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ABSTRACT
A mathematical model for malaria in humans was developed to explore the effect of
treatment on the transmission and control of malaria. The model incorporates ef-
fective antimalarial and substandard drugs as treatment for infectious humans. The
reproduction number R0 is evaluated, and shown to increase due to the presence of
partially recovered humans. The disease free equilibrium is locally asymptotically
stable when R0 < 1 and unstable when R0 > 1. The model exhibits backward,
imperfect or transcritical bifurcation depending on the value of the disease induced
death rate and R0. The numerical simulations, local and global sensitivity analysis
suggest that the combination of effective control measures and the prompt use of ef-
fective antimalarial drugs that clear parasites quickly and give a long post-treatment
prophylaxis may not only prevent transmission of infection to mosquitoes, but signif-
icantly reduce the number of infectious humans and the overall sources of infection.
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1. Introduction

Malaria is a deadly infectious disease caused in humans by five species of the Plas-
modium and transmitted by females of the Anopheles mosquito species. The most
lethal malaria parasite is Plasmodium falciparum, which accounted for 99.7% of the
estimated malaria cases and 93% of the malaria deaths in the WHO African Region in
2017 [37]. The most susceptible groups to malaria infection are children under five years
and pregnant mothers [37]. According to the World Health Organization estimates,
massive progress has been made in combating malaria, with, malaria case incidence
reducing by 41% and malaria mortality rates by 62% between 2000 to 2015 [35]. In
2017, governments of malaria endemic countries and international partners invested
about US$ 3.1 billion, allowing for an expansion in malaria prevention, diagnostic
testing and treatment program [37].

One of the strategies recommended by World Health Organization(WHO) for the
treatment of uncomplicated Plasmodium falciparum malaria infection is the use of
artemisinin based combination therapy (ACT). The primary advantage of the combi-
nation is that the artemisinin quickly and drastically reduces the majority of malaria
parasites and the partner drug clears the small number of parasites that remain [37].
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The overall efficacy rates of ACT is greater than 95% [37]. ACT give clinical cure
and provide a period of post treatment prophylaxis [34]. Despite these benefits, many
people, mostly from poorer communities, still opt for the other unapproved drugs
[4, 18, 19, 26] which may lead to recrudescence, disease transmission, drug resistance
or death [6, 25, 34]. To recall, the recrudescence occurs when the Plasmodium falci-
parum parasites, that remain in the red blood cells after an episode of malaria, start
multiplying and cause the recurrence of clinical symptoms due to, for an example,
treatment failure [34]. The treatment failure may result from the drug resistance or an
inadequate exposure to the drug due to sub-optimal dosing, poor adherence, vomiting,
unusual pharmacokinetics in an individual, or substandard medicines [34].

Artemisinin resistance typically refers to the slow clearance of malaria parasites from
the bloodstream following treatment with an artesunate monotherapy or ACT. This
places greater demand on the partner drug to clear a larger parasite mass. However, it
is also possible for partner drug resistance to emerge independently from artemisinin
resistance. Unlike artemisinin resistance, the presence of partner drug resistance brings
a high risk of treatment failure.

In most malaria endemic settings, malaria in non-immune individuals usually starts
with fever, sometimes accompanied by chills, sweats, headache or other symptoms
that resemble other febrile illnesses, trigger diagnostic testing and use of drugs for
treatment [37]. Uncomplicated malaria in the patients with low or no immunity may
progress to a severe malaria, which can lead to death, if an effective treatment is not
administered early [34]. On the other hand, some semi-immune individual can be cured
by treatment regimens that are ineffective but WHO recommends that a full course of
a highly effective ACT must be used, like in the case of non-immune individuals [34].

To eliminate malaria by the year 2030 (Sustainable Development Goals 3), more
research on the disease prevention, control, vulnerable groups, efficacy of treatment,
vaccines, etc. is needed to aid in the effective policy making. Some studies have con-
sidered recrudescence and recovery on the malaria transmission in humans. The study
in [32] proposed a SIR-SI model for human and mosquito populations, that allowed
the fully recovered humans to return to the susceptible class. Their results showed the
availability of susceptibles which makes malaria more endemic. The model developed
in [21] incorporated repeated reinfections, and found the possibility of backward bifur-
cation to exist (at R0 = 1), but this does not occur if the immunity is complete and the
force of infection is modelled by the mass action law. In [7], the authors assessed the
role played by the partial immunity to reinfection in the infective class on the dynam-
ics of malaria in the human population. Here, the results also indicated that backward
bifurcation is not present if the mass action is used. The reinfection and infectiousness
of recovered humans were considered in [12]. They found that the disease-free equi-
librium of the model is globally asymptotically stable if R0 ≤ 1, and the system is
uniformly persistent if R0 > 1. Other works [2, 9, 10, 20] that considered the infec-
tiousness of partially immune humans who are infectious to feeding mosquitoes, found
that, such models show forward bifurcation at R0 = 1 and the presence of the partially
immune population have some effects on the endemicity of malaria in the community.

In this work, we extend the existing models [2, 7, 9, 10, 12, 20] by formulating
ordinary differential equations that describe malaria transmission and control in non-
immune individuals. The model incorporates full recovery due to use of an effective
treatment, partial recovery due to use of an inadequate or ineffective treatment, and,
the infectiousness and recrudescence of partially recovered individuals. We note that
understanding such a model will facilitate efforts to promote the use of safe and effec-
tive malaria treatments [34], and, ultimately, malaria control and elimination.
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Figure 1. Schematic diagram of malaria transmission: (A)Humans and (B)females of the Anopheles mosquito
spp.

The paper is organized as follows. In Section 2, we briefly describe the model. A
mathematical analysis of the model is presented in Section 3, the numerical simulations
are given in Section 4 and the sensitivity analysis in Section 5. The discussion of the
results is done in Section 6.

2. Model formulation

The transmission model for P. falciparum malaria is formulated with the total human
population at time t, Nh(t) = Sh(t) +Eh(t) + Ih(t) +Rh(t) + Th(t), where Sh, Eh, Ih,
Rh and Th denote the susceptible, exposed, infectious, partially recovered and fully
recovered epidemiological classes, and the total mosquito population at a given time
t is Nm(t) = Sm(t) + Em(t) + Im(t) where Sm, Em and Im represent the susceptible,
exposed and infectious classes. The flow between the classes is shown in Figure 1.

