimes as deletions or insertions. However, there may never be
more than 1 insertion or deletion within an υi substring of ρ.

Of course, these rules on the mutations allowed in υi for i = 1, . . . n, correspond-
ingly constrain how mutations may be interpreted in ρ itself. The total number
of mutations counted in an incoming string being adjudged as a possible TRE in
relation to ρ cannot therefore be guaranteed to correspond with the LD between
these two strings. Nevertheless, in FireSat1 the mutation counts are tested
against various user-specified filter values to decide whether or not the input
string under consideration should be accepted as a valid TRE.

6.6 Conclusion

In principle, the pDFAs implemented for FireSat1 can be augmented with addi-
tional pDFAs that allow for more deletions and/or insertions, and the ordering
in which the various motif errors are prioritised can be modified.

A prototype version of FireSat1 as described above was implemented. Results
obtained are reported in Chapter 9. One of the issues noted was that FireSat1

loses accuracy because the number of insertions and deletions have been artifi-
cially limited to one per quad-, tri-, di- or mono-pDFA. This experience stimulated
new ideas that led to the formulation of FireSat2. It is described in the next
chapter.

FireSat1 was my first attempt at developing an FA-based algorithm for detect-
ing TRs. It does not have the ability to detect TRs as accurately as FireSat2,
FireSat2′ and FireSat3. During the theoretical development of FireSat1 it
was realised that there could be a different and more effective way of using cas-
caded pCAT3s instead of pDFAs during TR-detection. Nevertheless, FireSat1

is included in this thesis because it provided the theoretical background that in-
stigated the development of FireSat2 and subsequently of FireSat2′ . FireSat1

has been implemented — Chapter 9 reports on its accuracy.
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“The intuitive mind is a sacred gift and the rational mind is a faithful servant. We
have created a society that honours the servant and has forgotten the gift.” ... Albert
Einstein

This chapter introduces both FireSat2 and FireSat2′ . FireSat2 relies on pCAT3s
that are concatenated and together are used to calculate the number of mutations
in an input string, allocated according to a certain priority scheme. To address
the shortcomings of FireSat2, FireSat2′ is presented in Section 7.2. FireSat2′

cascades pNCAT3s to detect TRs.

7.1 FireSat2

The overall flow of logic of FireSat2 is almost the same as that of FireSat1 as
shown in Algorithm 6.3.1. (The number of quad-pDFAs, k, and length of the
tail, m is not computed.) In both cases, NCAT3s that recognise ρ and a subset
of its mutational variants underlie the respective algorithms.

168
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However, details differ considerably in regard to how these respective NCAT3s
are built and stored. Notionally, this may be regarded as taking place within the
call to computeTR.

As was seen in the previous chapter, FireSat1 does not pre-assemble and store
underlying pDFAs, but rather, in a just-in-time fashion, it assembles and stores
the immediately needed parts as the string to be recognised is being scanned. In
contrast, FireSat2 builds and stores the entire NCAT3 before scanning for TREs.
The FA that is evolved in FireSat2, call it FAρ, is different from the underlying
one in FireSat1. Its language is a larger subset of mutational variants of ρ.

In this case, FAρ is composed of various pCAT3s. It also has so-called pseudo-
states that are used to keep global counts of the various mutation types. It will
be seen that this FAρ together with the global counts provide information from
which a distance can be computed between ρ and the subsequent substring of s
that is to be examined as a possible TRE. Since this distance resembles the LD,
but is not identical to the LD, it is referred to as a Levenshtein Based Distance
(LBD). This LBD is used as the basis for identifying the next TRE in s.

In contrast to FireSat1, FireSat2 does not constrain the TR search to the ar-
tificial limit of one insertion and one deletion for every quad-, tri- or di-pCAT3.
Instead, an arbitrary number of mismatches, deletions and insertions are allowed,
provided that their sum remains within the specified thresholds.

In FireSat1, quad-pDFA templates were cascaded together with a single quad-,
tri- or di-pDFA template tagged on at the end of the resulting structure as needed.
This was done solely on the basis of the length of ρ, without reference to ρ’s actual
characters. Only later was the resulting template structure decorated to reflect
the characters of the motif.

In FireSat2 the pCAT3s to be cascaded are determined according to an entirely
different heuristic. Now, the actual character content of the motif, ρ, is considered
— not merely its length. A heuristic is followed whereby ρ is decomposed into
substrings, each of which is the longest possible substring of unique characters.
By unique characters is meant that no character appears more than once in the
substring. Because genetic strings only have four characters, this means that
substrings, resulting from this decomposition, will have a maximum length of 4.

Example 7.1.1.
Suppose ρ = acacggggacgt. Then its decomposition into the longest possible
substrings of unique characters results in ρ = ac.ac.g.g.g.g.acgt. �

For each substring, FireSat2 constructs a decorated pCAT3 that recognises the
substring and all its mutational variants, together with counters that track the
number of mutational variants. These pCAT3s are then cascaded together as FAρ

is evolved.
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Example 7.1.2.
The pCAT3s for the substrings in Example 7.1.1 will be:

� two di-pCAT3s, each representing ac that will be cascaded to cater for acac;

� four mono-pCAT3s, each representing g to cater for gggg that will be cas-
caded onto the pCAT3s for acac; and

� one quad-pCAT3, representing acgt, is cascaded onto the result.

�

The material in the subsections that follow illustrates how the required pCAT3s
are constructed.

� Subsection 7.1.1 considers quad-pCAT3s, illustrating how one can be con-
structed to deal with mismatches, a separate one to deal with insertions
and yet another separate one to deal with deletions.

� Subsection 7.1.2 does the same with respect to mono-, di- and tri-pCAT3s.

� Subsection 7.1.3 shows how to construct a single di-pCAT3 that caters for
all mutation types.

� Subsection 7.1.4 highlights the three kinds of counters needed when using
a NCAT3.

� Next, Subsection 7.1.5 gives an analysis of the summed di-pCAT3.

� Thereafter, Subsection 7.1.6 illustrates how a FireSat2 NCAT3 is built and
traversed.

� The next section, Section 7.1.7, suggests an alternative way of doing motif
error management.

� Section 7.1.8 discusses how ambiguities are handled.

� Section 7.1.9 gives some concluding remarks pertaining to FireSat2.

Thereafter, Section 7.2 gives details of FireSat2′ .
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7.1.1 Quad-pCAT3s

In this subsection, mismatch quad-pCAT3s (7.1.1.1), deletion quad-pCAT3s (7.1.1.2)
and insertion quad-pCAT3s (7.1.1.3) are presented.

In these and all similar pCAT3s, the cascading states will be called a mismatch
(deletion, insertion or perfect, respectively) cascading state, if it occurs in a mis-
match (deletion, insertion or perfect, respectively) pCAT3.

It will be seen that these pCAT3s are given additional pseudo-states. These are
linked to conventional states by dashed lines. Each pseudo-state is labelled by
a character P, M or I, indicating that the state is associated with a counter for
perfect matches, mismatches or insertions, respectively.

Pseudo-states are assumed to have the following functionality:

Suppose conventional state C is linked to pseudo-state S and suppose
that S is labelled X, where X is one of the counter labels P, M or I.
Then whenever state C is entered (via any of its conventional inbound
transition arcs), then control is passed to pseudo-state S, its counter
for X is appropriately updated as described below. Control is then
returned to state C.

Note that there is no pseudo-state counter associated with deletions. Section
7.1.1.2 explains how deletions are calculated by using the perfect match counter
value.

7.1.1.1 Quad-pCAT3s: mismatches

Consider again the four quad-pDFAs in Figure 6.1 accepting various numbers of
mismatches on the string acgt. Note that the pDFA in Figure 6.1(d) (providing
for 4 mismatch errors) has 9 states. These are fewer states than the pDFAs
in Figures 6.1(a) (providing for 1 mismatch error and having 12 states); 6.1(b)
(providing for 2 mismatch errors and having 16 states) and 6.1(c) (providing for
3 mismatch errors and having 14 states). This observation was the starting point
for the pCAT3s proposed here.

Instead of constructing 4 different pCAT3s accepting υ of length 4, one for each
emax = 1, 2, 3 or 4, the idea emerged of constructing a single machine that is
used to increment a counter for each mismatch state reached. Thus the pDFA
presented in Figure 6.1(d) has been adapted to the pCAT3 in Figure 7.1.

Note that the pCAT3 in Figure 7.1 is indeed a counting automaton of type 3.
Whenever an arbitrary state, qi, is entered, the corresponding counter di is in-
cremented. The dashed lines, connecting states to the so called pseudo-state M
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indicate that the total number of mismatches read by the pCAT3 presented in
Figure 7.1 can be obtained by adding the counter values of states q5, q6, q7 and q8.
The count can be compared against an initialised threshold value. Similarly, the
sum of the counter values of states q1, q2, q3 and q4, all connected to pseudo-state
P, indicate the number of perfect matches read for an input string.

This contrasts with the machines presented in Figure 6.1. In those cases, the
different final states indicate the number of mismatches. For example, if state q11

in Figure 6.1(c) is reached, then the number of mismatches that occurred is 3.
Note that if there is a perfect match, then states q1, q2, q3 and q4 in Figure 7.1
will be traversed and the mismatch counter of the pseudo-state, M, will be at its
initialised value, namely 0.

q0

P

q1

P

a c q4

P
q2

P

q3

P

g
t

q5

M q6

M
q7

M
q8

M

    c, g, t

    a, g, t
    a, c, t    a, c, g

M

    a, g, t     a, c, t    a, c, g

c

t

g

P

Figure 7.1: A quad-pCAT3 accepting υ = acgt or any substring generated from
υ with 4 or less mismatch errors (e ≤ 4).

7.1.1.2 Quad-pCAT3s: deletions

The deletion pCAT3 in Figure 7.2 counts the number of perfect matches in a
string that has deletions. Each state of the deletion machine is a cascading state,
including the start state q0.
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As illustrated in Figure 7.2, dashed lines connect all the deletion pCAT3 states to
a large pseudo-state labelled P. P represents a perfect match pCAT3 counter. Each
time a deletion state is entered a perfect match has occurred and P is updated
accordingly.

The value of P at any stage stands in a dual relationship to the number of
deletions, D, encountered at that stage, i.e. in general D = |υ| − P and in the
present case, D = 4− P .

a q1 q2
c

q3

g

q5

q9

g

c

q10

q7

g

g

q4

t

t

q11

t

q8

q6

t

q12

t

q13

t

P

q0

D=4 - P

t

q14

q15

t

Figure 7.2: A pCAT3 accepting υ = acgt and substrings derived from υ with up
to 4 deletion errors.

7.1.1.3 Quad-pCAT3s: insertions

There is an increase in the number of states of quad-pDFAs that cater for in-
sertions as the number of insertions rises. Thus, for example, the quad-pDFA
providing for 1 insertion (Figure 6.2(a)) has 15 states, whereas the quad-pDFA
catering for 2 insertions (Figure 6.2(b)) has 29 states.

If quad-pCAT3s are used instead of quad-pDFAs, the number of states also in-
creases as the number of insertions to be catered for rises. However, the insertion
pCAT3s have significantly fewer states than their pDFA counterparts. It can be
shown that a quad-pCAT3 that caters for maximally 2 insertions would need 13
states — less than half those required by a quad-pDFA.
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Figure 7.3 shows a pCAT3 that can cater for up to 4 × 4 = 16 insertions if
the predicate I < 4 is removed from the pseudo state. It has a mere 21 states
including its one cascading state, q4. Note that a perfect match has to follow
after insertions have occurred. As before, the convention followed corresponds
to that of Holub [2010] and Melichar [1996] in the sense that insertions after the
fourth (i.e. last) perfect match are not allowed. The pseudo-state, I, represents
the total insertion counter.

Figure 7.4 shows a pCAT3 that is language-equivalent to the pCAT3 in Figure
7.3 but has fewer states. Note that although this pCAT3 contains cycles it can
still be regarded an ADFA, since the cycles are limited by finite threshold values.
Clearly, one could cater for any number of insertions occurring consecutively by
adjusting the conditions on respective counters of the pCAT3 in Figure 7.4.

Insertion pCAT3s: limitations
These differences mean that pCAT3s, similar to the one in Figure 7.3, cannot be
cascaded to recognise strings that have more than 4 insertions before the next
perfect match.1 Neither can it be cascaded in such a manner that a mismatch
can occur directly after insertions. This is in contrast to the mismatch-pCAT3

and deletion-pCAT3. When two mismatch pCAT3s are cascaded together, the
resulting pCAT3 can recognise strings with more than 4 consecutive mismatch
errors. Furthermore perfect matches, deletions and/or insertions may follow these
mismatches. The same applies in the case of deletion pCAT3s.

Sub-sections 7.1.1.1, 7.1.1.2 and 7.1.1.3 illustrated quad-pCAT3s that recognise
mutational variants of υ = acgt. In each case, the relevant quad-pCAT3 can
recognise υ, as well as strings with e ≤ |υ|. In all cases, the template quad-
pCAT3s associated with an arbitrary string of length 4 can easily be inferred.

For completeness, the next subsection briefly illustrates similar scenarios for |υ| =
3, 2 and 1 respectively.

7.1.2 Tri-, di- and mono-pCAT3s for mutational errors

This subsection provides tri-, di-, and mono-pCAT3s for various mutation scenar-
ios. Again, each of the pCAT3s will be able to recognise υ itself as well as strings
with motif errors e ≤ |υ|. And, again, template tri-, di- and mono-pCAT3s can
easily be inferred from these examples.

For a given υ, three separate machines are constructed. They recognise υ with
mismatches, υ with deletions and υ with insertions, respectively. These three
machines also recognise υ itself. A perfect machine is included for completeness
— i.e. one that recognises |υ| itself and nothing else.

1Note that the assigned threshold values, against which the respective counts of states q5,
q6, q7 and q8 are compared, can be adjusted as required.
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Figure 7.3: A pCAT3 accepting υ = acgt and any substring derived from υ that
has at most 4 insertion errors.

7.1.2.1 Tri-pCAT3s

The pCAT3s in Figure 7.5 assume that υ = acg. The pCAT3s in Figures 7.5(a),
7.5(b), 7.5(c) and 7.5(d) recognise respectively υ only; υ and up to 3 mismatches;
υ and up to 3 deletions; and υ and up to 3 insertions. Note that a perfect match
has to occur after at most 3 consecutive insertions.
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q0
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Figure 7.4: A pCAT3 accepting υ = acgt and any substring derived from υ,
containing insertions, where 0 ≤ e ≤ 4.

7.1.2.2 Di-pCAT3s

The di-pCAT3s in Figure 7.6 cater for υ = ac. The di-pCAT3 in Figure 7.6(a) is for
a perfect match only. The di-pCAT3 in Figure 7.6(b) allows for two mismatches
to occur. The di-pCAT3 in Figure 7.6(c) allows for a maximum of 2 deletions.
The counter associated with pseudo-state I in Figure 7.6(d) is used to build a
recogniser that recognises υ and up to 2 insertions.
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(a) Perfect tri-pCAT3.
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(b) Mismatch tri-pCAT3.
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(c) Deletion tri-pCAT3.
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(d) Insertion tri-pCAT3.

Figure 7.5: Tri-pCAT3s acceptors for υ = acg and 0 ≤ e ≤ 3.
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(d) Insertion di-pCAT3.

Figure 7.6: Di-pCAT3s acceptors for υ = ac and 0 ≤ e ≤ 2.

7.1.2.3 Mono-pCAT3s

Figure 7.7 contains the various types of mono-pCAT3s for υ = a. These are
the perfect, mismatch, deletion and insertion mono-pCAT3s. These are shown in
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Figure 7.7: Mono-pCAT3s for υ = a and 0 ≤ e ≤ 1.
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Subfigures 7.7(a), 7.7(b), 7.7(c) and 7.7(d) respectively.

7.1.3 Summing pCAT3s over all mutation types

Note that the component pCAT3s dealing with mismatches, deletions and inser-
tions shown in the respective figures of Subsections 7.1.1 and 7.1.2 can be summed
together to produce corresponding quad-, tri-, di- or mono-pCAT3s.

In each case, the P, M, D and I pseudo-state counters are carried over from the
component pCAT3s to the resulting pCAT3 as part of this summing operation. It
will be seen that in addition to the pseudo-state counters, global counters are also
required for computing the LBD. They are updated by referring to these pseudo-
state counters. Global counters will be discussed in more detail in Section 7.1.4.

This section uses the di-pCAT3s in Figure 7.6 to illustrate how this summation
over all mutation types is carried out. The quad-, tri- and mono-pCAT3s sum-
mations take place analogously to the illustrated di-pCAT3 case.

Recall that the summation of two FAs, F1 and F2 with languages L(F1) and
L(F2) yields an FA recognising language L(F1) ∪ L(F2). Because set union is
both commutative and associative, the order in which the summation of more
than one FA takes place does not matter. The same applies to pCAT3s. In
the present example, the mismatch di-pCAT3 is first added to the deletion di-
pCAT3. The resulting machine is then added to the insertion di-pCAT3. Since
the mismatch pCAT3 (as well as the insertion and deletion pCAT3s) recognise a
perfect match, the resulting di-CAT3 automatically caters for perfect matches.

Note that cascading states from two component pCAT3 machines that are summed
together will never be combined together in the summed machine. To verify this
assertion, consider a pCAT3 that is the sum of a mismatch, deletion and insertion
pCAT3 respectively. Suppose the string υ traces a path through the pCAT3 to a
cascading state, q, making tno transitions. Clearly, if tno < |υ| then q has to be
a deletion cascading state. If tno > |υ| then q has to be an insertion cascading
state. If tno = |υ| then q has to be either a mismatch cascading state or a perfect
cascading state.

In the latter case, the cascading state cannot be both a mismatch and perfect
cascading state. This can be seen by inspecting the mismatch / perfect pCAT3s
given above for quad-, tri-, di- and mono-pCAT3s (See Figures 7.1, 7.5(b), 7.6(b)
and 7.7(b)). It will be seen that in the pCAT3, a perfect match of υ is dealt
with at a state being treated as a deletion cascading state, whereas mismatch
cascading states deal with any variant of υ containing mismatches. Details will
follow.

A transition table is used to specify the transition function of the pCAT3 that
results from a summation step. Each row of the table represents a state and each
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column represents an alphabet character. The cell defined by the row for state z
and the column for character α contains the destination state specified by δ(z, α).

The following conventions are used in transition tables and diagrams representing
the resulting pCAT3s:

� Each state of a summed machine combines two states of the component
machines. Each table row therefore not only indicates a newly assigned
state name of the summed machine, but also indicates the names of the
states used in the component machines to compose that new state. The
diagrams show only the new state names.

� If δ(q, α) is an undefined destination state, then ⊥ is entered into the cor-
responding table cell. In the diagram, state q will not have an outbound
edge, labelled by α.

� In the diagrams of summed pCAT3s, the following rule is applied to deter-
mine to which states the M, P and I pseudo-states should be connected:
If a component state, say p, is connected to an M (and/or P and/or I,
respectively) pseudo-state, and if p is combined with some other state to
make up a summed state, say q, then q should also be connected to the M
(and/or P and/or I, respectively) pseudo-state.

� A state of the summed machine is regarded as a cascading state if and only
if it is made up of a cascading state from at least one of its component
machines. In the tables, the • character is used as a superscript to the
new state name to indicate that it is a cascading state. In the diagrams,
cascading states are drawn, as before, as two dashed-lined concentric circles.

� In the diagrams, mismatch, deletion and insertion cascading states are la-
belled by M•, D• and I• respectively. The labels are inherited from the
component machines. P• is omitted from diagrams. The reason for the
omission of P• is that the number of perfect matches differs for each type
(M•, D•, and I•) of cascading state. The text below distinguishes between
the different calculations of the number of perfect matches.

Subsections 7.1.4 and 7.1.5 will indicate the circumstances under which global
counters are to be updated when one of these labels is encountered during pro-
cessing.

Table 7.1 is the transition table resulting from summing the mismatch and dele-
tion di-pCAT3s of Figures 7.6(b) and 7.6(c) respectively. Notice that all states
except z3 are cascading, because it is the only state that does not involve a cas-
cading state of at least one component pCAT3. The graphical depiction is given
in Figure 7.8(a).2
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States \ Alpha a c g t

z•0 = m0 or d0 m1 or d1 = z1 m3 or d2 = z2 m3 or ⊥ = z3 m3 or ⊥ = z3

z•1 = m1 or d1 m4 or ⊥ = z4 m2 or d3 = z5 m4 or ⊥ = z4 m4 or ⊥ = z4

z•2 = m3 or d2 m4 or ⊥ = z4 m2 or ⊥ = z6 m4 or ⊥ = z4 m4 or ⊥ = z4

z3 = m3 or ⊥ m4 or ⊥ = z4 m2 or ⊥ = z4 m4 or ⊥ = z4 m4 or ⊥ = z4

z•4 = m4 or ⊥ ⊥ ⊥ ⊥ ⊥
z•5 = m2 or d3 ⊥ ⊥ ⊥ ⊥
z•6 = m2 or ⊥ ⊥ ⊥ ⊥ ⊥

Table 7.1: Transition table resulting from adding the mismatch and deletion
di-pCAT3s.
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Figure 7.8: di-pCAT3s for υ = ac.

Table 7.2 is the transition table of the di-pCAT3 that is the sum of the deletion-
mismatch di-pCAT3 in Figure 7.8(a) and the insertion di-pCAT3 in Figure 7.6(d).
The graphical depiction of this final pCAT3 is given in Figure 7.8(b).

2Note that tables illustrating how to add mono-pCAT3s, tri-pCAT3s and quad-pCAT3s are
provided in Appendix B.
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States \ Alpha a c g t

x•0 = z0 or i0 z1 or i1 = x1 z2 or i3 = x2 z3 or i3 = x3 z3 or i3 = x3

x•1 = z1 or i1 z4 or i4 = x4 z5 or i2 = x5 z4 or i4 = x4 z4 or i4 = x4

x•2 = z2 or i3 z4 or i1 = x6 z6 or i3 = x7 z4 or i3 = x8 z4 or i3 = x8

x3 = z3 or i3 z4 or i1 = x6 z6 or i3 = x7 z4 or i3 = x8 z4 or i3 = x8

x•4 = z4 or i4 i4 or ⊥ = x9 i2 or ⊥ = x10 i4 or ⊥ = x9 i4 or ⊥ = x9

x•5 = z5 or i2 ⊥ ⊥ ⊥ ⊥
x•6 = z4 or i1 i4 or ⊥ = x9 i2 or ⊥ = x10 i4 or ⊥ = x9 i4 or ⊥ = x9

x•7 = z6 or i3 i1 or ⊥ = x11 i3 or ⊥ = x12 i3 or ⊥ = x12 i3 or ⊥ = x12

x•8 = z4 or i3 i1 or ⊥ = x11 i3 or ⊥ = x12 i3 or ⊥ = x12 i3 or ⊥ = x12

x9 = ⊥ or i4 i4 or ⊥ = x9 i2 or ⊥ = x10 i4 or ⊥ = x9 i4 or ⊥ = x9

x•10 = ⊥ or i2 ⊥ ⊥ ⊥ ⊥
x11 = ⊥ or i1 i4 or ⊥ = x9 i2 or ⊥ = x10 i4 or ⊥ = x9 i4 or ⊥ = x9

x12 = ⊥ or i3 i1 or ⊥ = x11 i3 or ⊥ = x12 i3 or ⊥ = x12 i3 or ⊥ = x12

Table 7.2: Transition table resulting from the addition of the deletion, mismatch
and insertion di-pCAT3s.

States Pseudo Counter Update Cascading Type
x0 = m0 or d0 or i0 - D•
x1 = m1 or d1 or i1 inc(P) D•
x2 = m3 or d2 or i3 inc(M); inc(P) ; inc(I) D•
x3 = m3 or ⊥ or i3 inc(M); inc(I) Not cascading
x4 = m4 or ⊥ or i4 inc(M); inc(I) M•
x5 = m2 or d3 or i4 inc(P) D•
x6 = m4 or ⊥ or i4 inc(M); inc(I) M•
x7 = m2 or ⊥ or i3 inc(I) M•
x8 = m4 or ⊥ or i3 inc(M); inc(I) M•
x9 = i4 or ⊥ inc(I) Not cascading
x10 = i2 or ⊥ - I•
x11 = i1 or ⊥ - Not cascading
x12 = i3 or ⊥ inc(I) Not cascading

Table 7.3: Attributes of the x-states.

Table 7.3 summarises information about the states of the final di-pCAT3. The
first column of the table indicates the states from which the respective x-states
were originally derived.

Column 2 shows the pseudo-counters that are updated whenever an x-state is en-
tered that is connected to an associated pseudo-state. The updating corresponds
exactly to the updating done by the original machines. In some instances, more
than one pseudo-counter has to be updated.

The final column indicates the cascading type of cascading states — i.e. whether
it is a M•, D• or I• cascading state, or not a cascading state at all. The type
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can be inferred directly from the component di-pCAT3s given in Figure 7.6. This
information is available since it is always apparent which component states are
used to derive a summed state. In principle it is therefore possible to carry over
all the state information of the component pCAT3s to the summed pCAT3. This
is exactly the information that is displayed in Table 7.3.

7.1.4 Three levels of counters

To determine whether or not a substring of s is to be considered a TRE, FireSat2

systematically traverses various complete pCAT3s (such as the one shown in Fig-
ure 7.8(b)) that are used to construct FAρ – the underlying NCAT3 whose lan-
guage includes TREs of ρ = υ1υ2 . . . υn where |υ| ≤ 4. Recall that the language of
each complete pCAT3 corresponds to some υi, as well as all permitted mutational
variants of υi. Three type counters are updated during such traversals. The value
of the fourth counter is calculated.

1. The counting automata state counters are relevant at some insertion states
of the pCAT3s. They determine the number of insertions that may occur
consecutively. Figure 7.8(b) shows such counters in use at states x9 and
x12.

2. Take note of the three pseudo-counters denoted by P, M and I that are
also local to each specific pCAT3. They keep count of the number of per-
fect matches, mismatches and insertions, respectively that are encountered
during the traversal of the specific pCAT3.

3. Finally, global counters denoted by GP, GM, GI and GD are used to count
the overall number of perfect matches and of errors by mutational type
that have occurred to date with reference to υ, in the substring of s, that is
being evaluated as a possible TRE. The updating of these global counters
occurs whenever a transition is made from a cascading state of a pCAT3 that
represents υi to a state of another pCAT3 that represents υi+1. Updating
also takes place when a final state is reached of the pCAT3 that represents
υn. Table 7.4 indicates how global counters are updated, depending on the
cascading type.

7.1.5 An analysis of the summed di-pCAT3

This subsection elaborates further on the di-pCAT3 in Figure 7.8(b). The di-
pCAT3 recognises υ = ac (a perfect match) and all strings that carry mutations
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Cascading Global Counter
Type Updating
Mismatch GM = GM + M;

GP = GP + (|υ| −M);
GI and GD unchanged.

