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Abstract

Recently, Ross [14] derived a theorem, namely the “Recovery Theorem”, that allows
for the recovery of the pricing kernel and real-world asset distribution, under particular
assumptions, from a forward-looking risk neutral distribution. However, recovering the
real-world distribution involves solving two ill-posed problems. In this paper, we intro-
duce and test the accuracy of a regularised multivariate mixture distribution to recover
the real-world distribution. In addition, we show that this method improves the esti-
mation accuracy of the real-world distribution. Furthermore, we carry out an empirical
study, using weekly South African Top40 option trade data, to show that the recovered
distribution is in line with economic theory.

Key words: Ross recovery theorem, Real-world probabilities, Regularisation, Multivari-
ate Markov chain with a regularisation term;

1 Introduction

Asset distributions are vitally important to solve financial problems in risk management,
portfolio optimisation and optimal trading strategies. A commonly used approach to forecast
returns is to use historical data or opinion polling to estimate asset distributions. However,
financial markets are quite volatile, and using historical distributions for forecasting are not
always desirable. An alternative forecasting method is to extract the forward-looking risk-
neutral distribution from the option market data. It is well known that option prices convey
some market risk forecast as payoffs extend out in time. Therefore, option prices are, by
nature, forward-looking. In a complete market, Black and Scholes [4] and Merton [13] proved
that the value of an option is independent of the expected return on the underlying asset.
This gave rise to the risk-neutral valuation framework, where the only unknown parameter
affecting the option price is the assets’ underlying volatility, or commonly referred to as
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the implied volatility. Furthermore, Breeden and Litzenberger [6] showed that the forward-
looking risk-neutral distribution can be derived by option prices under the assumption of
complete markets. However, the risk-neutral distribution mostly differs from the real-world
distribution, which expresses market participants’ consensus. In short, under the risk-neutral
measure, the expected return of the asset is the risk-free rate, since the risk-neutral measure
is the real measure with the risk premium removed.

While financial institutions have long used implied volatilities to gauge the market’s per-
ception of risk, option prices have been elusive to predict the real-world distribution. Recently,
Ross [14] published a remarkable theorem that recovers the real-world probability distribution
and pricing kernel from option prices under a particular set of assumptions. For example,
one of the assumptions is that markets are complete. This is rarely true in any exchange
traded option dataset, especially in South Africa, where the option price data is sparse and
noisy. To satisfy this assumption, it is necessary to extrapolate forward-looking option price
data (see, e.g., [1, 2, 12, 8]). More specifically, Flint and Maré [8] used a deterministic SVI
volatility model with a robust fitting algorithm to estimate volatility surfaces, which proved
to be a promising method to estimate the forward-looking risk-neutral distribution.

It is well known that the risk-neutral probability measure is extensively used in derivative
pricing, however, knowledge of the pricing kernel and real-world distribution will be invaluable
for investors regrading risk management, portfolio optimisation and investment strategies. In
short, the recovery theorem differs from other approaches in that it adjusts the risk-neutral
distribution to a real-world distribution and does not rely on historical returns.

The empirical problem with the recovery theorem is that it is difficult to recover an
accurate real-world distribution (see, e.g., [2, 3, 16]), as it involves solving two ill-posed
problems. The first ill-posed problem involves finding the risk-neutral distribution by taking
the second derivative of the option pricing function and the second involves calculating the
transition matrix that captures the dynamics of the state prices. In this paper, we will focus
on the second ill-posed problem by implementing a regularised multivariate Markov chain
in an attempt to stabilise the estimation of the real-world transition distribution matrix. In
addition, we will conduct a numerical analysis and a robustness check to show the effectiveness
of this method. Thereafter, we will apply the recovery theorem to weekly Top40 option trade
data, traded on the South African Futures Exchange (SAFEX), to estimate the real-world
distribution. In addition, we compare the first four moments of the real-world distribution to
the risk-neutral distribution.

2 The Recovery Theorem

In this section, we start by reviewing the recovery theorem [14]. For simplicity, we adopt some
of the notation and terminology used in Ross [14]. Intuitively, he attempts to recover the
real-world transition probabilities of a Markovian state variable S that determines aggregate
consumption, using market derivative prices on S. The derivation of the recovery theorem
requires the following assumptions: (i) Transition state prices, pi,j , need to be strictly positive,
(ii) the transition state prices follow a time homogeneous process, and (iii) the corresponding
pricing kernel, ψi,j , is transition independent.