We note that the partially recovered humans are asymptotic individuals, who show
no clinical symptoms, but maintain low levels of parasites due to semi-immunity in the
case of semi-immune individual, drug resistance or unapproved drug use in the case
of non-immune individuals. They can recrudesce into the infectious class or become
susceptible (in the case of semi-immune individuals), and can transmit the infection
to the susceptible mosquitoes. The fully recovered humans are infectious humans who
have rid their bloodstream of parasites due to the use of effective antimalarial drugs.
When the treatment (partner drug) wanes, the fully recovered humans become sus-
ceptible to the new infection. Also, the mosquitoes do not recover from the infection
because of their short life cycle.

For the mosquito population, we consider a constant per capita birth rate αm,
and the death rate of the form fm(Nm) = µm1 + µm2Nm [20]. Thus, in the absence of
malaria, the population has the carrying capacity Km = rm

µm2
, with rm = αm−µm1 > 0.

For the human population, a constant total birth rate αh and a constant per capita
death rate µh > 0 are considered; so that the carrying capacity of the disease free
human population is given by Kh = αh

µh
.

The use of artemisinin combination therapy provides a period of post treatment
prophylaxis. For this study, we use a per capita loss of post treatment prophylaxis
rate given by φ = 1

D , where D is the average duration of the post treatment prophy-

3



laxis period (i.e. number of days until the effective treatment wanes allowing for the
individual to be susceptible).

The size of the human susceptible class increases due to births at the total constant
rate αh, the loss of the post treatment prophylaxis by the fully recovered individuals
at the per capita rate φ and the loss of the semi-immunity by the partially recovered
individuals at the per capita rate θ. It decreases due to the natural deaths at the
per capita rate µh and due to infections with the per capita rate given by the force
of infection λh. In this paper, λh is given as the product of the average number of
mosquito bites per human per day, a, and the transmission probability βh (probability
that a bite by an infectious mosquito on a susceptible human results in transmission
of the disease given that a contact occurred between them). Thus, the rate of change
of the susceptible humans class is given by,

dSh
dt

= αh + φTh + θRh − (λh + µh)Sh, (1a)

where

λh =
aβh
Nh

Im. (1b)

The size of the exposed humans class increases due to the infections of the suscep-
tible humans. It decreases due to deaths at the per capita rate µh and due to the
development of the full infection in exposed individuals with the per capita transition
rate νh. Hence,

dEh
dt

= λhSh − (νh + µh)Eh. (2)

The infectious humans class is generated by the transition of the exposed humans to
the infectious class and the recrudescence in the partially recovered humans occurring
at the per capita rate ξ. Its size decreases due to partial recovery at the per capita
rate of η, the full recovery at the per capita rate γ, the disease induced deaths at the
per capita rate δh and the natural deaths at the rate µh. Thus

dIh
dt

= νhEh + ξRh − (η + γ + δh + µh)Ih. (3)

The partially recovered humans class is generated by the partial recovery of the infec-
tious humans at the per capita rate η, while its size decreases due to the recrudescence
at rate ξ, loss of semi-immunity at the per capita rate θ and the natural deaths at the
per capita rate µh. Therefore,

dRh
dt

= ηIh − (ξ + θ + µh)Rh. (4)

The fully recovered humans class is generated by the full recovery due to effective
treatment of the infectious humans at the per capita rate γ, while it is reduced due
to the loss of post treatment prophylaxis loss at the per capita rate φ and the natural
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Table 1. Description of the state variables for the malaria model

(1-8).
Variable Description
Sh Number of susceptible humans
Eh Number of exposed humans
Ih Number of infectious humans
Rh Number of partially recovered humans
Th Number of fully recovered humans
Sm Number of susceptible mosquitoes
Em Number of exposed mosquitoes
Im Number of infectious mosquitoes

deaths at the rate µh. Hence

dTh
dt

= γIh − (φ+ µh)Th. (5)

For the mosquito population, the susceptible female anopheles mosquitoes are recruited
from the pupa stage at the rate αm and die at the per capita natural death rate
µm1 +µm2Nm. The susceptible mosquitoes are infected by the infectious and partially
recovered humans at the per capita rate given by the force of infection λm = aβm

Nh
(Ih+

ρRh). Here, βm is the probability that a bite by a susceptible mosquito on an infectious
or partially recovered human results in the transmission of the gametocytes to the
mosquito. The parameter ρ (0 ≤ ρ ≤ 1) determines the degree of infectivity of a
partially recovered human. When ρ = 0, then there is no infectivity, and ρ = 1 implies
the same infectivity as of an infectious human, [7]. Thus,

dSm
dt

= αmNm − (λm + µm1 + µm2Nm)Sm. (6)

The number of the exposed mosquitoes increases due to the infections of the susceptible
mosquitoes and decreases due to the natural deaths at the per capita death rate µm1 +
µm2Nm as well as due to the transition of the exposed mosquitoes to the infectious
mosquitoes at the per capita rate νm > 0. Therefore

dEm
dt

= λmSm − (νm + µm1 + µm2Nm)Em. (7)

The number of infectious mosquitoes increases due to the transition of the exposed
mosquitoes to the infected class and decreases due to the natural deaths at the per
capita rate µm1 + µm2Nm; that is,

dIm
dt

= νmEm − (µm1 + µm2Nm)Im. (8)

The state variables and the parameters of the malaria model are shown in Tables 1
and 2 respectively.
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Table 2. Description of the parameters for the malaria model (1-8).
Parameter Description Value/Range Unit References
βh The probability of transmission of infection from

an infectious mosquito to a susceptible human
given that a contact occured

0.015 [31]

βm The probability of transmission of infection from
an infectious or partially recovered human to a sus-
ceptible mosquito given that a contact occured

0.475 [11]

ρ The degree of infectivity of partially recovered hu-
mans

0.2/[0,1] Assumed

a The number of mosquito bites per human 11/[1-34] day−1 [5, 13, 30,
31]

αh The total birth rate of humans 0.031 day−1 [36]
νh The per capita transition rate of exposed humans

to infectious humans
0.0833/[0.06 - 0.11] day−1 [10]

η The per capita partial recovery rate of infectious
humans

0.07143/[0.0357 -
0.333]

day−1 [15, 22,
34]

γ The per capita full recovery rate of infectious hu-
mans

0.07143/[0.0357 -
0.333]

day−1 [15, 22,
34]

