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Abstract

Fitness landscapes facilitate the analysis of optimisation problems in a detailed, yet

intuitive manner. Such an analysis can be used to select an appropriate algorithm

to solve the problem, based on the strengths and weaknesses of the algorithm. This

requires an understanding of the effect of the various fitness landscape characteristics

(FLCs) of the problem on the behaviour of the algorithm being considered. The effects of

FLCs on the behaviour of particle swarm optimisers (PSOs) is still not well-understood.

This dissertation uses a novel measure of PSO behaviour in terms of exploration and

exploitation based on the rate of change of the swarm’s diversity. The diversity rate-of-

change (DRoC) measure is shown to be robust to various parameters, and consequently,

to be an appropriate measure for quantifying PSO behaviour.

Using this DRoC measure to quantify PSO search behaviour, this dissertation then

investigates correlations between individual FLCs and the search behaviour of PSOs.

Some FLCs, such as searchability, deception, and funnels are found to correlate with

PSO search behaviour in an intuitive fashion: when the FLCs indicate that a landscape

is easier to solve for a PSO, the PSO tends to converge at a faster rate. The micro-

ruggedness FLC correlates with PSO search behaviour counterintuitively: although land-

scapes with more ruggedness at the micro level could be considered harder to solve, they

correspond with faster convergence in PSOs, rather than slower. Other FLCs, such

as neutrality, macro-ruggedness and gradients, do not correlate significantly with PSO

search behaviours.
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“I create phenomena in swarms, and paint with a full palette a gigantic

and gaudy curtain before the abyss.”

Nikos Kazantzakis

“Ain’t no mountain high enough

Ain’t no valley low enough”

Marvin Gaye, Tammi Terrell
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Chapter 1

Introduction

Swarm-based metaheuristics have become an important area of focus within the field of

optimisation [3, 28, 50]. These algorithms have been shown to succeed at finding global

optima in complex optimisation problems where traditional optimisation techniques are

susceptible to getting trapped in local optima [70], and have been used successfully

in many optimisation applications [9, 14, 15, 20, 49]. The advantages of swarm-based

metaheuristics are often attributed to their so-called emergent behaviour, which is the

relatively sophisticated behaviour exhibited by a collection of individuals, arising from

local interactions among the individuals, which exceeds the capabilities of any of the

individuals acting alone [4, 18].

An important aspect of the behaviour of these algorithms lies in the balance of two

complementary processes, namely exploration and exploitation [3, 70]. Through explo-

ration (also called diversification), a swarm obtains a general view of the search space,

enabling the algorithm to avoid getting trapped in local minima. Through exploita-

tion (also called intensification), a swarm focuses its attention on a promising region

of the search space, enabling the algorithm to improve its candidate solutions to the

optimisation problem, and ideally, find the global optimum.

Due to these advantages, swarm-based metaheuristics generalise quite well to most

optimisation problems. However, the so-called no free lunch theorems [67] suggest that

any specific algorithm will only outperform random search on certain problems, and per-

form worse than random search on other problems. The assumptions for these theorems

1



2 CHAPTER 1. INTRODUCTION

have been shown to be invalid for many optimisation problem classes as well as many

algorithms, including some in the swarm-based metaheuristics group [2, 65, 66], meaning

that some algorithms may still be able to outperform others in general. Nevertheless,

in practice, no single algorithm has yet been developed to outperform all others on all

problems. As such, the algorithm selection problem [54] is still relevant with regards

to swarm-based metaheuristics [34]; given a particular optimisation problem, a good

algorithm is to be selected for that problem in order to find a good solution at a good

rate.

This has lead to the ongoing development of many new algorithms. Unfortunately, in

the search for algorithms that outperform others on specific problems, the influence of the

characteristics of optimisation problems on the behaviour of algorithms is often ignored.

In fact, this influence is still not well understood. This study intends to contribute to

such an understanding.

1.1 Motivation

The behaviour of swarm-based metaheuristic algorithms, and especially the link between

that behaviour and the algorithms’ performance on specific problems, is still poorly un-

derstood, with few examples of such studies existing in the literature. Blum and Roli

[3] provide an overview of how various metaheuristics implement exploration and ex-

ploitation; Clerc [7] provides an in-depth analysis of the exploitative behaviour of PSOs;

and Yang and He [73] provide an analysis of an ideal balance between exploration and

exploitation, concluding that there is still a significant gap between our understanding

of metaheuristics and their actual behaviour.

Despite this poor understanding of algorithm behaviour, the field of meta-heuristics

has recently seen a plethora of new nature-inspired swarm algorithms. For most of

these new inventions, an understanding of the importance of a good balance between

exploration and exploitation is stated, but the motivation for the new algorithm is not

substantiated in terms of an understanding of what a good balance should be, nor by

the shortcomings of existing algorithms. For example, new algorithms inspired by the

behaviour of whales [43], bats [71], bird swarms [41], glowworms [31], and krill herds [16]
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are all introduced without reference to any shortcomings in the behaviour of existing

algorithms that the new algorithms aim to address. Other new algorithms, such as cuckoo

search [72], as well as improvements suggested to existing algorithms [1, 6, 25, 39, 75],

claim to achieve improved exploration or exploitation, without specifying the particular

problems or circumstances under which the existing algorithms fail to explore or exploit

sufficiently.

It is common within the field of optimisation to state that a particular algorithm, with

a particular parameter configuration, has a particular behaviour, without accounting for

the various optimisation problems that the algorithm might be applied to. While it

is well known that an algorithm’s parameters must be tuned to problem instances for

optimal performance, this qualification is rarely applied when discussing the behaviour

of algorithms.

1.2 Objectives

The aim of this study is to contribute to the undestanding of the behaviour of swarm-

based metaheuristics, specifically with regards to the characteristics of optimisation prob-

lems. The two main contributions of this study are:

1. to propose a technique for numerically characterising swarm-based algorithm be-

haviour, and

2. to show how the characteristics of a problem can influence the behaviour of swarm-

based metaheuristics.

The first contribution is a measure called the diversity rate-of-change (DRoC) of an

algorithm, which indicates the rate at which an algorithm transitions from explorative to

exploitative behaviour. The measurement allows for comparing the behaviour of different

algorithm instances, or for comparing the behaviour of a single algorithm under different

conditions. It is used in this study to investigate the influence of problem characteristics

on the behaviour of algorithms. The measurement also has the potential to explain

aspects of algorithm performance, and to improve parameter tuning.
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The second contribution is given as a set of correlations between measurable char-

acteristics of optimisation problems and algorithm behaviour. From these correlations,

conclusions are drawn about the possible influence that certain problem characteristics

have on the behaviour of algorithms.

In terms of swarm-based metaheuristics, this study is limited to particle swarm op-

timisers (PSOs) for the following reasons: these algorithms are simple to implement,

requiring just a few parameters to be configured; many variants of the algorithms have

been proposed that cover a wide range of behaviours, providing us with a sample of

contrasting behaviours to study; and they are intuitive to understand, which facilitates

discussions about expectations regarding their behaviours.

In terms of problem characteristics, this study focuses on the fitness landscape char-

acteristics of optimisation problems. These characteristics have quantifiable and intuitive

metrics that can be used to compare different optimisation problems. This allows us to

study the correlations between the (numerically quantified) characteristics of the prob-

lems and the (numerically quantified) behaviours of algorithms, and to discuss those

correlations.

Despite these limitations, the results should be applicable to other swarm-based

metaheuristics and techniques for analysing optimisation problems. Drawing further

links between problem characteristics and algorithms beyond the scope of this study is

a promising area for future research.

1.3 Outline

Chapter 2 discusses the background concepts used in the study, namely PSO algorithms

and some variants thereof, the notion of diversity in a PSO swarm, fitness landscapes, and

metrics for quantifying specific FLCs. Chapter 3 presents a novel metric for quantifying

PSO search behaviour with regards to exploration and exploitation, and shows the metric

to be sufficiently robust with regards to some parameters that may be expected to

negatively impact the accuracy of its measurements. Chapter 4 presents a modification

to one of the FLC metrics introduced in Chapter 2; the chapter then addresses the

primary research question by investigating correlations between FLC metrics and PSO
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search behaviour. Conclusions are given in Chapter 5.



Chapter 2

Background

This chapter discusses the concepts used in this study. Section 2.1 discusses the particle

swarm optimisation algorithm, and describes the variants of the algorithm that are

applied to optimisation problems later in this study. Section 2.2 discusses diversity in

swarms, as well as a method for quantifying diversity. Section 2.3 discusses the concept

of fitness landscapes. Section 2.4 lists some characteristics that fitness landscapes can

exhibit, as well as metrics that can be used to quantify those characteristics.

2.1 Particle Swarm Optimisers

Particle swarm optimisers (PSOs) are a class of stochastic population-based search al-

gorithms inspired by the movement of flocks of birds in nature [11, 28]. PSOs work

by randomly initialising a swarm of particles within the search space, with each parti-

cle representing a candidate solution to the optimisation problem. Each iteration of a

PSO algorithm then updates the position of each particle to simulate movement through

the search space. The direction and magnitude of each position update is determined

based on stochastic elements, the particle’s own momentum, and the particle’s attrac-

tion towards positions in the search space that are known to be good from past personal

experience, as well as from the experience of other particles in the neighbourhood of the

particle.

Many variants of PSO have been proposed [17, 59], each exhibiting different behaviour

6
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with regards to search. This study focuses on the classic PSOs with star, ring, and Von

Neumann neighbourhood topologies [29] (global best, local best and Von Neumann PSO,

respectively), the guaranteed convergence PSOs with the same neighbourhood topologies

[62], the barebones and modified barebones PSO [27], and the social-only PSO [26]; these

variants were selected because they exhibit a variety of search behaviours. The PSO

variants are discussed below.

2.1.1 Global Best PSO

The global best (gbest) PSO is the basic version of the algorithm introduced by Kennedy

and Eberhart [11, 28]. A swarm is initialised with ns particles. Each particle’s position

at iteration t = 0, xi(0), is initialised to a random position in the search space. The

position of each particle at each subsequent iteration t ≥ 0 is determined by adding a

velocity vector to the particle’s position at the previous iteration, given by

xi(t+ 1) = xi(t) + vi(t+ 1) , (2.1)

where vi(0) = 0, and vi(t) is the velocity vector of particle i at iteration t. The velocity

vector is given by

vi(t+ 1) = vinertiai (t) + vcogi (t) + vsoci (t) , (2.2)

where vinertiai (t), vcogi (t), and vsoci (t) are the inertia, cognitive and social components of

the velocity update equation, respectively.

The inertia component serves to smooth out the motion of particles [55], and is given

by

vinertiai (t) = w · vi(t) . (2.3)

The inertia component is the particle’s velocity at the previous iteration, scaled by the

inertia weight constant, w ∈ [0, 1]. For sufficiently large w values, the inertia component

may serve to facilitate exploration.

The cognitive component serves to attract the particle towards the best position it

has personally encountered so far, and is given by

vcogi (t) = c1 · r1(t)�
(
yi(t)− xi(t)

)
, (2.4)
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where c1 is a constant that controls the contribution of the cognitive component to

the particle’s velocity, r1(t) is a random vector sampled from U(0, 1)D (D being the

dimensionality of the search space), yi(t) is the particle’s personal best position or pbest,

which is the best position encountered by particle i by iteration t, and � denotes element-

wise vector multiplication.

Similarly, the social component serves to attract the particle towards the best position

encountered by the entire swarm so far, and is given by

vsoci (t) = c2 · r2(t)�
(
ŷ(t)− xi(t)

)
, (2.5)

where c2 is a constant controlling the contribution of the social component, r2(t) is

a random vector vector sampled from U(0, 1)D, and ŷ(t), the global best position or

gbest, is the best position encountered by any particle in the swarm by iteration t, or

equivalently, the fittest pbest over all particles in the swarm.

2.1.2 Local Best PSO

The local best (lbest) PSO is similar to the gbest PSO. The difference is that, for the

lbest PSO, the social component of Equation (2.5) is defined as

vsoci (t) = c2 · r2(t)�
(
ŷi(t)− xi(t)

)
, (2.6)

where ŷi(t) is the neighbourhood best position or nbest of particle i, which is the fittest

pbest, not of the entire swarm as with gbest PSO, but of a subset of the swarm that forms

the neighbourhood of particle i. For the lbest PSO, the neighbourhood of each particle

i consists of two other particles: particle i − 1 and particle i + 1. The neighbourhood

topology of the lbest PSO is called a ring topology.

Note that the gbest PSO can be reformulated such that its social component is also

given by Equation (2.6). The neighbourhood of each particle in the gbest PSO is then

simply the entire swarm; such a neighbourhood topology is called a star topology.

2.1.3 Von Neumann PSO

Similar to the lbest PSO, the social component of the Von Neumann (VN) PSO [29]

attracts each particle to the fittest pbest from the particle’s neighbourhood, given by
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Equation (2.6). With the VNPSO, the neighbourhood of each particle is determined as

follows: The particles are arranged, in index order, into the smallest square 2-dimensional

grid that can contain all the particles. For a swarm with ns particles, the side length of

such a grid is given by d√nse. Empty rows are deleted from the grid. The neighbourhood

of any particle consists of the particles that are positioned directly above, below, to the

left, and to the right of the particle in the grid. For example, a swarm with 10 particles

is arranged into a grid as follows:

1 2 3 4

5 6 7 8

9 10

where each cell indicates the index of a particle. The smallest square grid that can contain

10 particles is a 4 × 4 grid (a slightly smaller 3 × 3 grid can only contain 9 particles).

The last row of the grid is empty, so the grid only contains 3 rows. The neighbours of

particle 6 are particles 2 (above), 5 (to the left), 7 (to the right), and 10 (below). For

particles on the edges of the grid, neighbours are selected by wrapping around; thus, in

this example, the neighbours of particle 10 are particles 2 (below, wrapped around), 6

(above), and 9 (to the left, and also to the right, wrapped around).

2.1.4 Guaranteed Convergence PSO

Van den Bergh and Engelbrecht [62] have shown that the original PSO does not have

guaranteed convergence to a local optimum. In the original gbest PSO as described in

Section 2.1.1, a particle’s cognitive component will have a value of 0 if the particle’s

position coincides with its pbest position. If the particle’s position also coincides with

the swarm’s gbest position, its social component will also be 0, and its position update

will only depend on its inertia; such a particle is susceptible to stagnate at a non-optimal

position. Since the position of stagnation is the globally best position to which other

particles in the swarm are attracted, the entire swarm is susceptible to stagnation at this

position.

To overcome this problem, Van den Bergh and Engelbrecht [60] proposed the guaran-

teed convergence (GC) PSO. At each iteration, the index of the particle with the fittest
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pbest, τ , is determined such that yτ = ŷ. The position of particle τ , xτ , is updated

according to an alternative velocity equation, given by

vτ (t+ 1) = w · vτ (t) +
(
ŷ(t)− xτ (t)

)
+ ρ(t)

(
1− 2r2(t)

)
, (2.7)

where the ρ term causes particle τ to perform a local search around its pbest within a

bounding box, and the value of ρ(t) scales the size of that bounding box. Other particles

are updated according to the basic velocity equation for gbest PSO, given in Equation

(2.2).

The value of ρ is determined as follows: An initial value of ρ(0) = 1 is used. There-

after, at each iteration, ρ is updated according to

ρ(t+ 1) =


2ρ(t) if #successes > sc

1
2
ρ(t) if #failures > fc

ρ(t) otherwise,

(2.8)

where #successes denotes the number of consecutive successes (position updates that

resulted in a fitter pbest), #failures denotes the number of consecutive failures (position

updates that did not result in a fitter pbest), and the constants sc and fc are threshold

parameters for successes and failures, respectively. Whenever #successes is increased,

#failures is reset to zero, and vice versa. To differentiate the algorithm from guaranteed

convergence PSO variants for other network topologies, this algorithm is referred to as

gbest guaranteed convergence PSO, or gbest GCPSO, in this study.

For the gbest PSO, each particle’s neighbourhood consists of the entire swarm. There-

fore, the entire swarm only has a single neighbourhood, and a single gbest particle. Con-

versely, for the lbest PSO and the VNPSO, each particle has a distinct neighbourhood,

each with its own nbest particle, and each particle can be the nbest particle of multiple

neighbourhoods.

Peer et al. [51] expanded GCPSO for algorithms with non-star neighbourhood topolo-

gies as follows. At each iteration, each particle is classified as an nbest particle if its pbest

is the nbest of any of the neighbourhoods it belongs to; otherwise, it is classified as a non-

nbest particle. Each nbest particle’s position is then updated according to the alternative

velocity update equation given by

vi(t+ 1) = w · vi(t) +
(
ŷi(t)− xi(t)

)
+ ρi(t)

(
1− 2r2(t)

)
(2.9)
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where ρi(t) scales the bounding box of the local search performed by particle i. Non-nbest

particles are updated normally according to Equation (2.6).

The value of ρ for each particle is determined as follows. An initial value of ρi(0) = 1

is used. Thereafter, at each iteration, ρi is updated according to

ρi(t+ 1) =


2ρi(t) if xi is an nbest and #successesi > sc

1
2
ρi(t) if xi is an nbest and #failuresi > fc

ρ(t) otherwise ,

(2.10)

where #successesi and #failuresi are the number of consecutive successes (position

updates resulting in improved fitnesses) and failures (position updates not resulting in

improved fitnesses) achieved by particle i while it is an nbest particle. #successesi

is reset to 0 whenever #failuresi is incremented, and vice versa. #successesi and

#failuresi are also reset to 0 whenever particle i becomes a non-nbest particle, and are

not updated while the particle remains a non-nbest particle. Note that, if xi is not an

nbest particle, ρi remains unchanged. This ensures that, whenever the particle becomes

an nbest, it has a previous ρ value to update according to Equation (2.10).

2.1.5 Barebones PSO

Kennedy [27] observed that, in a particle swarm with the personal and neighbourhood

best positions held constant and c1 = c2, multiple position updates yield a distribution of

positions with a mean halfway between the personal and neighbourhood best positions.

Moreover, particles in a PSO have been shown to converge on a theoretical attraction

point, 1
2
(yi+ŷi), which is the position halfway between their personal and neighbourhood

best positions, assuming c1 = c2 [57, 61].

Kennedy [27] proposed the barebones (BB) PSO. The BBPSO does not use velocities

to update particle positions; instead, at each iteration, each particle’s new position is

sampled directly from a Gaussian distribution around the particle’s theoretical attraction

point, where the deviation of the distribution is based on the absolute value of the

distance between the particle’s pbest and nbest positions. For each particle i in a search

space with dimensionality D, each component j ∈ [1, D] of the particle’s position vector
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is updated according to

xij(t+ 1) ∼ N

(
1

2

(
yij(t) + ŷij(t)

)
, σij(t)

)
, (2.11)

where the deviation of the sample, σij(t), is given by |yij(t)− ŷij(t)|.

2.1.6 Modified Barebones PSO

Kennedy [27] also proposed a modified version of the barebones PSO described in Section

2.1.5. In the modified barebones (MBB) PSO, the updated positions of particles are

recombined with their personal best positions. Position component updates are given by

xij(t+ 1) =

yij(t) if U(0, 1) < 0.5

N(1
2

(
yij(t) + ŷij(t)

)
, σij(t)) otherwise.

(2.12)

Particles in the MBBPSO are more cognitively-oriented than particles in the BBPSO,

resulting in more explorative search behaviour.

2.1.7 Social-Only PSO

The social-only PSO (SPSO) [26] is a variant of the gbest PSO where the cognitive

component has been removed. The velocity update equation for each particle only relies

on its inertia component and social component, and is given by

vi(t+ 1) = vinertiai (t) + vsoci (t) , (2.13)

where vinertiai (t) and vsoci (t) are the inertia and social components as defined in Equa-

tions (2.3) and (2.5). Particles in the SPSO are only attracted towards the swarm’s

gbest position. The SPSO exhibits relatively fast convergence and more exploitative

behaviour compared to PSO algorithms where particles are also attracted towards their

pbest positions.

2.1.8 Cognitive-Only PSO

The cognitive-only PSO (CPSO) is a variant of the gbest PSO where the social compo-

nent has been removed. The velocity update equation for each particle only relies on its
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inertia and cognitive component, and is given by

vi(t+ 1) = vinertiai (t) + vcogi (t) , (2.14)

where vinertiai (t) and vcogi (t) are the inertia and cognitive components as defined in Equa-

tions (2.3) and (2.4).

Initially, particles in the CPSO have no velocity, and each particle’s pbest position

is its initial position. The particles will thus remain at their initial positions, unless

additional methods are employed to let the particles start moving. One such method is

to artificially generate a nearby pbest position for each particle.

Particles in the CPSO do not transfer any knowledge about the search space among

one another. A CPSO swarm is effectively a collection of individual hill climbers. The

CPSO is therefore not expected to exhibit convergent behaviour.

2.2 PSO Swarm Diversity

The diversity of a swarm refers to the dispersion of its particles’ positions across the

search space. In a more diverse swarm, particles are, on average, further apart. Olorunda

and Engelbrecht [47] have found the average distance around the swarm centre to be a

suitable measure of diversity. The measure is given by

D =
1

ns

ns∑
i=1

√√√√ D∑
j=1

(xij − x̄j)2 , (2.15)

where ns is the swarm size, D is the dimensionality of the search space, xij is the j-th

dimensional component of the i-th particle’s position, and x̄j is the average of the j-th

dimensional component of all particles’ positions, given by

x̄j =
1

ns

ns∑
i=1

xij . (2.16)

The diversity of a swarm is indicative of the swarm’s search behaviour at a particular

instant. A highly diverse swarm’s particles are dispersed over a wide range of positions;

such a swarm is exploring the search space. Conversely, for a swarm with low diversity,

the particles are concentrated around a small region of the search space; such a swarm

is exploiting a region of the search space.
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2.3 Fitness Landscapes

Optimisation is the task of selecting the best element from a set, based on some criteria.