Consider a time-homogeneous process {St}t≥0 on a finite state space with n states. Since,
calendar time is irrelevant, the transition probability moving from state i at time t to state j
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at time t+ 1 is given by:

Pi,j = P (St+1 = j|St = i), ∀t = 1, . . . ,m− 1, (2.1)

where P denotes a n × n, one period ahead, irreducible transition matrix. If the rows of P
sum to one, then we say P is a stochastic matrix; however, for the recovery theorem, P is
sub-stochastic as it captures the dynamics of the discounted risk-neutral distribution, i.e.,
state prices. Therefore, the elements, pi,j , of the transition matrix denote the value of an
Arrow-Debreu security contract that pays one unit of the numeraire if a particular state is
reached in the next time step and zero otherwise. But, by normalising the rows of P to sum
to unity, we define a n× n transition risk-neutral probability matrix Q, with elements:

qi,j =
pi,j
n∑
k=1

pi,k

, ∀i, j = 1, 2, . . . , n. (2.2)

The transition kernel, ψ, in Ross’s framework is defined as the ratio price per unit of proba-
bility, i.e.,

ψi,j =
pi,j
fi,j

, (2.3)

where fi,j is the real-world probabilities. Intuitively, one needs to solve two unknown quan-
tities in (2.3) in order to recover the real-world probabilities. In order to do this, Ross [14]
assumes that the kernel is transition independent. This assumption allows us to write the
pricing kernel as

ψij = δ
h(Sj)

h(Si)
, (2.4)

where h is a positive function of states and δ a positive discount factor. Substituting (2.3) in
(2.4) yields

pij = δ
h(Sj)

h(Si)
fij . (2.5)

Rewriting the state equations (2.5) in matrix form, we have

P = δD−1FD, (2.6)

where P is the n×n transition probability matrix, F is the n×n real-world transition matrix,
and D is the n× n diagonal matrix with the undiscounted kernel, i.e.,

D = diag(h(S1), h(S2), . . . , h(Sn)). (2.7)

Solving for F in (2.6) yields

F =
1

δ
DPD−1. (2.8)

Since F is a matrix whose rows are transition probabilities, i.e., a stochastic matrix, we have
F1 = 1, where 1 is a vector of ones. Using this condition, with (2.8), we have

PD−11 = δD−11. (2.9)

If we define the vector z ≡ D−11, we obtain

Pz = δz. (2.10)
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If one assumes no arbitrage, then P is a non-negative matrix. Note that, if P is a positive
matrix, then by definition, P is irreducible. However, if P is non-negative and all states are
attainable from all other states in k steps, then P is also irreducible. Then from the Perron-
Frobenius theorem there exists a unique positive eigenvector z and an associated maximum
eigenvalue δ. Intuitively, Ross [14] solves all three unknowns in (2.6) using the Perron-
Frobenius Theorem. The following theorem guarantees a unique solution of this problem.

Theorem 2.1 (Recovery Theorem, Ross [14]). Assuming no arbitrage, irreducibility of the
pricing matrix P , and that the pricing matrix is generated by a transition independent kernel,
then given any set of state prices there exists a unique positive solution pair: the pricing kernel
and real-world measure.

In short, the recovery theorem allows us to uniquely find F from P . Knowledge of the
real-world distribution will be of great benefit to financial practitioners. Although, many of
the assumptions in the recovery theorem are violated in real life, Audrino et al. [2] and Flint
and Maré [8] showed by empirical studies that the real-world distribution obtained from the
recovery theorem added economic value.

3 Implementation of the Ross Recovery Theorem

In this section, we describe the three step procedure, outlined in Spears [16], for implementing
the recovery theorem.

Step 1: Use the method proposed by Breeden and Litzenberger [6] to construct a n ×m state
price matrix, S, by taking the second derivative with respect to the strike of a European
call option at each tenor, i.e.,

S(K, t) =
∂2c(K, t)

∂K2
, (3.1)

where c(K, t) is the current price of an European call option with strike, K, and tenor,
t. Numerically approximating (3.1) yields the forward-looking state price function. In
reality, a continuum of traded strikes is not directly observed in the markets. This is the
first ill-posed problem. However, a wide range of state price estimation techniques can
be found in the literature (see, e.g., [1, 8, 12]). More specifically, Flint and Maré [8] used
the stochastic volatility inspired (SVI) Model to model the implied volatility surface,
and thus, the state price surface. Furthermore, they showed that the deterministic SVI
model is a promising candidate for modelling implied volatility surfaces and ultimately
estimating the underlying risk-neutral distribution. The SVI model was first introduced
by Gatheral [9] and is given by

σ2(x, t) = a+ b
(
ρ(x−m) +

√
(x−m)2 + s2

)
, (3.2)

where x = ln
(
K
F

)
is the log-forward-moneyness, and the coefficients a, b, ρ, s, and m

depend on the expiration and have an intuitive geometric interpretation. Furthermore,
the parametrisation of the SVI model makes it relative easy to eliminate calendar spread
arbitrage, making the SVI model desirable [10]. In Figure 3.1, we display an example of
the implied volatility surface obtained by using the SVI model, where we can see that
the SVI model provides a good interpolation of implied volatility.
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Figure 3.1: Implied volatility for the South African Top40 index on 15 January 2018: The
mesh (bottom right) represent the quoted implied volatilities across maturity and strikes
and the surface (bottom left) represents the implied volatilities across maturities and strikes
using the SVI model. The top figure represents the overlay of the quoted and fitted implied
volatilities.

