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ABSTRACT. In this note we prove the existence and uniqueness of local maximal
smooth solution of the stochastic simplified Ericksen-Leslie systems modelling the
dynamics of nematic liquid crystals under stochastic perturbations.

1. Introduction. Liquid crystal, which is a state of matter that has properties be-
tween amorphous liquid and crystalline solid can be classified into two groups ac-
cording to the form of their molecules. Liquid crystals with rod-shaped molecules
are called calamitics while those with disc-like molecules are referred to discotics.
In its turn, the calamitics can be divided into two phases: nematic and smectic.
The nematic phase, referred to as nematic liquid crystal, is the simplest of liquid
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crystal phases. Nematic liquid crystals tend to align along a particular direction
denoted by a unit vector d, called the optical director axis. Most of the interesting
phenomenology of nematic liquid crystals are linked to the geometry and dynam-
ics of this director. We refer to [10] and [15] for a comprehensive treatment of the
physics of liquid crystals.

To model the hydrodynamics of nematic liquid crystals, most scientists use the
continuum theory developed by Ericksen [17] and Leslie [33]. From this theory,
F. Lin and C. Liu [34] derived the most basic and simplest form of the dynamical
system describing the motion of nematic liquid crystals flowing in Rdpd “ 2, 3q.
This system is given by

vt ` pv ¨∇qv´ ∆v`∇p “ ´λ∇ ¨ p∇dd∇dq, (1.1a)

∇ ¨ v “ 0, (1.1b)

dt ` pv ¨∇qd “ γp∆d` |∇d|2dq, (1.1c)

|d|2 “ 1. (1.1d)

Here p : Rd Ñ R, v : Rd Ñ Rd and d : Rd Ñ R3 represent the pressure, velocity
of the fluid and the optical director, respectively. The symbol ∇dd∇d stands for
a square dˆ d-matrix with entries given by

r∇dd∇dsi,j “
3
ÿ

k“1

Bdk

Bxi

Bdk

Bxj
, for any i, j “ 1, . . . , d.

Since the work of Lin and Liu [34], the Ginzburg-Landau system (1.1) itself, the
approximation of the Ginzburg-Landau system, in which the term |d|2d is replaced
by ´ 1

ε

2
p|d|2 ´ 1qd where ε ą 0, and its several generalizations, have been the

subjects of intensive mathematical studies. We refer, among others, to [2, 9, 11,
19, 24, 34, 35, 37, 39, 40, 50] for results obtained prior to 2013, and to [14, 18, 22,
26, 27, 28, 38, 49, 51, 52] for results obtained after 2014. For a detailed review of
the literature about the mathematical theory of nematic liquid crystals and other
related models, we recommend the review articles [36, 12] and the recent paper
[23].

In this paper we consider the following system of stochastic partial differential
equations (SPDEs)

dv`
„

pv ¨∇qv´ ∆v`∇p


dt “
„

´∇ ¨ p∇dd∇dq


dt`Qpvq dW in O ˆ p0, Ts

(1.2a)

∇ ¨ v “ 0 in O ˆ r0, Ts, (1.2b)
ż

O
vpt, xqdx “ 0 for all t P r0, Ts (1.2c)

Btd` pv ¨∇qd “ ∆d` |∇d|2d` pdˆ hq ˝ dη in O ˆ p0, Ts (1.2d)

|d|2 “ 1 in O ˆ r0, Ts. (1.2e)

vp0, ¨q “ v0 and dp0, ¨q “ d0 in O , (1.2f)
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where we denote by O the d-dimensional torus r´π, πsd, d “ 2, 3, the mapping
h : Rd Ñ R3 is a given function, W a cylindrical Wiener process evolving on
a separable Hilbert space K1, η is a one-dimensional standard Brownian motion,
and Q is a nonlinear map satisfying several conditions specified later on.

Throughout this paper we assume that v, d, p, as well as h are 2π-periodic in
the following sense:

upx` 2πeiq “ upxq, u P tv, d, p, hu, x P Rd, i P t1, . . . , du, (1.3)

where tei, i “ 1, . . . , du is the canonical basis of Rd. In what follows, when we
refer to problem (1.2), we refer to the system of equations (1.2) with the boundary
condition given in (1.3).

The system of SPDEs (1.2) describes the dynamics of nematic liquid crystal with
a stochastic perturbation. Our investigation is motivated by the need for a mathe-
matical analysis of the effect of the stochastic external perturbation on the dynam-
ics of nematic liquid crystals. While the role of noise on the dynamics of d has
been the subject of numerous theoretical and experimental studies in physics, see,
for instance, [29, 45, 46], in which it is found that the time needed by the system to
leave an unstable state diminishes in the presence of fluctuating magnetic fields,
there are almost no rigorous mathematical results in his direction of research. The
works [29, 45, 46] and the mathematical paper we cited earlier neglected either the
effect of the velocity v or the stochastic external perturbation, although, de Gennes
and Prost [15] noted that v plays an essential role in the dynamics of d. It is this
gap in knowledge that is the motivation for our mathematical study. The current
authors established in [7] some existence, uniqueness and a maximum principle re-
sults for the stochastic version of a Ginzburg-Landau approximation of the system
(1.2) without the sphere condition (1.2e).

