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Highlights 

 Phytophthora multivora caused significant root damages on twenty-five plant species

common in the urban environment

 P. multivora is more commonly isolated than P. cinnamomi in the urban environment

 Phytopthora threatens viability and longevity of the urban forest
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Abstract

Phytophthora multivora is a recently described species with a global distribution associated with 

disease of many woody plant species. However, very few pathogenicity studies have been conducted to 

determine the host range of this pathogen. A soil infestation pathogenicity experiment was conducted 

using two P. multivora isolates with Phytophthora cinnamomi, a known virulent pathogen, included for 

comparison purposes. Twenty-seven plant species were included, 19 native to Western Australia (WA) 

and eight exotic tree species often used as urban street trees. Plants were harvested 12 weeks after 

inoculation, damage of root systems were rated and root and shoot dry weight measured. Twenty-four 

out of twenty-seven tested host species were significantly susceptible to P. multivora. P. cinnamomi

was often more pathogenic; - despite this, P. multivora represents an ecological risk for urban forests of 

Perth and for the whole of the South West Botanical Province of WA. Additionally, the susceptibility 

of other common woody plants found globally in cities suggests that P. multivora will, in time, become 

as ‘well-known’ and damaging as P. cinnamomi.
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Introduction 

The South West Botanical Province of Western Australia (SWWA) is an internationally recognised 

biodiversity hotspot (Shearer et al., 2007), and Perth is the most biodiverse city in the world (Hopper 

and Gioia, 2004). Perth is a moderately green city with 28% canopy cover across the whole city and 

some suburbs with over 50% coverage (“202020Vision,” n.d.). The SWWA is experiencing a drying 

climate trend since several decades(CSIRO and Bureau of Meteorology, 2015; Evans et al., 2013; 

Evans and Lyons, 2013). Climate change is leading to range expansion of many plant pathogens 

(Desprez-Loustau et al., 2007). Abiotic stress and plant disease are having increased impact across the 

globe (Fitzpatrick et al., 2008; Lindner et al., 2010), placing both the natural ecosystems and the urban 

forest under stress. In the urban environment, the plant pathogen Phytophthora can be commonly 

recovered from dead trees or dying stands and its presence, together with variable predisposing and 

inciting abiotic and biotic factors, can play a key role in the premature decline in health of the urban 

forest (Barber et al., 2013).

Phytophthora multivora is emerging as a significant pathogen with a wide host range and global 

distribution found in nurseries, the urban environment and natural ecosystems (Scott and Williams, 

2014). It causes fine feeder root damage and stem girdling lesions often leading to the death of its host. 

Before its description in 2009 and the deposition of verified sequences into global sequence databases, 

P. multivora had routinely been misidentified as P. citricola. The P. citricola complex now contains 

several species, P. plurivora, P. pini, P. pachypleura, P. acerina, and P. capensis, with P. citricola 

being the correct identity only for isolates from citrus in Asia (Bezuidenhout et al., 2010; Hong et al., 

2011; Jung and Burgess, 2009). Hence, many reports of P. citricola prior to 2009 may in fact be P. 

multivora, and its global distribution, while already widespread, may still be underestimated. In 
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addition to Australia (Aldaoud et al., 2016; Burgess et al., 2017; Dunstan et al., 2016), P. multivora has 

now been detected in central and southern Europe and North America (mainly in woody plant 

nurseries)(Cacciola et al., 2000; Jung et al., 2016; Mrázková et al., 2013; Pane et al., 2017), North 

Africa (Smahi et al., 2017), South Africa (Nagel et al., 2013), New Zealand (Scott and Williams, 2014) 

and the Canary Islands (Rodrìguez-Padròn et al., 2018). In South Africa it is routinely found in 

asymptomatic natural vegetation (Oh et al., 2013).

Though first described in WA (Scott et al., 2009), P. multivora is now considered introduced to the 

region. In WA, P. multivora is associated with a dieback in Eucalyptus gomphocephala (Scott et al., 

2012); however, it is also consistently isolated from stem cankers and the rhizosphere of dead and 

dying plants of numerous endemic and introduced hosts in natural ecosystems and the urban 

environment (Barber et al., 2013). In fact, P. multivora is the dominant and often only species routinely 

isolated from dead and dying woody plants in the urban environment of Perth (Barber et al., 2013). In 

SWWA, P. multivora has a wider geographical distribution than P. cinnamomi and is active on 

calcareous soils which are inhibitory to P. cinnamomi (Scott et al., 2009).