After the implied volatility skews are calibrated, we can calculate the call option prices,
using the Black-Scholes formula, across the full strike range for each term of the extrap-
olated implied volatility skews. Thereafter, using (3.1) we estimate the forward state
price matrix. In Figure 3.2, we give an example of the forward state price matrix, using
the extrapolated implied volatilities.
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Figure 3.2: State Prices for the South African Top40 index on 15 January 2018.

Step 2: Construct a n×n state transition probability matrix, P . Unfortunately, P is not directly
observed, since a rich forward market for options does not exist. However, Ross [14]
shows that if m ≥ n, we can estimate P , since it specifies a time-homogeneous transition
from one maturity to the next, as follows:

S>:,t+1 = S>:,tP, t = 1, 2, . . . ,m− 1. (3.3)

If we denote A = S>:,1:m−1 and B = S>:,2:m, then (3.3) can be rewritten as an ordinary
least squares (OLS) problem, as follows:

P = arg min
P

‖AP −B‖22 (3.4)

subject to s:,1 = pi0,: (3.5)

pi,j ≥ 0 (i, j = 1, . . . , n), (3.6)

where ‖ · ‖2 denotes the Euclidean norm. Since S:,1 is the one period ahead state price
and P is a one period state transition matrix, we have by definition a constraint (3.5),
where i0 is the current state (normally defined at the centre of the transition matrix
P , i.e., i0 = (n + 1)/2). In theory, equation (3.4) can easily be solved with standard
optimisation techniques. Therefore, we numerically implement the OLS problem to
derive the transition pricing matrix P .

Step 3: Using the Perron-Frobenius theorem, i.e., (2.10), we can extract a unique positive eigen-
vector, z, and eigenvalue, δ. Thereafter, the elements of F can be calculated using (2.8).

The accuracy of the estimation of the real-world distribution, using the recovery theorem,
largely depends on how accurately the transition matrix, P , is estimated. In the literature, it
has proven to be difficult to accurately estimate (3.4) and furthermore to replicate the results
indicated in Ross [14]. The reason for this, is that it involves solving the second ill-posed
problem, where A is ill-conditioned (i.e., a small change in one of the coefficient values in A,
results in a large relative change in the solution values), which renders active-set optimisation
methods that are dependent on A>A infeasible, as in this case. This can be seen in Audrino
et al. [2], Kiriu and Hibiki [11], and Spears [16] suggesting that Ross [14] placed significant
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constraints on the structure of the transition matrix. In an attempt to replicate the results in
Ross [14], Spears [16] implemented nine optimisation methods for solving (3.4). Furthermore,
Sanford [15] proposed a mixture transition distribution, where the proposed states depend
on the current state price and its option implied volatilities to stabilise the estimation of P .
More specifically, Sanford [15] simplifies the original specification of the multivariate model
by assuming that contingent state prices are solely defined by the state levels, but conditioned
on the volatility. That is,

S>:,t+1 = S>:,tP + σ
(IV)
t β, t = 1, 2, . . . ,m− 1, (3.7)

where σ
(IV)
t is the implied volatility state at time t as it is the best representation of the

market’s future volatility state and β is the volatility transition matrix. Furthermore, Sanford
[15] shows that the multivariate method had a significant improvement on the univariate
recovery theorem as the volatility acts as a proxy for economical uncertainty. Similarly,
equation (3.7) can be reduced to the following general optimisation problem:

P = arg min
P,β

∥∥∥AP + σ
(IV)
t β −B

∥∥∥2

2
, ∀t = 1, 2, . . . ,m− 1 (3.8)

subject to (3.5), (3.6) andβ ≥ 0. (3.9)

In theory, the multivariate model gives a third dimension in the Markov chain. Intuitively,
more variables could be added to the regression model. However, this will come at a compu-
tational cost and the more variables added to the regression equation, will result in too few
degrees of freedom to consider the resulting state price matrix, P , reliable.

An alternative method of stabilising the estimation of P is by adding a regularisation
parameter to the estimation process. This has proven to be a successful method in the studies
conducted by Audrino et al. [2] and Kiriu and Hibiki [11]. Therefore, this paper contributes
in two ways. Firstly, we compare the multivariate method with the regularised methods
(this has not been done to our knowledge) and secondly, due to the success of the regularised
methods in the literature, we extend the multivariate method by adding a regularisation term.

3.1 Ridge Regularisation Methods

An effective method in stabilising the estimation of the transition matrix, P , is to introduce
a regularisation term. The use of a regularisation term to solve ill-posed problems was first
introduced by Tikhonov [17]. The Tikhonov method is a standard regularisation method used
in the literature to solve ill-posed problems.