Insertion GI = GI + I;
GP = GP + |υ|;
GM and GD unchanged.

Deletion GD = GD + (|υ| − P );
GP = GP + P;
GM and GI unchanged.

Table 7.4: The updating of global counters.

of this substring, whether mismatches, insertions or deletions, complying with
the constraint discussed earlier.

Various states of the di-pCAT3 are linked to the pseudo-counter states with
pseudo-counters P, M and I. Note that there is no pseudo-state for a deletion
pseudo-counter, D — i.e. the number of deletions encountered on a path from
the start state to the current state. Recall that its value can be inferred by
referencing pseudo-counter P.

The pseudo-counters are used to update the global counters GP, GM, GI and GD
as already indicated in Table 7.4. Recall that these global state updates are only
made if a transition is to be made from the cascading state of the di-pCAT3 to a
state in a pCAT3 outside of the di-pCAT3.

Deletion cascading states and counter updating
The deletion cascading states x0, x1, x2 and x5 are labelled by D•. Table 7.4
requires that GD be increased at these states by an amount |υ| − P . For these
states one of the following holds:

� No match has occurred and there were two deletions (x0). P will have its
initialised value of 0 and therefore |υ| − P = 2− P = 2. Thus in this case
GD is increased by 2.

� One perfect match and one deletion occurred — states x1 and x2. Thus
|υ| − 1 = 2 − 1 = 1. Consequently GD is incremented by 1 and GP by 1
too.

� Two perfect matches and no deletions occurred — state x5. In this case,
two perfect matches have occurred, and P = 2. Thus |υ| − 2 = 2 − 2 = 0.
Consequently GD is unchanged and GP is incremented by 2.
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Table 7.4 also requires that GP be updated at these states by the current value
of P , while GM and GI remain unchanged.

Mismatch cascading states and counter updating
The mismatch cascading states are labelled by the character M•. These are,
namely, x4, x6, x7 and x8. These mismatch cascading states can originate as
follows:

� One perfect match and one mismatch — states x4 and x7.

� Two mismatches — state x6 and state x8.

A dashed blue line from the relevant x-state to the M pseudo-state indicates that
the M counter will be incremented upon reaching the x-state. Table 7.4 indicates
how the various global counters are updated upon reaching one of these states,
namely GM is updated by M, whereas GD and GI remain unchanged. Note that
GP is updated by |υ| −M . This is because the length of a path from the source
state to a mismatch state is designed to be exactly |υ|, and perfect matches along
this path are not necessarily counted by the the pseudo-counter P. Instead, the
number of perfect matches is given by |υ| −M .

Insertion cascading states and counter updating
The dashed green line of Figure 7.8(b) from a state to the I pseudo-state indicates
that counter I should be incremented whenever the state is reached.

There is only one insertion cascading state namely state x10. It is marked by the
character I•. There are various paths from x0 to x10. They differ in the number
of states they cross that cause I to increment. A path may indicate one, two,
three or four insertions respectively. A selection of possible paths from x0 to x10

are listed below, together with an indication of the resulting insertion count:

� One insertion: 〈x0, x1, x4, x10〉

� Two insertions : 〈x0, x3, x6, x9, x10〉

� Three insertions : 〈x0, x2, x7, x11, x9, x10〉

� Four insertions : 〈x0, x3, x8, x11, x9, x9, x10〉

Table 7.4 indicates that GI is increased by the number of insertions counted in I
en route to state x10. It also indicates that along all paths leading to the insertion
cascading state, exactly |υ| perfect matches occur, and hence GP is updated by
|υ|. Furthermore, since no mismatches or deletions occur along these paths, GM
and GD are unchanged.
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7.1.6 Building and traversing an NCAT3

Although FireSat2 is intended to detect TRs with fairly large motifs (i.e. mini
satellites), this subsection illustrates how the NCAT3 is built by considering a
very short motif, namely ρ = aac. Extending the principles illustrated here to
longer motifs is straightforward.

The substrings with unique characters that make up ρ = aac are υ1 = a and υ2 =
ac. FireSat2 therefore builds an NCAT3 that recognises υ1 and all its mutational
variants, followed by υ2 and all its mutational variants. This is illustrated in
Figure 7.9.

The centre of Figure 7.9(a) shows Mono1, a mono-CAT3 recognising a and all its
mutational variants. Mono1 has four cascading states: q0, q1, q2 and q3. The figure
symbolically indicates that a di-CAT3 is to be concatenated onto the mono-CAT3

at each of these four cascading states. Four squares, connected to the cascading
states with dotted lines, show where the cascade operation is executed. The
four di-CAT3s, named Di1, Di2, Di3 and Di4 are instances of the same complete
di-CAT3 already illustrated in Figure 7.8(b).

Note that the states of the di-CAT3 in the latter figure were named x0 . . . x11. To
differentiate the states of Di1, Di2, Di3 and Di4 from one another, they will be
named p0 . . . p11; r0 . . . r11, s0 . . . s11 and t0 . . . t11 respectively3. This is indicated
in their respective squares.

The four cascading operations attaching Di1, Di2, Di3 and Di4 onto the Mono1 re-
sult in an NCAT3 that has previously been called FAρ or, in this case FAaac. That
FAaac is indeed non-deterministic can be seen by noting, for example, that the
cascaded start state (resulting from merging states q0 and p0) has two transitions
on a — one to q1 and another to state p1.

Because of this non-determinism, a given input string may trace more than one
path through FAaac before ending in a final state. Different paths might result
in different values for the global counters. Consider, for example, ac as input to
FAaac. Tables 7.5 and 7.6 illustrate two different paths through FAaac for this
input.

A row in the tables represents either a transition from one state to another, or a
point where control is at a cascading state and global counters are to be updated,
because the next transition is out of the Monoi into one of the concatenated Dij’s.
The tables also provide the associated counter updates that are associated with
each row.

The column headings have the following meaning:

3 Note that these names have been chosen for ease of reference, even though strictly speaking,
in terms of the definition of cascading given in Definition 2.4.4, the new states resulting from
the cascading operation are a subset of {q0 . . . q3} × {x0 . . . x11}.
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Figure 7.9: A cascaded NCAT3 constructed from pCAT3s catering for ρ = aac
where εmax = |ρ|.

� Source input
Refers to the character read from the source string. None indicates that
the row provides information about an update to the global counters.

� Current machines
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Source Current States Cascading Pseudo Global Global
Input Machines Traversed Type Counters Counters Update
None Mono1 〈q0, p0〉 Deletion P = 0; GP = 0; GD = 1; Yes

Di1 cascade M = 0; I = 0 GM = 0; GI = 0;
a Di1 〈p0, p1〉 Deletion P = 1; GP = 0; GD = 1; No

M = 0; I = 0 GM = 0; GI =0;
c Di1 〈p1, p5〉 Deletion P = 2; GP = 2; GD = 1; Yes

Final M = 0; I = 0 GM = 0; GI = 0;

Table 7.5: First Tracing of ac on FAaac presented in Figure 7.9.

Source Current States Cascading Pseudo Global Global
Input Machines Traversed Type Counters Counters Update
a Mono1 〈q0, q1〉 Deletion P = 1; GP = 0; GD = 0; No

M = 0; I = 0; GM = 0; GI = 0;
None Mono1 〈q1, r0〉 Deletion P = 1; GP = 1; GD = 0; Yes

Di2 cascade M = 0; I = 0 GM = 0; GI = 0;
c Di2 〈r0, r2〉 Deletion P = 1; GP = 2; GD = 1; Yes

Final M = 0; I = 0 GM = 0; GI = 0;

Table 7.6: Second Tracing of ac on FAaac presented in Figure 7.9.

This column indicates the pCAT3 at which the next transition is to be made.
If a global counter update is to be made because the next transition will be
to another pCAT3, then the current and next pCAT3 are mentioned.

� States traversed
If a transition is to be made on the current input, then the column indicates
the states involved. It also indicates if the destination state is a final state.
On the other hand, if a transition will be made in the next row to a new
pCAT3, then the column gives the states of the pCAT3s that were cascaded.

� Cascading type
If the current state is a cascading state, then the cascading type of the
cascading state is indicated.

� Pseudo counters
Pseudo counters refer to the values of pCAT3 pseudo counters.

� Global counters
This column shows the updated global counters. Updating takes place
before a transition is made to a state of a new pCAT3, or when a final state
is reached.

� Global update
A Yes entry indicates the updating of global counters, a No entry the
contrary.

Table 7.5 shows the transitions through Mono1 and Di1 if ac is interpreted as a
mutation of aac that has a deletion of the prefix a of aac, and thereafter matches
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the suffix ac of aac. In the first row, the deletion is reflected in the updated global
counter GD. The formula given in Table 7.4 is used, namely GD = GD+(|υ|−P ).
Here P starts off as 0, and υ refers to a, the string upon which Mono1 is based. In
the second and third rows, P is updated. Because a final state is reached in the
third row, the global counters are also updated. Thus GP becomes 2, while GD
remains unaltered at 1, and GM and GI unaltered at 0.

Table 7.6 shows the transitions through Mono1 and Di2 if ac is interpreted as
a mutation of aac that has a match at prefix a of aac, and then a deletion
at the second a of aac, and thereafter a match, the suffix c, of aac. In the
first row, the match is reflected in the updated pseudo- counter P. Note that
this is the pseudo-counter of Mono1. In the second row, the formula given in
Table 7.4 is used to update GP, namely GP = GP + P . In the third row, the
pseudo-counter P of Di2 is updated to 1. Because a final state is reached in
the third row, the global counters are also updated. Thus GP becomes 2 and
GD = GD + (|υ| − P ) = 0 + (|ac| − 1) = 1. Note that in this case, υ refers to
the string upon which Di2 was built, namely ac.

There are no other paths tracing ac through FAaac. In both of the above cases,
the total number of mutational errors is given by the sum of the global counters,
namely GM +GI +GD = 1. This provides enough information to yield the LD
between aac and ac, namely min({1, 1}) = 1.

It is co-incidental that in this example, the global counters following the two
different paths ended up with the same values. This need not always be the case.
In general there could be multiple paths, and the total number of mutational
errors may differ. Finding the minimum would yield an estimate of the LD
between ρ and the input string. However, since the approach here relies on
pCAT3s that allow for at most 4 insertions before a match occurs, it is not certain
that the minimum of GM +GI+GD over all possible paths will always yield the
LD. To allow for unusual cases where the LD is based on five or more successive
insertions, we speak here of the LBD — Levenshtein-based distance.

FireSat2 broadly follows the logic illustrated above. It selects a candidate TRE
that starts at the current position in the input string s. For that candidate TRE,
all possible paths through FAρ are traced. The total number of errors recorded
by the global counters is computed for each path and used to compute the LBD
between ρ and the selected TRE. There could be several candidate TRE strings
— some longer than ρ because mutations are interpreted as insertions; and some
shorter than ρ, because mutations are interpreted as deletions. In the end, the
candidate TRE is selected that has the minimum LBD between ρ and itself from
amongst all other candidate TREs.

In the foregoing discussion, the LBD was based on GM + GI + GD. Clearly,
this sum should not exceed the user-specified value for the maximum motif error,
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εmax. Candidate TREs that do not comply with this requirement are eliminated
from consideration.

Additionally, recall that FireSat2 allows the user to specify a weight for each
mutational error type. If these are specified, then the LBD will be based on the
appropriately weighted sum of global mutational errors.

Once the best candidate TRE has been identified, FireSat2 has to apply the
other appropriate filter tests to verify whether or not to search for a next TRE
of the TR found to date.

7.1.7 Managing εmax

Assume that ρ = υ1υ2 · · · υn where each υi consists of unique elements. This
section has shown how to construct FAρ that consists of n mono-, di-, tri- and/or
quad-pCAT3s. Each pCAT3 recognises an υi as well as mutations on υi The
maximum number of mutations allowed on each pCAT3 is |υi|.
As indicated above, the sum of global counters is compared against the user-
specified value of εmax. Suppose, for example, that εmax% was specified to be
50%. This allows for a scenario where the first 50% of a source string fully
matches the first 50% of the destination string, whereas the remainder of the
source and destination string do not match at all.

An alternative way to ensure that motif errors are more evenly spread is to
regulate the number of motif errors for each consecutive υi too. This can be
accomplished by introducing further restrictions on the mutational errors. The
precise details of how to do this, and the possible benefits are, however, beyond
the scope of this study.

7.1.8 Ambiguities: FireSat2

As previously mentioned, FireSat2 calculates an LBD between two strings. The
proposed LBD is limited in the sense that a perfect match always has to follow
after one or more insertions. Thus a mismatch can, for example, not follow an
insertion. Section 7.1.6 illustrated how a FireSat2 NCAT3 is built and traversed.
From that discussion it is clear that all paths, leading to the final states of an
NCAT3, within filter bounds, are traversed. If more than one shortest LBD is
calculated between a source and a destination string — i.e. if there is more
than one way of assigning mutation errors to yield the same LBD between the
two strings — then FireSat2 gives priority to mismatches above deletions and
deletions above insertions.



CHAPTER 7. CASCADING PROTOTYPE CAT3 192

7.1.9 Conclusion: FireSat2

It is challenging to implement FireSat2. The main reason is that for each nu-
cleotide a new automaton should be built4 until a TR is detected. After a TR
(or the absence of a TR) is reported, the construction of a new instance of FAρ

proceeds, based on a new value of ρ, and this is continued until the entire input
string, s has been traversed. The principles described above are applied when au-
tomata are constructed. It is computationally inefficient to build these automata,
in terms of both time- and space efficiency. FireSat2′ was designed to address
the shortcomings of FireSat2.

Chronologically, FireSat3 was developed before FireSat2′ . However, FireSat3

is based on somewhat different principles to both FireSat2 and FireSat2′ and
for that reason, it is addressed in the next chapter, while FireSat2′ is described
in the section that now follows.

7.2 FireSat2
′

Each of the algorithms FireSat1, FireSat2 and FireSat2′ have the same broad
structure shown in Algorithm 6.3.1 in the sense that the length of the motif, l, is
held constant in the body of the outer for-loop while the motif itself changes for
each iteration of the inner do-loop.

In the case of FireSat1, |υi| = 4 for all i (except possibly υn). This means that
for each instance of ρ within the inner do-loop, the same number of quad-pDFAs
(plus a tail of a given length pDFA) are used to build FAρ. As a result, the
structure of FAρ remains the same for each of these instances. Only the labels on
the transitions need to be changed to match each new selection of ρ within the
inner do-loop.

In the case of FireSat2, υi is selected to be as long as possible, subject to the
constraint that all of its elements differ from one another. This means that the
pCAT3s that are used to build FAρ change with each new selection of ρ. It is no
longer possible to use the same structure for FAρ from one iteration of the inner
do-loop to the next and merely relabel the transitions. This fact significantly
slows down FireSat2. Although FireSat2 incurs this efficiency penalty, it is
able to handle mutational errors in the TRs that are sought more flexibly than
FireSat1.

FireSat2′ seeks to have the efficiency advantage of FireSat1 while retaining
FireSat2’s flexibility in handling mutational errors. In order to do this, FireSat2′

4If a TRE (starting at |ρ| + 1) relative to the current FAρ is not found, a next nucleotide
start position, thus a new motif is being considered as ρ.
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Figure 7.10: Mono-pCAT3s where υ = a.

selects υi to be as short as possible, namely |υi| = 1. This means that only mono-
prototype finite automata are used to build FAρ. However, as will be seen below,
these are not conventional mono-pCAT3s as described above, but slightly adapted
mono-pNCAT3s. The details of these mono-pNCAT3s are shown in Section 7.2.1.

This adaptation means that the overall structure of FAρ may be retained from
one iteration of the inner do-loop to the next and only labels need to be changed
to match each new instance of ρ.

It also means that the flexibility in handling mutational errors is retained. Just as
in FireSat2, for each type of mutational error, tabs are kept of error counts local
to each mono-pNCAT3, as well as of global error counts at each part of the result-
ing NCAT3. Issues relating to counter updating are discussed in Sections 7.2.2
and 7.2.3.

7.2.1 The pNCAT3s used in FireSat2′

Both the mono-pCAT3s depicted in Figure 7.10 were considered for constructing
a FAρ. However, an NCAT3 composed from either of these mono-pCAT3s is not
sufficiently flexible to deal with the various possible mutational errors. Specifi-
cally, these structures do not allow for a mismatch or deletion to occur after an
insertion.

These deterministic pCAT3s were therefore revised to the non-deterministic pNCAT3

presented in Figure 7.11(a). (Figure 7.11(b) shows the structure of this pNCAT3

in an abstract form.) pNCAT3s such as this one are used in FireSat2′ .

All four the states of the pNCAT3 in Figure 7.11(a) are cascading states. State q0
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Figure 7.11: FireSat2′ : mono-pNCAT3s.

is a deletion cascading state; state q1 is a perfect match cascading state (labelled
P•); state q2 is a mismatch cascading state and state q3 an insertion cascading
state. Note that the 〈q0, q3〉 transition is available on any character as a non-
deterministic possibility.5 If cascading states are also regarded as final states,
then the language of the pNCAT3 in Figure 7.11(a) is {Λ, a, c, g, t}. This would
be the case for a pNCAT3, representing any target string a, c, g or t.

However, the cascading type of the (final) state at which each string in the lan-
guage of a pNCAT3 for υ terminates, also determines the mutational error type
of that string relative to υ. pNCAT3s such as the one in Figure 7.11(a) have
been designed to tolerate at most 1 mutational error. Moreover, because of the
non-determinism, the error type may sometimes be ambiguous.

Thus, referring the pNCAT3 in Figure 7.11(a), the source string a may be in-
terpreted as a perfect match (if cascading state q1 is reached) or as an insertion
(if cascading state q3 is reached); the source string c may be interpreted as a
mismatch (if cascading state q2 is reached) or as an insertion (if cascading state
q3 is reached); etc.

The next section illustrates how pNCAT3s are cascaded and how counter updating
is done.

5Any character is represented by “ * ”. Within the current context “ * ” implies that
no character from the destination string is used for decoration of the insertion transition.
Consequently the insertion cascading state cascades to the current NCAT3. This is illustrated
in Table 7.8.
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7.2.2 Cascading pNCAT3s and doing counter updating

Consider FAρ when ρ = ac and where |ε ≤ 2| — i.e. up to 2 errors of any
mutational type are to be tolerated in the string ac.

The right hand side of Figure 7.12 shows a pNCAT3 for c and all its mutational
variants. Here the states are generically labelled as Xi, i = 0, . . . 3.

The left hand side of Figure 7.12 shows a pNCAT3 for a and all its mutational
variants. Here the states are labelled qi, i = 0, . . . 3. Each of the cascading states
q0, q1 and q2 is connected to a rectangle. Each rectangle represents an instance of
the pNCA3 for c that has been cascaded onto the respective cascading state of
the pNCAT3 for a. In carrying out the cascading operation the states generically
labelled as Xi are to be relabelled si, ti and ri, respectively, i = 0, . . . 3. Note
that the insertion machine returns to state q0. Thus the machine remains the one
where the insertion has been read. The state traversal 〈q0, s0〉 takes place when a
deletion is deemed to have occurred, the state traversal 〈q1, r0〉 takes place when
a match is deemed to have occurred, the state traversal 〈q2, t0〉 takes place when
a mismatch is deemed to have occurred, the state traversal 〈q3, q0〉 takes place
when an insertion is deemed to have occurred.
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Using the same conventions as in Section 7.1.6, Table 7.7 illustrates how ac as
source string may traverse the resulting FAac and be interpreted as a perfect
match against the target string ac.

Another way of tracing source string ac on FAac is to consider a as an insertion.
This is displayed in Table 7.8. Since the total error count in this case, and indeed,
in all other possible traces of source string ac through FAac, is more than when
tracing ac as a perfect match, the LD between ac and ac is 0, and the source
string is seen as a perfect match against the target string.

Table 7.9 illustrates one way that source string ag will traverse the same machine,
FAac. In this case, g is interpreted as a mismatch and the distance between source
and target strings ag and ac is 1. All other interpretations of ag will also result
in at least a distance of 1, so that the LD between these two strings is 1.

Table 7.7: Tracing ac as a perfect match on FAac.
Source Current States Cascading Counters Global Cascading
Input Machines Traversed Type Counters Here
a Mono1 〈q0, q1〉 Perfect P = 1; D = 0 ; GP = 0; GD = 0; No

M = 0; I = 0 GM = 0; GI = 0;
None Mono1 〈q1, r0〉 Perfect P = 1; D = 0; GP = 1; GD = 0; Yes
cascade Mono2 cascade M = 0; I = 0 GM = 0; GI =0;
c Mono2 〈r0, r1〉 Perfect P = 1; D = 0 GP = 2; GD = 0; No

Perfect Final M = 0; I = 0 GM = 0; GI = 0;

Table 7.8: Tracing ac through FAac where a is regarded as an insertion.
Source Current States Cascading Counters Global Cascading
Input Machines Traversed Type Counters Here
a Mono1 〈q0, q3〉 Insertion P = 0; D = 0 ; GP = 0; GD = 0; No

M = 0; I = 1 GM = 0; GI = 0;
None Mono1 〈q3, q0〉 Insertion P = 0; D = 0; GP = 0; GD = 0; No
return Mono1 return M = 0; I = 1 GM = 0; GI = 1;
c Mono1 〈q0, q2〉 Mismatch P = 0; D = 0 GP = 0; GD = 0; No

Mismatch Final M = 1; I = 0 GM = 1; GI = 1;

Table 7.9: Tracing ag on FAac where g is regarded as a mismatch.
Source Current States Cascading Counters global Cascading
Input Machines Traversed Type Counters Here
a Mono1 〈q0, q1〉 Perfect P = 1; D = 0 ; GP = 0; GD = 0; No

M = 0; I = 0 GM = 0; GI = 0;
None Mono1 〈q1, r0〉 Perfect P = 1; D = 0; GP = 1; GD = 0; Yes
cascade Mono4 cascade M = 0; I = 0 GM = 0; GI =0;
g Mono4 〈r0, r2〉 Mismatch P = 0; D = 0 GP = 1; GD = 0; No

Mismatch Final M = 1; I = 0 GM = 1; GI = 0;
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Cascading Global Counter
Type Updating
Mismatch GM = GM + 1;

GP = GP;
GI = GI;
GD = GD;

Insertion GM = GM;
GP = GP;
GI = GI + 1;
GD = GD;

Deletion GM = GM;
GP = GP;
GI = GI;
GD = GD + 1;

Perfect GM = GM;
GP = GP + 1;
GI = GI;
GD = GD;

Table 7.10: FireSat2′ : the updating of global counters.

Table 7.10 is analogous to Table 7.4, showing how global counters are to be
updated in the case of FireSat2′ . Since we are dealing with mono-NCAT3s only,
the updating of the global counters entails simple incrementation by 1, in contrast
to the more elaborate incrementation needed in Table 7.4.

7.2.3 The number of states: pruning

The principles illustrated in the previous section can be used to build an NCAT3

that recognises ρ of arbitrary length. The number of states depends both on |ρ|
and on εmax%. The exercise described below illustrates this point.

The number of states in an NCAT3 that caters for a string of length |ρ| where
εmax% = 100%, is given by Equation 7.1.

Statecount(n) = 1 +

|ρ|∑
n=1

(3)n (7.1)

Figure 7.13 illustrates the exponential growth in the number of states represented
by this equation. The y-axis is on a logarithmic scale and shows the number of
states in an NCAT3 that recognises a string of length |ρ|, where |ρ| is given on the
x-axis. The blue line shows the number of states as determined by Equation 7.1,
i.e. when εmax% = 100%. In this case, an NCAT3 catering for a string of length
|ρ| = 20 will have more than 500 million states.

However, the number of states is significantly reduced by pruning. The cyan
curve in Figure 7.13 represents the number of states for |ρ| when εmax% = 20%.
Note that this curve was determined empirically by building the actual NCAT3s.
The number of states when |ρ| = 20 reduces to approximately 79 000.
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Figure 7.13: FireSat2′ : the number of states represented by the blue line when
εmax% = 100%. The curve in cyan illustrates how the number of states is reduced
when εmax% = 20%.

7.3 Concluding remarks

The foregoing subsections illustrated extensively how quad-, tri-, di- and mono-
pCAT3s can be used to recognise a specified string and a specific mutation type
of that string. The original idea was to use pCAT3 counters to keep count of the
number of mutations of a given type.

It was also shown how larger quad-, tri-, di- and mono-pCAT3s can be composed
from the various smaller pCAT3s so as to recognise all mutation types of a given
string. The sum operation on DFAs was used for this purpose. Unfortunately,
adding these pCAT3s means that it is no longer possible to cater for mismatches,
insertions and deletions separately at the same state, since there is a single counter
at each state. Instead, mismatch, insertion and perfect pseudo-states were intro-
duced whose counters — M, I and P — establish the total number of occurrences
of mismatches, insertions and perfect matches within the larger pCAT3.

These larger pCAT3s were then cascaded together to build FAρ — an NCAT3

that recognises a motif, ρ, and acceptable variations of that motif. To keep track
of the overall count of motif errors and perfect matches, global counters (GP,
GM, GI and GD) were introduced. These are used to check whether or not the
substring currently under consideration constitutes an acceptable TRE.
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FireSat2 is however hampered by two limitations. Firstly, the entire FAρ has to
be re-built for each new value of ρ. This is computationally expensive. Conse-
quently FireSat2 is impractical to implement, especially as |ρ| becomes larger.
Secondly, as explained earlier, FireSat2 can only calculate an LBD and not the
LD itself.

To improve on these shortcomings FireSat2′ was introduced. In this case, mono-
pNCAT3s are cascaded to construct an NCAT3. This NCAT3 has the ability to
calculate the LD between a source and a destination string. Chapter 9 reports
on the empirical results of both FireSat2 and FireSat2′ .
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“ A man who has depths in his shame meets his destiny and his delicate decisions
upon paths which few ever reach... ”... Friedrich Nietsche

In seeking the next TRE to be added to a TR found to date, FireSat3 computes
the LC between the current motif (the destination string) and an appropriate set
of source strings. From this set, a string with the largest LC is selected as the
next TRE.

FireSat3 uses a slightly modified form of the dynamic programming algorithm
discussed in Chapter 2 to compute the LC. The modification entails a first phase
during which all perfect matches between relevant substrings of the destination
and source strings are recorded. To do this, FireSat3 makes use of a set of
CAT3-based machines. I call this set a Levenshtein correspondence automaton
(LCA).

Note that an LCA is not strictly necessary for computing an LC. It was con-
ceived in line with the central theme of this thesis: to investigate the use of
FA-technology for TR detection. However, the LCA’s architecture also suggests
how a version of FireSat3 could be built into a field-programmable gate array
(FPGA) or implemented on a graphical processing unit (GPU). These hardware

201
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platforms allow for a high degree of parallelism. Section 8.1 gives a brief intro-
duction to FPGAs. Subsequent sections explain an extended version of the LCA
that would enable an FPGA implementation. However, it is beyond the scope of
this thesis to implement and test parallelised FPGA- or GPU-based versions of
FireSat3.