In this paper we study the local resolvability of problem (1.2). Our result can
be summarized as follows. Given a number α ą d

2 and a square integrable Hα
sol ˆ

Hα`1-valued random variable pv0, d0q we can find a stopping time τ̃8 which can
be approximated by an increasing sequence of stopping times pτmqmPN and a unique
local stochastic process pv, dq “ pvptq, dptqq, 0 ď t ă τ̃8 satisfying the following
conditions

1. τ̃8 ą 0 with positive probability,
2. pvp¨ ^ τmq, dp¨ ^ τmqq P Cpr0, Ts; Hα

sol ˆHα`1q X L2p0, T; Hα`1 ˆHα`2q for
any m P N, with probability 1;

3. and for all t P p0, Ts and m P N we have P-a.s. |dpt^ τm, xq| “ 1 for all x P O ,
4. the process pv, dq “ pvptq, dptqq, 0 ď t ă τ̃8 is a unique local solution to

problem (1.2), see Definitions 3.3 and 3.4.

Moreover, we established probabilistic lower bounds on the lifespan τ̃8 of the local
maximal solution.

These results extend to the stochastic case the local existence and uniqueness
results for (1.1) obtained for the deterministic model by Wang et al. in [50]. Our
proof consists of two steps. In the first one, we apply earlier results obtained in
[7] to prove the existence and uniqueness of a maximal local solution satisfying
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the mild form of equations (1.2a)-(1.2d). In the second one, we prove that when
properly localised the local solution preserves the sphere condition (1.2e).

The structure of the paper is as follows. In section 2 we present the main nota-
tion and standing assumptions we will be using in the whole paper. In section 3,
we introduce the concept of a solution and state our main results. The proof of the
main theorems are given in section 4 and section 5.

2. Functional spaces and hypotheses. We begin by introducing the necessary def-
initions of functional spaces frequently used in this work. We denote by O the d-
dimensional torus d “ 2, 3. Functions defined on O will be frequently identified
with functions defined on the set r´π, πsd satisfying appropriate to their regularity
periodic boundary conditions, for example, (1.3).

Throughout this paper we denote by LppOq and Wm,ppOq, p P r1,8s, m P N,
the Lebesgue and Sobolev spaces of real valued functions defined on O , see e.g.
the monograph [48] by Temam (compare [3]). The corresponding spaces of Rd(or
some cases R3)-valued functions, will be denoted by the black-board fonts, e.g. the
space LppO , Rdqwill be denoted by LppOq.

For non-integer r ą 0 the Sobolev spaces Hr,ppOq and Hr,ppOq are defined by
using the complex interpolation method. We will also use the notation HrpOq :“
Wr,2pOq. We simply skip the symbol of the torus O , when there is no risk of am-
biguity. For instance we will write Lp, resp. Lp of Wm,p instead of LppOq, resp.
LppOq or Wm,ppOq.

Given two Banach spaces K and H, we denote by L pK, Hq the space of bounded
linear operators. For two Hilbert space K and H we denote by L2pK, Hq the Hilbert
space of all Hilbert-Schmidt operators from K to H. For K “ H we just write L pKq
instead of L pK, Kq.

Following [48] we also introduce the following spaces

L2
0 “

"

u P L2pO , Rdq :
ż

O
upxqdx “ 0

*

,

H “

"

u P L2
0 : div u “ 0

*

,

Hr
sol “HXHr, r P p0,8q, V “ H1

sol.

In the above formula, the divergence is understood in the weak sense. Note that
H0

sol “ H.
In (1.2), it is convenient to eliminate the pressure p by applying the Helmholtz-

Leray projector operator Π : L2 Ñ H which projects into divergence free vec-
tors and annihilates gradients. One of the remarkable properties of Π is that
Π P L pHr, Hr

solq, r ą 0, see [4]. We will frequently use this property without
further notice.

Next, we define the Stokes operator, denoted by A, which is an unbounded
linear operator on H, as follows.

"

DpAq :“ H2
sol

Au :“ ´Π∆u, u P DpAq.
(2.1)
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It is well known that A is a strictly positive self-adjoint operator in H and that
DpA1{2q “ V. It is also true that A is a strictly positive self-adjoint operator in
every space Hr

sol, r ą 0.
We will also need a version of the Laplace operator acting on R3-valued func-

tions defined on O , i.e.
"

DpA2q :“ H2pO , R3q,
A2u :“ ´∆u, u P DpA2q.

(2.2)

It is well known that A2 is a non-negative self-adjoint operator in L2pO , R3q. It is
also true that A2 is a non-negative self-adjoint operator in every space HrpO , R3q,
r ą 0.

It is well-known that ´A (resp. ´A2) is the infinitesimal generator analytic
C0-semigroup of contractions on H, resp. L2pO , R3q. These semigroups will be
denoted by tSptq : t ě 0u and tTptq : t ě 0u. Moreover, for s1 ą s there exists a
constant M (depending on the difference s1 ´ s and p) such that we have (compare
Lemma 1.2 in the Kato-Ponce’s paper [31])

}Sptq}
L pHs

sol;H
s1
solq
ď Mp1` t´ps

1´sq{2q, t ą 0, (2.3)

and
}Tptq}L pHs ;Hs1 q

ď Mp1` t´ps
1´sq{2q, t ą 0. (2.4)

Let us note the following inequality involving fractional Sobolev norms.

} f g}Hs ď c0p} f }L8}g}Hs ` } f }Hs}g}L8q, f , g P L8 XHs. (2.5)

Now let α ą d{2. For any u, v P Hα
sol and d, m P Hα`1, where now Hα`1 “

Hα`1pO , R3q, we set

Bpu, vq “ Πpu ¨∇vq, (2.6)

Mpd, mq “ ´Πp∇ ¨ p∇dd∇mqq, (2.7)

B̃pv, dq “ v ¨∇d. (2.8)

Later on, we will state and prove few crucial properties of these nonlinear maps.

Let us fix d P Hα`1 and set

Gphq “ hˆ d, h P Hα`1. (2.9)

It is easy to see that G P L pHα`1q. Let us note that the map G2, also an element of
L pHα`1q, is of the following form

G2pdq “ G ˝ Gpdq “ pdˆ hq ˆ h.