3.1.1 Tikhonov Regularisation without Prior Information

In this section, we review two regularisation methods to estimate P , found in the literature,
and extend the multivariate method by adding a regularisation term. Audrino et al. [2] first
introduced the implementation of the Tikhonov regularisation (ridge regression) method in
estimating P in the recovery theorem, by the following constrained optimisation problem:

P = arg min
P

‖AP −B‖22 + ζ ‖P‖22 (3.10)

subject to (3.5) and (3.6), (3.11)
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where ζ is a regularisation parameter that controls the trade-off between fitting and stability.
The selection method of ζ is paramount in finding an accurate solution. Therefore, Audrino et
al. [2] proposed that an optimal ζ can be determined by minimising the discrepancy between
the observable state price matrix (SO) and the unrolled state price matrix (SP ) implied by
matrix P , i.e.,

SP
>

:,t = ι>i0P
t, t = 1, 2, . . . ,m, (3.12)

where ιi0 denotes a vector with 1 in the ith0 position and zeros elsewhere, and P t denotes the t-
steps ahead state approximation. Furthermore, they use the Kullback-Lieber (KL) divergency
as a measure of discrepancy between the two matrices, by solving ζ that minimises:

arg min
ζ

DKL

(
SO||SP

)
, (3.13)

where

DKL

(
SO||SP

)
=

n∑
i=1

m∑
t=1

SOi,t ln

(
SOi,t

SPi,t

)
−

n∑
i=1

m∑
t=1

SOi,t +
n∑
i=1

m∑
t=1

SPi,t, (3.14)

and the optimal ζ is derived iteratively.
Note that equation (3.10) can be we rewritten as a constraint OLS problem as follows [2]:

P = arg min
P≥0

∥∥∥∥[ A√
ζI

]
P −

[
B
O

]∥∥∥∥2

2

, (3.15)

where I denotes an identity matrix and O is a vector of zeros. In an empirical study using daily
closing prices of out-of-the-money call and put options on the S&P 500 for each Wednesday
between 5 January 2000 and 26 December 2012, Audrino et al. [2] showed that the Thikonov
regularisation drastically improved the stability of the estimation of the transition matrix and
showed that there is economic value in the recovered distributions.

In the next section, Kiriu and Hibiki [11] extended the estimation of P by using the
Tikhonov regularisation method with prior information.

3.1.2 Tikhonov Regularisation with Prior Information

The second regularisation method we review in this study was introduced by Kiriu and Hibiki
[11], where they extended the regularisation term above to consider prior information. For
the prior information, P̄ , they suggest that pi,j should be similar to pi+k,j+k for all k ≤
min(n − i, n − j). Furthermore, they estimated P , using a problem specific error function
in an attempt to balance the relative gain in the objective function from each term in the
regularised optimisation problem, as follows:

P = arg min
P≥0

‖AP −B‖22 + ζ
∥∥P − P̄∥∥2

2
(3.16)

= arg min
P≥0

yfit(ζ) + ζyreg(ζ) (3.17)

subject to (3.5) and (3.6), (3.18)
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where

P̄ =



i0∑
k=1

sk,1 si0+1,1 · · · sn−1,1 sn,1 0 · · · 0 0

...
... · · ·

...
...

... · · ·
...

...
2∑

k=1

sk,1 s3,1 · · · si0,1 si0+1,1 si0+2,1 · · · sn,1 0

s1,1 s2,1 · · · si0−1,1 si0,1 si0+1,1 · · · sn−1,1 sn,1

0 s1,1 · · · si0−2,1 si0−1,1 si0,1 · · · sn−2,1

n∑
k=n−1

sk,1

...
... · · ·

...
...

... · · ·
...

...

0 0 · · · 0 s1,1 s2,1 · · · si0−1,1

n∑
k=i0

sk,1



, (3.19)

yfit(ζ) represents the fitting error and yreg(ζ) represents the deviation between P and P̄ .
Furthermore, Kiriu and Hibiki [11] showed that as ζ increases, yfit decreases and yreg increases
monotonically. Therefore, they selected ζ by minimising the problem specific function:

h(ζ) =
yfit(ζ)− yfit(0)

yfit(∞)− yfit(0)
+
yreg(ζ)− yreg(∞)

yreg(0)− yreg(∞)
, (3.20)

where the denominators represents the maximum spread in each term and the numerator
represents the spread for a specified ζ value.

In addition, Kiriu and Hibiki [11] compared the effectiveness of this selection method with
(3.14), where they found that (3.20) yielded better results. Therefore, for the remainder of
this study, we will use (3.20) as the selection method for ζ. Equation (3.16) can also be
formulated as an OLS problem, as follows [11]:

P = arg min
P≥0

∥∥∥∥[ A√
ζI

]
P −

[
B√
ζP̄

]∥∥∥∥2

2

. (3.21)

In a simulated study, Kiriu and Hibiki [11] showed that their method estimated the real-
world distribution more accurately than the Tikhonov method proposed by Audrino et al.
[2]. Furthermore, in a similar empirical study to Audrino et al. [2], Flint and Maré [8]
implemented the regularisation method with prior information to extract the real-world dis-
tribution on a history of implied volatility surfaces for the South African Top40 index, where
they showed that the recovered real-world moments are in line with economic rationale and
showed promising results when used in a simple asset allocation framework.

Since the regularisation methods have proven to be a powerful method in estimating the
real-world distribution in the recovery theorem, we extend the multivariate method to a
regularised multivariate method in the next section.