An optimisation problem can be defined by a fitness function, f : S → R, which maps

candidate solutions from a search space to real values representing the fitness1 of chosen

solutions. For continuous optimisation problems, the search space S ⊂ Rn is a subset

of the Euclidean space, typically with a restricted domain. In order to solve the opti-

misation problem, the aim is to find a solution x∗ ∈ S such that f(x∗) ≤ f(x) ∀x ∈ S
(assuming a minimisation problem; a maximisation problem can be transformed by sim-

ply inverting the sign of the result.) Such a solution is called the global minimum

(assuming a minimisation problem; for a maximisation problem, it is called the global

maximum).

In addition to a globally optimal solution, optimisation problems may have locally

optimal solutions, called local optima. A local optimum is a solution x∗N ∈ S such that

f(x∗N ) ≤ f(x)∀x ∈ N , where N ⊂ S. A search technique is a technique or algorithm

that is used to find an optimum of an optimisation problem. Some search techniques are

simply used to find any optimum for a problem; however, the ideal is for search techniques

to find the global optimum. Optimisation problems with local optima can mislead some

search techniques to believe that their local optima are global optima. Therefore, local

optima may impede the search for global optima. Optimisation problems with only a

single, global optimum are called unimodal. Optimisation problems with additional,

non-global (i.e. local) optima are called multimodal.

For fitness functions defined in one or two dimensions, one can visualise a fitness

landscape (a concept attributable to Wright [68]): the vectors of candidate solutions cor-

respond to coordinates on the terrain, and the fitnesses of those solutions are represented

by the elevation of the terrain at those positions. For maximisation problems, the op-

tima are situated at the peaks of mountains in the landscape. Similarly, for minimisation

problems, the optima are situated at the depths of valleys in the landscape.

When regarding an optimisation problem as a fitness landscape, interesting tech-

1The term fitness here refers to the quality of a solution in the general sense, and is not limited to

the context of evolution.
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niques for analysing the problem become available. For example, consider a hill climbing

optimisation technique. A hill climbing algorithm randomly selects an initial solution

from the search space, and then iteratively replaces it with a similar solution that is

fitter, until no similar solution can be found that is fitter. Hill climbing is considered

to be a local optimisation technique, and as such, is susceptible to fail on multimodal

optimisation problems. A multimodal maximisation problem can be visualised as a land-

scape with a global maximum at the peak of a single tall mountain, and local maxima at

the peaks of smaller hills. It then becomes clear why the hill climbing technique is likely

to fail: The hill climber simply rises to the peak of whichever hill is closest to its initial

starting point; that hill is unlikely to be the tallest mountain in the landscape. In this

example, the notion of a neighbourhood is implied: for a particular initial solution, the

hill climber will only select a fitter solution from its immediate neighbourhood, which is

the set of solutions that are nearby enough. In addition to the set of candidate solutions

and the fitness function, the definition of the neighbourhood of a solution is critical to

the shape of the fitness landscape. For example, suppose that a hill climber solving a

fitness function defined in two dimensions is limited so that it can only move to new

solutions in a single direction; despite the dimensionality of the fitness function, the hill

climber perceives the landscape as a one-dimensional function.

2.4 Fitness Landscape Characteristics

Similar to landscapes in nature, fitness landscapes can exhibit various characteristics.

For example, a landscape can have cliffs, or be steep, or be rough. Analysis of the char-

acteristics of a fitness landscape can further our understanding of what makes it easier

or harder for search techniques to solve optimisation problems. This study focuses on

the ruggedness, neutrality, gradients, global landscape structure (underlying modality),

deception, and searchability of fitness landscapes. These landscape characteristics, along

with a scalar-valued metric for quantifying the presence and severity of each character-

istic, are discussed below.
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2.4.1 Ruggedness

Compare the two landscapes in Figure 2.1. They have similar underlying structures,

but the landscape on the left is smooth, while the landscape on the right is rugged. A

landscape is rugged if it has numerous “ups and downs”, or sudden changes in fitness.

Ruggedness thus refers to the level of variation in a fitness landscape. Rugged landscapes

have many local optima [32, 48], which make them difficult to solve for certain search

techniques.

Vassilev et al. [63] proposed a first entropic measure (FEM) of ruggedness with

regards to neutrality in discrete search spaces. Malan and Engelbrecht [35] adapted

the metric to quantify macro- and micro-ruggedness in continuous search spaces. The

measurements are obtained as follows. The search space is first sampled using a pro-

gressive random walk [38] of nt steps. The first entropic measure of macro-ruggedness,

FEM0.1, uses a step size of 10% of the range of the function domain during the walk.

Similarly, the first entropic measure of micro-ruggedness, FEM0.01, uses a step size of

1% of the domain range. The random walk produces a time series of fitness values,

f1, ..., fnt . From overlapping pairs of fitnesses in this time series, a string of symbols,

S(ε) = s1...snt−1, si ∈ {1̄, 0, 1}, is generated according to

si =


1̄ if fi − fi−1 < −ε

0 if |fi − fi−1| ≤ ε

1 otherwise ,

(2.17)

where ε controls the allowable error between fitnesses that will be considered equal. A

group of three points from the walk, represented by two adjacent symbols, si and si+1,

is considered a rugged group if si 6= si+1. From the set of all overlapping three-point

groups sampled from the walk, the entropy of the sub-set of rugged groups is estimated

using the information function,

H(ε) =
∑
p6=q

P[pq]log6P[pq] , (2.18)

where pq is a substring of two elements in S(ε), and P[pq] is the proportion of occurrences

of pq in S(ε), given by

P[pq] =
n[pq]

nt − 1
, (2.19)
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Figure 2.1: Example of a smooth (left) and a rugged (right) landscape

where n[pq] is the number of occurrences of the substring pq in S(ε).

For larger values of ε, more fitnesses are considered equal, and the landscape becomes

more neutral. The smallest value of ε for which the landscape becomes completely neutral

is denoted as ε∗ and is called the information stability. To obtain a scalar-valued metric

of ruggedness, H(ε) is calculated for various ε ∈ [0, ε∗]; the largest of these results is

taken as the metric of ruggedness. The result is a value in [0, 1], where 0 indicates a flat

landscape, and 1 indicates maximal ruggedness.

2.4.2 Neutrality

Figure 2.2 shows two examples of landscapes with neutrality. The landscape on the left

has a large connected neutral area on the left, and a smaller connected neutral area on

the right. The landscape on the right has many small neutral areas. A fitness landscape

exhibits neutrality if there are sections of the landscape where neighbouring points have

nearly equal fitnesses. At such sections, the slope of the landscape is approximately zero.

(Neutrality is distinct from smoothness in that a smooth landscape is not rugged, but

may still have a non-zero slope to lead search algorithms towards fitter regions of the

landscape.) Neutrality poses a challenge for many search algorithms, because zero-slope

areas of a search space offer no information to guide search in a particular direction.

Some search algorithms may also falsely interpret the lack of variation in fitness as an

indication that the algorithm is converging on an optimum, when it might in fact just

be moving through a neutral area.
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Figure 2.2: Examples of landscapes with neutrality

Van Aardt et al. [58] proposed two neutrality metrics, which are obtained as follows.

The search space is sampled using progressive random walks of nt steps, giving a time

series of fitness values, f1, ..., fnt . A string of symbols, S(ε) = s1, ..., snt−2 , si ∈ [0, 0̄], is

generated from the fitness time series according to

si =

0 if max(fi−1, fi, fi+1)−min(fi−1, fi, fi+1) < ε

0̄ otherwise,
(2.20)

where ε is the neutrality threshold, with higher values for ε resulting in more structures

being considered neutral. Van Aardt et al. [58] used a neutrality threshold of 1× 10−8.

The symbol 0 indicates a neutral 3-point structure in the walk, and 0̄ indicates a non-

neutral structure.

From this string of symbols, two metrics are calculated. The first is the proportion

of neutral structures in a walk, given by

PN(ε) =
nn
|W |

, (2.21)

where nn is the number of neutral structures s in S(ε) such that s = 0, and |W | is the

overall number of structures in S(ε). The result is a value in [0, 1], where 0 indicates that

there is no neutrality in the landscape, and 1 indicates that the landscape is completely

neutral. The metric gives an indication of overall neutrality, but does not provide an

indication of the sizes of individual neutral regions. It would result in a similarly high

value for a landscape with a single, large neutral plain as for a landscape with many

small, disconnected neutral plains.
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The second metric is the longest subsequence of neutral structures in a walk propor-

tionate to the overall number of structures in the walk, given by

LSN(ε) =
max(|wn|)
|W |

, (2.22)

where max(|wn|) is the maximum number of steps in any neutral-only subsequence wn

of S(ε) such that s = 0 ∀ s ∈ wn. The result is a value in [0, 1], where 0 indicates a

landscape with no neutrality, and 1 indicates a completely neutral landscape. The metric

is based on the connectedness of neutral structures, and gives an indication of the size

of neutral plains in the landscape.

2.4.3 Gradients

Compare the landscapes in Figure 2.3. The landscapes have similar shapes, but the

basins of the local optima of the landscape on the right are steeper than those of the

landscape on the left. An important difference between the two landscapes is that

the landscape on the right has steeper gradients. The steepness of the gradients in

a landscape can contribute to its difficulty. Some search algorithms may specifically

struggle to optimise a landscape that has local optima in very deep basins.

Malan and Engelbrecht [36] proposed two metrics for estimating gradients in a land-

scape. Both are based on a sample of the search space using a progressive Manhattan

walk. In this type of walk, each step updates the position by a fixed step size u in a

single randomly-selected dimension. The metrics are obtained as follows. A walk of nt

steps produces a sample of positions, x1, ... ,xnt . A sequence of the normalised gradient

of each step in the walk, g1, ... , gnt−1, is generated according to

gt =
(f(xt+1)− f(xt))/(f

max − fmin)

u/(
∑nt

j=1 x
max
j − xminj )

, (2.23)

where u is the fixed step size used in the progressive Manhattan walk, fmax and fmin

are the maximum and minimum fitness values encountered during the walk, and xmaxj

and xminj are the search space bounds in dimension j.

Malan and Engelbrecht [36] derived two metrics from this sequence. The first metric
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Figure 2.3: Example landscapes with different gradients

is the average gradient, given by

Gavg =

∑nt−1
t=1 |gt|
nt − 1

. (2.24)

Note that the absolute value of each gradient is used. This is so that the metric is not

concerned with the direction of the gradient, and so that gradients across a landscape

with opposite signs do not cancel one another out. The result is a positive real number,

where higher values indicate the presence of steeper slopes. The metric does not, however,

give any indication as to the distribution of the slopes across the search space.

The second metric is the standard deviation of the gradients, given by

Gdev =

√∑nt−1
t=1 (Gavg − |gt|)2

nt − 2
. (2.25)

The result is a positive real number. Lower values indicate that gradients are more

evenly distributed across the landscape, and therefore that Gdev is a good indicator of

the general gradient of the landscape. On the other hand, higher values indicate highly

contrasting gradients at different areas of the landscape; at some areas, there may be

gradients that are vertical or very steep, and at other areas, the landscape may be close

to neutral.

2.4.4 Global Landscape Structure

Compare the landscapes in Figure 2.4. Both landscapes are similarly multimodal and

rugged, but the landscape on the left has an underlying unimodal structure, whereas the
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Figure 2.4: Example landscapes with underlying unimodal (left) and multimodal (right)

global structures

landscape on the right has an underlying multimodal structure. An underlying unimodal

structure can make a landscape easier to optimise for certain algorithms. Likewise, an

underlying multimodal structure can make a landscape harder to optimise.

Lunacek and Whitley [33] introduced a dispersion metric for estimating global land-

scape structure. Malan and Engelbrecht [36] adapted the metric by normalising solution

vectors to allow comparison among landscapes with different domains. The adapted

metric is obtained as follows. First, na positions are sampled from a uniform random

distribution of the search space. The sampled positions are normalised so that the do-

main of the search space is [0, 1] in all dimensions. From such a sample, the subset S∗nb

of the nb fittest positions is determined, where nb < na. Then, disp(S∗nb
) is calculated

as the average pair-wise Euclidean distance between the positions in S∗nb
. The metric is

then given by

DM = disp(S∗nb
)− dispD , (2.26)

where D is the dimensionality of the search space, and dispD is the average pair-wise

Euclidean distance of a large sample taken from U(0, 1)D. The result is a value in

[−dispD,
√
D − dispD], where negative values indicate a landscape with an underlying

unimodal structure, and positive values indicate a landscape with an underlying multi-

modal structure.
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2.4.5 Deception

Gradients in a landscape that lead towards optima act as information to guide search

towards those optima. A landscape’s difficulty is influenced by the availability of such

information, as well as the quality of the available information. Information is considered

to be of high quality if it guides the search towards the global optimum. Information that

leads away from the global optimum is considered deceptive. Compare the two landscapes

in Figure 2.5. In the left landscape, the gradients lead towards the global optimum,

while in the right landscape, the gradients lead away from global optimum. A landscape

with readily available, high quality information is easier to solve than one where such

information is scarce. The difficulty is further increased if a landscape contains deceptive

information.

Jones and Forrest [24] proposed a fitness distance correlation metric for estimating

deception in a landscape for a hill climbing algorithm. The metric indicates how well the

fitness of points in the landscape correlate to their distance from the global optimum. In

a landscape with a perfect correlation between the fitness of positions and their distance

to the global optimum, moving closer to the global optimum always results in a better

fitness; such a landscape perfectly guides search towards the global optimum. If moving

closer to the global optimum results in worse fitness, a search technique could be deceived

to direct its search away from the global optimum. The metric requires that the global

optimum of the landscape be known, making it unsuitable for some practical scenarios.

Malan [37] adapted the metric to lift this requirement by substituting the fittest position

from a sample for the global optimum. This shifts the focus of the metric from deception

in terms of the global optimum to deception in relation to a fitter solution. The adapted

metric is obtained as follows. A sample of na points is taken from the landscape, along

with their associated fitnesses, F = {f1, ... , fna}. The fittest point from the sample, x∗,

is determined. The Euclidean distance from each sampled point to x∗ is determined,

giving Dist∗ = {d∗1, ..., d∗na
}. The metric is the correlation between F and Dist∗, given by

FDC =

∑na

i=1 (fi − f̄)(d∗i − d̄∗)√∑na

i=1 (fi − f̄)2

√∑na

i=1 (d∗i − d̄∗)2

, (2.27)

where f̄ is the mean of F , and d̄∗ is the mean of Dist∗. The result is a value in [−1, 1].
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Figure 2.5: Example landscapes with gradients leading towards (left) and away from (right)

global optima.

Assuming minimisation, higher values indicate landscapes with more high-quality infor-

mation to guide the search towards the global optimum.

2.4.6 Searchability

In genetics, evolvability refers to the capacity to generate fit variants. Changes in the

fitness landscape have been shown to influence evolvability [12, 40]. Therefore, evolv-

ability not only characterises the individual or population undergoing evolution, but is

also linked to the local structure of the search space. In optimisation, evolvability is

limited to evolutionary algorithms. Malan [37] generalises evolvability by introducing

the concept of searchability with regards to a particular search technique. Searchability

refers to the capacity of a particular search technique to move to a fitter position in a

landscape.

Verel et al. [64] introduced fitness clouds as a technique for analysing the evolvability

of a landscape with regards to a particular genetic search operator. The technique

was adapted by Malan and Engelbrecht [37] to analyse searchability with regards to

PSO algorithms, and to derive scalar-valued results from the scatterplot generated by

the original technique. The metric is calculated as follows. A particular variant of

PSO is selected as the search operator (Malan and Engelbrecht selected social-only and

cognitive-only PSO, giving two distinct metrics). Particles of the PSO are randomly

initialised within the search space at positions x1, ...,xns . The particles’ positions are
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then updated using the chosen PSO variant, giving updated positions x′1, ...,x
′
ns

. For

cognitive PSO, particles are initialised with artificially-generated personal best positions

in order for the particles to build up momentum. The particles are initialised with

zero velocity; therefore, each particle’s position is updated twice in order for the inertia

component of the velocity update equation to come into effect. Particles that have left

the search space during the two position updates are discarded, leaving nv valid initial

positions, x1, ...,xnv , and nv updated positions, x′1, ...,x
′
nv

. The first metric, the fitness

cloud index, is the proportion of valid particles for which the fitness was improved, given

by

FCI =

∑nv

i=1 g(i)

nv
, (2.28)

where

g(i) =

1 if f(x′i) < f(xi)

0 otherwise .
(2.29)

The result is a value in [0, 1], where higher values indicate more searchable landscapes.

The metric has two variants corresponding to the variants of PSO that were selected

for the position updates: FCIsoc is the fitness cloud index of a landscape obtained using

updates of the social-only PSO algorithm, and FCIcog is obtained using cognitive-only

PSO.

Malan [34] found that, when taking multiple FCI measurements on a single land-

scape, the unpredictability of the metric is a good indicator of problem difficulty. The

unpredictability of the two FCI metrics taken over multiple runs is determined as fol-

lows. Samples of a sufficiently large sample size na of measurements are taken on

the landscape using FCIsoc, as well as FCIcog, giving two samples of measurements,

FCIsoc(1), ...,FCIsoc(na) and FCIcog(1), ...,FCIcog(na). (A sample size of na = 30 is typ-

ically deemed suitable.) The second metric, the fitness cloud index mean standard

deviation, is then given by

FCIσ̄ =
FCIsoc(σ) + FCIcog(σ)

2
, (2.30)

where FCIsoc(σ) and FCIcog(σ) are the standard deviations of the FCIsoc and FCIcog

samples, respectively. The result is a value in approximately [0, 0.509], where higher
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values indicate that the FCI metrics are less predictable on the landscape, and thus that

the landscape is less searchable.

2.5 Summary

This chapter provided an overview of the particle swarm optimisation (PSO) algorithms

that are used in this dissertation, namely the global best (gbest) PSO, local best (lbest)

PSO, Von Neumann (VN) PSO, guaranteed convergence (GC) variations with star, ring

and Von Neumann topologies, barebones (BB) and modified barebones (MBB) PSOs,

and social-only (S) PSO.

The chapter then discussed the notion of swarm diversity, and discussed a method to

quantify a swarm’s diversity at a particular instant by measuring the average distance

of all particles around the swarm’s center position.

Lastly, the chapter provided an overview of fitness landscapes derived from optimi-

sation problems. Such fitness landscapes may exhibit certain characteristics which, if

measured, can provide insight into the difficulties that the optimisation problems pose

for the search techniques solving those problems. Existing metrics were discussed for a

selection of these fitness landscape characteristics. The ruggedness of a landscape can be

estimated on the micro- and macro-level using the first entropic measures for micro- and

macro-ruggedness (FEM0.01 and FEM0.1, respectively). The proportion of a landscape’s

terrain that is neutral can be estimated by the proportion of neutral structures (PN) in

a random walk, and the connectedness of the neutral terrain can be estimated by the

length of the longest neutral subsequence (LSN) of such a random walk. The severity

of gradients in a landscape can be estimated by the average and the standard deviation

of the gradients between steps of a random walk (Gavg and Gdev, respectively). The

underlying modality of a landscape can be estimated by the dispersion metric (DM).

The deceptiveness of a landscape can be estimated by the fitness-distance correlation

(FDC). A landscape’s searchability with regards to particle swarm optimisers can be

estimated by fitness cloud indices obtained with social and cognitive updates (FCIsoc

and FCIcog, respectively). Additionally, the average standard deviation of fitness cloud

index measurements (FCIσ̄) can be used to estimate a landscape’s searchability.



Chapter 3

Diversity Rate-of-Change

This chapter discusses a measure for quantifying the search behaviour of PSO algorithms.

The measure, called the diversity rate-of-change (DRoC) measure, is based on instan-

taneous diversity measurements taken on a PSO swarm. Aspects of this chapter have

been published in [5].

The chapter is structured as follows. Section 3.1 introduces the DRoC measure.

Section 3.2 tests the DRoC measure’s ability to show differences in the search behaviours

of variants of the PSO algorithm. Section 3.3 tests the robustness of the DRoC measure

with regards to the swarm size used with PSO algorithms. Similarly, Section 3.4 tests

the DRoC measure’s robustness with regards to the dimensionality of the search space,

and Section 3.5 tests the measure’s robustness with regards to the number of diversity

measurements used to calculate the measure. Conclusions are summarised in Section

3.6.

3.1 Diversity Rate-of-Change Measure

Section 2.2 provided a method for measuring the diversity of a PSO swarm. Such a

diversity measurement indicates a PSO’s search behaviour in terms of exploration and

exploitation; however, an individual diversity measurement only indicates an algorithm’s

behaviour at the particular instant at which the measurement was taken. In order to

understand the search behaviour of an algorithm over its entire execution, many diversity

26
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measurements must be taken at various iterations, and the trend over time must be

studied. If an algorithm initially has high diversity, which then reduces rapidly, the

algorithm can be understood to transition from explorative to exploitative behaviour

rapidly. Conversely, if an algorithm reduces its diversity at a relatively slower rate, the

algorithm can be understood to transition from explorative to exploitative behaviour at

a slower rate. All of the PSO algorithms included in this study find a single solution

in a static environment, with no processes implemented in order to manage diversity;

therefore, as they transition from exploration to exploitation, all the PSO algorithms

reduce their diversity in a roughly continuous manner.