In Section 8.2, therefore, five steps are given explaining how to construct the
LCA and how to calculate the LC from it. The extension needed for FPGA
implementations will be highlighted. Section 8.3 explains how FireSat3 deals
with ambiguities. Section 8.4 concludes this chapter.

8.1 Information on FPGAs

Xilinx Inc introduced commercial FPGAs in 1985. Broadly speaking, FPGAs may
be thought of as reprogrammable silicon chips (Guerra [2016]). More specifically
an FPGA is a general-purpose, multi-level programmable logic device. When
an FPGA is configured (using a hardware description language), the internal
circuitry is connected in a way that creates a hardware implementation of some
software application. FPGAs are thus configured by end users to accomplish a
specific task. This is possible as FPGAs are composed of blocks of logic connected
with so-called programmable interconnects1.

FPGAs provide hardware-timed speed and reliability. A reprogrammable FPGA
has the same flexibility as software running on a processor-based system, but it
is not as limited by the number of processing cores available. Unlike processors,
FPGAs are truly parallel in nature, so different processing operations do not have
to compete for the same resources. Each independent processing task is assigned
to a dedicated section of the chip, and can function autonomously without any
influence from other logic blocks. As a result, the performance of one part of the
application is not necessarily affected when one adds more processing (Guerra
[2016]). In general, to justify the relatively large upfront expense of embedding
custom-designed application specific integrated circuits (ASICs), a high intensity
of usage of the FPGA application should be anticipated.

Numerous books have been written on FPGAs and how to configure them. Trim-
berger [1994] and Koch et al. [2016] are two such examples.

Systolic array-based2 FPGAs have been implemented for DNA comparison as well
as for protein sequence comparison. See, for example, Guo et al. [2012]; Hoang

1Programmable interconnect resources are electrically programmable interconnections (pre-
laid vertically and horizontally) that provide the so called routing path for the programmable
logic blocks. Routing paths contain wire segments of varying lengths that can be interconnected
via electrically programmable switches (Guerra [2016]).

2A systolic array is a grid-like structure consisting of special processing elements that pro-
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and Lopresti [1993] and Becker et al. [2004]. It will be seen that FireSat3 is
particularly suitable for systolic array FPGA implementation.

8.2 Computing the LC between two strings

Suppose that the LC is required between an arbitrary source and destination
string, denoted by S = s0s1 . . . s|S|−1 and R = r0r1 . . . r|R|−1 respectively3.

This section explains how an LCA can be built to assist in finding the LC be-
tween S and R. An LCA consists of a number of CAT3s, concatenated together
in a specific way. When relevant substrings of S and R are run on these CAT3s,
their state counters store information about perfect matches that occur between
these substrings. The dynamic programming algorithm described in Chapter 2
can then be used to compute the desired LC by accessing this counter information
in the LCA.

The process of constructing the LCA and then determining an LC can be divided
into five steps that will be fully discussed below. In overview, the 5 steps are as
follows:

� Step 1
Construct an LCA template based on the respective lengths of the source
and destination strings, |S| and |R|. This is accomplished by determining
both the number of CAT3s in the LCA as well as the number of states in
each of the CAT3s. The states of the CAT3s are topologically arranged in a
matrix that corresponds to the matrix in Figure 2.26. Details of this step
are in Subsection 8.2.1.

� Step 2
Use appropriate prefixes and suffixes of S and R to determine the transition
labels in the various CAT3s in the LCA template. This process is called
decorating the LCA. Subsection 8.2.2 explains this step.

� Step 3
Use S and R to construct an appropriate string for each CAT3 in the LCA.

cesses data in a manner similar to an n-dimensional pipeline. However, unlike a pipeline, the
input data as well as partial results flow through the array. Additionally, data can flow in a
systolic organisation at multiple speeds in multiple directions. Systolic arrays have a high rate
of input/output. These arrays are well-suited for intensive parallel operations (Johnson et al.
[1993]).

3R = r0r1 . . . r|R|−1 is used to refer to the destination (or reference) string instead of D =
d0d1 . . . d|D|−1. This is to avoid notational ambiguity, since di has been used throughout to
refer to counters of CAT3s.
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Run these strings on their respective CAT3s. The resulting counter values
in the various CAT3 states will then be either 0 or 1. Recall that when
the dynamic programming algorithm fills in the cell of a matrix, it has
to investigate whether or not the cell represents source and destination
characters that match. This step ensures that a state counter value of 1
indicates that the corresponding characters do indeed match, and a counter
value of 0 indicates the contrary. This step is elaborated in Subsection 8.2.3.

� Step 4
This step shows how to extend certain CAT3s in the LCA so that an extended
matrix of states results. This extended matrix of states can be mapped to
an extended matrix used for dynamic programming computations. The
extension allows for the computations to be carried out in a mirrored diag-
onally4 based fashion, such that the computations along each diagonal can
be carried out in parallel. Note that the version of FireSat3 implemented
in this thesis did not carry out this step. This step is elaborated on in
Subsection 8.2.4.

� Step 5
This step entails the calculation of the LC. It is explained in Subsection
8.2.5 in terms of the original (i.e. unextended) matrix of states.

If the extended matrix mentioned in Step 4 is used in the context of an
FPGA or GPU implementation, then calculation of the LC is somewhat
different. Details are given in Subsection 8.2.6.

8.2.1 Step 1: Constructing an LCA

FireSat3 is based on the construction of an LCA. It will be seen that an LCA
consists of several component machines, each of which is a slightly modified ver-
sion of a CAT3. I have called such a component machine an LC-CAT3. These
machines will be used in an LCA in an interrelated fashion to determine the LC
between two strings, as outlined below.

Note that CAT3s are the building blocks of an LCA. To explain what an LC-CAT3

is and how it works, this section starts off with an example of an LC-CAT3.

An example LC-CAT3

Figure 8.1 displays an LC-CAT3. As seen in the figure, an LC-CAT3 allows for
both conventional transitions as well as for neutral transitions. A neutral transi-
tion does not increment the counter of its destination state. Graphically such a
transition is depicted by a two-headed arrow (�). Note that the introduction of

4The term mirrored diagonally is explained in Section 8.2.4.
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Figure 8.1: An LC-CAT3.

neutral transitions is merely a notational convenience to represent a CAT3 more
compactly and may be used in the following circumstances. Suppose that a CAT3

has the following characteristics:

� states p0, p1, p2 and p3 and alphabet {a,c};

� transitions δ(p0, a) = p1, δ(p1, c) = p2, δ(p0, c) = p3 and δ(p3, c) = p2.

� Suppose that in the context of the application at hand, the counter of p3 is
entirely irrelevant.

In this case, without loss of generality, p3 and the transition represented by
δ(p0, c) = p3 may be replaced by a neutral transition from p0 to p1 on c. This
is permissible because the counter of p1 is not affected by the change, and the
transitions from p1 correspond identically to the transitions from the removed p3.
These principles are graphically illustrated in Figure 8.2.

The LC-CAT3 in Figure 8.1 accepts any string of length 7 that is built up from
the alphabet {a,c,g,t}. However, only aacgtac results in each of the counters,
d1, . . . d7, being incremented, each from 0 to 1.

As a result, if the string accgtac is run on the machine in Figure 8.1, then all the
counters will have the value of 1, apart from d2, which will still have the value 0.

The steps outlined next, in Subsection 8.2.1.1, provide general formulae for calcu-
lating the number of CAT3s in terms of the lengths of the source and destination
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Figure 8.2: Two CAT3s where the counter values of d1 and d2, for ac and cc

being input, respectively, will be the same.

strings, i.e. |S| and |R|. It also shows how to calculate the number of states in
each such CAT3. In doing so, information is provided about the LCA template
(that will subsequently be decorated) in terms of its component CAT3s and about
the terminological conventions that will be used to reference these components
and their states. All of this is concretely illustrated in an example that follows
in Subsection 8.2.1.2.

8.2.1.1 Dimensions of an LCA

1. The LC-CAT3s needed are classed as source and destination LC-CAT3s re-

spectively. Exactly
⌈
|S|
2

⌉
and

⌊
|R|
2

⌋
source and destination LC-CAT3s are

needed, respectively.

2. It is convenient to arrange the states of the various LC-CAT3s in a two-
dimensional matrix. The columns are labelled S[−1], S[0], . . . S[|S|−1] and
the rows are labelled R[−1], R[0], . . . R[|R| − 1].

The start states of the source LC-CAT3s are positioned in row R[−1]. The
start state of the first source LC-CAT3 is at column S[0] and thereafter
in evenly marked columns, S[2], S[4], . . . . The start states of the desti-
nation LC-CAT3s are positioned in column S[−1]. The start state of the
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first destination LC-CAT3 is at R[1] and thereafter in odd numbered rows
R[3], R[5], . . . .

3. A source (destination) LC-CAT3 will be referenced by the column (row,
respectively) of its start state. Thus S[i] (or R[j]) refers to the source
(or destination) LC-CAT3 whose start state is at column S[i] (or row R[j]
respectively).

4. The number of states needed for LC-CAT3 S[i] (where i = 0, 2, . . . ) depends
on |S|, on |R| and on i. It also depends on whether or not |S| ≥ |R| holds.
Formulae to compute these state numbers are given below. Dual formulae
apply for the number of states needed for LC-CAT3 R[j]. These formulae,
too, are given below.

Let |S[i]| and |R[j]| denote the number of states in LC-CAT3 S[i] and LC-CAT3

R[j] respectively. If |S| ≥ |R| then:

|S[i]| =


2|R|+ 1 if i < (|S| − |R|)
2|R| if i = (|S| − |R|)
2(|S| − i) if i > (|S| − |R|)

 and |R[j]| = 2(|R| − j) (8.1)

If |S| < |R| then:

|R[j]| =


2|S|+ 1 if j < (|R| − |S|)
2|S| if j = (|R| − |S|)
2(|R| − j) if j > (|R| − |S|)

 and |S[i]| = 2(|S| − i) (8.2)

It will be convenient to assign names to states in an LCA according to the fol-
lowing scheme: states in an LC-CAT3 are numbered from 0 onward. Names are
assigned to these states, using their number as a subscript to the name of their
associated LC-CAT3. Thus the start state of machine S[0] is referenced by the
name S[0]0; the next state is referenced as S[0]1; etc.

8.2.1.2 Example of an LCA Template

To illustrate the defined formulae and the principles employed, consider the LCA
template in Figure 8.3, where |R| = 6 and |S| = 7; ri, si ∈ {a,c,g,t}.
Figure 8.3 shows the following:

� The LCA consists of seven separate LC-CAT3 machines. For reference
purposes, their individual states are arranged to form a matrix collec-
tively, as shown in the figure. The rows of the matrix are denoted by
R[−1], R[0], . . . R[5] and the columns by S[−1], S[0], . . . S[6].



CHAPTER 8. A COMPOSITION OF CAT3S 208

R[0]

R[1]

R[2]

R[3]

R[4]

R[5]

S[0] S[1] S[2] S[3] S[5] S[6]

R[-1] 

S[-1] S[4]

Figure 8.3: An LCA template assembled from LC-CAT3 templates.

� The seven LC-CAT3s divide into two classes: those whose start states are
in the first row of the matrix (row R[−1]), and those whose start states are
in the first column of the matrix (column S[−1]). Those whose start states
are in R[−1] are the source LC-CAT3s and those whose start states are in
S[−1] are the destination LC-CAT3s.

� There are four source LC-CAT3s, each starting in row R[−1]. Their start
states are, respectively, at columns S[0], S[2], S[4] and S[6]. They are named
S[0], S[2], S[4] and S[6] respectively.

� There are three destination LC-CAT3s, each starting in column S[−1].
Their start states are, respectively, at rows R[1], R[3] and R[5]. They are
named R[1], R[3] and R[5] respectively.

� Notice the zig-zag pattern in which the states of the various LC-CAT3s
are arranged in the matrix. Notice, too, that each LC-CAT3 has exactly
the number of states specified by Equations 8.1 and 8.2. For example,
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considering |S[4]| and noting that |S| > |R|, and 4 > |S| − |R|, the third
entry of Equation 8.1 correctly specifies that |S[4]| = 2(|S|−4) = 2(7−4) =
6.

Figure 8.3 can serve as a template for an arbitrary source string of size 7 and
arbitrary destination string of size 6. In a later elaboration of this example,
columns S[0], S[1], . . . S[6] will be labelled with a specific source string’s elements,
s0s1 . . . s6. Rows R[0], R[1], . . . R[5] will be labelled with a specific destination
string’s elements, r0r1 . . . r5. These will also be used to decorate (i.e. label) the
various transitions between states in the LCA.

The foregoing therefore indicates the general approach for constructing an LCA
template for arbitrary source and destination strings, provided that their lengths
have been given.

Figure 8.4 illustrates various alternative LCA templates, each with different com-
binations of source and destination lengths.

It will be seen that in all cases, Equations 8.1 and 8.2 correctly specify the number
of states in each respective LC-CAT3.

� In Figure 8.4(a), |S| = |R| = 1. This template is for the shortest allowable
strings.

� In Figure 8.4(b) |S| = |R| = 2. This template provides another example of
where the source string is equal to the destination string.

� In Figure 8.4(c), |S| = 8 and |R| = 5. Comparing this figure with Figure 8.3
highlights how the LCA changes with an additional source string element
and one less destination string element.

� In Figure 8.4(d), |S| = 4 and |R| = 7. This figure illustrates an LCA
template where the destination string is longer than the source string.

8.2.2 Step 2: Decorating an LCA

The LCA consists of all the destination machines and all the source machines as
described in the previous section and illustrated in Figure 8.3. I next describe how
to decorate the single arrowhead transitions of the LC-CAT3s in a template LCA,
when specific source and destination strings of appropriate lengths are available.

Consider a function merge(U,V) where U = u0u1 . . . um−1 and V = v0v1 . . . vn−1

are two string parameters. Suppose that merge(U,V) returns W defined as fol-
lows:
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R[0]

S[0]

R[-1] 

S[-1]

(a) |S| = |R| = 1.

R[0]

R[1]

S[0] S[1]

R[-1] 

S[-1]

(b) |S| = |R| = 2.

R[0]

R[1]

R[2]

R[3]

R[4]

S[0] S[1] S[2] S[3]

R[-1] 

S[-1] S[4] S[5] S[6] S[7]

(c) |S| = 8 and |R| = 5.

R[0]

R[1]

R[2]

R[3]

R[4]

S[0] S[1] S[2] S[3]

R[-1] 

S[-1]

R[5]

R[6]

(d) |S| = 4 and |R| = 7.

Figure 8.4: An illustration of LCAs catering for source and destination strings of
varying lengths.
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W =

{
u0v0u1v1 . . . un−1vn−1un if m > n
u0v0u1v1 . . . um−1vm−1 if m ≤ n

Let U[i,j) denote the substring uiui+1 . . . uj−1 in string U = u0u1 . . . um−1. To
compute the LC between S and R, the following calls to merge(U,V) will be
required:

� merge(S[i,|S|), R) for i = 0, 2, 4, . . . (|S| − 1) if |S| is odd

� merge(S[i,|S|), R) for i = 0, 2, 4, . . . |S| if |S| is even

� merge(R[i,|R|), S) for i = 1, 3, 5, . . . (|R| − 1) if |R| is even

� merge(R[i,|R|), S) for i = 1, 3, 5, . . . |R| if |R| is odd

Assume that a function, makestrings(S,R), exists that ensures all the required
calls to merge are made and that it returns all the resulting strings.

As an illustration, consider the source and destination strings S = acctacc and
R = acgtac respectively. The resulting merged strings delivered by the function
call makestrings(S,R) are indicated in the table below. (Note that upper case
characters originate from the source string whereas lower case characters originate
from the destination string. This convention is used to clarify the working of the
algorithm. The LCA is, however, decorated with lower case characters only.)

Function call String Name Merged String Length
merge(S[0,|S|), R) S[0] AaCcCgTtAaCcC 13
merge(S[2,|S|), R) S[2] CaTcAgCtCa 10
merge(S[4,|S|), R) S[4] AaCcCg 6
merge(S[6,|S|), R) S[6] Ca 2
merge(R[1,|R|), S) R[1] cAgCtCaTcA 10
merge(R[3,|R|), S) R[3] tAaCcC 6
merge(R[5,|R|), S) R[5] cA 2

The second column of the table associates each string with an LC-CAT3 name
(i.e. S[0] · · ·S[6]; R[1] · · ·R[5] respectively). This is because each string is used
to determine the labels for conventional transitions (single-headed arrows) in its
associated LC-CAT3. That same string is also used to derive a string to run on
its associated LC-CAT3. In both these cases, however, the string in the table has
to be slightly tweaked.
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� To obtain the string with which to decorate conventional transitions of an
LC-CAT3, discard the last character of the LC-CAT3’s string. Thus, for the
current example, use AaCcCgTtAaCc to decorate the single headed arrows
of S[0], use CaTcAgCtC to decorate the single headed arrows of S[2] . . . and
use c to decorate R[5].

� To obtain the string to be run on an LC-CAT3, discard the first character
of its associated string. Thus, for the current example, run aCcCgTtAaCcC

on S[0], run aTcAgCtCa on S[2] . . . and run A on R[5].

Let S[i]j denote the jth state in LC-CAT3 S[i]. Then δ(S[i]j, a) = S[i]j+1, where a
is the label of the conventional transition (denoted by the single-headed arrow). In
this case, c, g, t are labels of the neutral transition (the double-headed arrow)
from S[i]j to S[i]j+1.

Figure 8.5 shows how the LCA template in Figure 8.3 is to be decorated for
the strings in the current example. Consider, for example, the LC-CAT3, S[4]
of Figure 8.5. Note that δ(S[4]0, a) = S[4]1. Thus, if an a is read in state
S[4]0, then the single-headed arrow to state S[4]1 is followed and S[4]1’s counter
is incremented. If a c is read in state S[4]0, then the double-headed arrow is
followed to S[4]1 but S[4]1’s counter is not incremented.
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S[4]1

S[0]a S[2]c S[4]a S[6]c

  R[1]c

R[3]t

S[4]2

S[4]3

S[4]4

S[6]1

S[6]0S[0]0

S[0]1

S[0]2

S[0]3

S[0]4

S[0]5

S[0]6

S[0]7

S[0]8

S[0]9

S[0]10

S[0]11

S[0]12

R[3]0

R[3]2

R[3]3

R[3]4

R[3]5

R[5]0

R[5]1

s[2]0

R[1]0

S[4]0

S[4]5

R[3]1

R[-1] 

S[-1]

 

S[1]c S[3]t S[5]c

R[1]1

R[1]2

R[1]3

R[1]4

R[1]5

R[1]6

R[1]7

R[1]8 R[1]9

s[2]1

s[2]1

s[2]2

s[2]3

s[2]4

s[2]5

s[2]6

s[2]7

s[2]8

Figure 8.5: An LCA whose LC-CAT3s are decorated for S = acctacc and R = acgtac.
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8.2.3 Step 3: Running strings on the LCA

This subsection assumes that the LCA in Figure 8.5 that has been decorated
using the characters of the given S and R strings, as was described in the previous
step. In this step, specific strings now have to be run5 on each of the respective
LC-CAT3s of this LCA.

The table below shows these strings and the LC-CAT3s on which they are to be
run.

LC-CAT3 String Length
S[0] aCcCgTtAaCcC 12
S[2] aTcAgCtCa 9
S[4] aCcCg 5
S[6] a 1
R[1] AgCtCaTcA 9
R[3] AaCcC 5
R[5] A 1

As an illustration, consider what happens when the string aCcCgTtAaCcC is run
on S[0]. A conventional transition is made from state S[0]0 to state S[0]1 on
character a, so the counter of S[0]1 becomes 1; a neutral transition is made from
state S[0]1 to state S[0]2 on character c, so the counter of S[0]2 stays at 0; etc.

All the counter values resulting from running the strings in the table above on
their indicated LC-CAT3s can be derived in a similar way. These values are shown
in the respective states of Figure 8.6.

Step 2 and Step 3 have been formulated as two separate and sequential steps
mainly for explanatory purposes. These steps could be combined when imple-
menting them in code. The labelling of transition(s) at each state can be delayed
until that state is visited. At that point, the label of a conventional downward
transition can be inferred from the relevant column heading, and the label of a
conventional horizontal transition can be inferred from the relevant row heading.
Indeed, since each state’s counter value is all that is required in subsequent steps,
it is not strictly necessary to explicitly label the transitions. Implementation de-
tails such as this, as well as the data structure chosen to represent the LCA, are
considered beyond the scope of the present discussion.

5To “run” a string (say W = w0 . . . w`−1) on a given LC-CAT3 (say L with states L0 . . . L`−1)
means to verify whether a conventional or neutral transition should be made at state Lj on
character wj for j = 0 . . . `− 1, and to increment the counter of Lj accordingly.
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Figure 8.6: The LCA’s counter values after the constructed input strings have
been run.
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8.2.4 Step 4: Extending the LCA

The state counter information contained in an LCA as depicted in Figure 8.6 can
be used directly to derive the LC between the strings S and R that were used
to build and label the LCA. Relying on the dynamic programming principles
explained in Chapter 2, sequential computations can be carried out in either
row- or column-based fashion. This is described in Step 5, as further discussed
in Subsection 8.2.5. It is, in fact, how FireSat3 is implemented to derive the
empirical results described in the next chapter.

The explanation to follow shows how the LCA can be extended to support an
FPGA implementation. Further details about the FPGA underlying algorithm
are given in Section 8.2.6. Such an FPGA implementation would carry out the
dynamic programming computations concurrently (in parallel)6.

Note however, that the explanations in this subsection as well as in Subsection
8.2.6 are given for completeness and are not considered in the main line of research
of this thesis.

The FPGA would carry out the concurrent operations on the so-called mirrored
diagonals of the matrix. Figure 8.7 distinguishes between diagonals (the solid
lines) and mirrored diagonals (the dashed lines). The processing required at all
states on a mirrored diagonal is carried out in one clock cycle of the FPGA,
starting at the top left and progressing one (mirrored diagonal) at a time towards
the bottom right.

In order to facilitate such a traversal certain LC-CAT3s in the LCA have to be
extended by providing them with additional states. In addition, to simplify,
stating the underlying algorithmic logic, the LC-CAT3s are renamed and the
labelling of their states and columns are changed accordingly.

The relationship between the matrix of counter values of states for the LCA
derived up to this point (such as the one depicted in Figure 8.6) and the matrix
of values, M , derived from the dynamic programming computations described in
Chapter 2, Subsection 2.5.2, deserves some attention. There is an obvious one-to-
one mapping between the state counter values and the cells of M . Exactly how
the LC is computed in the discussion below—whether in the space defined by
the matrix of states and their associated counter values or a separate matrix of
values, M—is an implementation issue. For the present purposes, the focus will
be on the matrix of states such as the one in Figure 8.6, and it will be convenient
to call it the SR matrix.

To facilitate the explanation and provide a generalised formula that relies on the
concurrent processing of CAT3s in the LCA, the LCA are extended as follows:

6In fact, a variety of multi-processor hardware platforms could be used to support the
concurrent implementation based on the proposed extension.
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R[0]

R[1]

R[2]

R[3]

R[4]

S[0] S[1] S[2] S[3]

R[-1] 

S[-1] S[4] S[5] S[6] S[7]

Figure 8.7: The difference between a diagonal traversal (solid lines) and a mir-
rored diagonal traversal (dashed lines) of an LCA.

1. The machines not starting at the top row should be extended to do so.
Note that no input is run on the extended parts of the CAT3s. Thus their
transitions are not labelled. The counters of the states that comprise the
extensions are set to 0.

2. Renumber the extended CAT3s and unextended CAT3 machines as follows:

� Machine R[1] becomes the extended machine M [−1];

� Machine R[3] becomes the extended machine M [−2];

� Machine R[5] becomes the extended machine M [−3];

� Machine S[0] becomes the extended machine M [0];

� Machine S[2] becomes the extended machine M [1];

� Machine S[4] becomes the extended machine M [2]; and

� Machine S[6] becomes the extended machine M [3].

3. Renumber the states according to the numbers of the new machines. The
conventions explained in Section 8.2.2 are applied to number the states of
the respective machines. Note that the counter values d[i]j are numbered in
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correspondence to the states. Thus, for example, the counter of state m[0]0
is d[0]0. Figure 8.8 shows the values of state counters obtained in Section
8.2.3 in the respective states. Note that the counter values remain 0 for
those states that are added when the CAT3s are extended.

Recall that the SR matrix has the following features:

� It has |S|+ 1 columns labelled S[−1], S[0], . . . S[|S| − 1].

� It has |R|+ 1 rows labelled R[−1], R[0], . . . R[|R| − 1].

� It embeds the states of various LC-CAT3s.

� Whenever there is a conventional transition between two states vertically
below each other in column S[i], say in rows R[j] and R[j + 1], it is on the
(i + 1)st character of the source string S, denoted by S[i]. This transition
is then accompanied by a neutral transition on all other characters.

� Dually, whenever there is a conventional transition between two states hor-
izontally alongside each other in row R[j], say in columns S[i] and S[i+ 1],
it is on the (j + 1)st character of the target string R, denoted by R[j].
This transition is then accompanied by a neutral transition on all other
characters.

� For i = 0, 2, . . . 2
⌊
|S|−1

2

⌋
, S[i] names an LC-CAT3 whose start state is in

row R[−1] and column S[i] of SR.

� For j = 1, 3, . . . 2
⌈
|R|−1

2

⌉
− 1, R[j] names an LC-CAT3 whose start state is

in column S[−1] and row R[j] of SR.

The matrix of counter values of states resulting from transforming the SR matrix
will be referred to as the MR matrix. Figure 8.8 is an example of an MR matrix
resulting from extending the SR matrix of Figure 8.6. The following transforma-
tions on SR are required to produce MR.

1. Rename the LC-CAT3 called S[2i] in SR toM [i] in MR, for i = 0, 1, . . . ,
⌊
|S|−1

2

⌋
.

2. Relabel column S[−1] in SR as R[0] in MR.

3. Expand MR by |R| − 1 columns, inserted to the left of R[0]. Label these
columns (from right to left) R[1], R[2], . . . R[|R| − 1].
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4. For j = 0, 1, . . . ,
⌈
|R|−1

2

⌉
], rename the LC-CAT3s in SR called R[2j + 1] to

M [−j] in MR and then extend M [−j] to the left. The next step below will
describe how to carry out this extension to the left. The result will be that
row R[−1] and column R[j] of MR will contain the start state of LC-CAT3

M [−j], for j = 1, . . . ,
⌈
|R|−1

2

⌉
.

5. Extending LC-CAT3 R[2j + 1] in SR to the left to obtain LC-CAT3 M [−j]
in MR entails the following:
Replace R[2j + 1]’s start state (in row R[2j + 1] column S[−1] of SR) with
all of the following new states and neutral transitions in MR:

� In column R[0] of MR, provide states in rows R[j − 1] and R[j] and a
neutral transition between them.

