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ABSTRACT. We study an asset allocation stochastic problem for a defined-contribution
pension plan during the accumulation phase. We consider a financial market composed of
a risk-free asset, an inflation-linked bond and the risky asset. The fund manager aims to
maximize the expected power utility derived from the terminal wealth. Our solution allows
one to incorporate a clause which allows for the distribution of a member’s premiums to his
surviving dependents, should the member die before retirement. Besides the mortality risk,
our optimization problem takes into account the salary and the inflation risks. We then
obtain closed form solutions for the asset allocation problem using a sufficient maximum
principle approach for the problem with partial information. Finally, we give a numerical
example.

1. INTRODUCTION

The asset allocation problem for pension funds asset allocation problem has become a very
important area of research in recent years. This is motivated by different reasons; for
instance, the average age of the employees when they join a pension plan and the life
expectancy has increased in the last decade. In the area of pension funds, we distinguish two
types of pension plans: a Defined Benefit (DB) plan, where the benefits are known in
advance and the contributions are adjusted in time to ensure that the fund remains in
balance and a Defined Contribution (DC) plan, where the contributions are defined in
advance and the benefits depend on the return of the fund, with the risk taken by the plan
members. We refer to Antolin et al. (2008) or Devolder et al. (2013) for a thorough
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discussion on the theory of pension funds. Since most of the developing countries have moved
or are moving from DB to DC plans, where the employee is directly exposed to the financial
risks, the study of optimization problems in the context of pension funds it is of great
importance. This is because the solution of such problems will help both the pension plan
members and the pension fund managers in their allocation of funds in different assets in
order to achieve the best retirement savings, even during the periods of market fluctuations
or lack of information.

There is a vast of literature dealing with optimization of pension funds problem, for
instance, under the expected utility maximization framework, Sun et al. (2018), consid-
ered a robust portfolio choice for DC pension plan with stochastic income and interest
rate. Sun et al. (2016) studied the jump diffusion case of a DC investment plan. Osu et al.
(2017) studied the effect of stochastic extra contribution on DC pension funds, and ref-
erences therein. This problem has also been considered in the mean variance framework,
see, e.g., He & Liang (2013) and references therein. All the above references solved the
DC pension fund problem using a dynamic programming approach under the setting of
complete information. Otherwise, Battocchio & Menoncin (2004) considered a martingale
method for a DC investment problem. Chen & Delong (2015), studied a DC pension fund
problem with regime switching using the techniques of backward stochastic differential
equations with quadratic growth.

To the best of our knowledge, in almost all the literature on DC investment problems,
the partial information case in the control has not been considered. However, like other
investment problems, in the pension fund investment problem, the information about the
state control is not always available on time of the decision, which leads to delayed in-
formation about the investment strategy. Thus, one needs to consider the case of DC
investments with partial information. We assume that the investment strategy is adapted
to a given sub-filtration of the filtration generated by the underlying diffusion processes.
Therefore, the dynamic programming approach is not applicable. We use a sufficient max-
imum principle for such a DC investment problem. In the literature, this method has been
widely studied. See, for instance, An & Oksendal (2008), Baghery & Oksendal (2007),
Framstad et al. (2004) and references therein.

In this paper, we study an asset allocation stochastic problem for a defined-contribution
pension plan during the accumulation phase. We consider a financial market composed
by a risk-free asset, the inflation-linked bond and the risky asset, where a fund manager
aims to maximize the expected power utility derived from the terminal wealth. In order
to protect the rights of a member who dies before retirement, we introduce a clause which
allows the member to withdraw his premiums and the difference is distributed among the
survival members. Besides the mortality risk, the fund manager takes into account the
salary and the inflation risks. Furthermore, due to the ultimate aim of the pension fund
and to prevent the members from losing all their savings, we introduce a restriction in their
investment choices. This restriction forces the plan members to put a certain minimum
proportion of their savings in a risk-free investment.
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This paper unifies the inflation risks, the stochastic salary and the mortality risks on an
optimal investment problem for a DC pension plan under partial information and study
the optimization problem under partial information case.

The rest of the paper is organized as follows: in Section 2, we introduce the setting
assumptions of the financial market, namely, the inflation linked-bond and the risky asset.
We also consider the existence of stochastic income and we state the main optimization
problem under study. In Section 3, we solve the asset allocation problem of the pension
fund manager with partial information using the maximum principle approach presented
in the Appendix. Finally, we give a numerical example in Section 4.

