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Abstract: Modern SAR systems have size, weight, power and cost (SWAP-C) limitations since platforms are becoming 

smaller while SAR operating modes are becoming more complex. Thus, SAR systems are producing an ever-increasing 

volume of data that needs to be transferred to a ground station for processing. A compression algorithm seeks to reduce 

the data volume of the raw data; however, the algorithm can cause degradation and losses that may degrade the 

effectiveness of the SAR mission. 

This work addresses the lack of standardised quantitative performance metrics so that the performance of SAR data-

compression algorithms can be objectively quantified. Therefore, metrics are established in two different domains, 

namely the data domain and the image domain. Since different levels of degradation are acceptable for different SAR 

applications, a trade-off can be made between the data reduction and the degradation caused by the algorithm. Due to 

SWAP-C limitations there remains a trade-off between the performance and the computational complexity of the 

compression algorithm. 

 

1. Introduction 

Synthetic aperture radar (SAR) is the only imaging 

system that can provide high-resolution images of wide areas 

in all weather conditions, during the day or night [1], [2]. 

Other advantages of SAR are that it provides information that 

is complementary to optical images and certain frequencies 

have penetration capabilities which allow much more 

information to be extracted from a scene [2]. Therefore, SAR 

has been used for various military, commercial and earth 

observation applications for the past three decades [1], [2]. In 

the case of military applications, SAR technology is 

increasingly being used in unmanned aerial vehicle 

(UAVSAR) systems [3], [4], while for earth observation 

applications, satellites are being equipped with higher 

resolution SARs while the platforms are becoming smaller 

and lighter [5]. In both cases SWAP-C play an important role 

in the system design. 

Not only are platforms becoming smaller, but SAR 

technology is moving towards being multi-band, multi-

polarized, having very high resolution and also having 

multiple operating modes. All of these factors contribute to 

SAR systems producing an ever-increasing volume of data, 

so despite technological advances, the on-board storage and 

downlink bandwidth remain limiting factors [6], [7]. Due to 

the limited SWAP-C of many platforms, minimal processing 

can be performed on board, and thus the data need to be 

transferred to a ground station for processing. In order to 

accommodate the downlink and storage limitations, the raw 

SAR data must be compressed [7]. The objective of the 

compression algorithm is thus to reduce the data produced by 

the SAR to as few bits as possible, while using only limited 

processing and preserving the information content. 

Various compression algorithms have been 

investigated, including the block adaptive quantiser (BAQ) 

[8], [9] and variations thereof [6], [10], [11], vector 

quantisation (VQ) [9], [12], transform coding [13], trellis 

coded quantisation [14], wavelets [15], compressive sensing 

[16], predictive coding [17], coding after range focusing [14], 

as well as combinations of more than one algorithm [18]. The 

de facto standard is the BAQ [6], [19] which utilizes a Lloyd-

Max quantiser [20], [21] to exploit the fact that the in-phase 

(I) and quadrature (Q) components can be assumed to follow 

Gaussian distributions with zero mean [8], [9]. More 

advanced variations of this method have been implemented 

on new SAR systems as processing capabilities improve [7], 

but the underlying BAQ algorithm is still being used. 

A compression algorithm seeks to reduce the data 

volume to solve the problem of transmitting and/or storing 

the raw data. However, any degradation and loss that the 

algorithm causes should also be determined as a low quality 

SAR image may degrade the effectiveness of the SAR 

mission. Therefore, the compression algorithm must be 

evaluated to determine both whether it is effective in reducing 

the data volume as well as how significant the associated 

image-quality losses that occurred are. 

Despite the importance of being able to quantify the 

performance of SAR data-compression algorithms, there does 

not appear to be a widely-accepted set of metrics for this 

purpose. The problem is compounded by the fact that 

different publications on SAR data compression often 

propose new metrics to emphasise the unique benefits of the 

proposed algorithms (e.g. [12] and [17]). This lack of 

standardised quantitative performance metrics means that the 

performance of SAR data-compression algorithms cannot be 

objectively quantified. 

A critical evaluation of a number of SAR compression 

performance metrics is provided to overcome this difficulty. 

No single metric is suitable because the relative importance 

of each factor will differ depending on each system’s unique 

requirements, so a number of metrics which quantify different 

aspects of SAR data compression performance are evaluated. 

These metrics consider how significantly the data rate is 

reduced, the loss of information, and the processing required 

for compression. Furthermore, the metrics evaluated consider 

both the data domain, where compression and decompression 

are performed, and the image domain, where the final SAR 

output is produced [6],                                                                                                                                                                                                                                                                                                                                                                                                                                                                            

[10], [22]. 

The metrics in the data and image domains are 

discussed in Sections 2 and 3, respectively. SAR applications 

and the specific metrics of importance for each application 
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are considered in Section 0. The metrics are applied to the 

compression of various data sets in Section 5, and a brief 

conclusion is provided in Section 6. 

2. Data-Domain Metrics 

The metrics that can be used to evaluate the efficiency 

of the compression algorithm in the data domain are 

established below. As can be seen in Fig. 1, these metrics are 

evaluated after decompressing the compressed data, except 

for the compression ratio (CR) which is computed directly 

after compressing the raw data. These metrics are used to 

determine the performance of the compression algorithm and 

the associated losses or errors it induces in the raw data 

samples. In some of the literature on raw SAR compression 

algorithms, the only metric used in this domain is the CR (e.g. 

[13], [18], [19]). Although compression ratio is an important 

metric, as it determines the data reduction, other metrics that 

evaluate the losses or errors associated with the algorithm are 

useful when investigating different compression algorithms. 

Some studies in the field of raw SAR data compression 

evaluate the signal-to-quantisation noise ratio (SQNR) in the 

data domain since it is the most widely used metric to 

measure the performance of a quantiser [17], [23], [24]. The 

effects that quantisation has on the image domain results are 

not considered in the data domain since SAR processing first 

needs to be performed. The following metrics are suggested 

to thoroughly evaluate the compression algorithm in the data 

domain.  

 

2.1.  Data Reduction Measure 
 

 Compression Ratio 

The compression ratio (CR) is defined as [9] 

 

 𝐶𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑡𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑡𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑑𝑎𝑡𝑎
. (1) 

 

The CR indicates how efficiently the compression 

algorithm has reduced the data volume of the original data. 

 

2.2. Statistical Parameters 
 

Analysing the statistical parameters of each data set, 

with and without compression applied, can highlight changes 

that occurred in the statistical characteristics of the data due 

to the compression [10], [22]. A significant change in the 

statistical parameters in this domain means the compression 

algorithm was not as effective as it ideally could have been, 

since it corrupted the statistics of the original data. Note that 

each metric is evaluated for the uncompressed and 

decompressed data sets to compare the results. Also note that 

all statistical parameters, except the dynamic range, are 

computed for both the magnitude and phase components of 

the complex data. 

 

 Dynamic Range 

The dynamic range is the ratio between the largest and 

smallest values that the data can represent and is defined as  

 

 𝐷𝑅 =
𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑑𝑎𝑡𝑎 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚  𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑑𝑎𝑡𝑎
. (2) 

 

The dynamic range is computed using the magnitude 

component, and not the phase component. A reduction in the 

dynamic range leads to an improved compression ratio as 

fewer bits are required to represent the data. 