ξ The per capita rate of recrudescence of partially
recovered humans

0.07143/[0.0357 -
0.143]

day−1 [34]

φ The per capita rate of loss of post treatment pro-
phylaxis for fully recovered humans

0.033/[5.48×10−4-
0.071]

day−1 [34]

θ The per capita rate of loss of semi-immunity for
some partially recovered humans

0.002740[ 1
30

- 1
1800

] day−1 Assumed

µh The natural death rate of humans 4.2808× 10−5 day−1 [36]
δh The per capita disease induced death rate of hu-

mans
[9×10−5−1×10−4] day−1 [37]

αm The per capita birth rate of mosquitoes 0.13 day−1 [27]
νm The per capita transition rate of exposed

mosquitoes to infectious mosquitoes
0.091 day−1 [27]

µm1 The density independent death rate of mosquitoes 0.033 day−1 [27]
µm2 The density dependent death rate of mosquitoes 2× 10−5 mosquitoes−1 ×

day−1
[27]

3. Model analysis

3.1. Feasible region

The first step in showing that the malaria model (1)-(8) makes sense epidemiologically
is to prove that the populations remain non-negative; that is, that all the solutions
of system (1-8) with positive initial conditions will remain positive for all time t > 0.
Given that typical initial conditions of system (1)-(8) at the beginning of the outbreak
are

Sh(0) > 0, Eh(0) ≥ 0, Ih(0) ≥ 0, Rh(0) = 0, Th(0) = 0,

Sm(0) > 0, Em(0) ≥ 0, Im(0) ≥ 0, (9)

with Eh(0) + Ih(0) + Em(0) + Im(0) > 0, we define a feasible region Ω, such that,

Ω = {(Sh, Eh, Ih, Rh, Th, Sm, Em, Im) ∈ <8
+ : 0 < Nh ≤ Kh; 0 < Nm = Km}.

Theorem 3.1. The feasible region Ω with initial conditions (9) is positively invariant
and attracting.

Proof. The proof is classical. The right hand side of system (1)-(8) is continuous
with continuous partial derivatives in Ω (note that Nh, Nm > 0 in Ω so that the
infection force is well defined). Thus the Picard theorem gives the existence of solu-

6



tions at least on some (maximum) interval [0, τ) (where τ can depend on the initial
data). It can be seen that S

′

h ≥ 0 if Sh = 0, E
′

h ≥ 0 if Eh = 0, I
′

h ≥ 0 if Ih = 0,
R

′

h ≥ 0 if Rh = 0, T
′

h ≥ 0 if Th = 0, S
′

m ≥ 0 if Sm = 0, E
′

m ≥ 0 if Em = 0
and I

′

m ≥ 0 if Im = 0. Therefore, given the initial conditions (9), the solutions
Sh(t), Eh(t), Ih(t), Rh(t), Th(t), Sm(t), Em(t), Im(t) are nonnegative on [0, τ). Adding
equations (1)-(5) and equations (6)-(8) gives, respectively,

dNh

dt
= αh − µhNh − δhIh ≤ αh − µhNh; (10)

that is,

αh − (µh + δh)Nh ≤
dNh

dt
≤ αh − µhNh, (11)

and

dNm

dt
= rmNm − µ2mN

2
m = rmNm

(
1− Nm

Km

)
. (12)

Solving the inequality (11) and equation (12) gives

Nh(0)e−(µh+δh)t +
αh

µh + δh

(
1− e−(µh+δh)t

)
≤ Nh(t) ≤ Kh + (Nh(0)−Kh)e−µht

and

Nm(t) =
KmNm(0)

Nm(0) + [Km −Nm(0)]e−rmt
. (13)

Thus we see that if Nh(0) > 0 and Nm(0) > 0, then neither Nh nor Nm can become
0 at any finite time (in particular, on [0, τ)). Then, for 0 < Nh(0) < Kh and 0 <
Nm(0) < Km, we see that on [0, τ)

0 < Nh(t) < Kh, 0 < Nm(t) < Km

and thus, by the nonnegativity, the solution (Sh, Eh, Ih, Rh, Th, Sm, Em, Im) is a priori
bounded and hence it is defined for all t ≥ 0 and stays in Ω. In particular, taking the
limit as t→∞ yields

lim sup
t→∞

Nh(t) ≤ Kh (14)

and

lim
t→∞

Nm(t) = Km. (15)

Thus the region Ω is positively invariant. Further, if Nh(0) > Kh and Nm(0) > Km,
then they are also isolated from zero and Nh(t) either becomes smaller that Kh (and
thus the solution enters Ω in a finite time), or approaches Kh, while Nm(t) converges to
Km. Hence, the region Ω attracts the solutions in <8

+ with Nh(0) > Kh and Nm(0) >
Km.
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Since the region Ω is positively invariant and attracting, it is sufficient to consider
the dynamics of the flow generated by the model in Ω.

3.2. Equilibrium points

Equating equations (1)-(8) to zero gives the equilibrium points the system. These are
the disease-free equilibrium (DFE) and endemic equilibria (EE), which are denoted
by E0 and Ee respectively. At DFE, all the infected/infectious classes are zero i.e
Eh = Ih = Rh = Em = Im = 0. At the endemic equilibrium, at least one of the
infected/infectious classes should be non-zero.

The DFE of the model is given by

E0 = (Kh, 0, 0, 0, 0,Km, 0, 0). (16)

3.2.1. The basic reproduction number

The local stability of E0 is established using the next generation operator method [33]
on the system (1)-(8). The matrices F and V , for the new infection terms and the
remaining transfer terms, are, respectively, given by

F =


0 0 0 0 aβh
0 0 0 0 0
0 0 0 0 0

0 aβmKm

Kh

aβmρKm

Kh
0 0

0 0 0 0 0

 ,V =


−v11 0 0 0 0
νh −v22 ξ 0 0
0 η −v33 0 0
0 0 0 −v44 0
0 0 0 νm −v55

(17)

where

v11 = νh + µh, v22 = η + γ + δh + µh, v33 = ξ + θ + µh, v44 = νm + αm and v55 = αm.

