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Abstract

Balakrishnan et al. proposed a two-piece skew logistic distribution by making use of the 
cumulative distribution function (CDF) of half distributions as the building block, to give rise to an 
asymmetric family of two-piece distributions, through the inclusion of a single shape parameter. 
This paper proposes the construction of asymmetric families of two-piece distributions by making 
use of quantile functions of symmetric distributions as building blocks. This proposition will 
enable the derivation of a general formula for the L-moments of two-piece distributions. 
Examples will be presented, where the logistic, normal, Student’s t(2) and hyperbolic secant 
distributions are considered.
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1. Introduction

Balakrishnan, Dai, and Liu (2017) introduced a skew logistic distribution as an alterna-
tive to the model proposed by van Staden and King (2015). It proposed taking the half
distribution to the right of the location parameter and joining it to the half distribution
to the left of the location parameter which has an inclusion of a single shape parameter,
a> 0. The methodology made use of the cumulative distribution functions (CDFs) of
the parent distributions to obtain the two-piece distribution. This technique was dem-
onstrated though the use of the CDF of the logistic distribution as the building block.
While Balakrishnan, Dai, and Liu (2017) made use of CDF functions to introduce the

skewing procedure, the proposed methodology in this paper aims to produce general
results by the use of quantile functions. Moreover, the results from the proposition have
led to the derivation of a general form for the rth order L-moments of the two-piece
distribution. This will enable the avoidance of tedious computations in obtaining single
and product moments for the distributions.
The skewing mechanism makes use of the quantile function of a symmetric univariate

distribution, with a location parameter of 0. This makes it applicable to both quantile-
based distributions and distributions with a closed-form expression for the CDF. This
proposition will be applied to the logistic distribution as done by Balakrishnan, Dai,
and Liu (2017). The normal distribution and Student’s t(2) distribution, studied in detail



by Jones (2002), as well as the hyperbolic secant distribution (HSD) are also considered 
as parent distributions for this skewing mechanism. The HSD was first studied by 
Talacko (1956). It has not received the same amount of attention as its other symmetric 
counterparts such as the logistic and normal distributions, due to its incongruence to 
other commonly known distributions. The HSD emanates from the Cauchy distribution or 
the ratio of two independent normal distributions. As illustrated in Figure 1, it has heavier 
tails than the normal and logistic distributions, but is less leptokurtic than the t(2), with 
respect to their L-kurtosis ratio values. In Section 2, the proposed method-ology to be used 
is documented. A general formula for the L-moments is provided. Quantile-based measures 
of location, spread and shape are also given. The general results are then extended to the 
normal, logistic and Student’s t(2) distributions in Section 3. Section 4 will introduce the 
two-piece hyperbolic secant distribution and the corresponding properties. Finally, the 
conclusion of the results will be given in Section 5.

2. Proposition to obtain a two-piece asymmetric family of distributions

This section proposes the methodology to be used to generate two-piece distributions
from any symmetric univariate parent distribution. The quantile functions of the sym-
metric distribution will be used.

2.1. Two-piece quantile function

Proposition 2.1. Let X be a real-valued random variable from any symmetric distribu-
tion, on infinite support. Suppose Y is a folded random variable such that Y ¼ jXj,
where 0<y<1:

Then the CDF of Y can be given as GYðyÞ¼2FXðyÞ�1; which follows from the results
below:

Figure 1. Probability density curves of the normal, logistic, HSD and Student’s t(2) distributions with
L-location ¼ 0 and L-scale ¼ 1.
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GY yð Þ ¼ P Y � yð Þ
¼ P jXj � y

� �
¼ P �y � X � yð Þ
¼ FX yð Þ�FX �yð Þ
¼ FX yð Þ� 1�FX yð Þ� �

This implies that FXðyÞ ¼ 1þp
2 ; where p is the depth in G, yielding the corresponding

quantile function of Y as:

QY pð Þ ¼ F�1
X

1þ p
2

� �
¼ QX

1þ p
2

� �
(1)

where 0<p<1:
Similarly, let Z ¼ �Y: Through the utilization of the reflection rules of quantile func-

tions documented by Gilchrist (2000), the quantile function of Z is QZðpÞ ¼
�QYð1�pÞ; which then implies:

QZ pð Þ ¼ �QY 1�pð Þ
¼ �QX

1þ 1�pð Þ
2

� �

¼ �QX
2�p
2

� �

¼ QX 1� 2�p
2

� �

¼ QX
p
2

� �
(2)

where 0<p<1:

Since the quantile functions of two half distributions, constructed from the parent 
distribution, are going to be used to obtain a two-piece distribution, the domain of the 
quantile functions has to be obtained for the left side of the location parameter l, and 
similarly for the right hand side. Consider Equation (2) whose range of values is
0<p<1: Let s ¼ p

2 ; hence Equation (2) yields QXðsÞ where 0<s � 1
2 : The domain of

interest is 0<s � 1
2 since the skewness parameter a is introduced to the half distribution

on the left of the location parameter l. In the same way, by replacing 1þp
2 with s, the

1
2range of values for the quantile function in Equation (1) is <s<1:

In utilizing the quantile functions of the two half distributions obtained in 
Equations (1) and (2), the following general result for the quantile function of the
two-piece skewed distribution, denoted by QTðpÞ; is:

QT sð Þ ¼
lþ rQX sð Þ for s>

1
2

lþ arQX sð Þ for s � 1
2

8><
>: (3)

where �1<l<1; r>0 and a>0:

3



2.2. Rth order L-moments

L-moments as defined by Hosking (1990), are expectations of linear combinations of
order statistics. They summarize the properties of a probability distribution in terms of
location, spread and shape. Suppose that X is a real-valued random variable with a
cumulative distribution function F(X) and quantile function Q(p) where 0<p<1:
Let X1:n � X2:n � X3:n::: � Xn:n be the order statistics of a random sample of size n.

The L-moments can be defined in terms of the order statistics as:

Lr ¼ r�1
Xr�1

k¼0

�1ð Þk r�1
k

� �
E Xr�k:rð Þ (4)

By making use of the definition of an expectation of an order statistic by David
(1981), Hosking (1990) compiled other results in terms of the quantile function. The L-
moments are then defined as

Lr ¼
ð1
0
QX pð ÞP�

r�1 pð Þdp forr ¼ 1; 2; 3::: (5)

where

P�
r�1 ¼

Xr�1

k¼0

�1ð Þr�k�1 r�1
k

� �
r þ k�1

k

� �
pk (6)

is the rthorder shifted Legendre polynomial.
The first two L-moments, L1 and L2, are referred to as L-location and L-scale respect-

ively. They are measures of location and scale. The third and fourth L-moments, L3 and
L4, are used to obtain L-moment ratios of skewness and kurtosis. They are termed L-
skewness and L-kurtosis, given as

s3 ¼ L3
L2

and s4 ¼ L4
L2

(7)

1
4

respectively. They are bounded by the constraints �1<s3<1 and ð5s23�1Þ<s4<1:

Lemma 2.1. Let X be a real valued random variable with a quantile function defined as
QXðpÞ, where 0<p<1. It follows that:

ð1
k

0
QX pð ÞP�

r�1 pð Þdp ¼ 1
k

ð1
0
QX

u
k

� �
P�
r

2u
k
�1

� �
du (8)

where k is a positive integer.

Proof. Since the integral should be from 0 to 1, consider the application of the follow-
ing transformation: let u ¼ kp where k is a positive integer. This change in variables
yields du ¼ kdp: Therefore:

ð1
k

0
QX pð ÞP�

r�1 pð Þdp ¼ 1
k

ð1
0
QX

u
k

� �
P�
r�1

u
k

� �
du

¼ 1
k

ð1
0
QX

u
k

� �
P�
r�1

2u
k
�1

� �
du

(9)
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Let T be a random variable from a two-piece distribution, obtained using the method-
ology in Proposition 2.1 above. Then the corresponding rthorder L-moment, LT:r is:

LT:r ¼
ð1

2

0
ðlþ arQXðsÞÞP�

r�1ðsÞdsþ
ð1
1
2

ðlþ rQXðsÞÞP�
r�1ðsÞds

¼
ð1
0
ðlþ rQXðsÞÞP�

r�1ðsÞds�
ð1

2

0
ðlþ rQXðsÞÞP�

r�1ðsÞdsþ
ð1

2

0
ðlþ arQXðsÞÞP�

r�1ðsÞds

¼ l
ð1
0
P�
r�1ðsÞdsþ rfLX:r�

ð1
2

0
QXðsÞÞP�

r�1dsðsÞ þ
ð1

2

0
aQXðsÞÞP�

r�1ðsÞdsg

¼ l
ð1
0
P�
r�1ðsÞdsþ rfLX:r�ð1�aÞ

ð1
2

0
QXðsÞÞP�

r�1dsðsÞg

¼ l� þ rfLX:r� 1
2
ð1�aÞ

ð1
0
QXðs�ÞÞP�

r�1ðs�Þds�g
(10)

where Pr��1ðsÞ is the rthorder shifted Legendre polynomial given by Hosking (1990).
Equation

� 
(9)

s 
is used to simplify Equation

� 
(10) by replacing k ¼ 2 to obtain Pr��1ðs�Þ;

where s ¼ k : The location parameter l takes on the value of l if r¼ 1 and it is zero
for all values of r> 1.

2.3. Quantile-based measures of location, spread and shape

Since Proposition 2.1 yields results with quantile functions that take on a closed form, 
quantile-based measures can be used to describe the location, shape and spread of a dis-
tribution. Unlike the conventional moments or the L-moments, quantile-based measures 
of location, spread and shape exist for all parameter values of a distribution. The follow-
ing measures will be considered for the examples in this article:

� The median will be used to obtain a measure of location.

me ¼ Q
1
2

� �
(11)

� The spread function by MacGillivray and Balanda (1988) is the choice of meas-
ure of spread.

S uð Þ ¼ Q uð Þ�Q 1�uð Þ for
1
2
<u<1 (12)

It can be noted QðuÞ>Qð1�uÞ for all values of 1
2<u<1; therefore S(u) > 0. This

is inline with the requirements for a valid spread function.
� The c-functional is an asymmetry functional that was defined in MacGillivray

(1986) as:

c uð Þ ¼ Q uð Þ þ Q 1�uð Þ�2Q 1
2

� �
Q uð Þ � Q 1� uð Þ ¼ Q uð Þ þ Q 1�uð Þ�2me

S uð Þ for
1
2
<u<1 (13)
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As can be seen, the c-functional is a function of the difference between the quan-
tile function evaluated at u and ð1�uÞ; and twice the median in the numerator. It is
however scaled by the spread function in Equation (12) in the denominator.

As the numerator difference increases, the functional value increases and vice
versa. The c-functional is bounded by –1 and 1. A special case is Bowley’s quar-
tile-based measure of skewness proposed by Bowley (1902). This is obtained by
setting u ¼ 3

4 :
� As introduced by MacGillivray and Balanda (1988), the ratio-of-spread functions

is a measure of kurtosis used to describe the position of the probability mass in
the tails of the distribution. This is measured for any pairs of values u and v.
This function is denoted as

R u; vð Þ ¼ S uð Þ
S vð Þ for

1
2
<v<u<1 (14)

Since SðuÞ>SðvÞ for 1
2<v<u<1; it then follows that Rðu; vÞ>1:

A skewness-invariant kurtosis measure will then be identified if it takes on the
general form Pn1

i¼0 giðQ uið Þ�Q 1�uið ÞPn2
j¼0 hj Q ujð Þ � Q 1� ujð Þ� � (15)

where n1 and n2 are positive integers and gi ¼ 1; 2; :::; n1 and hj ¼ 1; 2; :::; n2 are
constants.
From Equation (12), SðuÞ ¼ QðuÞ�Qð1�uÞ; culminating in Equation (15) being 
rewritten as Pn1

i¼0 giS uið ÞPn2
j¼0 hjS ujð Þ

¼
Pn1

i¼0 giðQ uið Þ�Q 1�uið ÞPn2
j¼0 hj Q ujð Þ � Q 1� ujð Þ� � (16)