 

 Mean (First order statistic) 

The mean, 𝜇, is defined as [25]  

 

 𝜇 =
∑ (𝑋𝑖

𝑁
𝑖=1 )

𝑁
 (3) 

 

where 𝑋𝑖 is the signal sample and 𝑁 is the number of 

samples. 

 

 Standard Deviation (Second order statistic) 

The standard deviation,𝜎, is a measure of the variation 

of the data from the mean and is defined as [25]  

 

 𝜎 = √
∑ (𝑋𝑖−𝜇)2𝑁

𝑖=1

𝑁−1
. (4) 

 

 Skewness (Third order statistic) 

The skewness, 𝑠, is a measure of how symmetrical the 

data are around the mean and is defined as [25]  

 

 𝑠 =
1

𝑁
∑ (𝑋𝑖−𝜇)3𝑁

𝑖=1

(
1

𝑁
∑ (𝑋𝑖−𝜇)2𝑁

𝑖=1 )
3.  (5) 

 

Certain compression algorithms, like the BAQ, exploit 

the fact that the I and Q components of raw SAR data follow 

a Gaussian distribution [8], [9]. In turn this means that the 

 
 

Fig. 1. Process flow diagram 
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amplitude component follows a Rayleigh distribution, while 

the phase component is uniformly distributed between –π and 

π [26]. The skewness of a Rayleigh distribution and a uniform 

distribution are 0.63 and 0, respectively. Therefore, these 

values for the skewness can be used as a measure of how well 

the data components follow the applicable distributions. 

Skewness can thus be used to determine how much the 

compression algorithm caused the data to deviate from the 

distributions of the uncompressed data components. 

 

 Kurtosis (Fourth order statistic) 

The kurtosis, 𝑘, is a measure of how outlier-prone a 

distribution is or how heavy the tails of the distribution are 

and is defined as [25]  

 

 𝑘 =
1

𝑁
∑ (𝑋𝑖−𝜇)4𝑁

𝑖=1

(
1

𝑁
∑ (𝑋𝑖−𝜇)2𝑁

𝑖=1 )
2. (6) 

 

Again, the kurtosis is an indication of how well the 

data follows a specific distribution by investigating the 

heaviness of the tails. The kurtosis of a Rayleigh distribution 

and a uniform distribution are 3.245 and 1.8, respectively. 

The kurtosis can therefore be used to determine whether the 

compression algorithm caused the data to deviate more from 

the applicable distribution compared to the uncompressed 

data. 

 

 Entropy 

The entropy, 𝐻, is a measure of the compressibility of 

the data or the randomness of the data and is defined as [25]  

 

 𝐻 = − ∑ 𝑝(𝑁
𝑖=1 𝑋𝑖) ∙ log2(𝑝(𝑋𝑖)) (7) 

 

where 𝑝(𝑋𝑖) is the probability of 𝑋𝑖  occurring. A high 

entropy value means that the data are difficult to compress, 

while a lower value indicates that the data can easily be 

compressed to a smaller size. The entropy after compressing 

and decompressing the data should be similar to the entropy 

of the uncompressed data. 

 

2.3. Data Histograms 
 

The data histograms include the distributions of the in-

phase (I), quadrature (Q), magnitude and phase components. 

By comparing the histograms before and after compression, 

the changes in the probability distribution caused by the 

compression algorithm can be visualised [10], [22]. 

 

2.4. Error Measures 
 

In this subsection, the amplitude and phase distortions 

of the complex SAR data after decompression are 

investigated. In essence, the errors and distortions caused by 

the quantiser are being investigated here. Take note of the 

definition of the variables being used in this subsection: 

𝑔(𝑥, 𝑦) is the pixels of the uncompressed data, 𝑓(𝑥, 𝑦) is the 

pixels of the decompressed data, and M and N are the number 

of rows and columns of the data, respectively. 

 

 Mean Square Error (MSE) 

The MSE is a measure of the performance of the 

quantiser and gives the total absolute encoding error between 

the uncompressed and decompressed data sets [6], [9], [22], 

[24]. It can be computed as 

 

 𝑀𝑆𝐸 =
1

𝑀𝑁
∑ ∑ (𝑔(𝑥, 𝑦) − 𝑓(𝑥, 𝑦))2𝑁

𝑦=1
𝑀
𝑥=1 . (8) 

 

The MSE is computed using the magnitude 

components of the respective complex SAR data sets. The 

problem with using only the MSE to represent the distortion 

is that it depends strongly on the intensity scaling. 

Consequently, the MSE of different data sets can only be 

compared after the MSE values have been normalised. 

Therefore, the signal-to-quantisation-noise ratio is also 

evaluated in this study. 

 

 Mean Phase Error (MPE) 

In SAR processing, the phase information is used to 

focus the SAR image, and therefore, knowing the phase error 

after decompression gives an indication of the focusing error 

that will be present in the final image [22]. The MPE [6], [23], 

[24] is computed for the phase component of the data using 

the following equation 

 

 𝑀𝑃𝐸 =
1

𝑀𝑁
∑ ∑ |𝜃(𝑔(𝑥, 𝑦)) − 𝜃(𝑓(𝑥, 𝑦))|𝑁

𝑦=1
𝑀
𝑥=1  (9) 

 

where 𝜃 is the phase component of the complex SAR 

data of both sets being evaluated. 

 

 Signal-to-Quantisation-Noise Ratio (SQNR) 

The SQNR an important parameter for image quality 

analysis since it is a measure of the signal-to-noise ratio after 

the compression and decompression of the data [19], [22]-

[24]. It is used to measure the average amplitude distortion of 

the complex SAR data after compression and decompression 

have been implemented [6] and can be computed as 

 

 𝑆𝑄𝑁𝑅 = 10 log10 [
∑ ∑ (𝑔(𝑥,𝑦))

2𝑁
𝑦=1

𝑀
𝑥=1

∑ ∑ (𝑔(𝑥,𝑦)−𝑓(𝑥,𝑦))2𝑁
𝑦=1

𝑀
𝑥=1

]. (10) 

 

The SQNR avoids the problem mentioned for the 

MSE by normalising the MSE. Therefore, both metrics are of 

use when investigating the quantisation effects. 

3. Image-Domain Metrics  

For conventional compression algorithms, the 

distortion is measured between the original and reconstructed 

data. However, for the compression of raw SAR data, the 

distortion is also measured in the image domain, after 

processing [13]. Thus, the distortion is measured between the 

SLC image of the uncompressed data and the SLC image of 

the decompressed data [13]. As previously discussed, only 

measuring distortion for the evaluation of compression 

algorithms for raw SAR data is not sufficient; since SAR has 

numerous outputs and applications that have different quality 

requirements. In most of the literature where compression 

algorithms for raw SAR data are evaluated, the only metrics 

used in this domain are the signal-to-distortion noise ratio 
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(SDNR) and/or the impulse response function (IRF) [6], [17]-

[19], [27]. Although these are important metrics as they are 

strongly affected by compression algorithms, other metrics 

that evaluate factors other than visual quality should also be 

used to obtain a more complete quantification of the 

performance in a specific SAR application. The metrics that 

can be used to evaluate the effects of a compression algorithm 

in the image domain are described below. These metrics also 

provide better validation than the data-domain metrics since 

they evaluate the quality of the SAR Level 1 output. As can 

be seen from Fig. 1, this set of metrics is evaluated after 

processing the uncompressed data and the decompressed data 

to form the SLC SAR images that will be compared. The 

following metrics are suggested to evaluate the effects that 

compression algorithms introduce in the image domain.  

