Back to BASIC in Compiler Construction

Short Paper
SACLA 2019
© The authors/SACLA

Stefan Gruner

Department of Computer Science, University of Pretoria, South
Africa

sgl@cs.up.ac.za

Abstract. This short paper offers an expe rience report about a succe ssful way of
giving an introductory comp iler con struction cou rse to 3r d-year unde rgraduate
students. Because the in-depth-presentation of compiler construction has nowadays
become rather seldom at South African universities, this short paper is intended to
serve as motivation and recipe for the topic's (re)introduction at other institutions of
tertiary education.

Keywords: Compiler Construction, 3rd-year Undergraduate, Experience Report,
Tertiary Education, Computer Science.

1 Motivation and Related Work

In bygone days there was a sharp distinction between vocational tertiary education in
‘technikons’ —which emph asised emp loyability and industry-readiness for their
students— on the one hand, and academic tertiary education at universities —which
emphasised sc ientificness or s cholarliness and which were b y- and-large free from
industrial interference— on the other hand. Recent trends in tertiary education both
nationally and in ternationally hav e in creasingly blurr ed the o 1d line of s eparation
between technikons and universities, whereby the former technikons are now striving
for higher scholarly reputation thus competing against the classical universities. The
universities are now in creasingly emphasising and advertising the employability and
industry-readiness of their students thus competing against the former technikons; like
the curricula of the former technikons, also the curricula taught at universities are now
increasingly influenced by th e commercial industry (oft en v ia ex ternal advisory
boards). Under these circumstances and a consequence of this line-blurring trend,
which is well-documented in large quantities of literature on high er education —for

Proceedings of the 48th Annual Conference of the
Southern African Computer Lecturers’ Association
(SACLA 2019),ISBN: 978-0-620-85603-4

159

only three example see [12][13][16]— some universities nowadays might feel tempted
to dilute (if not entirely abolish) a number of classical courses that are now b eing
regarded as ‘ too th eoretical’, ‘not practical enough’, or ‘not indus trially relevant’.
Whereas the classical university of bygone days confronted its students with difficult
theoretical science from day one onwards, nowadays trend is to first #7ain students in
industrially applicable skills, and to let the science follow only later at post-graduate
level. Indicative of this trend seems to be also the nowadays mushrooming usage of the
phrase “teaching and learning” (instead of lecturing and studying) in tertiary education
management j argon wh ich s eems to signif'y an ongoing schoolification of tertiary
education at universities.!

The topic ofthis short position-paper —compiler construction— cannot be separated
from those above-mentioned general trends. In South Africa, for ex- ample, only few
of the country’s tertiary education institutions offer courses on this topic at all, and also
internationally th e curricular r elevance of compiler construction h as b een d isputed
[71[11][22]. However, the diff erence b etween learning programming and s tudying
compiler construction is similar to the difference between learning how to drive a car
and s tudying automotive engineering for the s ake of ¢ ar-construction. Learning
programming and learning to drive a car are simple enough that teenagers can do that
ats econdary schoo 1b efore entering univ ersity, whereas s cience-based tertiary
education is necessary to master the challenges of compiler construction (i.e.: making
new programming languages r ather than m erely using ex isting on es) as w ell as
automotive engineering. Beheld from this perspective it should be clear that computer-
scientific topics like compiler construction ought not to vanish from tertiary computer
science curricula - though this has happened in fact from place to place. Indeed: if (as
mentioned above) alsoun iversities arenow adaysb ecomingin -creasingly
employability-skills- oriented, andifth e local IT industry m ainly wan tsj ava
programmers, then why bother ‘learning” compilers at university? Such a point of view,
however, would ignore the educational benefits of compiler construction as computer
science in a nutshell, in which the threads of many sub-topics of computer science (e.g.:
automata th eory, algorithms and data structures, principles of softw are engineering,
operating systems, artificial intelligence methods of op timisation, and the like) are
woven together [9]. In the undergraduate curriculum, compiler construction is one of
the few th eoretically solid topics by m eans of wh ich the scientific-ness of computer
science (as opposed tocompu ter engineering or softw are ° crafting’) can be
convincingly demonstrated. However, even the rather small minority of those students,
who are still coming to university with a classical scientific outlook [10], do not find it
easy to imagine a compiler’s theoretical concepts and inner workings.