In order to quantify the rate at which a PSO reduces its diversity, the diversity

rate-of-change measure is proposed. Measurements are obtained as follows. A PSO is

applied to an optimisation problem for nt iterations. During the execution of the PSO,

the diversity of the swarm at each iteration t is determined as

D(t) =
1

ns

ns∑
i=1

√√√√ D∑
j=1

(xij(t)− x̄j(t))2 , (3.1)

where xij(t) is the j-th dimensional component of the i-th particle at iteration t, and x̄j(t)

is the average of the j-th dimensional component of all particles’ positions at iteration t.

All the diversity measurements taken during the execution of the PSO are approximated

by the two-piecewise linear approximation,

y(t) ≈ D(t) for 0 ≤ t < nt , (3.2)

where the two-piecewise linear approximation takes the form

y(t) =

m1x+ c for 0 ≤ t < t′

m2(x+ t′) +m1t
′ + c for t′ ≤ t ≤ nt ,

(3.3)

where m1 is the gradient of the first line segment, c is the y intersection of the first line

segment, m2 is the gradient of the second line segment, and t′ is the t-value at which the

two line segments cross. The values of m1, m2 and t′ are chosen to minimise the least

squares error (LSE) between y(t) and D, given by

LSE =
nt−1∑
t=0

(
D(t)− y(t)

)2
. (3.4)
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In order to obtain an accurate approximation of the rate at which D(t) decreases, espe-

cially during the initial values of t, the initial y-value of the two-piecewise approximation

is fixed to be the same as the initial y-value of the diversity measurements it approxi-

mates. This is achieved by simply setting c to D(0).

The rate at which a swarm decreases its diversity is indicated by the gradient of the

first line of the linear approximation. If a swarm decreases its diversity at a relatively fast

rate, the first line will have a relatively steeper slope. Conversely, if a swarm decreases

its diversity at a relatively slow rate, the first line will have a relatively gradual slope.

The diversity rate-of-change measure is therefore given by m1, the gradient of the first

line. The measurement is a negative number, where the magnitude of the measurement

indicates the rate at which a swarm transitions from exploration to exploitation. A

smaller DRoC measurement, or equivalently, a negative measurement with a greater

magnitude, indicates that the swarm transitioned to explorative behaviour at a faster

rate.

Consider the diversity measurements plotted in Figure 3.1a. During the first few

iterations, the diversity measurements of the gbest PSO (red) are relatively smaller than

those of the lbest PSO (blue). The gbest PSO transitions from explorative to exploitative

behaviour at a faster rate compared to the lbest PSO for this specific problem. The two-

piecewise linear approximations fitted to the diversity measurements of each PSO are

plotted in Figure 3.1b. Additionally, the DRoC measurement for each algorithm, which

is simply the slope of the first line segment of each two-piecewise approximation, is

indicated in the top-right corner of Figure 3.1b. The DRoC for the gbest PSO is a

smaller number than that of the lbest PSO, indicating that the gbest PSO reduced its

diversity at a faster rate than the lbest PSO.

3.2 Testing the DRoC Measure

This section tests the capability of the DRoC measure to quantify the search behaviour

of PSOs. The section is structured as follows. Expected differences between some PSO

variants with respect to their search behaviour in terms of exploration and exploitation

are given in Section 3.2.1. The experimental procedure used in this section is discussed
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fitted to diversity measurements taken on
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Figure 3.1: Examples of DRoC measurements taken on two PSO algorithms

in Section 3.2.2. Results are discussed in Section 3.2.3. Conclusions are summarised in

Section 3.2.4.

3.2.1 Expected PSO Behaviour

In order to evaluate the DRoC measure, the primary method used in this chapter is to

compare DRoC measurements taken on each of a pair of PSOs, rank them, and determine

whether they relate to one another in a sensible manner. For example, knowing that the

SPSO has a relatively more connected neighbourhood topology than the lbest PSO does,

it is sensible to expect the SPSO to reduce its diversity at a relatively faster rate compared

to the lbest PSO, and therefore, to expect DRoC measurements taken on the SPSO to

have a greater magnitude than those taken on the lbest PSO. If DRoC measurements

taken on the SPSO and the lbest PSO contradict these expectations, that could indicate

a failure of the DRoC measure to accurately indicate the respective algorithms’ search

behaviour. Such a method of investigation requires a set of pre-existing expectations

about how different PSOs should compare to one another in terms of search behaviour.

This section defines such a set of expectations.
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If particles in a PSO algorithm base their position updates on their nbest positions,

the neighbourhood topology of the algorithm is expected to influence the rate at which

the swarm transitions from explorative to exploitative behaviour. Consider a swarm with

neighbourhood topology N . Suppose a particle in this swarm with index τ finds the best

position, x∗, encountered by the swarm so far. This particle becomes the neighbourhood

best particle for all its neighbouring particles in Nτ . Other particles remain unaffected.

If N is a star topology, as with the gbest PSO, gbest GCPSO, and SPSO, then Nτ
is comprised of the entire swarm. The social component of each particle in the swarm

attracts it towards the new nbest position immediately. Once all the particles get close

to the position, the swarm can transition to an exploitative behaviour.

Conversely, if N is a grid topology, as with the VNPSO and VNGCPSO, then Nτ is

comprised of, at most, four particles. Only these particles are immediately attracted to

the new nbest. Once they reach this position, they will adopt the nbest position as their

pbest positions, and they will start attracting their neighbours. In turn, their neighbours

also need to reach the nbest position before they start attracting their neighbours, and

so on. The decreased connectedness of the grid topology slows down the attraction effect

of the nbest position found by any particle, and is expected to slow down the swarm’s

transition from exploration to exploitation.

Similarly, if N is a ring topology, which is the least-connected topology included in

this study, as with the lbest PSO and lbest GCPSO, then Nτ is comprised of only two

particles. Such a swarm is expected to transition from exploration to exploitation at the

slowest rate compared to the other topologies.

Particles in the gbest PSO are relatively well-connected, but each particle’s attraction

to the swarm’s gbest position is counteracted by its attraction to its own pbest position;

the cognitive component of the gbest PSO facilitates exploration [13], and therefore slows

down the swarm’s transition to exploitation. In the SPSO, this cognitive component is

absent. The SPSO is expected to transition to exploitation at the fastest rate compared

to all other algorithms included in this study.

For the guaranteed convergence algorithms (gbest GCPSO, lbest GCPSO, and VN-

GCPSO), the swarm performs a local search around each nbest position; this is done to

prevent the swarm from stagnating prematurely by keeping the swarm in an explorative
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state for longer. The guaranteed convergence algorithms are therefore expected to tran-

sition to exploitation slightly slower than their non-guaranteed convergence counterparts

(gbest PSO, lbest PSO, and VNPSO), though this difference might not be significant.

The BBPSO differs from most of the algorithms in this study in that it does not

update its particles’ positions using a velocity update equation; instead, new positions

are sampled around an attraction point. This attraction point is based on each parti-

cle’s pbest and nbest positions, and a position update based on this attraction point is

somewhat analogous to a velocity update with a cognitive and social component. How-

ever, particles’ previous positions or velocities are not taken into account, so there is no

analogue for an inertia component, which would facilitate exploration for large w values.

Therefore, the BBPSO is expected to transition to exploration slightly faster than the

gbest PSO and the gbest GCPSO.

The MBBPSO differs from the BBPSO in that particles’ updated positions are recom-

bined with their pbest positions in order to facilitate initial exploration. The MBBPSO

is therefore expected to remain in an explorative state for longer than the BBPSO.

In the CPSO, particles are not expected to converge, so the algorithm’s behaviour

can not be described in terms of exploration and exploitation. The CPSO is therefore

not included in this study.

Table 3.1 summarises the expectations regarding the search behaviour of PSOs rel-

ative to one another. The table shows, for the PSO in each row, whether that PSO is

expected to reduce its diversity at a faster or slower rate than the PSO in each column.

For some comparisons, the two PSOs are expected to be only slightly different. In

these cases, finding no significant difference in behaviour between the two PSOs will also

be considered to be in line with expectations.

Some expectations are not defined. For instance, when comparing the gbest PSO to

the MMBPSO, it is expected that the MBBPSO will exhibit slower convergence than

the BBPSO, and that the BBPSO will exhibit faster convergence than the gbest PSO;

however, the degrees of difference are not defined for either comparison, and so no direct

expectation can be defined for the difference in behaviour between the gbest PSO and

the MBBPSO. These comparisons are thus not used when evaluating the DRoC measure

in this chapter.
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Table 3.1: Expected comparative rate of diversity reduction between each pair of PSOs

Gbest PSO VNPSO Lbest PSO

Gbest PSO – Faster Faster

VNPSO Slower – Faster

Lbest PSO Slower Slower –

Gbest GCPSO Slightly slower Undefined Undefined

VNGCPSO Slower Slightly slower Undefined

Lbest GCPSO Slower Slower Slightly slower

BBPSO Slightly faster Faster Faster

MBBPSO Undefined Undefined Undefined

SPSO Faster Faster Faster

Gbest GCPSO VNGCPSO Lbest GCPSO

Gbest PSO Slightly faster Faster Faster

VNPSO Undefined Slightly faster Faster

Lbest PSO Undefined Undefined Slightly faster

Gbest GCPSO – Faster Faster

VNGCPSO Slower – Faster

Lbest GCPSO Slower Slower –

BBPSO Slightly faster Faster Faster

MBBPSO Undefined Undefined Undefined

SPSO Faster Faster Faster

BBPSO MBBPSO SPSO

Gbest PSO Slightly slower Undefined Slower

VNPSO Slower Undefined Slower

Lbest PSO Slower Undefined Slower

Gbest GCPSO Slightly slower Undefined Slower

VNGCPSO Slower Undefined Slower

Lbest GCPSO Slower Undefined Slower

BBPSO – Faster Slower

MBBPSO Slower – Slower

SPSO Faster Faster –
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3.2.2 Experimental Procedure

The DRoC measure is tested as follows. DRoC measurements were obtained on various

PSO algorithms running on various benchmark functions. All of the algorithms used,

along with their respective parameters, are listed in Table 3.2. This study is not con-

cerned with the performance of the algorithms, so no parameter tuning was performed;

instead, well-known defaults were used. Each PSO was used with a swarm size of 25

particles. In order to prevent particles from roaming outside the bounds of the search

space, the PSOs were only allowed to update their pbest and nbest positions if the new

positions were within the search space bounds.

Table 3.3 lists all the benchmark functions used. For each benchmark function,

each PSO was run 30 times from random starting positions, for 2000 iterations. A

DRoC measurement was determined from these diversity measurements by using the

SciPy library [23] to perform two-piecewise linear approximations. For each benchmark

function, for each pair of PSO algorithms, the 30 DRoC measurements of each PSO

algorithm were compared using a pair-wise Mann-Whitney U test with a 95% level

of significance. The result of the rank test indicates whether the first PSO’s DRoC

measurements are significantly lower (-1) or higher (1) than those of the second PSO, or

whether they are not significantly different (0). The rank result for each configuration

is then compared against the intuitive expectations discussed in Section 3.2.1.

Table 3.2: Algorithms and control parameters used in this section

PSO Algorithm Control parameters

Gbest PSO w = 0.729844, c1 = 1.49618, c2 = 1.49618

Lbest PSO w = 0.729844, c1 = 1.49618, c2 = 1.49618

VNPSO w = 0.729844, c1 = 1.49618, c2 = 1.49618

Gbest GCPSO w = 0.729844, c1 = 1.49618, c2 = 1.49618

Lbest GCPSO w = 0.729844, c1 = 1.49618, c2 = 1.49618

VNGCPSO w = 0.729844, c1 = 1.49618, c2 = 1.49618

BBPSO (No control parameters to specify)

MBBPSO Probability of recombination = 0.5

SPSO w = 0.729844, c1 = 0, c2 = 1.49618
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Table 3.3: Benchmark functions used in this section

Function name Domain

Ackley [74] x ∈ [−32, 32]2

Alpine [53] x ∈ [−10, 10]2

Eggholder [45] x ∈ [−512, 512]2

Goldstein-Price [74] x ∈ [−2, 2]2

Griewank [74] x ∈ [−600, 600]2

Levy 13 [45] x ∈ [−10, 10]2

Michalewicz [44] x ∈ [0, π]2

Quadric [74] x ∈ [−100, 100]2

Quartic [74] x ∈ [−1.28, 1.28]2

Rastrigin [74] x ∈ [−5.12, 5.12]2

Rosenbrock [74] x ∈ [−2.048, 2.048]2

Salomon [52] x ∈ [−100, 100]2

Schwefel 2.22 [74] x ∈ [−10, 10]2

Schwefel 2.26 [74] x ∈ [−500, 500]2

Six-hump Camel Back [74] x ∈ [−5, 5]2

Spherical [74] x ∈ [−100, 100]2

Step [44] x ∈ [−20, 20]2

Zakharov [44] x ∈ [−5, 10]2

3.2.3 Results

Table 3.4 shows the rank between each pair of PSOs (columns) for each benchmark

function (rows). The final three rows show the total number of each rank obtained

across all the benchmark functions for each PSO pair. In the final three rows, the

expected ranks for each PSO pair are indicated by shading the relevant rows; for pairs of

PSOs where the difference is not expected to be significant, two rows are shaded, namely

0 (indicating an insignificant difference) and either -1 or 1, depending on the expected

difference. The most-encountered rank is indicated by formatting the rank in bold.

When comparing measurements for the gbest PSO to those for the lesser-connected

VNPSO, lbest PSO, VNGCPSO and lbest GCPSO, the gbest PSO converged at a faster
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Table 3.4: Summarised results of pair-wise Mann-Whitney U tests for each pair of algorithms,

for each benchmark function (continued on next page)
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Ackley -1 -1 0 0 -1 1 0 -1 1 0 1 1 0 1

Alpine 0 -1 0 -1 -1 1 0 -1 0 -1 1 1 0 1

Eggholder 1 1 0 1 1 1 -1 1 0 1 0 -1 0 -1

Goldstein-Price -1 -1 -1 -1 -1 1 0 0 -1 -1 1 1 -1 1

Griewank 0 -1 1 0 0 1 0 -1 1 0 1 1 1 1

Levy 13 -1 -1 0 -1 -1 1 0 0 0 0 1 1 0 1

Michalewicz -1 -1 0 -1 -1 1 0 -1 -1 -1 1 1 -1 1

Quadric -1 -1 0 -1 -1 1 0 0 0 0 1 1 0 1

Quartic -1 -1 -1 -1 -1 1 0 -1 -1 -1 1 1 -1 1

Rastrigin -1 -1 0 -1 -1 1 1 -1 0 -1 1 1 0 1

Rosenbrock -1 -1 0 -1 -1 1 1 0 0 0 1 1 0 1

Salomon -1 -1 0 -1 -1 1 0 0 0 0 1 1 0 1

Schwefel 2.22 -1 -1 0 -1 -1 1 0 0 0 0 1 1 0 1

Schwefel 2.22 -1 -1 0 -1 -1 1 0 0 0 0 1 1 0 1

Six-hump 0 0 0 -1 -1 1 1 0 -1 -1 1 1 -1 1

Spherical -1 -1 0 -1 -1 1 0 0 -1 -1 1 1 0 1

Step -1 -1 0 -1 -1 1 0 0 1 0 1 1 0 1

Zakharov -1 -1 0 -1 -1 1 0 0 0 0 1 1 0 1

Total -1’s 14 16 2 15 16 0 1 6 5 7 0 1 4 1

Total 0’s 3 1 15 2 1 0 14 11 10 10 1 0 13 0

Total 1’s 1 1 1 1 1 18 3 1 3 1 17 17 1 17
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Table 3.4: (Continued from previous page) Summarised results of pair-wise Mann-Whitney

U tests for each pair of algorithms, for each benchmark function
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Ackley 1 0 -1 1 0 -1 1 0 1 1 -1 -1 0

Alpine 1 -1 -1 1 1 -1 1 1 1 1 -1 -1 1

Eggholder -1 0 1 0 -1 1 0 -1 -1 -1 1 -1 -1

Goldstein-Price 1 -1 -1 1 1 -1 1 1 1 1 -1 -1 1

Griewank 1 0 -1 1 0 0 1 0 1 1 -1 -1 -1

Levy 13 1 0 -1 1 0 0 1 1 1 1 -1 -1 -1

Michalewicz 1 -1 -1 1 1 0 1 1 1 1 -1 -1 0

Quadric 1 -1 -1 1 0 0 1 1 1 1 -1 -1 1

Quartic 1 -1 -1 1 1 0 1 1 1 1 -1 -1 -1

Rastrigin 1 -1 -1 1 1 0 1 1 1 1 -1 0 1

Rosenbrock 1 -1 -1 0 1 0 1 1 1 1 -1 1 1

Salomon 1 0 -1 1 0 0 1 1 1 1 -1 -1 0

Schwefel 2.22 1 -1 -1 1 0 0 1 1 1 1 -1 -1 -1

Schwefel 2.22 1 -1 -1 1 0 0 1 1 1 1 -1 -1 -1

Six-hump 1 -1 -1 1 0 0 1 1 1 1 -1 -1 -1

Spherical 1 -1 -1 1 0 0 1 1 1 1 -1 -1 -1

Step 1 0 0 1 0 0 1 1 1 1 -1 -1 -1

Zakharov 1 -1 -1 1 0 0 1 1 1 1 -1 -1 1

Total -1’s 1 12 16 0 1 3 0 1 1 1 17 16 9

Total 0’s 0 6 1 2 11 14 1 2 0 0 0 1 3

Total 1’s 17 0 1 16 6 1 17 15 17 17 1 1 6
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rate for most benchmark functions, as expected. The measures also indicate that the

gbest GCPSO reduced its diversity at a faster rate than the VNGCPSO and lbest

GCPSO in most cases. The BBPSO, which has a star neighbourhood topology like the

gbest PSO, was also found to reduce its diversity at a faster rate than the less-connected

VNPSO, lbest PSO, VNGCPSO and lbest GCPSO in most cases.

When comparing measurements for the VNPSO to the lesser-connected lbest PSO,

no significant difference was found between the two PSOs for most benchmark functions,

contrary to expectations. However, for the cases where a significant difference was found

between the two PSOs, the VNPSO was found to reduce its diversity at a faster rate

in most cases. The significance of the difference in behaviour between the VNPSO and

the lbest PSO may have been overestimated. Similarly, when comparing the VNPSO

to the lesser-connected lbest GCPSO, and when comparing the VNGCPSO to the lbest

GCPSO, no significant differences were found in most cases, with the few differences

found aligning with expectations. These pairs of PSOs also appear to exhibit more similar

behaviour than expected. Consider the difference in size between neighbourhoods in a

VNPSO, whose neighbourhoods contain up to four particles, and an lbest PSO, whose

neighbourhoods contain precisely two particles. The size of the neighbourhoods of these

topologies are relatively similar compared to the neighbourhood of a gbest PSO, which

contains all the particles in the swarm (25 in this study). This might explain why the

VNPSO and the lbest PSO exhibit more similar behaviour than when comparing either

of those algorithms with the gbest PSO.

When comparing the standard PSOs (gbest PSO, lbest PSO, VNPSO) to the GCPSO

algorithms with the same neighbourhoods (gbest GCPSO, lbest GCPSO, VNGCPSO),

no significant difference was measured for most of the benchmark functions, as expected.

For the few differences found, the standard PSOs tended to converge at a faster rate

than the guaranteed convergence variations, as expected.

When comparing measurements for the SPSO to those for PSOs with less-connected

neighbourhoods (lbest PSO, VNSPO, lbest GCPSO, VNGCPSO), the SPSO was indi-

cated to reduce its diversity at a faster rate in almost all cases, as expected. Contrary

to expectations, all of the PSOs with less-connected neighbourhoods were measured as

reducing their diversity at a faster rate than the SPSO for the Eggholder function. This
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seems to indicate that the fitness landscape of a function may influence the DRoC; this

possibility is further investigated in Chapter 4. The SPSO was expected to reduce its

diversity at a faster rate than all other PSOs, but the DRoC measurements usually indi-

cated no significant difference to the gbest PSO and the gbest GCPSO, although most

of the remaining cases aligned with expectations, with only the Eggholder function pro-

ducing a rank contrary to expectations. The difference in behaviour between the SPSO

and the gbest PSO and the gbest GCPSO appears to have been overestimated. On the

other hand, the BBPSO and MBBPSO were usually found to reduce their diversity at a

faster rate than the SPSO, contrary to expectations.

Comparisons between measurements for the BBPSO and the MBBPSO align with

the expectation that the BBPSO would reduce its diversity at a faster rate than the

MBBPSO.

Both the gbest PSO and the gbest GCPSO were found to reduce their diversity at

a slower rate than the BBPSO in most cases, as expected. Similarly, the gbest GCPSO

was found to reduce its diversity at a faster rate than the MBBPSO in most cases, as

expected.