� In column R[1] of MR, provide states in rows R[j − 2] and R[j − 1]
and a neutral transition between them.
Provide a neutral transition from the new state in column R[1], row
R[j − 1] to the new state in column R[0], row R[j − 1].

� In column R[2] of MR, provide states in rows R[j − 3] and R[j − 2]
and a neutral transition between them.
Provide a neutral transition from the new state in column R[2], row
R[j − 2] to the new state in column R[1], row R[j − 2].

� . . .

� In column R[j] of MR, provide states in rows R[−1] and R[0] and a
neutral transition between them.
Provide a neutral transition from the new state in column R[j], row
R[0] to the new state in column R[j − 1], row R[0].

6. Rename all the states and their associated counters in MR using the con-
ventions of Section 8.2.2. Thus the jth state of LC-CAT3 M [i] is referenced
as m[i]j and its counter is referenced as d[i]j respectively.

7. The values of state counters obtained for SR in Section 8.2.3 are retained
in their corresponding states in MR. However, the value of the counters of
all new states in MR are set to 0.

The resulting renamed LCA is presented in Figure 8.8. Note that the counter
values have been populated in correspondence to decoration and running as ex-
plained earlier.
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Figure 8.8: Counter values after the input strings have been run on the decorated LC-CAT3s.
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8.2.5 Step 5: Calculate the LC

This subsection describes how the LC is computed and used in the implemented
version of FireSat3. The next subsection indicates how it could be calculated
and used in an FPGA version.

The LC calculation carried out by FireSat3 relies directly on the dynamic pro-
gramming computations explained in Section 2.5.3. R is the motif, ρ, currently
under consideration. The source string, S, corresponds to the longest substring
of the genetic string under investigation that could constitute the next potential

TRE of a potential TR that is being sought. Thus |S| = d(1 +
εmax%

100
)× |ρ|e.

An LCA similar to the one in Figure 8.6 is constructed as described in Step 8.2.1,
decorated as described in Step 8.2.2 and initialised by running appropriate strings
through it as described in Step 8.2.3. This delivers an SR matrix of initialised
state counter values. A state counter value of 1 indicates a perfect match in the
relevant underlying strings. These values may be directly referenced in carrying
out the dynamic programming computations.

Note that the matrix used for the dynamic programming computations in Section
2.5.3 indicated the destination string as column elements and the source string
as row elements. (See, for example, Figure 2.26.) Clearly, since the LC operation
carried out on two strings is commutative, reversing this convention makes no
difference. This is the case in the present description where columns represent
source string elements, and rows represent destination string elements.7

Also note that whether the dynamic programming computations are recorded in
the SR matrix itself, or written into a separate matrix, such as the matrix called
M in Section 2.5.3, is entirely a matter of implementation. For convenience, the
narrative below refers to the M matrix.

FireSat3 determines the next TRE to be added to the currently found TR in
four phases:

1. TheM matrix is completed in a column-wise fashion. This means that when
the computations in the column corresponding to S[i] have been completed,
then the entry in the last row of that column gives LC(S[0,i+1), ρ).

A so-called match pattern may be associated with each state in the SR
matrix. It indicates the sequence of mutations that are assumed to have
been incurred in arriving at that state. More will be said below about the
match pattern in Section 8.3. At this point, note that the state containing
LC(S[0,i+1), ρ) will contain a match pattern associated with strings S[0,i+1)

and ρ.

7This was done to facilitate the drawing of diagrams where the source string is longer than
the destination string.
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2. A prefix of S that delivers the maximum LC value is selected as the next
possible TRE in the TR found to date. Note that, by the very definition of
the LC metric, as i increases, the value of LC(S[0,i+1), ρ) will be monoton-
ically non-decreasing until it reaches a certain maximum level, after which
its value will start to be monotonically non-increasing.

3. This prefix substring still needs further verification before being accepted
as a TRE. The verification implies that its normalised LC value, LCn, has
to be higher than a FireSat3 calculated match score threshold value. The
next chapter will discuss in detail how threshold values were empirically
determined for this study.

4. Finally, the substring also has to comply with the various other user-
specified filter values that were mentioned in previous chapters, such as
the maximum motif error percentage (εmax%), the maximum percentage of
motif errors that may occur adjacently (κmax%), the maximum substring
error allowed as weighted by error type (σmax%), etc.

Only once the substring has passed these tests is it appended to the TR found to
date, and FireSat3 then seeks the next TRE.

The fact that more than one prefix of S may have the same LC with respect to
R gives rise to ambiguities about which prefix to use as the next TRE. These
matters are discussed further in Section 8.3. Before doing so, attention is briefly
turned to the logic needed to calculate the LC from an LCA in extended form.

8.2.6 Step 5′: Calculate the LC — Concurrent version

Subsection 8.2.4 described how to construct and initialise MR — the extended
matrix of state counters. MR can be used to compute the LC between the source
and destination strings, S and R, respectively. Recall that if M [i] references the
ith LC-CAT3 in MR, then d[i]j references the counter value in the jth state of
M [i].

The following GCL pseudocode describes how these counter variables may be
updated in a dynamic programming fashion to compute the LC between the
source and destination strings:

if (d[i]j = 1)→ d[i]j := d[i]j−2 + 1
[] (d[i]j = 0 ∧ odd(j)) → d[i]j := max(d[i]j−2, d[i− 1]j+1, d[i]j−1)
[] (d[i]j = 0 ∧ even(j))→ d[i]j := max(d[i]j−2, d[i]j−1, d[i+ 1]j−3)
f i



CHAPTER 8. A COMPOSITION OF CAT3S 223

M[0]
1

M[0]
0

M[0]

M[0]
2

M[0]
3

M[1]

M[1]
0

M[1]
1

M[0]
4

M[0]
5

M[1]
2

M[1]
3

M[0]
6

M[0]
7

M[1]
4

M[1]
5

M[0]
8

M[0]
9

M[1]
6

M[1]
7

M[0]
10

M[0]
11

M[1]
8

M[0]
12

M[1]
9

d[0]
1 
= 1 d[0]

2 
= 0

d[0]
3 
= 1

d[0]
4 
= 1

d[0]
5 
= 0 d[0]

6 
= 0

d[0]
7 
= 1 d[0]

8 
= 0

d[0]
9 
= 1 d[0]

10 
= 0

d[0]
11 

= 1 d[0]
12 

= 1

d1
1 
= 0 d1

2 
= 0

d[1]
3 
= 0

d[1]
4 
= 0

d[1]
5 
= 0

d[1]
6 
= 0

d[1]
7 
= 0 d[1]

8 
= 0

d[1]
9 
= 0

EVEN
j=6

M[i]
j - 2

M[i]
j - 1

M[i+1]
j - 3

ODD
j=7

d[i]
j
 = max

ODD

d[i]
j-2

d[i]
j-2

+d[i]
j

d[i]
j-1

d[i-1]
j+3

d[i]
j
 = max

EVEN

d[i]
j-2

d[i]
j-2

+d[i]
j

d[i+1]
j-3

d[i]
j-1

Figure 8.9: Machines M [0] and M [1] illustrating the calculation of the value of
the even numbered state m[0]6 and the odd numbered state m[1]7 respectively.

Figure 8.9 graphically exemplifies the application of this pseudocode. In the
example, the states whose counter values that might be needed to determine an
updated value of d[0]6 are connected to state M [0]6 by dotted lines. Moreover,
when updating d[0]6, information is also available to infer whether or not the
update involves a mutation error at that point and what type of motif error
should be assumed.

Thus, if counter d[0]6 = 1 then a perfect match has occurred and d[0]6 is updated
to d[0]4 + 1.
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If d[0]6 = 0 then a mutation error is assumed to have occurred. Since 6 is even,
d[0]6 is updated by assigning to it the maximum of the d[0]5, d[0]4, d[1]3. The
type of mutation error that is assumed to have occurred can be inferred from the
element that has the maximum value:

1. If d[0]5 (d[i]j−1) is selected as the maximum then an insertion is indicated
as motif error type.

2. If d[0]4 (d[i]j−2) is selected as the maximum then a mismatch is indicated
as motif error type.

3. If d[1]3 (d[i+1]j−3) is selected as the maximum, then a deletion is indicated
as motif error type.

To calculate the value for d[1]7 a similar process is followed. If d[1]7 = 1 then a
perfect match has occurred and d[1]7 is updated to d[1]5 + 1. If d[1]7 = 0 then a
mutation error is assumed to have occurred. Since 7 is odd, d[1]7 is updated by
assigning to it the maximum of the d[1]6, d[1]5, d[0]8. Again, the type of mutation
error that is assumed to have occurred can be inferred from the element that has
the maximum value:

1. If d[1]6 (d[i]j−1) is selected as the maximum then a deletion is indicated as
motif error type.

2. If d[1]5 (d[i]j−2) is selected as the maximum then a mismatch is indicated
as motif error type.

3. If d[0]8 (d[i−1]j+3) is selected as the maximum, then an insertion is indicated
as motif error type.

The dotted lines in Figure 8.10 indicate mirrored diagonals of the MR. Note that
updates to state counters on a given mirrored diagonal are independent of one
another. Their values depend only on the updated values of state counters on the
mirrored diagonal to the left. Updates on a given mirrored diagonal can therefore
be carried out in parallel.

In principle, therefore, the MR as derived from a given S and R could be mapped
onto an FPGA that executes the given pseudocode in a step-wise fashion, sweep-
ing through mirrored diagonals from left to right. Each step involves the concur-
rent updating of all state counters on a mirrored diagonal.

Note that, as in Step 5 above, the state counter values in the final row give the
LCs of the prefixes of S (as determined by the relevant column) with respect to
R.
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Figure 8.10: The resultant LCA CAT3 displaying the LC in the right corner.
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8.3 Match Patterns and Ambiguities

When comparing source string S and destination string R, a match pattern is
used to indicate the positions and types of mutations that are deemed to have
occurred. The match pattern is a string of length n = max(|S|, |R|) whose ith

element is from the alphabet {P,M,D,I}, indicating whether a perfect match,
mismatch, deletion or insertion is deemed to have occurred in the ith position, for
i = 1, . . . n.

FireSat3 ensures that when LC(S,R) is being computed, an associated match
pattern is also available at each state in the LCA. The principles for deriving
a match pattern from an ordinary (unextended) LCA are the same as for the
extended LCA case. How the elements of a match pattern can be inferred while
traversing an extended LCA has already been covered in Subsection 8.2.6 above.

It was seen in that subsection that, under certain circumstances, d[i]j is to be
updated by selecting the maximum of d[i]j−2, d[i−1]j+1 or d[i]j−1 (or by selecting
the maximum of d[i]j−2, d[i]j−1 or d[i+ 1]j−3 under other circumstances). It was
also seen that the element to be selected as maximum, (whether, say, d[i]j−2,
d[i − 1]j+1 or d[i]j−1) indicates that a mismatch, deletion or insertion is deemed
to have occurred.

Using this information to record the match pattern that evolves at each state
while traversing the extended LCA is a straightforward implementation issue.
As an example, the coloured lines in Figure 8.10 show that the match pattern
between acgtac and acctac evolves as “PMPPP”. (A blue line is used to indicate
a perfect match (“P”) and a green line used to indicate a mismatch. (“M”).)

Note that when determining a match pattern, a pre-specified mutation priority
ordering should be used to adjudicate between choices to be made when ties occur
in the maximum. FireSat3 relies on the same default priority ordering as that
of FireSat2 when such ambiguities need to be resolved. In terms of this priority
ordering, mismatches rank above deletions and deletions above insertions. This
ordering is denoted by MDI. The ordering where insertions rank above deletions
is denoted by MID. FireSat3 allows the user to specify a MID ordering instead
of MDI if desired.

One of the uses of this match pattern is to determine the total number of insertions
deemed to have been incurred when computing LC(S,R). This count is needed
in order to compute the normalised LC value, LCn, as will be discussed in the
next chapter.

The match pattern is also needed to compute the weighted substring error. Recall
that the weighted substring error, σ%, is the weighted sum of mutations in a
candidate TRE, expressed as a percentage of the motif length. The candidate
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TRE is filtered out if its weighted substring error exceeds a specified maximum,
σmax%.

In deciding on a substring to serve as the next possible TRE in the TR found to
date, ambiguity issues similar to those of FireSat2 may arise. Again, this is true,
whether or not the LC computation is based on Step 5 or Step 5′ described above.
In both cases, more than one substring may yield the same LC with respect to
the motif. In such situations, there will be ambiguity as to which substring to
select as the next TRE.

Figure 8.10 shows an example of this source of ambiguity. Notice that M[0]12

has value 5, meaning that the LC between acgtac and acctacc is 5. But the
LC between acgtac and acctac, given in M[0]11, also has value 5. In FireSat3,
where such ties arise, the shortest source string with the maximal LC value is
selected as the next candidate TRE.

8.4 Conclusion

The foregoing thus indicates how, given R and S where R = ρ and |S| = d(1 +
εmax%

100
)× |ρ|e, a prefix of S might be determined that has the best LC value over

all other prefixes. In the context of TR detection, such a prefix may or may not
be a suitable candidate as a TRE to be added on to the TR detected to date.

The next chapter will show how a threshold function for the LCn was found from
empirical synthetic data. The threshold function together with a threshold factor
were used to decide whether or not the prefix substring should be considered as
TRE.

This chapter also provides the broad outline of a version of FireSat3 that could
potentially be implemented on either an FPGA or a GPU by developing the
LCA in an extended format. Such an implementation could be designed to exe-
cute computations in parallel along the mirrored diagonal of the extended LCA.
Further exploration of such FPGA/GPU implementations is beyond the scope of
this thesis.
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“The wonder of it all is that we are not in control. Control. Intention. All are but
illusions. Who decides? Memory and Inspiration, one a thorn, the other a rose. Either
leads the Soul by the proverbial nose. Really.” ... Ihaleakela Hew Len

The previous chapters explained the theoretical underpinnings of the various ver-
sions of FireSat. Algorithm 6.3.1 gave an outline of the flow of logic with specific
reference to FireSat1, but the basic structure applies to other versions of FireSat
as well.

Various versions of FireSat were implemented to examine their accuracy in de-
tecting TRs. This has been done in Matlab. Different versions of FireSat were
used during trial runs. Although FireSat1 is not as accurate as FireSat2 or
FireSat3 it has been used for some trial runs to illustrate the extent to which
FireSat2 and FireSat3 improved accuracy.

TR detection algorithms may be viewed as binary detectors : i.e. each algorithm
outputs indices that, in effect, partition the input file into substrings of nucleotides
that are deemed to constitute TRs (subject to given threshold specifications) and
substrings that are deemed not to constitute TRs. Thus every nucleotide in the

229
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input is classified as either part of a TR or not. A body of theory for analysing
the outputs of such binary detectors has been developed over the years. This
includes so-called receiver operating characteristic (ROC) analysis, and notions
such as the precision and recall of a detector. This chapter will briefly review the
theory. The review includes an explanation of a so-called recall-precision (RP)
curve, that is used on 20 different data sets, to establish an effective match score
threshold function1 for FireSat.

The chapter is organised as follows: Section 9.1 explains how synthetic data was
generated to be used as input for trial runs with the various algorithms. Then
Section 9.2 introduces statistical terminology from detection theory. ROC curves
and RP curves are discussed in Section 9.3. As part of this section, RP curves
are derived from the synthetic data and used to estimate an effective match score
threshold function to be used when running the various FireSat algorithms.

Section 9.4 reports on trial runs in respect of FireSat. The section also reports on
the binary detection performance on the same data of Tandem Repeats Finder

(TRF), mreps and Phobos — i.e. on the performance of algorithms identified in
Chapter 3 as being the most likely rivals to FireSat. The recall, precision and
related performance measures of various algorithms are graphically compared in
Section 9.5. Section 9.6 concludes this chapter.

9.1 Data source

Synthetic data was required so as to have a basis for determining a good match
score threshold function for various versions of FireSat. The synthetic data was
used to examine the accuracy of FireSat and to compare it against other rival
algorithms. Trial runs of these algorithms were carried out on this synthetic data.
The details of how the synthetic data was generated is discussed next.

Matlab was used to generate twenty sets of data in FASTA format to be used
during trial runs2.

Data generation is aimed at embedding known TRs at known positions in each
data set. Each data set is effectively an input string, referred to here as gSeq. To
generate gSeq, firstly generate a random sequence of nucleotides of length 11 000
to serve temporarily as gSeq. An additional random nucleotide sequence of length
200, called the supermotif, is also generated. The purpose of the supermotif

1The threshold related concepts established by the method described here can only loosely
be referred to as “optimal” since optimality is not guaranteed but approximated. For this
reason the threshold related concepts will be described as “effective” rather than as “optimal”.

2The synthetic data used for the trial runs as well as a Matlab program generating random
synthetic data can be found at http://www.dna-algo.co.za.

http://www.dna-algo.co.za
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is to serve as a template from which motifs are to be derived. Ideally, both
gSeq and the supermotif should be TR-free—i.e. it should not contain any TR
such that 10 ≤ |ρ| ≤ 200 and 2% ≤ εmax% ≤ 20%. Of course, this condition
cannot be guaranteed to hold, a priori. Furthermore, if it does not hold, it might
potentially (but not necessarily) give rise to small errors in the precision or recall
measurements subsequently made. Such errors are, however, not critical as their
resulting inaccuracies in the measurements would apply equally to all algorithms.
Nevertheless, in an effort to attain the ideal, gSeq as well as the supermotif were
inspected and any TRs that were found were removed.

It will be convenient to use ρ throughout to refer to a PTRE. Prefixes of the
supermotif of varying lengths are used as ρ for different data sets. For exam-
ple, if a TR with |ρ| = 25 is to be generated, then ρ is taken as the first 25
nucleotides of the supermotif. On this basis, data sets were generated for which
|ρ| = 10, 25, 50, 100 and 200, respectively.

Each data set contains exactly 10 TRs. All the TREs in a given data set are
derived from the same ρ in the manner described below. In each data set, these
10 TRs replace nucleotide entries already in gSeq at the exact same pre specified
index positions, namely 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000 and
10 000 respectively. As shown in Table 9.1, in general, the TR at index 1000
consists of ρ followed by 1 TRE, that at index 2000 consists of ρ followed by 2
TREs, and so on, so that the TR at index 10 000 consists of ρ followed by 10
TREs.

TR number Start index Structure

1. 1000 ρ followed by 1 TRE

2. 2000 ρ followed by 2 TREs

3. 3000 ρ followed by 3 TREs

4. 4000 ρ followed by 4 TREs

5. 5000 ρ followed by 5 TREs

6. 6000 ρ followed by 6 TREs

7. 7000 ρ followed by 7 TREs

8. 8000 ρ followed by 8 TREs

9. 9000 ρ followed by 9 TREs

10. 10000 ρ followed by 10 TREs

Table 9.1: Structure of a synthetic data file.
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Each of the five different values of ρ is used to generate four different data sets.
These four different data sets differ with respect to a parameter denoted by Perr.
The parameter represents the maximum percentage mutation error allowed on
a TRE. The values used for Perr are 2%, 5%, 10% and 20%. Thus, in total
5× 4 = 20 different versions of the gSeq data set are generated.

Note that Perr should be distinguished from εmax%. Recall that εmax% is a FireSat
threshold value that indicates the maximum percentage of motif errors, εmax%,
allowed per TRE. In contrast to εmax%, Perr is a percentage value used when
synthetic data is generated. This is clarified in the next bulleted list.

Further note that data sets based on |ρ| = 200 are exceptions to the scheme
illustrated in Table 9.1. In these data sets, TRs do not occur from position 6000
onwards. Consequently, the four data sets for |ρ| = 200 contain 5, not 10, TRs.

Generating a random TRE from a given ρ that complies with a given value for
Perr proceeds according to the following scheme:

� Each nucleotide in ρ is considered in turn as a candidate for a possible
mutation until one of two conditions holds: either all nucleotides in ρ have
been considered, or the number of mutations to date on ρ has reached the
threshold value of d|ρ| × Perre.

� With probability Perr, a nucleotide under consideration is mutated.

� If a nucleotide is mutated, then one of the three types of mutations is
randomly selected with equal probability. Recall that the three mutation
possibilities are deletion, insertion, or mismatch.

� If an insertion is to be generated, a random nucleotide for insertion is se-
lected with equal probability from the four-character alphabet.

� If a mismatch is to be generated, a random nucleotide, other than the
current nucleotide under consideration, is selected with equal probability
from the remaining three characters of the nucleotide alphabet.

� If a deletion is to be generated the current nucleotide is deleted.

9.2 Detection theory

As previously pointed out, detecting TRs in DNA is a binary classification prob-
lem. In TR detection, the data set is a sequence of nucleotides. Each nucleotide
in the data set either forms part of a TR or not. Whether a given nucleotide truly
forms part of a TR can, in principle, be determined by some objective criterion. If



CHAPTER 9. A COMPARISON OF CONTENDER ALGORITHMS 233

the nucleotide is truly part of a TR, we say that the nucleotide is a real exemplar
(or positive exemplar). If this is not the case, then we say that the nucleotide
is a real negative exemplar (or simply a negative exemplar). Detection theory
in relation to TR detection is concerned with the extent to which TR detection
algorithms correctly classify real exemplars and negative exemplars in a given
data set.

Statistical terms relevant to TR detection in the context of this thesis are ex-
plained next. These terms correspond to the definitions presented by Zou et al.
[2007], Fawket [2003] and Zhu et al. [2010]. The terms refer to nucleotides in
a genetic string that either do or do not occur in a TR, where the tolerances
regarding what is to constitute a TR is assumed to have been pre-specified by
some set of criteria.

1. P (Condition positives)
P is the number of real exemplars (positive objects) in the data set.

2. N (Condition negatives)
N is the number of negative exemplars in the data set. In practice, N is
relatively high — 90% or more of the nucleotides in a typical DNA sequence
will be negative exemplars.

3. TP (True positives)
TP refers to the number of real exemplars identified as such by the TR
detector — i.e. to the number of so-called hits.

4. TN (True negatives)
TN refers to the number of real negatives identified as such by the TR detec-
tor — i.e. the number of nucleotides to be reckoned as negative exemplars
because they were not reported as real exemplars by the TR detector.

5. FP (False positives)
FP refers to the number of real negatives, incorrectly identified as real
exemplars by the TR detector. Such an error is also referred to as a false
alarm or a Type 1 error.

6. FN (False negatives)
FN refers to the number of real exemplars that are not detected as such
by the TR detector. The nucleotides are therefore considered as negative
exemplars when, in reality, they are not. Such an error is also called a miss
or a Type 2 error.

7. PP (Positive predictions)
PP = FP + TP — i.e. all the nucleotides in the data set that the TR
detector deems to be real exemplars.
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Figure 9.1: A TR-detector confusion matrix.

A so-called confusion matrix (see Figure 9.1) further illuminates the above termi-
nology. The confusion matrix shows that, for nucleotides reported as being part
of TRs by a TR detector, two possibilities exist. Such a reported nucleotide can
either be a true detection. Then it is a true positive. Alternatively the detection
can be an incorrect report. A nucleotide that is falsely reported as a true exem-
plar is referred to as a false positive. Similarly, there are two possibilities relating
to nucleotides that are not reported as part of a TR. Firstly these nucleotides
may constitute real exemplars that have been missed. These are referred to as
false negatives. Alternatively the nucleotides not reported as real exemplars may
indeed be negative exemplars. These are referred to as true negatives — in other
words, the TR detector has correctly rejected these as exemplars.

In the confusion matrix of Figure 9.1, the rates associated with the occurrences
of instances of true positives, false positives, false negatives and true negatives are
included in a smaller font. These rates are defined in the next enumerated list.
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1. True Positive Rate (TPR)
TPR is the proportion of real exemplars in the data that are TR detector
hits. TPR is therefore calculated as follows:

TPR =
TP

TP+FN
=

TP

P

Other words that are interchangeably used in the literature to refer to TPR
are recall; sensitivity and probability of detection.

2. False Negative Rate (FNR)
FNR is defined as the proportion of real exemplars in the data that escape
detection by the TR detector. FNR is calculated as follows:

FNR =
FN

TP+FN
=

FN

P
= 1− TPR

FNR is also referred to as miss ratio in the literature.

3. Positive Predictive Value (PPV)
PPV, also referred to as precision, is the proportion of nucleotides reported
as real exemplars by the TR detector that are indeed hits. PPV is calcu-
lated as follows:

PPV =
TP

TP+FP

4. False Discovery Rate (FDR)
FDR is the proportion of nucleotides reported as real exemplars by the TR
detector that are in fact negative exemplars.

FDR =
FP

TP+FP
= 1− PPV

In this thesis the term imprecision is used to refer to FDR.

5. True Negative Rate (TNR)
TNR is the proportion of all real negative exemplars in the data that are
deemed to be real negative exemplars by the TR detector. It is calculated
as:

TNR =
TN

FP+TN
=

TN

N
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Note that the denominator FP+TN constitutes the total of real negative
nucleotides. In the literature the word specificity is often used to refer to
TNR. TNR can also be referred to as correct rejection rate.

6. False Positive Rate (FPR)
FPR is calculated as follows:

FPR =
FP

FP+TN
=

FP

N
= 1− TNR

FPR is also referred to as probability of false alarm, false alarm rate or fall-
out. This implies that FPR is the proportion of real negative nucleotides in
the data that are falsely reported as real exemplars by the TR detector.

This thesis focusses on the recall (TPR) and precision (PPV) of various TR
detectors. The miss ratio (FNR) and imprecision (FDR) are merely the respective
complimentary values of the former two rates. The last two rates mentioned above
(TNR and FPR) are provided for completion. They are of historical significance
but, as will be pointed out, they are not suitable for the analysis of TR detector
performance.

The harmonic mean is considered a good way of summarising the values of several
rates, say x1 . . . xn, obtained from experiments. It is defined as the reciprocal of
the mean of reciprocals of a set of rates, i.e.(

1

n

(
1

x1

+
1

x2

+ · · · 1

xn

))−1

=
n(x1x2 · · ·xn)

x1 + x2 · · ·+ xn

The F-score or F-measure is a harmonic mean that is commonly used in binary
classification systems. It is defined as the harmonic mean of precision and recall.
It can be used to measure how accurately a binary classification algorithm has
performed (Van Rijsbergen [1979]). The F score is denoted by F1 score:

F1 score =
2(precision.recall)

precision + recall
(9.1)

or, using the above notation:

F1 score =
2(PPV.TPR)

PPV + TPR
(9.2)
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When a match score threshold function is proposed in Section 9.3.2, reference is
made to the standard deviation (σ). The definition of σ is as follows:

σ =

√√√√ 1

N

N∑
i=1

(xi − µ)2 (9.3)

where N is the number of exemplars in the data; xi is the different exemplar
values and µ is the mean — the simple average of the objects.