 

3.1. Statistical Parameters 
 

Higher order statistics can be used to characterise the 

distributions that the components of a data set follow. The 

statistical parameters of each data set are computed in the 

image domain to highlight the changes that occurred in the 

statistical characteristics of the SLC image [10], [12], [22]. 

Note that each metric is applied to the SAR image generated 

from the uncompressed data and the SAR image generated 

from the data after decompressing the compressed data to 

compare the results. For the equations of the metrics see (2) 

to (7) in Section 2. Also note that all statistical parameters, 

except the dynamic range, are computed using the magnitude 

and phase components of the complex image data. Note that 

the SLC image of the uncompressed data will act as the 

reference image for all comparisons. 

 

 Dynamic Range 

The dynamic range is computed using the magnitude 

component of the complex image data. There is a close 

correlation between the dynamic range and the contrast of the 

image; therefore, the change in this parameter can be 

compared to the change in the contrast ratio of the SAR 

images with and without compression. It should be noted that 

when the quality of an image is being evaluated, the dynamic 

range is generally seen as one of the image quality metrics. 

However, in this study it is evaluated as one of the statistical 

parameters to correspond with the statistical parameters of the 

data domain. 

 

 Mean (First order statistic) 

The compression algorithm should not drastically 

change the mean since the values are assumed to be quantized 

with only minor losses. The change in the mean should 

therefore be significantly smaller than the mean value of the 

uncompressed data. A change in the mean would introduce a 

bias in the final image, which would make the images more 

difficult to compare visually. However, if no clipping occurs 

(dynamic range is retained), the bias can be estimated and 

removed from the image. A large change in the mean would 

also indicate that the image exposure has been distorted by 

the compression algorithm, resulting in a loss of detail in the 

bright and/or dark regions of the image. 

 

 Standard Deviation (Second order statistic) 

Again, the compression algorithm is assumed to only 

quantize the data with minor losses. Therefore, the standard 

deviation of the image with the compression applied should 

be comparable with that of the image with no compression 

applied. A large change in the standard deviation would mean 

that the compression algorithm has increased the speckle 

content of the reference SAR image. Certain pixels are 

represented with a brighter or darker colour compared to the 

colour of the pixels in the reference image when the standard 

deviation changes. In this case the contrast of the SAR image 

will be affected. 

 

 Skewness and Kurtosis (Third and Fourth order statistics) 

These parameters can be used to determine how well 

the algorithm retains the statistical distribution of the SAR 

data and thus, how much statistical analysis on the SAR 

images generated from the decompressed data can be trusted. 

 

 Entropy 

The entropy is an indication of the information content 

of a SAR image. The entropy of the SAR image formed from 

the decompressed data should thus be similar to that of the 

SAR image formed from the uncompressed data, and can thus 

be used to verify this condition. A decrease in entropy would 

indicate that information has been lost, while an increase in 

entropy means that the compression algorithm has corrupted 

the reference image. 

 

3.2. Image Quality Measures 
 

Note that all the metrics in this subsection are 

computed for the SAR image formed from the uncompressed 

data, and for the SAR image formed from the decompressed 

data so that the results can be compared. 

 

 Impulse Response Function (IRF) 

A point target can be considered an impulse input to a 

SAR system. The point spread function (PSF) is equivalent to 

the IRF as a SAR system can be modelled as a two-

dimensional linear system [28], [29]. Generally the PSF of an 

image is used to evaluate the performance or response of an 

imaging system like a SAR system [30], but in this case, the 

PSF or impulse response is used to determine the quality of a 

compression algorithm, as no other system changes are made. 

A good compression algorithm should not distort the IRF as 

this results in a loss of fidelity in the SAR images. 

Illumination of a specifically designed scene is 

required to obtain the point target characteristics of a SAR 

system [31], [32]. The following elements are required within 

the scene: 

1. point-like reflectors, and 

2. reflectors positioned at the boundary between 

high and low backscatter areas.  

Since only the data sets from the SAR system are 

available, the scene could not be set up with large point-like 

reflectors to measure the IRF. Although mission data 

generally have a scarcity of individual high signal-to-noise 

point targets in homogeneous areas of low reflectivity [32], 

[33], suitable geographical regions had to be identified from 

a real data set. See Section 5.1 for more information about the 

data set used.  
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The two metrics that are evaluated from the IPR are 

listed below [17]-[19]: 

o 3 dB Impulse Response Width (IRW) in range 

and azimuth directions, which are related to the 

spatial resolutions. Spatial resolution (SR) is the 

ability of a system to distinguish two closely 

spaced point scatterers and can be computed as 

 

 𝑆𝑅 =  
 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 −3 𝑑𝐵 𝑝𝑜𝑖𝑛𝑡𝑠

𝜌𝑝𝑖𝑥𝑒𝑙
 (11) 

 

where 𝜌𝑝𝑖𝑥𝑒𝑙 is the pixel size in the relevant 

direction [33]. 

 

o Peak-to-Side Lobe Ratio (PSLR) in the range 

and azimuth directions. PSLR provides an 

indication of whether the side lobe of a scatterer 

can mask an adjacent scatterer. It can be 

calculated as 

 

 𝑃𝑆𝐿𝑅 = 20 log10 (
𝐼𝑅𝐹𝑠𝑖𝑑𝑒

𝐼𝑅𝐹𝑚𝑎𝑖𝑛
) (12) 

 

where 𝐼𝑅𝐹𝑠𝑖𝑑𝑒  is the peak value of the first side 

lobe and 𝐼𝑅𝐹𝑚𝑎𝑖𝑛 is the peak value of the main 

lobe of the IRF [33]. 

 

 Image Contrast (IC) 

The image contrast is a metric to describe the quality 

of a SAR image [34], with a high image contrast ratio 

implying a crisp image and a low image contrast ratio 

suggesting a washed-out image [29]. IC is defined as the ratio 

of the average intensity of a distributed clutter background to 

the average intensity of a no-return background [29] and can 

be computed as [9], 

 

 𝐶𝑅 =
𝜎𝑖𝑚𝑎𝑔𝑒

𝜇𝑖𝑚𝑎𝑔𝑒
. (13) 

 

The dynamic range and the IC are related. However, 

both metrics are useful since the dynamic range only 

considers the single highest and single lowest values of the 

image, while the IC uses the mean and standard deviation, 

which are more representative of the variation of the dynamic 

range over the entire image. 

 

 Global Contrast Factor (GCF) 

GCF is a new approach in the field of image 

processing with applications in areas like rendering, tone 

mapping, volume visualization, and lighting design [34]. This 

metric has been added to the conventional metrics found in 

SAR literature, since it addresses the limitation of only using 

the darkest and brightest regions of an image to compute the 

IC. The GCF is indicative of the overall contrast of an image 

and is computed from the local contrast of an image at various 

resolutions [34]. Local contrast ratio is the contrast ratio of 

any small part of an image, and the GCF is defined as the 

weighted sum of the local contrasts of a range of smaller 

image sizes. 