3.2.4 Conclusions

This section tested the capability of the DRoC measure to indicate the search behaviour

of PSO algorithms. The measure was evaluated by ranking DRoC measurements ob-

tained on pairs of PSO algorithms, and testing whether those ranks aligned with the

expected differences between the algorithms in terms of search behaviour. Most of the

ranks did align with the expectations. In some cases where the ranks contradicted expec-

tations, those contradictions were consistently observed for specific benchmark functions;

Chapter 4 investigates whether the fitness landscape characteristics of these benchmark

functions may have influenced the search behaviour of the PSOs in those cases. For

the remaining cases where the ranks did not align with expectations, the deviation from

expectations was not severe; in other words, no significant difference was usually found

where one was expected, or vice versa, but few or no results outright contradicted expec-

tations. These cases can simply be attributed to over- or underestimating the expected

differences between the search behaviour of the relevant PSOs.
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3.3 DRoC Robustness with Regards to Swarm Size

Section 3.2 showed that the DRoC measure is a good indicator of a PSO swarm’s search

behaviour under limited conditions. Specifically, for all tests, all PSOs were used with

a swarm size of 25 particles. DRoC measurements are based on instantaneous diversity

measurements taken on the swarm; therefore, the number of particles in a swarm may

influence DRoC measurements taken on the swarm. Moreover, the number of parti-

cles in a swarm may influence the behaviour of the swarm in terms of exploration and

exploitation, which may, in turn, influence DRoC measurements taken on the swarm.

This section investigates the robustness of the DRoC measure with regards to swarm

size. The experimental procedure used is discussed in Section 3.3.1. The results are listed

and discussed in Section 3.3.2. The findings of the section are summarised in Section

3.3.3.

3.3.1 Experimental Procedure

The procedure for testing the robustness of the DRoC measure with regards to swarm

size was as follows. A number of experimental configurations were generated. Each con-

figuration specifies two PSO algorithms to compare, a single swarm size which was used

for both PSO algorithms, and a single benchmark function that both PSO algorithms

were applied to. The algorithms that were used are listed in Table 3.2 along with their

respective parameters. Each PSO was used with a swarm size of 5, 10, 25, 50, 75, 100

and 500 particles.

Table 3.5 lists all the benchmark functions used. The selected benchmark functions

represent a variety of characteristics: the spherical function is smooth and unimodal,

Table 3.5: Benchmark functions used to test DRoC sensitivity to swarm size

Function name Domain

Spherical [8] x ∈ [−5.12, 5.12]D

Rastrigin [74] x ∈ [−5.12, 5.12]D

Rosenbrock [74] x ∈ [−2.048, 2.048]D

Weierstrass [44] x ∈ [−0.5, 0.5, ]D
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the Rastrigin function is rugged on the micro scale and unimodal on the global scale,

the Rosenbrock function is smooth and multimodal in four dimensions and higher, and

Weierstrass function is rugged on the micro and macro scale. Each benchmark function

was used in 5 dimensions. A configuration was generated for each combination of two

unique PSOs, a swarm size, and a benchmark function.

Each configuration was then run as follows. The first PSO of the configuration was

initialised with the specified swarm size, with the particles initialised at random positions

within the bounds of the search space. The PSO was run on the benchmark function for

2000 iterations. The PSO was restricted from updating its pbest and nbest positions to

positions outside the bounds of the search space. During its run, a diversity measurement

was taken at each iteration. A DRoC measurement was determined for the first PSO

from these diversity measurements. The process was then repeated for the second PSO

of the configuration, resulting in a DRoC measurement for the second PSO.

Each configuration was run 30 times in order to obtain a statistically significant

sample of DRoC measurements for each algorithm. For each configuration, the 30 DRoC

measurements obtained for the first PSO were ranked against those obtained for the

second PSO using a pair-wise Mann-Whitney U test with a 95% level of significance.

The result of the rank test indicates whether the first PSO’s DRoC measurements are

significantly lower (-1) or higher (1) than those of the second PSO, or whether they are

not significantly different (0). The rank result for each configuration was then compared

against the expectations discussed in Section 3.2.1.

3.3.2 Results

Table 3.6 lists the rank results obtained by comparing the DRoC measurements of pairs

of PSOs with a variety of swarm sizes. Only pairs of PSOs for which expectations have

been hypothesised are listed and discussed here; the complete results are listed in Table

B.1. Each sub-table lists the results for a particular pair of PSOs. Expected ranks are

indicated in each sub-table for pairs of PSOs where significant differences were expected.

Cells indicate the rank result for each benchmark function (rows), for each swarm size

(columns). Rank results that contradict expectations are shaded.
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Table 3.6: Ranks of DRoCs for PSO pairs with various swarm sizes

Swarm size: 5 10 25 50 75 100 500

(a) Gbest PSO, VNPSO Expectation: -1

Spherical 0 -1 -1 -1 -1 -1 -1

Rastrigin -1 -1 -1 -1 -1 -1 -1

Rosenbrock 0 -1 -1 -1 -1 -1 -1

Weierstrass 0 0 -1 -1 -1 -1 -1

(b) Gbest PSO, Lbest PSO Expectation: -1

Spherical 0 -1 -1 -1 -1 -1 -1

Rastrigin -1 -1 -1 -1 -1 -1 -1

Rosenbrock -1 -1 -1 -1 -1 -1 -1

Weierstrass -1 -1 -1 -1 -1 -1 -1

(c) Gbest PSO, Gbest GCPSO Expectation: 0 or -1

Spherical 0 0 0 0 0 0 0

Rastrigin 0 0 0 0 0 0 0

Rosenbrock 0 -1 0 0 0 -1 0

Weierstrass -1 -1 -1 -1 -1 -1 -1

(d) Gbest PSO, VNGCPSO Expectation: -1

Spherical 0 -1 -1 -1 -1 -1 -1

Rastrigin -1 -1 -1 -1 -1 -1 -1

Rosenbrock -1 -1 -1 -1 -1 -1 -1

Weierstrass -1 -1 -1 -1 -1 -1 -1

(e) Gbest PSO, Lbest GCPSO Expectation: -1

Spherical -1 -1 -1 -1 -1 -1 -1

Rastrigin -1 -1 -1 -1 -1 -1 -1

Rosenbrock -1 -1 -1 -1 -1 -1 -1

Weierstrass -1 -1 -1 -1 -1 -1 -1

(f) Gbest PSO, BBPSO Expectation: 0 or 1

Spherical 1 1 1 1 1 1 1

Continued on next page . . .
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Table 3.6 (continued)

Swarm size: 5 10 25 50 75 100 500

Rastrigin 0 0 1 1 1 1 1

Rosenbrock 1 0 1 0 0 0 0

Weierstrass -1 -1 -1 -1 -1 -1 -1

(g) Gbest PSO, SPSO Expectation: 1

Spherical 1 1 1 1 1 1 0

Rastrigin 1 1 1 1 1 1 1

Rosenbrock 1 1 0 0 -1 -1 -1

Weierstrass 1 1 1 1 1 0 0

(h) VNPSO, Lbest PSO Expectation: -1

Spherical 0 0 0 -1 -1 -1 -1

Rastrigin 0 0 0 1 1 1 1

Rosenbrock 0 0 -1 -1 -1 -1 -1

Weierstrass 0 0 -1 -1 -1 -1 -1

(i) VNPSO, VNGCPSO Expectation: 0 or -1

Spherical 0 0 -1 -1 -1 -1 -1

Rastrigin 0 0 0 0 0 0 0

Rosenbrock -1 -1 -1 -1 -1 -1 -1

Weierstrass -1 -1 -1 -1 -1 -1 -1

(j) VNPSO, Lbest GCPSO Expectation: -1

Spherical -1 0 -1 -1 -1 -1 -1

Rastrigin 0 0 0 1 1 1 1

Rosenbrock -1 -1 -1 -1 -1 -1 -1

Weierstrass -1 -1 -1 -1 -1 -1 -1

(k) VNPSO, BBPSO Expectation: 1

Spherical 1 1 1 1 1 1 1

Rastrigin 0 1 1 1 1 1 1

Rosenbrock 1 1 1 1 1 1 1

Weierstrass -1 -1 -1 -1 -1 -1 -1

Continued on next page . . .
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Table 3.6 (continued)

Swarm size: 5 10 25 50 75 100 500

(l) VNPSO, SPSO Expectation: 1

Spherical 1 1 1 1 1 1 1

Rastrigin 1 1 1 1 1 1 1

Rosenbrock 1 1 1 1 1 1 1

Weierstrass 1 1 1 1 1 1 1

(m) Lbest PSO, Lbest GCPSO Expectation: 0 or -1

Spherical -1 0 0 0 -1 -1 -1

Rastrigin 0 0 0 0 1 0 1

Rosenbrock -1 -1 -1 -1 -1 -1 -1

Weierstrass -1 -1 -1 -1 -1 -1 -1

(n) Lbest PSO, BBPSO Expectation: 1

Spherical 1 1 1 1 1 1 1

Rastrigin 0 1 1 1 1 1 1

Rosenbrock 1 1 1 1 1 1 1

Weierstrass -1 -1 -1 -1 -1 -1 -1

(o) Lbest PSO, SPSO Expectation: 1

Spherical 1 1 1 1 1 1 1

Rastrigin 1 1 1 1 1 1 1

Rosenbrock 1 1 1 1 1 1 1

Weierstrass 1 1 1 1 1 1 1

(p) Gbest GCPSO, VNGCPSO Expectation: -1

Spherical -1 -1 -1 -1 -1 -1 -1

Rastrigin -1 -1 -1 -1 -1 -1 -1

Rosenbrock -1 -1 -1 -1 -1 -1 -1

Weierstrass -1 -1 -1 -1 -1 -1 -1

(q) Gbest GCPSO, Lbest GCPSO Expectation: -1

Spherical -1 -1 -1 -1 -1 -1 -1

Rastrigin -1 -1 -1 -1 -1 -1 -1

Continued on next page . . .
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Table 3.6 (continued)

Swarm size: 5 10 25 50 75 100 500

Rosenbrock -1 -1 -1 -1 -1 -1 -1

Weierstrass -1 -1 -1 -1 -1 -1 -1

(r) Gbest GCPSO, BBPSO Expectation: 0 or 1

Spherical 1 1 1 1 1 1 1

Rastrigin 0 0 1 1 1 1 1

Rosenbrock 1 1 1 0 0 1 0

Weierstrass -1 -1 -1 -1 -1 -1 -1

(s) Gbest GCPSO, SPSO Expectation: 1

Spherical 1 1 0 1 1 1 1

Rastrigin 1 1 1 1 1 1 1

Rosenbrock 1 1 0 0 -1 0 -1

Weierstrass 1 1 1 1 1 1 0

(t) VNGCPSO, Lbest GCPSO Expectation: -1

Spherical 0 0 0 0 0 0 -1

Rastrigin 0 -1 0 1 1 1 1

Rosenbrock 0 0 -1 -1 -1 -1 -1

Weierstrass 0 0 0 0 0 0 -1

(u) VNGCPSO, BBPSO Expectation: 1

Spherical 1 1 1 1 1 1 1

Rastrigin 0 1 1 1 1 1 1

Rosenbrock 1 1 1 1 1 1 1

Weierstrass 0 -1 -1 -1 -1 0 0

(v) VNGCPSO, SPSO Expectation: 1

Spherical 1 1 1 1 1 1 1

Rastrigin 1 1 1 1 1 1 1

Rosenbrock 1 1 1 1 1 1 1

Weierstrass 1 1 1 1 1 1 1

(w) Lbest GCPSO, BBPSO Expectation: 1

Continued on next page . . .
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Table 3.6 (continued)

Swarm size: 5 10 25 50 75 100 500

Spherical 1 1 1 1 1 1 1

Rastrigin 0 1 1 1 1 1 1

Rosenbrock 1 1 1 1 1 1 1

Weierstrass 0 -1 -1 -1 -1 0 0

(x) Lbest GCPSO, SPSO Expectation: 1

Spherical 1 1 1 1 1 1 1

Rastrigin 1 1 1 1 1 1 1

Rosenbrock 1 1 1 1 1 1 1

Weierstrass 1 1 1 1 1 1 1

(y) BBPSO, MBBPSO Expectation: -1

Spherical -1 -1 -1 -1 -1 -1 -1

Rastrigin 0 -1 -1 -1 -1 -1 -1

Rosenbrock -1 -1 -1 -1 -1 -1 -1

Weierstrass -1 0 -1 0 0 0 0

(z) BBPSO, SPSO Expectation: 1

Spherical 0 -1 -1 -1 -1 -1 -1

Rastrigin 1 1 1 1 1 1 1

Rosenbrock 0 0 -1 0 -1 -1 -1

Weierstrass 1 1 1 1 1 1 1

(aa) MBBPSO, SPSO Expectation: 1

Spherical 1 0 -1 0 -1 -1 -1

Rastrigin 1 1 1 1 1 1 1

Rosenbrock 1 1 1 1 1 1 1

Weierstrass 1 1 1 1 1 1 1

Of the 756 results, 619 are in line with expectations. The remaining results are

discussed below.
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Unexpected Results for Small Swarms

A number of configurations in Table 3.6 contradicted expectations for PSOs used with

small swarm sizes, namely:

• The gbest PSO and the VNPSO on the Spherical function

• The gbest PSO and the lbest PSO on the Spherical function

• The gbest PSO and the VNGCPSO on the Spherical function

• The VNPSO and the lbest PSO on the Spherical, Rosenbrock and Weierstrass

functions

• The VNPSO and the lbest GCPSO on the Spherical function

• The VNPSO and the BBPSO on the Rastrigin function

• The lbest PSO and the BBPSO on the Rastrigin function

• The VNGCPSO and the lbest GCPSO on the Rosenbrock function

• The VNGCPSO and the BBPSO on the Rastrigin function

• The lbest GCPSO and the BBPSO on the Rastrigin function

• The BBPSO and the MBBPSO on the Rastrigin function

For each case identified above, Figure 3.2 plots the mean diversity at each iteration

of the two PSOs being compared. Many of the plots demonstrate that, although their

corresponding rank results are unexpected, those rank results are indeed accurate. For

example, Figure 3.2a shows that, on average, the gbest and VNPSOs transitioned from

exploration to exploitation at a highly similar rate. This is in line with the corresponding

rank of 0 in Table 3.6, which indicated that there was no significant difference between

the search behaviour of the two algorithms. Similarly, in each of Figures 3.2b–e, h–j, m,

and n, the diversities of the two PSOs being compared are very similar to one another.

All of these comparisons were thus correctly ranked as 0. In Figures 3.2f, l, q, and s, the

diversity measurements for one of the PSOs decrease in a relatively less linear fashion,
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(c) Gbest PSO (red) and
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ticles, Weierstrass
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(f) Gbest PSO (red) and
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(i) VNPSO (red) and Lbest
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(j) VNPSO (red) and Lbest
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(k) VNPSO (red) and Lbest
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Figure 3.2: Mean diversities at each iteration for each pair of PSOs where the DRoC mea-

surements ranked as 0 with small swarms, contrary to expectations (Continued on next page)



48 CHAPTER 3. DIVERSITY RATE-OF-CHANGE

0 500 1000 1500 2000
Iteration

0.0

0.2

0.4

0.6

M
ea

n 
di

ve
rs

ity

(m) VNPSO (red) and Lbest

PSO (blue) with 10 parti-

cles, Weierstrass
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(o) VNPSO (red) and

BBPSO (blue) with 5

particles, Rastrigin
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(p) Lbest PSO (red) and
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cles, Rastrigin
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(q) VNGCPSO (red) and

Lbest GCPSO (blue) with 5

particles, Rosenbrock
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(r) VNGCPSO (red) and

Lbest GCPSO (blue) with

10 particles, Rosenbrock

0 500 1000 1500 2000
Iteration

0

2

4

6

M
ea

n 
di

ve
rs

ity

(s) VNGCPSO (red) and

BBPSO (blue) with 5 parti-

cles, Rastrigin
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(t) Lbest GCPSO (red) and
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cles, Rastrigin
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Figure 3.2: (Continued from previous page) Mean diversities at each iteration for each pair of

PSOs where the DRoC measurements ranked as 0 with small swarms, contrary to expectations

exhibiting erratic spikes in diversity. However, for both cases, the spikes in diversity

measurements occur while the PSOs are in an explorative state, and in both cases, the

two PSOs being compared complete transitioning to an exploitative state after roughly

the same number of iterations. This is in line with the corresponding ranks of 0 as seen

in Table 3.6.
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Some of the plots indicate that the ranked DRoC measurements failed to capture the

difference in search behaviour between the PSO algorithms being compared. In Figures

3.2k, o, p, r, t, and u, it is clear that one PSO generally started exploiting the search

space at a slightly earlier iteration than the other, which contradicts their corresponding

rank results of 0. Notably, in some of these figures, the diversity measurements of both

PSOs being compared are very similar to one another up until the point when one PSO

transitions from exploration to exploitation before the other.

Figure 3.3 shows two-piecewise linear approximations of the diversity measurements

of the configurations listed above, for which the ranked DRoC results failed to indicate

the difference in search behaviour between the two PSOs being compared. In Figure

3.3a and d, the slopes of the first lines of the approximations are very similar among the

two PSOs being compared. The DRoC measure is only based on the slope of the first

line, which would cause the DRoC measurements taken on the pairs of algorithms listed

above to be very similar, and to be ranked as not statistically significantly different.

This demonstrates a limitation of the DRoC measurement: it only indicates the rate at

which a swarm decreases its diversity during the exploration phase, without indicating

the duration of this explorative phase. Keeping this limitation in mind, the DRoC

measurements did correlate accurately with the diversity measurements in terms of the

rate at which the PSOs decreased their diversities.

Figures 3.3b, c, e and f each demonstrates a notable difference between the first

approximation lines of the PSOs being compared. For each of these figures, the difference

is actually in line with expectations. For example, in Figure 3.3b, the slope of the first

line corresponding to the lbest PSO is slightly more gradual than that of the BBPSO,

indicating that the BBPSO reduced its diversity at a faster rate than the lbest PSO.

As stated in Section 3.2.1, this is as expected; the BBPSO uses a more connected star

topology than the lbest PSO’s ring topology. The diversity measurements in Figure 3.2n

also indicate that the BBPSO did, indeed, reduce its diversity at a slightly faster rate

during the explorative phase. However, as indicated by the rank result of 0 for each of

these cases, this difference was not statistically significant.



50 CHAPTER 3. DIVERSITY RATE-OF-CHANGE

0 500 1000 1500 2000
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

Ap
pr

ox
im

at
io

n

(a) Lbest PSO (red) and

VNPSO (blue) with 10 par-

ticles, Rosenbrock

0 500 1000 1500 2000
Iteration

0

2

4

6

Ap
pr

ox
im

at
io

n

(b) Lbest PSO (red) and

BBPSO (blue) with 5 parti-

cles, Rastrigin

0 500 1000 1500 2000
Iteration

0

2

4

6

Ap
pr

ox
im

at
io

n

(c) VNPSO (red) and

BBPSO (blue) with 5

particles, Rastrigin

0 500 1000 1500 2000
Iteration

0.5

1.0

1.5

2.0

2.5

Ap
pr

ox
im

at
io

n

(d) VNGCPSO (red) and

Lbest GCPSO (blue) with

10 particles, Rosenbrock

0 500 1000 1500 2000
Iteration

0

2

4

Ap
pr

ox
im

at
io

n

(e) Lbest GCPSO (red) and

BBPSO (blue) with 5 parti-

cles, Rastrigin

0 500 1000 1500 2000
Iteration

0

2

4

6

Ap
pr

ox
im

at
io

n

(f) BBPSO (red) and

MBBPSO (blue) with 5

particles, Rastrigin

Figure 3.3: Mean two-piecewise linear approximations of diversity measurements for small

swarms

Unexpected Results for Large Swarms

Some results in Table 3.6 for PSOs used with high swarm sizes contradicted expectations,

namely:

• The gbest PSO and the SPSO on the Spherical and Weierstrass functions

• The gbest GCPSO and the SPSO on the Weierstrass function

• The lbest PSO and the lbest GCPSO on the Rastrigin function

For each case identified above, Figure 3.4 shows the mean of the diversity measurements

of the PSOs being compared. Figures 3.4a–c demonstrate that the gbest PSO and the

SPSO did indeed exhibit highly similar search behaviour in the respective cases, as

indicated by the ranks of zero. The search behaviour of the gbest GCPSO was also
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Figure 3.4: Mean diversities at each iteration for each pair of PSOs where the DRoC mea-

surements did not compare as expected with large swarms

similar to that of the SPSO on the Weierstrass function with a large swarm, as shown

in Figure 3.4f, which corresponds with the rank of 0 for this configuration.