Let pΩ,F , Pq be a complete probability space equipped with a filtration F “ tFt :
t ě 0u satisfying the usual condition. Let W̃ “ pW̃ptqqtě0 be a cylindrical Wiener
process evolving on a separable Hilbert space K1 such that it is formally written as
a series

W̃ptq “
8
ÿ

k“1

w̃kptqϕk, @t ě 0,



6 ZDZISŁAW BRZEŹNIAK, ERIKA HAUSENBLAS AND PAUL A. RAZAFIMANDIMBY

where pw̃kptqqkPN,tě0 is a family of i.i.d. standard Brownian motions and tϕk; k P
Nu is an orthonormal basis of K1. The above series does not converge in K1, but it
does converges in a separable Hilbert space K̃1 such that the embedding K1 Ă K̃1
is Hilbert-Schmidt. It is well-known also that W̃ has a modification, still denoted
by W, whose trajectories are continuous K̃1-valued functions. Let η be a standard
one dimensional Brownian motion and h be a smooth vector fields.

We now introduce the assumption on the coefficient Q of the noise.

Assumptions 1. We fix α ą d{2 and we assume that

Q : Hα
sol Ñ L2pK1, Hα

solq

is a globally Lipschitz map. In particular, there exists `0 ě 0 such that

‖Qpuq‖2
L2pK1,Hα

solq
ď `0p1` ‖u‖2

Hα
sol
q, for any u P Hα

sol.

Hereafter we set

Hα “Hα´1
sol ˆHα,

Vα “Hα
sol ˆHα`1,

Eα “Hα`1
sol ˆHα`2.

(2.10)

The stochastic equations for nematic liquid crystal (1.2) can be rewritten as a sto-
chastic evolution equation in the space Hα:

dyptq `Ayptqdt` Fpyptqqdt` Lpyptqqdt “ GpyptqqdWptq, t ě 0, (2.11)

where, for y “ pv, dq P Eα and k “ pk1, k2q P K :“ K1 ˆR, we have

Ay “
ˆ

Av
A2d

˙

, Fpyq “
ˆ

Bpv, vq `Mpdq
B̃pv, dq ` |∇d|2d

˙

, (2.12)

Lpyq “
ˆ

0
´ 1

2 G2pdq

˙

, Gpyqk “
ˆ

Qpuqk1
Gpdqk2

˙

. (2.13)

The process W is a cylindrical Wiener process on K such that for any t ě 0

Wptq “
ˆ

W̃ptq
ηptq

˙

, t ě 0.

3. Existence and uniqueness of local maximal solution. We first recall several
definitions and concepts which are given in the following notations/definitions
and are borrowed from [5] or [32].

Definition 3.1. (compare [32, p. 45]) For a probability space pΩ,F , Pqwith a given
right-continuous filtration F “

`

Ft
˘

tě0, a stopping time τ is called accessible iff
there exists an increasing sequence of stopping times τn such that a.s. τn ă τ and
limnÑ8 τn “ τ.

Notation. For a stopping time τ we set

Ωtpτq :“ tω P Ω : t ă τpωqu,

r0, τq ˆΩ :“ tpt, ωq P r0,8qˆΩ : 0 ď t ă τpωqu.
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Definition 3.2. If X is a topological space, then an X-valued process η : r0, τq ˆ

Ω Ñ X, is admissible iff
(i) it is adapted, i.e. η|Ωtpτq : Ωtpτq Ñ X is Ft measurable, for any t ě 0;
(ii) for almost all ω P Ω, the function r0, τpωqq Q t ÞÑ ηpt, ωq P X is continuous.

We will also use for an admissible process η : r0, τqˆΩ Ñ X the notation tηptq, t ă
τu or pη, τq.

A process η : r0, τq ˆΩ Ñ X is progressively measurable iff for any t ą 0 the
map

r0, t^ τq ˆΩ Q ps, ωq ÞÑ ηps, ωq P X
is Bt^τ ˆFt^τ measurable.
Two processes ηi : r0, τiq ˆΩ Ñ X, i “ 1, 2 are called equivalent, iff τ1 “ τ2 a.s.
and for any t ą 0 the following holds

η1p¨, ωq “ η2p¨, ωq on r0, ts for a.a. ω P Ωtpτ1q XΩtpτ2q.

We will use for two equivalent processes η1 and η2 the notation pη1, τ1q „ pη2, τ2q)

Note that if processes ηi : r0, τiq ˆΩ Ñ X, i “ 1, 2 are admissible and for any
t ą 0 η1ptq|Ωtpτ1q

“ η2ptq|Ωtpτ2q
a.s. then they are equivalent.

We now define some concepts of solution to (2.11), see [8, Def. 4.2] or [41, Def.
2.1].

Definition 3.3. Let y0 be a Vα-valued F0–measurable random variable such that
E}y0}

2
Vα
ă 8. A local mild solution to problem (2.11) with initial condition yp0q “

y0 is a pair py, τq such that
1. τ is an accessible F-stopping time,
2. y : r0, τq ˆΩ Ñ Vα is an admissible process,
3. there exists an approximating sequence pτmqmPN of finite F-stopping times

such that τm Õ τ a.s. and, for every m P N and t ě 0, we have

E
´

sup
sPr0,t^τms

}ypsq}2Vα
`

ż t^τm

0
}ypsq}2Eα

ds
¯

ă 8, (3.1)

ypt^ τmq “ Spt^ τmqy0 ´

ż t^τm

0
Spt^ τm ´ sqrFpypsqq ` Lpypsqs ds (3.2)

`

ż t^τm

0
Spt^ τm ´ sqGpypsqq dWpsq in Hα P-a.s.

4. The stopped processes dp¨ ^ τmq, m P N, satisfies: for all t P r0, Ts, m P N ,
P-a.s.

|dpt^ τm, x, ωq|2 “ 1, (3.3)

for all x P O .