17

! T still remember my chemistry teacher: “at school you learn; at university you study

160

In this short-paper report, I briefly describe gualitatively what I have done to provide
a fruitful study experience for my compiler construction students under those above-
mentioned circumstances. Thereby my pedagogical efforts were particularly aimed at
making the students intuitively see an actually running program after its compilation
— i.e.: to provide the students with some joyful personal ‘eureka!’ experiences, which
are arguably important from a pedagogical point of v iew. On-the-fly I also tried to
emphasise th e computer-scientific fou ndations of compiler construction wh erever
possible (for example: by pointing out issues of undecidability on various occasions)
with the aim of nur turing a scientific world-view also among those (many) students
who are nowadays at university just for the above-mentioned employability skills [10].
To those students I tried to advertise the b enefits of a scientific wor ld-view rather
instrumentalistically with the message: “solid science will help you to do a better job”.

Academic literature on compiler education dates back to the mid-1960s. Due to the
wide-spread standardisation of compiler construction, publications on this topic appear
in only irregular frequency and not in large numbers. In “a new approach to teaching
a first course in compiler construction” from 1976, it was recommended to replace one
large semes ter pro ject by sev eral sma ller independent m ini proj ects [18] ; I h ave
followed that route. An “emulator” approach to code generation was advocated already
in 1977 [15]; T have followed that route as well. The Student Programming Language
SPLused inmy course is sim ilar to the proj ect language of [3]. Th e (d isputed)
importance of compiler construction within th e computer s cience curr iculum was
emphasised again during the mid-1990s [2]. The topic-specific difficulties with which
compiler construction students are typically confronted are summarised in [19]: for
similar reasons the students of [4][21] w ere given a partly pr e-fabricated compiler
environment to ‘play’ with; this rather shallow educational ‘use and play’ approach,
however, isnot advocated by m e. Th e of ten-repeated op inion about compiler
construction b eing allegedly ‘ou tdated’, © too o ld-fashioned’ or © irrelevant’ for
nowadays curricula was analysed and discussed in [11] wherein also some new topics
for advanced compiler construction courses were presented. A simi lar modernisation
attempt was presented in [22] — albeit with the danger that all those “exciting” [22]
software-controlled robots might only distract the students from the scientific essentials
of the topic. In [7] the topic’s relevance question was raised, too, and yet another tool
kit in support of new approaches to compiler construction was presented. A nice and
insightful personal letter on th is topic was wr itten by the main author of th e seminal
‘dragon book’ [1]. Wh ereas the practical part of my course ends with the generation,
optimisation and v ariable-liveness an alysis of intermediate code, whereby the
generation of target machine code is merely lectured, the authors of [14] have created
a small and simp le set of pseudo machine code instructions by means of which their
students can practice also the final compiler phase of fargef code generation. However,
similar to my approach at intermediate code level, the pseudo machine code of [14] is
emulated, t00.

161

2 Experience Report

The introductory compiler construction course described in this short paper is a 3rd-
year course in on e academic half-year (semester). Two lectures took place per week
with 50 minu tes duration per lecture. Moreover, eight practicals had to be done and
demonstrated. The work-time per practical was approximately 7—10 days. No additional
recapitulation- or tutoring-lessons (outside the regular lectures) were provided to the
students, who thus had to be highly self-sufficient, self-responsible, self-motivated, and
diligent. All in all, each student implemented a fully operational compiler from scanner
(lexer) and p arser v ia s tatic seman tics an alyser (nam e-scope analysis, DECL-APL
analysis, v alue-flow an alysis and typ e- checking) to in termediate code gen eration
(translation to b asic), followed by som e in termediate code op timisation (on th e
generated basic code) as well as variable liveness analysis and variable dependency
analysis (yielding a coloured dependency graph) also on the generated basic code.

Mogensen’s book [17] prov ided the conceptual foundations, whereby the students
had rather little prior knowledge from their previous study-years 1-2 in theoretical
informatics, i.e.: au tomata theory and form al languages, gr aph th eory, se t th eory,
fixpoint theory, and the like. More advanced sub-topics of compiler construction (e.g.:
garbage collection, p arallelism, automatic typ e inf erence, compilation of obj ect-
oriented source languages with classes and sub-classes, operator overloading, dynamic
typing, dynamic scoping, and the like) could merely be mentioned cursorily within the
above-mentioned org anisational limits of this introductory course. Nonetheless, to
keep in touch with the most r ecent developments in th e field, also a short overview-
essay about obfus cating compilers (also knowna s ‘crypto-compilers’) h ad to be
written, whereby I provided the students with some initial literature references from
which they had to start with their reading-and-writing work. Five working days were
allocated to this essay task.