3. Examples

The skewing mechanism introduced in Proposition 2.1 is applied to various distribu-
tions in this section, in order to yield univariate asymmetric families of distributions. 
Table 1 shows the distributions used, as well as the functions used to characterize these 
distributions i.e. the cumulative distribution function, the probability density function 
(PDF) and the quantile function. As can be seen, the distributions of interest are the 
normal, logistic and Student’s t(2) distributions. Since L-moments will be used to obtain

Table 1. Table of the CDFs, PDFs and quantile functions of the normal, logistic and Student’s t(2) 
distributions.
Distribution CDF PDF Quantile function

Normal FðxÞ ¼ UðxÞ
fðxÞ ¼ 1ffiffiffiffi

2p
p e

�ðxÞ2
22

QXðpÞ ¼
ffiffiffi
2

p
erf�1ð2p� 1Þ

Logistic FðxÞ ¼ ex
1þex fðxÞ ¼ ex

ð1þexÞ2 QXðpÞ ¼ logð p
1�pÞ

Student’s t(2) FðxÞ ¼ 1
2 ð1þ xffiffiffiffiffiffiffiffi

2þx2
p Þ fðxÞ ¼ 1

ð2þx2Þ32 QXðpÞ ¼ 2p�1

ð2pð1�pÞÞ32
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summary statistics for these two-piece distributions, Table 2 shows the L-moments of
the parent distributions before they are generalized. Table 3 shows the results for the L-
location, L-scale and L-moment-ratios obtained for the proposed generalizations. The
values of L-location are the integrals in Equation (9) when k ¼ 2 and r ¼ 1. The con-
stants of the L-scale values in Table 3 are equivalent to half the constants of the L-scale 
in Table 2. It can be seen from Table 1 that the values of the L-kurtosis ratio are con-
stants and hence skewness-invariant. These values are identical to the L-kurtosis values 
in Table 2. The L-skewness ratio values in Table 3 illustrate the extensive levels of skew-
ness introduced to the normal, logistic, hyperbolic secant and Student’s t(2) distribu-
tions, through the generalization mechanism that has been proposed. The range of
values for the normal distribution is ð�0:4684; 0:4684Þ; whilst for the logistic and HSD
the ranges are ð�0:5; 0:5Þ and ð� 2

p ;
2
pÞ respectively. The symmetric parent distributions

are obtained when a¼ 1.
The two-piece logistic distribution is considered in the rest of Section 3. Results for

the normal and t(2) distributions follow similarly. The two-piece HSD is studied in 
detail in Section 4.

3.1. Two-piece logistic distribution

Assume that X has a logistic distribution, with location and scale parameters
�1<l<1 and r>0 respectively. Its corresponding quantile function is

QX pð Þ ¼ lþ r log
p

1� p

� �
(17)

where 0<p<1; whilst the L-moment functions for r> 0 are

LX:r ¼
0 for odd values of r

2
r r � 1ð Þ for even values of r

8<
: (18)

These results were documented by Hosking (1986).

Table 2. Table of L-location, L-scale, L-skewness ratio and L-kurtosis ratio for the normal, logistic and 
Student’s t(2) distributions.
Distribution L-location L-scale L-skewness L-kurtosis

Normal 0 1ffiffi
p

p 0 0:1226
Logistic 0 1 0 0:1667
Student’s t(2) 0 p

2
ffiffi
2

p 0 0:375

Table 3. Table of L-location, L-scale, L-skewness ratio and L-kurtosis ratio for the two-piece 
general-izations of the normal, logistic and Student’s t(2) distributions.
Distribution L-location L-scale L-skewness L-kurtosis

Normal 1ffiffiffiffi
2p

p ð1� aÞ 1
2
ffiffi
p

p ð1þ aÞ 0:4684 ð1�aÞ
ð1þaÞ 0:1226

Logistic logð2Þð1� aÞ 0:5ð1þ aÞ 0:5 ð1�aÞ
ð1þaÞ 0:1667

Student’s t(2)
ffiffi
2

p
2 ð1� aÞ p

4
ffiffi
2

p ð1þ aÞ 2
p
ð1�aÞ
ð1þaÞ 0:375
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By substituting Equation (17) into Equation (3) as defined in the Proposition 2.1 
above, the two-piece logistic distribution is characterized by the following quantile func-
tion:

QT sð Þ ¼
lþ r log

s
1� s

� �
for s>

1
2

lþ ar log
s

1� s

� �
for s � 1

2

8>>><
>>>:

(19)

quantile density quantile function:

qT sð Þ ¼
r

s 1� sð Þ for s>
1
2

ar

s 1� sð Þ for s � 1
2

8>><
>>:

(20)

cumulative distribution function:

FT Xð Þ ¼
e

x�l
rð Þ

1þ e
x�l
rð Þ for x>l

e
x�l
arð Þ

1þ e
x�l
arð Þ for x � l

8>>>><
>>>>:

(21)

and probability density function:

fT Xð Þ ¼
e
x�l
r

r 1þ e
x�l
rð Þ2 for x>l

e
x�l
ar

ar 1þ e
x�l
arð Þ2 for x � l

8>>>><
>>>>:

(22)

3.2. The rthorder L-moments
The rthorder L-moments for 1 � r � 4 are subsequently derived by using Equation (10) to 

obtain:

LT:1 ¼ lþ r log 2ð Þ 1�að Þ
LT:2 ¼ 1

2
r 1þ að Þ

LT:3 ¼ 1
4

1�að Þ

LT:4 ¼ 1
12

1þ að Þ

(23)

Therefore, the L-skewness and L-kurtosis ratio measures are:

sT:3 ¼ LT:3
LT:2

¼ 1
2

1�að Þ
1þ að Þ (24)

and
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sT:4 ¼ LT:4
LT:2

¼ 1
6

(25)

respectively. These expressions for the L-moments and ratios correspond to those
obtained by Balakrishnan, Dai, and Liu (2017) using expectations of
order statistics.

1
6

It can be noted that the L-kurtosis ratio in Equation (25) is skewness-invariant 
with respect to a since it is a constant value. This implies the two-piece logistic dis-
tribution has a fixed level of L-kurtosis ratio with varying levels of skewness intro-
duced by a. The value of in Equation (25) is equivalent to the L-kurtosis ratio of 
the parent distribution of X, which in this case is the logistic distribution. The spe-
cial case of the two-piece logistic is the logistic distribution which is obtained
when a¼ 1.

3.3. Quantile-based measures of location, spread and shape

The quantile-based measures of location and spread for the two-piece logistic distribu-
1
2tion are obtained by substituting Equation (19), for s � ; into Equation (11) and Equation

(12), respectively.
The median is obtained as

me ¼ Q
1
2

� �

¼ lþ r log

1
2

1� 1
2

0
BB@

1
CCA

¼ lþ r log 1ð Þ
¼ l

where l is the location parameter and not the mean of the distribution. The spread
function S(u) is

S uð Þ ¼ Q uð Þ�Q 1�uð Þ

¼ lþ r log
u

1� u

� �� �
� lþ ar log

1�u
1� 1� uð Þ

� �� �

¼ r 1þ að Þ log u
1� u

� �

where 1
2<u<1:

The c-functional below is obtained by substituting Equation (19) into Equation (13) 
to end up with

9



c uð Þ ¼ Q uð Þ þ Q 1�uð Þ�2me
S uð Þ

¼
lþ r log

u
1� u

� �
þ lþ ar log

1�u
1� 1� uð Þ

� �
�2l

r 1þ að Þ log u
1� u

� �

¼
r log

u
1� u

� �
�ar log

u
1� u

� �

r 1þ að Þ log u
1� u

� �

¼ 1�a
1þ a

The value of the c-functional tends to 1 when a approaches 0, while it tends to –1
when a tends to 1:

The ratio-of-spread functions is given as

R u; vð Þ ¼ S uð Þ
S vð Þ

¼
r 1þ að Þ log u

1� u

� �

r 1þ að Þ log v
1� v

� �

¼
log

u
1� u

� �

log
v

1� v

� �

where 1
2<v<u<1: Note that, akin to the L-kurtosis ratio, the ratio-of-spread functions

is skewness-invariant with respect to a.