3.1.3 The Multivariate Model with a Tikhonov Regularisation

Later, we will show that the addition of the regularisation term in the estimation procedure
improves the estimation of P and ultimately F (see also, e.g., [2, 11]). Therefore, we extend
the multivariate Markov chain proposed by Sanford [15] to a regularised multivariate Markov
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chain by adding the regularisation parameter as follows:

P = arg min
P,β

∥∥∥AP + σ
(IV)
t β −B

∥∥∥2

2
+ ζ‖P‖22, ∀t = 1, 2, . . . ,m− 1 (3.22)

subject to (3.5), (3.6) andβ ≥ 0. (3.23)

Furthermore, we also extend the optimisation problem above, with the regularisation of prior
information, as such,

P = arg min
P,β

∥∥∥AP + σ
(IV)
t β −B

∥∥∥2

2
+ ζ‖P − P̄‖22, ∀t = 1, 2, . . . ,m− 1 (3.24)

subject to (3.5), (3.6) andβ ≥ 0, (3.25)

where P̄ is given in (3.19). We found that the regularised method with prior information
performed better than the regularised method without prior information. Therefore, we will
only consider (3.24) in the remainder of this paper.

3.2 Elastic Net Regularisation Method

Elastic net is a regression regularisation method used in statistics, that linearly combines the
L1 and L2 penalties of the lasso and ridge methods. The (L1) penalty achieves sparsity in
the model by setting the irrelevant regression coefficient equal to zero and the (L2) penalty
achieves robustness in the model. Therefore the optimisation problem becomes:

P = arg min
P≥0

‖AP −B‖22 + ζ ‖P‖22 + λ‖P‖1 (3.26)

subject to (3.5) and (3.6), (3.27)

where the estimation is carried out in a two-stage procedure as follows: for each fixed ζ, it
finds the ridge regression coefficients and then does a lasso shrinkage along the lasso coefficient
path [18]. Furthermore, Zou and Hastie [18] refer to this as the näıve elastic net criterion,
since it appears to amount to double shrinkage, where it was found that the näıve elastic net
regularisation method does not preform well, unless it is close to ridge or lasso. In our study,
we find that λ is small indicating that it is close to ridge. However, to improve the prediction
performance, Zou and Hastie [18] rescale the coefficients of the näıve version of elastic net
by multiplying the estimated coefficients by (1 + λ2). Next, we add the prior information to
(3.26), yielding

P = arg min
P≥0

‖AP −B‖22 + ζ
∥∥P − P̄∥∥2

2
+ λ‖P‖1 (3.28)

subject to (3.5) and (3.6). (3.29)

The elastic net with prior information yielded better results than without the prior informa-
tion. Therefore, for the remainder of this study, we will only show the results for the elastic
nets with prior information.

In the next section, we compare the estimation methods discussed above by estimating the
real-world distribution, where we will show that the regularised multivariate method gives a
better estimate than the methods reviewed by conducting a similar simulation study to Kiriu
and Hibiki [11].
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4 Comparison of Methods

In this section, we compare the accuracy of the estimation of P , using the methods discussed
in Section 3. We will follow the same estimation accuracy procedure and robust check outlined
in Kiriu and Hibiki [11] as follows:

1. Firstly, a hypothetical real-world matrix (FH) is obtained from the historical daily
S&P 500 index price data. More specifically, we set 11 returns (states) in total, placed
every 6% symmetrically around 0%. FH is generated by setting a reference date and
calculating 12 returns every 30 calendar days, where the S&P 500 returns are calculated
as follows:

Return = log

(
ST
S0

)
· 100%.

A matrix is generated by calculating the number of state transitions of the return in one
period. This is repeated daily by changing the reference date from 02 January 1986 to
30 December 2016. Thereafter, all matrices are summed up and divided by the summed
matrix row total, giving an 11× 11 probability matrix (see Figure 4.1).

0
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-0.2 -0.2

-0.4 -0.4

Figure 4.1: FH

Secondly, the pricing kernel matrix (ΦH) is obtained by assuming that the investor has
a CRRA utility function, U(c) = c1−γR/(1− γR), with relative risk aversion γR, i.e.,

φi,j = δ

(
1 + rj
1 + ri

)−γR
∀i, j = 1, . . . , n, (4.1)

where γR = 3 and δ = 0.999. These parameters were chosen to be consistent with
the parameters reported in Bliss and Panigirtzoglou [5], where they estimated the risk
aversion parameter, γ, implied in the S&P 500 option data and historical option price
data from 1993 to 2010, to have a minimum risk aversion parameter value to be 3.37
and a maximum value of 9.52. The maximum parameter value will be used in the robust
check in the Section 4.2.

2. A hypothetical transition state price matrix PH (see Figure 4.2) is calculated backward
from the matrices FH and ΦH , i.e.,

PH = ΦHFH . (4.2)
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3. A hypothetical current state price matrix SH (see Figure 4.3) is calculated backward
from the matrix PH , i.e.,

SH:,j+1 =
(
SH:,j
)>
PH , ∀j = 1, . . . ,m, (4.3)

where SH:,1 = PHi0,:.
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Figure 4.3: SH

4. White noise is added to SH to obtain SN , as follows:

SNi,j = SHi,j(1 + ei,j), ∀i, j = 1, 2, . . . , n, (4.4)

where ei,j ∼ N(0, σ).