It follows that the basic reproduction number of the system denoted by R0 and
defined as the spectral radius of the next generation matrix (FV −1) is given by

R0 = ρ(FV −1) =

√
a2βhβmνmνh(v33 + ρη)Km

v11(v22v33 − ηξ)v44v55Kh
. (18)

R2
0 is the number of susceptible humans that one infected human infects by generating

infections in susceptible mosquitoes, assuming that we begin with human and mosquito
populations only consisting of susceptible individuals, [9]. According to [9], since R0 is
positive, R0 < 1 is equivalent to R2

0 < 1; R0 = 1 is equivalent to R2
0 = 1; and R0 > 1

is equivalent to R2
0 > 1.

In the absence of the partially recovered humans (ineffectively treated and/or
asymptomatic individuals), R0 reduces to R01 which is given by

R01 =

√
a2βhβmνmνhKm

v11v22v44v55Kh
. (19)

From the formula in 18, if there are no partially recovered individuals within the
population, then, ρη

(v22v33−ηξ) = 0. This will mean that one reservoir of infection is
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eliminated and the reproduction number will be significantly reduced given (19). Also,
reducing the contact rate between mosquitoes and human (which is a squared term)
will greatly reduce R0. The transmission probabilities, the probability that an exposed
mosquito will become infectious, the duration of the infectious lifetime of the mosquito,
the proportion of the mosquitoes to humans, the probability that an exposed human
will become an infectious human, duration of the infectious period of a human, the
probability that an infectious human will partially recover, the duration of the partial
recovery of a human, the probability that a partially recovered human will return to
an infectious human, the per capita partial recovery rate of infectious humans and the
degree of infectivity of the partially recovered human can lower transmission, infection
in the population, recrudescence and reduce the value of R0. To suggest efficient control
strategies, it is important to know the magnitude to which a change in the model
parameters will affect the reproduction number. Thus the need for sensitivity analysis
(see Section 5).

Using Theorem 2 in [33], the following result is established on the local stability of
E0.

Lemma 1 The disease free equilibrium of the model E0 is locally asymptotically
stable if R0 < 1 and unstable if R0 > 1.

3.3. Existence of endemic equilibrium

The conditions for the existence of an endemic equilibrium

Ee = (S∗h, E
∗
h, I
∗
h, R

∗
h, T

∗
h , S

∗
m, E

∗
m, I

∗
m) (20)

for the model are explored. Equating (10) and (12) to zero gives

N∗h =
αh − δhI∗h

µh
and N∗m = Km.

Thus, an endemic equilibrium point exists if Ih lies between (0, αh

δh
). Hence, when

malaria persists, the mortality due to the infections in humans is smaller than the
birth rate of the population. At an endemic equilibrium, the forces of infection become

λ∗h =
aβhI

∗
m

N∗h
and λ∗m =

aβm(I∗h + ρR∗h)

N∗h
.
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The endemic equilibrium Ee of the model is given in terms of λ∗h and λ∗m with

S∗h =
αhv33(φ+ µh) + (θη(φ+ µh) + φγv33)I∗h

(λ∗h + µh)(φ+ µh)v33
,

E∗h =
λ∗hαh(φ+ µh) + λ∗hφγI

∗
h

(λ∗h + µh)(φ+ µh)v11
,

I∗h =
λ∗hνhαh(φ+ µh)v33

(λ∗h + µh)(φ+ µh)(v22v33 − ξη)v11 − νhλ∗hγφv33
,

R∗h =
ηI∗h
v33

, T ∗h =
γI∗h

φ+ µh
, N∗h =

αh − δhI∗h
µh

,

S∗m =
αmKm

λ∗m + αm
, E∗m =

λ∗mαmKm

(λ∗m + αm)v44
, I∗m =

νmλ
∗
mαmKm

(λ∗m + αm)v44v55
.

Substituting λ∗h and λ∗m into I∗h and I∗m gives

I∗h =
aβhνhαh(φ+ µh)v33I

∗
m

(aβhI∗m + µhN
∗
h)(φ+ µh)(v22v33 − ξη)v11 − aβhνhγφv33I∗m

,

I∗m =
aβmνmαmKm(v33 + ρη)I∗h

(aβm(v33 + ρη)I∗h + αmv33N∗h)v44v55
,

and, finally, by substituting I∗m into I∗h we obtain

I∗h(AI∗2h +BI∗h + C) = 0, (21)

where

A =
αmδh
µh

v11v33v44v55(φ+ µh)(v22v33 − ξη)(δh − δ∗),

B = a2βmβhνmαmKm(v33 + ρη)[v11(φ+ µh)(v22v33 − ξη)− νhφγv33]

+ αmv11v33v44v55Kh(φ+ µh)(v22v33 − ξη)(δ∗ − 2δh),

= αmv11v33v44v55Kh(φ+ µh)(v22v33 − ξη)×(
R2

0

(
v11(v22v33 − ξη)

νhv33
− φγ

(φ+ µh)

)
+ (δ∗ − 2δh)

)
,

C = αmαhv11v33v44v55Kh(φ+ µh)(v22v33 − ξη)(1−R2
0),

δ∗ =
aβmµh(v33 + ρη)

αmv33
.

Clearly, one of the roots of (21) is I∗h = 0, which corresponds to the disease free
equilibrium point E0. The other roots are found from the remaining equation (22)

f(I∗h) = AI∗2h +BI∗h + C. (22)

It follows from (22) that A > 0 when δh > δ∗ and C > 0, whenever R0 < 1.
Therefore, the number of possible and exact positive real roots of (22) can be analyzed
using Descartes’ Rule of Signs, [3], and Sturm Theorem, [16], or simply by investigating
the possible positions of the parabola. The various possibilities for the roots of (22)
are tabulated in Table 3. Thus,
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Table 3. The number of positive real roots of (22).
Descartes’ rule of signs Sturm’s Theorem

Cases A B C Possible positive real roots Positive real roots
1 + + + (R0 < 1) 0 0
2 + - + (R0 < 1) 0 or 2 2 (B2 − 4AC > 0)
3 - + + (R0 < 1) 1 1
4 - - + (R0 < 1) 1 1
5 + + - (R0 > 1) 1 1
6 + - - (R0 > 1) 1 1
7 - + - (R0 > 1) 0 or 2 2 (B2 − 4AC > 0)
8 - - - (R0 > 1) 0 0

Using the various possibilities shown in Table 3, the following result is established
on the existence of endemic equilibrium.

Theorem 3.2. The model (1)-(8) has:

(T1) a unique endemic equilibrium if R0 < 1 and δh < δ∗,
(Case 3 and 4 in Table 3).