3.4. Simulated example for the two-piece logistic distribution

Consider a simulated data set with 10, 000 observations from the two-piece logistic dis-
tribution. Without loss of generality, the location and scale parameters are standardized
i.e. l ¼ 0 and r ¼ 1. The value of the skewing parameter, a, is set at 2. Table 4 gives the
theoretical L-moments and L-moment ratio results in the first column, which will be

Table 4. Table of the theoretical and empirical L-moments and L-moment ratios for the two-piece 
logistic distribution.
Theoretical Empirical

L1 ¼ �0:69315 ‘1 ¼ 0:70098
L1 ¼ 1:5 ‘2 ¼ 1:50393
s3 ¼ �0:16667 t3 ¼ �0:16886
s4 ¼ 0:16667 t4 ¼ 0:16125
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expected when the parameters are substituted into Equations (23)–(25), while the 
second column presents the sample ‘-moments of the simulated values.
The parameter estimates from the sample will be obtained through the method of L-

moments estimation. These are â ¼ 2:01985; l̂ ¼ 0:00311449 and r̂ ¼ 0:99603: The cor-
responding standard errors of the estimates were obtained through the use of paramet-
ric bootstrap, where N¼ 1000 samples were considered. They are obtained
as SEl̂ ¼ 0:0293355; SEr̂ ¼ 0:0159727; SEâ ¼ 0:0462516:
Table 5 shows the effect the skewing parameter has on the quartiles. Consider the

quartiles, lower quartile (Q1), median (Q2) and upper quartile (Q3), presented in the
table. It can be noted that as the values of a increase, Q1 tends to decrease since the
data becomes more negatively skewed. The value of the median and the upper quartile
remain constant.

4. Two-piece hyperbolic secant distribution

A real-valued random variable X is said to have a hyperbolic secant distribution, with
location and scale parameters �1<l<1 and r>0 respectively, if it is characterized by
the following functions:
Cumulative distribution function:

F xð Þ ¼ 1
2
þ arctan sinh p x�l

r

� �� �� �
p

; x 2 �1;1ð Þ (26)

Probability density function:

f xð Þ ¼ 1
2r

1

cosh
p x�lð Þ

2r

	 
 ; x 2 �1;1ð Þ (27)

and
Quantile function

Q pð Þ ¼ log tan
pp
2

� �� �
; p 2 0; 1ð Þ (28)

There have been various generalizations of the HSD proposed in the literature. These
generalizations aimed to incorporate most of the properties of this distribution, as well
as augment its flexibility with regards to distributional shape. Vaughan (2002) studied a
symmetric family of distributions with varying levels of kurtosis ranging from 1 to 1:

They include thick and thin-tailed members, expanding the versatility of their use in
modeling various data. Moreover, all the moments of these distributions are finite.
Esscher’s transformation by Escher (1932) was applied to Vaughan (2002)’s generalized
secant hyperbolic (GSH) distribution, giving rise to the skew generalized secant distribu-
tion (SGSH), which was proposed by Fischer (2006). Jones and Pewsey (2009)’s

Table 5. Table of the quartile values for different values of a for the two-piece logistic distribution.
Quartiles a ¼ 0:25 a ¼ 0:5 a ¼ 0:75 a ¼ 1 a ¼ 1:25 a ¼ 1:5 a ¼ 2

Q1 �0.27968 �0.55937 �0.83905 �1.11874 �1.39842 �1.67811 �2.23748
Q2 0.00467 0.00467 0.00467 0.00467 0.00467 0.00467 0.00467
Q3 1.12019 1.12019 1.12019 1.12019 1.12019 1.12019 1.12019
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sin-arcsinh (SAS) transformation was also used by Fischer and Herrmann (2013) to
develop asymmetric families of distributions that have the HSD as a special case.
Suppose X is characterized by the functions in Equations (26–28). The rth-order L-

moments are LX:r ¼ 0 for odd values of r, LX:2 ¼ 7Zeta½3�
p2 ¼ 0:852557 and LX:4 ¼