9.3 ROC and RP analysis

Receiver operating characteristic (ROC) analysis was developed during World
War 2 in the context of radar detection. The objective was to analyse the accu-
racy of a classifying system that is intended to differentiate a signal from noise.
Generally, such systems classify with respect to some pre specified threshold value.
If the threshold value is too low, practically everything will be classified as a signal
and nothing as noise, and vice-versa when the threshold is too high. ROC anal-
ysis is concerned with trying to discover an appropriate threshold such that the
number of false positives and false negatives remain within acceptable bounds.

To this end, an ROC curve, drawn in so-called ROC space, characterises the
classifier’s performance as the threshold varies. The x-axis of the ROC space
represents 1 - specificity (1 - TNR) — i.e. the number of negative exemplars
present in the data wrongly identified as positive exemplars by the classifier under
study, expressed as a proportion of the total number of negative identifiers. The y-
axis represents recall (or sensitivity, TPR) — i.e. the positive exemplars identified
by the classifier under study as a proportion of the total number of positive
exemplars present in the data.

When a classifier is run on a given set of data using a given threshold value, the
outcome has a certain specificity and recall. This pair of values provides a single
point in the ROC space. The ROC curve for a given classifier and a given set of
data, is the set of points traced in ROC space for varying threshold values.

In subsequent years, ROC analysis was applied to several areas beyond the domain
of radar detection. These areas of application include clinical classifiers that
are dependant on screening, diagnostic tests, laboratory testing, epidemiology,
radiology and bioinformatics (Zou et al. [2007]).

Another metric pair, often used in the same manner as ROC, is Recall-Precision
(RP)3. The objective of both of these metric pairs (ROC and RP) is to determine

3Note that reference is made throughout to Recall-Precision even though Recall-Imprecision
is actually used, where Imprecision simply refers to (1 - Precision).
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a threshold value that is likely to increase the number of true positives while
minimizing the number of false positives.

Ke and Sukthankar [2004] point to the subtle differences between ROC and RP
analysis that dictate the use of one rather than the other in specific scenarios.
ROCs are well-suited for classifier evaluation when the total negative population
(N) is comparable to the total positive population (P). This is not the case in TR
detection, where N is typically much larger than P. Consequently the specificity
in TR detection is usually close to 0. As a result, the value of (1-specificity) is
close to 1, and the consequent ROC curve for a TR-detector will typically not
provide clear information about threshold suitability.

Thus, based on the insights of both Ke and Sukthankar [2004] and Mikolajczyk
and Schmid [2003], an RP analysis rather than an ROC analysis was undertaken,
as described below. Subsection 9.3.1 explains the notion of RP space and an RP
curve drawn in RP space to characterise the behaviour of a TR detector with
respect to some data set. Subsection 9.3.2 then describes the specific RP analysis
carried out on the synthesised data sets using FireSat3 as the TR detector.

9.3.1 RP curves

This subsection explains RP curves in reference to some abstract TR detector
working on some abstract dataset that contains known TRs. In order to compute
the recall and precision, the following convention is used:

� Each nucleotide in the data set that forms part of a known TR is deemed
to be a real exemplar.

� Each of the remaining nucleotides is deemed to be a negative exemplar.

A run of the TR detector takes as input the data set and threshold value. Such
a run then provides as output an estimate of which nucleotides in the data set
are exemplars and which are not. In other words, each TR detector run delivers
a certain number of true positives, and of false positives.

Using the x-axis to represent imprecision (i.e. (1 - precision)) and the y-axis to
represent recall, all possible combinations of recall and imprecision constitute the
RP-space. Each run of a TR detector delivers a certain value for precision and a
certain value for recall, and thus a certain point in RP-space. Figure 9.2 shows
several points of potential interest in RP space.

The ideal point in RP space is (0,1) — the upper left corner of the RP-space.
This coordinate would indicate that the detector in question had achieved 100%
precision (0% imprecision) and 100% recall on a given dataset. Clearly the closer



CHAPTER 9. A COMPARISON OF CONTENDER ALGORITHMS 239

(0,1) (1,1)

R
e

c
a

ll

Imprecision =1 - precision(0,0) (1,0)

y 
= 

x 
--
- r

an
do

m
 g

ue
ss

Perfect 

classification

Figure 9.2: Recall-Imprecision space — trade-off between recall and imprecision.

a coordinate is to this ideal point the higher the overall accuracy of the detector
under consideration for the given data set. Conversely, the worst extreme in RP
space is at point (1,0), indicating total imprecision and no recall — the bottom
right corner of RP-space.

The diagonal in Figure 9.2 represents detections with equal recall and imprecision,
say (x, x) for 0 ≤ x ≤ 1. The region around the lower extreme of the diagonal
(i.e. near (0,0)) indicates low recall and high precision (low imprecision). This
occurs when most of the exemplars declared to be true by the TR detector are
indeed so, but where large numbers of true exemplars have not been identified.
Conversely, the region around the upper extreme of the diagonal (i.e. (1,1))
indicates high recall and low precision (high imprecision). This occurs when the
detector declares practically everything to be a true exemplar, thus almost never
failing to identify true exemplars while also having an inordinately high number
of false positives.
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Broadly speaking, a random guess is likely to give a point close to (0.5, 0.5) —
the mid-point of the diagonal running from (0, 0) to (1, 1). In general, a point
close to the diagonal suggests a relatively high level of inaccuracy either in terms
of recall, or imprecision, or both.

By running a TR detector on the same data set for varying threshold values,
an RP curve can be generated in RP space. Such a curve will characterise the
behaviour of the TR detector with respect to the data set.

An RP curve consisting of the horizontal line connecting (0,1) and (1,1) represents
the behaviour of an abstract detector that always has 100% recall, but displays
increasing imprecision as the threshold is lowered. Note that the area under the
curve (AUC) of such an abstract detector is 1.

The AUC will always be between 0 and 1 for any detector. It is sometimes used
as an overall summary of a detector’s accuracy over all threshold values. The
larger the AUC, the more accurate the detector. By this measure, the abstract
detector just mentioned represents an ideal. As already mentioned, points near
the diagonal line from (0,0) to (1,1) suggest poor performance either in terms
of recall, precision or both. Since the area under this diagonal is 0.5, a detector
whose AUC is about 0.5 or less would normally be regarded as a poor one (Fawket
[2003]).

The next subsection reports on investigations of various RP curves characterising
FireSat3 when using the synthetic data sets previously described.

9.3.2 Determining an effective match score threshold func-
tion for FireSat

The logic flow of Algorithm 6.3.1 is not only a broad outline of FireSat1, but
also of the other FireSat versions.

In each case, the algorithm is invoked with parameters specifying various thresh-
old filter values and penalty weights, denoted by εmax%, κmax%, σmax%, αmax, ,
βmin, pd, pi and pm respectively. Although default values have been assigned to
these parameters, the user may optionally alter the defaults. In each case these
values are available globally, and therefore also to the relevant version of the func-
tion called computeTR in Algorithm 6.3.1. This function determines whether a
TR is present at a given position in the input string, s.

However, there are no clear guidelines on how to optimally select these weights
and parameters. The RP analysis described in this subsection is intended to
mitigate this challenge.

An RP analysis on an input string, s, for a given motif length, |ρ|, entails cal-
culating an LCn for each position in s. Let i be any position in s and position
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j = i + |ρ|. An LCn is calculated between substrings of s, starting at i and j
respectively, each of length |ρ|.
Since the substrings are of equal length, the computation of the LC (and the
LCn) is straightforward: simply compare si+k against sj+k for k = 0, · · · |ρ| − 1
and add the number of matches. Let `i,j be the LCn associated with strings:

s[i,i+|ρ|), s[j,j+|ρ|)

Noting that if i lies within a TR in s, then `i will tend to be relatively high, but
will tend to decline towards the end of the TR. Given some threshold value, t,
the following heuristic is applied in order to compute an R and P value, once `i
is available for i = 0, · · · |ρ|.
If `i ≥ t then position i is considered to be an exemplar of a TR element else
position i is not considered an exemplar of a TR element.

By comparing exemplars against positive exemplars in the synthetic data set,
true and false positives can be identified, and thus also R and P values.

For each data set and for each threshold value, t ∈ {0.01, 0.02, · · · 1.0} the recall
and 1 - precision is calculated and plotted in the relevant RP space, forming an
RP curve.

RP curves were obtained for each of the 20 synthetic datasets. Recall that a data
set is characterised by one of five motif lengths (|ρ|) and one of four maximum
percentage mutation error rates (Perr). The resulting RP curves are displayed in
Figure 9.3.
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The Recall−Precision curve for the FireSat TR detector
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Figure 9.3: Recall:Precision.
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In general, the upper right part of a curve results from low threshold values.
These low threshold values result in high recall but also high imprecision. As
the threshold values increase from a low of 0.01 towards 1.0, the curve dips down
to the bottom left of the diagram where there is very low recall and also low
imprecision.

In each of the curves, there is an inflection point (in some cases more pronounced
than in others) such that a small increase in threshold value (change to the left)
rapidly degrades the recall performance while only marginally improving pre-
cision, whereas a small decrease in threshold value (change to the right) only
marginally improves the recall performance while fairly rapidly degrading pre-
cision (i.e. increasing imprecision). Inspection of the sub-figures in Figure 9.3
suggests an inflection point occurs at a threshold value of about:

� 0.73 to 0.79 in data sets based on a motif length of 10;

� 0.66 to 0.68 in data sets based on a motif length of 25;

� 0.57 to 0.61 in data sets based on a motif length of 50;

� 0.52 to 0.59 in data sets based on a motif length of 100; and

� 0.50 to 0.52 in data sets based on a motif length of 200.

For each Perr value, these inflection point threshold values as noted in the respec-
tive sub-figures of Figure 9.3 were plotted against their associated motif lengths
to obtain the piece-wise linear graphs in Figure 9.4. These graphs clearly show
how these threshold values decrease with length.

A match score threshold function (in |ρ|) was sought that could serve as an ap-
proximate upper bound on these piece-wise linear graphs. The function tf(|ρ|)
as defined in Equation (9.4) was found by a trial and error process to serve this
purpose.

tf(|ρ|) =
1

2
+

1√
|ρ|

(9.4)

It will be seen in Section 9.4.4 that a match score threshold, t, is calculated as
t = f × tf(|ρ|) where f is some pre specified match score factor and |ρ| is the
motif length of TRs associated with the dataset under consideration. Clearly, if
f is chosen less than 1, the calculated threshold will be below the curve for tf(|ρ|)
shown in Figure 9.4.

As reported below, trial runs were done where f = 1, and f = 0.8. The match
score threshold obtained is compared against the match score — the LCn. Thus,
for a candidate TRE to be accepted as a TRE, the match score (LCn) computed
for that TRE with respect to ρ must be ≥ f × tf(|ρ|).



CHAPTER 9. A COMPARISON OF CONTENDER ALGORITHMS 244

0 20 40 60 80 100 120 140 160 180 200

| |

50

55

60

65

70

75

80

85

T
hr

es
ho

ld
RP analysis: resultant near optimal thresholds

with the confidence measure, LCnorm = LC / max(| |,|ui|)

Figure 9.4: RP analysis — effective thresholds.

9.4 Trial runs: rival algorithms

Chapter 3 provided a concise literature overview of the most prominent TR-
detectors. Formal concept lattices were used to classify these TR-detectors. In
Section 3.2, Phobos, Inverter, mreps and TRF are mentioned as algorithms of
potential interest to rival FireSat. However, since Inverter only has the ability
to detect PTRs and not ATRs, it is not discussed further here. This section
therefore reports on trial runs carried out using the remainder of these algorithms,
giving an overview of the input and output in each case. Subsection 9.4.1 deals
with Phobos; Subsection 9.4.2 presents mreps and Subsection 9.4.3 deals with
TRF. Subsection 9.4.4 reports on FireSat runs.

The synthetic data, generated as described in the previous section, was used in
the trial runs. The trial runs were conducted under the Windows 64 bit operating
system. A Matlab script was written to manage the executions of the different
algorithms and the input files.

For the runs with Phobos, mreps and FireSat, the same Matlab script parameter
was used to specify both the maximum and the minimum motif lengths of TRs
for which to search. However, TRF does not provide switches to limit searches
to specific values of |ρ|. As a result, TRF was run without constraints on |ρ| and
the output was post-processed to extract detected TRs having the relevant motif
lengths.



CHAPTER 9. A COMPARISON OF CONTENDER ALGORITHMS 245

Since precision and recall are computed with respect to nucleotide classification
rather than TR classification, P is taken as the total number of nucleotides that
are present in TRs in the original data set. TP is the number of nucleotides
correctly classified by the package under consideration as being part of a TR;
and FP is the number of nucleotides incorrectly classified by the package under
consideration as being part of a TR. As pointed out above, precision is then
computed as TP

TP+FP
and recall as TP

P
.

9.4.1 The Phobos runs

The Phobos software can be accessed at http://www.ruhr-uni-bochum.de/

ecoevo/cm/cm_phobos.htm4.

When doing a search, a number of different parameters can be set. Input param-
eters are divided into different related groups as follows:

� search modes;

� general options;

� output options;

� options for imperfect search; and

� requirements on satellites to be reported.

Search modes
Phobos provides three search modes from which the user can choose:

� Imperfect search — TRs that consist of ATREs and PTREs are detected.
This is the mode that has been selected for trial runs of this study.

� Perfect search — Only PTRs are reported.

� Extend exact search — TR detection firstly identifies PTRs that are referred
to as seeds. These are then extended to both sides to allow for ATRs too.
The interested reader can consult the Phobos web page to obtain more
details of this option.

General options
The three so-called general options included in Phobos are listed below:

4The following citation is available for Phobos: Mayer, Christoph, Phobos 3.3.11, 2006-
2010, http: // www. rub. de/ ecoevo/ cm/ cm_ phobos. htm. Note, however, that Mayer has
not published the full details of the Phobos algorithm.

http://www.ruhr-uni-bochum.de/ecoevo/cm/cm_phobos.htm
http://www.ruhr-uni-bochum.de/ecoevo/cm/cm_phobos.htm
http://www.rub.de/ecoevo/cm/cm_phobos.htm.
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� Processing a subsequence of an input string — the Phobos GUI version
provides text boxes to specify the integer positions from which detection
should start (From) and end (To). Consequently Phobos always searches
for TRs with a pre-specified |ρ|-length contained in the current synthetic
data file being run. For the trial runs both the From and To parameters
were set equal to the length of the current PTRE (|ρ|) of which TRs were
to be detected.

� Repeat unit range options enable the user to indicate the range of motif
lengths to be detected. Trial run searches, for the purposes of this study,
searched for one motif length at a time as explained in the previous item.

� Treating N. When a string is sequenced and it is not clear which nucleotide
belongs in a certain position, the character N is printed in the corresponding
FASTA format file. Phobos provides the user with various options to deal
with N. A detailed discussion of how N can be processed is beyond the
scope of this thesis. The Phobos web page can, however, be consulted in
this regard by the interested reader. Note that the synthetic data, used
for trial runs, does not contain any Ns. Consequently this option was not
utilised when trial runs were executed.

Output options
Phobos has five modes selectable for output format. The main features of two
of these output modes are presented in this discussion. The three other formats
that may be selected are:
-general feature format (GFF);
-one-per-line format and;
-FASTA format.
A discussion of these formats are beyond the scope of this research. The Phobos

users manual, available from the web, provides detailed discussions of all the
output options. For the purposes of trial runs extended mode was selected.

Besides the previous mentioned output format options, Phobos output can either
be in so called standard format or in extended format. For both standard and
extended output the following is included:

� the genetic sequence’s name;

� the length of the detected TR;

� the number of ACGT and U characters;

� the normalised repeat length;

� the score;
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� the percentage of perfection; and

� the motif.

Besides the output indicated in the itemised list, Extended Phobos Output in-
cludes additional columns where the number of mismatches, insertions, deletions
and N s (if N s are not treated as motif errors) are output. A next line outputs
the type of motif errors and where they occur.

When using extended Phobos format there are three modes for printing a repeat
sequence:

� do not print sequence;

� print repeat sequence; and

� print repeat alignment.

The meaning of the first two items is clear. The print repeat alignment option
entails that an alignment of the repeat sequence and its perfect counterpart is
printed. For the trial runs the extended Phobos option was used.

Other switches that can be set when an imperfect TR detection is executed are:

� Mismatch score
During the alignment of a putative TR with its exact counterpart each
match is allocated a score of 1. The mismatch score can be allocated by
the user. This switch was not set for trial runs.

� Gap score
Phobos refers to indels as gaps. Gap scores are set by the user. This switch
was not set for trial runs.

� Recursion depth
Phobos uses a recursive alignment algorithm. A higher recursion depth leads
to a higher alignment quality. A recursion depth of 3 has a low alignment
quality. A recursion depth of 5 has a high alignment quality. A very high
alignment quality is achieved if the recursion depth is set to 7. For the
purposes of the executed trial runs, the recursion depth was set to 7.

Requirements on satellites to be reported
Options are provided that allow the user to set threshold switches to prevent the
output of unwanted data. For trial runs these switches were not manipulated.
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Default values were used. A detailed discussion of these switches is available from
the Phobos web page.

Note that default values were used for the remainder of the parameters. Results
obtained from running Phobos on the synthetic data files described in Section 9.1
are displayed in Table C.1 in Appendix C.

9.4.2 The mreps runs

mreps can be accessed at: http://mreps.univ-mlv.fr/. The input parameters
for mreps are less than that of Phobos and are as follows:

� -from n where n indicates the position of the nucleotide from which pro-
cessing should start, in case the complete file should not be processed.

� -to n where n indicates the position of the nucleotide up to where the input
string should be scanned for TRs.

� -step n this switch controls how the input string is read and buffered in
memory. The default value of −1 was allocated for the trial runs. This
means that the complete source string (s) was uploaded to memory and
processed at once.

� -minsize n n indicates the minimum length a detected TR should have in
order to be reported. This switch was not set for trial runs.

� -maxsize n here n is the maximum length a TR should have to be reported.
This switch was not set for the trial runs.

� -minp n n indicates here the minimum |ρ| of TRs to be detected. This
parameter was set to 10, 25, 50, 100 or 200, depending on |ρ| of the dataset
being run.

� -maxp n where n indicates the maximum |ρ| of TRs to be detected. Again,
this parameter was set to 10, 25, 50, 100 or 200, in line with |ρ| of the
current dataset.

� -exp x here x represents the minimum number of TREs to occur for a
string to be reported as a detected TR. For the trial runs x was set to two.

� -res n the term -res n refers to the so called resolution parameter. The
resolution parameter was introduced by Kolpakov et al. [2003] to manage
error toleration within a complete detected TR. The value of the resolution
parameter depends on the value of a so called error-rate, calculated when the
best period for a TR is determined and when merging is done. The larger

http://mreps.univ-mlv.fr/
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n is, the more motif errors are tolerated. A high resolution value does,
however, not prevent more perfect TRs from being detected and reported.
A higher resolution value implies a slower run time. The resolution value
is related to the motif length. In practice, a good resolution value depends
on |ρ|. Full details of the resolution parameter are beyond the scope of the
present discussion. These details can be found in Kolpakov et al. [2003].
According to the authors of mreps, a resolution value equal to 5 is usually
sufficient to detect all meaningful TRs whose motif lengths 10 ≤ |ρ| ≤ 15.
However, if |ρ| ≥ 15 the resolution should be adjusted. Depending on |ρ|
the value of the resolution parameter can be increased to 50. For the trial
runs the resolution parameter was set to 50.

� -allowsmall If the -allowsmall switch is off, then small TRs are filtered
out. It was observed that the difference between data detected when the
switch is on and when the switch is off is insignificantly small. A few more
nucleotides are detected correctly if |ρ| = 10 and a few more nucleotides
are detected incorrectly for |ρ| = 25 if the switch is off. The -allowsmall

switch does not have any impact on the outcome of detected data if |ρ| = 50;
|ρ| = 100 or |ρ| = 200. For the trial runs the -allowsmall switch was off.

� -xmloutput file This switch indicates that the output file should be in
.xml format.

� -fasta This switch was on for the trial runs, indicating that the format of
the DNA sequence input file is FASTA.

� -noprint If the -noprint switch is set then the attributes of detected
TRs are output only, not the TRs themselves. This switch was not set for
the trial runs.

The mreps trial run detection results are included in Table C.2, in Appendix C.
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9.4.3 The TRF runs

In spite of the fact that Tandem Repeats Finder (TRF) is fairly old (published
by Benson [1999]), it is still used for bench-marking purposes. For example, Lim
et al. [2012] bench-marked against TRF. Schaper et al. [2015] included TRF in their
studies. During my previous studies, the different versions of FireµSat were also
bench-marked against TRF. I provided an extensive discussion on the input and
output parameters of TRF in De Ridder [2010]. This text can be consulted for
additional details about any of the parameters of TRF that are briefly discussed
next.

1. File: The input DNA sequence file in FASTA format.

2. Match, Mismatch, Delta: Alignment parameters that represent the weights
for matches, mismatches and indels respectively.

Lower weights entered as the alignment parameters of TRF allow align-
ments with more mismatches and indels. Match = 2 has proven effective
with Mismatch and Delta5 ranging between 3 and 7. Mismatch and indel
weights are interpreted as negative numbers. The values allowed are 3, 5
and 7. Benson [2003a] points out that in these types of alignment options,
3 is more permissive and 7 is less permissive (i.e. −3 > −7). Benson
[2003b] recommends the values 2, 7 and 7 for Match, Mismatch and Delta,
respectively. These recommendations were used in the trial runs.

3. PM and PI: Detection parameters
Detection parameters consist of a matching probability PM and an indel
probability PI. By default, PM = 0.80 (80) and PI = 0.10 (10). The default
values were used for the trial runs.

4. Minscore: Minimum alignment score
The minimum alignment score indicates the alignment score that must be
met or that must be exceeded for a tandem repeat to be reported [Benson
[2003a]].

The alignment of two or more possibly approximate tandem repeats of a
motif (referred to as a pattern by Benson) of which the length of the re-
peated motif is n, is modelled by a sequence of n-independent Bernoulli
trials6. If two potential TREs are aligned then the alignment score is calcu-
lated using the weight penalties indicated in item 2 of this enumerated list.
For the purposes of the trial runs presented here minscore was set to 20,

5“Delta” represents weights for indels.
6Bernoulli trials are associated with a succession of coin tosses and is a fixed value over the

tosses or trials. In this sense, the tosses / trials are independent of each other.
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the default value. Several trial runs were conducted and the most accurate
detection outcome was achieved with minscore set to 20.

5. Maxperiod: Maximum period size
In the present context, period size may be considered to be the same as
|ρ|. As a default, TRF will find all TRs with a period size between 1 and
2000. However, the period size can be made smaller in length by setting
Maxperiod [Benson [2003a]]. For different trial runs this parameter was set,
each time, equal to the motif length (|ρ|) holding for the current data set.
Note that TRF does not provide switches for searching for TRs of a specific
motif length, e.g |ρ| = 25. Instead, if Maxperiod is set to 25 and run on
a data set with TRs whose motif length is 25, then TRF will attempt to
detect TRs of motif length 25 or less in that data set. As a result, TRF

could possibly miss a TR in a data set with motif ρ but classify a substring
of that TR as a TR with motif length < |ρ|.

TRF provides three additional optional switches that the user may specify as part
of the command line input, namely:
-f: flanking sequence;
-m: masked sequence file and;
-d: data file.
These switches were not set for trial runs.

TRF generates a summary table of repeats as well as an alignment explanation as
output. Detailed discussions of these are beyond the scope of this thesis and can
be found in De Ridder [2010].

Note that TRF detects repeats of motif lengths ranging from 1 to 2000 nucleotides.
Whenever a TR contains numerous repeats, the same repeat will be detected at
various period sizes (motif lengths). This does, however, not influence the results
of the trial runs.

Information about TRs detected by TRF with the indicated parameter settings is
included in Table C.3 of Appendix C.
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9.4.4 FireSat runs

To empirically examine the detection ability of the different underlying algo-
rithmic principles proposed in this thesis, three versions of FireSat, namely
FireSat1, FireSat2 and FireSat3 were implemented and run on the synthesised
data.

Recall that, as described earlier, FireSat1, FireSat2 and FireSat3 each establish
a candidate string as a possible TRE in their own way. FireSat1 determines the
candidate TRE without computing an LD at all, FireSat2 relies on computing
an LBD, and FireSat3 computes an LC that is compared against a threshold
value derived from a factor setting that is provided as input, as earlier described
in Subsection 9.3.2.

Each FireSat version then goes through the same steps of comparing the candi-
date TRE against the various filter settings (substring error, etc.), only accepting
the candidate TRE into the TR to date if it passes these various filter tests.

However, FireSat2, as implemented for the empirical tests described below, has
been slightly tweaked from its original description. In determining the candidate
TRE, the computed LBD is converted into an LC value7 and the resulting LCn

is computed. As for FireSat3, the LCn is then compared against a calculated
match score threshold value .8

Note that FireSat2′ was not fully implemented. Instead, it was empirically ver-
ified that the approach followed in FireSat2′ to determine the LC between two
strings indeed yields exactly the same LC as the approach of FireSat3. As a
result, TRs determined by a full implementation of FireSat2′ would correspond
identically to those determined by FireSat3, if all other parameters were set at
the same respective levels.

All FireSat versions were implemented as Matlab scripts and run against the
synthetic data. Details, describing the different software implementations of
FireSat, are given in Appendix C.

For the trial runs the 20 synthetic data sets were input to try do all trs 11.m

and try do all trs 11 0p8.m. The results obtained are reported in Section 9.5.
The same results can be obtained by manipulating the parameters of the func-
tional FireSat3 Matlab implementation.

The command help fsat gives a listing of the parameters that can be used as
input to FireSat3. The following parameter settings can be used for the runs on
the 20 different data sets:

7Of course, this is only an estimated value, since it is based on the LBD rather than the LD
per se.

8Recall from Section 9.3.2 that the parameters input to the the match score threshold func-
tion are |ρ| and a match score threshold factor, f .
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� sfname - the name of the source file.
Any source string in FASTA format can be used. For the trial runs the 20
synthetic data sets were used.

� mlen - the motif length to use when searching for TRs in the file.
Depending on the data file, one of the following should be provided as the
motif length: [10,25,50,100,200].

� tfact - the match score threshold factor Separate runs should be made on
each data set, first using a match score threshold factor of 0.8 and then
using a factor of 1.0.

� m_err_max_perc - the maximum motif error percentage This refers to the
filter limit denoted by εmax%

9 in the text above. It limits the maximum
number of mutations allowed in a TRE. To simulate the trial runs set it to
2× Perr, where Perr is the value associated with the data set used.

� mis_max_perc, del_max_perc and ins_max_perc - the maximum mismatch,
deletion and insertion error percentages respectively.
These can be used for fine tuning the number of mutational errors in a TRE
by type. No such fine tuning was attempted for the trial runs. To simulate
the trial runs each of these switches should be set to the Perr value of the
current data set.

� sigma_max_perc - The maximum weighted substring error (σmax%)
The default value of ∞ should be used to simulate the trial runs.