(T2) a unique endemic equilibrium if R0 > 1 and δh > δ∗,
(Case 5 and 6 in Table 3).

(T3) two endemic equilibria if R0 < 1, δh > δ∗, B < 0 and B2 − 4AC > 0
(Case 2 in Table 3).

(T4) two endemic equilibria if R0 > 1, δh < δ∗, B > 0 and B2 − 4AC > 0
(Case 7 in Table 3).

(T5) no endemic equilibrium if R0 < 1, δh > δ∗ and B > 0
(Case 1 in Table 3).

(T6) no endemic equilibrium if R0 > 1, δh < δ∗ and B < 0
(Case 8 in Table 3).

Theorem 3.2 indicates the possibility of various bifurcations in the model when δh 6=
0. Due to interdependence of the coefficients A,B and C a comprehensive analysis of all
bifurcation patterns is very involved and outside the scope of this paper. We observe,
however, that there are four clearly distinct cases, corresponding to the magnitude
of the disease induced mortality rate δh. If 0 < δh < δ∗/2, then A < 0 and B > 0.
The latter inequality can be established by expanding the coefficients v11, v22 and
v33 to show that the first term of B is positive. The discriminant of the equations,
∆ = B2 − 4AC, is positive for C ≥ 0, hence for 0 < R0 ≤ 1 but then, by continuity,
∆ > 0 for R0 ∈ (0, 1 + c) for some constant c. Note that this statement is valid even
if changing R0 changes some other parameters of the problem (apart from δh and δ∗).
Thus, for 0 < R0 < 1 we have a coexistence of the DFE and EE and at R0 = 1 a new
EE emerges. Such a bifurcation is often termed an imperfect bifurcation, [28]. The
other distinctive case is when δh is very large, large enough for B < 0 and δh > δ∗, so
that A > 0. In such a case for ∆ > 0 we need C ≤ 0 so that ∆ > 0 for (1− c,∞). Both
roots, however, will be positive as long as C/A > 0; that is, for R0 < 1. If R0 > 1,
then we have only one positive root. Concluding, in this case we observe a backward
bifurcation at R0 = 1. Finally, we consider the intermediate range of δh. If δh < δ∗

but is not small enough so that B > 0, then we have the coexistence of a DFE and
EE for R0 < 1 with the EE disappearing for R0 > 1. On the other hand, if δh > δ∗

but we still have B > 0, then for R0 < 1 there only is a DFE and an EE appears
while passing through R0 = 1. In both latter cases we have a transcritical bifurcation
at R0 = 1 that is termed subcritical in the first case and supercritical in the second.

It is worth noting that from (22) there may be no dependence between the coeffi-
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cients and R0, and as such when R0 = 0, the coefficients are nonzero (with C > 0),
and a unique or two endemic equilibrium may exist.

3.4. Biological implications of the bifurcations

From the epidemiological point of view, elimination of the disease can be achieved
if R0 reduced below unity. This therefore makes the implication of these identified
bifurcations on malaria infection in an area very important. The existence of the
subcritical bifurcation means that the disease may not become epidemic if R0 > 1
and R0 < 1 is sufficient for disease elimination. The supercritical bifurcation means
that malaria infection is established and endemic when R0 > 1 but when R0 < 1,
the disease eventually dies out. On the other hand, the imperfect bifurcation means
that there might be pockets of the disease for any R0 < 1 but the disease will be well
established if R0 > 1.

On the other hand, when backward bifurcation exist (since the locally asymptot-
ically stable DFE coexists with a locally asymptotically stable EE when R0 < 1),
getting R0 < 1 is not sufficient for the infection to die out but, contrary to the sub-
critical case, there is a critical value of R0, denoted by Rcrit ∈ (0, 1), such that if
R0 < Rcrit, then no malaria will persist and the disease eliminated. Thus, for malaria
to die out, there is need for constant monitoring and increase in control strategies,
so that R0 is always reduced below Rcrit and no endemic equilibrium exists. If R0

increases above Rcrit (i.e. Rcrit < R0 < 1), malaria dynamics become complicated
because infection tend to jump from DFE to persist at a high endemic level. This may
result in a sudden boom in infection and reestablishment of the disease in the area
where the infection may have otherwise been eliminated. We observe that the back-
ward bifurcation occurs when ∆ = B2 − 4AC = 0 so that to find Rcrit this equation
must be solved for the appropriate selection of the parameters.

Last but not least, the disease will be eliminated when R0 = 0 (even in the case
where the locally asymptotically stable DFE coexists with a locally asymptotically
stable EE) because the disease induced mortality rate may be very large and hence,
cause the infectious population to be maintained close to the DFE. Thus, infectious
individuals die before they can successfully transmit the infection to susceptible hu-
mans. In the next section we present a series of numerical simulations to illustrate the
impact of conditions T2 – T4 in Theorem 3.2. To recall, an endemic equilibrium exists
for T2 – T4.

4. Numerical simulation

The numerical simulations of the system (1)-(8) are illustrated in Figures 2-7 for the
parameter values shown in Table 2. The backward bifurcation diagram is shown in
Figure 3. In addition, the effect of varying the partial recovery rate η, the full recovery
rate γ, the recrudescence rate ξ and the loss of post treatment prophylaxis rate φ
on the infectious population when an endemic equilibria exist (i.e. when one of the
conditions T2 – T4 holds) is illustrated in Figures 4-7.
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4.1. Parameter estimation

The numerical values of the parameters used for the simulation are given in Table
2. Most of the parameter values are taken from the literature on Ghana and other
endemic regions. Other parameter values, not directly found in the literature, were
estimated using the assumptions made during the model formulation and following
literature indications. The value for µh is derived from the expected human life-span
of sixty-four years [36]; that is, µh = 1/(64 × 365). From the literature [15, 22, 34],
the estimates of the partial recovery is to be within 3-28 days, so that we assume the
average η = 1/14 and γ = 1/14. Again from [34], if the symptoms recur within 28
days of the initial treatment, then we say that there is the recrudescence. Therefore,
similarly, the value of ξ is chosen as the average, ξ = 1/14. The value of φ is assumed
to vary between 1/7 and 1/1800. The 7 days represent the shortest period of the
duration of post treatment prophylaxis due to an effective treatment and 1800 days
(5 years) is chosen to check for a long lasting post treatment prophylaxis. The value
of θ is assumed to vary between 1/30 and 1/1800. The value of δ∗ is calculated to
be 0.0020645. To ensure the existence of the conditions T2 – T4 in Theorem 3.2, the
value of δh is chosen to be 0.05 (R0 = 13.2467), 15 (R0 = 1.2022), 100 (R0 = 0.4666)
and 8.209 × 10−5 (R0 = 17.1311) respectively, with, δh = 0.05 and 15 showing Cases
5 and 6 in T2 respectively.