While P. multivora has been regularly recovered from dead and dying trees, few pathogenicity trials (to 

prove Koch’s postulates) have been conducted. Species tested to date are Eucalyptus gomphocephala

and E. marginata (Scott et al., 2012), Corymbia calophylla (Croeser et al., 2018) and Banksia grandis, 

B. littoralis, B. occidentalis, Casuarina obesa, C. calophylla, E. marginata and Lambertia inermis 

(Belhaj et al., 2018). Due to the regularity of its recovery from dead and dying trees, especially in 

Perth’s urban environment, this current study was undertaken to determine the pathogenicity of P. 

multivora in a range of commonly planted woody plant species. 
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Plant material

Twenty-seven plant species were tested for their susceptibility to P. multivora in soil infestation 

pathogenicity trials (Table 1). Of these, 19 were native to WA and 8 were common exotic tree species 

used in the urban environment in Perth, WA (Table 1). Within the group of native species, five (E. 

gomphocephala, C. calophylla, B. littoralis, B. occidentalis, C. obesa) have been tested previously 

(Belhaj et al., 2018; Croeser et al., 2018; Scott et al., 2012). Native plants were provided by the 

Australian Native Nursery, Oakford WA. These were germinated in seedling trays and provided to the 

Centre for Phytophthora Science and Management (CPSM) in the 2-4 leaf stage for transplanting. 

Seedlings of the exotic plants were provided by Trillion Trees Western Australia Nursery’ LOT 2 

Stirling Crescent, Hazelmere WA 6055.

Fungal isolates and inoculum preparation

The trial was conducted using two P. multivora isolates (TRH1 and TRH4), (Croeser et al. 2018) and 

one isolate of P. cinnamomi (MP94-48), a known virulent pathogen, included for comparison purposes 

(as a positive control). Cultures were initially isolated in WA and are maintained at the CPSM, 

Murdoch University, WA. A volume of 300 mL of vermiculite substrate (substrate composition: 1 L 

vermiculite, 10 g millet seeds and 600 mL V8 broth) was placed into each 500 mL Erlenmeyer flask, 

which was sealed with non-absorbent cotton wool and covered with aluminium foil. V8 broth consists 

of 0.1 L filtered V8 juice, 0.1 g CaCO3, 0.9 L distilled water. The flasks were autoclaved three times at 

121 °C for 20 minutes over three consecutive days, and then inoculated on the third day once the 

substrate had cooled. Inoculum per flask consisted of agar plugs (5 mm diameter) cut from a 7-day-old 

colony of the specific Phytophthora isolates grown on V8 agar (broth with 17 g/l agar). Non-inoculated 

V8 plates were used for the control flasks. Flasks were shaken and then placed inside zip-lock plastic 
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Table 1. Host species considered in this study.

Species Origin RD DW

TRH4 TRH1 TRH4 TRH1

Acacia dentifera WA + § §

Acacia rostellifera WA / +

Agonis flexuosa WA §

Banksia attenuata WA + / + / + /

Banksia littoralis WA + + / +

Banksia media WA + + /

Banksia menziesii WA + + +

Banksia occidentalis WA + / + / / + /

Banksia seminuda WA + + +

Banksia speciosa WA / / / + /

Casuarina obesa WA +

Corymbia calophylla WA / +

Eucalyptus gomphocephala WA

Eucalyptus kochii WA + +

Gastrolobium spinosum WA +

Hakea marginata WA

Hakea undulata WA + /

Melaleuca brevifolia WA + / + /

Patersonia occidentalis WA + / + §

Albizia julibrissin Iran, E Asia / + / + /

Fraxinus griffithii India, Asia +

Magnolia grandiflora SE United States + +

Olea europaea
S Europe, N Africa, W 

Asia
+ / + +

Quercus ilex S Europe, N Africa + + + +

Syzygium smithii Eastern Australia + + / + 

Triadica sebifera China + § + + +

Tipuana tipu South America + / + / +
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bags and incubated at 20 °C in the dark. The flasks were shaken weekly to evenly spread the inoculum. 

Mycelia rapidly colonised the flasks and the inocula were used after 4 weeks. Colonization of the 

inocula was confirmed by plating 3 g sub-samples onto Phytophthora-selective NARH agar (Simamora 

et al., 2017). These were incubated at room temperature and checked to ensure the viability of the 

inocula.