5. Estimate PN from SN , using (3.4), (3.8), (3.15), (3.21), (3.24) and (3.28). In the case
of the multivariate estimation methods, we will use a flat implied volatility, σ(IV), of
10%. We note that more accurate results could be achieved by modelling the behaviour
of volatility and incorporating a forward-looking volatility structure than only looking
at a flat or current volatility.
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6. FN is derived by applying the recovery theorem for each of the estimated matrices PN .

7. The closer the estimated real-world distribution matrix FN is to FH , the more accurate
the estimation process is.

Next, in order to measure how close the two distributions are we use the Kullback-Leibler
Divergence test.

4.1 Kullback-Leibler Divergence

Intuitively, we would like to measure how close we can get back to FH using SN . Therefore,
we will follow the same estimation accuracy method outlined in Kiriu and Hibiki [11], namely,
the Kullback-Leibler (KL) divergence test. The KL divergence test measures the difference
between two distributions and is given as follows:

DKL

(
FN |FH

)
=

n∑
i=1

n∑
j=1

fNi,j ln

(
fNi,j

fHi,j

)
. (4.5)

Obviously, when the estimated distribution and true distribution are exactly the same, the
DKL will equal zero. In Figure 4.4, we show the log-log plots of the KL divergence at current
state and at full state for five estimation methods discussed in this study for the regularisation
parameter, ζ = 10−8, 10−0.75, . . . , 101.75, 102 and σ = 5%. In addition, we also show the KL
divergence for the risk-neutral distribution (RND). The RND, Q, is the distribution obtained
when using PH in (2.2). Note that this is the best possible estimate for the RND as PH

is used. Therefore, obtaining a KL divergence less than the KL divergence for the RND
will indicate that the estimation of the real-world distribution is more beneficial than the
RND. For the current state (see Figure 4.4a), we found that both the basic method and the
multivariate method provided a worse estimate of the real-world distribution than the RND.
However, this is not the case for the estimation methods with the regularisation term (see
Figure 4.4a). The regularisation methods clearly outperform the non-regularised methods,
where the multivariate regularisation method, proposed in this paper, yielded the smallest KL
divergence at current state. Similarly, the two regularisation methods with prior information
clearly yield a lower KL divergence at full state compared with the basic, multivariate, and
Tikhonov regularisation methods without prior information. However, the RND yielded the
lowest KL divergence at full state (see Figure 4.4b).
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Figure 4.4: KL divergence of the real-world transition matrix.

In Figure 4.5, we show that h(ζ) is a smooth and continuous function, where a minimum
value can easily be estimated, making it an appealing selection function.
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Figure 4.5: Optimisation of hk.

Next, we examine the effectiveness of the estimation methods and the selection criteria
when the regularisation term is added by carrying out 1000 Monte Carlo simulations. In Table
1, we show that the expected KL divergence and standard error for the 1000 Monte Carlo
simulations for the current state, i.e., the ith0 row vector of matrix F . More specifically, E(KL)
represents the expected KL divergence, E(KLminhk) represents the expected KL divergence,
where h(ζ) is a minimum, and E(minKL) represents the minimum KL divergence across
all ζ. We can see that the RND provides a better estimation, with a lower KL divergence,
than the basic and multivariate estimation methods (as seen in Figure 4.4a). This is a direct
consequence of the ill-posed problem, when solving (3.4). The regularised methods clearly
outperformed the RND, basic, and multivariate methods, indicating the strength of adding
the regularising term when solving ill-posed problems. More specifically, the multivariate
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regularised method and the elastic net method, proposed in this paper, yielded the best
results with the lowest expected KL divergence. In all cases the standard errors are small
indicating the estimation methods provide stable estimates. However, it must be noted that
the elastic net method is significantly more computationally expensive than the other methods
discussed in this study.

Method σ = 5% σ = 10%

RND E(KL) 0.0119 0.0119

Basic E(KL) 0.1931 0.2155
(3.4) SE 0.0067 0.0073

Multivariate E(KL) 0.5908 0.7702
(3.8) SE 0.0038 0.0168

E(KLminhk) 0.0335 (0.5378) 0.0344 (0.4674)
Regularised SE 0.0002 (0.0049) 0.0004 (0.0046)

(3.15) E(minKL) 0.0101 (0.0256) 0.0165 (0.0640)
SE 0.0002 (0.0020) 0.0003 (0.0028)

Regularised E(KLminhk) 0.0124 (0.0179) 0.0494 (0.0154)
with Prior SE 0.0003 (0.0007) 0.0017 (0.0006)

Information E(minKL) 0.0061 (5.9265) 0.0111 (41.3819)
(3.21) SE 0.0001 (0.7453) 0.0001 (1.5536)

Multivariate E(KLminhk) 0.0082 (0.0156) 0.0532 (0.0253)
Regularised with SE 0.0005 (0.0002) 0.0051 (0.0005)
Prior Information E(minKL) 0.0034 (0.0747) 0.0072 (6.7491)

(3.24) SE 0.0001 (0.0020) 0.0002 (0.7843)

Elastic Net E(minKL) 0.0031 (0.0178) 0.0062 (0.0562)
(3.26) SE 0.0001 (0.0000) 0.0001 (0.0000)

∗ζ displayed in parenthesis

Table 1: KL divergence at current state matrix.