� p_mis, p_del and p_ins - The mutation penalties weights
These should be left at their default values of 1. Their values have no effect
on the outcome of the trial runs.

� beta_min - The minimum number of TREs in a TR (βmin).
The default value, namely 2, should be used to simulate the trial runs.

Each run delivered the following output for each detected TR:

� mlen - The motif length used in this run.

� tr_pos - The start position of the detected TR.

� motif_errperc_max - The value of εmax%.

� tr_len - The length of the detected TR.

9FireSat will detect PTRs if εmax% is set equal to 0.
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� ntres - The number of TREs in the TR.

� conf - The mean value of the LCns of the TREs (excluding the motif) in
the TR.

The Precision, Recall and F 1 score values resulting from the FireSat1, FireSat2

and FireSat3 implementations are displayed in Appendix C, Tables C.4, C.5,
C.6, C.7 and C.8. In Section C.1 of Appendix C it is explained how to run
FireSat.

9.5 Discussion of results

For each of the aforementioned TR-detecting algorithms the recall, precision and
F1 scores were calculated with respect to the various synthetic data sets. These
values for the various data sets run, using the various algorithms, can be seen in
the following tables in Appendix C:

� Phobos results are displayed in Table C.1;

� mreps results are displayed in Table C.2;

� TRF results are displayed in Table C.3;

� FireSat1 results are displayed in Table C.4;

� FireSat2 results are displayed in Table C.5 run with a match score threshold
factor of 0.8; and

� FireSat2 results run with a match score threshold factor of 1.0 is presented
in Table C.6;

� FireSat3 results run with a match score threshold factor of 0.8, are dis-
played in Table C.7; and

� FireSat3 results run with a match score threshold factor of 1, are displayed
in Table C.8.

Inspection of this data shows that FireSat1 does not perform as well as FireSat2

and FireSat3. However, for |ρ| = 200, the TRs detected by FireSat1 compares
well against those detected by TRF and mreps.

It will also be seen that results for FireSat2 are not given for all data files.
Recall that FireSat2 composes a new FA for each nucleotide in the input string
until a TR that starts at that nucleotide is detected. Consequently the runtime
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of FireSat2 increases dramatically as |ρ| increases. Furthermore the memory
requirements of FireSat2 grows significantly as |ρ| increases. For these reasons,
FireSat2 was only run on datasets where |ρ| = 10.

For these data sets, FireSat2 run with a match score threshold factor of 0.8,
outperforms TRF, mreps and FireSat3 in terms of the F1 scores. Its accuracy is
on a par with that of Phobos.

Figure 9.5 visualises the relative performance of mreps, TRF, Phobos and FireSat3,
both in the case of where the match score threshold factor = 0.8 throughout (de-
noted in the figure by FireSat3(0.8), and in the case where it is 1.0 (denoted in the
figure by FireSat3(1.0). The figure summarises relative algorithm performance of
all motif lengths at each of the four Perr values used. The recall performance is
shown in green and the precision in blue.
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Figure 9.5: Recall:Precision.

This figure suggests that FireSat3(0.8), FireSat3(1.0) and Phobos are clearly supe-
rior to mreps and TRF. Inspection of the data relating to the detailed performance
of the latter two algorithms will show, however, that while they perform relatively
well for motif lengths of 10 their performance degrades when the motif length in-
creases. Note also that their performance improves somewhat as Perr becomes
smaller.

Figure 9.6 displays the F1 score for these algorithms and confirms these findings
more concisely. Note that by this measure, FireSat3(1.0) slightly outperforms
FireSat3(0.8) and Phobos in all cases except where Perr = 10%. In that case,
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Figure 9.6: F1 score.
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Figure 9.7: F1 score — length compare.

Phobos just takes the lead. It is also relevant to note that FireSat3(1.0) signifi-
cantly outperforms its contenders when Perr = 20%.

Figure 9.7 presents F1 scores of the respective |ρ|-lengths for the contenders.
FireSat3(0.8) and FireSat3(1.0) outperforms their contenders where |ρ| = 200.
The same two algorithms slightly outperforms Phobos if |ρ| = 100 and |ρ| = 50.
Phobos, however, outperforms FireSat3(0.8) and FireSat3(1.0) for shorter motif
lengths i.e. |ρ| = 25 and |ρ| = 10. Note that the performance of TRF and mreps

is slightly more competitive for shorter lengths too.

FireSat3 used the MDI mutational precedence order for these trial runs. Table
C.9 reports on results achieved by FireSat3 where MID was used instead. Com-
paring Tables C.9 and C.8 shows that the mutational priority order did not have
a noteworthy impact on FireSat3 results.
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9.6 Conclusion

The foregoing has demonstrated that in most circumstances, FireSat3(1.0) is a
somewhat more accurate TR-detector than its contenders. Its superiority was
particularly pronounced for data sets where Perr = 20%. One could make the
same claims for FireSat2′ , since the TRs it detects would be exactly the same as
those of FireSat3.

FireSat1 was not as effective at TR detection, but still compared favourably
against other existing TR detectors whenever TRs with longer motif lengths
should be detected.

Although FireSat2 appears to be a highly accurate TR-detector alternative, its
implementation presents practical challenges.

The next chapter concludes this thesis and points to future research initiatives.
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“We cannot do great things on this earth. We can only do small things with great
love.” ... Mother Teresa

This concluding chapter has three sections. Section 10.1 evaluates the hypothesis
that was presented in Chapter 1 in terms of the research findings described above.
Section 10.2 summarises the outcome of the trial runs reported on in Chapter 9.
Section 10.3 points to future research initiatives suggested by this study.

10.1 Evaluating the original research hypothesis

Recall from Chapter 1 that this research project was directed at investigating the
following hypothesis:

Finite Automata can be used to accurately detect minisatellite and
satellite TRs in DNA.

The investigation led to four different FireSat algorithms. Each relied on a
newly defined type of automaton, specifically tailored for the task. The harmonic
mean of recall and precision measurements was used to compare the performance
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of these algorithms against one another as well as against the performance of
relevant other algorithms in the domain (as identified in Chapter 3). The use of
the harmonic mean as a suitable metric was motivated in Chapter 9. Detailed
results of these comparisons are reported on in tabular format in Appendix C.
Chapter 9 graphically represents some of the main results.

The four algorithms and the different finite automata upon which they rely can
be considered under four sub-hypotheses, each of which are now mentioned and
briefly discussed below with respect to their overall performance as measured by
the harmonic mean:

� The cascaded PFAs as used in FireSat1 result in accurate detec-
tion of minisatellite and satellite TRs in DNA

Recall that in FireSat1, quad-PFAs were cascaded together and possibly
also cascaded with a mono-, di- or tri-PFA. This arrangement was indeed
able to detect a subset of the TRs present in the generated synthetic data.
However, the F1 scores of FireSat2 and FireSat3 are higher than those
of FireSat1 in all but one case, namely when Perr = 20% and |ρ| = 10,
where FireSat1 marginally outperforms the others. Consequently it can
be concluded that the cascading and decoration of quad-PFAs in a brute
force manner as was done for FireSat1 does not deliver a TR detecting
algorithm that is as accurate as the other proposed algorithms.

� The cascaded pCAT3s as used in FireSat2 result in accurate de-
tection of minisatellite and satellite TRs in DNA

For each potential first TRE FireSat2 builds a new LBD NCAT3 by cas-
cading pCAT3s corresponding to unique substrings into which ρ can be
divided. It is time consuming to construct a new LBD NCAT3 for each po-
tential first TRE of a TR. Furthermore the resulting NCAT3s are memory
intensive since all the potential LBD paths are included. The path with
the smallest distance is selected, while also giving preference to specific
mutation types, as discussed earlier. Consequently FireSat2 was only im-
plemented for a |ρ| = 10. For |ρ| = 10 FireSat2 outperforms FireSat1 and
FireSat3. FireSat2 also performs better than mreps and TRF. Its accuracy
performance is on a par with that of Phobos.

FireSat2 is however hampered by runtime and memory difficulties. It be-
came clear that if, for a given motif length, an automaton could be con-
structed once only and then subsequently decorated with the next potential
first element (ρ) of a TR these limitations could be addressed. This insight
led to the proposal of FireSat2′ .

� The cascaded nPCAT3s as used in FireSat2′ result in accurate
detection of minisatellite and satellite TRs in DNA
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Given each motif length, FireSat2′ entails the cascading of mono-pNCAT3s
in a fixed way, such that transitions are merely relabelled whenever the
next motif of the same length is to be considered. To further prevent a
search space explosion, paths that allow for more than the allowed εmax%

errors are eliminated from the search space. Even though FireSat2′ was not
fully implemented, FireSat2′ and FireSat3 are deemed to have identical
performance. This is because the two algorithms select TREs according to
the same logic, relying on the computation of the LCn between two strings.1

The algorithms differ in the way in which the LCn between these strings is
computed, but empirical tests verified that the same LCn value is indeed
always obtained. The same claims that are made for FireSat3 below hold
consequently for FireSat2′ too.

� The composition of CAT3s as described in FireSat3 results in
accurate detection of minisatellite and satellite TRs in DNA

FireSat3 is a very accurate, memory efficient TR detector. In particular
FireSat3 detects TRs more accurately than contender algorithms for longer
repetitive motifs, for example if |ρ| ≥ 50. Furthermore FireSat3 is also
more accurate whenever TRs should be detected that contain a high motif
error percentage, for example, if εmax% = 20%.

The approach of FireSat3 differs significantly from that of FireSat1,
FireSat2 and FireSat2′ . If fully implemented, FireSat2′ would, however,
be as accurate and generic as FireSat3. The accuracy performance is on a
par with the best in the world.

10.2 A comparison of contender algorithms

From Chapter 9 it is clear that, in most cases, FireSat3 detects TRs more ac-
curately than mreps and TRF. Of the contender algorithms, Phobos2 has been
identified as the most accurate. In summary it is noted that:

� Phobos is more accurate than FireSat3 when detecting tandem repeats
in synthetic data whenever the motif error percentage is 10%. However,
FireSat3 detects tandem repeats more accurately in the generated synthetic
data when motif error percentages of 2%, 5% and 20% are present.

1The FireSat2′ implementation calculates the LD as well as the LC.
2Note that the algorithmic details of Phobos have not been published. The author of Phobos

requests that the Phobos website: http://www.mybiosoftware.com/sequence-analysis/

4834 should be referenced if results generated by Phobos are published.

http://www.mybiosoftware.com/sequence-analysis/4834
http://www.mybiosoftware.com/sequence-analysis/4834
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� An analysis of detected tandem repeats, processed per motif length, shows
that FireSat3 performs better than Phobos for the data sets where the
motif length is longer than 25. (See Figure 9.7.)

� FireSat3 consistently performs well for all motif errors and all motif lengths.
There are, however, certain special combinations of Perr and motif lengths
where some of the contender algorithms outperform FireSat3. To some
extent, the performance of the contender algorithms seems data dependant.

Of course all these claims also hold for FireSat2′ . While exploring the main hy-
pothesis and subsequent sub-hypothesis of the research, the notion of a counting
automaton — later called a CAT3 — suggested itself. It was realised that by
simply adjusting the number of counter-against-counter comparisons, additional
types of automata could be defined that accept languages belonging to different
levels within the Chomsky language hierarchy. Chapter 4 records these findings
as a by-product of this thesis, even though the material is not concerned with
TR detection per se.

10.3 Future research possibilities

There are various possibilities for extending, refining or varying some of the search
strategies in each of the four algorithms developed in this thesis. Some of these
possibilities are listed below.

FireSat1

A DFA constructed in FireSat1 is made up of cascaded quad-pDFAs plus a
tail pDFA that may be shorter. The decision to base FireSat1 on concate-
nated quad-pDFAs was a pragmatic one, derived in part from experience
in using ADFAs for microsatellite detection in FireµSat2. The fact that
|Σ| = 4 influenced the decision to use quad-pDFAs. It held up the prospect
of efficiently recognising minisatellites or satellites based on a DFA that is
built from a limited number of unlabelled “off-the-shelf” skeleton pDFAs.
Had larger pDFAs been used (e.g. a pDFA recognising a string of five nu-
cleotides and its mutations), the number of off-the-shelf skeleton pDFAs
would have had to increase. More compromises would also have to be made
in terms of dealing with mutations.

However, there might be applications where a version of FireSat1 based
on tri-pDFAs instead of quad-pDFAs would be of particular value. This is
because protein synthesis relies on sequences of amino acids, each of which
is encoded by exactly three adjacent nucleotides (Crick et al. [1961]). The
precise possibilities in this regard is a matter for future research.
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Another line of possible future investigation is to determine how FireSat1

will perform if ρ is divided into substrings with unique characters. The
principles outlined for FireSat2 in Section 7.1 could be employed. Instead
of the mono-, di-, tri- and quad-pCAT3s that FireSat2 cascades, FireSat1

could cascade mono-, di-, tri- and quad-pDFAs.

FireSat2

The NCAT3 built by FireSat2 results in inefficiencies in terms of run time
and memory management. Decisions about the next TRE are based on
an LBD rather than an actual LD computation. The precise relationship
between the LBD calculated by the FireSat2 NCAT3 and the actual LD
has not been explored in this thesis. While it is clear that many times,
the LD and LBD will be exactly the same, it is left for future research to
spell out the precise characteristics of source and destination strings that
generate differences between them.

It may be meaningful to investigate alternative ways of implementing
FireSat2 to improve memory and run time effectiveness. Note that the
run time and the number of states will be reduced drastically if FireSat2

is pruned in line with εmax%.

There are other problems within the context of computational biology where
an NCAT3, similar to the NCAT3 constructed for FireSat2, can be built
once and then re-used. This can be done, for example, in the context of a
global search where a genetic query sequence is given and a database should
be searched for related sequences.

FireSat2′ and FireSat3

FireSat3 proved to be very accurate for TR detection. Since FireSat2′

would detect exactly the same TRs it would be as accurate as FireSat3 if
fully implemented.

A threshold function together with a threshold factor have been established,
that are used in conjunction with one another to increase the detection
accuracy of FireSat3.

This algorithm could, however, be implemented in a more runtime effective
way, as well as a more human friendly manner. To improve the runtime
significantly, an FPGA implementation of FireSat3 is a possibility for the
future. Future attention should also be given to improving the user inter-
face.

There are a variety of other pattern matching problems where the FireSat2′ and
FireSat3 approaches may be effective. Here are a few examples.
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� Given two strings, find their common approximate substrings. Of course,
in this problem, the extent of approximation would need to be specified.

� Search for the best approximate match of a small string in a larger string.

� Solve the shortest superstring problem. This problem takes as input a large
string, referred to as the superstring, and a set of short strings. The objec-
tive is then to find, in the superstring, the smallest substring that contains
all the short strings.

Finally, ways of extending, refining and applying the the counting automata de-
scribed in Chapter 4 deserve further investigation.
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A
Counting Automata Type 0

Counting Automata Type 0 (CAT0s) and TMs are considered here as evaluators
of simple boolean expressions. Note that these are preliminary ideas.

A TM always has natural output in the sense that when it stops processing,
then whatever is left on the tape can be considered to be its output. This is
irrespective of whether or not the tape has been solely used as a scratch pad. In
a very natural manner, then, it follows that we can use a TM to do calculations
by using, for example, binary encoding.

In contrast to TMs, CAs do not have natural output. It was noted in previous
sections that output capability can be added to DFAs resulting, for example, in
Moore and Mealy machines. Such DFAs with output capability are sometimes
referred to as transducers. By taking into account what is put into, left in or
popped from the stack, PDAs can also serve the roll of transducers—especially
DPDAs for doing parsing.

CAs can similarly be modified to output their counters in a meaningful manner
and serve the role of transducers. For the purposes of this thesis, however, CAs
with output capability will not be considered.

Of interest is the evaluation of a simple boolean expression with one of the op-
erators >,≥, <,≤,= or 6=. Such a boolean expression either yields a true value
(an outcome of accept in our context) or a false value (a reject outcome that is
equivalent to crash in our context). CAT0s are defined in Definition A.0.1.
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Definition A.0.1. Computing Automata Type 0
A Computing Automata Type 0 (CAT0) is a 6-tuple (Q,Σ, δ+, δ−, q0,z) where:

� Q = {q0, q1, q2, · · · qn} is a non-empty finite set of states. Every qi is a tuple
— 〈pi, di〉 where di is an integer counter and pi is a state identifier. The
initial value of di is zero. di is incremented or decremented every time state
qi = 〈pi, di〉 is entered.

� q0 ∈ Q is designated to be the start state.

� A subset of Q represents the final states (z).

� Σ = {a1, a2, a3...as} is a finite alphabet.

� δ+ : Q×Σ→ Q is a possibly partial incrementation transition function. For
δ+(qm, ar) → qi, every time state qi = 〈pi, di〉 is entered di is incremented.
δ+ is graphically depicted with I.

� δ− : Q×Σ→ Q is a possibly partial decrementation transition function. For
δ−(qm, ar) → qi, every time state qi = 〈pi, di〉 is entered di is decremented
if di > 0. In case di = 0 a zero signal, α, is triggered. δ− is graphically
depicted with B.

States that are not final states may be cloned. By this is meant that the original
state, say qi, is replaced by two or more clones, say qiA · · · qiZ. Cloned states
share the value of their counter, di. To avoid redundancy, the incoming and/or
outgoing edges of clone states must differ. Note that although a start state may be
cloned, only one start state may have the functionality of a start state, indicated
by an incoming edge out of no where. �

In what follows, illustrations are provided of how some of the simple relational
expressions that have been assumed possible to evaluate can be defined by TMs
and CAT0s (see Figures A.1, A.2, A.4(a), A.4(b) and A.5).

All input is assumed to be of the form axcay∆∆∆ · · · , where x, y ≥ 0. The tape
is assumed to be of infinite length. An example of input is aaaaacaaa∆∆ · · ·. The
five a’s on the left of the c represent the left operand. The three a’s on the right
of the c represent the right operand.

A.1 A TM halting on axcay when x = y

Figure A.1 presents a TM halting on axcay where x = y.
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START

(a,x,R)

(a,a,L)

(c,c,R)

(a,Δ,L)

q5
q3

(a,a,R)

q7

(a,a,R)

(c,c,R)

q2

q4

(Δ,Δ,L)

q6

(c,c,L)

(a,a,L)

(x,x,R)
(a,x,R)

HALT

(c,c,R)

q8

(Δ,Δ,R)

(Δ,Δ,R)

q9

Figure A.1: A TM halting on axcay where x = y.

The TM presented in Figure A.1 determines whether it should halt (indicating
the first group of a’s is equal to the second group of a’s) or not by processing the
described input string as follows. In the start state a c or an a is read.

If a c is read in the start state, it means that x = 0. Consequently y should also
be equal to 0. In state q9 a ∆ is read to proceed to the halt state — x = y = 0.

If an a is read in the start state the machine prints a x, the tape head moves right
and the TM proceeds to state q2. In state q2 the TM iterates, moving the tape
head right through the remainder of as on the tape to the left of the separator c
until the separator, c, is encountered.

Reading a c, the TM proceeds to state q3 where it iterates (moving the tape head
right) through all the as to the right of the separator until the tape is empty and
thus ∆ is encountered. The machines then proceeds to state q4, moving the tape
head to the left to read the most right a (state q4) on the tape, printing a ∆,
proceeding to state q5 where it iterates, moving the tape head left, through the
remainder of as to the right of the separator c on the tape.

When the separator c is read on the tape the machine proceeds to state q6 where
it iterates through the first group of as moving the tape head to the left until an
x is read.

In that case the tape head moves right to read either an a or a c (state q7).
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If a c is read in state q7, then all the as to the left of the separator have been
changed to xs. The TM proceeds to state q8 where it checks if ∆s have been
printed for all as to the right of the separator c too. If that is indeed the case
a ∆ is read and the TM proceeds to the halt state indicating that the number
of as to the left of the separator is equal to the number of as to the right of the
separator.

If an a is read in state q7 the machine prints an x and the described loop (q2 −
q3 − q4 − q5 − q6 − q7) is executed until a c is read in state q7 or the machine
crashes.

A.2 A CAT0 halting on axcay when x = y

Figure A.2 presents a CAT0 that also halts on input axcay if x = y. Clone states
q1A and q1B replace state q1. Each refer to the counter d1 of state q1. Note that
the outgoing edges of these cloned states differ.

q1Aq1A

q0

ca

Δ 

Δ 

α 

a

q1α 
q1B

q2

Figure A.2: A CAT0 halting in a final state on axcay where x = y.

In state q0 the number of a’s belonging to the first group of a’s is counted. When
the c (separator) is read, we move to state q1A and the second group of a’s is
counted.

Once all the a’s have been read, the first ∆ is read while we are still in state q1A.
At that point, we move from state q1A to state q0. We note that the transition
arrow head of the transition labelled ∆ is clear thus d0 (the counter associated
with q0 ) is decremented on entrance.

The next ∆ is read while we are in state q0. The machine moves again to state
q1A decrementing d1. These transitions continue, traversing through ∆’s looping
from q1A to q0, until d0 = 0.
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Because d0 can no longer be decremented, a zero signal (α) is triggered. The
machine branches to state q1B, decrementing counter d1 which triggers another
zero signal α, and the machine reaches its final state q2.

Thus the final state, q2 is only reached when number of a’s in the first group is
equal to the number of a’s in the second group.

A.3 A TM halting on axcay when x < y

The TM presented in Figure A.3 halts on the input axcay where x < y.

-START

(a,x,R)

(a,a,L)

(c,c,R)

(a,Δ,L)

q5
q3

(a,a,R)

q7

(a,a,R)

q2

q4

(Δ,Δ,L)

q6

(c,c,L)

(x,x,R)
(a,x,R)

(a,a,R)

HALT

(c,c,R)

q8

(a,a,R)

(a,a,L)

Figure A.3: A TM halting on axcay where x < y.

The same principles used during the development of the TM depicted in Figure
A.1 were used. In state q8 however an a should be read to reach the HALT state
instead of a ∆. Thereby the TM verifies that there is at least one more a in the
second group of as than in the first. The TM presented in Figure A.3 will not be
discussed in detail.
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A.4 A CAT0 halting on axcay when x < y

Figure A.4(a) shows a CAT0 that halts on axcay as input, provided that 0 < x < y.
Note that this automaton does not handle the case when x = 0. Figure A.4(a)
extends this to the case where x ≥ 0.

q2q2

q0q0

ca

Δ 

Δ 

α 

a

q1q1

a

q3q3

a

q4q4

(a) Requires that x > 0

q7q7

ca

Δ 

Δ 

α 

a

q6q6

a

q3q3

a

q4q4

q0q0

q5

c q1q1

q2q2

Δ 

a

aa

(b) Requires that x ≥ 0

Figure A.4: CAT0s that halting in a final state on input axcay and x < y

In Figure A.4(a), the first group of a’s is counted by incrementing d0, the counter
of q0. (Note the coloured arrow head entering q0.) After the first group of a’s have
been read, the c that separates the two groups of a’s is read. We then progress to
state q1 where we read the first a of the second group of a’s to progress to state
q2.

To ensure that there is at least one a more in the second group than there is
in the first group we read the second a of the second group of a’s and move to
state q3. In state q3 counter d3 is incremented for each remaining a read (the
loop-transition with the coloured arrow head labelled with a) until ∆ is read. ∆
indicates the end of the input. Next we traverse between q0 and q3 by reading ∆
from the infinite tape. If we are in state q3 and we read a ∆ we progress to state
q1 along a clear transition arrow head. Thus the counter d0 is decremented. From
q0 we read another ∆ and move to state q3 where counter d3 is decremented. Note
that the transition labelled with ∆ also has an clear transition arrow head. This
process continues until d0 = 0. If d0 = 0 and d0 is entered again α is triggered
which leads to the accept state, state q4.

This automaton can be extended to cater for x = 0 too (i.e. the first sequence of
a’s is empty) as shown in Figure A.4(b). Two additional states, labelled q1 and
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q2 in Figure A.4(b) are required. At state q0 an edge labelled with c should be
added. This edge leads to q1. In state q1 at least one a should be read. Thus we
have an outgoing edge from q1 labelled with an a and leading to state q2 where
any number of a’s can be read. Eventually ∆ is reached and the final state, q4,
is entered. The decrementing functionality is not used if x = 0.

A.5 A CAT0 halting on axcay when x > y

Figure A.5 depicts a CAT0 that accepts binary words of the form axcay if x > y.

q0q0
c

Δ 

a

q3q3

Δ 

a

q2q2

q1q1

a

 α 

Figure A.5: A CAT0 halting in a final state on input axcay and x > y

By reading the first group of a’s and incrementing d0 every time an a is read state
q0 keeps track of the number of a’s stored in the left operand in Figure A.5. When
the separator, c is read the machine proceeds to state q1 where the first a of the
second group of a’s are read and there is proceeded to state q2. State q2 keeps
track of the number of a’s in the second group of a’s. When ∆ is encountered
the machine starts to loop between state q0 and state q2 where d0 and d2 are
respectively decremented upon transition entrance. The pre mentioned loop is
executed until d2 is entered while it is zero. If that happens the zero indicator α
is triggered. The machine proceeds to the halt state. Counter d0 is decremented
first thus the machine presented in Figure A.5 will only halt if there is at least 1
a more in the first group of a’s than in the second group of a’s.
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A.6 Conclusion: remarks about CAT0s

CAT0s as defined in Definition A.0.1 and presented in Figures A.2, A.4(a), A.4(b)
and A.5 have Moore machine characteristics in the sense that incrementation and
decrementation are done in the states. Mealy machine characteristics can also
be ascribed to CAT0s in the sense that the transitions joining the different states
carry information indicating whether addition or subtraction should be done in
a particular state.

Note that counters in the shown examples are often incremented redundantly in
that their incrementation does not contribute towards the decision about whether
a specific string should be accepted or not. These transitions can probably be
replaced by neutral transitions where neither incrementing nor decrementing take
place. In the interest of simplicity and consistency, neutral transitions will not
be considered.



B
pCAT3 Transition Tables

This appendix supports Chapter 7 where both FireSat2 and FireSat2′ are pre-
sented. FireSat2 implements cascaded mono-, di-, tri- and quad-pCAT3s to
construct an NCAT3(ρ) where ρ = υ1, υ2 · · · υn and 1 ≤ |υ| ≤ 4.

The different pCAT3s are constructed by adding for a specific |υi| the mismatch
pCAT3(υi) to the deletion pCAT3(υi). The resultant pCAT3 is thereafter added
to the insertion pCAT3(υi). The di-pCAT3 (|υ| = 2) is for example constructed
by adding the mismatch di-pCAT3 to the deletion di-pCAT3. The resultant di-
pCAT3 is thereafter added to the insertion di-pCAT3. The construction of the
di-pCAT3, catering for all the mutation types, is illustrated in Subsection 7.1.3.
Note that cascading states are indicated with a • only in the first column of the
corresponding transition table.