In Figures 3.4d and e, it appears that the lbest GCPSO reduced its diversity at a

slower rate than the lbest PSO on the Rastrigin function with 75 and 500 particles, as

expected; however, in both cases, the ranks indicated that the lbest GCPSO reduced its

diversity at a faster rate. The average two-piecewise linear approximations for each of

these cases are shown in Figures 3.5a and b. In these figures, it is clear that the slope

for the first line of the lbest GCPSO is slightly steeper than that of the lbest PSO. The

DRoC measure appears to fail to capture the behaviour of the swarms for these cases,

possibly due to the relatively high diversity that the lbest GCPSO maintains for most

of its execution.
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Figure 3.5: Mean two-piecewise linear approximations of diversity measurements for large

swarms

Unexpected Results Across Swarm Sizes

For some PSO pairs and benchmark functions, some of the results in Table 3.6 contra-

dicted expectations for all or most swarm sizes. This was the case for:

• The gbest PSO and the BBPSO on the Weierstrass function

• The gbest PSO and the SPSO on the Rosenbrock function

• The VNPSO and the lbest PSO on the Rastrigin function

• The VNPSO and the lbest GCPSO on the Rastrigin function

• The VNPSO and the BBPSO on the Weierstrass function

• The lbest PSO and the BBPSO on the Weierstrass function

• The gbest GCPSO and the BBPSO on the Weierstrass function

• The gbest GCPSO and the SPSO on the Rosenbrock function

• The VNGCPSO and the lbest GCPSO on the Spherical, Rastrigin and Weierstrass

functions

• The VNGCPSO and the BBPSO on the Weierstrass function
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• The BBPSO and the MBBPSO on the Weierstrass function

• The BBPSO and the SPSO on the Spherical and Rosenbrock functions

• The MBBPSO and the SPSO on the Spherical function

For each case identified above, Figure 3.6 plots the average diversity for all swarm

sizes at each iteration. Figures 3.6a, e–g, l and m demonstrate that, for cases involving

the BBPSO or the MBBPSO applied to the Weierstrass, the BBPSO and the MBBPSO

failed to transition to an exploitative state altogether. Despite the fact that these PSOs

were restricted to only update their pbest and gbest positions to positions within the

search space bounds, the particles left the search space and remained out of bounds

for the duration of the algorithms’ runs. For cases such as these, the DRoC measure-

ments were zeros, indicating that the swarm increased its diversity instead of decreasing

it1. The DRoC measure is based on the assumption that the PSO being measured will,

loosely speaking, decrease its diversity over time. Therefore, a limitation of the mea-

sure is that it can only be used to measure the rate at which a PSO transitions from

exploration to exploitation for cases where the PSO makes the transition. Nonetheless,

given that the diversity-increasing behaviour of the BBPSO and MBBPSO algorithms in

these configurations, the ranks correctly indicated the relative rate at which those PSOs

reduced their diversities.

In figures 3.6i and 3.6k, it is clear that the two PSOs being compared exhibited highly

similar search behaviour. The corresponding ranks of 0 are thus correct.

In figures 3.6n and 3.6p, the BBPSO and the MBBPSO reduced their diversities at

slightly faster rates than the SPSOs, as correctly indicated by the ranks of -1.

Figures 3.6b, h and o, in which diversities are shown for a smaller selection of itera-

tions, each shows that one of the PSOs being compared increased its diversity somewhat

after the initial reduction in diversity. For each of these cases, Figures 3.7a–c shows the

average diversities alongside the resulting two-piecewise linear approximations of each

PSO being compared. The figures demonstrates the effect that the increasing diversity

1 The reason why the DRoC values were zeros instead of positive numbers is because of an imple-

mentation detail of the DRoC measure: in order to aid the two-piecewise linear approximation process,

the slope of the first line was limited to a maximum value of zero.
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Figure 3.6: Mean diversities at each iteration for each pair of PSOs where the DRoC mea-

surements did not compare as expected across swarm sizes (Continued on next page)
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Figure 3.6: (Continued from previous page) Mean diversities at each iteration for each pair

of PSOs where the DRoC measurements did not compare as expected across swarm sizes

had on the fitted two-piecewise linear approximations. For each of these cases the break

point between the two lines was fitted relatively early for the PSO that was expected to

reduce its diversity at a slower rate compared to the other PSO. This resulted in similar

or even steeper first lines for the PSOs where those lines were expected to be less steep.

In each of Figures 3.6c, d and j, the Von Neumann topology-based PSO is shown

to reduce its diversity at a faster rate than the ring topology-based PSO, as expected.

However, in each of these figures, the diversities of the two PSOs are very similar during

the initial iterations. This explains why the pairs of PSOs are ranked 0 for smaller swarm

sizes, but not why they are ranked as 1 for higher swarm sizes. For each of these cases,

Figures 3.7d–f shows the average diversities alongside the resulting two-piecewise linear

approximations of each PSO being compared. The figures demonstrate that, while the

lbest PSO and the lbest GCPSO had a relatively smooth transition from explorative to

exploitative behaviour compared to the VNPSO and the VNGCPSO, the two-piecewise

linear approximations were fit to indicate that the transitions occurred relatively early
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compared to the VNPSO and VNGCPSO, and that the rate at which the lbest PSO

decreased its diversity up until that point was relatively fast.

3.3.3 Summary

This section investigated the DRoC measure when used for PSO algorithms with vari-

ous swarm sizes. Based on expectations regarding the behaviour of various PSOs, the

measure provided accurate results in most cases, with a few exceptions.

For many of the exceptions, it was found that the PSOs exhibited unexpected be-

haviour, which was then successfully reflected in the DRoC measurements for these cases.

For some cases where the PSOs were used with small swarms, the measure accurately

indicated the rate at which the PSOs decreased their diversities, but not the duration of

their explorative behaviour; this is a limitation of the measure.

For some cases where the PSOs were used with large swarms, one of the two PSOs

being compared exhibited a very smooth transition from explorative to exploitative be-

haviour. In these cases, it would be sensible to interpret the transition as relatively

slow; however, the two-piecewise linear approximation on which the DRoC measure is

based was fitted with the break point between the two lines positioned at a relatively

early iteration. From these cases, it appears that, when a PSO makes a slow and smooth

transition from exploration to exploitation, and continues to decrease its diversity during

the exploitative phase, the DRoC measure may fail to provide an accurate measurement.

For some pairs of PSOs on some benchmark functions, for most or all swarm sizes, one

of the PSOs being compared exhibited a trend of increasing diversity after the initial

transition from exploration to exploitation. In these cases, the two-piecewise linear

approximation was also fitted with the break point between the two lines positioned at a

relatively early iteration. It appears that the DRoC measure is not robust in cases where

the diversity of one PSO increases after transitioning from exploration to exploitation.

Aside from the limitations discussed above, the DRoC measure is concluded to be

quite robust with respect to the swarm size of the PSO.
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Figure 3.7: Mean diversity measurements at each iteration for swarm sizes ranging from 50

to 500 particles, with mean two-piecewise linear approximations

3.4 DRoC Robustness with Regards to Dimension-

ality

The dimensionality of a search space influences the diversity of a swarm. Therefore, the

dimensionality of a search space may impact the accuracy of the DRoC measure.



58 CHAPTER 3. DIVERSITY RATE-OF-CHANGE

Similar to Section 3.3, this section investigates the robustness of the DRoC measure

with regards to the dimensionality of the search space. The experimental procedure is

provided in Section 3.4.1. Results are listed and discussed in Section 3.4.2. The findings

of the section are summarised in Section 3.4.3.

3.4.1 Experimental Procedure

The procedure for testing the DRoC measure’s robustness with regards to search space

dimensionality is similar to the procedure used in Section 3.3.1, but instead of testing for

various swarm sizes, various dimensionalities were used. A configuration was generated

for each pair of PSOs listed in Table 3.2, each benchmark function listed in Table 3.5,

and each of the following dimensionalities: 5, 25, 50, 100, 500 and 1000. Each PSO was

used with 25 particles initialised at random positions in the search space, and run for

2000 iterations. Each configuration was run 30 times, giving 30 DRoC measurements

for each PSO in the configuration. The DRoC measurements for the two PSOs in each

configuration were then ranked against one another to determine which, if any, were

significantly greater than the other.

3.4.2 Results

Table 3.7 lists the rank results obtained by comparing the DRoC measurements of pairs

of PSOs in search spaces with various dimensionalities. As with Section 3.3.2, this

section only discusses results for which expectations have been previously discussed; the

complete results are given in Table B.2. Each sub-table lists the results for a particular

pair of PSOs, with expected ranks indicated in each sub-table, and unexpected results

shaded.

Table 3.7: Ranks of DRoCs for PSO pairs in various dimensionalities

Dimensionality: 2 5 25 50 100 500 1000

(a) Gbest PSO, VNPSO Expectation: -1

Spherical -1 -1 -1 -1 0 0 0

Rastrigin -1 -1 -1 0 0 0 0

Continued on next page . . .
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Table 3.7 (continued)

Dimensionality: 2 5 25 50 100 500 1000

Rosenbrock -1 -1 -1 -1 0 0 0

Weierstrass -1 -1 -1 -1 0 0 0

(b) Gbest PSO, Lbest PSO Expectation: -1

Spherical -1 -1 -1 -1 -1 0 -1

Rastrigin -1 -1 -1 0 -1 0 -1

Rosenbrock -1 -1 -1 -1 0 -1 0

Weierstrass -1 -1 -1 -1 0 0 -1

(c) Gbest PSO, Gbest GCPSO Expectation: 0 or -1

Spherical 0 0 0 0 -1 0 0

Rastrigin 0 0 0 0 0 0 0

Rosenbrock 0 0 -1 0 0 0 0

Weierstrass -1 -1 0 0 0 0 0

(d) Gbest PSO, VNGCPSO Expectation: -1

Spherical -1 -1 -1 1 0 -1 -1

Rastrigin -1 -1 -1 1 -1 -1 -1

Rosenbrock -1 -1 -1 1 -1 -1 0

Weierstrass -1 -1 -1 0 0 0 -1

(e) Gbest PSO, Lbest GCPSO Expectation: -1

Spherical -1 -1 -1 -1 -1 -1 -1

Rastrigin -1 -1 -1 0 -1 0 -1

Rosenbrock -1 -1 -1 -1 -1 -1 -1

Weierstrass -1 -1 -1 -1 -1 -1 -1

(f) Gbest PSO, BBPSO Expectation: 0 or 1

Spherical 1 1 0 1 0 0 0

Rastrigin 1 1 0 1 0 0 0

Rosenbrock 1 1 -1 -1 0 -1 0

Weierstrass 1 -1 -1 -1 1 1 1

(g) Gbest PSO, SPSO Expectation: 1

Continued on next page . . .
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Table 3.7 (continued)

Dimensionality: 2 5 25 50 100 500 1000

Spherical 0 1 1 1 1 1 1

Rastrigin 1 1 1 1 1 1 1

Rosenbrock 1 0 1 1 1 1 1

Weierstrass 0 1 1 1 1 1 1

(h) VNPSO, Lbest PSO Expectation: -1

Spherical 0 0 -1 -1 0 0 -1

Rastrigin -1 0 -1 0 -1 0 -1

Rosenbrock 0 -1 -1 -1 0 -1 0

Weierstrass 0 -1 -1 0 0 0 -1

(i) VNPSO, VNGCPSO Expectation: 0 or -1

Spherical -1 -1 1 1 0 -1 -1

Rastrigin 0 0 1 1 -1 -1 -1

Rosenbrock 0 -1 1 1 0 -1 0

Weierstrass -1 -1 -1 1 0 0 -1

(j) VNPSO, Lbest GCPSO Expectation: -1

Spherical -1 -1 0 0 0 -1 -1

Rastrigin -1 0 0 0 -1 -1 -1

Rosenbrock 0 -1 -1 0 -1 -1 -1

Weierstrass -1 -1 -1 0 -1 -1 -1

(k) VNPSO, BBPSO Expectation: 1

Spherical 1 1 1 1 0 0 0

Rastrigin 1 1 1 1 0 0 0

Rosenbrock 1 1 0 0 0 0 0

Weierstrass 1 -1 -1 0 1 1 1

(l) VNPSO, SPSO Expectation: 1

Spherical 1 1 1 1 1 1 1

Rastrigin 1 1 1 1 1 1 1

Rosenbrock 1 1 1 1 1 1 1

Continued on next page . . .
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Table 3.7 (continued)

Dimensionality: 2 5 25 50 100 500 1000

Weierstrass 1 1 1 1 1 1 1

(m) Lbest PSO, Lbest GCPSO Expectation: 0 or -1

Spherical 0 0 1 1 0 -1 -1

Rastrigin 0 0 1 1 0 -1 -1

Rosenbrock 0 -1 0 1 -1 -1 -1

Weierstrass -1 -1 -1 0 0 -1 0

(n) Lbest PSO, BBPSO Expectation: 1

Spherical 1 1 1 1 0 0 1

Rastrigin 1 1 1 1 0 0 1

Rosenbrock 1 1 1 1 0 0 0

Weierstrass 1 -1 -1 1 1 1 1

(o) Lbest PSO, SPSO Expectation: 1

Spherical 1 1 1 1 1 1 1

Rastrigin 1 1 1 1 1 1 1

Rosenbrock 1 1 1 1 1 1 1

Weierstrass 1 1 1 1 1 1 1

(p) Gbest GCPSO, VNGCPSO Expectation: -1

Spherical -1 -1 -1 0 0 -1 -1

Rastrigin -1 -1 -1 1 -1 -1 -1

Rosenbrock -1 -1 -1 0 0 -1 0

Weierstrass -1 -1 -1 0 0 0 -1

(q) Gbest GCPSO, Lbest GCPSO Expectation: -1

Spherical -1 -1 -1 -1 0 -1 -1

Rastrigin -1 -1 -1 -1 -1 -1 -1

Rosenbrock -1 -1 -1 -1 -1 -1 -1

Weierstrass -1 -1 -1 -1 0 -1 -1

(r) Gbest GCPSO, BBPSO Expectation: 0 or 1

Spherical 1 1 0 1 0 0 0

Continued on next page . . .
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Table 3.7 (continued)

Dimensionality: 2 5 25 50 100 500 1000

Rastrigin 1 1 0 1 -1 0 0

Rosenbrock 0 1 -1 -1 0 0 0

Weierstrass 1 -1 -1 0 1 1 1

(s) Gbest GCPSO, SPSO Expectation: 1

Spherical 0 0 1 1 1 1 1

Rastrigin 1 1 1 1 1 1 1

Rosenbrock 1 0 1 1 1 1 1

Weierstrass 1 1 1 1 1 1 1

(t) VNGCPSO, Lbest GCPSO Expectation: -1

Spherical 0 0 -1 -1 0 0 1

Rastrigin 0 0 -1 -1 0 1 0

Rosenbrock 0 -1 -1 -1 0 0 0

Weierstrass 0 0 -1 -1 0 0 0

(u) VNGCPSO, BBPSO Expectation: 1

Spherical 1 1 1 1 0 1 1

Rastrigin 1 1 1 1 0 1 1

Rosenbrock 1 1 0 -1 0 1 0

Weierstrass 1 -1 -1 -1 1 1 1

(v) VNGCPSO, SPSO Expectation: 1

Spherical 1 1 1 1 1 1 1

Rastrigin 1 1 1 1 1 1 1

Rosenbrock 1 1 1 1 1 1 1

Weierstrass 1 1 1 1 1 1 1

(w) Lbest GCPSO, BBPSO Expectation: 1

Spherical 1 1 1 1 0 1 1

Rastrigin 1 1 1 1 0 1 1

Rosenbrock 1 1 1 0 1 1 1

Weierstrass 1 -1 -1 1 1 1 1

Continued on next page . . .
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Table 3.7 (continued)

Dimensionality: 2 5 25 50 100 500 1000

(x) Lbest GCPSO, SPSO Expectation: 1

Spherical 1 1 1 1 1 1 1

Rastrigin 1 1 1 1 1 1 1

Rosenbrock 1 1 1 1 1 1 1

Weierstrass 1 1 1 1 1 1 1

(y) BBPSO, MBBPSO Expectation: -1

Spherical -1 -1 0 1 1 -1 -1

Rastrigin -1 -1 -1 1 -1 -1 -1

Rosenbrock -1 -1 1 1 -1 0 -1

Weierstrass -1 -1 1 1 0 0 0

(z) BBPSO, SPSO Expectation: 1

Spherical -1 -1 1 1 1 1 1

Rastrigin 0 1 1 1 1 1 1

Rosenbrock 1 -1 1 1 1 1 1

Weierstrass -1 1 1 1 1 1 1

(aa) MBBPSO, SPSO Expectation: 1

Spherical -1 -1 1 1 1 1 1

Rastrigin 1 1 1 1 1 1 1

Rosenbrock 1 1 1 1 1 1 1

Weierstrass 0 1 1 1 1 0 1

Of the 756 results, 586 are as expected. The remaining results are discussed below.

Figure 3.8 shows three examples of test cases where one or both of the PSOs failed

to transition from exploration to exploitation. As discussed in Section 3.3.2, the DRoC

measure assumes that the PSO being measured will decrease its diversity. Cases where

the PSO increases its diversity result in non-negative DRoC measurements.

Table 3.8 lists the average DRoC measurements obtained for each PSO, bench-

mark function, and dimensionality studied in this section, with cells highlighted for

non-negative DRoC values.
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Figure 3.8: Example mean diversities for PSO pairs where one or both PSOs did not reduce

diversity

Table 3.8: Average DRoC measurements for various dimensionalities

Dimensionality: 2 5 25 50 100 500 1000

(a) Gbest PSO

Spherical -0.206 -0.219 -0.146 -0.038 0 0 0

Rastrigin -0.129 -0.121 -0.081 -0.004 0 0 0

Rosenbrock -0.037 -0.102 -0.054 -0.01 0 0 0

Weierstrass -0.019 -0.02 -0.012 -0.002 0 0 0

(b) VNPSO

Spherical -0.166 -0.165 -0.087 -0.019 0 0 0

Rastrigin -0.076 -0.058 -0.035 0 0 0 0

Rosenbrock -0.024 -0.054 -0.031 -0.003 0 0 0

Weierstrass -0.017 -0.013 -0.007 0 0 0 0

(c) Lbest PSO

Spherical -0.158 -0.154 -0.07 -0.001 0 0 0

Rastrigin -0.057 -0.058 -0.023 0 0 0 0

Rosenbrock -0.024 -0.048 -0.022 0 0 0 0

Weierstrass -0.014 -0.011 -0.004 0 0 0 0

Continued on next page . . .
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Table 3.8 (continued)

Dimensionality: 2 5 25 50 100 500 1000

(d) Gbest GCPSO

Spherical -0.212 -0.247 -0.155 -0.043 0 0 0

Rastrigin -0.131 -0.115 -0.082 -0.007 0 0 0

Rosenbrock -0.04 -0.088 -0.047 -0.012 0 0 0

Weierstrass -0.015 -0.015 -0.011 -0.002 0 0 0

(e) VNGCPSO

Spherical -0.14 -0.141 -0.104 -0.044 -0.006 -0.003 -0.009

Rastrigin -0.072 -0.059 -0.061 -0.016 -0.001 -0.001 -0.005

Rosenbrock -0.021 -0.039 -0.034 -0.013 -0.001 0 -0.002

Weierstrass -0.004 -0.005 -0.005 -0.002 0 0 0

(f) Lbest GCPSO

Spherical -0.146 -0.141 -0.084 -0.023 -0.002 0 0

Rastrigin -0.064 -0.064 -0.034 -0.001 0 0 0

Rosenbrock -0.021 -0.035 -0.023 -0.004 0 0 0

Weierstrass -0.004 -0.005 -0.003 0 0 0 0

(g) BBPSO

Spherical -0.483 -0.428 -0.146 -0.054 0 0 0

Rastrigin -0.171 -0.147 -0.076 -0.028 0 0 0

Rosenbrock -0.061 -0.124 -0.034 -0.005 0 0 0

Weierstrass -0.041 -0.006 0 -0.068 -5.359 -0.131 -4.953

(h) MBBPSO

Spherical -0.269 -0.286 -0.136 -0.068 -0.016 0 0

Rastrigin -0.111 -0.087 -0.054 -0.036 -0.002 0 0

Rosenbrock -0.04 -0.066 -0.039 -0.017 0 0 0

Weierstrass -0.022 -0.001 -0.056 -0.269 -1.029 -5.071 -4.454

(i) SPSO

Spherical -0.217 -0.257 -0.37 -0.514 -0.933 -2.271 -3.128

Rastrigin -0.187 -0.239 -0.409 -0.604 -0.96 -2.223 -3.098

Continued on next page . . .
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Table 3.8 (continued)

Dimensionality: 2 5 25 50 100 500 1000

Rosenbrock -0.072 -0.1 -0.156 -0.215 -0.366 -0.899 -1.249

Weierstrass -0.02 -0.024 -0.039 -0.062 -0.098 -0.218 -0.302

Non-negative DRoC measurements were observed for benchmark functions with di-

mensionalities of 100 and higher for nearly all PSOs, with the exception of the BBPSO

and the MBBPSO on the Weierstrass function, and the SPSO on all functions. This is

because the particles of a PSO are more likely to roam outside the bounds of the search

space for larger-dimensional problems [46]. Many of the unexpected results in Table

3.7 can thus be attributed to the fact that the PSOs did not transition to exploitative

behaviour.

Excluding all cases where one or both PSOs yielded non-negative DRoC measure-

ments, some unexpected results still remain. Figure 3.9 shows the average diversities for

some of these unexpected cases. As the figure demonstrates, there were additional cases

where the DRoC measurements were negative numbers, but the PSOs failed to transi-

tion to exploitation. Notably, for all of these examples, the PSO that did not reduce its

diversity was either the BBPSO or the MBBPSO, and the benchmark function was the

Weierstrass function.

For most of the remaining cases, the rank results were unexpected but correct, given

the actual behaviour of the PSOs in question. Figure 3.10 shows the average diversities

of each pair of PSOs that were correctly ranked as 1, despite contrary expectations.

Similarly, Figures 3.11 and 3.12 show the average diversities of PSO pairs that were

correctly ranked as 0 and -1, respectively.

The remaining cases are shown in Figure 3.13. Notably, each of Figures 3.13a–j show

that both PSOs spent all or most of their 2000-iteration runs reducing their diversities.

