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Abstract. Sibling curves are a new way to represent the zeroes of any complex-
valued function. Interesting results are already known for the sibling curves of 
quadratic polynomials. In this article a complete investigation of sibling curves of 
cubic polynomials are given. This article concludes by providing a new general result for 
the sibling curves of complex polynomials.
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1. Introduction

One of the topics that arises when studying complex numbers is to find a
way to represent the zeroes of complex-valued functions. Several methods of
representing the zeroes are known [1].

The use of sibling curves [2] is a very robust method of representing the ze-
roes. The sibling curves of f : C → C is the set of all complex numbers c
such that f(c) ∈ R. This restriction gives a way to represent the zeroes of
any complex-valued function in three dimensions.

It has been proven whenever f is a polynomial of degree n, then f has ex-
actly n sibling curves [3]. Therefore if f is a quadratic polynomial, then
it has precisely two sibling curves. It is known that two possible outcomes
exist [4]. If the two sibling curves intersect, then the sibling curves are two
parabolas. If the two sibling curves do not intersect, then neither of these
curves have the shape of a parabola. In either case we get two sibling curves
that are isometric.

In this paper we fully explore the sibling curves of cubic polynomials. Section
2 focuses on the possibilities of sibling curves for real cubic polynomials. This
work assists section 3 to completely investigate the possibilities for complex
cubic polynomials. Finally, in section 4 the author provides a brand-new
result for the sibling curves of any complex polynomial.

2. Real case

This section only concentrates on the sibling curves of real cubic polynomi-
als. This sections start by providing a standard form for cubic polynomials
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in Lemma 2.1. This standard form is then fully treated in Lemma 2.2. Com-
bining these two lemmas the author now considers general real cubic poly-
nomials. This is done in Theorem 2.3 to provide an easy criteria to classify
the the possibilities for real cubic polynomials.

Lemma 2.1. The sibling curves of f(x) = ax3 + bx2 + cx + d is the sibling
curves of g(z) = z3 + ez + f up to a linear transformation.

Proof. Using scaling, substitute x = 1
3√ay. Therefore f(x) = f( 1

3√ay) =

y3 + b
3√
a2
y2 + c

3√ay + d. Now translate, by letting y = z − b

3
3√
a2

, that is

x = z
3√a −

b
3a

. Therefore

f(x) = f(
z
3
√
a
− b

3a
)

= a(
z
3
√
a
− b

3a
)3 + b(

z
3
√
a
− b

3a
)2 + c(

z
3
√
a
− b

3a
) + d

= z3 + (
6ac− 2b2

3a 3
√
a

)z + (
2b3 − 9abc+ 27a2d

27a2
)

Thus e = 6ac−2b2
3a 3√a and f = 2b3−9abc+27a2d

27a2
. �

Lemma 2.2. Suppose e, f are real numbers. The sibling curves of g(z) =
z3 + ez + f has three possibilities:
(1) If e = 0, then all the three sibling curves intersect at the same point.
(2) If e > 0, then the sibling curves never intersect.
(3) If e < 0, then there are two pairs of sibling curves where each pair has
an unique point of intersection.

Proof. Suppose z = x + iy for some real numbers x, y. Then g(z) = g(x +
iy) = (x3 − 3xy2 + f) + (3x2y − y3 + ey)i. If g(z) is a real number, then
3x2y−y3 +ey = 0. So y(3x2−y2 +e) = 0. This shows that y = 0 is always a
solution producing the sibling curve (t, t3 + et+ f) where t is a real number.
Now we consider three cases depending on the value of e.

Case 1: If e = 0, then 3x2 − y2 = 0 or y = ±
√

3x. This gives two sibling
curves (t +

√
3ti, f − 8t2) and (t −

√
3ti, f − 8t2). Note each sibling curve

contains the point (0, f).

Case 2: If e > 0, then we have 3x2− y2 = −e. This is a hyperbola that is the
projection of two sibling curves on the horizontal plane that do not intersect.
The third sibling curve satisfies y = 0. However if y = 0, then 3x2 = −e,
which do not have a real solution when e > 0. This proves that in this case
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none of the sibling curves intersect.