Figure 2 shows the numerical simulation of the malaria model (1)-(8) for the param-
eter values shown in Table 2. The initial conditions used are Sh(0) = 724, Eh(0) = 20,
Ih(0) = 60, Rh(0) = 0, Th(0) = 0, Sm(0) = 4850, Em(0) = 30 and Im(0) = 100. We
choose δh = 8.209×10−5, 0.05, 15 to illustrate the existence of an endemic equilibrium
(where imperfect and supercritical bifurcations may occur) and δh = 100 to illustrate
disease free equilibrium (where backward bifurcation may occurs). In Figures 2(a) –
(f), the simulations show the existence of an endemic equilibrium. The simulations
in Figures 2(a)-(h) suggest that, as the value of δh increases, the size of the infected
subpopulation (Ih, Rh, Im) reduces. This makes sense also intuitively as a high disease
induced mortality rate results in the depletion of the infected populations. Also, the
endemic equilibrium disappears as δh increases from 15 to 100 (i.e at δh = 21.711,
R0 = 1), also possibly due to the dying out of the infected classes. In Figures 2(g) and
(h), the simulations show a locally asymptotically stable DFE. To show the existence
of backward bifurcation, the backward bifurcation diagram for the malaria model (1-8)
is depicted in Figure 3 with δh = 100.

Figures 4 - 8 show the simulations of the evolution of the disease with varying rates
of the partial recovery, recrudescence, loss of semi immunity, full recovery and loss of
post treatment prophylaxis in the infected subpopulations for the parameter values
in Table 2 and δh = 8.209 × 10−5, 0.05, 15 and 100. The initial conditions used here
are Sh(0) = 724, Eh(0) = 20, Ih(0) = 60, Rh(0) = 0, Th(0) = 0, Sm(0) = 4850,
Em(0) = 30 and Im(0) = 100.

As illustrated in Figure 4, an increase in partial recovery rate η from 0 to 1 results
in a smaller equilibrium population of Ih. The decrease in the infectious equilibrium
population in Figure 4(c-d) is more significant compared to Figure 4(a-b). Figure 4
illustrates that if it takes a short period for infectious humans to partially recover,
then the size of the infectious population at the equilibrium will be small. However, if
the disease induced death rate is very large, then, irrespective of the partial recovery
rate, the infectious humans population will go extinct.

In Figure 5, we see that increasing the recrudescence rate ξ from 0 through to 1
causes an increase in the infectious human equilibrium population when δh = 8.209×
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(a) Human population against time

with δh = 8.209× 10−5.
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(b) Mosquito population against time

with δh = 8.209× 10−5.
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(c) Human population against time
with δh = 0.05.
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(d) Mosquito population against time
with δh = 0.05.
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(e) Human population against time

with δh = 15.
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(f) Mosquito population against time

with δh = 15.
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(g) Human population against time
with δh = 100.
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(h) Mosquito population against time
with δh = 100.

Figure 2. A numerical simulation of the malaria model (1–8) with initial conditions: Sh = 724, Eh = 20, Ih =
60, Rh = 0, Th = 0, Sm = 4850, Em = 30, Im = 100. The parameters used are αh = 0.031, βh = 0.015, a =

11, µh = 4.2808 × 10−5, νh = 1/12, αm = 0.13, µm1 = 0.033, µm2 = 2 × 10−5, βm = 0.475, νm = 1/11, ρ =

0.2, ξ = 1/14, φ = 1/30, γ = 1/14, η = 1/14, θ = 1/365 and a,b δh = 8.209 × 10−5(R0 = 17.1311), c,d
δh = 0.05(R0 = 13.2467), e,f δh = 15(R0 = 1.2022) and g,h δh = 100(R0 = 0.4666).
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Figure 3. Backward bifurcation diagram for the infectious humans population for the following parameter

values: αh = 0.031, βh = 0.015, a = 11, µh = 4.2808 × 10−5, νh = 1/12, αm = 0.13, µm1 = 0.033, µm2 =
2 × 10−5, βm = 0.475, νm = 1/11, ρ = 0.2, ξ = 1/14, φ = 1/30, γ = 1/14, η = 1/14, θ = 1/365 and (a)

δh = 100(R0 = 0.4666 and Rcrit = 0.207).

0 20 40 60 80 100 120
Time (Days)

50

100

150

200

250

300

In
fe

ct
io

us
 h

um
an

s

=0
=1

(a)

0 20 40 60 80 100 120

Time (Days)

20

40

60

80

100

120

140

160

180

200

In
fe

ct
io

us
 h

um
an

s

=0
=1

(b)

0 20 40 60 80 100 120

Time (Days)

5

10

15

20

25

30

35

40

45

50

55

60

In
fe

ct
io

us
 h

um
an

s

=0
=1

(c)

0 20 40 60 80 100 120

Time (Days)

5

10

15

20

25

30

35

40

45

50

55

60

In
fe

ct
io

us
 h

um
an

s

=0
=1

(d)

Figure 4. Graphs showing the effect of varying the partial recovery rate, η from 0 (blue line) to 1 (red line),
on the long term behaviour of the infectious human population with (a) δh = 8.209× 10−5, (b) δh = 0.05, (c)

δh = 15 and (d) δh = 100.
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Figure 5. Graphs showing the effect of varying the recrudescence rate, ξ from 0 (blue line) to 1 (red line),
on the long term behaviour of the infectious human population with (a) δh = 8.209× 10−5, (b) δh = 0.05, (c)

δh = 15 and (d) δh = 100.
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Figure 6. Graphs showing the effect of varying the full recovery rate, γ from 0 (blue line) to 1 (red line), on

the long term behaviour of the infectious human population with (a) δh = 8.209 × 10−5, (b) δh = 0.05, (c)
δh = 15 and (d) δh = 100.