Human visual experiments can be used to construct a 

GCF computation procedure which is indicative of human 

image perception. SAR images are not always interpreted by 

human operators, so the weighting factors for human 

perception are not always relevant. Therefore, the method in 

[34] is adjusted to determine the GCF of the grayscale SAR 

images without applying the human perception adjustments. 

The steps below are followed. 

1. Compute the linear luminance. 

The linear luminance value for each pixel is 

computed by applying gamma correction to the 

image and scaling the result to be within the [0; 1] 

range. The linear luminance for the image is defined 

as 

 

 𝑙 = (
𝑘

2𝑛−1
) 𝛾 (14) 

 

where γ = 2.2 is the correction factor, k ϵ {0, 1, …, 

2𝑛 − 1} is the original pixel value, and 𝑛 is the 

number of bits of the SAR image data. 

 

2. Compute the local contrast. 

The local contrast for pixel i is computed as 

the average magnitude of the difference between the 

pixel and its four neighbouring pixels, 

 

 𝑙𝑐𝑖 =
|𝑙𝑖−𝑙𝑖−1|+|𝑙𝑖−𝑙𝑖+1|+|𝑙𝑖−𝑙𝑖−𝑤|+|𝑙𝑖−𝑙𝑖+𝑤|

4
 (15) 

 

where the image has dimensions of w × h. 

Note that for the corner pixels or pixels on the edges 

of the image, only the available neighbouring pixels 

are used in the computation. 

 

3. Compute the average local contrast for the 

current resolution, i, 

 

 𝐿𝐶𝑖 =
1

𝑤×ℎ
∑ 𝑙𝑐𝑖

𝑤×ℎ
𝑖=1 . (16) 

 

Repeat step 1 to 3 for a number of 

resolutions of, for example [1, 2, 4, 8, …, 2N] 

times the original resolution. A coarser image is 

obtained in each execution by taking the average 

of 4 pixels as the new pixel to halve the 

dimensions of the original image in both 

directions. This process continues until the 

coarsest resolution is reached. The number of 

chosen resolutions is defined as N. 

 

4. Compute the global contrast factor as the 

average of the local contrasts for all 

resolutions. It is assumed that the system 

interpreting the SAR images is equally 

sensitive to changes at various frequencies 

and therefore, a weighting function is not 

required to compute the global contrast, in 

contrast to the requirements in [34]. 
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 𝐺𝐶𝐹 =
1

𝑁
∑ 𝐿𝐶𝑖

𝑁
𝑖=1 . (17) 

 

An image with a high GCF is variation-rich, while 

an image with a low GCF appears uniform with less 

information [34]. 

 

3.3. Image Fidelity Measures 
 

Image fidelity measures evaluate the level of 

exactness with which the original SAR image is reproduced. 

Therefore, these measures are an important measure of the 

quality of a compression algorithm. The different metrics are 

discussed below. Take note of the definition of the variables 

used in this subsection: 𝑔(𝑥, 𝑦) is the magnitude component 

of the uncompressed SLC image data, 𝑓(𝑥, 𝑦)  is the 

magnitude component of the decompressed SLC image data, 

and M and N are the number of rows and columns of the 

image, respectively. 

 

 Mean Square Error (MSE) and Mean Phase Error (MPE) 

The MSE and MPE in this domain [13], [24] are both 

pixel by pixel measures of the change between the pixel 

values in the SAR image formed from the uncompressed data 

and the SAR image formed from the decompressed data. The 

MSE is computed for the magnitude component of the SAR 

images, while the MPE is computed for the phase component 

of the SAR images to measure the amplitude and phase 

distortions, respectively [6]. An important fact is that the 

MSE does not indicate whether the error is due to a large 

number of small errors, or whether it is due to a few large 

errors [22], [29]. It also depends strongly on the image 

intensity scaling. Therefore, the signal-to-distortion-noise 

ratio is also evaluated as part of this study. According to [29], 

the MSE is the most widely used image fidelity measure in 

SAR compression studies since it is mathematically and 

computationally simple to evaluate. To compute the MSE see 

(8) [9], [29]. The MPE can be computed using (9), where 𝜃 is 

the phase component of the two SLC images being compared. 

 

 Signal-to-Distortion Noise Ratio (SDNR)  

SDNR [6], [9], [17], [29] is a more global measure of 

the change and thus addresses the limitation mentioned for 

the MSE by normalising the MSE. It is also mathematically 

and computationally simple and therefore widely used in the 

literature [29]. To compute the SDNR see (10) [9], [29]. 

 

 Error Image 

The error image [9], [22] can be computed as  

 

 𝑒(𝑥, 𝑦) = |𝑔(𝑥, 𝑦) − 𝑓(𝑥, 𝑦)|. (18) 

 

The error image can be computed for the magnitude 

and phase components of the complex images in order to 

investigate both components. This metric can be used to 

visualise some of the corruptions that have occurred in the 

SAR images formed. It is important to note that many of the 

corruptions cannot be easily visualised by the human 

perceptual system and therefore, this metric is not able to 

fully represent the degradation that may have occurred. 

4. SAR Technologies and Applications 

The output or products of a SAR system can be used 

for various applications and each SAR technology renders 

different information. Although more than one SAR 

technology can be used for some of the applications, only a 

few of the well-known SAR technologies, with their primary 

applications, are discussed below. Since these technologies 

use different components of the SAR data, different metrics 

will be of importance for each technology when compression 

has to be implemented on board the platform. The important 

metrics for each technology are discussed below and also 

summarised in Table 1. It is important to note that all data-

domain metrics are of importance for every SAR technology, 

thus emphasis will be placed on the image-domain metrics 

that need to be preserved in each case. 

 

4.1. Single frequency, single polarisation SAR 
 

Conventional SAR systems are used to create high 

resolution, two-dimensional images of the Earth’s surface. 

Operation includes only a single pass over the scene using a 

single polarisation transmit/receive unit. The basic output is 

an image, for which the phase information is discarded [35]. 

Further processing can be performed to add radiometric and 

geometric corrections and/or speckle noise reduction to the 

image [36]. 

 Image classification 

Image classification is identifying the different 

features within an image by distinguishing different levels of 

radar backscatter, e.g. high radar backscatter areas from 

medium, low or no return areas (NRAs) [2]. The different 

levels of return are used to identify groups of pixels with 

similar statistical properties and thus the image is divided in 

homogeneity categories [37]. The output is a detailed map of 

an entire region with its distinct features. Important 

applications of SAR image classification, where wide areas 

are being surveyed, are the mapping of land use (important 

for forestry and agriculture), assessment of the affected areas 

in disaster relief operations, and illegal or accidental oil spill 

detection [38]. For wide-area surveillance, automatic target 

recognition (ATR), also known as unsupervised algorithms, 

is increasingly being used, as it is a time-consuming process 

for a human operator to search through all the data [39]. The 

important metrics for these algorithms are the mean, variance 

and entropy of the SAR images, since these metrics are used 

to divide the image into homogeneity categories [37]. 

Furthermore, high image contrast is required for initial 

detection of areas of change within an image, so the IC and 

GCF are also important metrics for this application. 

 

 Detection of man-made targets 

When investigating the different levels of backscatter 

in a SAR image, man-made returns are highlighted since 

these objects provide a very high radar backscatter [1], [2]. 