Glasshouse trial

Two experiments were conducted. The first with the native WA plant species, the second with the 

exotic plant species. The experiments were conducted under evaporative-cooled glasshouse conditions 

(11-32 °C) in sand-infestation pot trials using sterilised washed river sand as the growth medium. The 

sand was steam sterilised in hessian bags in an aluminium box for at least two hours at 65 °C. Pots (150 

mm, 1.9 L free-draining polyurethane pot; Garden City Plastics Canning Vale, WA) were also 

sterilised before use. Flywire (Cyclone, OneSteel, Australia) was placed in the bottom of each pot to 

prevent sand loss. Seeds were germinated in seedling trays and transplanted into the pots at the six-leaf 

stage. At the time of potting up, two sterile polyurethane tubes (12.5 cm long and 2 cm diameter) were 

inserted into each pot, one at each side of the seedling.

After two months, the pots were inoculated with one of the 5-week-old isolates of Phytophthora by 

removing the polyurethane tubes and inserting the vermiculite inocula (5 g) into each hole. Control pots 

received the same amount of non-inoculated vermiculite. The holes were then filled with sterile sand. 

The first experiment had 10 replicate pots for each combination, while the second experiment had 5 

replicate pots per treatment. In order to stimulate the production of sporangia and the release of 

zoospores from the inoculum source, the pots were placed in a 2L plastic container and flooded with 

deionised water for 24 hours every two weeks. Pots were arranged in a randomised complete block 
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design on benches in the glasshouse. Plants were watered as required with deionised water to run-off 

and fertilized with half strength water-soluble Thrive® (Yates Company, Australia) as required; once 

for Australian native plants, and every fortnight for the exotic plants. The presence of Phytophthora in 

dead seedlings was confirmed by plating the root collars and roots on NARH. 

Twelve weeks after inoculation, surviving seedlings were harvested. The shoots were separated from 

the roots. Re-isolations were made from surface-sterilized root tissue plated on NARH to confirm 

Koch’s postulates for each treatment. Roots were washed carefully with tap water and blotted dry with 

paper towels. Whole root systems were visually rated (root damage: RD) for root rot on a scale 0 to 4 

(4=no damage, 0=all roots dead). Roots were dried at 37 °C for 20 days, and then weighed once 

completely dry (dry weight: DW).

Data analysis

To compare the susceptibility of plant species inoculated with P. multivora to control plants and to 

plants inoculated with P. cinnamomi (positive control), the response ratio of the root damage scores 

and the root biomass were calculated. The response ratio measures the proportional change that results 

from a treatment as compared to the control; therefore, quantifying the effect size of the treatment 

(Hedges et al., 1999). The response ratio was calculated as follows:

𝑅𝑅 = ln (𝑋𝑡

𝑋𝑐)
where  and  depict treatment and control mean value, respectively. The response ratio of the root 𝑋𝑡 𝑋𝑐

damage scores and the root biomass was calculated in plants inoculated with P. multivora (treatment) 

to that in plants inoculated with P. cinnamomi (positive control) and control plants, respectively 
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(Hedges et al., 1999; Lajeunesse, 2011; Viechtbauer, 2010). The data were analysed using ’metafor’ 

package of the R software (“Team RC (2017) R: A language and environment for statistical computing. 

R Foundation for Statistical Computing,” 2017; Viechtbauer, 2010).

Results

Above ground condition and growth 

Seedling deaths were observed during the first trial (Table 2). A total of 27 plants died, most of these 

had been inoculated with P. cinnamomi. Phytophthora was always isolated from the roots of the dead 

plants.

Root damage scores

Response ratio of plant species inoculated with P. multivora isolates showed a clear decrease in root 

health in comparison with control plants. Fourteen host species (six are non-native) inoculated with P. 

multivora isolate TRH4, and eighteen (seven are non-native) host species inoculated with P. multivora

isolate TRH1 had significantly more damaged roots than the control (respectively Fig 1a,b; Table 1). 

Overall, the roots of Banksia species were the most affected by inoculation with P. multivora.