We also introduce the notion of maximal local solution and its lifespan.

Definition 3.4. Let us denote the family of all local mild solution pu, τq to the prob-
lem (2.11) by LS . For two elements pu, τq, pv, σq P LS we write pu, τq ĺ pv, σq, iff
τ ď σ a.s. and v|r0,τqˆΩ „ u. We write pu, τq ă pv, σq, iff pu, τq ĺ pv, σq and τ ă σ
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with positive probability. If there exists a maximal element pu, τq in the set pLS , ĺq

is called a maximal local mild solution to the problem (2.11). If pu, τq is a maximal
local mild solution to equation (2.11), the stopping time τ is called its lifetime.

Remark 3.5. ˝ Note that if pu, τq ĺ pv, σq and pv, σq ĺ pu, τq, then pu, τq „ pv, σq.
˝ The pair pLS , ĺq is a partially ordered set in which, according to the Elworthy’s
Amalgamation Lemma, see [16, Lemmata III 6A and 6B], every non-empty chain
has a least upper bound.

Having defined our solution concept, we can now state and prove the existence
of a maximal local solution for our model. We also give a lower estimate and a
characterisation of the local solution’s lifespan.

Theorem 3.6. Let d P t2, 3u, α ą d{2, h P Hα`1. If Assumption 1 is satisfied, then
for all F0-measurable and square integrable Hα

sol ˆHα`1-valued random variables y0 “

pv0, d0q the problem (2.11) for the stochastic liquid crystals has a unique local maximal
strong solution ppv; dq, τ̃8q satisfying the following properties:

1. given R ą 0 and ε ą 0 there exists τpε, Rq ą 0, such that for every F0-measurable
Hα

sol ˆHα`1-valued random variable pv0, d0q satisfying E}pv0, d0q}
2
HαˆHα`1 ď

R2, one has

P
`

τ̃8 ě τpε, Rq
˘

ě 1´ ε.

2. We also have

P
´

tτ̃8 ă 8uX t‖pv, dq‖Cpr0,Ts;Hα
solˆHα`1q ă 8u

¯

“ 0, (3.4)

lim sup
tÕτ̃8

‖vptq‖Hα
sol
` ‖dptq‖Hα`1 “ 8 a.s. on tτ̃8 ă 8u. (3.5)

We will show in the next theorem that the local solution from Theorem 3.6 sat-
isfies (1.2e).

Theorem 3.7. Assume that all the assumption of Theorem 3.6 are satisfied. Let y0 “

pv0, d0q P Vα such that |d0pω, xq|2 “ 1 for all ω P Ω and all x P O . Let py; τq “

ppv, dq; τq be a local solution to (2.11) and pτmqmPN an increasing sequence of stopping
times approximating τ. Then, for all t P p0, Ts P-a.s. |dpt^ τm, x, ωq|2 “ 1 for all x P O .

Remark 3.8. We suspect that, if d P t2, 3u, α ą d{2, then under reasonable assump-
tions about the noise, there exists a local maximal solution for every initial data
y0 “ pv0, d0q P Hα´1

sol ˆHα. We also suspect that the existence of a local solution
is mainly due to the mathematical analysis. We limited ourselves to the analysis
of local solution as we were not able to derive proper estimates yielding global
existence. We, however, have the conjecture that under smallness condition on
the initial data one should be able to prove global existence of solution; this is the
case for the deterministic model, see [50]. These questions will be investigated in
subsequent papers.

The proofs of these two theorems are given in sections 4 and 5, respectively.
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4. Proof of Theorem 3.6. In order to prove the results in Theorem 3.6 we will
use the general results proved in [7, Theorem 5.15 and 5.16]. For this purpose we
establish several crucial estimates for the nonlinear terms in (1.2) in the following
lemmata.

Lemma 4.1. Assume that α ą d{2. Then, there exist δ P r0, 1q and C ą 0 such that for
any u P Hα

sol, v P Hα`1
sol and d, m P Hα`1

‖Bpu, vq‖Hα´1 ď C
´

‖u‖L8‖v‖Hα ` ‖u‖Hα´1‖v‖δ
Hα`1‖v‖1´δ

Hα

¯

, (4.1)

‖B̃pv, dq‖Hα ď C‖v‖Hα‖d‖Hα`1 , (4.2)

‖Mpd, mq‖Hα´1 ď C‖d‖Hα`1‖m‖Hα`1 . (4.3)

Proof of Lemma 4.1. Let u P Hα
sol, v P Hα`1

sol and d, m P Hα`1. In what follows we
will denote by C various generic constants not depending neither on u, v, d nor m.
By the inequality (2.5), we get

‖u ¨∇v‖Hα´1 ď C p‖u‖L8‖∇v‖Hα´1 ` ‖u‖Hα´1‖∇v‖L8q ,

Since α ą d{2, one can find a positive constant δ P p0, 1q such that α´ δ ą d{2. Thus,
by the Sobolev embedding Hα´δ Ă L8 and the Gagliardo-Nirenberg inequality
we have

‖∇g‖L8 ď C‖∇g‖Hα´δď C‖∇g‖1´δ
Hα´1‖∇g‖δ

Hα , (4.4)

from which we infer that

‖u ¨∇v‖Hα´1 ď C
´

‖u‖L8‖v‖Hα ` ‖u‖Hα´1‖v‖δ
Hα`1‖v‖1´δ

Hα
sol

¯

.