2. THE MODEL FORMULATION

Consider two independent Brownian motions {W;(t); Ws(t), 0 < t < T} associated to
the complete filtered probability space (2, F,{F:},P). Let a fixed investment horizon
of a defined contribution pension fund be T < oo, with a retirement date denoted by
to + T < oo. We assume the existence of a financial market composed by three assets: a

risk-free asset, an inflation linked index and a risky asset. The risk-free asset has price
So(t) defined by

dSo(t) = r(t)Se(t)dt, (2.1)
where r(t) € RJ is the risk-free interest rate.
In order to capture the inflation risks, we consider an inflation index I(t) given by

dI(t) = I()[ur (t)dt + o7 (£)dW; (1),

with deterministic expected rate of inflation p;(t) € R and volatility o/(t) € R satisfying
the following integrability condition.

T
/ [|per ()] + o7 (t)] dt < o0, aus.
0
The inflation-linked bond price is defined by

B(t) = 1(t)So(t).
Then,
dB(t) = B(t)[(r(t) + pr(t))dt + or(t)dWr(t)] . (2.2)
Finally, assume that the fund manager may also allocate funds to a risky asset defined
by the following geometric diffusion process

dS(t) = S(t) [ns(t)dt + o (t)dWi(t) + os(t)dWs(t)]

where the mean rate of return pg(t) := r(t) + p(t), with u(t) > 0 denoting a risk premium.
The volatilities o(t), og(t) are deterministic functions, satisfying the following integrability
condition

/0 [|M5(t)| + o?(t) + ag(t)} dt < oo, a.s. (2.3)

We suppose that a pension member has a stochastic income salary driven by:



de(t) = @) [(pe(t) +r(t))dt + o1 (t)dWi(t) + o2(t)dWs(t)] (2.4)
where p,(t) + r(t) is the expected growth rate of income, with p, representing the income
growth interest rate or the inflation compensation. Usually, the income increases more
rapidly during the boom of the economy than the recession period. o; and o9 are the
instantaneous volatilities arising from the inflation index and from the price process of the
risky asset respectively. We also assume that py, o and oy are deterministic functions
satisfying the integrability condition as in (2.3).

Moreover, suppose that the pension member contributes an amount of 6¢(t), at time
t, where § € (0,1) is the proportion of the salary contributed to the pension plan. We
assume that the accumulation period of the fund starts from age t; > 0 of the member,
until the retirement age to + 7. In order to protect the rights of the plan members who
die before retirement, we adopt the withdrawal of the premiums for the member who dies,
as in He & Liang (2013).

Let Mj be the number of members who are still alive in the pension at time ¢, with
age to + t. Then, the expected number of members who will die during the time interval
(t,t + At) is MoPgt,, where PS%, is the probability that a person alive at the age to + ¢
will die in the following time period of length At. Now, fot 0l(s)ds is the accumulated
premium at time ¢. Hence, the premium returned to a died member from time ¢ to ¢t + At
is fg 56(3)dsptﬁit. After returning the premium, the difference between the accumulation
and the return is equally distributed to the surviving members. The expected number of
members who are alive at time ¢ + At is My(1 — Pgt,), which is a deterministic function
of time.

Based on He & Liang (2013), we adopt the De Moivre mortality model, i.e., the deter-
ministic force of mortality Sy, (t) where 7 > 0 is the maximal age of the life
table. Then,

_ 1
- T—(to+t) ’

At

At
5to(u)du}: 7 0<At<7—1.

At _
Ptoﬂfl—exp{— —

We consider a sub-filtration

0

ECF, Vtelo,T],

where & represents the amount of the information available to the pension manager at
time ¢.

Since we are modeling an investment plan for pension funds, we assume that there is
a minimum proportion of the pension members wealth stipulated by the regulator to be
invested in a risk-free asset. This means that in the wealth of the pension member, a
certain proportion is assumed a priori to be in a risk-free asset. We denote that fraction
by k. We assume this fraction to avoid the possibility of investing the total wealth in
risky assets. Let 71(t), m2(t) be the {& }iejo,r1-adapted processes denoting the proportions
of the wealth invested in the inflation-linked bond and the risky asset respectively. Then
mo(t) :=1— Kk —m(t) — ma(t) € & is the additional proportion of the wealth invested in a
risk-free asset.
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Let X (t) denote the wealth process of the pension plan member. Similar to He & Liang
(2013) and Sun et al. (2016), we adopt a return premium clause, when a pension member
dies during the accumulation phase. Thus, after deducting the expected return of the
premiums for the members who died during the time interval (¢,¢ + At), the total wealth
of the pension members is given by

5 So(t + At) B(t + At)
X(t+At) = MyX(t) [(1 K= mlt) = m() g MO g
S(t+ At)
S(t)
Here ¢ is a parameter with values 0 or 1. If ¢ = 0, the pension member obtains nothing
during the accumulation phase, while if ¢ = 1, the premiums are returned to the member
when he dies. Then, the total wealth is equally distributed to the surviving members and
each of them has the pension wealth of

+o(t) } +MoPR, — etsl(t) P, .