With r egard to the r elated work r ecapitulated above, I introduced a s elf-made
imperative procedural Student’s Programming Language (SPL) the context-free (albeit
initially ambiguous) grammar of wh ich contained m erely th e fo llowing lexical and
syntactic concepts:

— amain program, optionally followed by procedure definitions (sub-routines);

- simple input/output commands;

- named variables with preceding type declarations;

— imperative assignment s tatements w ith som e simp le arithmetic op erations on
composite terms;

- conditional statements with composite condition-terms (and optional else);

— unbound iteration statements (while with composite exit condition terms);

162

— bound iteration statements (for, with non-composite exit conditions and loop-
counter increment +1);
- call statements for the parameter-less sub-routines.

Further d etails of the gramm ar need no t be prov ided in this short report, as every
competent computer science lecturer can easily design a similar SPL. In ord er not to
overwhelm the students with programming work, the SPL sub-routines were truly old-
fashioned without any input parameters and without any return-values. Proper function
calls with input parameters and return values on a runtime stack were only discussed in
the lectures on the basis of the book [17]. Though SPL sub-routines can contain inner
(non-global) v ariables in s eparate s tatic-semantic s copes, their m ain purp ose is the
manipulation of global variables by way of side- effects. Even the nesting of inner sub-
procedures (w ith th eirowns tatic-semantic s copes) wi thin pro cedures w as a
grammatical possibility.

Following the classical phases of compiler construction, the students first had to
come up with regular expressions (RE), then non-deterministic finite automata (NFA),
then deterministic finite automata (DFA), finally minimised finite automata (MFA) for
the vo cabulary of SPL. For the above-mentioned p edagogical purposes, no lexer-
generator was allowed to be used; the students had to implement their own lexers from
their MFA although the availability of lexer- generators for professional purposes was
mentioned in the lectures. In the next phase of the project, the deliberately ambiguous
grammar of SPL had to be made non-ambiguous, and the students’ own parsers for it
had to be demonstrated. For the sake of in-depth understanding by construction, it was
again forbidden to use already available parser generators, the existence of which for
professional purpos es w as only m entioned in the lectures. Due to the d etailed
instructions in the chosen book [17] about how to build a parser, this sub-task of the
project was well done by all students in th e course. As usual, the emitted concrete
syntax tree also had to be purified to a less dense abstract syntax tree (AST) in an after-
phase of the parse procedure.

More challenging, however, was the implementation of the static semantic analysis
software in the last analytical (front-end) phase of the project. The large amounts of
AST © crawling” with all th e inherited and synth etic a ttributes n eeded for the
identification of the (nested inner) name-scopes as well as for typ e-checking, value-
flow-analysis (etc.) turned out to be prob lematic particularly for those students who
were w eak in algorithms and d ata s tructures (stud y-year 2), b ecause the chosen
compiler construction book did not go deeply enough into the details of these matters.
For pedagogical reasons (higher education) the students had to seek, find, and self-
study wh atever literature they could need for this phase. Hence, in s everal of the
software demonstration sessions, types were not always correctly checked, or nam e-
scopes w ere no t consistently s eparated from each oth er. Esp ecially in this s tatic-
semantics phase of the practical projects, several students have obtained more insight
from their mistakes and errors than from their positive achievements.

163

After the static-semantic analysis, the generative (back-end) phase of the proj ect
ended w ith the produ ction (and subs equent op timisation on the b asis of v ariable
liveness and v ariable d ependency analysis) of intermediate code; the principles of
producing hardware-specific target code from hardware-independent intermediate code
were merely lectured along the lines of [17]. This last phase of the practical project was
not too difficult for the students as the algorithmic generation of intermediate code
(from AST and static-semantic information) was well described in the chosen book.