The first estimate in our lemma easily follows from this last line and the fact that
(as we are on the torus) the Leray-Helmhotz projection operator Π belongs to
L pHα´1, Hα´1

sol q.
We now prove the second estimate. As α ą d{2, Hα

sol is an algebra and we can
easily infer that

‖v ¨∇d‖Hα
sol
ď ‖v‖Hα‖d‖Hα`1 ,

from which the second estimate in our lemma easily follows.
Now we deal with third estimate where the nonlinear map M is involved. Since

Π P L pHα´1
sol qwe get

‖Mpd, mq‖Hα´1 ďC‖∇dd∇m‖Hα
sol

.

Using an argument similar to the proof of (4.2) yields (4.3).

We will also need the following lemma.

Lemma 4.2. Let α ą d{2. Then, there exists a constant C ą 0 such that for any d, m P

Hα`1

‖|∇d|2d´ |∇m|2m‖Hα ď C‖d´m‖Hα`1r‖d‖Hα`1 ` ‖m‖Hα`1s‖d‖Hα

`C‖m‖2
Hα`1‖d´m‖Hα

sol

(4.5)
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Proof of Lemma 4.2. Let us fix d, m P Hα`1. Again, since Hα is an algebra, we easily
deduce from the inequality

‖|∇d|2d´ |∇m|2m‖Hα ď ‖rp|∇d|´|∇m|qp|∇d|` |∇m|qsd‖Hα
sol
` ‖|∇m|2pd´mq‖Hα

sol
,

the inequality (4.5).

We now are ready to embark on the promised proof of Theorem 3.6.

Proof of Theorem 3.6. Since the maps M, B and B̃ are bilinear, we infer from the
Lemmata 4.1 and 4.2 that the nonlinear term F defined in (2.12) satisfies the fol-
lowing property: There exist two constants δ P p0, 1q and C ą 0 such that for any
y1, y2 P Eα we have

‖Fpy1q ´ Fpy2q‖Hα ďC‖y1 ´ y2‖Vα

˜

‖y1‖1´δ
Vα

‖y2‖δ
Eα
`

2
ÿ

k“1

”

‖y1‖k
Vα
` ‖y2‖k

Vα

ı

¸

` C‖y1 ´ y2‖1´δ
Vα

‖y1 ´ y2‖δ
Eα
‖y2‖Vα .

(4.6)

From the definition 2.9 of the map G and the assumption on h it follows that
L P L pHα

sol ˆHα`1q from which, along with (4.6), we infer that F ` L satisfies
Assumption 2 of Theorem A.1 ( see also [7, Assumption 5.1]).

Because of Assumption 1 and the fact that G P L pHα`1q it is clear that G satis-
fies Assumption 3 of Theorem A.1.

Now, let XT be the Banach space

XT :“ Cpr0, Ts; Vαq X L2p0, T; Eαq (4.7)

with the norm defined by

|u|2XT
“ sup

sPr0,Ts
}upsq}2Vα

`

ż T

0
|upsq|2Eα

ds. (4.8)

It is know from [43, Lemma 1.2] or [31, Lemma 1.5] that the linear map S˚ :
L2p0, T; Hαq Ñ XT defined by

pS ˚ f qp ¨ q “
ż ¨

0
Sp ¨ ´ sq f psqds, f P L2p0, T; Hαq,

is bounded.
It is also know, see [43, Lemma 1.4] or [44, Chapitre2, Lemma 2.1], that the linear

map S˛ : M2p0, T; L2pK, Vαqq Ñ M2pXTq defined by

pS ˛ gqp ¨ q “
ż ¨

0
Sp ¨ ´ sqgpsqdWpsq, g P M2p0, T; L2pK, Vαqq,

is also bounded.
From the observations above, Assumption 1 and the assumption on the initial

data y0 we infer that the problem (2.11) satisfies all the assumptions of Theorems
A.1 and A.2 ( see also [7, Theorem 5.15 and 5.16]) from which we easily complete
the proof of the Theorem 3.6.
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5. Proof of Theorem 3.7. In this section we give the proof of the sphere constraint.

Proof of Theorem 3.7. The proof will be divided into two steps.
Let ϕ : R Ñ r´1, 0s be a C8 class increasing function such that

ϕpsq “

#

´1 iff s P p´8,´2s,

0 iff s P r´1,`8q.
(5.1)

Let tϕ̃` : ` P Nu and tφ̃` : ` P Nu be two sequences of function R defined by

ϕ̃`paq “ϕp`aq, a P R, (5.2)

φ̃`paq “a2 ϕp`aq, a P R. (5.3)

We also set

ϕ`pdq “ϕ̃`p|d|2 ´ 1q, d P R3, (5.4)

φ`pdq “φ̃`p|d|2 ´ 1q, d P R3. (5.5)

Now, let α ą d
2 be a fixed number. For each ` P N we define a function

Ψ` : Hα Ñ R

Ψ`pdq “ ‖φ` ˝ d‖L1 “

ż

O
p|dpxq|2 ´ 1q2rϕ`pdpxqqsdx, d P Hα.