X(t+At) = —Mi(((ltjég 3
B So(t + At) B(t + At)
— X(t) [(1 = A= mt) = m() = g )= g
+W2(t)%} +0L(t) At — By, (£) At[etdl(t) — X ()] + o(At) .

Dividing by At and taking the limit, when At — 0, we have the following wealth process
in continuous time:

ax(t) = [X0)((1=w)r(t) + p()m () + uOm(t) + (1))
(1= tB, ()30 | dt + (w1 (s (1) + (D)o () X ()aW; (1)
+mo(t)os(t) X (t)dWs(t) .

Suppose that the income salary £(t) is given as a numeraire. we define the relative wealth

process by Y (t) = % Then by Itd’s formula, we have

av(t) = {YOuOm) + ptmt) = wr(t) + By (6) — pelt (2.5)
H(02(1) + 03()) — ma(t)os(D)a(t) — o1(D)(or(t)m(t) + o (1) (1))
+(1 — etpy, (t))é}dt + (or(t)m(t) + o(t)me(t) — o1 ()Y (£)dW,(t)

+(og(t)ma(t) — oo(t))Y (£)dWs(t) .

Define A := {(m1,m2) := (m1(t), m2(t))scpo,m } as a set of admissible strategies if (m(t), 72(t)) €
{&}iejo,r) and the SDE (2.5) has a unique strong solution such that Y (t) > 0, P-a.s.



Let U : (0,00) — R be the utility function measuring the investor’s preference. The
main objective of the pension fund manager is to maximize the following functional:

j<t7 Y, T, 7T2) = Et,y[U(Y(T>>] :
Then, the value function of the pension manager is given by

V(t7y) = sup j(t»yﬂﬁ,ﬂz) . (26)

(m1,m2)EA

3. SOLUTION OF THE PENSION FUND MANAGER OPTIMIZATION PROBLEM

Since we consider an asset allocation problem with partial information, the classical
dynamic programming approach applied, for instance, in Battocchio & Menoncin (2004),
Federico (2008), Di Giacinto et al. (2011), Sun et al. (2018) is not applicable.

Applying a sufficient maximum principle approach for diffusion process model with
partial information (see the results in the Appendix), we define the Hamiltonian #H :
0,T] x Rx AXxR xR xR — R by:

H(L,Y (1), m(0), (1), A1), Ba(), Ba(t)) (3.1)
= YO u@m) + p(tmalt) = 5r(t) + By (0) = pelt) + (030 + 30))

—ma(t)og(t)oa(t) — o1 (t) (o (t)m () + O'(t)’ﬂ'g(t))] +(1 — 5tﬁt0)5}A(t)
+(mi(D)or(t) + ma(t)o(t) — o1(1)Y (1) Bi(t) + (m2(t)os(t) — o2(1)Y (1) Ba(t) -

The adjoint equation corresponding to the admissible strategy (mi,ms) is given by the
following backward stochastic differential equation

dA(t) = —{ [mtym () + ps(t)ma(t) = mr(t) + By (1) = pe(t)
+03 () + 03(t) = ma(t)as(1)02(t) — 1 (H(m (Dor(t) + ma(B)r(®)] A®)

+(m()or(t) + ma(t)o(t) — o1(t))Bi(t) + (ma(t)os(t) — Uz(t))Bz(t)}dt
B, (AW (1) + By(t)dWs(t), (3.2)
AT) = U'(Y(T)).