Before pCAT3(υi), catering for all the mutation types can be computed, the
mismatch pCAT3(υi), deletion pCAT3(υi) and insertion pCAT3(υi) should be
available. Graphical depictions of these pCAT3s are given in Subsections 7.1.1
(quad-pCAT3s) and 7.1.2 (tri-, di- and mono-pCAT3s). By referring to these
machines and applying the algorithm inside Rule 2 of Part 3 of Kleene’s Theorem1

the tables included below were compiled. Graphical illustrations of computed
transition graphs are in some cases also provided. Cascading states are indicated

1Rule 2 of Part 3 of Kleene’s theorem states that if there is an FA called FA1 that accepts
the language defined by the regex r1 and there is an FA called FA2 that accepts the language
defined by the regex r2, then there is an FA, say FA3, that accepts the language defined by the
regex r1 + r2.
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with dotted circles. Note that the counter updating and associated pseudo states,
indicated in Chapter 7, are not included here.

B.1 Summing mono pCAT3s over all mutation

types

Note that the same steps outlined in Section 7.1.3 have been followed. The steps
are not repeated in this Appendix in detail. A • indicates a cascading state.

States \ Alpha a c g t

R0 = P0 or D•0 P1 or D1 = R1 ⊥ ⊥ ⊥
R•1 = P •1 or D•1 ⊥ ⊥ ⊥ ⊥

Table B.1: A transition table of a mono-pCAT3 catering for a perfect match and
a deletion.

States \ Alpha a c g t

Z0 = M0 or I0 I1 or M1 = Z1 I2 or M2 = Z2 I2 or M2 = Z2 I2 or M2 = Z2

Z•1 = I•1 or M•1 ⊥ ⊥ ⊥ ⊥
Z2 = I2 or M2 I1 or ⊥ = Z3 ⊥ ⊥ ⊥
Z•3 = I•1 or ⊥ ⊥ ⊥ ⊥ ⊥

Table B.2: A transition table, displaying a mono-pCAT3 catering for a mismatch
and an insertion.

Finally, the combined mono perfect / mono deletion pCAT3 presented in Table B.1
could be added to the sum of the mismatch and insertion pCAT3 presented in Ta-
ble B.2. The resulting transition table is shown in Table B.3. The corresponding
transition graph is shown in Figure B.1.

States \ Alpha a c g t

Q•0 = Z0 or R•0 Z1 or R1 = Q1 Z2 or ⊥ = Q2 Z2 or ⊥ = Q2 Z2 or ⊥ = Q2

Q•1 = Z•1 or R•1 ⊥ ⊥ ⊥ ⊥
Q•2 = Z•2 or ⊥ Z3 or ⊥ = Q3 ⊥ ⊥ ⊥
Q•3 = Z•3 or ⊥ ⊥ ⊥ ⊥ ⊥

Table B.3: Transition table for a mono-pCAT3 where 0 ≤ e ≤ 1. .
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aq0 q1

q2

c,g,t

q3

a

M • 

I

D • P • 

I • 

Figure B.1: A mono-pCAT3 for ρ = a

B.2 Summing tri-pCAT3s over all mutation types

The same principles described for mono-pCAT3s and di-pCAT3s are employed
to construct a tri-pCAT3 that caters for all mutation types. To obtain Table
B.4 the mismatch machine and deletions machine (both presented in Figure 7.5)
are added together. The resultant machine, is added to the insertion tri-pCAT3,
provided in Figure B.2. Table B.5 is obtained. Table B.5 defines a tri-pCAT3

catering for perfect matches, mismatches, deletions and insertions. Note that
Table B.5 has a total number of 30 states.

States \ Alpha a c g t

Z•0 = M0 or D•0 M1 or D1 = Z1 M4 or D4 = Z2 M4 or D5 = Z3 M4 or ⊥ = Z4

Z•1 = M1 or D•1 M5 or ⊥ = Z5 M2 or D2 = Z6 M5 or D6 = Z7 M5 or ⊥ = Z5

Z•2 = M4 or D•4 M5 or ⊥ = Z5 M2 or ⊥ = Z8 M5 or D7 = Z9 M5 or ⊥ = Z5

Z•3 = M4 or D•5 M5 or ⊥ = Z5 M2 or ⊥ = Z8 M5 or ⊥ = Z5 M5 or ⊥ = Z5

Z4 = M4 or ⊥ M5 or ⊥ M2 or ⊥ = Z8 M5 or ⊥ = Z5 M5 or ⊥ = Z5

Z5 = M5 or ⊥ M6 or ⊥ = Z10 M6 or ⊥ = Z10 M3 or ⊥ = Z11 M6 or ⊥ = Z10

Z•6 = M2 or D•2 M6 or ⊥ = Z10 M6 or ⊥ = Z10 M3 or D3 = Z12 M6 or ⊥ = Z10

Z•7 = M5 or D•6 M6 or ⊥ = Z10 M6 or ⊥ = Z10 M3 or ⊥ = Z11 M6 or ⊥ = Z10

Z8 = M2 or ⊥ M6 or ⊥ = Z10 M6 or ⊥ = Z10 M3 or ⊥ = Z11 M6 or ⊥ = Z10

Z•9 = M5 or D•7 M6 or ⊥ = Z10 M6 or ⊥ = Z10 M3 or ⊥ = Z11 M6 or ⊥ = Z10

Z•10 = M•6 or ⊥ ⊥ ⊥ ⊥ ⊥
Z•11 = M•3 or ⊥ ⊥ ⊥ ⊥ ⊥
Z•12 = M•3 or D•3 ⊥ ⊥ ⊥ ⊥

Table B.4: Transition table: addition of deletion and mismatch tri-pCAT3s.
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States \ Alpha a c g t

T •0 = I0 or Z•0 I1 or Z1 = T1 I4 or Z2 = T2 I4 or Z3 = T3 I4 or Z4 = T4

T •1 = I1 or Z•1 I7 or Z5 = T5 I2 or Z6 = T6 I7 or Z7 = T7 I7 or Z5 = T5

T •2 = I4 or Z•2 I1 or Z5 = T8 I5 or Z8 = T9 I5 or Z9 = T10 I5 or Z5 = T11

T •3 = I4 or Z•3 I1 or Z5 = T8 I5 or Z8 = T9 I5 or Z5 = T11 I5 or Z5 = T11

T4 = I4 or Z4 I1 or Z5 = T8 I5 or Z8 = T9 I5 or Z5 = T11 I5 or Z5 = T11

T5 = I7 or Z5 I8 or Z10 = T12 I2 or Z10 = T13 I8 or Z11 = T14 I8 or Z10 = T12

T •6 = I2 or Z•6 I10 or Z105 = T15 I10 or Z10 = T15 I3 or Z12 = T16 I10 or Z10 = T15

T •7 = I7 or Z•7 I8 or Z10 = T12 I2 or Z10 = T13 I8 or Z11 = T14 I8 or Z10 = T12

T8 = I1 or Z5 I7 or Z10 = T17 I2 or Z10 = T13 I7 or Z11 = T18 I7 or Z10 = T17

T9 = I5 or Z8 I1 or Z10 = T19 I6 or Z10 = T20 I6 or Z11 = T21 I6 or Z10 = T20

T •10 = I5 or Z•9 I1 or Z10 = T19 I6 or Z10 = T20 I6 or Z11 = T21 I6 or Z10 = T20

T11 = I5 or Z5 I1 or Z10 = T19 I6 or Z10 = T20 I6 or Z11 = T21 I6 or Z10 = T20

T •12 = I8 or Z•10 I9 or ⊥ = T22 I2 or ⊥ = T23 I9 or ⊥ = T22 I9 or ⊥ = T22

T •13 = I2 or Z•10 I10 or ⊥ = T24 I10 or ⊥ = T24 I3 or ⊥ = T25 I10 or ⊥ = T24

T •14 = I8 or Z•11 I9 or ⊥ = T22 I2 or ⊥ = T23 I9 or ⊥ = T22 I9 or ⊥ = T22

T •15 = I10 or Z•10 I11 or ⊥ = T26 I11 or ⊥ = T26 I3 or ⊥ = T25 I11 or ⊥ = T26

T •16 = I•3 or Z•12 ⊥ ⊥ ⊥ ⊥
T •17 = I7 or Z•10 I8 or ⊥ = T27 I2 or ⊥ = T23 I8 or ⊥ = T27 I8 or ⊥ = T27

T •18 = I7 or Z•11 I8 or ⊥ = T27 I2 or ⊥ = T23 I8 or ⊥ = T27 I8 or ⊥ = T27

T •19 = I1 or Z•10 I7 or ⊥ = T28 I2 or ⊥ = T23 I7 or ⊥ = T28 I7 or ⊥ = T28

T •20 = I6 or Z•10 I1 or ⊥ = T29 ⊥ ⊥ ⊥
T •21 = I6 or Z•11 I1 or ⊥ = T29 ⊥ ⊥ ⊥
T22 = I9 or ⊥ ⊥ I2 or ⊥ = T23 ⊥ ⊥
T23 = I2 or ⊥ I10 or ⊥ = T24 I10 or ⊥ = T24 I3 or ⊥ = T25 I10 or ⊥ = T24

T24 = I10 or ⊥ I11 or ⊥ = T26 I11 or ⊥ = T26 I3 or ⊥ = T25 I11 or ⊥ = T26

T •25 = I•3 or ⊥ ⊥ ⊥ ⊥ ⊥
T26 = I11 or ⊥ I12 or ⊥ = T30 I12 or ⊥ = T30 I3 or ⊥ = T25 I12 or ⊥ = T30

T27 = I8 or ⊥ I9 or ⊥ = T22 I2 or ⊥ = T23 I9 or ⊥ = T22 I9 or ⊥ = T22

T28 = I7 or ⊥ I8 or ⊥ = T27 I2 or ⊥ = T23 I8 or ⊥ = T27 I8 or ⊥ = T27

T29 = I1 or ⊥ I7 or ⊥ = T28 I2 or ⊥ = T23 I7 or ⊥ = T28 I7 or ⊥ = T28

T30 = I12 or ⊥ ⊥ ⊥ I3 or ⊥ = T25 ⊥

Table B.5: Transition table representing a tri-pCAT3, catering for insertions,
perfect matches, deletions and mismatches. This machine caters for at most 9
insertions, 3 mismatches and 3 deletions.

B.3 Summing quad-pCAT3s over all mutation

types

Transition Table B.6 presents the automaton (in tabular form) that results from
the summation of the mismatch and deletion quad-pCAT3s. The pre mentioned
automata are presented in Figures 7.1 and 7.2. The insertion quad-pCAT3 is
presented in Figure 7.4. This automaton is added to the automaton presented in
Table B.6 to obtain Table B.7. Note that the final table, Table B.7 defines a quad-
pCAT3 with 43 states that caters for perfect matches, mismatches, deletions and
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a c
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g
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I3

Figure B.2: An insertion tri-pCAT3 catering for ρ = acg, allowing for at most 3
consecutive insertions and for a total of 9 insertions.

insertions. For any state iXj if i = ∆ then the predicate on the edge (transition)
entering X must be dx < 4; if j = • then X is a cascading state. Both of these
conditions can hold at the same time.



APPENDIX B. PCAT3 TRANSITION TABLES 279

States \ Alpha a c g t

Z•0 = M0 or D0• M1 or D1 = Z1 M5 or D9 = Z2 M5 or D5 = Z3 M5 or D4 = Z4

Z•1 = M1 or D•1 M6 or ⊥ = Z5 M2 or D2 = Z7 M6 or D6 = Z8 M6 or D14 = Z9

Z•2 = M5 or D•9 M6 or ⊥ = Z5 M2 or ⊥ = Z10 M6 or D12 = Z11 M6 or D15 = Z12

Z•3 = M5 or D•5 M6 or ⊥ = Z5 M2 or ⊥ = Z10 M6 or ⊥ = Z5 M6 or D10 = Z13

Z•4 = M5 or D•4 M6 or ⊥ = Z5 M2 or ⊥ = Z10 M6 or ⊥ = Z5 M6 or ⊥ = Z5

Z5 = M6 or ⊥ M7 or ⊥ = Z14 M7 or ⊥ = Z14 M3 or ⊥ = Z17 M7 or ⊥ = Z14

Z•7 = M2 or D•2 M7 or ⊥ = Z14 M7 or ⊥ = Z14 M3 or D3 = Z15 M7 or D7 = Z16

Z•8 = M6 or D•6 M7 or ⊥ = Z14 M7 or ⊥ = Z14 M3 or ⊥ = Z17 M7 or D11 = Z18

Z•9 = M6 or D•14 M7 or ⊥ = Z14 M7 or ⊥ = Z14 M3 or ⊥ = Z17 M7 or ⊥ = Z14

Z10 = M2 or ⊥ M7 or ⊥ = Z14 M7 or ⊥ = Z14 M3 or ⊥ = Z17 M7 or ⊥ = Z14

Z•11 = M6 or D•12 M7 or ⊥ = Z14 M7 or ⊥ = Z14 M3 or ⊥ = Z17 M7 or D13 = Z19

Z•12 = M6 or D•15 M7 or ⊥ = Z14 M7 or ⊥ = Z14 M3 or ⊥ = Z17 M7 or ⊥ = Z14

Z•13 = M6 or D•10 M7 or ⊥ = Z14 M7 or ⊥ = Z14 M3 or ⊥ = Z17 M7 or ⊥ = Z14

Z14 = M7 or ⊥ M8 or ⊥ = Z20 M8 or ⊥ = Z20 M8 or ⊥ = Z20 M4 or ⊥ = Z21

Z•15 = M3 or D•3 M8 or ⊥ = Z20 M8 or ⊥ = Z20 M8 or ⊥ = Z20 M4 or D8 = Z22

Z•16 = M7 or D•7 M8 or ⊥ = Z20 M8 or ⊥ = Z20 M8 or ⊥ = Z20 M4 or ⊥ = Z22

Z17 = M3 or ⊥ M8 or ⊥ = Z20 M8 or ⊥ = Z20 M8 or ⊥ = Z20 M4 or ⊥ = Z21

Z•18 = M7 or D•11 M8 or ⊥ = Z20 M8 or ⊥ = Z20 M8 or ⊥ = Z20 M4 or ⊥ = Z21

Z•19 = M7 or D•3 M8 or ⊥ = Z20 M8 or ⊥ = Z20 M8 or ⊥ = Z20 M4 or ⊥ = Z21

Z•20 = M•8 or ⊥ ⊥ ⊥ ⊥ ⊥
Z•21 = M•4 or ⊥ ⊥ ⊥ ⊥ ⊥
Z22 = M•4 or D•8 ⊥ ⊥ ⊥ ⊥

Table B.6: Quad-pCAT3 transition table catering for υ = acgt with up to 4
deletions and up to 4 mismatches.
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States \ Alpha a c g t

X•0 = Z•0 or I0 X1 X2 X3 X4

X•1 = Z•1 or Q1 X5 X6 X7 X8
∆X•2 = Z•2 or Q5 X9 X10 X11 X12
∆X•3 = Z•3 or Q5 X9 X10 X13 X14
∆X•4 = Z•4 or Q5 X9 X10 X13 X13
∆X•5 = Z5 or Q6 X14 X15 X16 X14

X•6 = Z•7 or Q2 X17 X17 X18 X17
∆X•7 = Z•8 or Q6 X14 X15 X16 X18
∆X•8 = Z•9 or Q6 X14 X15 X16 X14

X•9 = Z5 or Q1 X14 X15 X16 X14
∆X10 = Z10 or Q5 X19 X20 X21 X20
∆X•11 = Z•11 or Q5 X19 X20 X21 X22
∆X•12 = Z•12 or Q5 X19 X20 X21 X20
∆X•13 = Z5 or Q5 X19 X20 X21 X20
∆X•14 = Z14 or Q6 X23 X24 X23 X25

X•15 = Z14 or Q2 X26 X26 X27 X28
∆X•16 = Z17 or Q6 X23 X24 X23 X29
∆X17 = Z14 or Q7 X26 X26 X27 X30
∆X•18 = Z•18 or Q6 X26 X26 X27 X30

X19 = Z14 or Q1 X23 X24 X23 X32
∆X20 = Z14 or Q5 X30 X31 X31 X33
∆X21 = Z17 or Q5 X30 X31 X31 X25
∆X•22 = Z•19 or Q5 X30 X31 X31 X25
∆X•23 = Z•20 or Q6 X34 X35 X34 X34

X•24 = Z•20 or Q2 X36 X36 X39 X36
∆X•25 = Z•21 or Q5 X40 X41 X41 X41
∆X•26 = Z•20 or Q7 X37 X37 X39 X37

X•27 = Z•20 or Q3 X38 X38 X38 X42
∆X•28 = Z•22 or Q7 X37 X37 X39 X37
∆X•29 = Z•21 or Q6 X34 X35 X34 X34

X•30 = Z•20 or Q1 X34 X35 X34 X34
∆X•31 = Z•20 or Q5 X40 X41 X41 X41
∆X•32 = Z•22 or Q6 X34 X35 X34 X34
∆X•33 = Z•22 or Q5 X40 X41 X41 X41
∆X34 = ⊥ or Q6 X34 X35 X34 X34

X35 = ⊥ or Q2 X37 X37 X39 X37
∆X37 = ⊥ or Q7 X37 X37 X39 X37
∆X38 = ⊥ or Q8 X38 X38 X38 X42

X39 = ⊥ or Q3 X38 X38 X38 X42

X40 = ⊥ or Q1 X34 X35 X34 X34
∆X41 = ⊥ or Q5 X40 X41 X41 X41

X•42 = ⊥ or Q•4 ⊥ ⊥ ⊥ ⊥

Table B.7: Transition table of a quad-pCAT3 catering for insertions, perfect
matches, deletions and mismatches where 0 ≤ e ≤ 4.
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B.4 Conclusion

This appendix presented mono-, tri- and quad- pCAT3s catering for perfect matches,
mismatches, insertions and deletions such that 0 ≤ e ≤ |υ|.



C
Detection Results

This appendix explains in Section C.1 how to run the different FireSat versions.
The different versions can be downloaded from www.dna-algo.co.za. In Section
C.2 the detection statistics, referred to in Chapter 9, are presented. The next sec-
tion, Section C.3 gives results obtained by running different versions of FireSat.
Additional graphs, generated from the trial run results, are presented in Section
C.4. Finally this appendix is concluded in Section C.5.

C.1 FireSat software

Each of the FireSat versions consists of some Matlab files.1 In the case of
FireSat3 four mex files are also part of the implementation.2 The functionality
of the respective files are explained in the corresponding sections: Section C.1.2
deals with FireSat1; Section C.1.3 with FireSat2; Section C.1.4 with FireSat2′

and Section C.1.5 with FireSat3.

For each of the available FireSat folders (data, firesat 1, firesat 2, firesat 2+

and firesat 3.) the following are included:

1Recall that Octave is the freeware counter part of Matlab. Note that FireSat can run on
Octave too. Subsection C.1.6 gives some guidelines in this regard.

2The C++ source code is available upon request.
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� The files they consist of together with a brief description of the functionality
of these respective files.

� Guidelines that can be followed to run the different FireSat implementa-
tions.

� An indication of the output that the various FireSat implementations gen-
erate.

Only FireSat3 has been implemented in a way that a user can relatively easily
manipulate its parameters. The parameters, that can be manipulated via the
functional interface of FireSat3, are provided in a listing in Section C.1.5.4.
There is also a version of FireSat3 available that prompts the user for input
from the Matlab command window.

Note that FireSat2′ has not been implemented to run as a FireSat algorithm.
However, the underlying principles demonstrating how FireSat2′ can calculate
an LD or an LC have been implemented.

C.1.1 Downloading the FireSat software

To download FireSat go to www.dna-algo.co.za and click on the link Downloads.
Thereafter click on the FireSat 1, 2 and 3 link.
From there click on phd cdr implement.zip to download FireSat. Inside the
zipped folder reside five folders: data, firesat 1, firesat 2, firesat 2+ and
firesat 3. The FireSat versions are discussed in different subsections below.
Before FireSat is discussed a brief description of the data folder follows next.

The data folder
In the data folder reside 2 folders:

� data mini, the folder with the data used for the trial runs and the RP
analysis.

� data pseudo random fasta contains additional pseudo random generated
data.

Note that these two folders have a folder gen that generates random data.

C.1.2 FireSat1

FireSat1 resides in the firesat 1 folder.

www.dna-algo.co.za
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C.1.2.1 Files to be found in the firesat 1 folder

A list of the different files as well as a brief description of the functionality of
each of the files to be found in the firesat 1 folder follows below:

� try do all trs 11 default.m: the implementation of FireSat1.

� isoctave.m verifies whether Octave is being used.

� pfa det.m: an implementation of the quad-PFAs introduced in Chapter 6.

� pfa det inside.m: implementations of the mono-, di- and tri-PFAs pre-
sented in Chapter 6.

� cascaded fa len.m: concatenates the PFAs that constitute ρ.

Note that the latter three items are building blocks of FireSat1.

C.1.2.2 Running FireSat1 in Matlab

To run FireSat1 on the 20 synthetic data sets, used for all the trial runs, the
steps outlined below should be followed:

� Step 1: open try do all trs 11 default.m in the Matlab IDE.

� Step 2: run FireSat1 by clicking the run button under the editor tab. Al-
ternatively, type try do all trs 11 default in the command window3 of
the Matlab IDE followed by enter. This should be done while the current
folder is firesat 1. Regardless of which instructions are followed to run
try do all trs 11 default.m, try do all trs 11 default.m should be
run twice. Only after the second run, results will be displayed in the com-
mand window.

� Step 3: the results will now be displayed in the command window. A
mat file is also created after the first run, with the output. However, if
try do all trs 11 default.m is being run while the mat file is available,
try do all trs 11 default.m will read the data from the mat file and will
not compute results.

3Note that if there is referred to command window in this section, the command window of
the Matlab IDE is implied.
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C.1.2.3 FireSat1: output

Output of FireSat1 includes for each detected TR the following:

� Motif length;

� Perr;

� TR start position and

� TR length.

Furthermore, FireSat1 statistical data, which is generated to compare all the
FireSat versions against one another and against the identified contender algo-
rithms, is also displayed. Percentage values of the following statistical metrics
are calculated and displayed:

� F1 score;

� Precision;

� Imprecision and

� Recall.

C.1.3 FireSat2

FireSat2 is available from the firesat 2 folder.

C.1.3.1 Files to be found in the firesat 2 folder

A description of the files enclosed in the firesat 2 folder is included below:

� try do all trs 11 default 0p8 disable penalties.m: is the implemen-
tation of FireSat2.

� build cstr.m and make state.m: these two files together build and deco-
rate the respective NCAT3s.

� nxt plen.m: this file determines whether the next pCAT3, to be appended,
should be a mono-pCAT3, di-pCAT3, tri-pCAT3 or quad-pCAT3.
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� tt.m: this file enumerates the columns in the output matrix and is used for
counter updating too.4

� clevenN.m: generates a matrix, using the numbers assigned in tt.m to keep
track of the items listed below.

– The number of mutation types (perfects, mismatches, deletions and
insertions) occurring on the different paths of the FireSat2 NCAT3(ρ).

– The respective current positions up to where FireSat2 has processed
the source and the destination strings for the different enumerated
paths.

� isoctave.m: verifies whether FireSat2 is being run from Octave.

C.1.3.2 Running FireSat2

To run FireSat2 on the relevant synthetic data5 the same steps as for FireSat1

should be followed. The steps are repeated here:

� Step 1: open try do all trs 11 default 0p8 disable penalties.m in
the Matlab IDE.

� Step 2: run FireSat2 by clicking on the run button under the editor tab.
Alternatively while the current folder in the Matlab IDE is firesat 2 type:
try do all trs 11 default 0p8 disable penalties, followed by enter

in the command window. Results will only be displayed in the command
window after FireSat2 has been run for a second time.

� Step 3: the output will be displayed in the command window. Furthermore,
a mat file is created (after the first run) where the output is stored. Note
that whenever try do all trs 11 default.m is run in the presence of the
mat file the output contained in the mat file will be displayed. Thus new
computations will, in such a case, not take place.

C.1.3.3 FireSat2: output

The output for FireSat2 for each TR includes:

� Motif length;

4In Octave the described enumeration is included in
try do all trs 11 default 0p8 disable penalties.m.

5Recall that for the trial runs FireSat2 was run only on the 4 synthetic data sets where
|ρ| = 10.
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� Perr;

� TR start position and

� TR length.

Values of the following statistical metrics are also calculated and displayed:

� F1-score;

� Precision;

� Imprecision and

� Recall.

Recall that trial run data for FireSat2 has only been generated for a motif length
of 10.

C.1.4 FireSat2′

Note that on the website FireSat2′ is referred to as firesat 2+.

C.1.4.1 Files residing in the firesat 2+ folder

Three folders and a file reside in the firesat 2+ folder:

� +plot: provides functionality to plot graphs into .pdf files.

� +original: an implementation to illustrate the underlying principles of
FireSat2′ . Note that pleven3.m resides in this folder too.

� +errmax: has the same functionality as +original and caters additionally
for state-counting and calculating εmax. Within +errmax resides:

– ntry states.m: Note that ntry states.m calculates the number of
states generated by a FireSat2′ NCAT3. It can be recalled from Chap-
ter 7 that the number of states generated depends both on the number
of motif errors to be tolerated, εmax, and the length of the destination
string, |ρ|.

– pleven3.m the file that implements the theoretical underpinnings of
FireSat′2.

� isoctave.m verifies whether firesat+ is being run from Octave.
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C.1.4.2 Running FireSat2′

To run the FireSat2′ implementations residing in either +original or +errmax

pleven3.m should be run. Note that pleven3.m resides in both +folders.

To execute FireSat2′ navigate to the firesat 2+ folder. Two options for running
FireSat2′ are provided. These options are discussed next:

Option 1: run FireSat2′ on the default data

� To run FireSat2′ residing in the +original folder. Type: original.pleven3
in the command window, followed by enter.

� To run FireSat2′ residing in +errmax type: errmax.pleven3 in the com-
mand window, followed by enter.

Option 2: run FireSat2′ on user given data

� Run FireSat2′ residing in +original

Navigate to the firesat 2+ folder. To determine the LCn between acgttgagt

and cgtatat type:
[source,destination,pmdi]=original.pleven3(’acgttgagt’, ’cgtatat’)

in the command window, followed by enter.

� Run FireSat2’ residing in +errmax

Navigate to the firesat 2+ folder. To determine the LCn between acgttgagt

and cgtatat type:
[source,destination,pmdi]=errmax.pleven3(’acgttgagt’, ’cgtatat’,10)

in the command window, followed by enter. Here 10 is the value allocated
to εmax. Any value can be entered for εmax. However, if the number of dif-
ferences between the two input strings is greater than εmax an error message
is displayed.

Note that +errmax outputs the number of states that constitutes the FireSat2′

NCAT3(ρ), where ρ is the destination string.

C.1.4.3 FireSat2′: output

The output of both +original and +errmax includes the following information:
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� LCnorm: the LCn is being output.

� LD: the LD is being output.