The high levels of backscatter can be attributed to the 

characteristics of man-made objects which make them highly 

radar reflective. Although the detection of man-made targets 

is a very important military application, it is also required for 

earth observation applications. In military applications, SAR 

is used to detect and identify adversary facilities and assets of 

interest on the land and ocean, where counter-piracy and 

maritime law enforcement are important examples [40]. For 
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civilian applications, SAR images are not only used to detect 

ships in coastal regions, which aids in the monitoring of 

illegal fishing activities and vessel traffic, but they are also 

used to track urban and rural development over time [1], [38]. 

This application is mainly utilised in military systems and 

therefor requires good resolution and geometric accuracy [39]. 

When detecting and classifying man-made targets in military 

applications, it is important that the estimated location of the 

target corresponds to the real location with only a minimal 

margin of error. To ensure that the location is accurate, the 

IRF must be preserved. As part of the detection of targets, the 

magnitude or modulus of the SAR image is calculated [2] and 

the phase information is of less importance for the output. 

This means that the magnitude component should be 

preserved as well as possible when investigating the 

compression of the raw SAR data for man-made target 

detection. This condition can be monitored by comparing all 

the error measures of the magnitude component, which 

include the MSE and SDNR. 

 

 Global monitoring (Change detection) 

SAR is used for earth observation applications like ice 

monitoring and the study of climate change, where the global 

carbon cycle, the global energy/water cycle, and other human 

activities are monitored [38], [41]. The SAR system needs to 

be sensitive to small changes when monitoring a global cycle, 

consequently the radiometric resolution of the SAR system is 

an important factor [41]. The radiometric resolution of an 

imaging system describes its ability to detect very slight 

differences in reflected energy. In order to preserve the 

radiometric resolution of a system, frequent calibrations are 

required [41]. A high signal-to-noise ratio (SNR) indicates 

that the signal level is greater than the noise level and 

therefore the noise does not mask any of the small changes 

that may appear in a scene. The metrics of importance for this 

application are the MSE and the SDNR. 

 

4.2. Ultra-wideband (UWB) SAR  
 

UWB SAR has a very large bandwidth compared to 

conventional SAR systems [42]. The system uses short pulses 

with a rapid change in modulation, to produce a large 

bandwidth in the frequency domain. A very short pulse 

enables high resolution since the distances are measured more 

accurately [42]. The main advantages of UWB operation are 

improved resolution and more information about the 

reflectivity of the targets in the scene [42], [43]. 

 Imaging through unconventional mediums 

The applications of UWB SAR include uses in the 

military and civilian domains. In the military domain UWB 

radar is used for foliage penetration, ground penetration, and 

through-wall detection [44], [45]. The ground penetration 

capabilities of UWB SAR make it highly affective for the 

detection of landmines [43]. Popular civilian applications 

include the monitoring of oil reservoirs [46], by imaging the 

perforations or fractures in the well, and medical imaging, 

like the detection of tumours [47]. The image quality depends 

strongly on the measurement accuracy and the dynamic range 

of the system [42]. For landmine detection, regions of interest 

are identified by measuring the amplitude difference between 

targets and the background noise [43]. To avoid a high 

number of false alarms, the noise in the system should be 

minimised. Therefore, dynamic range and SDNR are the 

metrics of importance and should be preserved when 

implementing a compression algorithm on board the platform. 

 

Table 1 A summary of SAR technologies and their metrics of importance [19] 

SAR Technology Primary Application Main requirement Important Metric(s) 

Single frequency, single 

polarisation SAR 

Image classification High image contrast  Statistical parameters, 

IC, GCF 

Detection of man-made targets High sensitivity to 

point targets 

Magnitude component 

Impulse response 

function: 

3 dB IRW and PSLR 

IC, GCF,MSE  

Global monitoring Noise should not mask 

changes 

SDNR 

Ultra-wideband SAR Imaging through 

unconventional mediums 

High radiometric 

resolution 

SDNR 

 

Interferometric SAR (InSAR) Surface topography Very high phase 

accuracy 

Phase error:  

MPE and error image 

of phase 
Measurement of displacements 

Polarimetric SAR (PolSAR) Change detection and feature 

tracking 

 

High phase accuracy Phase error: 

MPE and error image 

of phase 
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4.3. Interferometric SAR (InSAR) 
 

InSAR uses the phase difference between two SAR 

images acquired at two distinct times or from slightly 

different positions to measure changes to a specific surface 

[35], [39], [48]. Since the phase of each pixel contains range 

information that is accurate to a fraction of the radar 

wavelength, it is possible to detect and measure miniscule 

path length differences, velocities, and height differences 

with very high accuracy [7], [39], [48]. 

 Surface topography 

Topographic maps or three-dimensional models, 

known as digital elevation models (DEMs), can be 

constructed using InSAR since the height variations can 

accurately be measured [35]. These maps are used to analyse 

the surface parameters, for modelling and simulation in 

various fields, and to create accurate maps, to mention only a 

few uses. 

 

 Measurement of displacements 

InSAR is typically used for various remote sensing 

applications like the measurement of displacements. These 

include the detection of moving objects (for example cars or 

ships), and geophysical applications like monitoring 

earthquakes, landslides, glaciers, and volcanoes [2], [38], 

[49]. The changes in the surface are detected by comparing 

two InSAR topographic maps produced before and after a 

natural event occurred [35]. 

 

Since the phase difference is used to detect small 

differences, it is therefore evident that preserving the phase 

content is important for this technology. The metrics of 

importance include the MPE and the error image of the phase 

component as it can provide a visual representation of the 

error between two SAR images. 

 

4.4. Polarimetric SAR (PolSAR) 
 

PolSAR is an advanced imaging technique where the 

radar transmits and receives multiple polarisations [35]. Since 

the full scattering matrix is measured, the system is sensitive 

to the shape, orientation and dielectric properties of the 

scatterers, which means much more information is obtained 

than with conventional, single polarisation SAR systems [35], 

[48]. 

 Change detection and feature tracking 

PolSAR has many applications including agriculture 

(soil moisture extraction and crop assessment), oceanography, 

forestry (forest monitoring, classification, and tree height 

estimation), and disaster monitoring (oil spill detection, 

disaster assessment) [35], [48], [50]. For these applications, 

the phase information of the SAR image is required [2], so it 

is important that the phase information be preserved when 

compressing the raw data. The metrics of importance include 

the MPE and the error image of the phase component as a 

visual representation of the error between two SAR images. 

5. Results 

In this section, the metrics that were discussed in 

Sections 2 and 3 will be applied to evaluate the performance 

of SAR compression algorithms. The three algorithms that 

were implemented to illustrate how the metrics can be applied 

are the block adaptive quantiser (BAQ), fast Fourier 

transform BAQ (FFT-BAQ) and the flexible dynamic BAQ 

(FDBAQ). These algorithms are found to be best suited for 

the compression of raw SAR data in a processing and cost 

constrained environment due to their simplicity, reliability 

and their current use as the basis method of evolved 

compression methods used in SAR sensor systems [7], [8], 

[11], [19]. Implementing these algorithms represents 

compression in the time and frequency domains. The 

performance of these algorithms was evaluated by 

implementing the process described in Fig. 1. 