Applying the first order conditions of optimality to the Hamiltonian with respect to
(m1,m2), given the information available {& }icpo,r), we have the following equations

(pr(t) — o1(t)or(0)E[A*(t) | &] + or(E[Bi (1) | &] = O,
(ns(t) = (o(t)ou(t) + 0a(t)os(t)))E[A™(E) | &] (3.3)
+o(OE[BI(t) | &] + os(HE[B;3 (1) | &] = 0,
where A*, B} and Bj are the adjoint processes corresponding to the optimal controls
(7}, m5). For this optimal controls, the adjoint equation becomes



aar(t) = ~{[Bu(t) = wr(t) = puet) + 03(1) + 3 (O] A"(1) = 1 (8) B (1) — o2(t) B3 (1)
+Bj(t)dWi(t) + B3 (t)dWs(t), (3.4)
ANT) = U'(Y(T)).
In order to Eolve our optimization problem, we consider a power utility function of the
form U(y) = %, where a € (—00,1)\ {0}. Then the terminal condition for the first adjoint

equation becomes A*(T) = Y(T)*"'. From this form, we try the solution of the BSDE
(3.4) to be of the form

A'(t) = (Y (1)*'o(t), o(T)=1. (3.5)
Applying It6’s formula, we have
aar(ty = Y O d0) + (@ = Do) O 1) + pt)ms ()

—o1(t) (7} (t)or(t) + w3 (t)o (1)) + (1 — ety ()(y(t) ™

—kr(t) + By () — ()+01(t)+‘72()_‘75(t> 2(t)72(t)
)"

(= 2)[(m(Dos(t) — a2 + (a(O)m (1) + o (0) — o1 ())7] | Yt
)

2
+a = Do) Y () (or(t)7} (t) + oa(t)m5(t) — 01(8))dWi(t)
+Ha = 1)o(t)Y (1) (m5(t)os(t) — oa(t))dWs(t)
Comparing with the adjoint equation (3.4), we obtain the following relations
Bi(t) = (a—1) (o)1) +oa(t)ms(t) — o1 () A*(1): (3.6)
Bi(t) = (a—1)(my(t)os(t) — oa(t))A*(2). (3.7)

Moreover, the function ¢(t) solves the following backward ordinary differential equation

(¢'(t) + K(H)o(t)Y (1) = Q1) A*(t) — on (1) B(t) — 02(?5)35@)} : (3.8)
where

K(t) = (a=1)|u(®)mi®) + p(t)ms(t)

=) + B (t) = pe®) + 03(0) + o3(0) = os(B)oa(t)s (1)

o1 (O (Dor(t) + T3 (D) () + (1= ety (£)d(y (1)
(t

(0= 2)[(m3(0)0s(t) — oa(t))? + (r(t)ai (1) + o (D)3 (1) — 02(1))?]

and

Q(t) = wr(t) + pue(t) — Bio (t) — o (t) — o3(t).
Substituting (3.5), (3.6)—(3.7) into (3.3), we obtain the following optimal solutions:

) = M= B0E (om0 - @) 39)

1




s 1lt) —aos(t)os(t) — ;(2)#1(?5)
m(t) = 1= a)od()

Furthermore, from (3.5), (3.6) and (3.7), we can transform (3.8) to the following linear
ODE

(3.10)

¢'(t) + K(t)o(t) =0,

where

K(t) = K@) =[Q@) + (a = 1)(ar(t)mi(t) + o2(t)my(t) + m3(t)os(t) — o1(t) — a2(t))],
which gives the following solution

o(t) = exp{— /tT/C(s)ds} , tel0,7].

This completes the solution (3.5), (3.6) and (3.7) respectively.
We then conclude this section summarizing our results in the following theorem.

Theorem 3.1. Under the power utility function, the optimal strategies for a defined con-
tribution problem (2.6), based on the information flow {& }icpo, ), are given by

) = ME=BEE - (omin - )
MO aos(m) — s

(1 —a)og(t)
4. NUMERICAL EXAMPLE

In this section, we consider a numerical application of our results, in order to show the
behavior of the optimal portfolio strategy derived in the previous section. We assume
the following parameters consistent with the numerical analysis in Battocchio & Menoncin
(2004). Figure 1 shows how the funds are allocated, when we assume constant parameters.
We can see that the investment in the risk-free and risky assets continue rising throughout
the investment period. Figures 2-3 illustrate the effect of appreciation rate and inflation
rate, respectively. We can see in both figures that the funds that the risk-free and inflation-
linked assets have an opposite correlation. In Figure 3, for instance, when the inflation
rate rises, the fund manager pays more attention on the inflation-linked asset to help to
reduce its effect.