The ancient programming language basic in its simplest non-modernised form was
chosen as the target language for th e students’ intermediate code generators. In its
oldest form, basic is a pure von-Neumann language with its notoriously “harmful” [8]
GOTO jumps to symbolic addresses. Thus all the high-level control structures (if-then-
else, while, for) with their composite logical branching conditions had to be translated
by the students’ code generators into cascades of GOTO jumps, as it would also have
been the case in genuine machine code (for sp ecific hardware) at the very end of the
code generation chain. The automatically generated basic programs were then further
optimised by some of the not-so-difficult techniques, which the chosen book described
in sufficient d etail (e.g.: common sub-expression elimination, constant propagation,
and the like). Run-time tests with carefully chosen input values were used to quick-
check whether the students’ implementations of ‘optimisations’ had actually damaged
the op erational sem antics of the un-optimised b asic programs — in s everal demo
sessions that was indeed the case. After looking at their thus-generated basic code,
many stud ents w ere astonished about its min d-boggling c ascades of GOTO jumps.
Thus the students also began to appreciate the concern of Dijkstra’s famous ‘GOTO
harmful’ letter [8] (the reading of which was an additional home- work task), and began
to understand that it is now the compiler’s function to create those low-level GOTO
jumps which the human programmer is no longer supposed to write. Because basic
emulators are now adays available on the I nternet, th e s tudents could us e thos e
emulators to see, with their own eye s, how their own SPL input programs could be
translated (if fr ee of lexical, sy ntactic and s tatic-semantic d efects) by their own
compilers to executable basic code, and how a subsequent run would proceed step by
step in the observable basic emulators.? Insofar as the elements of SPL can be easily
expressed in familiar languages like JAVA, for which well-tested compilers are already
available, the students were thus also able to conduct further comparative experiments
and observations by first re-writing an SPL program to JAV A and then seeing whether
the basic behaviour of their compiled SPL program would match the runtime behaviour
of the corresponding JAV A program. If thus, for example, a student’s scope checker in
the static-semantic analysis phase would still contain some undetected flaw, then his

2 As a minor by-product of this approach, the students also obtained some insight into the history
of programming languages and computing.

164

finally generated basic program could be expected to reveal in the online-emulator a
strangely different runtime behaviour in comparison against the runtime behaviour of
the SPL-equivalent JAVA program after its translation to byte code by a trustworthy
JAVA compiler.

All those features provided the students with fruitful study-experiences, and the pass
rate after the course’s final exam w as remarkably high. Anecdotal evidence (from
students’ v arious e-mails) seems to ind icate that th e stud ents hav e b y-and-large
appreciated my educational approach as well as the value of the knowledge obtained
from it. One student remarked explicitly that he now grasps why I had called compiler
construction computer science in a nutshell at the very beginning of the course.

3 Possible Critique and Outlook to Future Developments

In some internal discussions with several colleagues before I wrote this paper a number
of interesting questions had been asked — for example: why was it not allowed to use
already existing lexer and parser generators? Would the use of such pre-existing tools
not provide the students with the same insight as the tedious creation of their own lexers
and parsers? Indeed there are some ‘practically oriented’ books like [20] which do not
delve as deeply into the underlying theoretical concepts as we did, and [am also aware
of at least on e univ ersity in the country wh ere the topic is pr esented in such an
overview-oriented sty le. If, ho w- ever, we are willing to accept the epistemological
opinion that an engineer can fully grasp only what he can construct, then the students’
own lexers and p arsers (no m atter how simp listic) willbe of b etter engineering-
educational value than the mere inspection of th e software code of already existing
lexer- and parser- generators. By analogy: it is also not sufficient to inspect a car to
become an automotive engin eer. Why was the simp le SPL, r ather than a mod ern
language like Python, used as source language? Here my answer is: for the students in
the limited above-mentioned set-up of my course, the problems of type checking and
code-generation for obj ect-oriented source languages would h ave been too difficult.
Object-oriented type checking alone (let alone code-generation) would have required a
theoretical foundation along the lines of [6], which would have been far outside the
scope of our curriculum. As SPL in all its simplicity is already Turing-complete, it
sufficed for th e imp lementation of th e usual p edagogical ex- ample programs (like
Euclid’s GCD algorithm) from which the students were able to generate executable
target code with reasonable effort. Why was the old basic, and not a modern language
like Python used for target code? My answer is that basic is a proper von-Neumann
language, with symbolic addresses (line numbers) and GOTO jumps like in genuine
machine code, which is at the same time observably executable in a number of freely
available interpreters and emulators. Python, with all its high-level features, is no such
von-Neumann language and is thus far away from r esembling machine code in any
form. W ith th e av ailable basic interpreters, the s tudents w ere able to emp irically
observe the runs of their self-translated SPL programs in the basic interpreter line by

165

line. For all the above-mentioned reasons I hope that this short experience re- port can
serve bo th as a motivation and as ar ecipe for the (r e)introduction of compiler
construction at other institutions of higher education anywhere in the world. With the
recent growth in new hig h-level sp ecial-purpose-languages (like sp ecification- or
modelling languages for software engineers), or the r ecent em ergence of crypto-
computers for which code-obfuscating compilers (also known as crypto-compilers) are
needed, the topic of compiler construction might soon get rid of its (prejudiced) smell
of the old-fashioned and might come b ack into the center even of I T-commercial
interests.