In general, roots were more diseased when infected with P. cinnamomi than with P. multivora (Fig. 1c, 

d; Table 1). P. multivora isolate TRH4 caused significantly less damage to roots than P. cinnamomi for 

eight species, Acacia rostellifera, Albizia julibirissin, B. attenuata, B. occidentalis, B. speciosa, C. 

calophylla, Olea europaea, and Tipuana tipu (Fig. 1c; Table 1). P. multivora isolate TRH1 caused 

significantly less damage to roots than P. cinnamomi for five plant species, B. littoralis, B. occidentalis, 

B. speciosa, Patersonia occidentalis, and Syzygium smithii (Fig 1d; Table 1). Only Triadica sebifera 
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Figure 1. Root damage scores after inoculation. 
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Table 2. Host species for which plants died before harvest

Species control MP94-48 TRH4 TRH1

Banksia menziesii 0 1 0 1

Banksia seminuda 0 1 0 0

Banksia attenuata 0 5 1 1

Banksia speciosa 0 7 0 0

Banksia occidentalis 0 9 0 0

Gastrolobium spinosum 0 0 0 1
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(Fig. 1c; Table 1) and A. dentifera (Fig 1d; Table 1), showed more damage by the inoculation with, 

respectively, TRH4 and TRH1 than by inoculation with P. cinnamomi.

Root Biomass

Phytophthora multivora isolates TRH4 and TRH1 significantly reduced the root weight of four and 16 

plant species, respectively, compared to control plants (Fig 2a, b; Table 1). Isolate TRH1 (Fig. 2b) 

caused an overall greater reduction of root weight than TRH4 (Fig. 2a). In a few cases, the inoculated 

treatments had a higher biomass than non-inoculated controls, but this was not significant (confidence 

intervals overlap with the zero line).

Overall, the selected hosts were more susceptible to P. cinnamomi than to P. multivora (Fig. 2c, d; 

Table 1).  Phytophthora multivora isolate TRH4 caused significantly less reduction in root biomass 

than P. cinnamomi for seven species, A. jubilissin, B attenuata, B. media, B. occidentalis, B. speciosa, 

M. brevifolia, and T. tipu (Fig. 1c; Table 1).  Phytophthora multivora isolate TRH1 caused significantly 

less reduction in root biomass than P. cinnamomi for six plant species, B. attenuata, B. occidentalis, B. 

speciosa, Hakea undulata, Melaleuca brevifolia, and A. julibrissin (Fig 1d; Table 1). However, Agonis 

flexuosa and P. occidentalis were more susceptible to P. multivora isolate TRH4 than to P. cinnamomi

(Fig. 2c; Table 1) and A. dentifera was more susceptible to isolate TRH1 than to P. cinnamomi (Fig. 

2d; Table 1). 

Discussion 

Built on the evidence that at least one of the two P. multivora isolates produced significant root loss, 

twenty-five out of twenty-seven tested host species showed significant susceptibility to P. multivora. In 

previous investigations, P. multivora was found to significantly reduce the proportion of fine roots of
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Figure 2. Root dry weight after inoculation. 
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E. marginata and E. gomphocephala (Scott et al., 2012), and overall root volume E. marginata, B. 

grandis, B. littoralis, B. occidentalis, Lambertia inermis (Belhaj et al., 2018) and C. calophylla 

(Croeser et al., 2018). Five species in the current study overlap with previous experiments; E. 

gomphocephala, C. calophylla, B. littoralis, B. occidentalis and C. obesa. In the current study, 

pathogenicity was confirmed for C. calophylla, B. littoralis and B. occidentalis. Additionally, one 

isolate of P. multivora (TRH1) caused a significant reduction in root volume of C. obesa. The only 

difference was that neither of the isolates used in the current study were considered pathogenic toward 

E. gomphocephala as a reduction in root volume was not observed. However, Scott et al. (2012) also 

did not observe a reduction in root volume, they just observed a loss of fine roots.

Plant species highly susceptible to P. multivora in our experiment include many Banksia species found 

in natural bushland and forest stands of the SWWA hyperdiverse floristic region and conservation 

reserves and natural parks within the Perth urban and peri-urban regions. With probably over 200 

species in Western Australia (including sub-species and undescribed species) (Florabase, 2018) 

Banksia can be considered a genus with a primary role in the ecology and landscaping of SWWA low 

bushlands. Risk assessments of P. cinnamomi invasion in Banksia rich ecosystems like the Swan 

Coastal Plain had been conducted previously (Hill et al., 1994; Shearer and Dillon, 1996). The capacity 

of the pathogen to cause a reduction in the host’s cover and abundance in infested soils in Banksia or 

Banksia rich woodlands has been largely proven (Bishop et al., 2010; Laliberté et al., 2015), and much 

effort has been undertaken in the last two to three decades to control the damage (Dunstan et al., 2010; 