(5.6)

One can show that since Hα Ă L8 (as α ą d
2 ), the map Ψ` is twice (Fréchet)

differentiable1 and its first and second derivatives satisfy, for d P Hα and k, f P Hα,

Ψ1`pdqpkq “4
ż

O

´

|dpxq|2 ´ 1qϕ`pdpxqqrdpxq ¨ kpxqs
¯

dx

` 2`
ż

O
p|dpxq|2 ´ 1q2 ϕ1p`p|dpxq|2 ´ 1qqpdpxq ¨ kpxqqdx,

(5.7)

and

Ψ2` pdqpk, fq “ 4`2
ż

O

”

p|dpxq|2 ´ 1q2 ϕ2` p`p|dpxq|
2 ´ 1qqpdpxq ¨ kpxqqpdpxq ¨ fpxqq

ı

dx

`16`
ż

O

”

p|dpxq|2 ´ 1qϕ1p`p|dpxq|2 ´ 1qqpdpxq ¨ kpxqqpdpxq ¨ fpxqq
ı

dx

`8
ż

O

„

ϕ`pdpxqqpdpxq ¨ kpxqqpdpxq ¨ fpxqq


dx

`2`
ż

O

”

|dpxq|2 ´ 1q2 ϕ1p`p|dpxq|2 ´ 1qqpkpxq ¨ fpxq
ı

dx

`4
ż

O

”

ϕ`pdpxqqp|dpxq|2 ´ 1qpkpxq ¨ fpxqq
ı

dx.

(5.8)

In particular, if d P Hα and k, f P Hα are such that

kpxq K dpxq and fpxq K dpxq for all x P O ,

1One might think that since Φ` is well defined on the space H1, it would also be twice differentiable
in H1. However, for this to hold, we need to restrict it to the space Hα for α ą d

2 as in this case
Hα Ă L8. This is fact related to the properties of Nemytski maps, see the papers by the first named
authour [5] and [8].
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then
Ψ1`pdqpkq “ 0, (5.9)

and

Ψ2` pdqpk, fq “4
ż

O

”

p|dpxq|2 ´ 1qϕ`pdpxqqpkpxq ¨ fpxqq
ı

dx

` 2`
ż

O

”

p|dpxq|2 ´ 1q2 ϕ1p`p|dpxq|2 ´ 1qqpkpxq ¨ fpxqq
ı

dx.

(5.10)

Since the local solution d given by Theorem 3.6 satisfies the following integral
equation in Hα, for all t P r0, Ts, all m P N, P-a.s.

dpt^τmq “ d0`

ż t^τm

0
p∆dpsq` |∇dpsq|2dpsq´vpsq ¨∇dpsqqds`

ż t^τm

0
pdpsqˆhq ˝ dη,

it follows from the Itô formula, see [43, Theorem I.3.3.2] and [20, Theorem 1], that
for any m P N, for all t P r0, Ts, P´ a.s.,

Ψ`pdqpt^ τmq ´Ψ`pdqp0q “
ż t^τm

0
Ψ1`pdqpsq

ˆ

∆d` |∇d|2d´ v ¨∇d`
1
2

G2pdq
˙

psqds

`

ż t^τm

0

1
2

Ψ2` pdqpsqpGpdqps, Gpdqpsqds.

Note that the stochastic integral vanishes because Gpdps, xqq K dps, xq for all s P
r0, τq and x P O .
Since G2pdq “ pdˆ hq ˆ h and Gpdq “ dˆ h, we infer from (5.7) and the identity

´|aˆ b|2
R3 “ a ¨ ppaˆ bq ˆ bq , a, b P R3,

that

Ψ1pdqpG2pdqq “ ´2`
ż

O
p|dpxq|2 ´ 1qϕ1p`p|dpxq|2 ´ 1qq|Gpdpxqq|2dx

´4
ż

O
p|dpxq|2 ´ 1qϕ`pdpxqq|Gpdpxqq|2dx,

which along with the fact that Gpdpxqq K dpxq for any x P O and (5.10) we infer
that

1
2

Ψ2` pGpdq, Gpdqq `
1
2

Ψ1`pG
2pdqq “ 0.

Hence, for every m P N, for all t P r0, Ts, P-a.s.,

Ψ`pdpt^τmqq´Ψ`pdp0qq “
ż t^τm

0
Ψ1`pdpsqq

´

∆dpsq ` |∇dpsq|2dpsq ´ vpsq ¨∇dpsq
¯

ds.

(5.11)
Now, observe that from the assumptions on the function ϕ and the definition of
the sequence φ̃`, ` P N we infer that, with a´ :“ maxp´a, 0q, for any a P R,

φ̃`paq Ñ pa´q2 and `ϕ1p`aq Ñ 0 as `Ñ8. (5.12)

Observe also that there exists a constant C ą 0 such that for all ` P N and a P R

|φ̃`paq| ď Ca2 and |`ϕ1p`aq| ď C|a|. (5.13)
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Therefore we infer from (5.12), (5.13) and the Lebesgue Dominated Convergence
Theorem that for d P Hα, k P Hα

lim
`Ñ8

Ψ`pdq “‖
´

|d|2 ´ 1
¯

´
‖2,

lim
`Ñ8

Ψ1`pdqpkq “4
ż

O
r

´

|dpxq|2 ´ 1
¯

´
pdpxq ¨ kpxqqs dx.

Hence, setting yptq “ ‖
`

|dptq|2 ´ 1
˘

´
‖2

L2 and letting `Ñ8 in (5.11) we obtain that
for every m P N, for all t P r0, Ts, P-a.s.,

ypt^ τmq ´ yp0q ` 4
ż t^τm

0

ˆ
ż

O

„

´∆dps, xq ´ |∇dps, xq|2dps, xq ` vps, xq ¨∇dps, xq


ˆ

„

dps, xq
´

|dps, xq|2 ´ 1
¯

´



dx
˙

ds “ 0.

Using the identities

∇|d|2 “ 2∇dd, (5.14)

∆|d|2 “ 2∆d ¨ d` 2|∇d|2, (5.15)

we deduce that for every m P N, for all t P r0, Ts, P-a.s.,

ypt^ τmq ´ yp0q ` 2
ż t^τm

0

ˆ
ż

O

„

´∆|dps, xq|2 ´ 2|∇dps, xq|2p|dps, xq|2 ´ 1q

`vps, xq ¨∇|dps, xq|2
„

´

|dps, xq|2 ´ 1
¯

´



dx
˙

ds “ 0.