As discussed in Section 3.3.2, a limitation of the DRoC measure is that it may fail to

provide a good estimate of the iteration at which a PSO transitions from exploration

to exploitation if the PSO continually decreases its diversity during the iterations taken

into account. Figure 3.13k shows that the BBPSO increased its diversity after it has

transitioned from exploration to exploitation.
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(b) Gbest PSO (red) and
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in 25 dimensions
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in 5 dimensions
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(f) Lbest PSO (red) and
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in 25 dimensions
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(g) Gbest GCPSO (red) and

BBPSO (blue), Weierstrass

in 5 dimensions

0 500 1000 1500 2000
Iteration

0

1000

2000

3000

4000

M
ea

n 
di

ve
rs

ity

(h) Gbest GCPSO (red) and

BBPSO (blue), Weierstrass

in 25 dimensions
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(i) VNGCPSO (red) and
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in 5 dimensions
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(j) VNGCPSO (red) and
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in 50 dimensions
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(k) Lbest GCPSO (red) and
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100 dimensions
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Figure 3.9: Mean diversities for PSO pairs where one or both PSOs did not reduce diversity

(Continued on next page)
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in 25 dimensions
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strass in 500 dimensions
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Figure 3.9: (Continued from previous page) Mean diversities for PSO pairs where one or both

PSOs did not reduce diversity

3.4.3 Summary

This section investigated the robustness of the DRoC measure with regards to the di-

mensionality of the search space. It was found that, when used in search spaces with

relatively high dimensionalities, the PSOs often did not exhibit the expected search be-

haviour, where the swarm’s diversity would initially be relatively high, followed by a

period where the diversity is reduced as the swarm transitions from exploration to ex-

ploitation, and finally settling in an exploitative state with a relatively low diversity.

Instead, in high-dimensional search spaces, the PSOs usually increased their diversities

for the duration of the experiment (i.e. 2000 iterations), and failed to begin reducing

their diversities. In these cases, the assumption about the general search behaviour

that the DRoC measure is based on did not hold; this was found to be the case with

dimensionalities of 100 and higher in most cases. Consequently, when comparing pairs
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(c) Gbest PSO (red) and

VNGCPSO (blue), Rosen-

brock, 50 dimensions
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brock, 50 dimensions
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Spherical, 25 dimensions

0 500 1000 1500 2000
Iteration

0

5

10

15

20

25

M
ea

n 
di

ve
rs

ity

(j) Lbest PSO (red) and

Lbest GCPSO (blue),

Spherical, 50 dimensions

0 500 1000 1500 2000
Iteration

8

10

12

14

16

M
ea

n 
di

ve
rs

ity

(k) Lbest PSO (red) and

Lbest GCPSO (blue), Ras-

trigin, 25 dimensions

0 500 1000 1500 2000
Iteration

16

18

20

22

24

26

M
ea

n 
di

ve
rs

ity

(l) Lbest PSO (red) and

Lbest GCPSO (blue), Ras-

trigin, 50 dimensions

Figure 3.10: Mean diversities for PSO pairs that were correctly ranked as 1, despite contrary

expectations (Continued on next page)
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Figure 3.10: (Continued from previous page) Mean diversities for PSO pairs that were cor-

rectly ranked as 1, despite contrary expectations

of PSOs against one another in such cases, the rates at which the PSOs reduced their

diversities often contradicted the expectations as set out in Section 3.2.1. Regardless,

non-negative DRoC measurements were found to indicate that the PSOs did not reduce

their diversities; thus the DRoC measure still proved to be a reliable indicator of PSO

search behaviour.

For cases where the PSOs did reduce their diversities in the expected manner, the

DRoC measure was found to be a good indicator of the search behaviour of the PSOs,

regardless of the dimensionality of the search space.
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Figure 3.11: Mean diversities for PSO pairs that were correctly ranked as 0, despite contrary

expectations (Continued on next page)
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Figure 3.11: (Continued from previous page) Mean diversities for PSO pairs that were cor-

rectly ranked as 0, despite contrary expectations
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Figure 3.11: (Continued from previous page) Mean diversities for PSO pairs that were cor-

rectly ranked as 0, despite contrary expectations

3.5 DRoC Robustness with Regards to Number of

Diversity Measurements

The DRoC measure is obtained from a set of instantaneous diversity measurements. The

number of diversity measurements that are taken into account for a DRoC measurement

may therefore influence the accuracy of the DRoC measure. On the one hand, using too

few diversity measurements may provide the measure with insufficient data to produce

an accurate DRoC measurement. On the other hand, with more diversity measurements

used for a DRoC measurement, a larger proportion of the measurements will represent

the PSO’s exploitative state, and a smaller proportion of the diversity measurements

will represent its explorative state. This may result in a two-piecewise linear approxi-

mation that over-represents the exploitative aspect of the PSO, and under-represents its

explorative behaviour.

Similar to Sections 3.3 and 3.4, this section investigates the robustness of the DRoC

measure with regards to the number of diversity measurements taken into account. The

experimental procedure is given in Section 3.5.1. The results are listed and discussed in

Section 3.5.2. The findings of the section are summarised in Section 3.5.3.
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Figure 3.12: Mean diversities for PSO pairs that were correctly ranked as -1, despite contrary

expectations
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Figure 3.13: Mean diversities for PSO pairs where DRoC measurements did not compare as

expected in various dimensionalities
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3.5.1 Experimental Procedure

In order to test the DRoC measure’s robustness with regards to the number of diversity

measurements used, the following approach is used. Experimental configurations are

generated for each PSO listed in Table 3.2, each benchmark function listed in Table

3.5, and for each of 25, 50, 75, 100, 125, 2000 and 10000 diversity measurements. For

each configuration, each PSO is initialised with 25 particles at random starting positions

within the search space bounds of the benchmark function in 25 dimensions. The PSO

is then run for the number of iterations specified by the configuration, with a diversity

measurement taken at each iteration. From these diversity measurements, a DRoC

measurement is determined for the PSO. Each configuration is run 30 times.

For each PSO and benchmark function, there are multiple configurations for the vari-

ous numbers of diversity measurements used. The average DRoC measurements for each

of these configurations are then compared to one another in order to assess the stability

of the DRoC measure when used with different numbers of diversity measurements.

3.5.2 Results

For each set of configurations that use the same PSO and benchmark functions, Fig-

ure 3.14 shows the DRoC measurements obtained with different numbers of diversity

measurements. These DRoC measurements are shown over the diversity measurements

at each iteration (the diversity measurements were scaled to the range of the DRoC

measurements on the y-axis for easy comparison). The iterations at which the DRoC

measurements were taken are indicated by vertical lines.

In Figures 3.14a–r, ab, and af–aj, when small numbers of diversity measurements are

used, the DRoC measurements are relatively low. The DRoC measurements stabilise

once enough diversity measurements are used. The number of iterations at which DRoC

measurements stabilise is case-specific, but appears to be related to the number of iter-

ations needed for the PSO to transition from exploration to exploitation. For example,

in Figure 3.14b, the diversities of the gbest PSO stabilised after approximately 500 iter-

ations when the PSO was solving the Rastrigin function; the DRoC measurements show

a sharp increase up to approximately the same number of iterations, after which they re-
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Figure 3.14: DRoCs calculated with various numbers of iterations (black), shown over diver-

sity measurements at each iteration (grey; not to scale) (Continued on next page)
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Figure 3.14: (Continued from previous page) DRoCs calculated with various numbers of

iterations (black), shown over diversity measurements at each iteration (grey; not to scale)
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Figure 3.14: (Continued from previous page) DRoCs calculated with various numbers of

iterations (black), shown over diversity measurements at each iteration (grey; not to scale)

main fairly stable at a higher measurement value. This relationship between the stability

of the DRoC measurements and that of the diversity measurements is to be expected,

considering that the DRoC measurement is obtained by fitting a two-piecewise linear

approximation to the diversity measurements of a PSO; when fitted to a PSO which

has not yet finished its transition from exploration to exploitation, the fitted lines can

not reflect the rate at which the transition is completed. Thus, the DRoC measure is

not robust when used with too few diversity measurements. The measure might fail to

indicate the behaviour of a PSO when given fewer diversity measurements than required

by the PSO to complete its transition to exploitation.

In Figures 3.14s–aa and ac–ae, rather than being relatively low, the DRoC measure-

ments are relatively high when used with too few diversity measurements. Nonetheless,

in most of these cases, the DRoC measurements stabilise once enough diversity measure-

ments are taken into account, as with the other cases previously discussed.

In the case of Figure 3.14v, the DRoC measurements did not completely stabilise

within 10000 iterations. This might simply be because the lbest PSO fails to completely

reduce its diversity by the end of those iterations when solving the Rastrigin function.



80 CHAPTER 3. DIVERSITY RATE-OF-CHANGE

Note that, in Figures 3.14ab and af, the BBPSO and the MBBPSO did not decrease

their diversities over time. The DRoC measurements for these cases quickly stabilised

to 0, indicating that the PSOs did not transition to exploitation.

3.5.3 Summary

This section investigated the robustness of the DRoC measure with regards to the num-

ber of diversity measurements taken into account. The DRoC measure was found to

fail to indicate the search behaviour of PSOs when too few diversity measurements were

used; specifically, when the PSO was still transitioning from exploration to exploitation

at the iteration of the last diversity measurement taken into account, the diversity mea-

surements provided insufficient information to result in an accurate DRoC measurement.

The minimum number of iterations that should be taken into account is thus situation-

specific: each PSO used with each benchmark function may take a different number

of iterations to reach its exploitative phase. For the cases studied in this section, the

diversity measurements from the first 500 iterations were usually sufficient.

3.6 Conclusions

This chapter described the diversity rate-of-change (DRoC) measure for quantifying

the search behaviour of a PSO, and investigated its robustness with regards to three

variables, namely the swarm size of the PSO, the dimensionality of the search space, and

the number of diversity measurements taken into account, or equivalently, the number

of iterations that the PSO was run for.

The measure was found to be robust with regards to all swarm sizes. However, two

limitations of the DRoC measure were discovered. Firstly, because the DRoC measure

is based on the slope of the first line of a two-piecewise approximation, it is unable

to differentiate PSOs based on the iteration at which they transition from exploration

to exploitation if the PSOs decrease their diversities at the same rate. Secondly, if

a PSO exhibits a very smooth transition from exploration to exploitation, the DRoC

measure may interpret the transition period as the exploitative phase and indicate that

the transition has occurred too early.
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The measure was also found to be robust with regards to dimensionality. Instances

were found where, when used in high-dimensional search spaces, PSOs did not reduce

their diversity as expected. This resulted in DRoC measurements that contradicted

expectations. However, the DRoC measurements did succeed in representing the actual

behaviour of the PSOs under these circumstances by yielding non-negative values.

Lastly, with regards to the number of diversity measurements taken into account, the

DRoC measure was found to fail when informed by too few diversity measurements; 500

measurements were found to be sufficient in most cases.

When used with a sufficient number of diversity measurements, the DRoC measure

can be used to quantify the behaviour of PSO algorithms in terms of exploration and

exploitation. The next chapter compares DRoC measurements among PSOs solving

benchmark functions exhibiting different fitness landscape characteristics in order to de-

termine whether such characteristics predictably influence the behaviour of those PSOs.



Chapter 4

Linking Fitness Landscape

Characteristics to PSO Search

Behaviour

This chapter investigates the influence of the characteristics of fitness landscapes on the

search behaviour of the PSOs that solve them. The previous chapter has shown that

the DRoC measure robustly quantifies PSO search behaviour in terms of exploration

and exploitation. In order to determine the influence of FLCs on PSO search behaviour,

DRoC measurements will be compared to individual FLC measurements for PSOs solving

a variety of benchmark functions that exhibit a variety of FLCs.

Section 4.1 presents a modification to the dispersion metric which improves its ca-

pability to indicate the global landscape structure of a fitness landscape. Section 4.2

investigates correlations between individual FLCs and PSO search behaviour. Conclu-

sions are summarised in Section 4.3.

4.1 Modified Dispersion Metric

The dispersion metric (DM) introduced in Section 2.4.4 depends on two parameters,

namely the size of the initial sample, na, and the size of the subsample of fittest solutions,

nb.

82
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The result of a DM measurement is interpreted to indicate whether a landscape has

a single funnel or multiple funnels. A positive value indicates that the landscape has

multiple funnels, and a negative value that it has a single funnel. However, even for

benchmark functions that are known to have multiple funnels, some DM measurements

may incorrectly indicate that the function is single-funnelled.

Figure 4.1a plots multiple independent DM measurements taken on the Schwefel 2.26

benchmark function in two dimensions with various values for nb. Schwefel 2.26 is known

to have multiple funnels, so the DM measurements are expected to be positive values.

However, as the figure illustrates, some negative measurements are found at virtually all

values for nb. For any choice of parameters, any single measurement could incorrectly

indicate that the function has a single funnel. Similarly, Figure 4.1b shows that negative

DM values are found for many nb values taken on the Rana benchmark function in two

dimensions, which is also known to be multi-funnelled.

A more robust indicator of multiple funnels may be a well-chosen statistically repre-

sentative value from a set of independently sampled DM measurements for varying nb

values. The following metric is therefore proposed as an improved indicator of funnels

in a landscape:

DMmed = median
(
norm(disp(S∗nb

))− dispD
)
∀nb ∈ {2, 3, ...,

na
2
}. (4.1)

In other words, DMmed is the median of the sequence of DM values obtained for sub-

sample sizes ranging from 2 to half of the initial sample size1.

Table 4.1 compares DM measurements to DMmed measurements for some functions in

two dimensions that are known to be either single-funnelled or multi-funnelled. Specif-

ically, for single-funnelled functions, the maximum DM and DMmed values obtained for

30 independent measurements are given, in order to display incorrect measurements

that indicate that the function is multi-funnelled when it is not, if any such measure-

ments were encountered. Similarly, for multi-funnelled functions, the minimum values

for 30 independent measurements are given, in order to display any measurements that

incorrectly indicate that a function has a single funnel. Incorrect values are shaded.

1 nb values are incremented starting from 2, because using a subsample size of 0 would result in an

undefined DM value, and using a subsample size of 1 would result in a DM value of 0.
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Figure 4.1: DM measurements taken on benchmark functions with multiple funnels; incorrect

measurements (indicating that the landscape has a single funnel) are shown in red.

The results illustrate that DMmed does not provide the incorrect measurements that

DM sometimes does. Therefore, the DMmed metric will be used to measure the global

landscape structure of benchmark functions in this chapter.

4.2 Linking Fitness Landscape Characteristics to Par-

ticle Swarm Optimiser Search Behaviour

This section investigates links between single FLCs and the search behaviour of PSOs.

The experimental procedure used is discussed in Section 4.2.1. Results are listed in

Section 4.2.2. The findings are summarised in Section 4.2.3.

4.2.1 Experimental Procedure

The following procedure was used to study links between FLCs and PSO search behaviour

in the context of the DRoC measure. Various FLCs were measured for each function in a

suite of benchmark functions. DRoC measurements were taken for a set of PSOs solving

those benchmark functions. For each PSO, the influence of each measured FLC on the

search behaviour of that PSO was investigated by comparing the FLC measurements

taken on the various benchmark functions against the PSO’s DRoC measurements for
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Table 4.1: Worst DM and DMmed measurements of 30 independent runs on various benchmark

functions

Benchmark function Underlying modality Worst DM Worst DMmed

Ackley Unimodal -0.266 -0.227

Beale Unimodal -0.122 -0.169

Bohachevksy Unimodal -0.277 -0.241

Griewank Unimodal -0.288 -0.247

Levy 13 Unimodal -0.301 -0.240

Michalewicz Unimodal -0.013 -0.092

Quadric Unimodal -0.254 -0.202

Quartic Unimodal -0.281 -0.245

Rana Multimodal -0.020 0.050

Rastrigin Unimodal -0.141 -0.152

Rosenbrock Unimodal -0.140 -0.167

Salomon Unimodal -0.277 -0.239

Schwefel 2.22 Unimodal -0.223 -0.200

Schwefel 2.26 Multimodal -0.157 0.010

Six Hump Camel Back Unimodal -0.284 -0.240

Skew Rastrigin Unimodal -0.231 -0.230

Spherical Unimodal -0.250 -0.246

Step Unimodal -0.278 -0.249

Weierstrass Unimodal -0.211 -0.190

Zakharov Unimodal -0.223 -0.187

those functions.

The FLC metrics included in this study, along with their parameters, are as follows:

Ruggedness The FEM0.1 metric was used with a step size upper bound of 0.1×(xmax−
xmin), and the FEM0.01 metric was used with a step size upper bound of 0.01 ×
(xmax−xmin), where (xmax−xmin) is the domain range of the fitness function. Both

metrics were calculated from 1000 steps for each starting zone, with the number

of starting zones equal to the dimensionality of the fitness function.
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Neutrality The PN and LSN metrics were each used with a step size upper bound of

0.02 × (xmax − xmin), calculated from 200 steps for each starting zone, with the

number of starting zones equal to the dimensionality of the fitness function. For

the PN and LSN metrics, points in a random walk were considered to be neutral

relative to one another when their fitness values were within 1×10−8 of one another.

Gradients The Gavg and Gdev metrics were each used with a fixed step size of 0.001×
(xmax − xmin) × D, calculated from 1000 steps for each starting zone, with one

starting zone used for each dimension of the fitness function.

Global landscape structure The DMmed metric was used with na, the initial sample

size, set to 100 positions, and with nb, the size of the subsample of fittest positions,

ranging from 2 to 50 positions.

Deception The FDC metric was used with a sample size of 1000.

Searchability The FCIsoc and FCIcog metrics were each used with a swarm size of 500

particles. The FCIσ̄ metric was computed from 30 measurements of each of the

FCIsoc and FCIsoc metrics.

These FLC metrics were determined for each benchmark function listed in Table

4.2. Most benchmark functions were used in 5 dimensions, with the exception of certain

functions that are only defined in 2 dimensions. Each FLC metric was calculated for

each benchmark function 30 times, giving 30 measurements.

Table 3.2 lists the PSOs included in this study. Each of these PSOs were used with a

swarm size of 25 particles and run for 2000 iterations, after which a DRoC measurement

was determined. Each PSO was run on each benchmark function 30 times, giving 30

DRoC measurements.

4.2.2 Results

For each FLC metric, Table 4.3 shows the Spearman correlation coefficient [56] between

the FLC metric values for each benchmark function, and the DRoC values obtained for

PSOs on those benchmark functions.
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Table 4.2: Benchmark functions studied in this section

Function name Domain

Ackley [74] x ∈ [−32, 32]5

Alpine [53] x ∈ [−10, 10]5

Beale [44] x ∈ [−4.5, 4.5]2

Bohachevsky [21] (generalised) x ∈ [−15, 15]5

Egg Holder [45] x ∈ [−512, 512]2

Goldstein-Price [74] x ∈ [−2, 2]2

Griewank [74] x ∈ [−600, 600]5

Levy 13 [45] (generalised) x ∈ [−10, 10]5

Michalewicz [44] x ∈ [0, π]5

Pathological [53] x ∈ [−100, 100]5

Quadric (Schwefel 1.2) [74] x ∈ [−100, 100]5

Quartic [74] x ∈ [−1.28, 1.28]5

Rana [52] x ∈ [−512, 512]5

Rastrigin [74] x ∈ [−5.12, 5.12]5

Rosenbrock [74] (generalised) x ∈ [−2.048, 2.048]5

Salomon [52] x ∈ [−100, 100]5

Schwefel 2.22 [74] x ∈ [−10, 10]5

Schwefel 2.26 [74] x ∈ [−500, 500]5

Six-hump Camel Back [74] x ∈ [−5, 5]2

Skew Rastrigin [21] x ∈ [−5, 5]5

Spherical [8] x ∈ [−100, 100]5

Step [74] x ∈ [−20, 20]5

Weierstrass [44] x ∈ [−0.5, 0.5, ]5

Zakharov [44] x ∈ [−5, 10]5

Two groups of strong correlations between FLC metrics and DRoC measurements

are apparent: FCIsoc shows a strong negative correlation with the DRoC measurements

of all PSOs, peaking for the lbest PSO with a correlation coefficient of -0.507; and FCIσ̄

shows a strong positive correlation with the DRoC measurements of all PSOs, peaking
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Table 4.3: Spearman’s correlation coefficient between FLC metrics and DRoC values

FLC metric Gbest PSO VNPSO Lbest PSO Gbest GCPSO VNGCPSO

DMmed 0.290 0.352 0.404 0.296 0.309

LSN 0.027 0.034 0.027 0.029 0.032

FDC -0.308 -0.358 -0.408 -0.311 -0.323

FCIσ̄ 0.472 0.504 0.470 0.466 0.493

FEM0.01 -0.291 -0.289 -0.345 -0.285 -0.292

FEM0.1 0.069 0.092 0.097 0.059 0.068

Gavg 0.042 0.067 0.127 0.035 0.054

FCIsoc -0.392 -0.439 -0.507 -0.409 -0.419

Gdev 0.290 0.321 0.384 0.298 0.319

PN 0.025 0.032 0.024 0.026 0.029

FCIcog -0.090 -0.131 -0.133 -0.087 -0.110

FLC metric Lbest GCPSO BBPSO MBBPSO SPSO

DMmed 0.353 0.355 0.270 0.206

LSN 0.025 0.022 0.036 0.018

FDC -0.371 -0.355 -0.293 -0.233

FCIσ̄ 0.476 0.503 0.370 0.409

FEM0.01 -0.361 -0.280 -0.361 -0.306

FEM0.1 0.055 0.070 -0.068 0.010

Gavg 0.097 0.047 -0.073 0.002

FCIsoc -0.459 -0.438 -0.388 -0.335

Gdev 0.366 0.315 0.245 0.261

PN 0.022 0.020 0.034 0.016

FCIcog -0.097 -0.124 -0.016 -0.020

for the VNPSO with a correlation coefficient of 0.504. The FDC metric exhibits a mod-

erate negative correlation with the DRoC measurements of the lbest PSO, as well as

other PSOs to a lesser extent. Similarly, the DMmed exhibits a moderate positive corre-

lation with the DRoC measurements of the lbest PSO. The FEM0.01 and Gdev metrics

also respectively exhibit a moderate negative and positive correlation. The remaining
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FLC metrics correlated weakly with the DRoC metric. The correlations between the

neutrality metrics, namely PN and LSN, and the DRoC metric were weak, but consis-

tently positive. Very weak correlations were found between the Gavg measurements and

the DRoC measurements.