In a SAR system the decompression and SAR 

processing are performed at a ground station after the 

compressed data have been transmitted from the platform or 

read from platform data storage. 

Note that the compression ratio and processing 

parameters were kept constant in order to ensure a fair 

comparison. For example, the same SAR signal processor 

was used for all data sets, and the metrics were computed 

using the same equations and at the same stage of the process, 

with the compression algorithms being the only varying 

factor. 

 

5.1. Data Sets used 
 

The data sets that were required for this study are of 

the type: Level 0 data. Data produced by SAR systems are 

classified as Level 0, Level 1 and Level 2 to distinguish the 

amount of processing which has been performed on the data 

[36]. Level 0 SAR products contain the raw SAR data, before 

any processing. Level 0 products are divided into four product 

types but only the SAR Level 0 standard products, which are 

the received echoes, were required for this investigation. 

Data aggregation was not executed; the data sets were 

provided by the Radar Imaging and Fusion Research Group 

of the Council for Scientific and Industrial Research (CSIR). 

The CSIR data sets include three SAR data sets of different 

scenes. 

The specifications of the CSIR SAR system used to 

gather the real SAR data are: C-band operation and a down-

Table 2 CSIR data sets characteristics 

Parameter Specification 

Platform  Airborne 

 

Operating 

Mode 

 

Stripmap 

Frequency 

Band 

 

C-band 

RF Bandwidth 200 MHz 

 

Polarisation Linear Vertical 

 

Transmission 

 

Pulsed 

Quantisation 8-bit I, 8-bit Q 

 

Scenes Rural, Mine 

Setting, Sub-urban 
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range resolution of 1 m. The flightpath for the SAR mission 

covered areas in and around Pretoria, South Africa, and the 

mission took place in June, 2017. Thus, the data represent 

different terrains which include residential, natural and 

agricultural areas (low-urban and mid-urban data). Different 

terrains represent different reflectivity and in essence 

different distributions [51]. This must be taken into account 

when choosing the compression algorithm to ensure its 

effectiveness. The characteristics of the data sets are 

summarised in Table 2.  

 

5.2. Data-Domain Metrics Results 
 

The metrics discussed in Section 2 are evaluated and 

the results are summarised below. All three of the available 

data sets were evaluated for both compression methods with 

similar tendencies being observed. Only the results for the 

sub urban scene, where a residential area next to a dam was 

illuminated, are considered in this section since the data sets 

show similar tendencies, and thus one data set is 

representative of all data sets. 

In Table 3, the results of the statistical parameters are 

summarised. There is about a 74 dB difference between the 

dynamic range of the results obtained using the FDBAQ or 

BAQ methods, and the FFT-BAQ method. The dynamic 

range after applying the FFT-BAQ method are also much 

greater than the dynamic range of the uncompressed data set. 

The reason for the FFT-BAQ result could be because the 

compression takes place in the frequency domain while the 

metrics are computed in the time domain. Since the dynamic 

range is computed by only considering the smallest and 

largest values of the data set, a very small minimum value 

caused by the compression in the frequency domain has a 

very large effect on the dynamic range, measured in the time 

domain. 

When considering all other statistical parameters, all 

the methods perform well as the values differ only slightly 

from the original, uncompressed values. The skewness and 

kurtosis are two metrics that are of importance since they are 

representative of the deviation of the distributions of the 

magnitude and phase components from the original 

distributions. The results show that the FFT-BAQ method 

causes minimal deviation from the original distributions. For 

a Rayleigh distribution the skewness should be close to 0.63, 

while the kurtosis should have a value of 3.245. The results 

show that even after applying the compression algorithms, 

each component can still be assumed to follow the same 

distribution as the original, uncompressed data set. In Fig. 4, 

found in the Appendices, the variation of the statistical 

parameters of the data due to the BAQ method is represented 

visually by the histograms of each component before and 

after the compression. The effect of the compression in the 

time domain, as is a characteristic of the BAQ method, can be 

seen by only certain values being represented. In Fig. 5, the 

distributions for each component before and after applying 

the FFT-BAQ method are represented. It can be seen that the 

data, after applying the algorithm, closely follow the original 

distribution since the compression was performed in the 

frequency domain and, thus, the quantisation effect is spread 

across time domain values. Finally, applying the FFT-BAQ 

method, results in all possible values still being represented 

in the time domain. In Fig. 6, the distributions for each 

component before and after applying the FDBAQ method are 

represented. The operation of the FDBAQ method can be 

visualised as it can be seen that the values represented after 

decoding are highly variable, since the BAQ was applied for 

more than one output bit rate. The results show that the data 

histograms are an important visual aid in determining the 

Table 3 Statistical parameters of the sub urban data set in the data domain 

Metric 
Uncompressed 

Value 

Value after  

BAQ method 

Value after  

FFT-BAQ method 

Value after  

FDBAQ method 

Compression Ratio - 4 4 4 

Dynamic Range 30 892 9.5313 41 525 7.9716 

Mean (mag) 11.5280 12.5146 9.3734 10.7012 

Mean (phase) 0.0227 0.0224 0.0039 0.2705 

Standard deviation (mag) 7.2394 6.9086 6.1662 6.5931 

Standard deviation (phase) 1.8218 1.7927 1.8160 1.7178 

Skewness (mag) 1.1248 0.7381 1.2591 0.6226 

Skewness (phase) -0.0196 -0.0190 -0.0039 0.0271 

Kurtosis (mag) 4.5765 2.7022 4.9922 3.3574 

Kurtosis (phase) 1.7917 1.7207 1.7965 1.9783 

Entropy (mag) 6.4452 7.3038 6.2750 6.6900 

Entropy (phase) 7.9996 3.4214 8.0000 3.8848 

 



10 

 

effects of a compression algorithm on the raw SAR data in 

the data domain.  

The error measures are summarised in Table 5. The 

FFT-BAQ method achieves the worst results for the error 

measures. These results can be attributed to the variable 

compression ratio of the code scheme used in the FFT-BAQ 

method. The code scheme encodes a portion of the data that 

has the lowest amount of energy in the frequency domain with 

0 bits, whereas the high energy frequency components are 

encoded with 2 or 3 bits. Encoding data with 0 bits represents 

a loss of information, which is in the data domain and has an 

effect on the MSE and the SQNR. Due to the nature of 

operation of the FFT, an error is introduced to each element 

in the set, which is then used in the computation of these 

metrics. It is thus evident that these metrics are used to 

determine the effects of the quantisation for each method in 

the data domain, which will differ from the effects they have 

in the image domain as will be seen in the next subsection. 

From the phase error metrics, it seems that the BAQ method 

has a smaller effect on the phase in the data domain than the 

FFT-BAQ and FDBAQ methods. However, when 

considering the entropy (Table 3) of the data it can be seen 

that the data have higher information content when the 

FFT-BAQ method is applied. There is a relatively large 

difference between the phase entropy of the FFT-BAQ 

method and that of the two time domain methods. This shows 

that the time domain methods have a detrimental effect on the 

phase information content of the data in the data domain. 

Therefore, for an application where phase information in the 

data domain is of importance, the method which better 

preserves the phase (the FFT-BAQ method in this case) 

would be preferred. 

After investigating the results in this domain, it was 

seen that some metrics favoured the time domain methods, 

while some metrics favoured the frequency domain method. 