Case 3: If e < 0, then we have 3x2 − y2 = −e. This is again a hyperbola
which is the projection of two sibling curves on the horizontal plane that do
not intersect. However, note that the sibling curve in the plane y = 0 does

intersect each sibling curve on the hyperbola at x = ±
√
−e
3

. The points are

(
√
−e
3
, −e

3

√
−e
3

+ f) on one pair of sibling curves and (−
√
−e
3
, e
3

√
−e
3

+ f) on

the other pair of sibling curves. These are the only points of intersections. �

Figures 1, 2 and 3 demonstrates cubic polynomials of cases 1, 2 and 3 respec-
tively.

Figure 1. The sibling curves of f(x) = x3 + 3.

Figure 2. The sibling curves of f(x) = x3 + x+ 1.
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Figure 3. The sibling curves of f(x) = x3 − x.

Theorem 2.3. Suppose f(x) = ax3 + bx2 + cx+d is a real cubic polynomial.
The sibling curves has three possibilities depending on the value of 4 =
3ac− b2.
(1) If 4 = 0, then all the three sibling curves intersect at the same point.
(2) If 4 > 0, then the sibling curves never intersect.
(3) If 4 < 0, then there are two pairs of sibling curves where each pair has
an unique point of intersection.

Proof. This is immediate from Lemma 2.1 and Lemma 2.2 where e = 6ac−
2b2. �

Therefore Figures 1-3 exhaust all the possibilities for the real cubic case. It
should be noted when 4 = 0 we get three sibling curves that are isometric.
If 4 6= 0 then there is always a pair of isometric sibling curves.

3. Complex case

This section focuses on the complex cubic polynomial case. Theorem 3.1
provides a way of determining the number of intersections that occurs given
the polynomial.

Theorem 3.1. Suppose f(z) = az3 + bz2 + cz + d where a 6= 0. Let z1, z2 be
the two complex roots of 3az2+2bz+c = 0. The number of intersections of the
three sibling curves of f is the cardinality of the set {zi : 6ac−2b2

9a
zi + 9ad−bc

9a
∈

R}.

Proof. It was shown in [3] that polynomial sibling curves intersect iff there is
a complex number z such that f ′(z) = 0 and f(z) ∈ R. Applying polynomial
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division it follows that f(z) = f ′(z).( z
3

+ b
9a

)+ 6ac−2b2
9a

z+ 9ad−bc
9a

, where f ′(z) =
3az2+2bz+c. Noting for any zi that f(zi) = 0, the result follows immediately.

�

It should be remarked that this result easily treats the case when a, b, c, d
are real numbers. If b2 = 3ac then the quadratic f ′(z) has two equal roots.
In this case we get only one point that is on each of the sibling curves. If
b2− 3ac > 0, then the roots are complex which shows that the sibling curves
never intersect. Lastly, if b2 − 3ac < 0, then there are two distinct solutions
whose evaluation at f is real.

So the question begs, is there a new possibility for the sibling curves of com-
plex cubic polynomials that can occur that was not observed when studying
real cubic polynomials in section 2. This is confirmed in the next example.

Figure 4. The sibling curves of f(x) = x3 + 3x− 2i.

Consider the polynomial f(x) = x3 + 3x − 2i. Solving f ′(x) = 0, we get
x = ±i. Note f(i) = 0, but f(−i) 6= 0. Therefore by Theorem 3.1, the
number of intersections of the sibling curves of f is a single point. This
observation is confirmed in Figure 4. This example is a new possibility that
was impossible in the real case.

4. A new general property

Theorem 4.1. If f(z) is a complex polynomial of degree n, then the projec-
tion onto the horizontal plane has n straight line asymptotes.

Proof. Suppose f(z) = cnz
n + cn−1z

n−1 + . . . + c0 where cj ∈ C. Let cj =
aj cis(bj) = aje

ibj for some real numbers aj, bj. Let z = r cis(θ) for some real
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numbers r, θ. Solving Im f(z) = 0 produces 0 = an.r
n sin(nθ + bj) + . . . +

a2.r
2 sin(2θ + b2) + a1.r sin(θ + b1) + a0. Therefore

lim
r→∞

an.r
n sin(nθ + bj) + . . .+ a2.r

2 sin(2θ + b2) + a1.r sin(θ + b1) + a0 = 0

lim
r→∞

sin(nθ + bj) + . . .+
a2

an.rn−2
sin(2θ + b2) +

a1
an.rn−1

sin(θ + b1) + a0 = 0

∴ sin(nθ + bj) = 0

This gives the n asymptotes defined by y = tan(θ)x where sin(nθ + bj) =
0. �

Theorem 4.2. Suppose f(z) is a complex polynomial of degree n. Then the
projections of the sibling curves of f onto the horizontal plane contains no
loops.