Recall that the FCIsoc metric indicates the searchability of a landscape with respect

to social-only PSO updates, where higher values indicate more searchable landscapes,

and that low values for the DRoC measure indicate fast convergence (large negative

slope), whereas high DRoC values indicates indicates slow convergence (small negative

slope). The strong negative correlation between this metric and the DRoC measurements

suggests that more searchable landscapes can be expected to correspond with a faster

transition from exploration to exploitation in PSOs. This is to be expected: in the general

sense, the searchability of a landscape with regards to PSOs simply refers to the ability of

a particles of a PSO algorithm to move to fitter positions. In more searchable landscapes,

fitter regions will typically be less dispersed than in less searchable landscapes. As such,

the rate at which a PSO reduces its diversity can be expected to be positively influenced

by more searchable landscapes.

Similarly, higher FCIσ̄ values indicate less searchable landscapes, based on the unpre-

dictability of the FCIsoc and FCIcog metrics. Therefore, the positive correlation between

FCIσ̄ and DRoC measurements is to be expected for the same reasons that FCIsoc and

DRoC were found to be correlated negatively: in more searchable landscapes, PSOs are

able to converge on fitter regions at a faster rate.

It is notable that, while the FCIcog measurements did also correlate negatively with

the DRoC measurements, the correlation was relatively weak compared to the correla-

tion between the FCIsoc measurements and the DRoC measurements, with correlation

coefficients ranging from -0.133 to only -0.016. The FCIsoc and FCIcog metrics both indi-

cate the searchability of a landscape with regards to PSO algorithms, respectively based

on the improvements in fitness obtained by social-only and cognitive-only PSOs. In a

cognitive-only PSO, the particles of the swarm effectively act as individual hill-climbers,

uninfluenced by the normal co-attraction effects between the particles of a more typi-

cal PSO. Thus, rather than indicating that a landscape is more searchable by PSOs in

general, higher FCIcog measurements may be interpreted to indicate that, on average,
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individual regions of the search space are more searchable. Based on this interpretation,

it is not expected that the metric should correlate strongly with the rate at which PSOs

reduce their diversity, as is supported by the weaker correlations between the FCIcog and

DRoC measurements.

All of the benchmark functions used in this section are minimisation problems; there-

fore, higher FDC values indicate landscapes with higher-quality and less deceptive infor-

mation to guide the search towards a fitter position. The negative correlation between

the FDC metric and the DRoC measure is to be expected: in less deceptive landscapes,

the particles of a PSO are guided towards a single fittest region in a more uniform fash-

ion. Such landscapes facilitate convergence; therefore, the particles of PSOs in such

landscapes can be expected to reduce their diversity at faster rates.

From the positive correlation between the DMmed and DRoC measurements, it ap-

pears that single-funnelled landscapes, or landscapes with an underlying unimodal global

structure, allow PSOs to reduce their diversities at a faster rate. Contrarily, in multi-

funnelled landscapes with underlying multimodal global structures, the PSOs reduced

their diversities at a slower rate. Consider that, in single-funnelled landscapes, parti-

cles are likely to be attracted towards the same global optimum, as opposed to multi-

funnelled landscapes, where particles from different starting regions are more likely to

be attracted towards the optima of their regional funnels. It is thus to be expected

that single-funnelled landscapes would correspond with the faster rate at which particles

reduced their diversities in these landscapes.

It is interesting to note that the FEM0.01 measurements correlated negatively to

the DRoC measurements. Intuitively, landscapes that are more rugged at the micro

level, indicated by higher FEM0.01 measurements, may be expected to inhibit the search

capabilities of PSOs, resulting in a slower reduction of diversity. Instead, the negative

correlations found between the FEM0.01 and DRoC measurements indicate that faster

reduction in diversity corresponded to more rugged landscapes at the micro level.

The positive correlation between Gdev and DRoC measurements indicate that PSOs

reduced their diversities at slower rates in landscapes with more variation in their gra-

dients. In other words, for landscapes with steep gradients in some regions and shallow

gradients in others, PSOs reduced their diversities at a slower rate than they did for
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landscapes with more uniform gradients. The Spearman correlation between the Gdev

and FCIsoc measurements taken in this study is -0.672; this suggests that, of the bench-

mark functions included in this study, those with more uniform gradients are also more

searchable.

The correlations between the DRoC measurements and both the PN and LSN metrics

were weak, ranging from 0.036 to only 0.016. These FLCs each indicate the degree of

neutrality in a landscape. This suggests that more neutral landscapes may result in a

slower reduction of diversity in PSOs, but that the effect is not significant.

The correlation between the DRoC measurements and the FEM0.1 measurements

were mostly positive but weak, with the strongest correlation being found for the lbest

PSO at 0.097. A negative correlation of -0.068 was found for the MBBPSO. This suggests

that landscapes with more ruggedness at the macro level correspond with slightly slower

convergence in most PSOs, but the effect is not significant.

No discernible correlation was found between the Gavg measurements and the DRoC

measurements.

4.2.3 Summary

In this section, links between individual FLC metrics and DRoC measurements were

investigated by studying the correlation coefficients between those metrics and the cor-

responding DRoC measurements.

It was found that PSOs reduced their diversity at a faster rate when used on land-

scapes that were more searchable with regards to PSOs. Specifically, higher FCIsoc mea-

surements and lower FCIσ̄ measurements were associated with faster transitions from

exploration to exploitation. Faster reduction in PSO diversity was also associated with

less deceptive landscapes, indicated by higher FDC measurements, with single-funnelled

landscapes, indicated by negatively-valued DMmed measurements, and with landscapes

with less variation in gradients, indicated by lower Gdev measurements. These FLCs

are associated with the difficulty of benchmark functions, and one could conclude that

landscapes that are easier to solve in terms of searchability, deception, global landscape

structure and gradient features would result in faster convergence in the PSOs solving

them.



92
CHAPTER 4. LINKING FITNESS LANDSCAPE CHARACTERISTICS TO PSO

SEARCH BEHAVIOUR

However, more rugged landscapes also corresponded to faster reduction in diversity

in PSOs.

No strong correlations were found between the rate at which PSOs reduced their

diversities and the neutrality of the landscapes, as indicated by either PN or LSN mea-

surements. Nor was Gavg indicative of PSO search behaviour.

4.3 Conclusions

In this chapter, the link between FLCs and PSO search behaviour was investigated.

The DM metric, which indicates the underlying structure of a landscape, was shown

to be occasionally inaccurate. The metric depends on a parameter, nb, which determines

the number of fitter positions to take the dispersion of; however, the optimal choice for

this parameter is problem-specific. Additionally, for any choice of nb, the metric may still

yield results that are not indicative of the true structure of the landscape. A modified

metric, namely DMmed, was proposed to provide more reliable results. The DMmed

metric, which is obtained as the median of DM values obtained for various nb-values

between 2 and na

2
, was shown to provide more accurate measurements of a landscape’s

global structure in cases where the unadapted DM metric failed.

The link between single FLCs and PSO search behaviour was investigated by com-

puting correlation coefficients between each FLC metric and DRoC measurements on a

suite of benchmark functions. A number of possible relationships between FLC metrics

and PSO search behaviour were found. PSOs tended to reduce their diversities at a

faster rate when solving landscapes that were indicated to be more searchable by PSOs,

landscapes that were less deceptive, single-funnelled landscapes, and landscapes with

less variation in their gradients. Neutrality and gradients were not strong indicators of

PSO behaviour. More ruggedness in landscapes was associated with faster convergence,

not with slower convergence as one might expect.



Chapter 5

Conclusions

The research question posed at the beginning of this dissertation was whether links could

be found between the characteristics of optimisation problems and the behaviour of the

search algorithms solving those problems. Specifically, the aim was to find correlations

between each of a set of fitness landscape characteristics (FLCs) and the search behaviour

of a specific class of search algorithms, namely particle swarm optimisers (PSOs).

Chapter 2 discussed the background concepts of the study. The class of particle

swarm optimisation algorithms was explained, as well as each specific variation of the

algorithm that was used in this study; those being the gbest PSO, the lbest PSO, the Von

Neumann PSO (VNPSO), three variations of the guaranteed convergence PSOs (gbest

GCPSO, lbest GCPSO, and VNGCPSO), the barebones PSO (BBPSO) and the modified

barebones PSO (MBBPSO), the social-only PSO (SPSO), and the cognitive-only PSO

(CPSO). These PSOs, except for the CPSO, formed the suite of PSOs that were studied

in terms of the change in their behaviour when applied to different problems.

The behaviour of a PSO at a particular instant can be characterised by measuring

the diversity of its swarm; this notion of diversity was discussed in Chapter 2, and

a metric for quantifying a swarm’s diversity, namely the average distance around the

swarm centre, was explained. Diversity measurements can be interpreted as follows:

When a swarm is relatively diverse, it is in an explorative state. Likewise, when a swarm

is relatively concentrated within a small region of the search space, it is in an exploitative

state. This metric therefore serves as a suitable indicator of a swarm’s behaviour at a

93



94 CHAPTER 5. CONCLUSIONS

particular instant. However, in order to obtain a profile of a PSO’s behaviour over the

course of its execution, single diversity measurements are insufficient; a metric is required

to give an indication of the overall trend of diversity measurements.

The notion of fitness landscape characteristics (FLCs) was also discussed Chapter 2.

A suite of metrics for quantifying specific FLCs was given, namely: the first entropic

measures (FEMs) for quantifying ruggedness of a landscape at the macro- and micro-

level; the proportion of neutral structures (PN) and the longest subsequence of neutral

structures (LSN) encountered during a random walk, for quantifying neutrality in a

landscape; the average (Gavg) and the standard deviation (Gdev) of gradients encountered

during a random walk, for quantifying the gradients in a landscape; the dispersion metric

(DM) for detecting the presence of multiple funnels in a landscape; the fitness-distance

correlation metric (FDC) for quantifying the availability and quality of information in a

landscape to guide search towards an optimal solution, or the degree to which a landscape

might be deceptive to a search algorithm; and fitness cloud index metrics (FCIsoc and

FCIcog) which quantify the searchability of a landscape with regards to social-only and

cognitive-only PSOs, as well as the fitness cloud mean standard deviation (FCIσ̄), which

quantifies the unpredictability of the FCI metrics. These metrics have been selected to

cover a wide range of FLCs, and because each metric requires no prior knowledge of

the search space, is suitable for continuous search spaces, and produces a single, scalar-

valued output. These are the metrics that were ultimately linked to the behaviour of

PSOs.

When the notion of diversity was discussed, it was explained that individual diversity

measurements are insufficient for comparing the behaviours of PSOs among one another.

A novel metric is required to quantify the behaviour of PSOs. Such a metric was pre-

sented in Chapter 3. The metric, called the diversity rate-of-change measure (DRoC),

is obtained by taking a series of diversity measurements while a PSO is executing, then

fitting a two-piece linear approximation to those diversity measurements, and finally

yielding the slope of the first line. The DRoC measure indicates the rate at which a

swarm has transitioned from an explorative state, during which its particles were highly

diverse, to an exploitative state, during which its particles were concentrated in a small

region of the search space. The metric generally produces a negative real value. The
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magnitude of such a measurement indicates the rate at which the transition from explo-

ration to exploitation was completed: negative results with a higher magnitude indicate

a faster rate of transition.

Because the DRoC measurement is determined based on a series of diversity mea-

surements that are obtained during the execution of a PSO algorithm, its suitability

may be expected to depend upon certain variables present during the PSO’s execution.

Diversity measurements are dependent on the individual particles in a swarm, and so

the size of the swarm may influence the DRoC measurements obtained using those di-

versity measurements. Similarly, diversity measurements depend on the dimensionality

of the search space; this dimensionality may have an influence on DRoC measurements.

Lastly, the number of diversity measurements taken into account when determining a

DRoC measurement may influence the DRoC measurement.

In order to determine whether the DRoC metric is a suitable indicator of the search

behaviour of PSOs in terms of exploration and exploitation, the remainder of Chapter

3 served to test the metric’s robustness with regards to these variables. The DRoC

measure was found to be mostly robust with regards to the size of the PSO’s swarm,

the dimensionality of the search space, and the number of diversity measurements that

it takes into account, with the following limitations. Firstly, the measure does not indi-

cate the earliest iteration at which a swarm can be considered to have transitioned from

exploration to exploitation; instead, it indicates the rate at which this transition occurs.

The distinction is subtle, but implies that for two PSOs that decrease their diversities

at roughly the same rate, but with one PSO smoothing its diversity out at an earlier

iteration, the DRoC measure might not be able to differentiate between the two PSOs.

Secondly, it was found that the DRoC measure sometimes failed to fit its two-piecewise

approximation in a sensible fashion for PSOs exhibiting a very smooth, consistent de-

crease in diversity. Where the measure would be expected to indicate a relatively slow

transition to exploitation, it would sometimes indicate a relatively fast transition in-

stead. Thirdly, for search spaces with very high dimensionalities, PSO swarms often

failed to reduce their diversities altogether. In these instances, the DRoC measure did

not produce negative results as expected. However, the non-negative DRoC measure-

ments may be interpreted to indicate this failure of a PSO to transition from exploration
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to exploitation. Lastly, in order to indicate the rate at which a PSO transitions from

exploration to exploitation, the DRoC must be determined from diversity measurements

taken at least up until the point when the transition is complete. If the measure is

calculated while the PSO is still transitioning, the diversity measurements were found

to provide insufficient information to inform the measurement. The number of diversity

measurements required is thus problem-specific; however, for most cases, the diversity

measurements from the first 500 iterations were sufficient.

In Chapter 4, the metric for indicating the presence of multiple funnels in a landscape,

DM, was shown to be an unreliable metric. A modified metric was presented. The

modified metric, called the DMmed, is obtained by taking several DM measurements,

and then taking the median of those measurements. The DMmed metric was shown to

be a more suitable indicator of a landscape’s global structure.

Using the suite of FLCs introduced in Chapter 2 (with DM replaced by the new

DMmed), as well as the suite of PSOs introduced in Chapter 2, Chapter 4 then addressed

the research question by studying correlations between FLCs and the search behaviour

of PSOs.

Some promising and intuitive correlations were found. For more searchable land-

scapes, indicated both by higher FCIsoc values and lower FCIσ̄ values, the PSOs were

found to reduce their diversities at a faster rate. Higher FCIcog values also correlated

with faster reduction of diversity, but the correlation was relatively weak; this is pos-

sibly because the FCIcog metric indicates the searchability of a landscape with regards

to the cognitive-only PSO, which does not exhibit the same convergent behaviour found

with the other PSOs studied in this chapter. For landscapes that offer higher quality

information to guide search algorithms towards optima, indicated by higher FDC values,

the PSOs were also found to transition to exploitation at a faster rate, while lower FDC

values, which indicate more deceptive landscapes, correlated with slower convergence in

the PSOs. Faster transition to exploitation was observed in PSOs for landscapes with

simpler, single-funnelled structures, indicated by lower DMmed values, and landscapes

with multiple funnels, indicated by higher DMmed values, correlated with slower conver-

gence in the PSOs. In landscapes with less variation in their gradients, indicated by

lower Gdev values, the PSOs were found to converge at a faster rate.
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Some of the resulting correlations were surprising. Landscapes with more ruggedness

at the micro level, indicated by higher FEM0.01 values, may be expected to correlate with

a slower transition to exploitation due to the increased complexity in the landscapes.

Instead, these landscapes correlated negatively with the DRoC measure, indicating that

the PSOs transitioned to exploitation at a faster rate.

The remaining correlations were weak, indicating that the FLCs in question did

not act as strong indicators of PSO search behaviour. For more neutral landscapes,

indicated by higher PN and LSN values, the PSOs were found to reduce their diversities

at a slightly slower rate, though the correlation was not significant. For landscapes with

more ruggedness at the macro level, indicated by higher FEM0.1 values, most PSOs were

found to reduce their diversities at a slightly slower rate, though the correlation was not

significant, and an exception was found for the MMPSO, which was found to reduce

its diversities at a slightly faster rate. No correlation was found between the average

steepness of gradients in a landscape, given by Gavg, and the rate at which the PSOs

converged.

For most of the findings, it seems that when the FLC values indicated a landscape to

be easier to optimise, the PSOs were able to converge on a promising region at a faster

rate. This was the case for landscapes that could be considered easier to solve due to

being more searchable, being less deceptive, having simpler underlying structures, and

having less variation in gradients. The exceptions were that landscapes did not correlate

with faster convergence when those landscapes exhibited less ruggedness, less neutrality,

or shallower gradients.

These findings may form a basis upon which an algorithm selection framework can be

founded by providing a deeper understanding of the link between optimisation problems

and search algorithm behaviour. Being able to predict how a search algorithm will

behave on an optimisation problem may eventually allow optimisation practitioners to

choose an optimal algorithm for any given problem, based on a quick analysis of the

characteristics of the problem.

The DRoC measure, which was used to quantify the search behaviour of PSOs,

exhibited certain limitations. The measure did not indicate the approximate iteration at

which a swarm transitions from exploration to exploitation; instead, it indicated the rate
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at which this transition occurred in terms of decreased swarm diversity. The measure

also failed in some test cases where a swarm decreased its diversity at very gradual rate,

and in some test cases where a swarm showed a trend of increasing diversity after the

initial transition to exploitation.

Future work is needed to address these limitations. For this study, the DRoC measure

was determined as the slope of the first line of a two-piecewise linear approximation.

Other metrics from such an approximation may prove to be successful indicators of

algorithm behaviour; for example, the x-coordinate of the intersection between the two

lines could be an indicator of the iteration at which the transition to exploitation is

completed, and could thus indicate the duration of the algorithm’s explorative phase.

The limitations of the measure might also be overcome by generalising the two-piecewise

approximation to other regression techniques, such as polynomial regression.

The scope of this research was limited in certain aspects with regards to the research

question. The characteristics of optimisation problems were only studied in terms of

FLCs, and only in terms of a specific suite of metrics to indicate particular FLCs. The

optimisation problems considered were all continuous, with a single global optimum, and

did not change dynamically. The search algorithms studied were limited to a suite of

PSOs that are known to exhibit convergent behaviour. The search behaviour of the PSOs

was measured only in terms of the rate at which they transitioned from exploration to

exploitation.

Future research may focus on expanding upon the above limitations. Optimisation

problems may be characterised in terms of other FLC metrics not included in this study,

such as low-level exploratory landscape metrics [42]. Aside from PSOs, many other search

techniques remain to be studied, including other population-based algorithms such as

genetic algorithms [22], ant colony optimisation [10], and firefly optimisation [69], as

well as a plethora of other search techniques, such as gradient descent, tabu search [19],

and simulated annealing [30]. For any given search technique, the search behaviour of

the algorithm may be quantified in various ways, possibly shedding more light on the

relationship between the problems being solved and the algorithms solving them.
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Appendix A

Symbols

A.1 Chapter 2

x A solution vector

x∗ Globally optimal solution vector

f(x) Fitness of candidate solution x

S Search space

N Neighbourhood

nt Number of steps in a walk

ε Error parameter

S(ε) String of symbols

si Symbol i in a string of symbols

H(ε) Measure of entropy

ε∗ Information stability

FEM0.1 First entropic measure of macro ruggedness

FEM0.01 First entropic measure of micro ruggedness

nn Number of neutral structures in a walk

|W | Total number of structures in a walk

wn Neutral-only subsequence of a walk

gt Gradient at step t

PN(ε) Proportion of neutral structures in a walk
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LSN(ε) Longest subsequence of neutral structures in a walk

u Step size

Gavg Average estimated gradient within a walk

Gdev Standard deviation of gradient measures from the mean

na Sample size

Sna Sample of na positions

nb Sub-sample size

S∗nb
Subset of the nb fittest positions of Sna

disp(S) Dispersion of S

DM Dispersion metric

d∗i Distance from position i to x∗

FDCm Fitness distance correlation measure

x′i Updated solution vector at index i

nv Number of valid solutions after updates

FCIcog Fitness cloud index based on cognitive updates

FCIsoc Fitness cloud index based on social updates

FCIσ̄ Fitness cloud index mean standard deviation

ns Number of particles

D Dimensionality of the search space

xi(t) Position of particle i at time step t

vi(t) Velocity of particle i at time step t

w Inertia weight constant

c1 Cognitive acceleration constant

c2 Social acceleration constant

yi(t) Personal best position of particle i at time step t

ŷ(t) Global best position at time step t

ŷi(t) Neighbourhood best position of particle i at time step t

τ Index of particle with fittest personal best

ρi(t) Local search bounding box scaling factor for particle i at time step t
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A.2 Chapter 3

D Swarm diversity

xik k-th dimensional component of position i

y(t) ∼ D(t) Two-piecewise linear approximation of D
aj y intersection of the j-th line segment in piecewise linear approximation

bj Gradient of the j-th line segment in two-piecewise linear approximation

t′ x offset of the breakpoint in two-piecewise linear approximation

LSE Least squares error

A.3 Chapter 4

DMmed Median disperion metric

ι Incrementation value used in DMmed



Appendix B

Complete Results from DRoC

Robustness Experiments

The robustness of the DRoC measure was tested in Chapter 3 by ranking DRoC mea-

surements against one another for pairs of PSO algorithms. Results were only listed and

discussed for pairs of algorithms for which expectations regarding their differing search

behaviour had been defined. This appendix lists the full results with comparisons among

all pairs of PSO algorithms.