Now observe that from the definition of ζ :“
`

|d|2 ´ 1
˘

´
we have, for d P Hα`2,

ż

O

„

´∆|dpxq|2 ´ 2|∇dpxq|2p|dpxq|2 ´ 1q


ζpxqdx

“ ´

ż

O

´

∆ζpxq ¨ ζpxq ´ 21|dpxq|2ď1|∇dpx|2ζ2pxq
¯

dx

ě

ż

O
|∇ζpxq|2dx.

Observe also that since ∇ ¨ v “ 0 we have2
ż

O
vpxq ¨∇|dpxq|2ζpxqdx “

ż

O
vpxq ¨∇ζpxqζpxqdx “ 0.

Bearing in mind the two remarks above, we infer that for every m P N, ypt^ τmq

satisfies for all t P r0, Ts, P-a.s.,

ypt^ τmq ` 2
ż t^τm

0
|∇ζpsq|2L2 ds ď yp0q.

Since the second term in the left hand side of the above inequality is positive and
yp0q “ ‖p|d0|2 ´ 1q´‖2 and by assumption |d0px, ωq|2 “ 1 for all x P O and ω P Ω
we deduce that, for every m P N, for all t P r0, Ts, P-a.s.,

ypt^ τmq “ 0.

2Note that by [1, Exercise 7.1.5, p 283], ζ P H1 if d P H1.
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Since Hα`1 Ă C1pOq as α ą d
2 , we infer that for all m P N, t P r0, Ts, P-a.s.

p|dpt^ τm, x, ωq|2 ´ 1q´“ 0 for all x P O . (5.16)

Thus, to complete the proof it is sufficient to show that for all m P N, for all t P
r0, Tswe have , P-a.s.

p|dpt^ τm, xq|2 ´ 1q` “ 0 for all x P O . (5.17)

For this purpose we set

ξpt, xq :“
`

|dpt, xq|2 ´ 1
˘

`
, pt, xq P r0, τq ˆO ,

zptq “ ‖ξptq‖2
L2 , t P r0, Ts,

and construct a sequence of functions Ψ` very similar to the one defined in (5.6).
First let us define an increasing function ϕ : R Ñ r0, 1s belonging to C8 satisfying

ϕpsq “

#

1 iff s P r2,8q,

0 iff s P p´8, 1s.
(5.18)

Now, we replace in the definition of Ψ` given by (5.6) the old function ϕl by the
function defined above. With this new definition we can show by arguing as before
that for d P H2 and k P L2 we have

lim
mÑ8

Ψ`pdq “‖
´

|d|2 ´ 1
¯

`
‖2

L2 ,

lim
mÑ8

Ψ1`pdqpkq “4
ż

O
r

´

|dpxq|2 ´ 1
¯

`
dpxq ¨ kpxqs dx,

and, for every m P N, for all t P r0, Ts, P-a.s.,

zpt^τmq´ zp0q`2
ż t^τm

0

ż

O
|∇ξps, xq|2dxds´4

ż t^τm

0

ż

O
|∇dps, xq|2|ξps, xq|2dxds “ 0.

(5.19)
Since the third term in the left hand side of the above identity is negative we cannot
neglect this term. Before proceed with the proof we observe that from the assump-
tion α ą d{2 and (3.1) we infer that for any ε ą 0 there exists a constant N ą 0 such
that

PpΩm,Nq ě 1´ ε, where

Ωm,N “
 

ω P Ω : sup
sPr0,t^τms

‖∇dpsq‖L8 ď N
(

.

Let us observe that for all m P N, in view of (5.19), we have on Ωm,N

zpt^ τmq ´ zp0q ` 2
ż t^τm

0

ż

O
|∇ξps, xq|2dxds ď 4N2

ż t^τm

0

ż

O
|ξps, xq|2dxds

ď 4N2
ż t^τm

0
zpsqds.

(5.20)

Taking the expectation (over the set Ωm,N), because for a nonnegative function z,
şt^τ

0 zpsq ds ď
şt

0 zps^ τq ds, from the above inequality we get

E
“

zpt^ τmq1Ωm,N

‰

ď E
“

zp0q1Ωm,N

‰

` 4N2
ż t

0
E
“

zps^ τmq1Ωm,N

‰

ds. (5.21)



STOCHASTIC ERICKSEN-LESLIE EQUATIONS 15

Applying the Gronwall Lemma we infer that

E
“

zpt^ τmq1Ωm,N

‰

ď E
“

zpt^ τmq1Ωm,N

‰

e4N2T “ 0, t P r0, Ts.

Hence we infer that 1Ωm,N p|dpt ^ τmq|2 ´ 1q` “ 0 for every t P r0, Ts, P-a.s. and
therefore we deduce that for every t P r0, Ts and for every ε ą 0

P
´

p|dt^ τm|2 ´ 1q` “ 0
¯

ě 1´ ε.

From this last estimate and the first part of the proof infer that for all t P r0, Ts,
m P N, P-a.s.

p|dpt^ τm, x, ωq|´ 1q` “ p|dpt^ τm, x, ωq|´ 1q´ “ 0 for all x P O ,

which implies (3.3).

Appendix A. Local strong solution for an abstract stochastic evolution equation.
The goal of this section is to recall general results about the existence of a local and
maximal solution to an abstract stochastic partial differential equation with locally
Lipschitz continuous coefficients. These results were proved in [7] utilising some
truncation and fixed point methods. The proofs are highly technical, and hence we
refer the reader to [7] for the details.