10−5 and 0.05. This suggests that when the time it takes for the infection to recur
is short, the number of infectious humans at equilibrium increases. The increase is
more significant when the disease induced death rate is very small. Here, when ξ = 0,
the population converges to zero. For Figures 5(c-d), no difference is observed in the
infectious human equilibrium population as ξ is increased from 0 to 1 when δh = 15
and 100. This may be because most humans, who become infectious, die before they
get to recover.

In Figure 6 we see that varying the full recovery rate γ from 0 to 1 results in a
significant decrease in infectious humans equilibrium population. This suggests that
when treatment gives full recovery within the shortest period, the equilibrium of the
infectious population reduces significantly. In Figure 6(c-d), we observe no difference
in the infectious humans equilibrium population when γ is varied from 0 to 1 and
δh = 15, 100.

An increase in the loss of post treatment prophylaxis rate φ from 0 through to
1 increases the equilibrium of Ih, as seen in Figure 7(a-b). Here, when φ = 0, the
population converges to zero. Increasing φ from 0 to 1, when δh = 15, 100, show no
significant difference in the infectious humans population at equilibrium (Figure 7(c-
d)). Figure 7 suggests that if it takes the longest period until an effective treatment
wanes from the bloodstream, then the infectious population will go extinct in the
long term, especially when the disease induced death rate is very small. However,
when the disease induced death rate is very large, changing the loss of post treatment
prophylaxis rate does not affect the infectious humans populations at equilibrium.
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Figure 7. Graphs showing the effect of varying the loss of post treatment prophylaxis rate, φ from 0 (blue
line) to 1 (red line), on the long term behaviour of the infectious human population with (a) δh = 8.209×10−5,

(b) δh = 0.05, (c) δh = 15 and (d) δh = 100.
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Figure 8. Graphs showing the effect of varying the loss of semi-immunity rate, θ from 0 (blue line) to 1 (red
line), on the long term behaviour of the infectious human population with (a) δh = 8.209×10−5, (b) δh = 0.05,

(c) δh = 15 and (d) δh = 100.
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Table 4. Elasticity index of R0 to parameters using parameter baseline

values in Table 2 with δh = 8.209× 10−5, 0.05, 15 and 100.

Elasticity indices of R0

Parameters δh = 8.209× 10−5 δh = 0.05 δh = 15 δh = 100

a +1 +1 +1 +1
βh +0.5 +0.5 +0.5 +0.5
βm +0.5 +0.5 +0.5 +0.5
µh -0.5 -0.5 -0.5 -0.5
αh -0.5 -0.5 -0.5 -0.5
µm2 -0.5 -0.5 -0.5 -0.5
νm +0.29 +0.29 +0.29 +0.29
µm1 -0.17 -0.17 -0.17 -0.17
αm -0.12 -0.12 -0.12 -0.12
η 0.081 +0.081 +0.081 +0.081
ξ -0.078 -0.078 -0.078 -0.078
ρ +0.081 +0.081 +0.081 +0.081
νh +0.00026 +0.00026 +0.00026 +0.00026
γ -0.48 -0.29 -0.0024 -0.00036
δh -0.00056 -0.201 -0.5 -0.5

An increase in the loss of semi-immunity rate θ from 0 through to 1 does not show
significant difference on the infectious humans population at equilibrium (Figure 7(a-
d)). We observe the infectious humans population at equilibrium converges to 0 for all
the values of δh except δh = 8.209× 10−5. Figure 8 seem to suggest that the duration
for the partially recovered to loss their semi-immunity may not impact the infectious
population at equilibrium.

In general, Figures 4–8 seem to suggest that when δh is very large, then varying
the rates of recovery, recrudescence, semi-immunity may not affect the infectious pop-
ulation, because, the population will eventually go extinct. However, when δh is very
small, then the longest period until recrudescence occurs, an effective treatment that
gives full recovery in the shortest time and longest post treatment prophylaxis period
is crucial for the reduction of infection in the infectious population and control of
malaria in the human population.

4.2. Sensitivity analysis of R0

A local sensitivity analysis of R0 is done by computing the elasticity index of the pa-
rameters [9]. This is derived by differentiating R0 with respect to the model parameter
p defined as

ΥR0
p =

∂R0

∂p
× p

R0
.

The parameter values in Table 2 and the values of δh = 8.209×10−5, 0.05, 15, 100 are
used to ensure the existence of imperfect, supercritical and backward bifurcation. The
elasticity indices of R0 to the model parameters for these four values of δh are given in
Table 4. The + sign means that R0 increases as the value of the parameter increases,
while the − sign means that an increase in the value of the parameter decreases R0.

From Table 4 we see that the most important parameter is the number of bites per
person. The probabilities of transmission βh (βm), the per capita density dependent
death rate for mosquitoes µm2, the birth rate αh and natural death rate µh for humans
have an equally strong impact on R0 when all the bifurcations exist. The parameter
νh has little effect on R0. The parameters δh and γ have different effects on R0. When
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Figure 9. Global sensitivity analysis. Partial Rank Correlation Coefficients showing the ranking of parameters

influence on the infectious humans population (Ih) with (a) δh = 8.209× 10−5, (b) δh = 0.05, (c) δh = 15 and
(d) δh = 100.

imperfect bifurcation occurs, γ has strong impact on R0 while δh has a strong impact
when supercritical (Case 6 in Table 3) and backward bifurcation exist.

The results suggest that depending on the bifurcation present, multiple interven-
tions that combine all the significant parameters will effectively control the spread of
malaria.

4.3. Sensitivity analysis of model parameters

A global sensitivity analysis [8] is done using the Latin Hypercube Sampling (LHS)
with partial rank correlation coefficient index (PRCC). The parameter values in Table
2 and the values of δh = 8.209×10−5, 0.05, 15, and 100 are used to ensure the existence
of imperfect, supercritical and backward bifurcations respectively. The sets of input
parameter values sampled using the LHS method were used to run 1000 simulations.
The PRCC index of the model parameters on the infectious humans sub-population
of the model (1)–(8) are calculated to show the parameters that significantly influence
the growth or decline of it.