1 T o g T or wr
0.06—1-%25 0.03 0.19 0.06 35 0.015 -0.01
127 01 09 f(())

0.01 0.014 0.171 100
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APPENDIX

We introduce a version of a maximum principle approach for stochastic volatility model
under diffusion with partial information, which is mainly based on the results in
Kufakunesu & Guambe (2018). On a complete filtered probability space (2, F, {F: b1, P),
suppose that the dynamics of the state process is given by the following stochastic differ-
ential equation (SDE)

dX(t) = b(t, X(1),Y (1), 7(t))dt + o(t, X (1), Y (), 7(t))dW;(t) (4.1)
+B(t, X (1), Y (¢), 7(t))dWa(1) ;
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X(0) = zeR,
where the external economic factor Y is given by
dY (t) = (Y (t))dt + (Y (t))dWs(t) . (4.2)

We assume that the functions b,0,5: [0,T] x Rx R x A = R; p,¢: R — R are given
predictable processes, such that (4.1) and (4.2) are well defined and (4.1) has a unique
solution for each m € A. Here, A is a given closed set in R. We assume that the control
process 7 is adapted to a given filtration {& }icp0r], where

ECF, Vtelo,T].

The sub-filtration {&}.cjo,r) denotes the amount of the information available to the con-
troller at time ¢ about the state of the system .

Let f:]0,7] x R xR x A — R be a continuous function and g : R x R — R a concave
function. We define the performance criterion by

O =B[ [ 10X, ¥(0) 7(0)dt+ g(X(T).Y (D)) (4.3)

We say that m € A is an admissible strategy if (4.1) has a unique strong solution and

T
B[ [ 17 X0, O, 70+ 1o(X TV (D))< 0.
The partial information control problem is to find 7* € A such that

I () = sup I ().
TEA
The control 7* is called an optimal control if it exists.
In order to solve this stochastic optimal control problem with stochastic volatility, we use
the so called maximum principle approach. The beauty of this method is that it solves a
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stochastic control problem in a more general situation, that is, for both Markovian and non-
Markovian cases. We point out that, due to the nature of the partial information {& };c(011,
the dynamic programming approach for a stochastic volatility model by Pham (2002) is
not applicable. Our approach may be considered as an extension of the maximum principle
approach for a stochastic control problem with partial information in Baghery & (Oksendal
(2007) to the stochastic volatility case.

We define the Hamiltonian H : [0, 7] X RXx R X AXxR xR xR x R — R by:

H(t, X (1), Y (1), 7(t), Ai(t), As(t), By (t), Ba(t)) (4.4)
= f(t, X(@1),Y(t),7(t)) +b(t, X (1), Y(¢), 7(t)) Ar(t) + (Y (¢)) A2(t)
+o(t, X(t),Y(t),7(1)Bi(t) + B(t, X (1), Y (t), w(t)) Ba(t) + S(Y () Bs(t) ,

From now on, we assume that the Hamiltonian H is continuously differentiable w.r.t. z and
y. Then, the adjoint equations corresponding to the admissible strategy m € A are given
by the following {F;};c0,r-adapted backward stochastic differential equations (BSDEs)
OH
dA(t) = =5, X(1),Y(2),7(1), Ai(?), Ao (1), Bi(1), Ba(t))dlt
+B1(t)dW,(t) + Ba(t)dWs(t) , (4.5)
dg

A(T) = 5 (X(T),Y(T)) (4.6)

and
dAs(t) = —%—?(t,X(t),Y(t),w(t),Al(t),A2(t),Bl(t),Bz(t))dt
1 By(£)dWi (£) + Ba(t)dWa(t), (4.7)
aT) = D)), (45)

The verification theorem associated to our problem is stated as follows:

Theorem 4.1. (Sufficient maximum principle) Let 7* € A with the corresponding wealth
process X*. Suppose that the pairs (Aj(t), Bi(t), B3(t)) and (A5(t), Bi(t), Bi(t)) are the
solutions of the adjoint equations (4.5) and (4.7), respectively. Moreover, suppose that the
following inequalities hold:

(i) The function (x,y) — g(x,y) is concave;
(ii) The function H(t) = sup,cq H(t, X (t), Y (t), 7, Aj(t), A5(t), Bi(t), B5(t)) is concave
and
E[M(t, X, Y, 7", A7, A3, By, B3) | €] = swpE[H(t, X, Y, m, A7, A5, B}, By) | &] .
TeA
Furthermore, we assume the following:

B [ (e @2 (B0 + B0 )< o
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5[ [ oroy (B0 + (Bi0) ] < o

B [ {00 (00 X070, 700 + (650,30, (0,5)°)

A ()] dt] < oo,

for all m € A.
Then, ™ € A is an optimal strateqy with the corresponding optimal state process X*.