Acknowledgements. Thanks to my stud ents who prov ided comments on the
educational qu ality of my compiler construction course. Th anks to B. Watson, D.
Watson [20], as well as T. Mogensen [17] for interesting conversations on this topic.
Thanks also to P. Breuer for his valuable hints to the growing r esearch on crypto-
compilers [5]. Last but not least thanks to the anonymous reviewers of SACLA2019
for their critical and helpful comments on th e draft of this short paper prior to its
publication.

References

1. Aho, A.V.: Teaching the Compilers Course. ACM SIGCSE Bull. 40(4), 6-8 (2008)

2. Aiken, A. Cool: a Portable Project for Teaching Compiler Construction. ACM SIGPLAN
Not. 31(7), 19-24 (1996)

3. Appelbe, B.: Teaching Compiler Development. In: Proc. SIGCSE’79 10th ACM SIGCSE
Techn. Symp. on Comp. Sc. Educ., pp. 23-27 (1979)

4. Baldwin, D.: A Compiler for Teaching about Compilers. In: Proc. SIGCSE’03 34th
ACM SIGCSE Techn. Symp. on Comp. Sc. Educ., pp. 220-223 (2003)

5. Breuer, P.T. : Comp iled Obfuscation fo r Data S tructures in Encrypted Computing,
arXiv:1902.06146; Compiling for Encrypted Computing: Obfuscation but Not in Name,
arXiv:1902.06146, (2019)

6. Bruce, K.B.: Foundations of Object-Oriented Languages: Types and Semantics.

MIT Press (2002)

7. Demaille, A., Levillain, R., Perrot, B.: A Set of Tools to Teach Compiler Construc- tion. In:
Proc. ITiCSE’08 13th Ann. ACM Conf. on Innov. and Techn. in Comp. Sc. Educ., pp. 68-
72 (2008)

8. Dijkstra, E.-W.: Go To Statement Considered Harmful. Comm. ACM 11(3), 147-

148 (1968)

9. Griswold, W.G.: Teaching Software Engineering in a Compiler Project Course. J.

Educ. Resour. Comput. 2(4), paper #3 (2002)

166

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

Gruner, S.: On the Future of Computer Science in South Africa: A Survey amongst Students
at University. In: Proc. SA CLA‘15 44th Ann. Conf. of the Southern Afric. Comp. Lect.
Assoc., pp. 215-219, (2015)

Henry, T.R.: Teaching Compiler Construction using a Domain Specific Language.

In: Proc. SIGCSE’05 36th ACM SIGCSE Techn. Symp. on Comp. Sc. Educ., pp.

7-11 (2005)

Kruss, G., V isser, M. : Put ting University-Industry Interaction into Pe rspective: A
Differentiated Vew from Inside South African Universities. Journ. Technol. Transf.

42(4), 884-908 (2017)

Maharasoa, M., Hay, D.: Higher Education and Graduate Employment in South

Africa. Quality in Higher Educ. 7(2), 139-147 (2001)

Mahoney, W., Pedersen, J.: Teaching Compiler Code Generation: Simpler is Better.

ACM SIGCSE Bull. 41(4), 30-34 (2010)

Martin, D.: An Emulator used to Teach Compiler Design. In: Proc. 15th Ann.

ACM Southeast Regional Conf., pp. 1-10 (1977)

McKenna, S., Powell, P.: ‘Only a Name Change’: The Move from Technikon to
University of Technology. Journ. Indep. Teaching and Learn. 4(1), 37-48 (2009)
Mogensen, T.Z&: Introduction to Compiler Design. 2nd ed., Springer (2017)

Shapiro, H.D., Mickunas, M.D.: ANew Approach to Teaching a First Course in Compiler
Construction. In: Proc. SIGCSE’76 ACM SIGCSE-SIGCUE Techn. Symp. on Comp. Sc.
Educ., pp. 158-166 (1976)

Vegdahl, R.: Using Visualization Tools to Teach Compiler Design. In: Proc.
CCSC’00 14th Ann. Consortium on Small Colleges Southeastern Conf., pp. 72-

83, Consortium for Comp. Sc. in Colleges (2000)

Watson, D.: A Practical Approach to Compiler Construction. Springer (2017)

White, E., Sen, R., Stewart, N.: Hide and Show: Using Real Compiler Code for Teaching.
In: Proc. SIGCSE’05 36th ACM SIGCSE Techn. Symp. on Comp. Sc. Educ., pp. 12-16

(2005)

Xu, L., Martin, F.G.: Chirp on Crickets: Teaching Compilers using an Embed- ded Robot
Controller. In: Proc. SIGCSE’06 37th ACM SIGCSE Techn. Symp. on Comp. Sc. Educ.,
pp. 82-86 (2006)