Similarly, in Table 2 we show that the expected KL divergence and standard error for the
entire F matrix. We see that the multivariate method yields a smaller KL divergence than the
basic and regularised method proposed by Audrino et al. [2]. However, the methods that are
regularised with prior information still yielded the lowest KL divergence, with the multivariate
regularised method yielding the lowest expected KL divergence, where h(ζ) is a minimum.
Furthermore, the elastic net method yielded the lowest KL divergence across all regularisation
parameters. However, the elastic net method is substantially more computationally expensive
than the multivariate regularised method and, therefore, will not be studied any further in
this paper.
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Method σ = 5% σ = 10%

RND E(KL) 0.1779 0.1779

Basic E(KL) 43.7850 58.3776
(3.4) SE 0.2718 0.3417

Multivariate E(KL) 10.3142 10.8718
(3.8) SE 0.0136 0.0580

E(KLminhk) 18.9698 (0.5378) 18.6056 (0.4674)
Regularised SE 0.0229 (0.0049) 0.0268 (0.0046)

(3.15) E(minKL) 11.3012 (0.0055) 12.5754 (0.0162)
SE 0.0270 (0.0002) 0.0308 (0.0005)

Regularised E(KLminhk) 2.3659 (0.0179) 3.7873 (0.0154)
with Prior SE 0.0236 (0.0007) 0.0582 (0.0006)

Information E(minKL) 0.6828 (75.5576) 0.7064 (65.1735)
(3.21) SE 0.0010 (1.1127) 0.0022 (1.2155)

Multivariate E(KLminhk) 2.2282 (0.0156) 3.6187 (0.0253)
Regularised with SE 0.0190 (0.0002) 0.0564 (0.0005)
Prior Information E(minKL) 0.6853 (87.3217) 0.7130 (87.2990)

(3.24) SE 0.0010 (0.6783) 0.0021 (0.6926)

Elastic Net E(minKL) 0.6567 (49.7875) 0.6758 (54.0514)
(3.26) SE 0.0010 (0.9809) 0.0020 (1.2007)

∗ζ displayed in parenthesis

Table 2: KL divergence at Full state matrix.

It is evident from the above that the multivariate regularised method introduced in this
paper improved the estimation of the real-world distribution. It must also be noted that the
further the row, in the state transition matrix, is from the current state’s row (i.e., normally
defined as the middle row), the more difficult it is to determine, but also the less influential
it is on the real-world distribution (see [3]). Therefore, the transition from the current state
is of greater interest in this study as we are mostly interested in how the asset would change
over one period given today’s state. In the next section, we conduct a robust check.

4.2 Robust Check

In this section, we conduct a robust check by using different hypothetical data obtained from
the real-world distribution used above [11]. More specifically, Figures 4.6a-4.6b shows the
KL divergence where δ = 0.995, Figures 4.6c-4.6d shows the results for a large risk aversion
parameter, namely, γ = 10 and lastly Figures 4.6e-4.6f shows the KL divergence using the
CARA utility function, i.e.,

φi,j = δe−γ(rj−ri), i, j = 1, . . . , n (4.6)

with γ = 3, instead of CRRA utility function. The results obtained in Figure 4.6 shows that
the multivariate regularised method, proposed in this paper, yields a robust estimate of the
real-world distribution. Furthermore, we carry out the robust check on the South African
Top40 index, where we obtained similar results (see Figures 4.6g-4.6h).
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(a) current state: δ = 0.995

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2

Regularisation Parameter log
10

 ( )

-1

-0.5

0

0.5

1

1.5

2

lo
g

10
 (

K
L 

D
iv

er
ge

nc
e)

KL-Divergence for One Sample (Full State Matrix)

RND
Basic
Tikhonov Regularisation
Tikhonov Regularisation with Prior Information
Multivariate
Multivariate Regularisation with Prior Information

(b) full state: δ = 0.995
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(c) current state: γR = 10
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(d) full state: γR = 10
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(e) current state: CARA utility
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(f) full state: CARA utility
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(g) current state: Top40
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Figure 4.6: KL divergence: Robust Test.
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We note that other norms, such as, ‖ · ‖1 and ‖ · ‖∞ could be used to estimate P more
accurately. Chvátal [7] asserts that when estimating linear function, ‖ · ‖1 gives the most
robust answer, ‖ · ‖∞, avoids gross discrepancies with the data, and if the errors are known
to be normally distributed then ‖ · ‖2 is the best choice. However, in our analysis, we found
that the Euclidean norm yielded the most accurate and stable results. In the next section,
we conduct an empirical study.