Proof. Suppose Im f(z) = 0 has a closed continuous curve C with no points
in the interior of the set Im f(z) = 0. So either all the interior points have
Im f(z) > 0 or f can be replaced with −f .

For each point z in the interior of C, we consider Im f(z). Suppose w is an
interior point of C such that Im f(z) reaches a maximum. This must exist
as the curve C is closed and bounded. Now let g(z) = f(z + w). Suppose
Im g(0) = M , where M stands for the maximum value.

Let r be the smallest real number r > 0 such that there exists an angle θ

such that Im g(r.eiθ) = 0. It can be shown that g(r.eiθ)+g(r.ei(θ+
2π
n+1

))+ . . .+

g(r.ei(θ+
2nπ
n+1

)) = (n + 1)M . Hence one of the angles α satisfies Img(r.eiα) ≥
n+1
n
M > M since g(r.eiθ) = 0 and n ≥ 1. This gives a contradiction, since

the maximum of Im g(z) occurs at z = 0. This contradiction proves the
claim. �

From this result, it follows whenever f(z) is a complex polynomial of
degree n, then g(x, y) = Im f(x + iy) is a bivariate polynomial. This bi-
variate polynomial will never have a zero-loop: that is a non-trivial closed
curve that satisfies g(x, y) = 0. For example, if f(z) = z3 + iz, then
f(x + iy) = (x3 − 3xy2 − y) + i(3x2y − y3 + x). For this polynomial, the
projection is the bivariate polynomial 3x2y − y3 + x = 0. It can be shown
that 3x2y − y3 + x = 0 has no loop in the xy−plane.

As a further consequence from this result, it follows that it is impossible
for two sibling curves to intersect at more than one point.
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5. Conclusion

We know that a cubic polynomial has three sibling curves. From section
4, it follows that it is impossible for any pair of sibling curves to intersect
at more than one point. Therefore up to homotopy, we know that there are
four possibilities as shown in Figure 5.

Figure 5. Homotopy possibilities of the sibling curves of cu-
bic polynomials.

In section 2 and 3, the author demonstrated that each homotopy possibil-
ity for cubic polynomials occurs. Actually, infinitely many examples exist for
each homotopy type. As remarked earlier, let z1, z2 be two roots of f ′. If the
roots are repeated and f(z1) 6= R then the first homotopy possibility occurs,
otherwise f(z1) ∈ R and then the third homotopy possibility occurs. If the
roots are distinct, let n be the cardinality of set {f(z1), f(z2)} ∩R. If n = 0
then homotopy possibility 1 occurs. If n = 1 then homotopy possibility 4
occurs. If n = 2 then homotopy possibility 2 occurs.

The reader may be interested in the homotopy possibilities for quartic
polynomials. In Figure 6 and 7, two possibilites are demonstrated.

Figure 6. The sibling curves of f(z) = (−1− 2i)z4 + 4iz3 + (2− 2i)z2.
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Figure 7. The sibling curves of f(z) = (−i)z4 + 2iz3 + (−i)z2.

To summarize, the author proved in section 4 that two distinct sibling
curves of the same polynomial can never intersect at more than one point.
Combining this fact with the fact that a polynomial of degree n has n sibling
curves, allows you to list all the homotopy possibilities. For the cubic case,
there are four homotopy possibilities. Theorem 2.3 and Theorem 3.1 pro-
vides easy-to-check criteria on how to determine which homotopy possibility
occurs. The results in section 2 and 3 is therefore a full investigation of the
sibling curves of cubic polynomials.

So an open question now remains, given a polynomial of degree n, are all
configurations (that can be drawn up to homotopy - just like the cubic case)
possible?
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