Therefore, a decision on the performance of a raw SAR data 

compression algorithm cannot be made by only considering 

the metrics in the data domain. The metrics in the image 

domain also need to be considered when choosing a suitable 

algorithm for an application.  

 

5.3. Image-Domain Metrics Results 
 

The metrics discussed in Section 3 are evaluated and 

the results are summarised below. The same metrics were 

evaluated for all three compression methods and for the same 

data set. These metrics are evaluated in the image domain 

which means they are evaluated after the SAR processing was 

implemented. The SAR processing method used for the CSIR 

data sets is a modified 1D time domain algorithm.  

In Table 4 the results of the statistical parameters of 

the sub urban data set are summarised. The statistical 

parameters for each method suggest that all methods perform 

equally well in this domain as the statistical characteristics of 

the original SAR image did not change significantly after 

applying any of the compression algorithms. However, the 

one metric that shows a greater difference between the three 

methods, is the dynamic range. In the data domain, there was 

a 74 dB difference between the dynamic ranges of the time 

domain methods and the frequency domain method. However, 

in the image domain, the dynamic range of the FDBAQ 

method is about 6 dB greater than that of the FFT-BAQ 

method. This shows that the coherent SAR processing 

exploits averaging to reduce the effects caused by the 

quantisation in the data domain, so that great differences in 

the data domain have little effect in the image domain.  

Table 4 Statistical parameters of the sub urban data set in the image domain 

Metric 
Uncompressed 

Value 

After BAQ 

method 

After FFT-BAQ 

method 

After FDBAQ 

method 

Dynamic Range 5.75×105 3.52×105 9.02×105 1.78×106 

Mean (mag) 5692.2 6274.4 5634.3 5516.2 

Mean (phase) 2.51×10-5 1.02×10-4 1.68×10-4 -2.43×10-4 

Standard deviation (mag) 5571.7 5695.7 5517.4 5119.5 

Standard deviation (phase) 1.8138 1.8138 1.8139 1.8138 

Skewness (mag) 19.2464 19.0617 18.0450 18.9089 

Skewness (phase) 7.97×10-5 -6.52×10-5 -7.91×10-5 1.03×10-4 

Kurtosis (mag) 1345.9 1326.1 1170.3 1299.7 

Kurtosis (phase) 1.7998 1.8 1.8002 1.7999 

Entropy (mag) 2.2491 2.3297 2.3426 2.3224 

Entropy (phase) 8 8 8 8 

 

Table 5 Error measures for the sub urban data 

set in the data domain 

Metric 

Value 

after 

BAQ 

method 

Value 

after 

FFT-

BAQ 

method 

Value 

after 

FDBAQ 

method 

MSE  

 

15.8893 29.7778 14.6120 

SQNR 10.67dB 

 

7.94dB 11.03dB 

MPE 0.2502 0.9690 0.5896 
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After SAR processing, the SAR image is produced and 

the visual quality of the image can be determined by the 

image quality measurements. These metrics include the 

impulse response function (IRF) and the image contrast and 

are summarised in Table 6. When considering the image 

contrast ratio, which directly relates to the dynamic range, it 

can be seen that the SAR image after applying the FFT-BAQ 

method has the highest contrast ratio. This result can also be 

confirmed visually, since a higher contrast ratio means a 

crisper image. When comparing Fig.2b, Fig.2c and Fig.2d, a 

slightly higher level of crispness of the SAR image after the 

FFT-BAQ method can be seen. The boundaries in the image 

between, for example, the water of the dam and the residential 

area, can be distinguished more easily for the image with 

FFT-BAQ applied. Quantising the data in the frequency 

domain causes less image degradation than quantising the 

data in the time domain. It has a visible effect on the dynamic 

range and the contrast ratio of the SAR images, which are 

slightly higher when the FFT-BAQ method is applied.  

Another important image quality metric is the IRF of 

the SAR system. It is the response of the SAR system to a 

point scatterer. For this investigation the sub-urban scene data 

set was used since the scene contained more bright scatterers 

than the rural or mine scenes. Usually the IRF of a SAR 

system is determined by placing targets with a known RCS, 

like a transponder or reflector, in the scene to measure the 

response. However, for the data sets available for this study, 

a target of opportunity had to be used. Thus, the method 

explained in [52] was executed and the extracted target can 

be seen in Fig.3a. The IRF was determined for the case where 

no compression algorithm was applied to the data to serve as 

the reference as well as for the case where compression was 

applied. The effect that each compression algorithm has on 

the impulse response can then be determined. In Table 6 the 

IRF results are summarised. The IRF in the range and cross-

range directions are plotted in Fig.3b and Fig.3c. The 3 dB 

widths after applying the respective compression methods 

correspond well to the reference values. Although the side 

lobes are higher in the range direction, for all three 

compression methods, the overall shape of the reference IRF 

is maintained. Therefore, none of the compression methods 

has a detrimental effect on the impulse response of the 

original SAR image without any compression applied. If the 

goal of the SAR mission was to identify man-made targets, 

the compression algorithm with the smallest effect on the IRF 

would be preferred. Since man-made targets have similar 

scattering characteristics to point scatterers, the impulse 

response of the system needs to be preserved.  

The image fidelity measures are an indication of the 

exactness with which the SAR image, with compression 

applied, was reproduced compared to the reference SAR 

image. The results are given in Table 7. It can be seen that the 

FFT-BAQ method has the smallest errors in this domain, 

since the SDNR is the highest, while the MSE and MPE are 

smaller than for the two time-domain methods.  

After investigating the results in the image domain it 

is clear that the quality of the SAR images after applying the 

FFT-BAQ method is better than the quality of the SAR 

images after applying the BAQ or FDBAQ methods. For all 

three methods, the characteristics of the scene can easily be 

identified, but the image is crisper after applying the FFT-

BAQ method. 

 

5.4. Computational Complexity 
 

Although certain conclusions can be made about 

which algorithm would be best for a certain application based 

on the metrics, another factor is the computational complexity. 

An algorithm may perform very well in terms of reduction 

rate and also cause the least degradation of the final product, 

but being an order of magnitude more complex than another 

method may be the one reason the algorithm is not feasible to 

implement in a system. Therefore, the computational 

complexity of the three compression algorithms applied in 

this paper, will be investigated and compared. Big O notation 

will be used to describe the complexity of the encoding steps 

of each algorithm in a simplified manner. Only the 

complexity of the encoding operations is considered since the 

encoding will take place on board the SAR platform where 

SWAP-C limitations apply, while the decoding operations 

will be performed at the ground station. 