42p2Zeta½3��465Zeta½5�
p4 ¼ 0:165378; where Zeta½k� ¼ P1

n¼1 n
�k for all complex numbers k

with real part greater than 1. By making use of Equation (3), the quantile function of 
the two-piece hyperbolic secant distribution is generated as:

QT sð Þ ¼
lþ r log tan

ps
2

� �� �
for s>

1
2

lþ ra log tan
ps
2

� �� �
for s � 1

2

8>>><
>>>:

(29)

The quantile density function is obtained as the first derivative of the quantile func-
tion. Therefore by taking the first derivative of Equation (29), the quantile density func-
tion is:

qT sð Þ ¼
pr

sin psð Þ for s>
1
2

par
sin psð Þ for s � 1

2

8>><
>>:

(30)

The cumulative distribution function will be taken as the inverse of Equation (29):

FT Xð Þ ¼
2
p
arctan e

x�l
rð Þ for x>l

2
p
arctan e

x�l
arð Þ for x � l;

8><
>: (31)

and probability density function will be the first derivative of Equation (31):

fT Xð Þ ¼
2
pr

e
x�l
rð Þ

1þ e2
x�l
rð Þ for x>l

2
par

e
x�l
arð Þ

1þ e2
x�l
arð Þ for x � l

8>>>><
>>>>:

(32)

4.1. Quantile-based measures of location, spread and shape

The quantile-based measures of location and spread for the two-piece hyperbolic secant
distribution are obtained by substituting Equation (29), for s � 1

2 ; into Equations (11)
and (12), respectively.
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The median is obtained as

me ¼ Q
1
2

� �

¼ lþ r log tan
p
4

� �� �

¼ lþ r log 1ð Þ
¼ l

whilst the spread function S(u) is

S uð Þ ¼ Q uð Þ�Q 1�uð Þ

¼ lþ r log tan
pu
2

� �� �� �
� lþ ar log tan

p 1�uð Þ
2

� �� �� �

¼ r log tan
pu
2

� �� �
þ ar log tan

pu
2

� �� �

¼ r 1þ að Þ log tan
pu
2

� �� �

1
2where <u<1: Through the substitution of Equation (29) into Equation (13), the 

c-shape functional is attained as

c uð Þ ¼ Q uð Þ þ Q 1�uð Þ�2me
S uð Þ

¼
lþ r log tan

pu
2

� �� �
þ lþ ar log tan

p 1�uð Þ
2

� �� �
�2l

r 1þ að Þ log tan
pu
2

� �� �

¼
r log tan

pu
2

� �� �
�ar log tan

pu
2

� �� �

r 1þ að Þ log tan
pu
2

� �� �

¼ 1�a
1þ a

The expressions for the c-functionals of the two-piece HSD and the two-piece logistic
distribution are the same. In fact, cðuÞ ¼ 1

1
þ
�
a
a for any two-piece distribution constructed

with Proposition 2.1.
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The ratio-of-spread functions of the two-piece HSD is given by

R u; vð Þ ¼ S uð Þ
S vð Þ

¼
r 1þ að Þ log tan

pu
2

� �� �

r 1þ að Þ log tan
pv
2

� �� �

¼
log tan

pu
2

� �� �

log tan
pv
2

� �� �

where 1
2<v<u<1: It can be noted that it is skewness-invariant with respect to a.

4.2. The rthorder L-moments

The rthorder L-moments, for 1 � r � 4 are then derived by using Equation (10) and after 
significant simplification to obtain:

LT:1 ¼ lþ 0:5831r 1�að Þ
LT:2 ¼ 0:4263r 1þ að Þ
LT:3 ¼ 0:2218 1�að Þ
LT:4 ¼ 0:0827 1þ að Þ

(33)

In effect, the L-skewness and L-kurtosis ratios are:

sT:3 ¼ LT:3
LT:2

¼ 0:5203
1�að Þ
1þ að Þ (34)

and

sT:4 ¼ 0:1940 (35)