To start with let us fix some notations and assumptions. Let V, E and H be
separable Banach spaces such that E Ă V continuously. We denote the norm in V
by } ¨ } and we put

XT :“ Cpr0, Ts; Vq X L2p0, T; Eq (A.1)

with the norm | ¨ |XT satisfying

|u|2XT
“ sup

sPr0,Ts
}upsq}2 `

ż T

0
|upsq|2E ds. (A.2)

Let F and G be two nonlinear mappings satisfying the following sets of conditions.

Assumptions 2. Suppose that F : E Ñ H is such that Fp0q “ 0 and there exist
p, q ě 1, α, γ P r0, 1q and C ą 0 such that

|Fpyq ´ Fpxq|H ď C
”

}y´ x}}y}p´α|y|αE ` |y´ x|αE}y´ x}1´α}x}p
ı

`C
”

}y´ x}}y}q´γ|y|γE ` |y´ x|γE}y´ x}1´γ}x}q
ı

,
(A.3)

for any x, y P E.

Let K be a separable Hilbert space and L2pK, Vq the space of Hilbert-Schmidt
operators from K onto V. For the sake of simplicity we denote by ‖¨‖L2 the norm
in L2pK, Vq.

Assumptions 3. Assume that G : E Ñ L2pK, Vq such that Gp0q “ 0 and there
exists k ě 1, β P r0, 1q and CG ą 0 such that

}Gpyq ´ Gpxq}L2 ď CG

”

}y´ x}}y}k´β|y|βE ` |y´ x|βE}y´ x}1´β}x}k
ı

, (A.4)

for any x, y P E.
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Let pΩ,F , Pq be a complete probability space equipped with a filtration F “

tFt : t ě 0u satisfying the usual condition. By M2pXTq we denote the space of
all progressively measurable E-values processes whose trajectories belong to XT
almost surely endowed with a norm | ¨ |M2pXTq

satisfying

|u|2M2pXTq
“ E

”

sup
sPr0,Ts

}upsq}2 `
ż T

0
|upsq|2E ds

ı

. (A.5)

Let us also formulate the following assumptions.

Assumptions 4. Suppose that the embeddings E Ă V Ă H are continuous. Con-
sider (for simplicity) a one-dimensional Wiener process W “ tWptq : t ě 0u.
Assume that tSptq : t P r0,8qu, is a family of bounded linear operators on the
space H such that there exists two positive constants C1 and C2 with the following
properties:
(i) For every T ą 0 and every f P L2p0, T; Hq a function u “ S ˚ f defined by

uptq “
ż T

0
Spt´ rq f prq dt, t P r0, Ts,

belongs to XT and
|u|XT ď C1| f |L2p0,T;Hq. (A.6)

(ii) For every T ą 0 and every process ξ P M2p0, T; L2pK, Vqq a process u “ S ˛ ξ

defined by

uptq “
ż T

0
Spt´ rqξprq dWprq, t P r0, Ts

belongs to M2pXTq and

|u|M2pXTq
ď C2|ξ|M2p0,T;L2pK,Vqq.

(iii) For every T ą 0 and every u0 P V, a function u “ Su0 defined by

uptq “ Sptqu0, t P r0, Ts

belongs to XT . Moreover, for every T0 ą 0 there exist C0 ą 0 such that for all
T P p0, T0s,

|u|XT ď C0}u0}. (A.7)

Now let us consider a semigroup tSptq : t P r0,8qu as above and the abstract
SPDEs

uptq “ Sptqu0 `

ż t

0
Spt´ sqFpupsqqds`

ż t

0
Spt´ sqGpupsqqdWpsq, for any t ą 0,

(A.8)
which is a mild version of the problem

"

duptq “ Auptq dt` F
`

uptq
˘

dt` G
`

uptq
˘

dWptq, t ą 0,
up0q “ u0.

(A.9)

Here A is the infinitesimal generator of the semigroup tSptq : t ě 0u.
We will not recall the definitions of local and maximal solutions since they are

the same as the ones introduced definition 3.3 and definition 3.4. We directly give
the main theorems that are of interest to us. The first one is about the existence and
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uniqueness of a local solution and a probabilistic lower bound of the solution’s
lifespan.

Theorem A.1. Suppose that Assumption 2, Assumption 3, and Assumption 4 hold. Then
for every F0-measurable V-valued square integrable random variable u0 there exists a local
process u “

`

uptq, t P r0, T1q
˘

which is the unique local mild solution to our problem.
Moreover, given R ą 0 and ε ą 0 there exists a stopping time τpε, Rq ą 0, such that for
every F0-measurable V-valued random variable u0 satisfying E}u0}

2 ď R2, one has

P
`

T1 ě τpε, Rq
˘

ě 1´ ε.

The next result is about the existence and uniqueness of a maximal solution and
the characterization of its lifespan.

Theorem A.2. For every u0 P L2pΩ,F0, Vq, the process u “ puptq , t ă τ8q defined
above is the unique local maximal solution to our equation. Moreover, P

`

tτ8 ă 8u X

tsuptăτ8
|uptq|V ă 8u

˘

“ 0 and on tτ8 ă 8u, lim suptÑτ8
|uptq|V “ `8 a.s.

The proofs of both theorems are highly nontrivial and technical, we refer to [7,
Section 5] for the details.
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[5] Z. Brzeźniak and K.D. Elworthy, Stochastic differential equations on Banach manifolds, Methods Funct.
Anal. Topology 6, no. 1, 43–84, (2000)
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[11] B. Climent-Ezquerra, F. Guillén-González and M. A. Rojas-Medar. Reproductivity for a nematic

liquid crystal model, Z. Angew. Math. Phys. 57 (06): 984-998, (2006)
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