 

5.4.1. Computational complexity of the BAQ 
method: 

Compression Steps Complexity 

1. Split data into I & Q components O(1) 

Table 6 Image Quality Measures for the sub urban data set 

Metric Original Value 
After BAQ 

method 

After FFT-BAQ 

method 

After FDBAQ 

method 

IRW (range) 0.9994 m 0.9369 m 0.9994 m 0.9369 m 

IRW (azimuth) 9.7438 m 9.7438 m 9.8062 m 9.7438 m 

PSLR (range) -17.02 dB -10.75 dB -10.51 dB -10.63 dB 

PSLR (azimuth) -23.59 dB -27.43 dB -24.79 dB -25.22 dB 

Image Contrast 0.9788 0.9078 0.9793 0.9281 

Global Contrast Factor 0.0955 0.0927 0.0940 0.0919 

 

 Table 7 Image fidelity measures for the sub 

urban data set 

Metric 

Value 

after 

BAQ 

method 

Value 

after FFT-

BAQ 

method 

Value 

after 

FDBAQ 

method 

SDNR 

 

11.42dB 14.30dB 12.51dB 

MSE 

 

4.58×106 2.36×106 3.56×106 

MPE 1.5695 1.5462 1.5656 
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2. Break data into [200×200] blocks O(1) 

3. Calculate the σ of each bock O(4N + 3) 

4. Encode the data O(N) 

 

The complexity of the encoding part of the BAQ 

method can be computed as below, 

 

 𝑂(𝐵𝐴𝑄) = 𝑂(1 + 1 + 4𝑁 + 3 + 𝑁) (19) 

  = 𝑂(5𝑁 + 5)         (20) 

  ≈ 𝑂(5𝑁)                 (21) 

  ≈ 𝑂(𝑁)                   (22) 

 

where N is the number of elements in the data set.  

 

Therefore, the computational complexity of the BAQ 

method is a linear function of the number of elements in the 

data set which relates to the volume of data. 

 

5.4.2. Computational complexity of the FFT-
BAQ method: 

Compression Steps Complexity 

1. Split data into I & Q components O(1) 

2. Break data into [200×200] blocks O(1) 

3. Calculate the σ1 of each bock O(4N + 3) 

4. Normalise the data by σ1 O(N) 

5. Break data into [1024×1024] 

blocks 

O(1) 

6. Perform 2D FFT on each block O(K(LMlog(LM)) 

7. Break data into [200×200] blocks O(1) 

8. Calculate the σ2 of each bock O(4N + 3) 

9. Encode the data O(N) 

 

The complexity of the encoding part of the FFT-BAQ 

method can be computed as below, 

 

 𝑂(𝐹𝐹𝑇 − 𝐵𝐴𝑄) = 𝑂(10𝑁 + 10 + 𝐾(𝐿𝑀 log 𝐿𝑀)) (23) 

               ≈ 𝑂(𝑁 + 𝐾(𝐿𝑀 log 𝐿𝑀)) (24) 

                   ≈ 𝑂 (𝑁 +
𝑁

𝐿𝑀
(𝐿𝑀 log 𝐿𝑀)) (25) 

      ≈ 𝑂(𝑁 + 𝑁 log 𝐿𝑀) (26) 

  ≈ 𝑂(𝑁 + 𝑁 log
𝑁

𝐾
) (27) 

   ≈ 𝑂(𝑁 + 𝑁 log 𝑁) (28) 

 

where N is the number of elements in the data set, M is the 

number of rows in each FFT block, L is the number of 

columns in each FFT block and K is the number of blocks to 

perform the 2D FFT on, thus 𝐾 =
𝑁

𝐿𝑀
.  

 

Therefore, it can be seen that the computational 

complexity of the FFT-BAQ method is a logarithmic function 

of the number of elements in the data set which relates to the 

volume of data. 

 

5.4.3. Computational complexity of the FDBAQ 
method: 

Compression Steps Complexity 

1. Split data into I & Q components O(1) 

2. Break data into [200×200] blocks O(1) 

3. Calculate the signal power and noise 

power of each bock 

O(4N + 3) 

4. Select bit rate for encoding O(P) 

5. Encode the data O(N) 

 

The complexity of the encoding part of the FDBAQ 

method can be computed as below, 

 

 𝑂(𝐵𝐴𝑄) = 𝑂(1 + 1 + 4𝑁 + 3 + 𝑃 + 𝑁) (29) 

  = 𝑂(5𝑁 + 𝑃 + 5)         (30) 

  ≈ 𝑂(5𝑁)                 (31) 

  ≈ 𝑂(𝑁)                   (32) 

 

where N is the number of elements in the data set and 

P is the number of blocks that the data set is split into. 

 

Fig.2. SAR images after SAR processing. (a) SAR image of the uncompressed data. (b) SAR image after the BAQ 

method. (c) SAR image after the FFT-BAQ method. (d) SAR image after the FDBAQ method 
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Therefore, the computational complexity of the 

FDBAQ method is a linear function of the number of 

elements in the data set which relates to the volume of data. 

6. Conclusion 

For some SAR applications a certain level of 

degradation is acceptable and the outcome of the SAR 

mission will be unaltered. For other applications much less 

degradation can be tolerated as it will heavily affect the 

outcome of the mission. It could also be that for a certain 

application, one component of the data is more important to 

preserve than another.  

The metrics applied in the two different domains can 

be used to determine the effects of compressing the raw SAR 

data. Firstly, the compression algorithm metrics can be 

evaluated to determine the effects of the compression 

algorithm in the data domain. Important metrics include the 

compression ratio, the entropy, statistical parameters like the 

skewness and kurtosis to measure the deviation from the 

original distributions of the uncompressed data, and the 

dynamic range. The data histograms are an important visual 

representation of the effects of the compression algorithm on 

the data. An important error measure in the data domain is the 

SQNR and the phase error measures for applications where 

phase information is an integral part of forming the output of 

the SAR system.  

After the SAR processing another set of metrics can 

be evaluated to determine the degradation in the image 

domain. Here, the emphasis is on the quality of the SAR 

image that was produced from the data that had undergone 

the compression on board the SAR platform. Important 

metrics in the image domain include the dynamic range, the 

entropy, the IRF, the contrast ratio, as well as the error 

measure, SDNR. In the image domain, the phase error 

measures, for example the phase MSE, are important for 

applications where phase information is an integral part of 

forming the output of the SAR system. The SAR technologies 

where the phase information is the most important component 

of the complex SAR image, is InSAR and PolSAR.  

Although a compression algorithm may have 

performed better than another in one or both domains, the 

computational complexity is of importance when practical 

implementation needs to be considered. Therefore, the 

computational complexity of each algorithm was determined 

using big O notation. Due to the SWAP-C limitations of 

modern SAR platforms, the trade-off between the 

computational complexity and the performance of the 

compression algorithm is a very important consideration. 

Depending on the application of the SAR system, one or the 

other will be of higher priority.  

The metrics proposed in this paper can be used during 

the design phase of a SAR system, when a compression 

algorithm for implementation on board a platform needs to be 

chosen. The results of the metrics can be used to conduct a 

 

 

 
Fig.3. IRF after no compression, after the BAQ method and the FFT-BAQ method. (a) Extracted target. (b) Range 

direction. (c) Cross-range direction. 

 

 

 (a) 
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thorough investigation on the performance and complexity of 

different compression algorithms for raw SAR data. 
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9.  Appendices  

 
 

Fig. 4. Distribution of the data before and after implementing the BAQ algorithm. (a) Real (I) component. (b) Imaginary (Q) 

component. (c) Phase component. (d) Amplitude component 
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Fig. 5. Distribution of the data before and after implementing the FFT-BAQ algorithm. (a) Real (I) component. (b) Imaginary 

(Q) component. (c) Phase component. (d) Amplitude component 
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Fig. 6. Distribution of the data before and after implementing the FDBAQ algorithm. (a) Real (I) component. (b) Imaginary 

(Q) component. (c) Phase component. (d) Amplitude component 
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