5 Empirical Results

In this section, we compare some distributional properties of the risk-neutral and real-world
distributions by using the weekly Top40 option trade data, traded on the South African Fu-
tures Exchange (SAFEX). We start by using weekly arbitrage-free implied volatility surfaces
to estimate the risk-neutral distribution over the period 5 September 2005 - 15 January 2018.
Furthermore, we used the SVI model to interpolate over the fixed domain ψ ∈ [0.5, 1.5], where
ψ is defined as the spot moneyness (i.e., ψ = K/S0) and T ∈ [1, 12] as outlined in Flint and
Maré [8]. The evolution of the weekly one-month percentiles and mean of the risk-neutral
distribution is shown in Figure 5.1.
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Figure 5.1: Weekly one-month percentiles of the risk-neutral Top40 distributions, 05 Sep 2005
- 15 Jan 2018.

As expected the risk-neutral distribution widened over the global financial crisis (2008-
2009) and has since narrowed considerably. Next, we estimated the transition probability
matrix, P , using the methods proposed by Kiriu and Hibiki [11] and the regularised mul-
tivariate method with prior information. Thereafter, we applied the recovery theorem. In
Figure 5.2, we show how the risk-neutral and recovered real-world distributions widened
during the financial crises (03 November 2008) compared to the risk-neutral and real-world
distributions after the financial crisis (15 January 2018).
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Figure 5.2: Risk-neutral and real-world distributions.

In Figure 5.3, we show the evolution over time of the weekly one-month first four moments.
We see that the expected returns of the two real-world distributions are mostly above the risk-
neutral distributions expected returns, except during the financial crisis. The volatility has
steadily decreased since the global financial crisis (a peak of approximately 17% down to 4%).
In addition, the real-world distribution obtained by using the regularised multivariate Markov
chain with prior information showed a lower volatility than the distributions obtained using
the univariate regularised method with prior information and risk-neutral (which showed sim-
ilar volatility). This is somewhat expected, since controlling the volatility in the multivariate
regression model provided us with a better sense of future economical uncertainty (see, e.g.,
[15]). The skewness for the risk-neutral distribution became less negative during the financial
crisis along with a drop in kurtosis. The skewness has since reverted to a skewness around
-0.5 along with an increase in kurtosis. In addition, the weekly skewness coefficients for the
real-world distributions showed sharp spikes (became positively skewed) in 2012 and 2016.
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Figure 5.3: Top40 weekly one-month moments.
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In Table 3, we show the mean and volatility for the Top40 index with the first four moments
of the risk-neutral and real-world distributions. The recovered moments estimated from
option prices clearly provides insight above the risk-neutral moments. Furthermore, we found
that the recovered kurtosis of the real-world distribution using the Tikhonov regularisation
method with prior information was considerably more volatile over time than the multivariate
regularisation method with prior information and the RND.

Mean Volatility

Top40 Returns∗ 28.87% 20.20%

Risk-Neutral Distribution
Expected Return∗ 4.07% 2.20%
Volatility on Return∗ 22.38% 7.34%
Skewness -0.59 0.32
Kurtosis 6.89 3.67

Real-World Distribution: Tikhonov Regularisation with Prior Information
Expected Return∗ 13.17% 11.09%
Volatility on Return∗ 22.32% 6.98%
Skewness -0.23 0.54
Kurtosis 10.49 8.08

Real-World Distribution: Multivariate Regularisation with Prior Information
Expected Return∗ 15.05% 14.19%
Volatility on Return∗ 20.62% 7.18%
Skewness -0.58 0.46
Kurtosis 4.87 3.32
∗Values are annualised

Table 3: Top40 weekly one-month moments.

The predictive information obtained using the recovery theorem along with real-world
data surely yielded some insight into the markets subjective probabilities. However, the true
practicality and usefulness of the model remains elusive in the literature.

6 Conclusion

The recovery theorem is a remarkable theorem that allows us to estimate the real-world
distribution from the risk-neutral distribution. However, the implementation of the recovery
theorem requires the solution of two ill-posed problems. The first is estimating the state
price matrix by calculating the second partial derivative of the option price with respect to
the strike. This is especially problematic in noisy and sparse markets. Flint and Maré [8]
proposed an algorithm for this first ill-posed problem. The second entails the estimation of
the transition price matrix that captures the state price dynamics. Audrino et al. [2] and
Kiriu and Hibiki [11] used a regularisation technique to obtain a stable transition matrix. In
addition, Audrino et al. [2] and Flint and Maré [8] showed by empirical work that there is
information contained in the recovered distributions. In this study, we investigated several
estimation methods to accurately estimate the transition price matrix. The accuracy of
the estimated transition matrix has a significant impact on the estimation of the real-world
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distribution implied from option prices using the Ross recovery theorem. In addition, we
presented a regularised multivariate Markov chain with prior information to estimate the
transition matrix. This is a first attempt to regularize the multivariate Markov chain for
the recovery theorem. In our analysis, we found that the regularised multivariate Markov
chain method improved upon the estimation of the real-world distribution. Furthermore, we
conducted an empirical study using weekly South African Top40 option trade data to estimate
the risk-neutral and real-world distributions.
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