McCredie et al., 1985). However, conclusions of field reports (Barber et al., 2013; Scott et al., 2009), 

together with results from this study, where two of the seven Banksia species tested (B. seminuda and 

B. menziesii) were more susceptible to P. multivora than P. cinnamomi, suggests that the problem is 

greater than just P. cinnamomi alone. 
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The potential impact of P. multivora may also be favoured by the dry Mediterranean climate of the 

SWWA. The thick-walled oospores and its ability to sporulate within 24 h, may allow it to tolerate the 

long dry summers (Scott et al., 2012). We hypothesise that the impact of P. multivora would be 

potentially worse than P. cinnamomi due to its capability to invade calcareous soils, known to be 

suppressive for P. cinnamomi (Broadbent and Baker, 1974). Calcareous soils are common on the Swan 

Coastal plain on which the city of Perth is located, especially in the E. gomphocephala woodlands. 

Barber et al. (2013) first observed that P. multivora was more commonly isolated within Perth than P. 

cinnamomi. Further examination of isolation data has shown it is 17 times more likely to isolate P. 

multivora from dead and dying urban and peri-urban woody vegetation along the Swan Coastal Plain 

than P. cinnamomi (Barber, unpublished data).

Many of the commonly planted exotic urban street trees and garden ornamentals in Perth tested in our 

study were moderately to highly susceptible to P. multivora. This has global implications, both in other 

cities (as these are common urban trees across the world), but also from where these trees occur 

naturally or where they are grown in agricultural systems. Non-native plant species were moderately 

susceptible (A. julibrissin, Fraxinus griffithii, Magnolia grandiflora) to highly susceptible (O. 

europaea, Quercus ilex, S. smithii, T. sebifera, T. tipu) to P. multivora. Q. ilex, which showed high 

susceptibility, is common in Europe for crop production and as an ornamental plant. It is also a climax 

species in natural and semi-natural stands of Southern Europe. To date, European authors have 

concentrated their attention mostly on P. cinnamomi, as this is the most important biological hazard to 

Q. ilex woodlands (Corcobado et al., 2014, 2013; Sanchez-Hernandez et al., 2001; Vettraino et al., 

2002). Our investigation has shown that P. multivora did not differ in pathogenicity to the most known 

co-generic species P. cinnamomi, leading us to consider it as a potential additional factor in the decline 

of Q. ilex in Europe. 
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Olea europaea (olive) was also very susceptible to P. multivora confirming a recent isolation of P. 

multivora from a sample collected from declining olive growing within a park in the City of Perth. 

Tolerance to long dry periods and poor soils and its evergreen status make the olive tree an important 

ornamental plant throughout the Perth urban forest. It is cultivated across Mediterranean-type 

ecosystems world-wide, and other than its landscaping importance, the olive tree has an incisive 

financial role: the world-wide export value for oil and olive production in 2016 was estimated at US$ 

9,9 Billion (FAO, 2018). Despite no reports of P. multivora associated with olive in Europe, previous 

investigations have found olive trees to be affected by P. cryptogea, P. inundata, P. megasperma, P. 

nicotianae, P. oleae, and P. palmivora (Brasier et al., 2003; Cacciola et al., 2000; González et al., 

2017; Ruano-Rosa et al., 2018; Sanchez-Hernandez et al., 2001; Vettraino et al., 2009). Additionally, 

P. multivora is already present in the region (Pane et al., 2017). Consequently, there is a need to 

conduct comparative studies on these species and their pathogenicity including P. multivora to olive. 

Of interest, was the extremely high susceptibility found for the Chinese tallow, Triadica sebifera. This 

species, native to East Asia, is commonly used as an ornamental and street tree in Perth and throughout 

the world and it is naturalized in many other countries worldwide, including the US where it is a forest 

weed (Pile et al., 2017). Based on our results, T. sebifera could be used as a biological indicator for the 

presence of P. multivora, in particular in the natural areas of the South US where it is very abundant.

In conclusion, despite the overall stronger pathogenicity of P. cinnamomi, the capacity of P. multivora 

to cause damage on the wide range of plant species screened, provides strong evidence for it to 

represent a real ecological risk for urban forests in Perth and throughout the SWWA. Additionally, the 

susceptibility of other common woody plants found globally in cities suggests that P. multivora will, in 

time, become as ‘well-known’ and damaging as P. cinnamomi. It has been appropriately named as it 

truly seems to be the ‘eater of many’.
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