� destination: the destination string entered is being output.

� source: the source string entered is being output.

� |source|: length of the source string.

� |destination|: length of the destination string.

� p: number of perfect matches.

� m: number of mismatches.

� d: number of deletions.

� i: number of insertions.

C.1.5 FireSat3

In the firesat 3 folder, downloadable from www.dna-algo.co.za., three folders,
namely 15 fsat, 18 excel and +plot reside. The latter two folders were used to
generate graphs displaying trial run results. Some of these graphs are included
in Chapter 9 and others in this appendix below.

To run FireSat3 the user should open 15 fsat. Several methods to invoke
FireSat3 reside in the 15 fsat folder. These can be divided into three groups,
in line with the easiness of parameter manipulation. In Section C.1.5.1 guidelines
to five versions of FireSat3, with input parameters that should not be changed
are presented. Two versions of FireSat3, where parameters can easily be manip-
ulated in the preamble, are discussed in Section C.1.5.2. Section C.1.5.3 presents
details of a FireSat3 version with a functional interface as well as a FireSat3

version that prompts in the command window for input.

C.1.5.1 FireSat3 versions to determine the best parameter combina-
tion where parameters cannot easily be manipulated

The 20 synthetic data sets, used for the trial runs against contender algorithms,
were all input to the five versions of FireSat3 below. It was noticed that, of
the enumerated implementations below, try do all trs 11.m outperformed the
other FireSat3 implementations.
Consequently try do all trs 11.m was used for the trial runs against TRF, mreps

www.dna-algo.co.za.
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and Phobos. Chapter 9 reports in detail on trial run results. The parameter set-
tings of try do all trs 11.m are considered to be the default parameter settings
of FireSat3. The five FireSat3 versions are:

1. try do all trs 00.m;

2. try do all trs 01.m;

3. try do all trs 10.m;

4. try do all trs 11.m and;

5. try do all trs 11 0p8.m.

Each of the enumerated versions is catering for a specific parameter set. Apart
from try do all trs 11 0p8.m the names of the different versions of FireSat3

correspond largely to one another. The two final characters, before the .m exten-
sion, differ however for each version. These two characters can be seen as a code
xy where:

� x indicates the mutation precedence order. If x = 1, mismatches are given
priority over deletions, which in turn are given priority over insertions. This
is referred to as mdi. Otherwise x = 0, mid holds — mismatches are given
priority over insertions which are in turn given priority over deletions.

� y indicates insertions are added in the first column in an increasing manner.
Deletions are added to the first row in an increasing manner. This implies
that additional insertions and deletions are added to the match pattern,
described in Chapter 8. Note that this is considered to be implementation
detail.

Consider try do all trs 11.m, here x = 1 and y = 1. Thus the mdi precedence
order holds and insertions or deletions are added when calculating the LCn as
explained above. The pre mentioned settings are also considered to be the default
settings.

try do all trs 11 0p8

For try do all trs 11 0p8 the xy parameters settings are exactly the same as
that of try do all trs 11.m. However, the 0p8 is used to indicate that the
match score threshold factor is set equal to 0.8. Recall from Chapter 9 that the
default match score threshold factor is 1.0. The default match score threshold
factor was used for the 4 remaining enumerated versions above.
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Running a try do all trs Matlab script
To run the above versions the current folder should be 15 fsat.

Ensure that the current folder is 15 fsat then first run setup environ.m. This
is done by typing setup environ in the command window.

Open the Matlab script, e.g. try do all trs 10.m, that should be run. The
steps outlined below can be followed:

� Step 1: open try do all trs 10.m in the Matlab IDE.

� Step 2: run it by clicking the run button under the editor tab. After
try do all trs 10.m has been run, click the run button for a second time.

� Step 3: the output will now be displayed in the command window. Fur-
thermore a mat file has been created, after the first run, where the results
are stored. Note that running try do all trs 10.m in the presence of the
mat file will result in displaying the results contained in the mat file — new
computations will in such a case not take place.

Output of try do all trs 10.m

The output format is exactly the same for all the try do all trs xy.m scripts.
Output is displayed as an Nx5 array where each row (N) denotes a detected TR.
The information displayed for each detected TR in the respective columns is as
follows:

� Motif length;

� Perr;

� TR start position and

� TR length.

Percentage values of statistical data similar to that which was generated for the
trial runs, is also being output underneath the following headings:

� F1 score;

� Precision and

� Recall.
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C.1.5.2 One implemented FireSat3 version where a data set can easily
be selected in the preamble

The version, find trs user input 11.m, simplifies the selection of a data set as
input for FireSat3. The data sets to select from are the 20 data sets that were
used for the trial runs against the contender algorithms reported on in Chapter
9. There are referred to these data sets as original. A dataset can also be se-
lected from 20 additional pseudo random data sets, referred to as pseudo random.

Running find trs user input 11.m

The FireSat3 Matlab script, find trs user input 11.m is written in a way
that most of the documented parameters can easily be manipulated in the pream-
ble.

To run find trs user input 11.m, type find trs user input 11 in the com-
mand window and press enter, while 15 fsat is the current Matlab folder. Fol-
low the command prompts displayed in the command window.

Output of find trs user input 11.m

Output is displayed as an Nx7 array where each row denotes a detected TR.
The information displayed for each detected TR in the respective columns is as
follows:

� Motif length;

� Maximum motif error percentage;

� TR starting position;

� TR length;

� Number of TREs;

� Confidence and;

� Detected motif.

C.1.5.3 FireSat3: Three versions of FireSat where parameters can
easily be manipulated

Three versions of FireSat3 where parameters can relatively easily be manipulated
are presented in the enumerated list below. Note that only a limited number
of parameters can be manipulated when running the Matlab script, indicated
in the first item. All the parameters of fsat, described in Subsection C.1.5.4,
can however be manipulated by the Matlab scripts discussed in the final two
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items of the enumerated list. A description of the parameters are included. The
same parameter listing can furthermore be obtained by typing help fsat in the
command window while the current folder is 15 fsat.

Running fsat and manipulating input parameters

Three options are available for running fsat. These are discussed below.

1. Run fsat on a user given input file using the default parameter settings.
For example, if the user given input file is ’sss.fasta’ and TRs where
|ρ| = 50 should be detected. In the command window, while the current
folder is 15 fsat, type fsat(’sss.fasta’,50) followed by enter.

2. Run fsat on a user given input file where the user manipulates the param-
eters.
To manipulate a number of parameters when detecting TRs, values should
be keyed in for all the parameters. The different parameters are separated
by commas. Entries are associated with parameters in a pre-determined or-
der as follows: fsat(’sss.fasta’,|ρ|, εmax%, mismax%, delmax%, insmax%,

mp, dp, ip, σmax%, βmin,
match score threshold factor).

For example if TRs should be detected in ’sss.fasta’ where |ρ| = 50,
εmax% = 20, mismax% = 20, delmax% = 20, insmax% = 20, mp = 1, dp = 1, ip
= 1, σmax% = 40, β = 2, match score threshold factor = 1. In the command
window type:
fsat(sss.fasta, 50, 20, 20, 20, 20, 1, 1, 1, 40, 2, 1) followed by
enter, while the current folder is 15 fsat.

3. Run fsat on a user given input file where the user manipulates the param-
eters while being prompted by fsat.
Type prompt user input fsat in the Matlab command window, while
15 fsat is the current folder. fsat will now start to prompt the user for
input.

Output of fsat

Note that the output is exactly the same as discussed for find trs user input 11.m

listed above.

C.1.5.4 Input parameters of FireSat3: fsat

A listing of the input parameters is included below.
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fsat − functional interface

function [trs, mots] = fsat(sfname,mlen,motif errperc max,mis max perc,...

del max perc,ins max perc, p mis, p del, p ins,...

sigma max, beta, match score tfactor )

Parameters:

'sfname'− FASTA format genetic sequence to be searched for TRs.

'mlen' − |rho | the motif length (PTRE−length) range [10−250].

'motif errperc max' − var−epsilon max percentage, maximum motif error percentage. Max

'mis max perc, del max perc, ins max perc' − the maximum error percentage allowed

for m,d and i respectively. These are optional parameters.

(default = 20%).

'p mis, p del, p ins' − are the penalties for mismatches, deletions and

insertions. The default penalties are [1 1 1].

'sigma max perc' − the maximum substring error percentage allowed. sigma max is

calulated as follows:

'(p mis*nm + p del*nd + p ins*ni)*100/mlen = sigma max perc'

where nd, nm and ni are the number of deletions, mismatches and

insertions respectively.

sigma max perc is calculated over a TRE.

The range of sigma max perc is [0−100] (default = 40%).

'beta' − beta−min, the minimum TREs that should occur before a TR is valid

(default = 2).

'match score tfactor' − the threshold factor, range [0,1] (default 1.0) is

multiplied with a motif length dependant match score threshold function.

The value obtained is compared with the LC−norm (Levenshtein
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correspondence based match score) to validate a TRE detection.

C.1.5.5 Additional files used by all the FireSat3 versions

Below follows a brief description of the functionality added by the remaining files
that are used by all the available FireSat3 versions.

� leven corr.mex, leven corr.mexw64, and leven corr.mexa64 are Matlab
executables written in C++.

These functions calculate both the LCn and the match pattern.

� setup environ.m: has been written to copy the applicable mex files to the
correct file system location.

� isoctave.m: verifies whether FireSat is being run from Octave.

� pager.m: has been added for Octave to enable a continuous output display.

C.1.6 Notes on how to run FireSat in Octave

To run FireSat from Octave, Octave and Octave-statistics should be avail-
able. Note that the Matlab and Octave input and output for FireSat is exactly
the same.

� FireSat1: The same guidelines as given for Matlab in Subsection C.1.2.2
should be followed to run FireSat1 in Octave. An Octave IDE and an
Octave command window should be used instead of a Matlab IDE and a
Matlab command window.

� FireSat2: Follow the Matlab guidelines in Subsection C.1.3.2 to run FireSat2

in Octave. An Octave IDE and an Octave command window should be used
instead of a Matlab IDE and a Matlab command window.

� FireSat2′ : +original and +errmax reside in the firesat 2+ folder. Re-
call that pleven3 (the file that illustrates the underlying principles of
FireSat2′) is available from both +original and +errmax. To run pleven3

from:
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– +original, navigate to the +original folder. To run pleven3 on the
default data and parameters type: pleven3 at the command prompt.
The user can enter her chosen parameters by typing:
[source,destination]=pleven3(’acgttgagt’, ’cgtatat’) at the
command prompt.

– +errmax, navigate to the +errmax folder. To run pleven3 on the de-
fault data and parameters type: pleven3 at the command prompt. To
determine the LCn between acgttgagt and cgtatat type:
[source,destination,pmdi]=pleven3(’acgttgagt’, ’cgtatat’,10)

at the command prompt.

Subsection C.1.4.2 includes all the firesat 2+ parameter details.

� FireSat3: The same instructions as provided for Matlab in Subsection
C.1.5 should be followed. An Octave IDE and an Octave command window
should be used instead of a Matlab IDE and a Matlab command window.

C.2 Tables displaying detection statistics of con-

tender algorithms

Chapter 9 described the process of generating synthetic data that was used for
the trial runs reported on in this section. Recall that 20 synthetic data sets
were generated where the repetitive motif lengths are 10, 25, 50, 100 and 200.
For each length different data sets were generated with motif errors of 2%, 5%,
10% and 20% respectively. As the exact nucleotide positions of TRs are known
it is possible to calculate the statistical results displayed below. The different
subsections of this appendix display, in tabular form, the outcomes of the trial
runs for the respective algorithms as follows:

� Subsection C.2.1 Phobos;

� Subsection C.2.2 mreps;

� Subsection C.2.3 TRF and

� Subsection C.3.3 FireSat.
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C.2.1 Phobos

The parameter settings of Phobos were set as described in Subsection 9.4.1. Table
C.1 presents the corresponding trial run statistics.

Precision mlen = 10 mlen = 25 mlen = 50 mlen = 100 mlen = 200

Perr = 2% 95.5 98.0 99.1 97.5 92.0

Perr = 5 % 95.7 96.8 97.3 97.0 93.2

Perr = 10 % 93.6 93.8 95.6 95.9 99.3

Perr = 20 % 94.2 89.3 89.9 93.4 95.0

Recall mlen = 10 mlen = 25 mlen = 50 mlen = 100 mlen = 200

Perr = 2% 95.1 95.9 82.4 95.8 85.7

Perr = 5 % 93.5 96.6 94.5 95.1 99.3

Perr = 10 % 92.0 91.1 91.8 93.7 84.9

Perr = 20 % 89.5 81.0 80.1 73.6 54.1

F1score mlen = 10 mlen = 25 mlen = 50 mlen = 100 mlen = 200

Perr = 2% 95.3 96.9 90.0 96.6 88.8

Perr = 5 % 94.6 96.7 95.9 96.1 96.1

Perr = 10 % 92.8 92.4 93.7 94.8 91.5

Perr = 20 % 91.8 85.0 84.7 82.4 69.0

Table C.1: Detection Statistics: Phobos
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C.2.2 mreps

Subsection 9.4.2 discussed the available parameter switches for mreps. The set-
tings of these switches for the trial runs were also given in the same section. Table
C.2 displays the mreps detection statistics.

Precision mlen = 10 mlen = 25 mlen = 50 mlen = 100 mlen = 200

Perr = 2% 69.0 71.8 85.8 95.0 97.5

Perr = 5 % 67.5 75.4 84.4 96.5 96.2

Perr = 10 % 72.9 83.9 88.4 96.4 96.4

Perr = 20 % 77.9 87.6 86.6 94.1 undefined

Recall mlen = 10 mlen = 25 mlen = 50 mlen = 100 mlen = 200

Perr = 2% 100.0 96.2 99.8 88.2 29.3

Perr = 5 % 95.4 96.4 91.0 72.4 14.3

Perr = 10 % 94.8 87.2 70.2 55.3 14.4

Perr = 20 % 93.1 42.6 62.8 37.5 0

F1score mlen = 10 mlen = 25 mlen = 50 mlen = 100 mlen = 200

Perr = 2% 81.7 82.2 92.3 91.5 45.1

Perr = 5 % 79.0 84.7 87.6 82.7 24.9

Perr = 10 % 82.4 85.5 78.3 70.2 25.0

Perr = 20 % 84.8 57.4 72.8 53.6 undefined

Table C.2: Detection Statistics: mreps
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C.2.3 TRF

Information about TRs detected by TRF with the parameter settings, indicated
in Subsection 9.4.3 is included in Table C.3 below.

Precision mlen = 10 mlen = 25 mlen = 50 mlen = 100 mlen = 200

Perr = 2% 95.2 67.4 99.0 93.4 91.2

Perr = 5 % 94.8 96.8 97.4 92.7 99.8

Perr = 10 % 93.4 80.8 95.6 91.9 undefined

Perr = 20 % 93.3 88.2 90.2 94.0 undefined

Recall mlen = 10 mlen = 25 mlen = 50 mlen = 100 mlen = 200

Perr = 2% 86.0 99.1 99.2 99.0 78.6

Perr = 5 % 92.6 97.5 97.7 91.1 35.7

Perr = 10 % 68.0 88.4 65.8 92.7 0

Perr = 20 % 92.8 53.9 81.4 50.5 0

F1score mlen = 10 mlen = 25 mlen = 50 mlen = 100 mlen = 200

Perr = 2% 90.4 80.2 99.1 96.1 84.4

Perr = 5 % 93.7 97.1 97.6 91.9 52.6

Perr = 10 % 78.7 84.5 78.0 92.3 undefined

Perr = 20 % 93.1 66.9 85.5 65.7 undefined

Table C.3: Detection Statistics: TRF
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C.3 FireSat

TR detections achieved by the different FireSat versions are reported below.

C.3.1 FireSat1

Table C.4 reports on the detection ability of FireSat1. Note that the match
score threshold function and match score threshold factor were used. TREs were
validated by εmax% only. As indicated in Tables 6.1, 6.2, 6.3 and 6.4, mismatches
were given priority over deletions that were given priority over insertions.

Precision mlen = 10 mlen = 25 mlen = 50 mlen = 100 mlen = 200

Perr = 2% 11.6 53.0 94.8 98.0 99.3

Perr = 5 % 23.3 91.9 95.6 43.6 24.6

Perr = 10 % 42.0 91.4 30.6 96.9 22.0

Perr = 20 % 78.4 15.3 53.1 96.0 18.6

Recall mlen = 10 mlen = 25 mlen = 50 mlen = 100 mlen = 200

Perr = 2% 76.6 82.7 29.1 5.28 85.3

Perr = 5 % 96.0 60.5 10.6 14.8 46.4

Perr = 10 % 84.9 34.2 18.9 74.6 21.3

Perr = 20 % 83.4 16.9 78.2 31.0 5.3

F1score mlen = 10 mlen = 25 mlen = 50 mlen = 100 mlen = 200

Perr = 2% 20.2 64.6 44.5 10.0 91.8

Perr = 5 % 37.5 72.9 19.1 22.1 32.1

Perr = 10 % 56.2 49.7 23.4 84.3 21.7

Perr = 20 % 80.8 16.0 63.3 46.9 8.28

Table C.4: Detection Statistics: FireSat1

C.3.2 FireSat2

Tables C.5 and C.6 report on results achieved by FireSat2. The match score
threshold function and the match score threshold factor were used. The match
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score factor was set to 0.8 (Table C.5) and 1.0 (Table C.6) respectively. For
FireSat2 the LCn was calculated, using the LBD, as follows:

LCn(s, d) = 1− |ρ| − LBD − Ins
|ρ|

(C.1)

Precision mlen = 10 mlen = 25 mlen = 50 mlen = 100 mlen = 200

Perr = 2% 97.7 undefined undefined undefined undefined

Perr = 5 % 97.8 undefined undefined undefined undefined

Perr = 10 % 97.6 undefined undefined undefined undefined

Perr = 20 % 96.8 undefined undefined undefined undefined

Recall mlen = 10 mlen = 25 mlen = 50 mlen = 100 mlen = 200

Perr = 2% 93.2 0 0 0 0

Perr = 5 % 90.3 0 0 0 0

Perr = 10 % 73.5 0 0 0 0

Perr = 20 % 87.8 0 0 0 0

F1score mlen = 10 mlen = 25 mlen = 50 mlen = 100 mlen = 200

Perr = 2% 95.4 undefined undefined undefined undefined

Perr = 5 % 93.9 undefined undefined undefined undefined

Perr = 10 % 83.9 undefined undefined undefined undefined

Perr = 20 % 92.1 undefined undefined undefined undefined

Table C.5: Detection Statistics: FireSat2 — match score threshold factor : 0.8
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Precision mlen = 10 mlen = 25 mlen = 50 mlen = 100 mlen = 200

Perr = 2% 97.3 undefined undefined undefined undefined

Perr = 5 % 98.1 undefined undefined undefined undefined

Perr = 10 % 97.6 undefined undefined undefined undefined

Perr = 20 % 97.1 undefined undefined undefined undefined

Recall mlen = 10 mlen = 25 mlen = 50 mlen = 100 mlen = 200

Perr = 2% 65.8 0 0 0 0

Perr = 5 % 72.5 0 0 0 0

Perr = 10 % 61.5 0 0 0 0

Perr = 20 % 52.3 0 0 0 0

F1score mlen = 10 mlen = 25 mlen = 50 mlen = 100 mlen = 200

Perr = 2% 78.5 undefined undefined undefined undefined

Perr = 5 % 83.4 undefined undefined undefined undefined

Perr = 10 % 75.5 undefined undefined undefined undefined

Perr = 20 % 68.0 undefined undefined undefined undefined

Table C.6: Detection Statistics: FireSat2 — match score threshold factor : 1.0
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C.3.3 FireSat3

In this subsection Table C.7 displays detection statistics when FireSat3 is run
with a match score threshold factor set to 0.8. Thereafter Table C.8 presents
detection statistics with a match score threshold factor setting of 1.0. Note that
in both pre mentioned cases mismatches are given priority over deletions, which
are in turn given priority over insertions. Finally in Table C.9 detection statistics
achieved by FireSat3 where mismatches are given priority over insertions and
insertions are given priority over deletions are displayed. Note that the match
score threshold factor setting was 1.0.

Precision mlen = 10 mlen = 25 mlen = 50 mlen = 100 mlen = 200

Perr = 2% 74.1 99.5 99.6 99.0 99.3

Perr = 5 % 76.1 96.8 97.5 98.1 98.0

Perr = 10 % 71.8 95.5 95.8 97.3 97.3

Perr = 20 % 28.2 42.2 87.6 93.2 93.3

Recall mlen = 10 mlen = 25 mlen = 50 mlen = 100 mlen = 200

Perr = 2% 85.4 81.2 93.4 95.8 92.2

Perr = 5 % 92.5 96.6 89.9 96.5 98.0

Perr = 10 % 88.8 93.5 93.9 86.4 90.4

Perr = 20 % 95.2 89.3 89.9 82.7 93.2

F1score mlen = 10 mlen = 25 mlen = 50 mlen = 100 mlen = 200

Perr = 2% 79.3 89.4 96.4 97.4 95.6

Perr = 5 % 83.5 96.7 93.6 97.3 98.0

Perr = 10 % 79.4 94.5 94.8 91.5 93.7

Perr = 20 % 43.5 57.3 88.7 87.6 93.3

Table C.7: FireSat3 detection statistics when the match score threshold factor
setting is 0.8.
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Precision mlen = 10 mlen = 25 mlen = 50 mlen = 100 mlen = 200

Perr = 2% 96.8 99.5 99.6 99.0 99.3

Perr = 5 % 98.6 96.8 97.5 98.1 98.0

Perr = 10 % 96.7 95.5 95.8 97.3 97.3

Perr = 20 % 96.3 88.3 90.3 92.2 93.3

Recall mlen = 10 mlen = 25 mlen = 50 mlen = 100 mlen = 200

Perr = 2% 78.8 81.2 93.4 95.8 92.2

Perr = 5 % 89.5 96.6 89.9 96.5 98.0

Perr = 10 % 64.0 93.5 93.9 86.4 90.4

Perr = 20 % 68.2 87.7 89.9 84.9 93.2

F1score mlen = 10 mlen = 25 mlen = 50 mlen = 100 mlen = 200

Perr = 2% 86.9 89.4 96.4 97.4 95.6

Perr = 5 % 93.9 96.7 93.6 97.3 98.0

Perr = 10 % 77.0 94.5 94.8 91.5 93.7

Perr = 20 % 79.8 88.0 90.1 88.4 93.3

Table C.8: FireSat3 detection statistics when the match score threshold factor
is set to 1.0.
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Precision mlen = 10 mlen = 25 mlen = 50 mlen = 100 mlen = 200

Perr = 2% 96.8 99.5 99.6 99.0 99.3

Perr = 5 % 98.6 97.3 98.2 98.4 97.3

Perr = 10 % 96.7 95.4 96.1 97.0 97.6

Perr = 20 % 96.3 93.3 90.6 92.4 93.1

Recall mlen = 10 mlen = 25 mlen = 50 mlen = 100 mlen = 200

Perr = 2% 78.8 81.2 93.4 95.9 92.2

Perr = 5 % 88.0 96.9 90.5 96.7 97.3

Perr = 10 % 64.0 93.4 94.2 86.1 90.6

Perr = 20 % 68.2 82.7 90.2 85.0 93.0

F1score mlen = 10 mlen = 25 mlen = 50 mlen = 100 mlen = 200

Perr = 2% 86.9 89.4 96.4 97.4 95.6

Perr = 5 % 93.0 97.1 94.2 97.5 96.5

Perr = 10 % 77.0 94.4 95.1 91.2 94.0

Perr = 20 % 79.8 87.7 90.4 88.5 93.0

Table C.9: FireSat3 detection statistics where mismatches have priority over
insertions and insertions have priority over deletions. The match score threshold
factor is set to 1.0.
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C.4 Additional Graphs

Additional graphs, not included in Chapter 9 are presented in this section. The
results reported here correspond to the findings reported in Section 9.5.

Figures C.1, C.2, C.3 and C.4 visualise the relative performance of mreps, TRF,
Phobos and FireSat3, both in the case of where the match score threshold factor
= 0.8 throughout (denoted in the figure by FireSat3(0.8)), and in the case where
it is 1.0 (denoted in the figure by FireSat3(1.0)). These figures summarise relative
algorithm performance over all motif lengths for each of the four Perr values used.
Figure C.1 visualise precision and recall where Perr = 2%. Figures C.2, C.3 and
C.4 visualise the same for Perr = 5%, Perr = 10% and Perr = 20% respectively.
The recall performance is shown on the left of these figures and the precision on
the right.
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Figure C.1: Precision (on the left) and recall (on the right) where Perr = 2%.
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Figure C.2: Precision (on the left) and recall (on the right) where Perr = 5%.
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Figure C.3: Precision and (on the left) and recall (on the right) where Perr =
10%.
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Figure C.4: Precision (on the left) and recall (on the right) where Perr = 20%.
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C.5 Conclusion

This appendix provided guidelines explaining how to run FireSat in its first
section. The remainder of this appendix elaborated on the outcome of trial run
results. In Section C.2 detection statistics achieved by the identified contender
algorithms were presented. The detection statistics achieved by FireSat were
included in Section C.3. Finally Section C.4 provided graphs not included in
Chapter 9.
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M. Anisimova, J. Pečerska, and E. Schaper. Statistical approaches to detecting and analyzing tandem repeats in

genomic sequences. Frontiers in Bioengineering and Biotechnology, 3(2015):31, 2015. URL http://doi.org/10.

3389/fbioe.2015.00031.

T. Anwar and A. U. Khan. SSRscanner: a program for reporting distribution and exact location of simple sequence

repeats. Bioinformation, 1(3):89–91, 2006.

A. Archambault. Mining genomic data for tandem repeats. Online: http://qcbs.ca/wiki/bioinformatic tools to detect

microsatellites loci from genomic data, 2012.

A. Arnove. Chomsky.Info. Online: http://www.chomsky.info/books.htm, 2018.

R. Bailey. The cell-cell structure. Online: http://biology.about.com/od/cellanatomy/a/eukaryprokarycells.htm, 2012.

J. Becker, M. Platzner, and S. Vernalde. Large Scale Protein Sequence Alignment using FPGA Reprogrammable Logic

Devices. Field Programmable Logic and Application, 3203:23—32, 2004.

G. Benson. Tandem Repeats Finder. Nucleic Acids Research, 27(2):573 – 580, November 1999.

G. Benson. Tandem Repeats Finder: Definitions: FASTA Format. Online: http://tandem.bu.edu/trf/

trf.definitions.html, Sept 2003a.

G. Benson. Tandem Repeats Finder:Unix Version help: using Tandem Repeats Finder for Unix. Online:

file://D:/Tandem%20Repeats%20Finder%20%20Unix%20Version%20Help.htm, Sept 2003b.

B. P. Bergeron. Bioinformatics Computing. Prentice-Hall/ Professional Technical Reference: Upper Saddle River, NJ,

2003.
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