4.3. Distributional properties

The probability density curves for the two-piece HSD with varying values of a>0 are 
displayed in Figure 2. When a<1; the two-piece HSD exhibits positive skewness as
depicted by the dashed-curve. In this case, the values of sT:3 and cðuÞ are positive. The
distribution is negatively skewed when a>1; as shown by the dot-dashed curve, with
the corresponding values for sT:3 and cðuÞ negative. The symmetric HSD, represented
by the solid curve, is the special case of the two-piece HSD. It is obtained when a¼ 1
and its values for the L-skewness ratio and the c-functional are zero.
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4.4. Simulated example for the two-piece hyperbolic secant distribution

In order to evaluate the effect of the skewing parameter, 10, 000 observations for the
two-piece hyperbolic secant distribution were simulated. The location and scale param-
eter are set as l ¼ 0 and r ¼ 1, respectively. The value of the skewing parameter a is set
at 2. The results in Table 6 present the theoretical values which will be obtained when
the parameter values used in the simulation process are substituted into Equations 
(33)–(35). The values in the second column are from the sample of 10,000 observations
simulated. The parameter estimates from the sample will be obtained through the
method of L-moments estimation. These are â ¼ 2:02177; l̂ ¼ 0:00247093 and r̂ ¼
0:994994: The corresponding standard errors of the estimates, obtained through the use
of parametric bootstrap, where N¼ 1000 samples were considered, are obtained as
SEl̂ ¼ 0:0234319; SEr̂ ¼ 0:0166322 and SEâ ¼ 0:0492325:
Table 7 shows the effect of the skewing parameter on the quartiles. The lower quartile

(Q1), median (Q2) and upper quartile (Q3) values for different values of a are

Figure 2. The probability density curves for the two-piece skewed hyperbolic secant distribution.

Table 6. Table of the theoretical and empirical L-moments and L-moment ratios for the two-piece 
hyperbolic secant distribution.
Theoretical Empirical

L1 ¼ �0:5831 ‘1 ¼ �0:59034
L1 ¼ 1:2789 ‘2 ¼ 1:28173
s3 ¼ �0:1734 t3 ¼ �0:17593
s4 ¼ 0:194 t4 ¼ 0:18835

Table 7. Table of the quartile values for different values of a for the two-piece hyperbolic secant 
distribution.
Quartiles a ¼ 0:25 a ¼ 0:5 a ¼ 0:75 a ¼ 1 a ¼ 1:25 a ¼ 1:5 a ¼ 2

Q1 �0.22454 �0.44908 �0.67362 �0.89815 �1.12269 �1.34723 �1.79631
Q2 0.00367 0.00367 0.00367 0.00367 0.00367 0.00367 0.00367
Q3 0.89937 0.89937 0.89937 0.89937 0.89937 0.89937 0.89937
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presented. It can be noted that as the values of a increase, Q1 tends to decrease since
the data becomes more negatively skewed. The value of the median and the upper quar-
tile remain constant despite the changing value of a.

5. Conclusion

The proposed technique of quantile splicing has been introduced and applied to sym-
metric distributions, with the intent of extending the flexibility of the distribution with 
regards to its shape. The parent distribution will be required to have a location value of 
zero and variance of 1, or the values of L1 and L2 be equal to zero and 1, respectively. 
Since the method uses the quantile function to generate results of the proposed two-
piece distribution, it can be used to introduce skewness to distributions with no closed-
form expression for the CDF. The extended levels of skewness are evident in the expres-
sions for the L-skewness ratios in the examples in Sections 3 and 4, whilst the level of 
kurtosis remains skewness-invariant as shown through the subsequent L-kurtosis ratio 
results. Furthermore, the general results for the quantile functions used to characterize 
the two-piece distribution can be used to obtain a general formula for the rth order L-
moments. This eliminates the tedious task of using order statistics to obtain single and 
product moments of the distribution. It also enables the quantile-based measures of 
location, scale and skewness as well as a skewness-invariant measure of kurtosis to be 
defined for the proposed distributions. The simulated examples in Sections 3 and 4 
show the effects of the skewing parameter on the lower quartile, which decreases in 
value as the parameter increases, whilst the median and the upper quartile 
remain constant.
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