Proof. Let m € A be an admissible strategy and X (¢) the corresponding wealth process.
Then, following Framstad et al. (2004), Theorem 2.1., we have:

J(@)=J(m) = E[/O (F(& X7(8), Y7 (1), m () — f(&, X (1), Y (), w(t)))dt

+(g(X™(T),Y™(T)) — 9(X(T),Y(T)))
= Nh+.

By condition (7) and the integration by parts rule (Oksendal & Sulem (2007), Lemma 3.6.),
we have

Jo = E|g(X"(D),Y*(T)) = g(X (D), V(D))

> E :(X*(T) = X(1)AUT) + (YH(T) = Y(T))A5(T)

- B[ (- xOuaai0+ [ Aiwax o -axe)
= [0 -voaso + [ @ -ave)

+/0 [(o(t, X*(8), Y7 (1), 7" (1)) — o(t, X (1), Y(£), (1)) Bi (t)
+H(B( X7(2), Y7 (1), (1) — o8, X(2), Y (t), 7(t))) By (¢)]dt

+ [0 o) - o) B )]
- B[- [ (xw-x0) - 0d— [ 00 -y o) G0
+/0 (AT(E)b(t, X*(t), Y™ (t), 7" (t)) — b(t, X (t), Y (t),m(t)))dt

+/0 (p(Y" (1)) —w(Y(t)))AS(t)dH/O (0(Y" (1)) — (Y (1)) B5(t)dt



+/0 [(o(t, X™(1), Y™ (1), 7" (1)) — o(t, X(1), Y (t), 7(t))) B (t)
+(6(t7 X*<t>7 Y*(t)v 7T*<t)) - U(tv X(t)v Y(t>? 7T<t)))B;(t)]dt )
where we have used the notation
H(t) = H(t, X*(),Y"(t), 7 (1), AL (t), A3(t), Bi(t), B3(t), B3(1)) -
On the other hand, by definition of H in (4.4), we see that

Fi = B[ (X0 0.70) = 6. X 0.V @) x(0)at
= B[ [ 104X 0,V (0.7 (0. A1(0) A30). B0, By(0). Bi 1)
=ML X (), Y7 (0 7 (0, A7), A3(0). BI(0), B3(0), B (1)}de

- / A (8) (A (Ob(E, X (£), Y*(£), 7 (8)) — b(t, X (1), Y (£), w(£)))dt
- / (D(Y*(1)) — (¥ (£))) A3(t)dt + / (G (1)) — (¥ (1)) B (t)dt
_/0 [(O'(t,X*(t),Y*(t),ﬂ'*(t)) _J(t7X(t>’Y(t)aﬂ-(t)))BT(t)

—(B@, X7(1), Y™ (1), 7*(t)) — o(t, X(t),Y(t), 7(t))) B3 (t)]dt| .
Then, summing the above two expressions, we obtain

T+ T
- E[/o [H(E, X7 (), Y7 (2), 7 (2), AT (1), A3(8), By (1), B (1), B3 (1))
—H(t, X (1), Y (t), 7(t), AL(t), A3(t), By (t), By(t), B3 (t))]dt

- [feeo-xanGoa- oo -y

By the concavity of H, i.e., conditions (i) and (iz), we have

(t)dt .

E[/O [H(E, X7(1), Y7 (1), (1), Ai(1), A5 (1), Bi (1), B3 (1), B3 (1))

—H(t, X (1), Y (1), (1), AL(t), A5(t), Bi (), By (1), Bs(t))]dt | &

> E| / (00 (0) = X () D e + <Y*<t>—Y<t>>aa—7j<t>dt

0
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+/0 (m*(t) —W(t))a;t: (t)dt | &].

Then, by the maximality of the strategy 7* € {&;}-measurable and the concavity of the
Hamiltonian H,

E[/O [H(E, X7(1), Y7 (1), (1), Ai(2), A5 (1), Bi (1), B3 (1), B3 (1))
—H(t, X (1), Y (1), w(1), Ai(1), A5(t), By (1), By(1), Bé‘(t))]dt]

> E| /0 (X*(t)—X(t))a;f(t)dtJr /0 (Y*(t)—Y(t))a;Z*(t)dt].

Hence J(7*) — J(7) = J1 + Jo > 0. Therefore, J(7*) > J(n), for any strategy m € A.
Then 7* € A is optimal. O
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