The results of the partial rank correlation coefficients show that when imperfect
bifurcation occurs (Figure 9(a)), the per capita loss of post treatment prophylaxis φ
and the per capita birth rate of mosquitoes αm, have the highest influence on the
infectious humans population reproduction followed by the number of mosquito bites
per human a and the density independent death rate of mosquitoes µm1. In Figure
9(b), the parameters with the highest influence on the infectious humans population
are the per capita loss of post treatment prophylaxis φ, the per capita birth rate
αm and the per capita full recovery rate γ. These are followed by the per capita
disease induced death rate of humans δh and the density independent death rate of
mosquitoes µm1. In Figure 9(c), the highest influence is from the per capita transition
rate of exposed humans to infectious humans νh and the number of mosquito bites per
human a. these are followed by the total birth rate of humans αh. When backward
bifurcation occurs, the results show that the number of mosquito bites per human a
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and the per capita transition rate of exposed humans to infectious humans νh have the
highest influence on the infectious humans population followed by the probability of
transmission of infection from an infectious mosquito to a susceptible human βh and
the density independent death rate of mosquitoes µm1 (Figure 9(d)). The contribution
of other parameters are indicated in Figure 8.

In general, the birth rate of the mosquitoes and the number of mosquito bites
per human are positively correlated to the infectious humans population while the
density independent death rate of mosquitoes and the per capita transition rate of
exposed humans to infectious humans are negatively correlated. We also find that
the per capita rate of loss of post treatment prophylaxis is positively correlated to
the infectious humans population only when imperfect or supercritical bifurcation
(δh = 8.209 × 10−5 or 0.05) occur. This seem to suggests that when the period for
post treatment prophylaxis is very short, the infectious humans population increases.
Thus increasing parameters that are positively correlated to the infectious humans
population would result in the prevalence of malaria.

5. Discussion

A comprehensive deterministic model for P. falciparum malaria infection in humans
was developed. The model included full recovery, partial recovery, recrudescence, a
period of post treatment prophylaxis due to effective treatment and a period of semi-
immunity in order to comprehensively understand the disease transmission dynamics
to be able to control it and eliminate. We showed that the model is epidemiologically
and mathematically well-posed. The basic reproduction number, R0 and the equilib-
rium points of the model were derived. The model has a locally asymptotically stable
disease free equilibrium when R0 < 1.

We showed that the model could undergo imperfect, backward, transcritical (sub-
critical and supercritical) bifurcations depending on the value of the disease induced
death rate and R0. Most previous studies focused on the possible existence [7, 9, 21, 23]
and removal [7, 21, 23] of backward bifurcation. In this study, we focused not only on
backward bifurcation but also on supercritical and imperfect bifurcations, i.e. where
at least an endemic equilibria exist for both R0 < 1 and R0 > 1. When a back-
ward bifurcation exists, R0 must be reduced below the threshold parameter (so that
B2 − 4AC < 0) through sustained control strategies; otherwise malaria may becomes
endemic. From our analysis, reducing the disease induced death rate is crucial. One
characteristics of malaria endemic areas is the large disease induced deaths in hu-
mans [37]. Thus, to reduce disease induced death the World Health Organisation
recommends prompt diagnosis and the treatment of infected humans with effective
antimalarials [15, 34, 37].

For the numerical simulations, sensitivity analysis and calculation of the partial
rank correlation coefficient (PRCC), the parameter values from an endemic region
were used. The numerical simulations suggested that a very high disease induced
death rate drives the population to a stable disease free equilibrium. However, this
control strategy is of course not acceptable. The simulations also suggest that time is
of importance, even when an effective treatment is used. An effective treatment for
malaria that gives full recovery within a short period and long period of post treatment
prophylaxis seems the best choice for the removal of malaria in the population of
humans. When backward bifurcation exists, attention must be given to especially
the number of mosquito bites per human, the transition rate of exposed humans to
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infectious, prompt diagnosis and use of effective treatment among others controls.
Also, when backward bifurcation occurs there is need for constant monitoring of these
control intervention to prevent sudden malaria outbreaks.

The sensitivity indices of R0 showed that the ranking of all the parameters is similar
when the different bifurcations exist except for the parameters, disease induced death
rate and the per capita full recovery rate. The most important parameter when all the
parameters are ranked was the average number of mosquito bites per person per day.
Hence, being able to control the number of mosquito bites per day is very important for
the control and elimination of malaria, regardless of the bifurcations present. Following
the number of mosquito bites were the probabilities of transmission, the per capita
density dependent death rate for mosquitoes, the total birth rate of humans, the
natural death rate for humans and either the full recovery rate or the disease induced
death, depending on the bifurcation present, with an equally strong impact on R0.

The PRCC plots suggest that the per capita birth rate of mosquitoes αm and the
number of mosquito bites per human a were strongly positively correlated, while the
density dependent death rate of mosquito µm1 and the per capita transition rate of
exposed humans νh were strongly negatively correlated, to Ih when all three types of
bifurcations exist. Parameters βh, φh, γ, δh, µm1 and αh were also correlated to Ih
depending on the bifurcation present.

From the sensitivity analysis, an increase in the birth rate in mosquitoes (survival
of eggs to pupa to larvae to adults) increased the prevalence of malaria, while the re-
moval of the adult mosquitoes through death, climatic conditions and control strategies
continually over a long period of time reduced malaria infection. In endemic regions,
where the intrinsic growth rate of mosquitoes is always positive, [20], there is need
for new and more economical methods that will lower the intrinsic growth rate of
mosquitoes and indirectly control malaria. Methods such as destruction of breeding
sites, the use of sterile insect technique [14], transgenes [17], indoor residual spraying
and other larval or vector control techniques [27] have been suggested.

Summarizing, when the disease induced death is small, vector control methods and
an effective treatments, that give full recovery within the shortest period and a long
post treatment prophylaxis is better for reducing the disease burden. However, pre-
ventive methods such as reducing mosquito bite rates, transmission blocking drugs,
intermittent prophylactic treatments, vector controls and the effective treatment will
go a long way to reduce the burden of malaria in endemic areas where disease induced
death are high.

The elimination of malaria will also require the prevention of use of ineffective
treatments, and to make the effective drugs affordable and accessible.

It is worth noting that most of the control strategies have their inherent cost im-
plications. The authors in [1, 2, 23, 27, 29] have recommended the levels of coverage
and the impact of possible combinations of control strategies on the epidemiology of
malaria, depending on the area. For future investigation, a cost benefit analysis of
the current model, coupled with the suggested control strategies, will be performed
to contribute to the effective allocation of scarce resources and efficient elimination
programs in endemic areas. The effect of environment, weather and climate change
have been found to impact the disease vector and the parasite [5, 13, 24, 30, 31]. This
is another challenge in the quest of the malaria elimination.
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