B.1 Robustness with Regards to Swarm Size

Table B.1: Complete ranks of DRoCs for PSO pairs with various swarm sizes

Swarm size: 5 10 25 50 75 100 500

Gbest PSO, Lbest PSO

Spherical 0 -1 -1 -1 -1 -1 -1

Rastrigin -1 -1 -1 -1 -1 -1 -1

Rosenbrock -1 -1 -1 -1 -1 -1 -1

Weierstrass -1 -1 -1 -1 -1 -1 -1

Gbest PSO, VNPSO

Continued on next page . . .
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Table B.1 (continued)

Swarm size: 5 10 25 50 75 100 500

Spherical 0 -1 -1 -1 -1 -1 -1

Rastrigin -1 -1 -1 -1 -1 -1 -1

Rosenbrock 0 -1 -1 -1 -1 -1 -1

Weierstrass 0 0 -1 -1 -1 -1 -1

Gbest PSO, Gbest GCPSO

Spherical 0 0 0 0 0 0 0

Rastrigin 0 0 0 0 0 0 0

Rosenbrock 0 -1 0 0 0 -1 0

Weierstrass -1 -1 -1 -1 -1 -1 -1

Gbest PSO, Lbest GCPSO

Spherical -1 -1 -1 -1 -1 -1 -1

Rastrigin -1 -1 -1 -1 -1 -1 -1

Rosenbrock -1 -1 -1 -1 -1 -1 -1

Weierstrass -1 -1 -1 -1 -1 -1 -1

Gbest PSO, VNGCPSO

Spherical 0 -1 -1 -1 -1 -1 -1

Rastrigin -1 -1 -1 -1 -1 -1 -1

Rosenbrock -1 -1 -1 -1 -1 -1 -1

Weierstrass -1 -1 -1 -1 -1 -1 -1

Gbest PSO, BBPSO

Spherical 1 1 1 1 1 1 1

Rastrigin 0 0 1 1 1 1 1

Rosenbrock 1 0 1 0 0 0 0

Weierstrass -1 -1 -1 -1 -1 -1 -1

Gbest PSO, MBBPSO

Spherical 0 0 1 1 1 1 1

Rastrigin -1 -1 0 0 0 -1 -1

Rosenbrock 0 -1 -1 -1 -1 -1 -1

Continued on next page . . .
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EXPERIMENTS

Table B.1 (continued)

Swarm size: 5 10 25 50 75 100 500

Weierstrass -1 -1 -1 -1 -1 -1 -1

Gbest PSO, SPSO

Spherical 1 1 1 1 1 1 0

Rastrigin 1 1 1 1 1 1 1

Rosenbrock 1 1 0 0 -1 -1 -1

Weierstrass 1 1 1 1 1 0 0

Lbest PSO, VNPSO

Spherical 0 0 0 1 1 1 1

Rastrigin 0 0 0 -1 -1 -1 -1

Rosenbrock 0 0 1 1 1 1 1

Weierstrass 0 0 1 1 1 1 1

Lbest PSO, Gbest GCPSO

Spherical 0 1 1 1 1 1 1

Rastrigin 1 1 1 1 1 1 1

Rosenbrock 0 1 1 1 1 1 1

Weierstrass -1 0 1 1 1 1 1

Lbest PSO, Lbest GCPSO

Spherical -1 0 0 0 -1 -1 -1

Rastrigin 0 0 0 0 1 0 1

Rosenbrock -1 -1 -1 -1 -1 -1 -1

Weierstrass -1 -1 -1 -1 -1 -1 -1

Lbest PSO, VNGCPSO

Spherical 0 0 0 0 0 0 -1

Rastrigin 0 1 0 0 0 -1 -1

Rosenbrock -1 -1 -1 -1 -1 -1 -1

Weierstrass -1 -1 -1 -1 -1 -1 -1

Lbest PSO, BBPSO

Spherical 1 1 1 1 1 1 1

Continued on next page . . .
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Table B.1 (continued)

Swarm size: 5 10 25 50 75 100 500

Rastrigin 0 1 1 1 1 1 1

Rosenbrock 1 1 1 1 1 1 1

Weierstrass -1 -1 -1 -1 -1 -1 -1

Lbest PSO, MBBPSO

Spherical 0 1 1 1 1 1 1

Rastrigin 0 0 1 1 1 1 1

Rosenbrock 0 0 1 1 1 1 1

Weierstrass -1 -1 -1 -1 -1 -1 -1

Lbest PSO, SPSO

Spherical 1 1 1 1 1 1 1

Rastrigin 1 1 1 1 1 1 1

Rosenbrock 1 1 1 1 1 1 1

Weierstrass 1 1 1 1 1 1 1

VNPSO, Gbest GCPSO

Spherical 0 1 1 1 1 1 1

Rastrigin 1 1 1 1 1 1 1

Rosenbrock 0 1 1 1 1 1 1

Weierstrass -1 -1 1 1 1 1 1

VNPSO, Lbest GCPSO

Spherical -1 0 -1 -1 -1 -1 -1

Rastrigin 0 0 0 1 1 1 1

Rosenbrock -1 -1 -1 -1 -1 -1 -1

Weierstrass -1 -1 -1 -1 -1 -1 -1

VNPSO, VNGCPSO

Spherical 0 0 -1 -1 -1 -1 -1

Rastrigin 0 0 0 0 0 0 0

Rosenbrock -1 -1 -1 -1 -1 -1 -1

Weierstrass -1 -1 -1 -1 -1 -1 -1

Continued on next page . . .
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EXPERIMENTS

Table B.1 (continued)

Swarm size: 5 10 25 50 75 100 500

VNPSO, BBPSO

Spherical 1 1 1 1 1 1 1

Rastrigin 0 1 1 1 1 1 1

Rosenbrock 1 1 1 1 1 1 1

Weierstrass -1 -1 -1 -1 -1 -1 -1

VNPSO, MBBPSO

Spherical 1 1 1 1 1 1 1

Rastrigin 0 0 1 1 1 1 1

Rosenbrock 0 0 1 1 1 1 1

Weierstrass -1 -1 -1 -1 -1 -1 -1

VNPSO, SPSO

Spherical 1 1 1 1 1 1 1

Rastrigin 1 1 1 1 1 1 1

Rosenbrock 1 1 1 1 1 1 1

Weierstrass 1 1 1 1 1 1 1

Gbest GCPSO, Lbest GCPSO

Spherical -1 -1 -1 -1 -1 -1 -1

Rastrigin -1 -1 -1 -1 -1 -1 -1

Rosenbrock -1 -1 -1 -1 -1 -1 -1

Weierstrass -1 -1 -1 -1 -1 -1 -1

Gbest GCPSO, VNGCPSO

Spherical -1 -1 -1 -1 -1 -1 -1

Rastrigin -1 -1 -1 -1 -1 -1 -1

Rosenbrock -1 -1 -1 -1 -1 -1 -1

Weierstrass -1 -1 -1 -1 -1 -1 -1

Gbest GCPSO, BBPSO

Spherical 1 1 1 1 1 1 1

Rastrigin 0 0 1 1 1 1 1
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Table B.1 (continued)

Swarm size: 5 10 25 50 75 100 500

Rosenbrock 1 1 1 0 0 1 0

Weierstrass -1 -1 -1 -1 -1 -1 -1

Gbest GCPSO, MBBPSO

Spherical 0 1 1 1 1 1 1

Rastrigin -1 -1 0 -1 -1 0 -1

Rosenbrock 0 0 -1 -1 -1 -1 -1

Weierstrass -1 -1 -1 -1 -1 -1 -1

Gbest GCPSO, SPSO

Spherical 1 1 0 1 1 1 1

Rastrigin 1 1 1 1 1 1 1

Rosenbrock 1 1 0 0 -1 0 -1

Weierstrass 1 1 1 1 1 1 0

Lbest GCPSO, VNGCPSO

Spherical 0 0 0 0 0 0 1

Rastrigin 0 1 0 -1 -1 -1 -1

Rosenbrock 0 0 1 1 1 1 1

Weierstrass 0 0 0 0 0 0 1

Lbest GCPSO, BBPSO

Spherical 1 1 1 1 1 1 1

Rastrigin 0 1 1 1 1 1 1

Rosenbrock 1 1 1 1 1 1 1

Weierstrass 0 -1 -1 -1 -1 0 0

Lbest GCPSO, MBBPSO

Spherical 1 1 1 1 1 1 1

Rastrigin 0 0 1 1 1 1 1

Rosenbrock 1 1 1 1 1 1 1

Weierstrass -1 -1 -1 -1 -1 -1 0

Lbest GCPSO, SPSO
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Table B.1 (continued)

Swarm size: 5 10 25 50 75 100 500

Spherical 1 1 1 1 1 1 1

Rastrigin 1 1 1 1 1 1 1

Rosenbrock 1 1 1 1 1 1 1

Weierstrass 1 1 1 1 1 1 1

VNGCPSO, BBPSO

Spherical 1 1 1 1 1 1 1

Rastrigin 0 1 1 1 1 1 1

Rosenbrock 1 1 1 1 1 1 1

Weierstrass 0 -1 -1 -1 -1 0 0

VNGCPSO, MBBPSO

Spherical 1 1 1 1 1 1 1

Rastrigin 0 0 1 1 1 1 1

Rosenbrock 1 1 1 1 1 1 1

Weierstrass -1 -1 -1 -1 -1 -1 0

VNGCPSO, SPSO

Spherical 1 1 1 1 1 1 1

Rastrigin 1 1 1 1 1 1 1

Rosenbrock 1 1 1 1 1 1 1

Weierstrass 1 1 1 1 1 1 1

BBPSO, MBBPSO

Spherical -1 -1 -1 -1 -1 -1 -1

Rastrigin 0 -1 -1 -1 -1 -1 -1

Rosenbrock -1 -1 -1 -1 -1 -1 -1

Weierstrass -1 0 -1 0 0 0 0

BBPSO, SPSO

Spherical 0 -1 -1 -1 -1 -1 -1

Rastrigin 1 1 1 1 1 1 1

Rosenbrock 0 0 -1 0 -1 -1 -1
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Table B.1 (continued)

Swarm size: 5 10 25 50 75 100 500

Weierstrass 1 1 1 1 1 1 1

MBBPSO, SPSO

Spherical 1 0 -1 0 -1 -1 -1

Rastrigin 1 1 1 1 1 1 1

Rosenbrock 1 1 1 1 1 1 1

Weierstrass 1 1 1 1 1 1 1

B.2 Robustness with Regards to Dimensionality

Table B.2: Complete ranks of DRoCs for PSO pairs in various dimensionalities

Dimensionality: 2 5 25 50 100 500 1000

Gbest PSO, Lbest PSO

Spherical -1 -1 -1 -1 -1 0 -1

Rastrigin -1 -1 -1 0 -1 0 -1

Rosenbrock -1 -1 -1 -1 0 -1 0

Weierstrass -1 -1 -1 -1 0 0 -1

Gbest PSO, VNPSO

Spherical -1 -1 -1 -1 0 0 0

Rastrigin -1 -1 -1 0 0 0 0

Rosenbrock -1 -1 -1 -1 0 0 0

Weierstrass -1 -1 -1 -1 0 0 0

Gbest PSO, Gbest GCPSO

Spherical 0 0 0 0 -1 0 0

Rastrigin 0 0 0 0 0 0 0

Rosenbrock 0 0 -1 0 0 0 0

Weierstrass -1 -1 0 0 0 0 0

Gbest PSO, Lbest GCPSO
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Table B.2 (continued)

Dimensionality: 2 5 25 50 100 500 1000

Spherical -1 -1 -1 -1 -1 -1 -1

Rastrigin -1 -1 -1 0 -1 0 -1

Rosenbrock -1 -1 -1 -1 -1 -1 -1

Weierstrass -1 -1 -1 -1 -1 -1 -1

Gbest PSO, VNGCPSO

Spherical -1 -1 -1 1 0 -1 -1

Rastrigin -1 -1 -1 1 -1 -1 -1

Rosenbrock -1 -1 -1 1 -1 -1 0

Weierstrass -1 -1 -1 0 0 0 -1

Gbest PSO, BBPSO

Spherical 1 1 0 1 0 0 0

Rastrigin 1 1 0 1 0 0 0

Rosenbrock 1 1 -1 -1 0 -1 0

Weierstrass 1 -1 -1 -1 1 1 1

Gbest PSO, MBBPSO

Spherical 1 1 0 1 1 -1 -1

Rastrigin 0 0 -1 1 -1 0 -1

Rosenbrock 0 -1 -1 1 -1 -1 -1

Weierstrass 1 -1 -1 -1 1 1 1

Gbest PSO, SPSO

Spherical 0 1 1 1 1 1 1

Rastrigin 1 1 1 1 1 1 1

Rosenbrock 1 0 1 1 1 1 1

Weierstrass 0 1 1 1 1 1 1

Lbest PSO, VNPSO

Spherical 0 0 1 1 0 0 1

Rastrigin 1 0 1 0 1 0 1

Rosenbrock 0 1 1 1 0 1 0
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Table B.2 (continued)

Dimensionality: 2 5 25 50 100 500 1000

Weierstrass 0 1 1 0 0 0 1

Lbest PSO, Gbest GCPSO

Spherical 1 1 1 1 0 0 1

Rastrigin 1 1 1 1 1 0 1

Rosenbrock 1 1 1 1 -1 1 0

Weierstrass 0 1 1 1 0 0 1

Lbest PSO, Lbest GCPSO

Spherical 0 0 1 1 0 -1 -1

Rastrigin 0 0 1 1 0 -1 -1

Rosenbrock 0 -1 0 1 -1 -1 -1

Weierstrass -1 -1 -1 0 0 -1 0

Lbest PSO, VNGCPSO

Spherical 0 0 1 1 0 -1 -1

Rastrigin 1 0 1 1 -1 -1 -1

Rosenbrock 0 -1 1 1 0 -1 0

Weierstrass -1 -1 1 1 0 -1 -1

Lbest PSO, BBPSO

Spherical 1 1 1 1 0 0 1

Rastrigin 1 1 1 1 0 0 1

Rosenbrock 1 1 1 1 0 0 0

Weierstrass 1 -1 -1 1 1 1 1

Lbest PSO, MBBPSO

Spherical 1 1 1 1 1 -1 -1

Rastrigin 1 1 1 1 -1 -1 -1

Rosenbrock 1 1 1 1 -1 0 0

Weierstrass 1 -1 -1 1 1 1 1

Lbest PSO, SPSO

Spherical 1 1 1 1 1 1 1
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Table B.2 (continued)

Dimensionality: 2 5 25 50 100 500 1000

Rastrigin 1 1 1 1 1 1 1

Rosenbrock 1 1 1 1 1 1 1

Weierstrass 1 1 1 1 1 1 1

VNPSO, Gbest GCPSO

Spherical 1 1 1 1 0 0 0

Rastrigin 1 1 1 1 0 0 0

Rosenbrock 1 1 1 1 -1 0 0

Weierstrass 0 1 1 1 0 0 0

VNPSO, Lbest GCPSO

Spherical -1 -1 0 0 0 -1 -1

Rastrigin -1 0 0 0 -1 -1 -1

Rosenbrock 0 -1 -1 0 -1 -1 -1

Weierstrass -1 -1 -1 0 -1 -1 -1

VNPSO, VNGCPSO

Spherical -1 -1 1 1 0 -1 -1

Rastrigin 0 0 1 1 -1 -1 -1

Rosenbrock 0 -1 1 1 0 -1 0

Weierstrass -1 -1 -1 1 0 0 -1

VNPSO, BBPSO

Spherical 1 1 1 1 0 0 0

Rastrigin 1 1 1 1 0 0 0

Rosenbrock 1 1 0 0 0 0 0

Weierstrass 1 -1 -1 0 1 1 1

VNPSO, MBBPSO

Spherical 1 1 1 1 1 -1 -1

Rastrigin 1 1 1 1 -1 -1 -1

Rosenbrock 1 1 1 1 -1 0 0

Weierstrass 1 -1 -1 1 1 1 1
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Table B.2 (continued)

Dimensionality: 2 5 25 50 100 500 1000

VNPSO, SPSO

Spherical 1 1 1 1 1 1 1

Rastrigin 1 1 1 1 1 1 1

Rosenbrock 1 1 1 1 1 1 1

Weierstrass 1 1 1 1 1 1 1

Gbest GCPSO, Lbest GCPSO

Spherical -1 -1 -1 -1 0 -1 -1

Rastrigin -1 -1 -1 -1 -1 -1 -1

Rosenbrock -1 -1 -1 -1 -1 -1 -1

Weierstrass -1 -1 -1 -1 0 -1 -1

Gbest GCPSO, VNGCPSO

Spherical -1 -1 -1 0 0 -1 -1

Rastrigin -1 -1 -1 1 -1 -1 -1

Rosenbrock -1 -1 -1 0 0 -1 0

Weierstrass -1 -1 -1 0 0 0 -1

Gbest GCPSO, BBPSO

Spherical 1 1 0 1 0 0 0

Rastrigin 1 1 0 1 -1 0 0

Rosenbrock 0 1 -1 -1 0 0 0

Weierstrass 1 -1 -1 0 1 1 1

Gbest GCPSO, MBBPSO

Spherical 1 1 -1 1 1 -1 -1

Rastrigin 0 0 -1 1 -1 -1 -1

Rosenbrock 0 -1 -1 1 0 -1 -1

Weierstrass 1 -1 -1 0 1 1 1

Gbest GCPSO, SPSO

Spherical 0 0 1 1 1 1 1

Rastrigin 1 1 1 1 1 1 1
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Table B.2 (continued)

Dimensionality: 2 5 25 50 100 500 1000

Rosenbrock 1 0 1 1 1 1 1

Weierstrass 1 1 1 1 1 1 1

Lbest GCPSO, VNGCPSO

Spherical 0 0 1 1 0 0 -1

Rastrigin 0 0 1 1 0 -1 0

Rosenbrock 0 1 1 1 0 0 0

Weierstrass 0 0 1 1 0 0 0

Lbest GCPSO, BBPSO

Spherical 1 1 1 1 0 1 1

Rastrigin 1 1 1 1 0 1 1

Rosenbrock 1 1 1 0 1 1 1

Weierstrass 1 -1 -1 1 1 1 1

Lbest GCPSO, MBBPSO

Spherical 1 1 1 1 1 1 0

Rastrigin 1 1 1 1 -1 0 0

Rosenbrock 1 1 1 1 0 1 0

Weierstrass 1 -1 -1 1 1 1 1

Lbest GCPSO, SPSO

Spherical 1 1 1 1 1 1 1

Rastrigin 1 1 1 1 1 1 1

Rosenbrock 1 1 1 1 1 1 1

Weierstrass 1 1 1 1 1 1 1

VNGCPSO, BBPSO

Spherical 1 1 1 1 0 1 1

Rastrigin 1 1 1 1 0 1 1

Rosenbrock 1 1 0 -1 0 1 0

Weierstrass 1 -1 -1 -1 1 1 1

VNGCPSO, MBBPSO
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Table B.2 (continued)

Dimensionality: 2 5 25 50 100 500 1000

Spherical 1 1 1 1 1 1 1

Rastrigin 1 1 0 1 0 1 0

Rosenbrock 1 1 1 1 0 1 0

Weierstrass 1 -1 -1 -1 1 1 1

VNGCPSO, SPSO

Spherical 1 1 1 1 1 1 1

Rastrigin 1 1 1 1 1 1 1

Rosenbrock 1 1 1 1 1 1 1

Weierstrass 1 1 1 1 1 1 1

BBPSO, MBBPSO

Spherical -1 -1 0 1 1 -1 -1

Rastrigin -1 -1 -1 1 -1 -1 -1

Rosenbrock -1 -1 1 1 -1 0 -1

Weierstrass -1 -1 1 1 0 0 0

BBPSO, SPSO

Spherical -1 -1 1 1 1 1 1

Rastrigin 0 1 1 1 1 1 1

Rosenbrock 1 -1 1 1 1 1 1

Weierstrass -1 1 1 1 1 1 1

MBBPSO, SPSO

Spherical -1 -1 1 1 1 1 1

Rastrigin 1 1 1 1 1 1 1

Rosenbrock 1 1 1 1 1 1 1

Weierstrass 0 1 1 1 1 0 1
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Thomas, editors, Swarm Intelligence, pages 86–97, Cham, 2014. Springer Interna-

tional Publishing.
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